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mapped predictor variables derived from remotely sensed data. For species that inhabit large geographic areas,
remote sensing technology is often essential for producing range wide maps. Habitat monitoring for northern
spotted owls (Strix occidentalis caurina), whose geographic covers about 23 million ha, is based on SDMs that
use Landsat Thematic Mapper imagery to create forest vegetation data layers using gradient nearest neighbor

ﬁﬁzrtd%vl (GNN) methods. Vegetation data layers derived from GNN are modeled relationships between forest inventory
Lidar plot data, climate and topographic data, and the spectral signatures acquired by the satellite. When used as pre-
Northern spotted owl dictor variables for SDMs, there is some transference of the GNN modeling error to the final habitat map.

Habitat suitability Recent increases in the use of light detection and ranging (lidar) data, coupled with the need to produce spatially
Maxent accurate and detailed forest vegetation maps have spurred interest in its use for SDMs and habitat mapping. In-

Species distribution modeling

AN stead of modeling predictor variables from remotely sensed spectral data, lidar provides direct measurements of

vegetation height for use in SDMs. We expect a SDM habitat map produced from directly measured predictor var-
iables to be more accurate than one produced from modeled predictors.

We used maximum entropy (Maxent) SDM modeling software to compare predictive performance and esti-
mates of habitat area between Landsat-based and lidar-based northern spotted owl SDMs and habitat maps.
We explored the differences and similarities between these maps, and to a pre-existing aerial photo-
interpreted habitat map produced by local wildlife biologists. The lidar-based map had the highest predictive
performance based on 10 bootstrapped replicate models (AUC = 0.809 4 0.011), but the performance of
the Landsat-based map was within acceptable limits (AUC = 0.717 4 0.021). As is common with photo-
interpreted maps, there was no accuracy assessment available for comparison. The photo-interpreted map pro-
duced the highest and lowest estimates of habitat area, depending on which habitat classes were included
(nesting, roosting, and foraging habitat = 9962 ha, nesting habitat only = 6036 ha). The Landsat-based map
produced an estimate of habitat area that was within this range (95% CI: 6679-9592 ha), while the lidar-based
map produced an area estimate similar to what was interpreted by local wildlife biologists as nesting (i.e., high
quality) habitat using aerial imagery (95% Cl: 5453-7216). Confidence intervals of habitat area estimates from
the SDMs based on Landsat and lidar overlapped.

We concluded that both Landsat- and lidar-based SDMs produced reasonable maps and area estimates for north-
ern spotted owl habitat within the study area. The lidar-based map was more precise and spatially similar to
what local wildlife biologists considered spotted owl nesting habitat. The Landsat-based map provided a less pre-
cise spatial representation of habitat within the relatively small geographic confines of the study area, but habitat
area estimates were similar to both the photo-interpreted and lidar-based maps.

Photo-interpreted maps are time consuming to produce, subjective in nature, and difficult to replicate. SDMs pro-
vide a framework for efficiently producing habitat maps that can be replicated as habitat conditions change over
time, provided that comparable remotely sensed data are available. When the SDM uses predictor variables ex-
tracted from lidar data, it can produce a habitat map that is both accurate and useful at large and small spatial
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scales. In comparison, SDMs using Landsat-based data are more appropriate for large scale analyses of amounts
and general spatial patterns of habitat at regional scales.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Less than two years after the 1972 launch of the first Landsat
Thematic Mapper satellite (Earth Resources Technology Satellite 1),
the color infrared imagery collected by its multispectral scanner was
interpreted and used to make a map of northern spotted owl (Strix
accidentalis caurina) habitat. That map showed that a proposed timber
sale in the Coast Range of Oregon would impact the owl's nesting habi-
tat and it was subsequently halted (Mouat & Schrumpf, 1974). Since
then, and largely due to the loss of its habitat, the northern spotted
owl was listed as threatened under the U.S. Endangered Species Act
(USDI, 1990). Consequently, northern spotted owl habitat maps have
played an ever increasing role in land management and conservation
for this subspecies.

The northern spotted owl is associated with older coniferous forests
of the Pacific Northwest region of the United States (e.g., Carey, Reid,
& Horton, 1990; Forsman, Meslow, & Wight, 1984; Ripple, Lattin,
Hershey, Wagner, & Meslow, 1997). In the Cascade Mountains of
Oregon, they typically inhabit forest stands dominated by Douglas-fir
(Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) and
which include multiple age classes of trees forming a multi-layered
canopy (Forsman et al., 1984). These older forests usually show a high
degree of decadence (e.g., damaged or dead trees and downed wood)
that provides structures associated with spotted owl nesting, roosting,
and foraging habitat (Hershey, Meslow, & Ramsey, 1998; North,
Franklin, Carey, Forsman, & Hamer, 1999). Several studies have pro-
vided a wealth of information about structural parameters of spotted
owl habitat such as average tree diameter, density of large trees, basal
area, canopy cover, vertical canopy structure, and the diversity of tree
size classes (e.g., Carey et al., 1990; Hershey et al., 1998; McComb,
McGrath, Spies, & Vesely, 2002; North et al., 1999; Ripple et al., 1997;
Solis & Gutierrez, 1990; Swindle, Ripple, Meslow, & Schafer, 1999).
These characteristics produce forest canopy heterogeneity that is visible
in aerial photographs (Cohen, Spies, & Bradshaw, 1990) and can be
identified by particular spectral characteristics from satellite imag-
ery of the forests within the northern spotted owl's range (Cohen,
Maiersperger, Spies, & Oetter, 2001; Cohen & Spies, 1992).

The first northern spotted owl habitat maps were hand drawn inter-
pretations of remotely sensed data that were passively collected from
either airborne or spaceborne platforms. The interpretation of that
imagery into habitat classes was subject to the mapper's experience
and understanding of the how the owl uses the forest, based on the
research of the time. Habitat classes were delineated as polygons that
corresponded to differences in tree species composition and stand
structure visible in the imagery. Most of these maps covered small
landscapes (<12,000 ha) and contained one to several owl territories
(Forsman et al., 1984). While these maps were useful for project plan-
ning and land management at a local scale, it was usually infeasible to
produce them at a watershed or regional scale.

