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Introduction 
 

1. Cancer Biology  
 
Cancer is a group of diseases characterized by unchecked malignant cell growth that can attack all tissue 
types and affect any person. It currently accounts for the second most common cause of death within the 
United States, and various types of cancer occupy the sixth leading cause of death worldwide, and the 
fourth, ninth, and tenth leading causes of death in middle and high income countries in 2013 [1, 2]. 
Cancer is a significant disease in that it can be caused by a variety of factors, including infectious disease, 
diet, the environment, and conspicuously, one’s own genetics.  
 
The hallmark of cancer is the presence of rapidly growing masses of cells known as tumors. These tumors 
form as amorphous masses capable of influencing the local microenvironment in order to siphon off 
nutrients and divert the blood supply. As malignant tumors’ metabolic demands begin to outpace the local 
microenvironment, the cancer begins to spread to other portions of the body. A stage 0 cancer is in situ 
with minimal growth; a stage I cancer is relegated to its original tissue type that is small; a stage II and III 
cancer is determined by the deeper ingrowth of the tumor into the original tissue, and the possibility to 
have spread to surrounding lymph nodes; finally, a stage IV cancer is one that has traveled to a separate 
organ, with the worst types having crossed the horizontal midline of the body i.e. the diaphragm [3]. 
 

2. Cancer Treatment 
 
Current cancer treatments fall under three major categories: surgical, chemotherapy, and radiotherapy. 
Each of the three present significant pros and cons to treatment. Depending on the area, early stage 
cancers can be easily treated and set into remission through a full excision of the tumor. However, as 
malignant tumors begin to increase in size, or are nestled in difficult to access areas, introduction of 
chemotherapy or radiation provides clinicians an avenue to decrease the size to operable levels, or kill the 
mass completely [4]. 
 

3. Pharmacokinetics and Pharmacodynamics 
 
Pharmacokinetics and pharmacodynamics (abbreviated PK/PD) is the branch of pharmacology and 
physiology dedicated to mathematical modeling of the elimination and uptake of drugs in biological 
systems. In design drugs, drug schedules, and drug dosing guidelines, PK/PD analysis can provide an 
invaluable source as the expected outcomes associated with dosage parameters. Typically PK/PD studies 
begin with administration of a drug to a mouse model or patient, collecting blood samples, analyzing drug 
concentrations, and fitting the data to standard curves [5]. For example, a bolus (instantaneous) 
administration of drug is considered to follow the following equations describing the blood concentration 
[6, 7]. 

 𝐶(𝑡) = 𝐶&𝑒()*+ 
 

Equation 1 

Equation 1 above describes the drug concentration in blood, c(t) at time t, after a single dose; the term C0 
denotes the amount of drug administered, and ke denotes the drug’s elimination rate within the body. 
While informative for general systems, PK/PD models fall short in describing the outcomes of the drug 
treatment. Therefore, they can be expanded upon to not only investigate how the body will react to the 
drug, but on the efficacy and ability to meet treatment goals. 
 

4. Research Question 
 
Current cancer treatments are lengthy and take a significant physical toll on a patient’s body. The 
combination of surgery, chemotherapy and radiation all pose substantial risks to a patient, from the 
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financial burden of paying for multiple rounds of treatments, to the physical as adverse side-effects, loss 
of physical abilities, and possible death. Chemotherapeutic treatments are highly regulated by the FDA 
and tuned to be effective, yet conservative, by drug manufacturers and clinicians. Using mathematical 
models, cancer treatment can be optimized to decrease the total time of treatment, or limit the amount of 
drug administered, all without overstepping guidelines or deadly levels. 
 

5. Research Objective 
 
The overarching objective of this project is to investigate the efficacy of an optimized drug schedule to 
treat a vascularized tumor. This is accomplished by taking the complex mathematics associated with 
tumor growth and chemotherapeutic treatment, and modeling it with a highly tunable transfer function. 
 
Mathematical Model 
 

1. Process Dynamics 
 
It is difficult to obtain concise, analytical solutions for typical models in mathematical oncology. Cancers 
are dynamic systems; to be treated as such, steps should be taken to limit the boundedness imparted by 
initial conditions, and increase the freedom of using a model as a simulation. It was therefore chosen to 
express the cancer dynamics model outlined below, as a series of transfer functions, each taking the 
output of a previous process as the input to a new process. A simplified model was derived that related an 
injection chemotherapeutic drug to the resulting blood sera drug concentration, sera concentration to drug 
concentration within a tumor, and ultimately drug-tumor concentration to number of cells killed; simply, 
an overarching transfer function would relate a dose of drug to the number of cells killed, with highly 
tunable parameters unique to the drug used, cancer being treated, and the patient’s own physiological 
processes. 
 

