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Predictions of mechanical collisions between two bodies frequently cannot be 

completed by the impulse-momentum equation together with a complete description of 

the motion of the system at the initial contact. Additional account must be taken of the 

deformations and frictional interaction induced by the impulsive reaction force, where the 

bodies contact one another, as these play an important role in the outcome of the 

collision. 

During the time the bodies are in contact, elastic, friction and inertia properties 

combine to produce a complex variation of sliding and sticking through out the contact 

surface. For accurately predicting the impulse and velocity changes during contact, a 

considerably simplified, coupled, conservative model, which captures the essential 

characteristics of the elastic-friction interaction during contact loading, is investigated in 

this thesis. In this simplified model, the interface between two colliding bodies 

resembles the behavior of a pair of mutually perpendicular, non-linear springs which 

react independently with the exception that the stiffness of the tangential "spring" is 

influenced by the normal displacement. These elastic properties, in combination with 
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inertial properties derived from generalized impulse-momentum laws, form a "spring­

mass" system for which numerical integration yields the prediction of rebound velocities. 

For comparison, an explicit non-linear finite element code, DYNA3D, developed 

at Lawrence Livermore National Laboratory for analyzing the transient dynamic response 

of three-dimensional solids, is used to predict the responses of an elastic sphere and 

elastic rod, each colliding with a rigid plane with varying initial velocities and 

configurations. Results are also compared with results of a complex analysis of collisions 

of spheres by Maw, Barber, and Fawcett (1976). 
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Rebound Predictions of Mechanical Collisions 

1. INTRODUCTION 

Since the collision of the bodies within mechanical systems often do not deform 

any of the bodies significantly, a widely used approach for modeling of mechanical 

collisions is to treat the two objects that contact as rigid bodies. At the present time, most 

predictions of collisions between two bodies make use of this assumption, treating the 

bodies as rigid, with contact at a single point. Each body is assumed to exert an 

instantaneous impulse on the other at the contact point. When a system S is involved in a 

collision beginning at time ti and ending at time t2, the motion of S at time t2 cannot be 

determined by use solely of the impulse-momentum equation and description of the 

motion of S at time ti. This is because the equations of rigid body kinetics are three too 

few to predict the six components of impulse and separation velocity. Generally, in the 

absence of detailed knowledge of the deformations and related normal and friction forces 

induced where the bodies contact one another, additional assumptions about the nature of 

the reaction must be made. In the other words, if the stress, strain and displacement of 

the interaction are fully analyzed properly for the contact region of colliding bodies, those 

additional assumptions are unnecessary. 

Because the post-collision motion depends so heavily on the unknown impulse, 

the assumptions that form a "contact law" to supplement equations of rigid body 

mechanics, have a profound effect on the predicted motion. Usually the simplifying 

assumptions are based on speculations about such things as sliding with friction and the 
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capacity of the bodies to return energy of deformation. Assumptions such as known 

"coefficient of restitution", a ratio that must be estimated before the prediction can be 

completed, are usually incorporated in simplified procedures for predicting post-collision 

motion. The coefficient of restitution, widely believed to have a value of one for a 

perfect elastic body and zero for a pure plastic body, has been considered as a material 

property from which changes of velocities can be computed. However, the coefficient of 

restitution is dependent on the configuration of system, approach angle and the 

coefficient of friction (Liu, 1991). But there still is no reliable method of evaluation of 

these quantities available. 

The elastic deformations that occur during the impact of colliding bodies may be 

small in comparison to their actual dimensions, but they play an important role in 

mechanical collisions. The theory of elasticity permits the examination of wave 

propagation in impact problems and a specification of stress distributions at the contact 

point. During the time the bodies are in contact, elastic, friction and inertia properties 

combine to produce a complex variation of sliding and sticking through out the contact 

surface. Although detailed analysis of this contact interaction is quite tedious, it would 

be seen to be necessary for accurately predicting the impulse and velocity changes that 

occur during contact. 

Because such detailed analysis is very complicated and tedious, a simplified, yet 

acceptably accurate, procedure for predicting post-collision motion is desirable. 

Therefore, the investigation of the local deformation of the contact area of two colliding 

bodies, with the objective of developing an accurate simplified method, is made in this 

thesis. As known previously, the interface conditions between the two bodies is more 
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complex than might be expected. A considerably simplified model that captures the 

essential characteristics of the elastic-friction interaction during contact loading will 

predict the impulse and velocity changes. In this simplified model, the interface between 

two colliding bodies resembles the behavior of a pair of mutually perpendicular, non­

linear springs which react independently against each of the bodies, with the exception 

that the stiffness of the tangential "spring" is influenced by the normal compliance. If the 

local deformations between colliding bodies were expressed in terms of spring stiffness 

in the normal and tangential directions, then the collision process could be solved as a 

spring-mass system. 

The past research and investigations will be discussed in chapter 2. The 

background of the simplified prediction of planar collisions is focused on the generalized 

impulse-momentum relationship, which formulated the inertia, M, of the colliding system 

and the modeling stiffness, K, of local deformation of the contact area and are presented 

in chapter 3. In chapter 4, the contact mechanics of elastic bodies is described. The 

simplified model is discussed in chapter 5 in detail. The simulation using the DYNA3D 

finite element code is represented in chapter 6. The conclusion and the summary of the 

results are discussed in chapter 7. 
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2. LITERATURE REVIEW 

Newton furnished not only his laws of motion but also the notion of the coefficient 

of restitution, which is still widely employed, though of questionable fundamental 

significance. Poisson's hypothesis separates the impact into a compression phase followed 

by a restitution phase. The former begins at the first contact of the bodies and terminates 

at the moment of greatest compression. The latter begins at the moment of greatest 

compression and terminates when the bodies separate. Recent attempts have been made 

to study impact in the presence of friction. Some theories derived from Poisson's impact 

hypothesis, involving the tangential component of the contact impulse have some 

limitations, as discussed in the following. 

Whittaker's (1904) theory, derived from Newton's law and Poisson's hypothesis, 

violates energy conservation laws in some cases. Whittaker assumed the tangential 

component of separation velocity, wt, is zero if the magnitude of the tangential impulse is 

less than the coefficient of friction, p, times the magnitude of the normal impulse, gn and 

that the separation velocity, w, will have a tangential component, wt, if the magnitude of 

the tangential impulse, gt, equals the coefficient of friction, p, times the magnitude of the 

normal impulse, gn. Then, the tangential component, wt, is computed from impulse-

momentum and kinematics relationships. Whittaker's method is correct only when the 

initial slip does not stop and keeps constant direction throughout the collision. 

Kane and Levinson (1985) use the same criteria as Whittaker, but distinguish 

between coefficients of static and kinetic friction and are more specific about direction, 

stating that if and only if 
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gt NO 1 g (2.1) 

then 

w, = 0, (2.2) 

and if the inequality is violated, we will have 

wt 
gt gn (2.3)

wt 

in which po is the coefficient of static friction and 1.2 is the coefficient of kinetic friction. 

When applied to a double pendulum striking a fixed surface in certain configurations, these 

criteria predict an increase of kinetic energy. That means this theory violates the law of 

energy conservation. When the bodies slip with friction at the beginning of a collision and 

stop slipping during the collision, some assumptions used in conjunction with Newton's 

impact law violate energy conservation laws. Keller (1986) and Brach (1989) explained 

the pendulum striking a fixed surface leading to an increase of kinetic energy that it is due 

to reverse slip during the impact, but the difficulty in using his theory arises in calculation. 

Several recent papers check for energy conservation. Smith (1991) proposed an 

alternative contact law that gives a more realistic estimate of the rebound. Smith used the 

kinematics definition of the coefficient of normal restitution, and a frictional impulse that is 

defined using an intuitively appealing weighted average of the pre-collision and post-

collision tangential components of the relative velocities. Smith showed that this model is 

guaranteed not to create kinetic energy in a collision. With gt and gn designating the 

tangential and normal components of impulse and yr and wt designating the tangential 

components of the pre-collision and post-collision relative velocities respectively, Smith's 

frictional relationship is stated as 
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Vt vt ± Wt wt 
gt = -,u 2 

(2.4)
2 

v, + wt 

This, together with the kinematics definition of the coefficient of restitution e, 

w, = e v (2.5) 

and the impulse-momentum relationship, permit estimation of the impulse and 

corresponding separation velocity. In Smith's model, the intuitive meaning of the 

coefficient of restitution is clear. Energy dissipation is assured. The frictional impulse 

incorporates direction and magnitude information about the tangential components of both 

pre-collision and post-collision velocities, and satisfies the friction inequality. 

Brach (1989) used two linear relations for changes in tangential velocity; these 

employed the kinematics coefficient of restitution at very small angles of incidence and a 

kinetic coefficient of restitution at larger angles. All of these approaches by Smith (1991) 

and Brach (1989) were designed to produce at large angles of incidence a ratio of 

tangential to normal impulse equal to the coefficient of friction; they represent Coulomb's 

law of friction only in the limit, as sliding becomes continuous in the initial direction. 

Routh (1905) presented an analysis using graphic guidance of the tangential and 

normal impulse between two colliding bodies, assuming no tangential compliance. 

Routh's analysis deals with two phases of the contact, a "compression" phase in which the 

normal velocity difference passes from vn to 0 and a "restitution" phase in which the 

normal velocity difference passes from 0 to wn. In this analysis, Routh defines the 

coefficient of restitution, c, as the ratio of normal impulse during restitution, g,, and 

normal impulse during compression, gn, i.e., c = gnr / gnu An assumption implicit ing

Routh's analysis is that the tangential velocities are as given by rigid body kinematics, i.e., 
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sliding or the lack of sliding is unaffected by deformations. Routh indicates that motion 

following cessation of slip depends on the coefficient of friction p and the limiting ratio ,u', 

a geometric parameter that depends on the distribution of mass in the colliding bodies. If 

the coefficient of friction p is larger than the limiting ratio p', the colliding body will stop 

slipping and simply roll. If the coefficient of friction p is less than the limiting ratio p' then 

reverse slip occurs after slip stops or gross slip occurs throughout the collision. Although 

this analysis has constituted a contribution to realistic solution for rebounds, it indicates 

that, under some circumstances, reverse slip occurs immediately after initial slip stops and 

the tangential force is subject to discontinuous changes as the sliding reverse direction. 

However, in practice, sudden changes in tangential force implied by ignoring tangential 

deformations of colliding bodies are unlikely to occur. Consequently, it has been evident 

that even the relatively small elastic deformations that occur during impacts have served to 

introduce effects that must be taken into account in the analysis of the elastic collisions. 

Smith and Liu (1992) compared the graphs of Routh's analysis with those resulting from a 

detailed finite element analysis of forces and deformations during contact. 