Our ability to map spotted owl habitat improved with the advent of
species distribution modeling software, advances in geographic infor-
mation systems, and remote sensing technologies. These advances
allowed us to produce range-wide habitat maps for this subspecies, cov-
ering over 23 million ha (Davis, Dugger, Mohoric, Evers, & Aney, 2011;
Lint, 2005). More importantly, we could then monitor habitat change
and trends through time using time-series Landsat Thematic Mapper
(TM) imagery (Davis et al., 2011).

Maps of forest vegetation derived from Landsat TM imagery com-
bined with regional environmental variables served as the environmen-
tal predictor variables used to model and map spotted owl habitat
(Davis et al., 2011; Lint, 2005). These Landsat-derived variables were

themselves inferred from modeled relationships between spectral sig-
nals and ground conditions (e.g., Ohmann & Gregory, 2002; Ohmann
et al., 2012). Some of the error inherent in the modeling process was
transferred to the habitat maps. Forest structure data layers derived
from lidar are based on measurements of forest vegetation height and
density at a much finer spatial resolution (Bergen et al., 2009; Lefsky,
Cohen, Parker, & Harding, 2002). This high resolution data allows direct
measurements and estimates of the within-stand variation of the struc-
tural characteristics of forest stands that are important to spotted owls
(Garcia-Feced, Tempel, & Kelly, 2011). We expected that predictive per-
formance of species distribution models (SDMs) based on direct mea-
surements of forest structural parameters would be better than for
SDMs based on inferred measurements.

Here, we examined the differences and similarities between two
spatially-explicit SDMs for northern spotted owls covering the same
geographic area. Our objectives were to (1) compare an SDM using
the Landsat data source previously used for the regional northern spot-
ted owl monitoring program (Davis et al., 2011) to an SDM using anal-
ogous data extracted from recent lidar acquisitions, (2) compare the
relative importance of predictor variables to habitat suitability indices
calculated from both data sources, and (3) compare area estimates
and spatial patterns of suitable habitat area derived from both data
sources and from a pre-existing photo-interpreted habitat map pro-
duced by local wildlife biologists.

2. Methods
2.1. Study area

The study area was located in the Blue River watershed on the
McKenzie River Ranger District of the Willamette National Forest on
the western slope of the Cascade Mountains in Oregon, USA (Fig. 1). It
covered 19,000 ha with elevations ranging from 400 m to 1600 m.
Douglas-fir and western hemlock were the predominant tree species
with stands of Pacific silver fir (Abies amabilis) and mountain hemlock
(Tsuga mertensiana) at higher elevations (Cissel, Swanson, & Weisberg,
1999). The southeast portion of the study area included the H.J.
Andrews Experimental Forest, part of the Central Cascades Adaptive
Management Area delineated under the Northwest Forest Plan (USDA
& USDI, 1994). Approximately 5% of the study area was nonforest
vegetation, 25% consisted of stands that were clear-cut harvested and
replanted between 1950 and 1994, 9% were naturally regenerated
young stands between 40 and 80 years old, 25% were mature stands be-
tween 80 and 200 years of age, and 36% were old growth stands greater
than 200 years old (Cissel et al., 1999). The average size of the stands in
the Blue River watershed as delineated in the Willamette National For-
est vegetation GIS layer is 17.4 ha (95% C.L.: 4.2-30.6 ha) (USFS, 2007a).

2.2. Northern spotted owl presence data

We obtained nest and daytime roost locations of territorial northern
spotted owl pairs following a standardized protocol as part of a regional
spotted owl monitoring project (Forsman, 1999). Initial detections oc-
curred during nighttime surveys while broadcasting recorded spotted
owl calls from predetermined survey stations systematically placed
0.5-0.8 km along forest roads and trails throughout the watershed.
We determined the location of each nighttime detection by estimating
the distance to the vocalizing spotted owl and plotting the azimuth on
a topographic map. We obtained more precise locations for use in
habitat mapping by returning to these areas the following day and locat-
ing roosting owls, again using playbacks of spotted owl calls to elicit
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Fig. 1. Range-wide map of northern spotted owl habitat in the Pacific Northwest of the United States and location of the study area on the Willamette National Forest. Habitat classifications
are based on gradient nearest neighbor (GNN) models using Landsat TM and environmental predictor variables (Davis et al., 2011; Ohmann & Gregory, 2002).

vocalizations from the owls. We did not use the initial nighttime detec-
tions in this analysis. Once a pair of owls was visually located, we deter-
mined their nesting status and recorded the location of the nest tree to
within 10 m using GPS. Nest trees that were used in multiple years
were present in the data set only once. In years that pairs did not nest,
we plotted the earliest daytime roost location for each non-nesting pair
on topographic maps to represent the best annual location for each
pair in lieu of a nest. We excluded the locations of unpaired owls because
we were focusing on pairs that held stable territories. The final data set
contained one location per year for each pair of owls located from 1990
to 1999, and the final data set contained 159 nest and roost locations.

We did not use any northern spotted owl locations from more recent
surveys (2000-2014) to avoid potential biases with habitat selection in-
fluenced by interspecific competition with barred owls (Strix varia), a
more aggressive owl that shares many of the same habitat preferences
as the spotted owl, and that have become increasingly common since
2000 (e.g., Hamer, Forsman, & Glenn, 2007; Kelly, Forsman, & Anthony,
2003; Wiens, Anthony, & Forsman, 2011). When spotted owls are
displaced from their territories by barred owls, we expect the spotted
owls to occupy less suitable habitat than they would select in the absence
of barred owls (Dugger, Anthony, & Andrews, 2011). Given that there
was little change in the amount available habitat in the Blue River water-
shed between 1999 and 2011 (R. Seitz, personal communication, March
6, 2014), we felt that the accelerated increase in barred owl detections
after 2000 would produce a greater bias than differences in the amount
of available habitat between the periods 1990-1999 and 2000-2011.