2. Physical System and Parameters 
 

A. General 
 

There is a hope that the mathematical model to be described below can be applied to all forms of 
vascularized tumors. For this model, despite tumors being amorphous in shape and integrated within 
tissues that then integrate in a robust vasculature, it is assumed that the tumor is spherical in shape and 
fully immersed within the body blood streams. The reason for this assumption is two-fold: firstly, setting 
the system as a spherical tumor increases the ability to produce a solution to the diffusion of drug from 
the sera into the tumor. As for the second assumption, the tumor is placed as a free floating sphere within 
the blood. A fully vascularized tumor has essentially the same structure, but in the assumptive case, the 
effect of capillaries being wound around the tumor can be neglected. 
 

B. Drug Specific 
 

For this simulation, all parameters used will be for treating a Non-Small Cell Lung Cancer (NSCLC) with 
the common therapeutic agent, paclitaxel. Given that tissue is predominantly water, it was assumed that 
the diffusion of paclitaxel through water would serve as the appropriate scheme for convective diffusion 
into the tumor cell. Experiment has shown that the diffusion coefficient of paclitaxel through water is 
2.56x10-4 cm2/min, or 0.01536 cm2/hr [8]. Paclitaxel is a taxane derivative that in standard dosing 
schedules, has a half-life of 13.1 hours on average, with the inverse representing a total body elimination 
rate of 0.529 hr-1 [9, 10]. 
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The cancer in this simulation is set to be a singular NSCLC tumor, and volume of 12.37 cm3, as this 
provides an average size between the bounds presented by Hosokawa and Xia [11, 12]. The patient is 
assumed to be a 75 inches tall (6 ft. 3 inches) and 200 lbs. male, giving him a body area of 2.2 m2. Current 
recommendations for NSCLC treatment with paclitaxel is a 3 hour infusion once a week at a dosage of 
135 mg/m2 [10, 13-15]. Drugs diffuse within blood plasma, of which constitutes 55% of an adult human’s 
total blood volume of 5L. Assuming that the bolus injection rapidly and evenly distributes within the 
body post injection, the average drug concentration equates to 1.26x10-4 mmol/mL. Given that 1 hour 
constitutes just over 1% of the total treatment time (one week), the assumption of it being a bolus 
injection within the simulation is viable. 
 

3. Injection Phase 
 

Chemotherapy treatments range in application, from daily pills, weekly injections in 1, 2, 4, etc. hour 
duration, or a continuous drip/implant. For the purpose of this model, it was assumed that drug delivery 
would be weekly intravenous treatment, and due to the time scale of roughly 7 days between treatments, 
can be modeled as an bolus injection. In process dynamics, a bolus injection would be modeled as an 
impulse input. 
 

𝑑𝑝
𝑑𝑡

= 𝐼 
 
Several body systems contain the mechanisms necessary to purge and eliminate foreign chemicals. These 
system functions are often lumped into a first order elimination equation, with a first order elimination 
rate constant as the inverse of the half-life of the drug within the body. 
 

 𝑑𝑝
𝑑𝑡

= 𝐼 − 𝑘1 ∗ 𝑝 
 

Equation 2 

 
Equation 2 above is an example of an ordinary differential equation, that can be further characterized as 
an unsteady state mass balance of drug plasma concentration as a function of time. Performing a Laplace 
transform on the above differential equation yields: 
 

𝑠𝑃 = 	I	 − 𝑘1𝑃 
 
The above can now be rearranged, and the transfer function solved for: 
 

 𝐺7 =
𝑃
I
=

1
𝑠 + 𝑘1

 
Equation 3 
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Figure 1. Pharmacokinetic plot describing the drug concentration in blood plasma after a bolus injection, as described by 
equations 3 and 4. As the body is assumed to remove drugs and toxins following first order kinetics, the drug concentration 
experiences an exponential decay proportional to the elimination rate, kb. This model is also represented by the time-domain 
equation set forth in Equation 1. Values used to produce plot are found in the section “Variables/Parameters”. 
 