Impact phenomena should be dealt with as dynamic problem since vibrations are 

caused by impact. A basis for this analysis is the theory of local contact deformation 

developed by Hertz, which has found wide use in spite of the static elastic nature of its 

derivation. This analysis accounts for the fact, that the contact occurs over a surface and 

has small duration. For elastic bodies, the Hertzian theory of impact indicates that the 

contact area is proportional to p2/3, where p is the impact force. The Hertzian theory of 

impact follows directly from his static theory of contact between frictionless elastic bodies 

where the deformation is assumed to be restricted to the vicinity of the contact area. 
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Although wave propagation in the bodies is ignored, this restricted theory has been shown 

(Hunter, 1957) to lead to acceptable results for sufficiently low velocity. 

Extensions of the Hertz contact collision model to frictional collisions have been 

proposed. These models assume that the contacting bodies have locally spherical surfaces, 

where the contact behavior follows the approximate solution given by Mindlin (1949) and 

Deresiewicz (1953). Mindlin examined tangential compliance for the contact between two 

elastic spheres under the action of friction, keeping the normal force constant. He showed 

that, for small relative tangential loads, an annulus of micro-slip is generated at the 

boundary of the contact area. As tangential load increases, the inner radius of this annulus 

progressively reduces until, when the critical value of friction force is reached, the surface 

breaks away in gross slip. On the other hand, when the tangential force is subsequently 

decreased, this process would not simply reverse. A central circular region remains stuck 

while sliding or micro-slip occurs in the surrounding area. Hence, it is determined that the 

state of unloading is different from that of loading, and that the process is irreversible. 

The irreversibility implied by friction slip demonstrates that the final state of contact 

depends on the previous history of loading and not only on the final values of the normal 

and tangential forces. In addition, Mindlin and Deresiewicz (1953) have investigated 

changes in surface traction and compliance between spherical bodies in contact arising 

from various possible combinations of incremental changes of loads. Since the contact 

area is changed continuously, and neither the normal nor the tangential forces could be 

known previously, the interface conditions between the two bodies is more complex than 

might be expected. 

Maw, Barber, and Fawcett (1976) use a numerical method to examine the oblique 
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impact of elastic spheres by trial and error. By using Hertzian theory, they postulated that 

where bodies respond to friction forces some of the work done in deflecting the bodies 

tangentially is stored as elastic strain energy in the solids and is recoverable under suitable 

circumstances. By assuming that the contact area comprises sticking and slipping regions 

and the coefficient of friction is constant in the slipping region, Maw developed a solution 

for the oblique impact of an elastic sphere on a fixed, perfectly rigid body. During 

collision, contact spreads from a point into a small region wherein tangential compliance 

influences the development of local slip. The tangential compliance of the contact surface 

under the action of Coulomb's friction have a significant effect on the rebound angle, if the 

local angle of incidence does not greatly exceed the angle of friction. Tangential elasticity 

exerts considerable influence at low angles of incidence. This analysis indicates that error 

will be incurred if the impact response is determined from some of the simpler rigid-body 

theories. 

Liu (1991) used the ANSYS finite element code to evaluate the predictions made 

by simpler methods. During collision, the contact area grows from a point at the first 

contact to a maximum value at the end of the compression phase and vanishes when the 

bodies separate. 

Aum (1992) modeled the collision process using tangential and normal springs and 

a friction element in conjunction with rigid-body impulse/velocity-change constants. In 

this model, the interface between two colliding bodies resembles the behavior of a pair of 

mutually perpendicular, non-linear springs which react independently against each ofthe 

bodies, with the exception that the normal compliance influences the stiffness of the 

tangential "spring". Tangential and normal vibrations are dependent on the initial 
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condition as well as the inertia of the colliding bodies. The sti Hess of the springs is also 

effected by Poisson's ratio. 

Stronge (1994) used a lumped parameter representation, different from Maw's 

elastic continuum approach, for compliance of the contact region. Stronge assumed the 

normal and tangential springs are independent and linear, and the tangential spring has no 

dissipation, while the normal spring has different linear loading and unloading rates. The 

energy dissipation in the normal spring becomes consistent with the definition of an 

"energetic" coefficient of restitution. The mass matrix of the equation of motion is a 

constant, which means the configuration changes negligibly during contact. The collision 

terminates when the force in the normal spring falls to zero. The analysis distinguishes 

between angles of incidence where the contact point initially sticks, slides before sticking, 

or slides throughout the contact period. The tangential compliance significantly alters 

friction; this affects changes in relative velocity unless the angle of incidence is so large 

that there is continuous sliding in the initial direction. 
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3. SIMPLIFIED PREDICTION OF PLANAR COLLISIONS 

Assumptions based upon rigid body mechanics are discussed in this chapter. 

Analysis is done using generalized coordinates and generalized speeds of a dynamic 

system introduced by Kane and Levinson (1985). The background of the simplified 

prediction of planar collisions is focused on the generalized impulse-momentum 

relationship, which is used to formulate the inertia of the colliding system. This will later 

be supplemented by the modeling stiffness of local deformation of the contact area. 

3.1 Generalized Impulse, Momentum and Kinetic Energy 

Consider two rigid bodies B and B' colliding as the points P and P' on their 

respective surfaces move into coincidence, in Figure 3.1. (P and P' are points of B and 

B , respectively.) 

Figure 3.1 Two rigid bodies colliding with each other 
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If the system containing these bodies possesses n degrees of freedom, the 

velocities of the contact points P and P 'can be written in terms of generalized speeds, Ur, 

as 

vP = vrPu 
(3.1)
 

VrP= ur 
(3.2)
 

where vri) and vr are the partial velocities. It is helpful to define the relative velocity v 

as, 

V = V P V P 
(3.3) 

from which 

V = Vr 14 (3.4a) 
r 

where vr r If the changes in configuration and contributions from forces other 

than the action-reaction at the contact point are neglected and the impulse of the force 

exerted on B and B' is denoted as g, then the rth component of generalized impulse can be 

expressed as 

/r = yr g (3.5a) 

Expressing the kinetic energy in terms of the selected generalized speeds, the 

inertia coefficients, m, can be evaluated from 

K = 1 ELm u u (3.6) 

According to the relationship 

aK
P, = (3.7)
 

ar
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this rth component of generalized momentum can be rewritten as 

Pr= Emrs us. (3.8) 

The impulse-momentum laws can then be expressed as
 

/, = AP, = I mrs Aus
 (3.9) 

where Aus denotes the change in us during the contact. 

If v and w are used to denote the relative velocity between the contact points P 

and P', at the beginning of contact and at the end of contact, then 

w = v + Av (3.10) 

and 

Av = v, Our (3.11a) 

Now, let e1, e2 and e3 be a set of mutually perpendicular unit vectors, in= vr-e,-and 

g= re,. Then equation (3.4a), (3.5a) and (3.11a) can be written as 

v = v1 u1 + V2 U2 ± Vnlin 

VI el + 112 e2 +613 e3)u1 +''' (31 e1 +132 e2 +13,e3)u3 (3.4b)
( ( ( 

ur e1+ e2 +I 42 lir I ur 
r r 

I r 1rIg1 rf1r2g2±1r3g3 (3.5b) 

and 

( ( (
Av = lrjAur e1 + I1r2Aur e2 + 11r3Aur e3. (3.11b) 

r r 

So, the following matrix forms according to equation (3.4b), (3.5b), (3.6), (3.9) 

and (3.11b) become 

v ru, (3.12) 
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(3.13) 

K= luTmu (3.14)2
 

I=mAu,
 (3.15) 

and 

Av = rAu , (3.16) 

where I, u and Au are (n x 1) matrices, g, v and Av are (3 x 1) matrices, 1 is (n x 3) 

matrix, and m is (n x n) symmetric matrix for inertia. From equations (3.13) and (3.15), 

Au = nfl 1 g , (3.17) 

and, substituting equation (3.17) into (3.16), 

Av = (17. m'l)g N g (3.18) 

or 

g = (17. n-1 1) 1 Av = M Av , (3.19) 

where 

N (17 m-i 1)_ m-1 
(3.20) 

Both N and M are (3 x 3) symmetric matrices and depend on the configuration of 

the system at initial contact, but not on the motion. Also, if the configuration does not 

change significantly during impact, the small dynamic deformations during contact, and 

consequently g, may be expected to depend on v, but not on the particular set of 

generalized speeds that contribute to v. Therefore, all pre-contact motions having the 

approach velocity v and the same configuration at the initial contact will result in the 

same impulse and corresponding separation velocity w. Once Av has been determined, 

changes in the generalized speeds can be evaluated from equation (3.17), where 
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Au =m' /MAv , (3.21) 

and corresponding changes in velocities and angular velocities of interest can be 

evaluated using the appropriate partial velocities and partial angular velocities. Thus, 

from any set of generalized speeds, impulse and momentum relationships in equation 

(3.19) for the general configuration of the colliding system may be formulated in three 

dimensions. 

The change in kinetic energy induced by the impulse is given by 

1 TAK = 
1 

(u + Az/Y. m (u + Au) u m u (3.22)2 2 

and through the relationship of generalized impulse and momentum described in this 

section, can also be expressed as: 

AK gT 1 gT -1 
(3.23) 

V 4- WZIK=gT (3.24)
2 

and 

AK =-1(wT Mwvr -M-v). (3.25) 
2 

Along with the equation (3.25), the Cauchy quadric surface associated with M 

provides a convenient means for visualizing the constraint that the predicted change in 

kinetic energy should be non-positive, discussed in Smith (1991). Because xM-x is a 

positive definite function of x, Equation (3.25) indicates that the greatest possible loss of 

kinetic energy during contact would occur if w = 0 (i e., if the points P and P' have the 

same velocity) at the instant the reaction k = 0 . 

http:M-v).(3.25
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3.2 Kinematics of Planar Collisions 

To simplify formulation of a contact law for planar collisions, as shown in Figure 

3.2, a set of basis vectors t - n 11 is introduced, substituting for el e2- e3. The vector, n, 

is a unit-vector perpendicular to the common tangent to the surfaces at P and P' and 

directed from B' into B. The vector, t, has the same direction as n x (v x n), where v is 

the relative velocity between two contact points, and ti =t x n. The approach velocity can 

then be expressed as 

v = 11 + vnn . (3.26) 

Subject to an appropriate coordinate transformation, all of the matrices developed 

in previous section can be evaluated in terms of the unit vectors t n - t1. From equation 

(3.18), if there is no coupling of N between t1 and other directions, the relative velocity w 

and the impulse g could be expressed in terms of normal and tangential	 components as 

w = w, t + w n (3.27) 

and 

g--z--g,t+gnn. (3.28) 

Thus, equation (3.18) can be rewritten as 

Ay, Nn NZ1	 (3.29)
lAvn I N, Nnn_ {g:g} 

It will be helpful to express N in terms of its principal values and the angle 

between n and one of the principal directions of N. The principal values are 

N +N (Nn- N 2 
11	 2Nu= ± +Artn2	 (3.30) 

-
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a2
 

II 
t 

/7f 
t 

//////////f ////17 
Figure 3.2 Planar collision between a rod and a flat plane 



18 

wherein N1 is defined to be the larger of two. It follows that the expressions for the
 

components of N are
 

N, +N2 NiN2
Ntt,nn = cos29 (3.31)2 2 

and 

(N,= sin 29 (3.32)2 

where B is the angle between n and the principal direction corresponding to N1 and 

2N'tan 29 = 
(3.33) 

Thus, in terms of principal values, N can be expressed as 

N N,i 1 1+ 2 cos 29 A, sin 20N N N,,] (3.34)m sin 20 1 2 cos 20­

where 

2 2 
m (3.35)N1 + N2 N+N,, 

and 

N22 N N -NANtt N y +4N,2
1 nn= (3.36)N1 + N2 N,+N,,, 

where m and A are dependent upon the system configuration. 