2.3. Landsat-based predictor variables
Ohmann et al. (2012) used 2006 Landsat TM imagery, climate, and

topography data imputed to forest inventory plots measured from
2001 to 2008 to create data layers estimating vegetation structure and

composition. Their imputation technique, gradient nearest neighbor
imputation (GNN), involved assigning measured values of vegetation
structure from forest inventory plot sample data to each unsampled
pixel in their data layers based on the relationships between the plot
values and the spectral and environmental data describing the biophys-
ical environment (Eskelson, Temesgen, & Barrett, 2009; Ohmann &
Gregory, 2002). Species composition was inferred similarly based on
the relationships between the relative basal areas of particular tree spe-
cies and the spectral and environmental data (Ohmann & Gregory,
2002). All predictor variable layers were scaled to a 30 m grid size to
maintain consistency between the mapped distribution of forest charac-
teristics and field plots when the GNN variable rasters were created
(Ohmann et al.,2012). Davis et al. (2011) used these inferred data layers
of vegetation structure and composition as predictor variables in SDMs
of northern spotted owl habitat. Here, we refer to these data layers sim-
ply as the Landsat-based predictor variables.

Of the initial set of 11 predictor variables derived by Davis et al.
(2011), we selected five forest structure variables, and one species com-
position variable that estimated the percentage of total basal area of
high elevation forest conifer species such as true firs (Abies spp.) and
mountain hemlock (T. mertensiana). We examined the Pearson's corre-
lation coefficients between potential predictor variable data layers
using the Band Collection Statistics tool in ArcMap (ESRI, 2009). We
considered pairwise map correlation coefficients, the correlation be-
tween plot measurements and imputed values (only available for the
Landsat predictor variables, see Davis et al., 2011), and relevance to
spotted owl ecology in making our final predictor map selections.
Pairwise correlation coefficients greater than 0.70 generally were con-
sidered too highly correlated for both predictor variables to be included
in the models. When two Landsat predictor variables were highly corre-
lated, we retained the variable with the highest correlation between
plot measurements and imputed values (Davis et al., 2011). We made
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one exception to the predictor variable correlation rule for the average
stand height and the diameter diversity index variables derived from
Landsat (r = 0.73). In this case, the diameter diversity index had higher
plot accuracy, but average stand height was the most comparable to the
lidar measurement of tree heights (see Section 2.4). Given that one of
our objectives was to compare models based on Landsat versus lidar
data sources, we decided to keep both predictor variables to insure
that the models from both sources were comparable. We also discarded
stand age and kept the density of large conifers, again to be more com-
parable to the measurements obtained from the lidar data. Our final
Landsat model set consisted of four structural variables and one species
composition variable (Table 1).

24. Lidar-based predictor variables

We used discrete-return airborne lidar data acquired from the H.J.
Andrews Experimental Forest in August, 2008 and the remainder of
the Blue River watershed in October, 2011 by Watershed Sciences, Inc.
(Corvallis, Oregon, USA). They used a Leica ALS60 Phase II sensor
mounted in a Cessna Caravan 208B flown at 900 m above ground
level. The sensor scan angle was 4+ 14° with a scan swath overlap
of >50%. Laser pulse rate was 105 kHz and pulse density was
>9 pulses/m? with up to 4 returns per pulse. Accuracy was determined
using 344 and 419 ground-based real-time kinematic GPS measure-
ments as reference points for the H.J. Andrews and Blue River water-
shed data, respectively. Absolute vertical accuracy was 2.4 cm RMSE
(H.J. Andrews) and 5.2 cm RMSE (Blue River watershed ). Canopy height
and bare earth elevation data layers were produced at 1 m resolution.
Lidar predictor variable data layers were generated at 30 m resolution
directly from the point clouds with program FUSION (McGaughey,
2012) to correspond to the Landsat data resolution. We did not examine
the lidar predictor variables at 20 m or 10 m scales because we felt that
within-stand variability would increase classification uncertainty to the
point that predictive performance would be compromised.

Program FUSION (McGaughey, 2012) was used to create seven lidar
predictor variables for cover and height analogous to our Landsat forest
structure variables. It also was used to create a field validated stem map
of large conifers >76 cm diameter at breast height (d.b.h.) based on local
height-diameter relationships (Garman, Acker, Ohmann, & Spies,
1995). We used a kernel density mapping tool in ArcMap Spatial Analyst
using a 3 pixel (90 m) search radius to convert the stem map into a den-
sity map for large conifers, similar to the Landsat large tree density

variable. We used the Rumple Index (Kane et al., 2010; Parker et al.,
2004) as our forest structural heterogeneity predictor variable. This
was calculated by averaging the canopy height model (CHM, height
of first returns) over a 3 x 3 window to preserve macro heterogene-
ity and then running it through the FUSION (McGaughey, 2012)
gridSurfaceStats command to produce a ratio of the surface area of
the CHM to the surface area of the bare earth digital elevation model.
Higher values of this ratio indicated a more complex stand structure.
We also calculated four vegetative cover variables: total cover (all
returns > 2 m), understory cover (returns between 2 mand 16 m), over-
story cover (all returns> 16 m), and the ratio of overstory to understory
cover. Finally, we also calculated mean tree height, and mean above-
ground biomass for each 30 m grid cell.

As with the Landsat predictor variables, we examined the Pearson's
correlation coefficients between potential predictor variable data layers
using the Band Collection Statistics tool in ArcMap (ESRI, 2009). When
two lidar predictor variables were highly correlated, we retained the
variable which was most similar to habitat measurements taken during
past spotted owl research. We considered using the lidar estimate of
mean aboveground biomass, but decided against it because it was high-
ly correlated with tree density and mean tree height, two measures that
were taken directly from lidar data and have been shown to be impor-
tant components of spotted owl habitat in most stand-level studies
(e.g., Hershey et al., 1998; North et al., 1999; Solis & Gutierrez, 1990).
Overstory cover and the overstory:understory ratio also were highly
correlated with mean tree height, and understory cover was highly cor-
related with overstory cover. We decided on using total cover greater
than 2 m above ground to represent total forest cover. Our final selec-
tion included four predictor variables from the lidar data. We also in-
cluded the high elevation forest predictor variable derived by Davis
et al. (2011) because it was important in defining the habitat use in
the study area, but it was not measureable with lidar (Table 1).