4. Diffusitory Phase 
 

A typical diffusitory model does not contain all the necessary components to properly model this system. 
This system has a non-constant source of drug diffusing into the cell, as shown by equations 3 and 4 and 
by Figure 1 above. Drug diffuses into a finite medium and does so at an unsteady state, and, with less an 
impact, flow of blood and nutrients around the tumor must also be considered. Therefore, the typical 
Fickian diffusion equation will not be considered. Instead, we consider the convective mass transfer 
equation in which the diffusion of drug into the tumor mass is assumed to be spatially uniform; equation 4 
contains an important distinction to account for an unsteady state, finite media, non-constant source: 
 

 𝑁; = 𝑘<=𝐶;,? − 𝐶;@ = 𝑘<(𝑝 − 𝑐) 
 

Equation 4 

By substituting the average outside concentration 𝐶;,? term for 𝑝,	and the surface concentration for the 
concentration inside of the tumor for c, the issues arising from a non-constant source sink have been 
accounted for and integrated so the tumor concentration can be modeled. Both are functions of time, with 
blood concentration derived in equations 2 and 3 above, and drug concentration inside the tumor 
implicitly defined in equation 4 and solved for in equation 8. It is also important to take note of the 
boundary layer; convective mass transfer serves its purpose in modeling the mass transfer of species A 
from a moving fluid through a much more stagnant boundary layer towards the mass sink. This boundary 
layer was assumed to be the entire tumor mass, with the mass sink effectively being the center of the 
spherical tumor, thus allowing for a spatially uniform diffusion assumption.  
 
By using a process dynamics approach, p can be left as a time-dependent function as it is the result of 
simulating the transfer function in equation 4; when the soon to be derived diffusitory model transfer 
function is combined with that of blood plasma transfer function in equation 4, the result is a tumor-drug 
concentration profile dependent on a time-dependent plasma concentration, integrated within the overall 
transfer function. The diffusion scheme was modified to fit these assumptions. 
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Figure 2. Schematic of the diffusive environment around the tumor mass. The tumor is assumed to be a perfect sphere; in the 
body, a tumor mass would be extravascular with a dynamic system of capillaries supplying necessary nutrients and oxygen to the 
tissue. The simulation relies on the assumption that a fully vascularized tumor can be modeled as a sphere within a flow channel 
with the same properties, velocity, viscosity, etc. as blood flowing in the capillary system. 
 
The dynamics of diffusion are now modeled by the 𝑘< term, as a sort of velocity of diffusion, which is 
dependent on the properties of the external flow (blood), flow geometry (assumed sphere), and diffusion 
parameters (diffusion coefficient, 𝐷;C). For a convective flow system, 𝑘< is modeled by calculating the 
Sherwood (Sh) number around a sphere, as a function of the Peclet number (Pe), one of two ways [16, 
17]: 

 
𝑆ℎ =

𝑘<𝐷
𝐷;C

= F4.0 + 1.21𝑃𝑒
K
LM
7/K

𝑓𝑜𝑟	𝑃𝑒 < 10,000 
Equation 5 

 
𝑆ℎ =

𝑘<𝐷
𝐷;C

= 1.01 ∗ 𝑃𝑒
7
L		𝑓𝑜𝑟	𝑃𝑒 > 10,000 

Equation 6 

 

For mass transfer systems, the Peclet number serves as the ratio between the advective and diffusive mass 
transfer rates, or more simply the product of the Reynold’s number over the flow geometry and the 
Schmidt number [17]: 

 
𝑃𝑒 = 𝑅𝑒U ∗ 𝑆𝑐 =

𝜌𝑣𝐷
𝜇

∗
𝜇

𝜌𝐷;C
=
𝑣𝐷
𝐷;C

 
Equation 7 

Using a general mass balance approach, the amount of drug within the tumor can be determined. The inlet 
is the amount diffusing through as described by equations 3 and 4. However, certain factors must be 
applied to 𝑁;, which has units of YZZ[\

<Z]∗^
_ to that of `Z

`+
 with units of YZZ[\

^
_. Multiplying the variable 

diffusive flux, 𝑁;, by the surface area of the tumor subject to diffusion, 𝑆;, yields the variable molar flow 
into the tumor. Further dividing by the volume of the tumor, V, yields the desired time-derivative of the 
tumor concentration. The flux, 𝑁;, can be expanded using equation 4 to give the influx of drug into the 
tumor: 

𝑑𝑐
𝑑𝑡
=
𝑆;
𝑉
𝑘<(𝑝 − 𝑐) 

 
The tumor cell has two ways of removing drug from its system, excretion and metabolism. Both forms are 
not counted as the amount of drug needed to induce cell death. Like all physiological environments, 
tumor masses contain the necessary infrastructure to expel a toxin from itself, modeled by a first order 
elimination rate, similar to that of the body. Metabolism of drug is highly variable, and minimal compared 
to excretion, therefore it is not included [18]. 
 

 𝑑𝑐
𝑑𝑡
=
𝑆;
𝑉
𝑘<(𝑝 − 𝑐) − 𝑘1𝑐 

Equation 8 

From this point forth, the diffusitory factors on the concentration difference will be represented by a. 
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𝛼 =
𝑆;
𝑉
𝑘< 

 
𝑑𝑐
𝑑𝑡
= 𝛼𝑝 − 𝛼𝑐 − 𝑘1𝑐 

 
The Laplace can now be taken of above equation. 
 