The relationship between M and N and the physical meanings of A are illustrated 

as follows. Consider a rod, which collides with an immobile body at the point P, as 

shown in Figure 3.2. The mass of the rod is denoted as mB, the point G is the center of 

mass and the angle between the line PG and the normal vector of the contact surface is 
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denoted as O. One set of basis vectors shown in Figure 3.2, in which vector a2 is parallel 

.to PG and a, = a, x t, Generalized speeds are chosen such that 

VG =Ui t+u,n 

and 

WB =U3 t xn. 

Let 

= b sin t b cos t 9 nrGP 

and express the velocity of the contact point P as 

p G B
V	 = V + xrGP 

= Ult+u ,n + u 3(b cos 9 t +b sin n) 

The partial velocities for the relative velocity v become 

where 13 is the central moment of inertia of rod for a3. Denoting the central radius of 

gyration of rod as k3, equation (3.45) may be rewritten as 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

= 

v2= 

v3 = 

t, 

n, 

bcose t + b sin n , 

and the matrix / becomes 

0 

1= 0 

bcose b sin 0 

The kinetic energy may be expressed as 

1 1K vG vG I alB coB 
2 2

3 



20 

1 rni,(u, 2 + U,K =- 2 
+k32 U3 2 ) (3.46)2
 

From equation (3.20), hence, m-1 becomes
 

k32 
0 0 

1
 
m-1 

2 
0 k32 0 (3.47)

MBk
3 0 0 I 

and the matrix M becomes 

k32 +b2 sin2 9mB b2 cos° sin 0M= (3.48)
k32 +b2 b2 cose sin0 k32 + h2 cost 

The two eigenvectors al and a2 of this operator are shown in Figure 3.2 and are related to 

the tangential and normal base vectors by 

a, = cos 9 t + sin 9 n, (3.49) 

a2 = sin 9 t + cos t9 n, (3.50) 

and corresponding eigenvalues are 

k32 
MI = --*mB = 2 B' (3.51) 

13 k3 +b2 

M2 = mB (3.52) 

where /3' is the moment of the inertia of rod about the axis through P' and perpendicular 

to the plane of motion. 

Since N= M.1 from equation (3.20), the eigenvalues of N are the reciprocals of 

those of M: 

k,2 +b2N 13 ' (3.53)I. k3 MB 1 



21 

N2 = . (3.54)1
MB 

From equations (3.35) and (3.36), the values of m and A become 

2I3 MB 2k32 MB 
m= (3.55)

2 k3 b2 
3 + I

3 

and 

/3 /, b2 
(3.56)

13 +13 2k32 +b2 

From equation (3.36) and (3.56), A can be seen to lie between zero to one and larger 

values of A reflect more pronounced inertia coupling. 

For contact between an end of an unconstrained, slender rod and an immobile 

body, A=0.6, while the value of A for the double pendulum discussed in Smith (1991) is 

0.964 in the configuration considered there. 

Another parameter that affects the collision is the angle a between n and v 

shown in Figure 3.2. The initial velocity v can be expressed in terms of incident angle a. 

v = v (sin a t cos a n) (3.57) 

so that this incident angle a is given by 

tan a = v (3.58) 
n
 

Observe that a redundancy in results would occur if the sign of both the angles 0 

and a were reversed; in the following, this redundancy is avoided by restricting a to the 

range (0,7r/2) and considering values of 0 throughout the range (-17/2, 77/2). 
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4. CONTACT MECHANICS OF ELASTIC BODY 

For evaluation of the impulse and changes in velocities, additional relationships 

between force and relative motion in the region of contact are required. The analysis of 

the interactions among deformations, surface tractions, and sliding with friction is helpful 

for the purpose at hand to produce an acceptably accurate prediction. The contact 

mechanics of elastic body in both normal and tangential direction will be discussed in the 

following. Some suitable simplifying assumptions can be obtained from the analysis of 

the contact mechanics. 

4.1 Geometry of Smooth Non-Conforming Surfaces in Contact 

When two non-conforming solids are brought into contact, they touch initially at a 

single point or along a line. Under the action of the slightest load they deform in the 

vicinity of their point of first contact so that they touch over an area, which is finite 

though small compared with the dimensions of the two bodies. A theory of contact is 

required to predict the shape of this contact area and how it grows in size with increasing 

load, the magnitude and distributions of surface traction, normal and possibly tangential, 

transmitted across the interface. Finally it should enable the components of deformation 

and stress in both bodies to be calculated in the vicinity of the contact region. 

Before the problem in elasticity can be formulated, a description of the geometry 

of the contacting surfaces is necessary. We assume that at the point of contact these 

bodies have spherical surfaces with the radii R1 and R2, shown as Figure 4.1. 
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Figure 4.1 The geometry of two contacting surfaces 

If there is no pressure between the bodies, we have contact at one point O. The 

distances from the plane tangent at 0 to points such as M and N on the spheres at a very 

small distance r from the axes zi and z2 are distances zi and z?. The distance r is much 

small in comparison with Ri and R2. From Figure 4.1, we have 

tan 0 = tan(90° 0) = r

zi
 

Let OM = x, tan(90° 0) = , 

2)
 

therefore, 

2zIRI
 

r
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Since x2 = r2 + z, 2 , we will have 

LIZI2Ri 2 2 2 = + Z1 (4.1)r2 

and 

r2 z = (4.2)
4R,2 r2 

Because R, » r and 114R12 r2 = Al4R12 = 2R , 

Z, = 
r2 

(4.3)2R, 

Using the same procedure, we have 

r2 
z., = 

2R2 (4.4) 

The mutual distance between these points M and N is 

2 1 1 r2 (R1 + R2)z + z = r ( + ) =, (4.5)2R, 2R2 2R,R2 

fa) 

Figure 4.2 The contact between (a) a sphere and a plane (b) a ball and a 
spherical seat 
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1In the particular case of contact between a sphere and a plane, as Figure 4.2 (a), is 
R, 

zero and the equation for zi + 7.2, the distance between points M and N, gives 

r2
Z1 + Z2 = (4.6)

2R2 

In the case of contact between a ball and a spherical seat, as shown in Figure 4.2 

(b), R1 is negative. The equation for the distance between pointsM and N is 

r2 (R, R2) 
z, Z = (4.7)

2R1R2 

Now, consider the contact between two surfaces with a more general profile. 

Let's take the point of first contact as the origin of a rectangular coordinate system in 

which the x-y plane is the common tangent plane to the two surfaces and the z-axis lies 

along the common normal directed positively into the lower solid, as shown in Figure 

4.3. Each surface is considered to be smooth on both micro and macro scale. On the 

micro scale this implies the absence or disregard of small surface irregularities which 

would lead to discontinuous contact or highly local variations in contact pressure. On the 

macro scale the profiles of the surfaces are continuous up to their second derivative in the 

contact region. Thus we may express the profile of each surface in the region close to the 

origin approximately by an expression of the form 

= A,x2 + B,y2 + C,xy + (4.8) 

where higher order terms in x and y are neglected. 
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Figure 4.3 Non-conforming surfaces in contact at 0 

By choosing the orientation of the x and y axes, x1 and yi, so that the terms in xy 

vanishes. We will have 

1 2 1 2 
, y, , (4.9) 

2R1 2R, 

where R, and R, are the maximum and minimum values of the principal radius of 

curvature of all possible cross sections of the profile. A similar expression may be 

written for the second surface, 

1 2 1 2
Z2 = X.2 fr Y2 (4.10) 

2R2 
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Now, let 9 be the angle by which the axes of principal curvature of each surface are 

inclined to each other, as shown in Figure 4.4. We now transform the coordinates to a 

common set of axes (x, y) inclined at angle a to x1 and angle ,9 to x2 as shown. We will 

have 

x, = cosa x sin a y, y, = cos a y + sin a x 
(4.11)x, = cos /3 x + sin fly, y2 = cos/6 y sin fix 

Figure 4.4 The inclined axes at an arbitrary angle 

The separation between the two surfaces is then given by h = z, z, We now 

transpose equation (4.8) and its counterpart to a common set of axes x andy, where by 
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1 2 1 2 1 2 1 2h = z, z2 = , x, + y, + ,x2 + y2
2R1 2R, 2R2 2R2 

1 , 
= , (cos` a x2 2 cos a sin a xy + sin2 a y2)
 

2R,
 

+	 1 (cos2 a y2 + 2 cos a sin a xy + sin 2 a x2) 
2R1 (4.12) 

, ( cos'` p x 2 +2cosasinaxy +sin2 18 y2)
 
2R2
 

+	 
1 

cos2 fly 2 cosfisin fixy + sin2 13 x2)
 
2R2
 

=Ax2+By2+Cxy 

in which 

1 1 1
C = sin 2fl 21 

1 

If sin 2a .	 (4.13)
2 .1Z2	 R, 

sin 2a 2 \R2
, 

R2
,,

iWe now choose a to satisfy = (4.14)
sin 2,6 1 ( 1 

1 

R12 
\.R, i 

so that C vanishes and 

1 2 1 1	 1A = , cos a + sinn- a + , cos 2 p + 1 sin 2 /3 = (4.15)
2R, 2R1 2R2 2R2 2R' 

1 2B = , sin a + 1 

cos a + , sin2 + cos` /3 = (4.16)
2R, 2R, 2R2 

2Rif 

where A and B are positive constant and R', R" are defined as the principal relative radius 

of curvature. Finally, 

1 1 1 1 1A + B = 1 1,+ + , + 
( 

1,+	 (4.17) 
2 R1 R1 R2 R, 2 R 
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1 , 1 2 1 1 2A B = , cos a + sin a + , cos2 ,6 + sin 13
 
2R, 2R, 2R2 2R,
 

1 , 1 
, sin- a cost a , sin /3 

1 
cos2
 

2R, 2R1 2R
2 2R2 

1 1 1 (4.18) 
= 

1 
, cos2a cos 2a + , cos 2f3 cos 213 

2R, 2R, 2R2 2R2 
( \ ( 

1 1 1 1 1 1
cos 2a + I II cos 2)3
2 

\, RI R
1 

11

j 2 R2 R2
 

Since 

h Ax2 + By2 X 
1 

y, 
= 2R' 2R 

x2 y2 
X2 

y2 
(4.19)= 1 n-12 + 

f----\2
1 .2 1 2 21e) kAt2R") 

\ \'Sffij-,/ 

it is evident that contours of constant gap h between the undeformed surfaces are ellipses, 

the length of whose axes are in the ratio (6/AP = (R'/R"P . 