2.5. Photo-interpreted habitat map

The Willamette National Forest produced a forest-wide map of
northern spotted owl habitat in 1991 based on photo interpretation of
1:15,480 scale orthorectified aerial photos. The mapping followed in-
structions sent to each Ranger District on the Forest (USES, 2007b).
Maps from each Ranger District were reviewed by local wildlife biolo-
gists and compiled into one forest-wide map. This map is updated an-
nually, using interpretation of the most recent aerial imagery and

Table 1
Definitions of the predictor variables used in the (a) Landsat and (b) lidar based spotted owl habitat suitability models.
Variable Description Units
Landsat model variables Stand height Average height of dominant and co-dominant trees Meters
(Davis et al., 2011) Forest cover Percentage of cover in the canopy as calculated using the Forest Vegetation Percentage

Lidar model variables

Density of large conifers
Diameter diversity index

High elevation forest

Stand height

Forest cover

Density of large conifers

Rumple index

High elevation forest

Simulator methodology (Dixon et al., 2002)

Estimated tree density for all live conifers >76 cm d.b.h.

Index of the structural diversity of a forest stand based on tree densities in
different d.b.h. classes. Calculation procedures are described in Appendix 1
of McComb et al. (2002)

Stand component of Pacific silver fir (Abies amabilis), (Abies lasiocarpa),
noble fir (Abies procera), Shasta red fir (Abies shastensis), Alaska cedar
(Chamaecyparis nootkatensis), Engelmann spruce (Picea engelmannii),
whitebark pine (Pinus albicaulis), and mountain hemlock

(Tsuga mertensiana)

Mean height of first returns calculated at a 30 x 30 m resolution
Proportion of returns >2 m above ground calculated at a 30 x 30 m
resolution

A kernel density estimate using a 90 m radius for the CanopyMaxima stem
map of trees >47 m in height, which based on local height:diameter data
equates to >76 cm. d.b.h.

A measure of the structural diversity of a forest stand based on ratio of the
surface area of the canopy height model to the surface area of the bare earth
digital elevation model (Kane et al., 2010; Parker et al., 2004).

(same as the Landsat model)

Trees per hectare
Index

Percentage total basal area

Meters

Percentage

Trees per hectare

Index

Percentage total basal area
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on-the-ground knowledge of conditions and owl locations. The map
covers only National Forest lands and consists of 4 classes of owl
habitat: 1) nesting, 2) roosting and foraging, 3) dispersal, and 4) unsuit-
able (Table 2). Forest age and structural attributes are easily observed
on high resolution aerial photographs and delineated into stand poly-
gons. Patterns of forest species composition are more subtle and easy
to misclassify during this process, and are not included in the Willamette
National Forest definition of spotted owl habitat. Habitat polygons
ranged in size from 0.4 to 1300 ha within the study area, with an average
mapping unit of 32 ha. This map provided a means to compare our em-
pirically derived SDM maps with habitat classifications based on field re-
connaissance and expert opinion. While we did not consider the photo-
interpreted map as a baseline for assessing the accuracy of the SDM
maps, we did consider it as a user's representation of habitat to compare
to our SDM versions. Our intent was to compare the strengths and weak-
nesses of each map and to discuss whether the empirical modeling re-
sults provide support to the habitat classifications made by local
wildlife biologists in producing the photo-interpreted map.

2.6. SDM modeling and habitat mapping

Our SDM approach was similar to that used by Davis et al. (2011),
who produced stand scale maps for monitoring changes in northern
spotted owl habitat through time. We used maximum entropy model-
ing (MaxEnt; Phillips, Dudik, & Schapire, 2004; Phillips, Anderson, &
Schapire, 2006) to create spatially explicit spotted owl habitat models
using stand level forest structure and species composition predictor var-
iables from both Landsat and lidar data trained to the northern spotted
owl nest and pair roost data. Non-forested areas (e.g., rocks, meadows,
and snow) were masked out from the SDM process.

After selecting the final set of predictor variables, we used 120 (75%)
northern spotted owl presence locations randomly selected from the
total set of 159 unique locations as training data for 10 bootstrapped
replicate models with the regularization parameter set to the default
value of 1.0. Each replicate used the 39 (25%) remaining locations to
test the model's predictive performance. A random sample of 10,000
background cells was selected for each replicate. We constrained the
sample of background cells to the forested portions of the watershed.

We evaluated model fit by varying the regularization multiplier from
0.5 to 2.0 in increments of 0.25 for 7 sets of 10 replicates for each data
source. During this procedure we monitored the difference between
regularized training gain and test gain to avoid over-fitting the models.
Where training gain was higher than test gain, the model was overfit.
We also generated predicted versus expected ratio (P/E) curves for
each model to evaluate its predictive performance based on the shape
of the curves and Spearman rank statistics (Hirzel, Le Lay, Helfer,
Randin, & Guisan, 2006). A final evaluation of predictive performance
was based on the area under the curve (AUC) statistic (Fielding & Bell,

Table 2
Aerial photo interpretation instructions used by the Willamette National Forest to map
northern spotted owl habitat (USFS, 2007b).

Habitat Description

class

Nesting Any habitat that has known or suspected nesting activity. Mature
forests (70-100+ years) and also multi-storied old growth forests
that are >200 years old, with average d.b.h. >30 in., and numerous
snags and downed logs

Roosting/  Any habitat that has known or suspected foraging or roosting activity.

foraging Stands that have at least 60% canopy cover. Stand structure is not as
clearly defined as for nesting habitat. Can be based on proximity to
spotted owl activity centers or nesting habitat. Usually stands

>80 years of age, with average d.b.h. >18 in.

Stands that have at least 40% canopy cover and do not contain
structure to support nesting or foraging. Usually stands with average
d.b.h. >11 in.

Unsuitable Does not meet the above definitions

Dispersal

1997). The best model was the one with similar regularized training
and test gain (overlapping 95% confidence intervals), a stable P/E
curve producing a high Spearman rank statistic, and the highest test
AUC.