𝑠𝐶 + 𝛼𝐶 + 𝑘1𝐶 = 𝛼𝑃 
 

𝑠𝐶 + 	𝛽𝐶 = 𝛼𝑠𝑃					𝑤𝑖𝑡ℎ	𝛽 = 𝛼 + 𝑘1	 
 
Solving for the transfer function yields: 
 

 
𝐺K =

𝐶
𝑃
=

𝛼
𝑠 + 𝛽

 
Equation 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Pharmacodynamic plot describing the intratumoral concentration of drug after a bolus injection. Resulting drug 
concentration in the tumor was found by simulating an injection, I, against the product of equations 4 and 10. Values used to 
produce plot are found in the section “Variables/Parameters”. 
 

5. Cell Death Phase 
 

Now that the drug concentration within the cell has been described, its effect on the tumor’s overall 
growth and death can be determined. Using the general mass balance equation for the number of cells: 
 

𝑑𝑛
𝑑𝑡

= 𝐺𝑟𝑜𝑤𝑡ℎ − 𝐷𝑒𝑎𝑡ℎ 
 
Using an exposure-dependent death equation, the amount of cells killed off can be modeled. Exposure is 
typically modeled with Hill’s equation, but for simplicity, the exposure will be defined as the 
concentration present within in the cell. Given that the cell has been previously modeled in equation 8 to 
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be able to remove some of the drug, it is assumed that any remaining drug does do cytotoxic damage to 
the tumor cells via an exposure-dependent treatment effect [19-21][Yin]. 
 

𝑑𝑛
𝑑𝑡

= 𝐺𝑟𝑜𝑤𝑡ℎ − 𝑘`𝑛𝑐 
 
Tumor growth has been experimentally modeled to closely follow the Gompertz model [19, 22, 23]. 
Sigmoidal in nature, Gompertz growth allows for exponential growth at low cell numbers and forces cell 
amount to level off as it reaches the carrying capacity, K [19, 24, 25]. This model fits typical physical 
systems as the tumor can only become so large before it exhaust its ability to siphon oxygen and nutrients 
from the patient. 
 

 𝑑𝑛
𝑑𝑡

= 𝑛𝑘h ln F
𝐾
𝑛M

− 𝑘`𝑛𝑐 
Equation 10 

 
This equation must now be linearized before it can be used in a transfer function. Linearization of this 
differential equation would follow the form: 
 

𝑑𝑛
𝑑𝑡

≈ 𝑓(𝑛m, 𝑐̅) +
𝑑𝑓
𝑑𝑛

[𝑎𝑡	𝑛m, 𝑐̅] ∗ (𝑛 − 𝑛m) +
𝑑𝑓
𝑑𝑛

[𝑎𝑡	𝑛m, 𝑐̅] ∗ (𝑐 − 𝑐̅) 
 
The initial term 𝑓(𝑛m, 𝑐̅) can be equated to zero because at steady state, neither the number of cells, nor the 
cellular drug concentration is changing. The fact that at steady state the number of cells, 𝑛m, is not zero is 
accounted for once the transfer function is solved for a various input. Linearizing equation 11 yields: 
 

𝑑𝑓
𝑑𝑛

= q𝑘h ln F
𝐾
𝑛mM

− 𝑘h − 𝑘`𝑐̅r ∗ 𝑛 = 	𝜑𝑛 
 

𝑑𝑓
𝑑𝑐

= −𝑘`𝑛m ∗ 𝑐 
 

 𝑑𝑛
𝑑𝑡

= 	𝜑𝑛 − 𝑘`𝑛m𝑐 
 

Equation 11 

Taking the Laplace transform of equation 11 and solving for the transfer function yields: 
 

𝑠𝑁 = 	𝜑𝑁 − 𝑘`𝑛m𝐶 
 

 
𝐺L =

𝑁
𝐶
=
−𝑘`𝑛m
𝑠 − 𝜑

 
   Equation 12 

 
6. Model Solution 
 

Finally, a model can be determined to relate the bolus injection to the number of tumor cells remaining. 
Before solution is possible, it must be clarified that all input and output variables at this point are in 
deviation form; that is the steady state variable, �̅�, subtracted from the time dependent variable, x(t), to 
produce a deviation from steady state variable, 𝑥∗(𝑡). The stars used to denote the deviation variables 
were omitted in the final collection of equations for clarity. The three derived transfer functions act in 
series, allowing for their multiplication against one another to find an overall system transfer function. 
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𝐺[u1vw\\ = 𝐺7𝐺K𝐺L =
𝑃
𝐼
∗
𝐶
𝑃
∗
𝑁
𝐶
=
𝑁
𝐼

 
 

 
𝐺[u1vw\\ =

1
𝑠 + 𝑘1

∗
𝛼

𝑠 + 𝛽
∗
−𝑘`𝑛m
𝑠 − 𝜑

 

 

Equation 13 

Using a process dynamics package within the Julia programming language created by Dr. Cory Simon at 
Oregon State University, the above transfer function can be simulated for any bolus injection of drug, I, to 
produce a change in cell number after a dose. 
 