A normal compressive load is now applied to the two solids and the point of 

contact spreads into an area. If the two bodies are solids of revolution, then 

and R2'=R2"=R2, where upon 

(
A = = (4.20)2R, R2 

V 1
Then h = Ax2 + By, 

1 
(x 2 + y2), (4.21)2 R R2, j 

for r2 = x2 + y2, the separation will be 

1 ( 1 1 r2 (R, + R2)+ r = (4.22)2 R2 2R,R2 
. 

This equation agrees with equation (4.5) derived for the spherical surfaces in Figure 4.1. 
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4.2 Normal Contact Mechanics 

We shall now consider the deformation when a normal load P is applied. In 

Figure 4.5, two solids of general shape are shown in cross-section after deformation. 

Before deformation, the separation between two corresponding surface points Sj(x, y, zi), 

S2(x, y, z2) is given by the equation, 

h= 1 
x2 + 

1 
y2 (4.23)2R' 2R" 

During compression, distant points in the two bodies T1 and T2 move towards the 

contact point 0, parallel to the z-axis, by displacements S1 and 62 respectively. Due to 

the contact pressure the surface of each body is displaced parallel to the z-axis by an 

amount uzi and uz2 (measured positive into each body) relative to the distant points Ti 

and T2. If the points S1 and S2 are coincident within the contact surface then 

uzi +u-2 +h = 81 +82 . (4.24) 

Writing 8 = 8, +8, and h = Ax2 + By2, the elastic displacement is 

uzi +U.22 = 8 Ax2 By2, (4.25) 

where x and y are the common coordinates of S1 and S2 projected onto the x-y plane. 

If SI and S2 lie outside the contact area so that they do not touch, it follows that 

u + 22 > AX2 By2 (4.26) 
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Figure 4.5 The geometry of the deformation of two colliding bodies 

For simplicity, we shall restrict the discussion to solids of revolution in which the 

contact area is a circle of radius a. From Figure 4.5, 

61 = u :1(0), 8, = u z 2 (0) (4.27) 

so that the separation can be written as 
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1 1 1uzi (0) u,i(x)+u z2(0)- u,2(x)-= h = + x2 (4.28)
2 

and in non-dimensional form 

( \ ru (0) u., (x) z2 (0) il r2 (X) 1 1 1= (4.29)a a a a 2 R, R, \, a 

Let 

x = a, u (0)- u, (a) = d (4.30) 

the deformation within the contact area becomes 

d d a 1 1
I 2 

(4.31)a a 2v/Z1 

Provided that the deformation is small, i.e., d << a, the state of strain in each solid is 

characterized by the ratio d/a . The magnitude of the strain will be proportional to the 

contact pressure divided by the elastic modulus. Ifpn, is the average contact pressure 

acting mutually on each solid, we have 

+ 
( 1 1a + 
R
Pm Pm 1 1 . 1Z,

+ x a 1.e., pm x (4.32)
1E, E2 R, 1

+ 
E, E2 

In the contact of spheres, or other solids of revolution, the compressive load p = 2r a2 pn, ; 

hence from the equation above, 

3 

a oc (4.33) 

and 
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P 
R,Ri 

m (4.34)
( 1 2 

,E, E, 

Thus, the radius of the contact circle and the contact pressure increase as the cube root of 

the load. In the case of three-dimensional contact, the compressions of each solid Si and 

52 are proportional to the local indentations d1 and d2. From Equation (4.25), 

= uzi (0), 52 =1./22(0) (4.35) 

and 

u (0) uzi (a) = d, = 8, (a) 
(4.36)

u z 2 (0) uz2 (a) = d2 = 8, u z2 (a) 

+82 zi (a) + (a)i= d, +d2 (4.37) 

hence the approach of distant points is given by 

\2(1
2 ( 1 3 

= 8, + 82 x d, + d x 1 1 

(4.38)
E2 ) R, R2 

Therefore we can conclude that the approach of two bodies due to elastic compression in 

the contact region is proportional to (load)213. By simple dimensional reasoning, the 

contact area, stress and deformation are expected to grow with increasing load. But, to 

obtain the exact values of these quantities, we must turn to the theory of elasticity. 

4.3 Hertz Theory of Elastic Contact 

The first satisfactory analysis of the stresses at the contact of two elastic solids is 

due to Hertz. For the purpose of calculating the local deformations, he pointed out that 
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each body can be regarded as an elastic half-space loaded over a small elliptical region of 

its plane surface. 

Denoting the significant dimension of the contact area by a, the relative radius of 

curvature by R, the significant radii of each body by R1 and R2 and the significant 

dimensions of the bodies both laterally and in depth by 1, we may summarize the 

assumptions made in the Hertz theory as follows: 

i.	 The surfaces are continuous and non-conforming: a < R; 

The surface just outside the contact region behaves approximately as a surface of a 

half-space. 

ii.	 The strains are small: a < R; 

That the significant dimensions of the contact area must be small compared with the 

relative radii of curvature of the surfaces is a necessary condition to ensure that the 

strains in the contact region are sufficiently small to lie within the scope of the 

linear theory of elasticity. 

iii.	 Each solid can be considered as an elastic half-space: a < R1,2, a < 1; 

For the purpose of calculating the local deformations, each body can be regarded as 

an elastic half-space loaded over a small elliptical region of its plane surface. The 

significant dimensions of the contact area must be small compared with the 

dimensions of each body. Therefore, the well-developed methods for solving 

boundary-value problems for the elastic half-space are available for the solution of 

contact problems. 

iv. The surfaces are frictionless: qx = qy = 0. 
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The surfaces are assumed to be frictionless so that only a normal pressure is 

transmitted between them. 

Considering the simpler case of solids of revolution, R, = R, = 

1? 

= R, = R2 , the contact area will be a circular of radius a. Inside the contact surface, 

Ax2 By2
71:2	 (4.39) 

(
1 1 1 1

A = D = + (4.40)2 J?, R2 2R' 

and 

X2 + y2 = r 2 (4.41) 

therefore, 

1	 1u + z2 = 6 (x2 + y2)= r2	 (4.42)2R	 2R 

1	 1 1
where = + is the relative curvature. 

R	 R1 R2 

The pressure given by Hertz theory, which is exerted between two frictionless 

elastic solids of revolution in contact, is given by 

2 

P = PO 1	 (4.43) 

The total load compressing the solids is related to the pressure by 

.P =1 P(r)277 dr = 3porca2	 (4.44) 

Hence the maximum pressure po is 3/2 times the mean pressure pm. The vertical 

displacement at the boundary plane (z = 0) is 
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p(1 v2)
zz,0 = (4.45)

71- E r 

A circular region of radius a is shown in Figure 4.6. It is required to find the 

displacement at a surface point B due to pressure distributed over the circular region. 

Solution in closed form can be found for axi-symmetrical pressure distribution of the 

form, given by equation (4.43). Therefore, regarding the pressure p at C, acting on a 

surface element of area sdsdq5, as concentrated force psdsdq5, the normal displacement at 

B is given by, 

-u v 2 )psdsd0 (1 
= (4.46)

)P.71-- EvE s 

The total deflection is now obtained by double integration, 

(1 v2) f f 
(4.47)

7- E 

Figure 4.6 Pressure applied to a circular region at an internal point C 
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From Figure 4.6, we have t2 = r2 + s2 + 2r s cos q . (4.48) 
Let 

a2 =a2 _r2, p = rCOSO, (4.49) 

PO a 2 = 0) Po Va2 12 
= 

a a 

= Va2 r2 s2 2rscos 0 = Va2 22/is s 2 (4.50)
a a
 
Po (a2
 2/is, s2)2 
a 

1.1-0P(s, 0) d0 ds = 1,j0(a2 2 fis s2 ) 2 dO ds (4.51) 

1 

1 2 71- -1Iasi (a2 2fis s2)-2ds = -1 afi + (a 2 + p ) tan (4.52)
2 2 

The terms afi and tan-1(a/ /3) vanish when integrated with respect to c between the limits 

0 and 277-, so that equation (4.47) becomes 

(1 v2)7rp,
u z v ) = v2) 127r z a 2 r 2 + r- cost 0)C/0 = (2a

2 
(4.53)

nEa Jo 4 4Ea 

The pressure acting on the second body is equal to that on the first, so that by writing 

1 I v12 1 V22 
(4.54)

E* El E2 

?Az = 1- v, 12 71-P° (2a2 (4.55)
E, 4a
 

1- v7- 7z- Po 2
 

Uz2 = (2a2 r ) , (4.56)
E, 4a 

1 
= 8 _+ = 1* 71-13() (2a2 l r2, (4.57)E 4a \,2/?, 

Therefore, 
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Po 1 

(4.58)4a E* 2R'
 

2poRrr rc poa
 
(4.59)

4E* 2E 

8= Z Ea. (4.60)
2E* 

The total load compressing the solid is 

P = ja p(r)27z- r dr = 3port a2 . (4.61) 

In a practical problem, it is usually the total load which is specified, so that it is 

convenient to express a, (5, po in terms of the total load. The radius of the contact surface 

is 

po R rtR 3Pa= (4.62)
2E* 2E* 2R a2 

therefore, a =13 P (4.63)
4 E* 2 

The compression displacement is 

8= 2z- poa nu 3P 3P ( 9P2 
(4.64)

2E* 2E* 2m-2 ,16RE*2(3PR\
4E* 

31 

\ 4E* , 

The maximum pressure is 

I (
3P 27P3 16E*2 6PE 

*2 

Po = (4.65)
27-r a` 87/-3 9P2R2 rc3 R2 
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These equations have the same form as Equations (4.33), (4.38) and (4.34), which were 

obtained by dimensional reasoning. However they also provide specific values for the 

contact size, compression and maximum pressure. 

The equation of normal compression demonstrates a nonlinear force-displacement 

relationship in the normal direction. It is most meaningful to compare the rates of change 

of displacement with load. For bodies having the same elastic constants, differentiating 

equation with the normal load gives a normal compliance. 

3dg_ d ( 9P2 
1 

d ( 3P vi
2 

= (4.66)dP dP 16RE*2 dP ,41FRE* 

where 

1 1 V1- V 2 2 2(1 v2) 
(4.67)E* F., E2 

1 11 V2 2 

(4.68)
4E*2 E2 

The normal compliance G is 

dg_ 2 3P \3( 3 \ 1 ( 4E* \ 3
C,, = =
 

dP 3 4-j-/?E, \415-RE, 2E* 3PR
 (4.69) 
2(1+v) (1 v) , 1 v a = 

E 2 2Ga 

where 

G = E (4.70)
2(1 + v) 
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4.4 Tangential Loading 

In this analysis, we exclude rolling and the discussion of the contact mechanics in 

tangential direction is restricted to the contact stresses in simple rectilinear sliding. 