We used the logistic output from Maxent as an index of relative suit-
ability of forest structure and species composition for nesting and
roosting by territorial northern spotted owl pairs given the values of
the environmental predictor variables at a particular raster cell location
compared to a random sample of background values within the study
area (Elith et al., 2011; Phillips & Dudik, 2008). Pixels with high logistic
scores had environmental conditions similar to where territorial north-
ern spotted owls were found nesting or roosting within the study area.
This relationship was defined by environmental variable response
functions generated by the model. For our final habitat maps, we used
the average and standard deviation of the logistic outputs from the
bootstrapping procedure to produce maps representing the average
and 95% confidence intervals from the SDMs. Following procedures
from Hirzel et al. (2006), we reclassified these maps into three habitat
classes as follows:

1. Unsuitable — relative logistic probability values that had 95% confi-
dence limits below the P/E = 1 threshold. Below this threshold, the
model predicted owl locations less than expected by random chance.

2. Marginal — relative logistic probability values that had 95% confi-
dence limits that crossed the P/E = 1 threshold. Within these
thresholds, the model predicted owl locations no better than ran-
dom chance.

3. Suitable — relative logistic probability values that had 95% confidence
limits above the P/E = 1 threshold. Above this threshold the model
predicted owl locations better than expected by random chance.

2.7. Map comparison procedure

Our SDM approach was intended to be comparable to that used by
Davis et al. (2011) and we used a spatial scale that we believed was
appropriate for comparison to the photo-interpreted map. For each hab-
itat model, we created binary maps of suitable spotted owl habitat. The
photo-interpreted habitat map was classified into a binary map of
“nesting, roosting, and foraging” habitat by combining the “nesting”
and “roosting and foraging” classes from the original map. We also clas-
sified it into another binary map using only the “nesting” class, because
we wanted to determine which photo-interpreted class best matched
the suitable habitat class from our models. We generalized the binary
maps from the habitat models, which were based on 30 m resolution
data, by using a 3 x 3 majority filtering process to remove pixel noise
and make them more comparable to the patch-delineated photo-
interpreted map. We produced estimates of habitat area from these bina-
ry maps, including 95% confidence intervals from the bootstrapped SDMs.
We were not able to produce error bars for the photo-interpreted map,
because it was not empirically derived.

We examined patterns of habitat omission and commission between
SDM binary (producer's) maps and the photo-interpreted binary (user's)
map using both definitions of habitat described above. We also com-
pared the Landsat- and lidar-based maps directly, using the lidar-based
map as the user's map.

Finally, we used Map Comparison Kit (v3.2) software (Visser & de
Nijs, 2006) to spatially compare similarities in the distribution and spa-
tial pattern of habitat pair wise among the four types of binary maps.
This provides Kappa statistics that provide an index of agreement be-
tween the map classes in each map, taking into consideration agree-
ment occurring by chance (Cohen, 1960). The overall Kappa is a
combination of the map similarity on a cell to cell basis (Kappajoc) and
the similarity of the distribution of map classes (Kappapisto). Kappa
values less than 0.2 indicate slight, 0.2-0.4 fair, 0.4-0.6 moderate, 0.6
0.8 substantial, and 0.8-1.0 almost perfect agreement between maps.
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3. Results
3.1. Landsat-based models

A regularization multiplier of RM = 1.75 produced the best model
using only the Landsat predictor variables based on the highest AUC
value (0.717 £ 0.021) compared to the other RM values and broadly
overlapping confidence limits for the regularized training gain
(0.377 4+ 0.025) and test gain (0.368 4+ 0.062). The percent basal
area of high elevation forest and average stand height contributed
the most to the overall fit (Table 3). Univariate response curves indicat-
ed that low levels of the percent basal area of high elevation forest were
associated with a higher probability of spotted owl presence (Fig. 2a).
The relative probability of spotted owl presence was positively associat-
ed with higher values for stand height, forest cover, and tree diameter
diversity (Fig. 2a). The probability of spotted owl presence was highest
at intermediate large tree densities of approximately 44 large trees/ha.
This value was extracted from the univariate response curve and was
the point at which the logistic probability began to decrease as large
tree density increased (Fig. 2a). The standard deviation of the logistic
output value increased quickly at higher densities because of low num-
bers of grid cells containing greater than 60 large trees/ha (Fig. 2a).

The predicted versus expected ratio curve (Fig. 3a) showed a relative
logistic probability threshold of 0.44. The Landsat binary habitat suit-
ability map based on this threshold showed that 8011 ha (95% CI:
6679-9592) in the Blue River watershed is suitable habitat for spotted
owls.

3.2. Lidar-based models

The highest AUC value (0.809 + 0.011) and the least difference be-
tween the regularized training gain (0.697 4+ 0.037) and test gain
(0.680 £ 0.067) were obtained by applying a regularization multiplier
of RM = 1.5 to the models using the four lidar predictor variables and
the high elevation species composition variable imputed from the
Landsat data. The percent contribution and permutation importance of
this variable indicated that including species composition information
improved the regularized training gain by 11%, and AUC estimates de-
creased by 25.5% when this information was excluded (Table 3).

The density of large trees and average stand height contributed the
most to the overall fit (Table 3). Densities of approximately 40 large
trees/ha were associated with the highest probability of spotted owl
presence (Fig. 2b). As in the Landsat model, the standard deviation of
this variable was large at higher densities of large trees. A similar rela-
tionship was apparent with the rumple index; the standard deviation

Table 3

The relative contributions of each predictor variable averaged over 10 replicate Maxent
runs. The percent contribution is the percentage increase in regularized training gain, or
model fit, added by including each variable. The permutation importance is calculated
by randomly assigning background values to the presence data and expressing the de-
crease in AUC, or predictive accuracy, as a percentage when a particular variable is
randomized.

Variable Percent Permutation
contribution importance
Landsat model variables High elevation forest 36.4 36.7
Stand height 31.6 304
Density of large conifers  21.9 12.4
Diameter diversity index 6.2 15.7
Forest cover 3.8 4.8
Lidar model variables Density of large conifers ~ 56.5 36.2
Stand height 254 25.7
High elevation forest® 114 25.5
Rumple index 4.6 8.1
Forest cover 2.1 4.5

2 The Landsat species composition variable “high elevation forest” also was included in
the lidar habitat model.

increased quickly as values of the rumple index increased above 55
(Fig. 2b). High values of mean tree height and total forest cover were as-
sociated with high probability of spotted owl presence (Fig. 2b). Also as
in the Landsat model, the percent basal area of high elevation forest spe-
cies was negatively associated with the probability of spotted owl pres-
ence (Fig. 2b).