The number of tumor cells at the end of simulation time, T  = 168 hours [13, 26], will then be used as the 
starting point of the next week of treatment. The simulation was repeated 24 times, to represent a possible 
chemotherapy treatment scheme of 6 months [10]. The new volume was calculated as a ratio of cell 
number of the previous week to the cell number of the present week multiplied by the previous week 
volume before treatment. 

 𝑐𝑒𝑙𝑙y
𝑐𝑒𝑙𝑙z

∗ 𝑉y = 𝑉z								𝑤ℎ𝑒𝑟𝑒	
𝑖 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑤𝑒𝑒𝑘
𝑗 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑤𝑒𝑒𝑘 

Equation 14 

 
Running the simulation showed that over a 6 month period shows a linear decrease in tumor cells at a 
constant dosage once every week. The volume, steady state drug concentration and steady state number 
for cancer cells change with each treatment. Those values after each treatment are recorded and fed back 
into the simulation as new parameters regarding their effects cancer treatment, where, for example, in 
equation 12, the ability of cancer drug in the tumor to kill cells is directly dependent on this steady state 
number of cells before subsequent treatments.  
 
Optimization 
 

1. Need for Optimization 
 

Chemotherapy as a cancer treatment wreaks havoc on the body’s systems, and the timing and dosing 
schedules in treatment is often the parameters most likely to be optimized. If treatment timing can be 
optimized, a patient does not have to undergo long duration and as many cycles to eradicate their tumor, 
however they may be at risk of developing drug toxicity. Similarly, as the tumor shrinks, the amount of 
drug administered can be optimized for each dose to limit the amount adverse effects brought on by high 
drug concentrations. Conversely, if not enough drug is present, its influence on the exposure-dependent 
death rate may not be great enough to overcome the tumors natural growth rate. 
 
One of the obvious scenarios to optimize is to administer the maximum amount of drug with no 
separation between doses. There exists some unique concentration within the body, Cmax, that provokes 
LD50 concentration within the individual. This LC50 concentration (Cmax), is the concentration that is 
required to kill 50% of the population, and for most chemotherapy drugs, reaching the Cmax induces renal 
and liver failure, bone marrow suppression, and peripheral neurotoxicity [27, 28]. It is therefore necessary 
to impede the drug concentration from becoming large enough to reach this Cmax [18, 20]. 
 

 𝑝(𝑡) ≤ 𝐶Zw~ Equation 15 

As the chemotherapeutic effect of reaching the Cmax occurs at the systemic level, only the drug 
concentrations within the sera described by equations 3 and 4 need to be considered. For any bolus 
injection I: 

𝑃 = 𝐼 ∗
1

𝑠 + 𝑘�
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The above can then be solved into the time domain, producing a drug concentration curve within the 
plasma. 
 

 𝑝(𝑡) = 𝐼 ∗ 𝑒()*+ Equation 16 

 
It is important to also remember that the bolus injection, I, is itself a conditional function where at the 
prescribed dosing interval, t, the injection equals the amount of drug given, m. 
 

𝐼(𝑡) = �	𝑚, 𝑡 = 𝑛 ∗ 𝑇
0, 𝑡 ≠ 𝑛 ∗ 𝑇					𝑤ℎ𝑒𝑟𝑒	𝑛 = 0, 1, 2, … 

 
However, trying to optimize a conditional piece-wise function is not suitable for determine an effective 
dosing schedule. By setting the injection function to the form of a trigonometric function, a continuous 
function is developed where the intervals between doses, t, can be highly tuned. The general form 
follows: 
 

 
𝐼(𝑡) = 𝑚 ∗ cos� F

𝜋𝑡
𝜏 M

 
 

Equation 17 

Where if the exponent, n, on the cosine function taken towards infinity, the resulting injection, I(t), tends 
toward a set of continuous Delta-Dirac functions, also known as the Dirac comb, with a height of m and 
interval of t  hours. Equation 19 can now be substituted into equation 18 to yield: 
 

 
𝑝(𝑡) = 𝑚 ∗ cos� F

𝜋𝑡
𝜏 M

∗ 𝑒()*+ 
 

Equation 18 

Equation 18 will now serve as the base equation for the subsequent optimizations. 
 