Shown in Figure 4.7, the system has a slider with a curved profile moving from right to 

left over a flat surface. We regard the point of initial contact as a fixed origin and 

imagine the material of the lower surface moving through the contact region from left to 

right with a steady velocity V. For convenience we choose the x-axis parallel to the 

direction of sliding. 

P 

Q 
x 

QV 
a a 

Figure 4.7 Sliding contact 

A normal force P pressing the bodies together gives rise to an area of contact 

which, in the absence of friction forces, would have dimensions given by the Hertz 

theory. Thus in a frictionless contact the contact stresses would be unaffected by sliding, 

whereas real surfaces introduce a tangential force of friction Q, acting on each surface, in 
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a direction which opposes the motion. The force Q represents the force of "kinetic 

friction" between the surfaces if we imagine the bodies have a steady sliding motion. 

The force Q arises from "static friction"; it may take any value which does not exceed the 

force of "limiting friction" when sliding is incipient. We now investigate the situation of 

two bodies, nominally with no relative velocity but subjected to a tangential force tending 

to cause them to slide. The influence of tangential traction upon the normal pressure and 

the contact area is generally small, particularly when the coefficient of limiting friction is 

appreciably less than unity. In our analysis of problems involving tangential traction, 

therefore, we shall neglect this interaction and assume that the stresses and deformation 

due to the normal pressure and the tangential traction are independent of each other, and 

that they can be superposed to find the resultant stress. 

A tangential force, whose magnitude is less than the force of limiting friction, 

when applied to two bodies pressed into contact, will not give rise to a sliding motion but, 

nevertheless, will induce frictional traction at the contact surface. We shall examine the 

tangential surface traction, which arises from a combination of normal and tangential 

forces, which does not cause the bodies to slide relative to each other. 

The problem is illustrated in Figure 4.8. The normal force P gives rise to a 

contact area and pressure distribution, which we assume to be given by the Hertz theory. 

The effect of the tangential force Q is to cause the bodies to deform in shear, as indicated 

by the distorted central line in Figure 4.8. Points on the contact surface will undergo 

tangential displacement u, and uy relative to distant points T1 and T2 in the undeformed 

region of each body. It will be shown that the effect of a tangential force less than the 

limiting friction force (Q < gP) is to cause a small relative motion, referred to as "slip" or 
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"micro-slip", over part of the interface. The remainder of the interface deforms without 

relative motion and in such regions the surfaces are said to adhere or to "stick". 

In Figure 4.8, Al and A2 denote two points on the interface which were coincident 

before the application of the tangential force. Under the action of the force, points in the 

body such as T1 and T2, distant from the interface, move through effectively rigid 

displacements Sal, Syi and 8x2, 8,,/2 while Al and A2 experience tangential elastic 

displacements uxi, uyi and u,a, uyz relative to T1 and T2. If the absolute displacements of 

Al and A2 (i.e., relative to 0) are denoted by sal, sy1 and sx2, s),/, the components of slip 

between Al and A2 may be written 

Sx ---z- Sxi sx1)- (11x2Sx2 = (11x1 gx2 ) 
(4.71)

= (11x1 -X 2 )11 ( 8 , 45x2 ) 

Figure 4.8 The two contact bodies under the action of the force 
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A similar relation governs the tangential displacements in they- direction. If the 

points A1 and A2 are located in a 'stick' region the slip sx and sy will be zero, so that 

uxi Ux2 =7 8x1 f5x2 8x (4.72) 

Uyl Uy2 = 483,1 8y2 8y (4.73) 

Within the 'stick' region, 8 and Sy are constants, independent of the position A1 

and A2. Further, if the two bodies have the same elastic modulus, all surface points 

within a 'stick' region will undergo the same tangential displacement. At points within a 

stick region, the resultant tangential traction cannot exceed its limiting value, i.e., 

g(x, y) G p P(x, y) (4.74) 

In a region where the surfaces slip, the tangential and normal traction are related by 

g(x, y) = plp(x, y) (4.75) 

In addition, the direction of the frictional traction q must oppose the direction of slip, 

q(x, y) s(x, y) 
(4.76)


q(x, y) s(x, y) 

Equations (4.73) to (4.77) provide boundary conditions which must be satisfied 

by the surface traction and surface displacements at the contact interface. Equations 

(4.73), (4.74) and (4.75) apply in a stick region and Equations (4.76) and (4.77) apply in a 

slip region. 

4.5 Contact of Spheres No Slip 

Consider the case of two spherical bodies pressed by a normal force P into a 

circular area of contact with the radius, 
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(3PRa= (4.77)4E* 

and an ellipsoidal pressure distribution given 

= Po (4.78) 

If a tangential force Q, applied subsequently, causes elastic deformation without 

slip at the interface, then it follows that the tangential displacement of all points in the 

contact area is the same. The distribution of tangential traction which produces a uniform 

tangential displacement of a circular region on the surface of an elastic half-space is 

( 2 \ 2Y2 
qx (X, Y) q0 1 (4.79)a 

The traction is radially symmetrical in magnitude and everywhere parallel to the x-axis, 

0
where 'go = ' The corresponding displacement is given by: 

27z a2 
. 

742 v)
= qoa (4.80)

4G 

Substituting into Equation (4.73) gives the relative tangential displacement between 

distant points T1 and T2 in the two bodies, 

Ox 2 v, 2 v2 
gx = uxi Ux2 (4.81)

8a \ G G2 )1 

Therefore, we have 

20x (2 2 16a8x 
(4.82) 

,UP G2 PP 
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The tangential displacement (5, is directly proportional to the tangential force Q. The 

relationship is shown by the broken line A of Figure 4.9. The tangential traction 

necessary for no slip rises to a theoretically infinite value at the periphery of the contact 

circle so that some micro-slip is inevitable at the edge of contact. 

1.0 

// 
A/ 

Qx 

/
 

A: Without microslip 
B: With microslip 

16 abx /30 

Figure 4.9 Tangential displacement (5x of a circular contact by a tangential force Ox; (A) 
with no slip, (B) with slip at the periphery of the contact 

4.6 Contact of Spheres Partial Slip 

If the tangential force Q is increased to its limiting value ,uP, so that the bodies 

are on the point of sliding and only the two points in contact at the origin are 'stick', the 

tangential traction is given by 
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r r 2 

q'(x, .0= du p(x, .Y) = P Po (4.83)a2
 

3P

where pc, = 2 (4.84)

27za
 

The tangential displacements within the contact circle, r 5 a. due to the traction can be
 

found as: 

71­u; = PO [4(2 v)a2 + (4 v)x2 + (4 -3v)y2] (4.85)32G a 

r Lupo 2vxy. (4.86)32G a 

The surface displacements are distributed parabolically within the contact circle. At the 

origin only, 

Uzi Ux2 = constant = c5, (4.87) 

elsewhere in the contact region the surfaces must slip. 

We now consider an additional distribution of traction given by 

2c r r \-
2 

q"(x,Y) = -p0 1- -T (4.88)a 

acting over the circular area r 5_ c.
 

The tangential displacements produced by this traction within that circle are
 

ux" .= PP° [4(2 v)c2 + (4 v)x2 + (4 3v)y2] (4.89)a 32Gc 

C 71" p 0 
u y 2v x y (4.90)

a 32 G c 
. 

If we now superpose the two tractions q' and q'', the resultant displacement in the circle, r 

c, are given: 
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ux=ux +ux = C PP° (2 v)(a2 c2) (4.91)8Ga 

uy = 0 . (4.92) 

We see that these displacements satisfy the condition for no slip within the circle rsc, 

with the result that 

ux1 u.2 = (8, gx2) = gx
 

2)
= 7174P° (2 v ,)(a2 c2 ) + 7z-'u P ° (2 v2)(a 2 c (4.93)
8G1 a 8G2 a 

7I ,upo 2 vi 2 v2 (a2 c2) 
8a G1 G2 

3p
Since po = , therefore, (4.94)

27r a2 

c23,1p(2v1 2V2\ a2 
°X = (4.95)

16 G2 a3 

1\ ) 

Thus the stick region is the circle of radius c whose value can be found from the 

magnitude of the tangential force. 

=1a 
(1 C3 \27-cq'rdrf2n-q"rdr=up (4.96)Q 0 0 a ) 

v3­

whence c = 1 (4.97)
a 1-113J 

The tangential traction acts parallel to the x-axis at all points; it is given by q' in the 

annulus csrsa and by the resultant of q' and q" in the central circle r <_ c. The 

relative tangential displacement of the two bodies is found by substituting equation (4.97) 

into (4.95), 
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(3,u p 2 vi 2 v28 = (4.98)16a G, G2 

This nonlinear expression is plotted in the line B of Figure 4.9. 

It is instructive to compare the compliance of two spherical bodies to tangential 

force with the compliance to normal force found from the Hertz theory. Since the normal 

displacement 6 is non-linear with load, it is most meaningful to compare the rates of 

change of displacement with load. For bodies having the same elastic constants, 

differentiating Equation (4.64) gives a normal compliance, 

2 9 (1 -v22( 1 13 -v1 1 = (4.99)dp 3 4 E 1?1+ R2 p 2Ga 

The tangential compliance for small values of 0, is given by equation (4.81): 

dc 2 v 
(4.100)

dO 4G a.
 

So that the ratio of the tangential compliance, G, to normal compliance, G, is
 

2 -7 which varies from 1.17 to 1.5 as Poisson's ratio varies from 0.25 to 0.5v)' 

and is independent of the normal load. Thus the tangential and normal compliance are 

roughly similar in magnitude. 
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5. SIMPLIFIED CONTACT MODEL 

The influence of tangential traction upon normal pressure in the contact area is 

generally small, particularly when the coefficient of limiting friction is less than unity. 

Therefore, for the analysis of collisions involving tangential traction, it is assumed that 

the stress and deformation due to normal and tangential forces are independent of each 

other, but that they could be superposed to evaluate the resultant stress and deformation. 

In this chapter, a simplified model with coupled, non-linear and conservative springs in 

the normal and tangential direction is presented, based upon the contact mechanics 

discussed in the previous chapter. The basic assumptions and equations of tangential and 

normal motion will be discussed. 

5.1 Model Description 

In order to focus on the effects of normal and tangential compliance during 

collision, consider a body that collides against a half-space as shown in Figure 5.1(a). At 

the contact point, the body and the half-space have a common tangent plane. Let unit 

vectors t and n be oriented in directions tangent and normal to this plane respectively. 

The displacement of P relative to B' is defined as (ut t + u,, n) and the displacement of Q 

relative to B' is defined as (s t + n), where s(t) is the extension of the springs in the 

tangential direction. The contact point P is defined as the point of B coincident with Q 

when s = un = 0. The interaction forces, fit), between two bodies are shown in Figure 

5.1(b). Let v be a given initial approach velocity at the incident angle a between v and ­
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n, v(t) the velocity of the contact point at any instant time during impact, and w the 

value of v at the end of contact. 