The predicted versus expected ratio curve from the best lidar model
(Fig. 3b) showed a relative logistic probability threshold of 0.38 for suit-
able habitat resulting in an estimate of approximately 6359 ha (95% Cl:
5453-7216) of suitable spotted owl habitat in the Blue River watershed.

3.3. Map comparisons

The largest estimate of suitable habitat area was from the photo-
interpreted map of nesting, roosting, and foraging habitat combined,
and the smallest estimate was from the photo-interpreted map of
nesting habitat only (Fig. 4). The Landsat model estimated suitable hab-
itat that spanned this range, with the average being about midway be-
tween the two photo-interpreted habitat classes and confidence limits
nearly equal to each class (Fig. 4). The lidar-based estimate of suitable
habitat area was closest to the photo-interpreted binary map of just
the “nesting” class, and had overlapping confidence intervals with that
estimate (Fig. 4).

The rates of omission relative to the photo-interpreted binary maps
were roughly the same for both Landsat- and lidar-based SDM maps
(Table 4). Most of the area classified as spotted owl habitat on the
photo-interpreted maps omitted by the models was along the higher el-
evation ridges that surround the watershed (Fig. 5). In the lower eleva-
tions, much of the model omission was along stand edges, but also
included finer stand-scale heterogeneity such as gaps in the forest can-
opy that were not captured in the photo-interpreted maps. The omis-
sion error was lowest when the SDM maps were compared to each
other (Table 4).

The rates of commission between the SDM maps and the photo-
interpreted maps were higher for the Landsat-based map than for the
lidar-based map (Table 4). The pattern of SDM commission primarily
occurred in the lower elevations (Fig. 5). Model commission was two
to three times higher for the comparison with the photo-interpreted
nesting only map than with the nesting, roosting, and foraging map
(Table 4). The commission rate in the lidar-based map was very low
compared to the nesting, roosting, and foraging map, but moderate
compared to the nesting only map (Table 4). In both SDMs, the largest
portion of commission occurred in the northwestern half of the study
area, which is covered with younger forests with less developed struc-
ture than the older southeastern portion of the study area that has
mostly attained forest structure suitable for owl nesting (Fig. 5). The
commission of some younger forest as suitable habitat by the Landsat
model is comparable to the commission rates between the nesting
only map and each SDM map (Table 4).

The results of the spatial similarity analysis indicated that the lidar
map had the best overall agreement with the photo-interpreted map
(Table 4). The level of agreement between the lidar map and the photo-
interpreted map was moderate for habitat classes of “nesting, roosting,
and foraging” (Kappa = 0.494) and “nesting” only (Kappa = 0.495).
The Landsat map had fair agreement (Kappa from 0.288 to 0.380)
with both photo-interpreted habitat classes (Table 4). In terms of a
cell by cell comparison, the lidar map had substantial agreement
(Kappajoc = 0.786) with the photo-interpreted “nesting, roosting, and
foraging” habitat map and moderate agreement (Kappajoc = 0.517)
with the “nesting” only map. The distribution of mapped habitat classes
in the lidar map was most similar to the photo-interpreted “nesting”
map (Kappapisto = 0.957, Figs. 5 & 6), while the distribution of the
Landsat habitat classes was most similar to the “nesting, roosting, and
foraging” map (Kappanisto = 0.800, Figs. 5 & 7). The Landsat and lidar
maps had moderate overall agreement (Kappa = 0.481).
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Fig. 2. Univariate response curves for Landsat (a) and lidar (b) based models. The red lines indicate the mean logistic output value, or the habitat suitability index, averaged over 10 rep-

licate runs. The blue shading indicates the standard deviation of the logistic output.

4. Discussion
4.1. Model comparisons

One of our primary objectives was to compare our lidar-based SDM
with the Landsat-based SDM used in the northern spotted owl popula-
tion monitoring program (Davis et al., 2011). We wanted to maintain
consistency with that modeling approach so that we would be compar-
ing data sources only and not confound our results with different meth-
odologies. We did not intend to produce a spotted owl habitat model for
use by managers because our lidar coverage was limited to just one wa-
tershed. A model based on such a limited extent would not be useful ex-
cept within the confines of that particular watershed.

We assessed the relative importance of each predictor variable
by examining their effects on model fit as well as the predictive perfor-
mance of the model. The percent contribution of each variable (Table 3)
reflected the effect of each variable on the regularized training gain,
which is an indication of model fit. Permutation importance (Table 3)
provided a means of comparing model predictive performance with
and without individual variables. The most important predictor vari-
ables in the Landsat model of suitable spotted owl habitat were the for-
est species composition variable that excluded high elevation forest
habitat (i.e., the basal area of subalpine tree species) and two indicators
of stand age (stand height and density of large conifers; Table 3). These
same three variables also explained most of the variation in the lidar
model, although they differed in relative importance (Table 3). Based
on structural variables alone, the lidar model maintained greater predic-
tive performance than the Landsat model. The direct measurements of
the density of large conifers and stand height extracted from lidar con-
tributed 81.9% to model fit, whereas the inferred estimates of these pre-
dictors used in the Landsat model together contributed 53.5% to model
fit (Table 3).

The basal area of high elevation trees had a strong negative effect on
the logistic output estimated by both models by effectively excluding
this vegetation type as a component of spotted owl habitat. Excluding
the species composition variable from the lidar model decreased the

regularized training gain by 11.4% and decreased the AUC value by
25.5%, while the regularized training gain and AUC for the Landsat
model decreased by 36.4% and 36.7%, respectively (Table 3). These re-
sults indicated a much greater effect of species composition on the fit
of the Landsat model compared to the fit of the lidar model. The impor-
tance of species composition variable may have been influenced by the
relative strengths of direct measurements as opposed to inferred esti-
mates of the structural variables most closely related to stand age.