2. Frequency of Treatment 
 
A. Maximum Drug Concentration 

 
The simplest optimizable parameter is to vary or lower the frequency of dosages to a point where the 
decrease in tumor cells reaches a maximum while still maintaining the criteria set by equations 15.  This 
can be performed using equation 18, and solving for when the time, t, equals the frequency dosage, t. 
 

𝐶Zw~	 ≥ 	𝑚 ∗ cos𝑛 F
𝜋𝑡
𝜏
M ∗ 𝑒−𝑘𝑒𝑡 │𝑡=𝜏 

 
A precaution must be taken before evaluation – when solving for the inverse of a cosine function, the 
function raised to the n-th power when n is even yields a positive value, whereas an odd n yields a 
negative solution; taking the absolute value of the inverse removes this variability. This assumption is 
viable as n is desired to tend towards infinity to obtain the set of continuous Delta-Dirac functions. 
Evaluating time, t, at the interval frequency, t, yields equation 19.  
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𝜏	 ≥ �

1
𝑘1
ln F

𝑚
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Equation 19 

Equation 19 also shows another peculiarity. Dosing amount never approaches the maximum possible 
concentration, meaning the ratio between dose and Cmax is less than 1, the argument of which provokes a 
negative result. This again is mitigated through taking the absolute value to remove the variability from 
the n-th power. 
 

B. Maximum Cell Death 
 

As shown in part A above, there exists some dosing interval, t, where drug concentration is below the 
maximum possible (Cmax).  Furthermore, there must exist some interval where rate of cell death reaches 
some negative maximum. This interval t can be found by evaluating equation 13 with some dosage input, 
m. This dosage amount is assumed to represent an instantaneous, bolus injection for a single treatment 
(i.e. a Delta-Dirac input), which in the Laplace domain is represented by M. Evaluation necessitates that 
the resulting number of cells, N(s), be brought into the time domain via an inverse Laplace transform. In 
this solution, the input dosage, I, is considered to be a single administration and instantaneous. 

	

𝑁 = 𝑀 ∗ 𝐺[u1vw\\ =
1

𝑠 + 𝑘1
∗

𝛼
𝑠 + 𝛽

∗
−𝑘`𝑛m
𝑠 − 𝜑

∗ 𝐼 

 
This equation was solved using partial fraction decomposition: 
 

 
𝑁 =

1
𝑠 + 𝐴

∗
1

𝑠 + 𝐵
∗

𝐷
𝑠 − 𝐶

=
𝑋

𝑠 + 𝐴
+

𝑌
𝑠 + 𝐵

+
𝑍

𝑠 − 𝐶
 

 

 

𝑤ℎ𝑒𝑟𝑒	𝑋 + 𝑌 + 𝑍 = 𝐷 
 
Solutions to equation 23 yielded: 
 

𝑋 =
𝑚 ∗ 𝐷

𝑢 + 𝑣 − 2𝑤
; 				𝑌 =

𝑚 ∗ 𝐷 ∗ 𝑅
𝑢 + 𝑣 − 2𝑤

; 					𝑍 =
𝑚 ∗ 𝐷
𝑤

∗
𝑣(1 + 𝑅) − 2𝑤
𝑤 + 𝑣 − 2𝑤

 
 
The variables expressed above were used for simplicity in calculating the partial fraction decomposition, 
and are in previously defined terms: 
 

𝐴 = 𝑘1; 					𝐵 = 𝛽; 					𝐶 = 	j	; 					𝐷 = 	−𝑘`a𝑛m 

𝑢 = 𝐵𝐶; 					𝑣 = 𝐴𝐶; 					𝑤 = 𝐴𝐵; 					𝑅 =
𝐶 − 𝐴
𝐵 − 𝐶

 
 
Taking the inverse Laplace yields: 
 

 𝑛(𝑡) = 𝑛m + 𝑋𝑒(;+ + 𝑌𝑒(C+ + 𝑍𝑒(�+ Equation 20 

Subsequently, taking the derivative of equation 20 will describe the overall effect that the dosing interval 
will have on the number of cells, or effectively what interval is necessary for greatest reduction in the 
number of cells. If the derivative is positive, cell growth dominates the killing effect of the drug at that 
interval, whereas if the derivative is negative, cell death dominates.  
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Equation 21 

 
Results and Discussion 
 

A. Normal Model 
 

Simulation results of the normal model showed an insignificant 0.008% decrease in cell number and 
volume 1 mm3 decrease after 24 week-long treatments. The resulting tumor shrinkage was low for typical 
NSCLC outcomes [12]. Research into the efficacy of paclitaxel on NSCLC by Xia showed a 50 to 63% 
volume decrease of tumors in advanced staged cancers, however the chemotherapy also included the 
adjuvant Carboplatin, as well as the patient group receiving radiation therapy [12]. As a single drug 
therapy, paclitaxel’s efficacy resulted in roughly a 30% reduction in volume for mid-stage breast cancers 
(stage II and III) [29]. 
 