Figure 5.1 (a) The contact area of two colliding bodies (b) The interaction force of the 
contact area 

In order to get the tangential force-displacement equation, the non-linear force-

displacement relationship in the normal direction from Hertz theory as shown in the 

preceding chapter can be used, 

fn= 3nE(un) (5.1) 

in which R= 
1 

and E = 
1 

21 1 V 1 V2 
1+ ± 

R1 R2 E, E2 

After a normal force presses two elastic bodies to contact, a tangential force 

applied subsequently causes the elastic deformation without slip throughout the contact 

area. The relative displacement in the tangential direction for two elastic bodies, as 

discussed in previous chapter, is given 
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f /2 2 v2 
ut = (5.2)8a G, G2
 

Since from Hertz theory, the normal displacement,
 

9F2 a2 
3 

un = (5.3)16RE2 R 

then, substituting a = AK u ,7)R into equation (5.2), we will have the displacement of the 

tangential spring which becomes coupled with the displacement of the normal spring, 

( 2 v 2 v2s= + (5.4)8VR ) G1 G2 

Therefore, the tangential force can be expressed as 

(5.5) 

where G = 
1 

(5.6)2 vi 2 v2 

G, G, 

For the special case in which the two spheres are composed of the same material, 

v, =v2 =v (5.7) 

=E2 =E ", (5.8) 

1 1 vi2 1 v22 2(1 v2)
and (5.9)E E*
 

(1 v)E

then G = (5.10)2(2 v) 
The tangential and normal forces of this simplified-coupled model may be expressed as 

4 "14E 
fn (5.11) 
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ft= 
4 (1 vREs(un). (5.12)2 v 

We can express the applied forcefin both normal and tangential directions and both are 

functions of the displacement of the normal spring, un and the displacement of the 

tangential spring, s, where the displacement u=unen+se 

f = Len+ ft et (5.13) 

where f, = fn(un,$), (5.14) 

ft = ft(u,$). (5.15) 

The increment of work of this force is, 

dW = fdun+ fds , (5.16) 

so that the work along some path will be 

W =f f du= ffn dun +. fds. (5.17) 

If the expressions are to represent an elastic, energy-conservative system, there must exist 

a potential V(un, s) such that dW = dV 

Since dV = av du + aV 
ds (5.18)aun as 

by equating energy expressions of dV, Equations (5.16) and (5.18), we will have 

fn (5.19)au as' 

and 

fn av aft a av 
(5.20)as asaun' aun aunas' 
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For the existence of the elastic potential energy, the two equations above must be equal, 

017 aft 20-0 ( s
,IRr E (5.21)as aun 2-v 

Therefore, the normal force is expressed as follows with one more function of /in, 0(u,i), 

added, 

=i+v jE s2
in +ipoin)

2 -v v -un
 
1- v r- s2 4 r- /
= -NIR E + -NIREk-un) (5.22)2 v V- up, 3
 

4 1 -v s2
 
= 

3 2 v un 

The complete normal and tangential forces of the non-linear coupled-conservative 

model can be expressed as 

4 1- v sIITM-un)1 
2 

(5.23)
3 2 v un )2 

4 (1 vft= 2v )11REs(un)z, (5.24) 

When the contact area is subject to sticking, which, from the Coulomb friction 

law, occurs when the tangential force is less than the limiting friction force, the tangential 

velocity of colliding bodies is equal to the extension rate of the tangential spring; that is, 

= , for fl <pin. (5.25) 

If the tangential force reaches the limiting friction force and the colliding bodies begin to 

slip, the tangential force satisfies 
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17; s 
(5.26) 

17t 

and this relationship must replace equation (5.25).
 

Upon substitution of equations (5.11) and (5.12), the condition for sticking,
 

ft I < ,u f, becomes
 

1S1 V 4 
+4x > 0 (5.27)

un) 

in which the dimensionless ratio xis defined and limited by 

2 2 v<K= < 1 . (5.28)3 v) 

The left-hand member of equation (5.27) has roots at si = 2 (1 ± 111 K p2) and has alin kl 

minimum value of 4 
1 

K at sl = 2 This implies that, if p> there will 

always be sticking, and, if p<, sliding will occur if 
VK
 

2 (_Thil ii,)< <_2 (+111_1c p2).

ISI (5.29)un piu 

Now, when the quadratic term in equation (5.23), which was appended to insure 

that equations (5.23) and (5.24) imply a conservative elastic system, becomes significant 

compared with 4 the validity of equation (5.23) becomes doubtful. Therefore, values of
3 

S 
greater than approximately 

2 
will not be considered in this investigation, so that 
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the upper limit + 11 Kg') in equation (5.29) will be outside the limits of this 

study. Denoting the lower limit as 

C= 
2 

( K p2), (5.30) 

we may write the conditions for sticking at the contact point as p > or,
 
K
 

C < S <C . (5.31)
11n 

When these conditions are met, the system must satisfy 

(5.25) 

which will continue to govern until contact is lost or until --s = ±C , at which equation 
up, 

(5.25) must be replaced with 

S	 .
 
un
 (5.32) 

Is 

The factor 1s assures that the direction of the friction force is consistent with the 
.51 

direction of tangential elastic deformation. Equation (5.32) will continue to govern until 

contact is lost or s = fit, at which time equation (5.32) must be replaced with equation 

(5.25). Initial stick or slip will be determined by the criteria 

ut (0) {< C stick 
tan a =	 (5.33)

fin (0) > C slip 

Remaining governing equations are the kinetic relationships discussed earlier: 
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Vr Nu Nu, 
(5.34)N N 

gr 

vn gn
 

By substituting v, = v, = v sin a, and vn = v cos a into these equations, and f
 = 

into equations (5.23) and (5.24), the system governing contact may be written and 

summarized as follows: 

4(1v) 
ALREsliun , (5.35)2v 

(4 1v s 2 \ 
kp, =-%112E(--unY2 (5.36)

3 2 v un2
 

ur = v sin a +N gt+Ntngn,
 (5.37) 

an = V cos a+N,g,+ Nng, (5.38) 

icr whenever Is! <
 
un
s . 

C un (5.39) 
IsI whenever SI = CI 

un 

Non-dimensional quantities may be introduced in terms of the length 

( in2 v4 \ 
5 

71= (5.40)E2R) 

Impulse, displacement of the contact point and the tangential spring, and duration of 

impact are expressed in terms of non-dimensional quantities as follows: 

gi = mvy, (5.41) 

= 77 8, (5.42) 

(5.43) 
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t = r (5.44) 

where the subscript i represents the normal and tangential directions, t and n,
 

respectively. By following chain rule for the differentiating with respect to time,
 

_dz- dO v0,
 
(5.45)dtdz 

the equations governing non-dimensional force and displacement of the contact point are 

given as follows: 

4(1 v) 4 r 
6 1,1 = 611 °n (5.46)2 v 3K, 

( 
1 6 2 

7,c k-5,2)2 4+ (5.47)
3 ic8 

8: = sin a +(1 + 2 cos29)7, + A, sin 207,2 (5.48) 

8,: = cosa + 2 sin 2617t + (1 2 cos209)7,. (5.49) 

El I 
< 2 (61= 8: whenever -v1 x ,u2) (stick) (5.50) 

gn P 

6, 2 151 2 L 1

)--g n' whenever ic,u2) (slip) (5.51)
gl P 

The initial conditions, at 7' 0, are 

St (0) = 0, (5.52) 

8 (0) =0, (5.53) 

7,(0) = 0,, (5.54) 

and 

7,(0) = 0 . (5.55) 
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The condition for judging initial stick or slip is to be decided by the incident angle 

a, where 

(0)
tang = (5.56),; (0) 

If 

( 
ic,u2)< tan a <? lc? ), (5.57) 

the bodies stick at the beginning of impact and the velocity of the tangential spring is as 

determined by equation (5.50); 

e(0) = 8:(0), (5.58) 

otherwise, slide occurs at the beginning of impact and equation (5.51) is used for 

representation of the velocity of the tangential spring 

e' (0) = 11 Kitt' (5",, (0) . (5.59) 

Sliding (or sticking) may give way to sticking (or sliding) at some point during 

the impact. Such behavior will be seen in the examples presented later. 

The following was used to judge whether the slip continues or stick occurs during 

the numerical integration. 

[8'0)- 6:(i)1> 0. (5.60)61 

If the inequality is true, then slip stops and stick occurs. Otherwise, slip continues 

throughout the impact. 

The motion resulting from these coupled, nonlinear, conservative springs on the 

oblique impact of elastic sphere are discussed in the following. Although this model does 
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not account for all of the complexity of a real collision process, it provides the ability to 

greatly simplify the prediction of the rebound. Comparisons with more accurate and 

complex analyses in the following indicate that it provides acceptable accuracy. 

5.2 Oblique Impact of Elastic Spheres 

In this section, the oblique impact of elastic spheres is investigated, using the 

methods developed in the previous section. A sphere colliding with a massive flat 

surface is taken for example. As shown in Figure 5.2, the parameters of inertia coupling 

for the colliding system are A= y and 0 = 0 . From the non-dimensional system9 

equations, it may be seen that only the incident velocity and the coefficient of friction 

characterize the motion of impact for a given value of Poisson's ratio. 

Consider a sphere with the Poisson's ratio v = 0.3 and the coefficient of friction kt 

= 0.5 striking on a flat surface. As shown in Figure 5.2, the angles are related to the 

velocity components as 

r v 
a, = tan-1 (5.61) 

yr, 

and 

a2 = tan' wt (5.62) 
n 

where vt, vn, wt and wn are the incident and reflecting velocities of the point P, 

respectively, in the tangential and. normal directions. 
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VT 

t
 

V
 

Figure 5.2 The definitions of the angle of incidence and the angle of reflection 

Given the above material constants, Maw et al. (1976) introduced a non-

dimensional quantity for incident velocity, 

2( 1- v),
= / tana, (5.63)p v ) 

where the values of V/and a that correspond to incidence will be denoted as and al 

and those that correspond to the reflection as T2 and a2. Since Vis proportional to the 

ratio between tana and the coefficient of friction ,u, VI and V2 are referred to, 
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respectively, as the non-dimensional angle of incidence and the non-dimensional angle of 

reflection. 

Results from the detailed and complex analysis ofMaw, et. al., will be compared 

with those from integration of the dimensionless equations of the previous section, 

specialized for the case of the sphere. For this comparison, the computed values of }IA are 

used for the evaluation of the corresponding values of T2, and non-dimensional 

tangential force and time are defined, respectively, as 

2(1 wt 
(5.64),u v)wn
 

Ft
 
(5.65),t1 F 

and 

_t
 
(5.66)T' 

where t is any instant time during the contact and T is the duration of contact. For the 

non-linear coupled-conservative model the plot of non-dimensional tangential force at 

with respect to the dimensionless time T for different value of gi is given in Figure 5.3. 