Model gain provides a measure of the contrast between the presence
locations and the background given the particular combination of
variables in a model (Davis et al., 2011). Higher gains indicate a higher
contrast between environmental conditions for presence locations
compared to the background environmental conditions. Training gain
is an index of the level of contrast between the background environ-
mental conditions and the presence locations used to train the model
(i.e.,, model fit), while test gain indicates the level of contrast with the lo-
cations used to test the model (i.e., predictive performance). Estimates
of the regularized training gain and test gain were roughly equal within
each model. This indicated an appropriate level of complexity for both
models that resulted in a good balance between model fit and predictive
performance. The lidar model produced higher estimates of regularized
training gain, which indicated a more precise model fit, and higher esti-
mates of test gain, which indicated higher predictive performance.
Overall, the lidar model produced a map with greater contrast between
suitable habitat and unsuitable habitat, than the Landsat model.

The mathematical relationships between environmental variables
and habitat suitability using the SDM approach are illustrated by the re-
sponse curves. The overall shapes of the response curves from both
models (Fig. 2) were in general agreement with past studies of spotted
owl habitat requirements (e.g., Carey et al,, 1990; Hershey et al., 1998;
McComb et al., 2002; North et al., 1999; Ripple et al., 1997; Solis &
Gutierrez, 1990; Swindle et al., 1999). Habitat suitability decreased
quickly with increasing basal area of high elevation forest. Structural
characteristics typical of older forests such as greater mean tree height,
a higher diversity of tree age classes, and higher vegetative cover were
associated with higher habitat suitability estimates. Intermediate
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Table 4

Results of the map comparison analyses. The photo-interpreted maps were considered the
user maps for the comparisons with the SDM maps and the lidar map was the user map for
the comparison with the Landsat map.

Map statistic Nesting, roosting, Nesting only Lidar

and foraging

Vs. vs. vs.

Landsat Lidar Landsat Lidar Landsat
Omission 0411 0.440 0.381 0.352 0.281
Commission 0.267 0.123 0.533 0.385 0.429
Kappa 0.380 0.494 0.288 0.495 0.481
Kappajoc 0475 0.786 0.372 0.517 0.590
Kappanisto 0.800 0.629 0.774 0.957 0.815

densities of large trees were associated with the highest levels of habitat
suitability. This may seem counterintuitive, but an important compo-
nent of spotted owl habitat is large amounts of standing and downed
dead trees (e.g., North et al., 1999). This creates gaps in the canopy
and hence fewer standing live trees. Also, many of the oldest trees in
spotted owl habitat have broken tops which results in an underestimate
of the density of large trees when based on height/diameter relation-
ships (Garman et al.,, 1995). Another factor may have been simply that
there were relatively few stands containing grid cells with high values
of this variable as reflected by the increased standard deviation above
60 large trees per hectare (Fig. 2).

The predicted/expected ratio curves showed a wider range in the lo-
gistic output associated with marginal habitats for the Landsat model
than for the lidar model (Fig. 3). This was consistent with the lower
model gain estimates for the Landsat model, which indicated less con-
trast between the presence locations and the background cells. In addi-
tion, the lidar produced higher predicted versus expected ratios than
the Landsat model, suggesting again higher discrimination between
suitable habitat and unsuitable habitat using lidar data.

4.2. Map comparisons

The amount of suitable spotted owl habitat estimated by both SDMs
was in good agreement with the habitat map based on aerial photo in-
terpretation (Fig. 4). One advantage that the SDM approach has over
photo-interpretation is that it produces maps in an objective framework
that can be more easily replicated. There was no predictive accuracy

Landsat Lidar

Fig. 4. Habitat area estimates. Error bars are 95% confidence limits for the habitat suitability models (Landsat and lidar). The photo-interpreted map classes (Nesting, Roosting, and Foraging

combined and Nesting only) were not empirically derived and do not have error bars.
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Fig. 5. Spatial patterns of habitat agreement, omission, and commission in the model-based habitat maps relative to the photo-interpreted maps.

assessment available for the photo-interpreted map, as it is based on the they provided some degree of confirmation regarding the habitat classi-
field experience of local wildlife biologists. Consequently, it could not be fications made by local wildlife biologists.

used as a baseline for accuracy assessments of the model based habitat The Landsat-based habitat model produced estimates of suitable
maps. Rather, we used it as a representation of our SDM user's group habitat area where the mean was intermediate between the “nesting,
and compared it to the qualities of each SDM map and whether or not roosting, and foraging” and the “nesting only” habitat classes from the
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Fig. 6. Reclassified map comparison for the nesting only habitat class from the photo-interpreted map (Map A) and “suitable” habitat from the Landsat (Map B) and lidar (Map C) habitat

models.
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Fig. 7. Reclassified map comparison for the nesting, roosting, and foraging habitat classes from the photo-interpreted map (Map A) and “suitable” habitat from the Landsat (Map B) and
lidar (Map C) habitat models.
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photo-interpreted map (Fig. 4). The 95% confidence limits for this SDM
almost spanned the difference between them. The wider range of habi-
tat quality in the Landsat classification of suitable habitat may include
habitat elements necessary for roosting and foraging, but which may
not meet the requirements of spotted owls for nesting.

The lidar-based model produced a smaller estimate of suitable hab-
itat area that was very close to what was mapped as “nesting” habitat by
local wildlife biologists (Fig. 4). We expect that the reason the lidar-
based map was most similar to the “nesting” habitat class from the
photo-interpreted map was that the two lidar predictor variables that
most influenced model fit and predictive performance, stand height
and the density of large trees, were more easily interpreted from aerial
imagery than the other predictor variables and are both components of
the photo-interpreted definition of nesting habitat. Based on the higher
AUC and test gain estimates and the close agreement with the “nesting”
habitat class from the photo-interpreted map, we conclude that the
lidar-based SDM mapped the spatial arrangement and extent of high
quality (i.e., nesting) spotted owl habitat at the watershed scale more
reliably than the Landsat-based model.