It is important to rectify the discrepancies in treatment models presented, as the efficacy of treatment is 
highly dependent on the size of tumor(s); type, number, stage, and location of tumor(s); and the 
prescribed therapy or therapies. In the simulation, it was a single chemotherapy prescribed to an average 
sized tumor of 12.38 cm3 whereas the summation of volume across all present tumors presented by 
Cheung ranged in volume from 28 to 424 cm3 [12]. Given the assumption made in the diffusive model, 
the increased size of the aggregate tumor allows for more drug diffusion and consequently a greater size 
reduction. As the aggregate volume of a tumor approaches the cleared level, ideally a volume of 0 cm3, it 
will experience the leveling of drug action and lower shrinkage rates [30]. 
 

B. Optimized Dosing Frequency Model 
 
Paclitaxel is a heavily studied and regulated drug with FDA reports detailing its elimination rates and 
maximum allowable concentration for a range of injectable doses. For the assumed dose of 135 mg/m2 at 
the shortest infusion duration, the elimination rate is 0.0529 hr-1, and the Cmax to induce LD50 equates to a 
dose of 160 mg/kg at 6.18x10-3 mmol/mL [31], equating to 6.596 mg/m2. With the parameters properly 
defined, equations 19 and 21 can be solved to find the optimal dosing frequencies. Solutions provide that 
𝜏	 ≥ 73.6	ℎ𝑟 to remain below Cmax. Figure 4 shows the optimization against equation 21; it shows a 
maximum decrease in cell number at a dosing interval of 0 hours, and local minima within the 
optimization function at 20 hours. Both are less than the stipulation to avoid reaching the Cmax, so were 
not considered in the final simulations. 
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Figure 4. Resulting optimization curve from evaluating equation 21 at a time equal to the dosing interval, t. The x’s represent the 
cell number decreasing rate at a range of dosing intervals. The black square represents the optimized interval of 73.6 hrs, with a 
cell number decrease rate of 16.82 cells per hour, as compared to the maximum cell number decrease rate of -100.57 cells per 
hour at a dosing interval of 0 hours. 
 
Dosing parameters are not based on frequency alone. Due to the clearance of the drug from the body 
being enough to eradicate it within 1 week (as shown in figure 1), it is feasible to give the simulation 
patient the maximum possible dose – that concentration that would induce LD50 – to provide the greatest 
anti-tumor activity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Simulation results of decreasing tumor volume when comparing a control case versus two optimized parameters. The 
“x”s and dashed line represent the nonexistent volume shrinkage under control conditions of a dosing frequency of 168 hours and 
dosing amount of 135 mg/m2. The squares represent the optimized parameter of a 73.6 hour dosing interval; total volume 
decrease was 0.331 mm3 per week, for a 0.068% decrease. The circles represent the optimized parameter of maximal dose of 
6.596 g/m2 at a frequency of 168 hours, for a decrease of 0.875 mm3 per week, or a 0.168% volume decrease overall. 
 
Optimization of both the frequency and amount of drug given provided better treatment results than that 
of the control simulation. Where the tumor volume and cell number remained near constant after 24 
weeks of treatment of typical dosing [13], a shorter dosing frequency to avoid reaching the Cmax, and 
providing the Cmax dose at a normal frequency provided marginally better results. A normal dosing 
amount of 135 mg/m2 every 73.6 hours saw a 0.068% decrease in tumor volume. The extreme dose of 
6.596 g/m2 at an interval of 168 hours (1 week) saw an improved volume decrease of 0.168%. 
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Optimization of the dosing interval still failed to produce the same effect as described by Perez and Xia 
[12, 32]. However, it must be reiterated that typical cancer treatment is combination of several chemo and 
radiotherapies, not a single drug as described in the simulation.  
 
Conclusion 
 
Simulations provide excellent models for the complex processes found in cancer biology and clinical 
pharmacology. Current methods, while accurate and conclusive for their purpose, have yet to integrate in 
a way to predict clinical outcomes and therefore, they were used in conjunction with treatment models to 
predict how well a drug could reduce the size of a typical tumor. The process was further applied through 
a different method of analysis in taking a process dynamics approach. The current model predicted a 
nonexistent tumor size decrease when following standard dosing schedules; when the model was 
optimized against dosing interval, it found that in the same 6 month treatment window, the tumor volume 
decreased by 0.068% when optimizing for frequency and decreased by 0.168% when optimizing for 
dosage amount, which were not even comparable to experimental results in less resistant cancers. 
However, both comparisons, (1) NSCLC cancer treated with adjuvant chemotherapies and radiation, and 
(2) breast cancer treated with simulation drug, are different enough from the model an accurate 
comparison of a single chemotherapy treatment’s efficacy would be difficult to achieve. Future models 
should seek to integrate the effects of multiple treatment types, along with empirical correlations derived 
from accurate clinical data, as that is commonplace is today’s medical practice. 
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Variables/Parameters 
 