For WI =1.2, the values for non-dimensional tangential and normal force, impulse, 

displacement, velocity are plotted from Figure 5.4 to Figure 5.11. 
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Figure 5.3 Non-dimensional tangential force during impact for various non-dimensional 
incident angle Pi 
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Figure 5.4 Non-dimensional tangential force during impact at Wi=1.2 
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Figure 5.5 Non-dimensional normal and tangential displacement of contact point at 
i=1.2 
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Figure 5.6 Non-dimensional normal displacement and normal force of contact point at 
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04 
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4 

Figure 5.7 Non-dimensional tangential displacement and tangential force of contact point 
at "Pi=1.2. 
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7. 
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it 

Figure 5.8 Non-dimensional normal and tangential impulse of contact point at Pi=1.2. 

0 
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Figure 5.9 Non-dimensional tangential velocity of contact point at "P1 =1.2. 
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Figure 5.10 Non-dimensional tangential and normal force of contact point at '1 =1.2. 
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Figure 5.11 Non-dimensional normal velocity and normal impulse of contact point at 
Pi=---1.2. 
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5.3 The Effect of the Radius of Gyration 

Once gross slip ceases, the tangential compliance and the inertia of the sphere act 

very much like a non-linear mass-spring system. Therefore the natural frequencies of this 

system may be expected to depend upon the radius of gyration of the sphere. Introduce 

another non-dimensional quantity, 

(1 v)(1 + 2) 
(5.67)X= 

vn1 2)' 

which is independent of the friction coefficient and a function of the Poisson ratio for a 

given value of X. For a given Poisson ratio, as x is increased, the radius of gyration is 

reduced. This prediction is confirmed by the results presented in Figure 5.12. As Xis 

increased, the number of reversals in tangential force during the cycle increases. The 

rebound prediction of the angle of reflection as a function of x for solid sphere is shown 

in Figure 5.13. The rebound prediction for four different objects with different 

configuration parameter, the solid sphere, solid disc, shell and hoop, are examined here. 

For a given Poisson ratio, v = 0.3, the configuration parameter A for each object are 

shown in Table 5.1. From Figure 5.14, Figure 5.15, Figure 5.16, Figure 5.17, we can see 

the angle of reflection is influenced by the configuration parameter A, which is a function 

of the radius of gyration, i.e., 2 = 
b2 

, as discussed in chapter 3.
2k3- + 

Solid Sphere Solid Disc Shell Hoop 
A 0.556 0.5 0.429 0.333 

Table 5.1 The configuration parameter of four different objects 
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Figure 5.12 Non-dimensional tangential force during impact for various radii of gyration, 
z at gi=1.2 

1.2 
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Figure 5.13 The local angle of reflection as a function of x for a local angle of incidence
 
TJ1=1.2
 



74 

25-j 

2 

1.5 

0.5 

0 47J 7 

1 44* 2 3 4 5 6 7 8 9 

-0.5 

*
 

*
 
-1 

eeo 11 

. 

-15 

Figure 5.14 Non-dimensional angle of reflection "W2 and angle of incidence 'WI for the 
sphere with Poisson's ratio 0.3 
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Figure 5.15 Rebound prediction for the solid disc 
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Figure 5.16 Rebound prediction for the shell 



77 

2 3 4 5 6 7 8
 

a
 

Figure 5.17 Rebound prediction for the hoop 
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5.4 Coefficient of Restitution and the Kinetic Energy Loss 

The duration of impact is separated into a compression phase and a restitution 

phase. The duration from first contact to the instant at which the normal component of 

the relative velocity reaches zero is called the compression phase. The restitution phase 

follows the compression phase and terminates at the end of contact. In this definition, the 

motions of P and P'are understood to belong to rigid bodies B and B, even though it is 

recognized that deformation is necessary to preclude penetration. Thus, the instant that 

separates the compression and restitution phases is that at which maximum penetration 

(even in the rigid-body idealization) is reached. The three definitions for the coefficient 

of restitution are considered as follows: 

The first definition is given as 

= gnr 

(5.68) 
gnc 

where gnc is the normal component of impulse g accumulated during the compression 

phase and gnr is that accumulated during the restitution phase, 

The second definition is given as 

n-w e= (5.69)n-v' 

where v and w are the relative velocities at the beginning of contact and at the end of 

contact, respectively. 

The inertia operator N plays an important role in the work done by the contact 

force at P and P. The force exerted on B by B' at P denoted f the sum of the works of 

this force at any time may be expressed as 
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W= f du 
= f i> f dt 

= if,- dg 

= f (3, + g dg (5.70)
 

=v g +j-g N g
 
2
 

1
 

v +-2 (v v) g
 

in agreement with equation (3.24). An alternative expression for the change in kinetic 

energy at any time is equation (3.25), which can be written with the help of equation 

(3.20) as 

1 

N-1 v N-1 -v) (5.71)

2
 

Because x N-1 x is a positive definite function ofx, this indicates that the greatest 

possible loss of kinetic energy during contact would occur if -17 = 0 (i.e., if the point P 

and P ' have the same velocity). For planar collisions the maximum possible loss in 

kinetic energy could be expressed in terms of the parameters as 

AK1 = 1v N-1 -v (5.72)
max 2
 

and for planar collisions it can be expressed in terms of parameters. 

[1+ 2 cos 2(a tlinv2 
(AK max (5.73) 

2(1 -22) 

Recently, a third coefficient of restitution was introduced by Stronge (1990) as 

d (5.74)
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where Wne and 147,,,. are the sums of the work done by the normal components of the 

reaction forces at the contact point during the compression phase and during the 

restitution phase, respectively. Displacements in the definition of work used here must 

be understood to be those of points of "rigid" bodies (which would imply and artificial 

penetration, as mentioned above). 

From equation (5.70) the normal component of work done by the contact force 

then becomes 

dgn (5.75) 

during the compression and restitution phases, respectively. 

Although the coefficient of the restitution, e, is often considered as a material 

property, from Figure 5.18, we can see the coefficient of restitution is affected by the 

angle of the incidence. From Figure 5.19, we can see the influence of the coefficient of 

friction on the coefficient of restitution. The larger the coefficient of friction is, the more 

the coefficient of restitution changes. From Figure 5.20, we can also see that both the 

angle of incidence and the coefficient of friction affect the kinetic energy loss of the 

oblique impact of a solid sphere. For a given angle of incidence, the larger the coefficient 

of friction, the more the kinetic energy loss. 
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5.5 Systems with Tangential-Normal Inertia Coupling 

Considering a special case shown in Figure 5.21, the rod of uniform density has a 

circular cylindrical portion with hemispherical ends and collides against a flat plane. In 

terms of the dimensions given as the Figure 3.2, the quantities used here are 

= + LRcos0 + /?: (5.76)4 

8 3 1 1R' + R2 I_ + + 
15 4 3 12 

(5.77)4 
R+I, 

3
 

( R sin t9

0 = + sin (5.78)Li 2 

The above three equations show that the configuration parameter 

( 
22= 1+1c32 (5.79)
b2 

is a function of L/ and th. For comparison, all dimensions and material constant are 

taken to be the same as in the previous research of Liu (1991), where L/R = 5.0, and the 

Poisson's ratio v= 0.28. Four cases are presented in Figure 5.22, Figure 5.26, Figure 5.30 

and Figure 5.34 and the relative parameters for these cases are shown on Table 5.2. 

case a b c d 
A 0.5 1.0 0.5 1.0 
A 0.63922 0.63252 0.61240 0.61573 
0 0.27018 0.38956 -0.62204 -0.59062 

tana 1.54900 9.53159 1.07757 1.35013 

Table 5.2 The parameters used in the rod impact cases 
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Figure 5.21 Collision between a cylindrical rod and a flat plane 
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In order to compare with previous research, the variation of the normal impulse 

and the tangential impulse for four cases are shown in Figure 5.23, Figure 5.27, Figure 

5.31, and Figure 5.35, which are very close to the results of ANSYS finite element code 

by Liu (1991). In Figure 5.24, Figure 5.28, Figure 5.32 and Figure 5.36, the variation 

between the normal velocity and the normal impulse show quite linear. The relationship 

of the normal displacement and the tangential displacement are shown in Figure 5.25, 

Figure 5.29, Figure 5.33, and Figure 5.37, which are very close to previous research. 
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Figure 530 The rod impact of case c (0 = -0.62204, tana = 1.07757) 
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Figure 5.34 The rod impact of case d (0 = M.59062, tana = 1.35013) 
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6. COLLISION PREDICITON SIMULATED BY DYNA3D 

Finite element codes have been used to predict the collision of the two rigid 

bodies. Liu (1991) uses the ANSYS code developed by Swanson Analysis System, Inc. 

to analyze the post-collision of two rigid bodies. Although predictions froma finite 

element method which include wave propagation are closer to the real system than 

simplified prediction procedures based on rigid body mechanics, they sometimes are 

unstable under certain circumstances. Furthermore, the increase in computational load 

required for the use of this method is significant. 

In this investigation the post-collision of two rigid bodies was predicted by using 

the DYNA3D (Hallquist, 1983) (Whirley, 1993) finite element code developed by the 

Lawrence-Livermore National Laboratory (LLNL). The introduction of DYNA3D is 

represented in this chapter. The example of the oblique impact of solid sphere is 

discussed in the following from results using the DYNA3D finite element code. 

6.1 The DYNA3D Finite Element Code 

DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient 

dynamic response of three-dimensional solids and structures. The element formulations 

available include one-dimensional truss and beam elements, two-dimensional 

quadrilateral and triangular shell elements, and three-dimensional continuum elements. 

Many material models are available to represent a wide range of material behavior, 

including elasticity, plasticity, composites, thermal effects, and rate dependence. 



100 

In addition, DYNA3D has a sophisticated contact interface capability, including 

frictional sliding and single surface contact, to handle arbitrary mechanical interactions 

between independent bodies or between two portions ofone body. 

DYNA3D does not contain any significant model generation capability, and relies 

totally on external software for this task. The LLNL mesh generator, INGRID, (Hallquist 

et al., 1990) is widely used at LLNL and provides full support for all DYNA3D analysis 

options. INGRID is a generalized three-dimensional finite element mesh generator for 

modeling nonlinear systems. INGRID provides the capability to generate complex 

geometrical models using beam, shell and hexahedral elements. Similarly, boundary 

conditions, initial conditions and material properties can be specified for complex regions 

with a minimum of user input. Interactive graphics in INGRID offer the ability to probe 

and interrogate mesh structure, boundary conditions, slide surfaces, and radiation 

enclosures so that valid models can be easily constructed and rapidly verified. 

DYNA3D writes up to three binary plot databases. The state data plot file family 

contains information for complete states at relatively infrequent intervals; 50 to 100 states 

of data are typical in a state database. The time history data plot file family contains 

information for only selected nodes and elements, but at much more frequent intervals; 

1000 to 10,000 states of data are typical in time history database. 