The photo-interpreted map that combined nesting, roosting, and
foraging habitat likely overestimated the amount of spotted owl habitat
because photo-interpretation of species composition and an upper ele-
vation limit were not included in the rule-set used to conduct the inter-
pretation (Table 2). As a result, some subalpine forest stands were
included in the photo-interpreted versions of habitat which produced
high omission rates when compared to the model based maps. Despite
the difference in species composition, high elevation forests can have
stand structure similar to nesting and roosting habitat when viewed
from aerial photos. Spotted owl pairs are rarely found in subalpine for-
ests in this region which suggests that this forest type is not suitable for
roosting or nesting. Spotted owls may use subalpine forests for foraging,
and the photo-interpreted map included habitat thought to be suitable
for foraging. Neither model based map was trained or tested using for-
aging or dispersal locations, so it is not surprising that subalpine forests
were not classified as suitable habitat in the model based habitat maps.

We believe the commission error in the Landsat model was partially
due to the inclusion of younger forests with spectral characteristics sim-
ilar to older forests, perhaps due to aspect or shadows in the canopy.
Much of the northwestern half of the study area contains younger forest
than the southeastern half, which has more stands that have fully devel-
oped into higher quality nesting habitat. Commission also may have
been due to complex combinations of environmental covariates that
were not easily discernable during aerial photo interpretation. We sus-
pect that the lidar map better distinguished stand structural features as-
sociated with nesting that were harder to detect in aerial photographs,
or were difficult to map because of the complex pattern they produced
in stands that are just transitioning into habitat

4.3. Sampling bias

Measures of predictive performance (i.e., accuracy) estimated by
maximum entropy modeling can be affected by biases in the distribu-
tion of survey effort (Phillips et al., 2009) and autocorrelation among
presence locations (Dormann et al., 2007). By systematically placing
survey stations along the road and trail system in the watershed,
we obtained a distribution of survey effort throughout the water-
shed that was not significantly different from a random distribution
(Moran'sI = 0.34, p = 0.42). We believe that this distribution of survey
effort covered the full range of habitat conditions available to spotted
owls in the watershed and did not create a bias in the background sam-
ples. We used the nighttime auditory detections obtained from the
survey stations only as starting points for daytime searches for nest
and roost locations. These detections were typically more dispersed,
but much less precise than the roost and nest locations obtained the fol-
lowing day. We felt that the nest and roost locations better reflected
habitat selection for features necessary for these important life history

components and that the clumped spatial distribution of the spotted
owl nest and roost locations (Moran's [ = 0.66, p < 0.01) was a result
of habitat selection and site fidelity and not the result of bias in how
the background habitat was sampled.

4.4. Scale considerations

Habitat suitability occurs at a range of scales from the immediate en-
vironment surrounding a particular location (e.g., a nest site) to the con-
ditions throughout an animal's home range (e.g., foraging habitat)
(e.g., Thompson & McGarigal, 2002). Although using a 30 m grid cell
allowed us to delineate and characterize forest stands used by nesting
and roosting northern spotted owls, restricting the habitat suitability
index to the conditions within individual cells did not reflect the habitat
conditions necessary to meet all spotted owl life history requirements.
Given that one of our objectives was to compare our lidar-based SDM
to a pre-existing habitat suitability map that did not account for habitat
selection at different scales, we did not incorporate these considerations
here. Future habitat modeling using more extensive lidar coverage
would produce more useful habitat suitability models by including
landscape level metrics derived from the conditions measured by lidar
at fine spatial scales.

Today, scientists, land management and regulatory agency biologists
have a multitude of remotely sensed data choices for mapping habitats
for species of interest. These data range from coarse spatial resolution
multispectral imagery such as Landsat data, to finer spatial resolution
imagery such as lidar data. It is sometimes not clear as to which data
to use and often the choice depends on the purpose for which the
map is being produced. For instance, Landsat data might suffice for
broad-scale monitoring of habitat covering millions of hectares over
multiple time periods or for identifying large regions that might serve
as habitat reserves. Lidar, on the other hand, currently has limited
spatial coverage and temporal overlap within the owl's range, thus ren-
dering it impractical for monitoring habitat across the owl's range. How-
ever, where it exists, it may be the best choice for mapping habitat
within a project area for the purpose of planning and assessing the hab-
itat effects of a management action such as a timber sale.

Lidar data improved upon map precision and predictive perfor-
mance, producing a map that showed more realistic patterns of habitat
that overlaid well with the aerial imagery and the photo-interpreted
map produced by wildlife biologists familiar with the area and habitat
preferences of northern spotted owls. The Landsat map produced a
more general pattern of habitat that did not always fit forest stands vis-
ible on aerial photographs at finer resolutions. Lidar data appeared to
improve upon the Landsat maps, mainly because it more accurately
measured structural attributes of forests that are important to mapping
northern spotted owl habitat. However, Landsat combined with envi-
ronmental and topographic data were still needed to model species
composition (Ohmann & Gregory, 2002).

For federally listed threatened species, such as the northern spotted
owl, map accuracy is an important consideration for maps that may
influence land management decisions and inform species recovery ef-
forts. For example, the Willamette National Forest uses their photo-
interpreted map for consultation under Section 7 of the Endangered
Species Act. Our results lead us to conclude that the amount of habitat
estimated within the confidence limits of Landsat-based models ade-
quately estimated broad scale amounts of habitat, but that lidar-based
models produced more precise estimates at finer spatial scales and
would be more useful for project level planning.

The cost and effort required to produce vegetation maps designed
for a specific purpose also are important considerations for land man-
agers. On the basis of the cost per unit area, lidar becomes increasingly
cost effective as the amount of coverage increases (Hummel, Hudak,
Uebler, Falkowski, & Megown, 2011). Aerial photo interpretation is
typically more expensive and labor intensive than Landsat based
approaches, but it also can be more accurate (e.g., Lewis, Phinn, &
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Arroyo, 2013). However, creating habitat suitability maps through aerial
photo interpretation requires a time consuming and subjective cogni-
tive modeling process which relies on the experience and judgment of
human observers and may not be replicable across observers. Once ac-
quired, lidar and Landsat data provide a rich source of input for spatial
modeling techniques such as Maxent and GNN, which can provide a
faster and more efficient means to objectively create habitat maps.
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