 
 
 
 
 
 
 
 
 
 
 



In [2]: using Controlz # this *might* take a few min to compile
using PyPlot # for plotting via matplotlib
using Printf
using PyCall

# (optional) hipster plot theme
PyPlot.matplotlib.style.use(normpath(joinpath(pathof(Controlz), "..", 
"hipster.mplstyle")))

This code simulates the treatmen of a Non-Small Cell Lung Cancer (NSCLC) using Paclitaxel at the current
clinical standards of a dosage (m) of 135 mg/m2 and at a dosing frequency (tau) of once per week, or 168
hours.

The simulation is ran by giving a bolus injection of drug to the patient, simulating the plasma concentration
of drug, then simulating the drug concentration within the tumor cell, and finally simulating the number of
cells remaining after drug treatment. The final number of cells is then re-entered as the new steady state cell
number (n_bar), and the simulation re-ran until the tumor radius reaches 0.00 cm.
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In [9]: # Simulation Parameters
D = 2.87 # cm, diameter of tumor cell
n̄ = 1*10^8 # cells, steady state - initial number of cells
τ = 168.0 # [hrs], total time for possible diffusion, Dosing Frequency
dose = 135 # mg/m2
m = dose/853.906 #mmol/m2

# Tumor Parameters
R = D/2 # cm, radius of tumor cell
Sa = 4*π*R^2 #cm^2, surface area of tumor cell
V = (4/3)*π*R^3 #cm^3, volume of tumor cell
K = 10^11 # cells, carrying capacity
kg = (1/8)*(1/24) #hr^-1, growth rate
c̄ = 0.0 # mmol/cm^3, steady state concentration of drug in tumor cell

# Drug (Paclitaxel) Parameters
t_half = 13.1 #hours
ke = log(2)/t_half #hr^-1
Dab = 0.01536 #cm2/hr
kd = 0.044 # cm^3/mmol-hr, death rate constant

# Patient Physiology Paramters
A = 2.2 #m2, Body Area for dosing
Vb = 5*1000*0.55 #cm^3,  total blood volume (5L), times 55% as the amo
unt of plasma
v = 0.03*3600 # cm/hr, bulk blood velocity in capillaries
I = m*A/Vb #mmol/mL or #mmol/cm^3

# Drug Diffusion and Action
Pe = D*v/Dab # Peclet number, unitless
kc = (Dab/D)*((1.01*Pe)^(1/3)) #cm/hr, Convective mass transfer coeffi
cient
α = Sa*kc/V
β = α + ke
ϕ = kg*log(K/n̄) - kg - kd*c̄

# Process Dynamics
G1 = 1/(s + ke)
G2 = (α)/(s + β)
G3 = (-kd*n̄)/(s + ϕ)
G = G1*G2*G3

Out[9]:                               -1.344755365804222e6
--------------------------------------------------------------------
-------------
1.0*s^3 + 0.44221977527771084*s^2 + 0.03163111526778498*s + 0.000583
7284884648385
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In [10]: # Simulation
# Simulate function created by Dr. Cory Simon as a tool to analyze con
trols problems in CHE 361
N = I*G
t, n = simulate(N, τ)
cell = n .+ n̄;
viz_response(t, cell, plot_ylabel="Number of Cells",plot_xlabel="Time 
[hrs]",plot_title="Tumor Dynamics")
cell[100]

Out[10]: 9.999987015207928e7
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In [12]: # The commands below were used to produce figures 2 and 3 to graphical
ly describe the relation between the amount of drug administered and t
he resulting serum/tumor concentrations

Cb = I*G1
t, p = simulate(Cb, 168.0);
P = p.*1000 # mmol/L, mM, more in line with current medicine units
viz_response(t, P, plot_ylabel="Concentration [mmol/mL]",plot_xlabel="
Time [hrs]",plot_title="Serum Drug Concentration")

Gtum = G1*G2
Ct = I*Gtum
t, c = simulate(Ct, τ);
Ctum = c.*1000; # mmol/L, mM, more in line with current medicine units
viz_response(t, Ctum, plot_ylabel="Concentration [mmol/mL]",plot_xlabe
l="Time [hrs]",plot_title="Tumor Drug Concentration")
Ctum[100]
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Out[12]: 1.7430595623215026e-5
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