TAURUS (Hallquist and Spelce, 1991), a LLNL code, can be used to visualize 

results from DYNA3D. TAURUS uses a command-line based user interface with X-

Windows graphics for portability. TAURUS can read any of the three binary plot 

databases produced by DYNA3D and allow plotting of color contours, fringes, deformed 

shapes, and time histories in an interactive graphics environment. 
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6.2 The Oblique Impact of Solid Spheres 

The example of the oblique impact of a solid sphere discussed in chapter 5 is 

simulated by DYNA3d finite element code. This model consists ofa solid sphere with a 

diameter of 0.1 m and a half-space surface. The INGRID finite element mesh is shown in 

Figure 6.1. The distribution of the nodes of the contact area is shown in Figure 6.2, 

where the node number 1712 is the incident contact node. Although the assumption used 

in the previous chapter considers that the solid sphere except near contact is modeled as 

rigid, the DYNA3d finite element code has difficulties to simulate a solid sphere 

containing both rigid and elastic parts together. Therefore, the simulation of the oblique 

impact of solid sphere by the DYNA3D finite element code is assumed that every 

element of the solid sphere is elastic and has identical material properties. The material 

properties used for the solid sphere are summarized in following, 

the Poisson ratio v = 0.3, 

the Young Modulus E = 7E10 Nim2 

the density p= 2700 kg /m3 

the coefficient of friction p= 0.1 

the initial normal velocity v = 0.5 m/s. 

"Center velocity" is evaluated as total momentum divided by total mass, and "angular 

velocity" is evaluated as total central angular momentum divided by central moment of 

inertia. Rigid body velocity of the contact point is then 

p =T,c +coxr
cP (6.1) 
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6.1 Model description of the oblique impact of solidlid sphere 
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Figure 6.2 The distribution of nodes on the contact surface of the DYNA3D model 
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"Rigid body" displacement and acceleration are evaluated by time integration and 

differentiation. These will be compared with results from simplified model of chapter 5. 

There are total eight cases are simulated, the relative angle of incidence, Pi, and initial 

tangential velocity, vt, are listed in Table 6.1. 

0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
vt 0.0303 0.0607 0.1164 0.1821 0.2378 0.3035 0.3642 0.4249 

Table 6.1 The numerical value of the angle of incidence and initial tangential velocity 

The time histories of the normal displacement of the contact node 1712 and the 

rigid sphere for all eight cases are shown in Figure 6.3 and Figure 6.4 respectively. From 

the Figures, we can see there is no difference between cases for the normal displacement 

of either that of the contact node or that of the rigid sphere. 

The nodal time history of the tangential displacement of the contact node 1712 

and the rigid body displacement are shown in Figure 6.5 and Figure 6.6. From the 

results, we can see the larger the initial tangential velocity, the larger the tangential 

displacement. The comparison of the normal velocity between the nodal time history and 

the rigid body velocity are shown in Figure 6.7 and Figure 6.8. The normal rigid body 

velocity is very close to the prediction from the simplified coupled-conservative model. 

From Figure 6.8, we can see there is dissipation of the normal velocity, the normal 

velocity of separation is less than the incident normal velocity. 

The time histories of the tangential velocity for the nodal velocity and the rigid 

body velocity are shown in Figure 6.9 and Figure 6.10. Although the tangential velocity 

of the contact node predicted from DYNA3D vibrates a lot, we still can see there is 
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reverse tangential velocity in small incident angle case from Figure 6.9. That is, the 

tangential velocity turns to opposite direction during contact. The rigid body acceleration 

gives us the idea of the interaction force. The normal and the tangential acceleration of 

the solid sphere are shown in Figure 6.11 and Figure 6.12 respectively. The time history 

of the tangential acceleration of the solid sphere is very close to that of the tangential 

force predicted by the simplified coupled-conservative model. 

It will be of interest to know the time history of the internal energy and the kinetic 

energy change. From Figure 6.13 and Figure 6.14, we can see the internal energy it not 

different for different cases and there is some kinetic energy loss in all cases. The time 

history of the kinetic energy loss is shown in Figure 6.15. 

The time histories of normal and tangential impulse are shown in Figure 6.16 and 

Figure 6.17. The results of the normal and tangential impulse are close to those predicted 

from the simplified coupled-conservative model. The relationship of the normal impulse 

and tangential impulse is shown in Figure 6.18. We can see the prediction is very similar 

to previous research. The normal and tangential forces can be given after integrating the 

relative impulse by MATHCAD program and are shown Figure 6.19 and Figure 6.20. 

Compared with the previous research, we see the DYNA3D finite element code gives 

pretty good prediction. 
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Figure 6.3 The time history of the normal displacement of contact node 1712 
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Figure 6.4 The time history of the normal rigid body displacement 
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Figure 6.6 The time history of the tangential rigid body displacement 
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Figure 6.7 The time history of the normal velocity of the contact point 
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Figure 6.8 The time history of the normal rigid body velocity 
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Figure 6.9 The time history of the tangential velocity of the contact point 
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Figure 6.10 The time history of the tangential rigid body velocity 
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Figure 6.11 The time history of the normal rigid body acceleration 
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Figure 6.12 The time history of the tangential rigid body acceleration 
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Figure 6.13 The time history of the internal energy of the rigid sphere 
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Figure 6.14 The time history of the kinetic energy of the rigid sphere 
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Figure 6.15 The time history of the kinetic energy loss of the rigid sphere 
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Figure 6.16 The time history of the normal impulse of the rigid sphere 
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Figure 6.17 The time history of the tangential impulse of the rigid sphere 
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Figure 6.18 The relationship of the normal impulse and the tangential impulse of the 
rigid sphere 
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Figure 6.19 The time history of the normal force of the rigid sphere 
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Figure 6.20 The time history of the tangential force of the rigid sphere 
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6.3 The Collision of the Rod with a Rigid Surface 

The collision of the cylindrical rod with a rigid surface discussed in chapter 5 was 

simulated by DYNA3D also. This system consists ofa cylindrical rod with L/R = 5 and 

a rigid half-space surface. The mesh of the model drawn by INGRID is shown in Figure 

6.21. Since the initial velocity is small enough that the configuration of the system will 

not change during impact, the contact area is very small compared with the whole body 

of the cylinder rod, which is shown in Figure 6.22. The detail of the mesh between the 

contact area and the whole cylinder rod is shown in Figure 6.23. In orderto have finer 

mesh at the contact surface and conserve the time consumed in calculation, the memory 

of the computer simultaneously, the mesh of the rod is divided into several parts with 

different mesh density. As seen in Figure 6.24, the different parts of the rod have 

different mesh sizes. This causes discontinuities between different parts of the rod, 

which gives rise to errors of calculation happens. In Figure 6.25 and Figure 6.26, the 

relationship of the normal impulse and tangential impulse for case a and case b as 

discussed in chapter 5.5 are shown respectively. Comparing these results with those of 

the simplified non-linear coupled conservative model, we can see the results of DYNA3D 

model is not as good as we expected. The reason maybe comes from the discontinuity 

between the different part of the mesh of the rod. The analysis of the cylinder rod impact 

has not been completed. The refinement of the finite element code and the increase of 

the memory of the computer need to be done in the future for improving the analysis of 

the cylinder rod impact. 
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Figure 6.21 The model of the bar impact for DYNA3D finite element code 
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Figure 6.22 The contact surface of the bar impact 
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Figure 6.23 The mesh of the bar impact for the half of the bar 
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Figure 6.24 The detail mesh of the contact surface of the bar impact 
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Figure 6.25 The normal impulse and the tangential impulse of the rod impact for case a 
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Figure 6.26 The normal impulse and the tangential impulse of the rod impact for case b 
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7. CONCLUSIONS 

The analysis of the planar impact of two bodies in a mechanical system is refined 

by the consideration of the elastic deformations at contact surface. Each body was 

assumed to exert an instantaneous impulse on the other at the contact point and the 

configuration of the system remained unchanged during contact. From Hertz theory, the 

contact area was assumed to be circular and very small that is compared to the size of the 

bodies. A static analysis of the contact area was applied by introducing the compliance in 

both normal and tangential directions. In this simplified non-linear coupled-conservative 

model, the tangential compliance has its influence on the post-collision results. It was 

also assumed that the elastic potential energy is conservative. By the application of the 

spring, which represents the deformation on elastic half-space, the influence of the 

tangential traction upon normal pressure was represented. Therefore, from this analysis 

of the contact mechanism, the simplified contact mass-spring vibrating model can 

achieve the prediction of the elastic collision. The energy dissipation considered in the 

simplified model is due only to the friction. In this investigation of the simplified non­

linear coupled-conservative model, the resultant equations were integrated with a 

numerical method. 

This simplified model constitutes an effort to analyze the impact motions for 

general configurations analytically. It was determined that for a given Poisson ratio, v, of 

colliding bodies, only four parameters, including the inertia coupling A and 0, friction 

coefficientµ and the ratio of incident velocity tana, can have an effect upon the 

prediction of the motion of mechanical collisions. Other material properties, including 
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Young's modulus and mass density, will thus not effect the collision motions. All slip 

and stick conditions of incident velocity at the initial state of impact for general 

configuration have been found in terms of inertia coupling parameters A, 0 and friction 

coefficient 

In this investigation, the DYNA3D program was used to predict the post-collision 

motion of elastic bodies and the results from DYNA3D are compared with those from 

simplified coupled-conservative model. The results of the oblique impact of the solid 

sphere from DYNA3D are close to the real system and satisfied. The more the elements 

and nodes the mesh has, the more accurate the program predicts. Since numerical 

method frequently limits the time increments and requires long running time in 

calculation, the computation with DYNA3D program is much more time and memory 

consuming. On the contrary, the simplified model provides a great advantage in 

simplicity and stability in many situations. In order to compare the results with those of 

the simplified coupled-conservative model, we need to recalculate the results of the 

DYNA3D from the post-processor, TAURUS, by running MathCad program. From 

TAURUS, since the results of the contact node are very unstable, the results of the rigid 

body output are used for comparison instead. 

The results from the DYNA3D program for rod impact is not as good as we 

expected. The processing of DYNA3D program for rod impact has lots of difficulties. In 

order to have finer mesh at the contact surface and conserve the time consuming of 

calculation, the memory of the computer simultaneously and the assumptions of the 

model, the mesh of the rod is difficult to construct. The investigation of the elastic 

deformation of the contact surface needs fine mesh for accuracy. But concerning the 
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time consuming of calculation, we need to separate the rod into several parts with 

different mesh density. Therefore, between the different parts of the mesh, there are 

discontinuities in the mesh, which cause errors in the calculation. 

The future work should be focused on the refinement of the discontinuity of the 

mesh for the DYNA3D finite element method. The ability of the capacity of calculation 

for the computer and the refinement of the software, such as the commercial version of 

the DYNA3D finite element code, will improve the accuracy of prediction for this 

investigation. 

In the future, the simplified coupled-conservative model can be extended to deal 

with three-dimensional systems. The introduction of material damping can also be 

incorporated to account for internal dissipation. 
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