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Significant improvements in manufacturing productivity has resulted from

implementing cellular manufacturing systems (CMSs) in small to medium sized batch-

oriented manufacturing systems. The work reported in this thesis illustrates the effect of

cell locations in dealing with the processes of machine duplication and part

subcontracting under budgetary restrictions. In addition, this research takes into

consideration the maximum number of machines assigned to a cell, which is limited by

the size of cells.

The problem is formulated as a polynomial programming model and is proven to

be NP-hard in the strong sense. Due to its computational complexity, a higher-level

heuristic, based on a concept known as tabu-search, is proposed to efficiently solve the

problem. Six different versions of the tabu search-based heuristic algorithm are tested on

three different problem structures and two different layout arrangements.

The results of the research experiment concluded that the single-row layout

arrangement, the tabu search-based heuristic using long term-memory based on minimal

frequency (LTM_MIN) and variable tabu-list sizes is preferred to other heuristics as the
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problem size increases. For the double-row layout arrangement, the tabu search based

heuristic using variable tabu-list sizes and no long term-memory was found to be the

efficient heuristic to search for the optimal/near-optimal solution.
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THE EFFECT OF CELL LOCATIONS IN THE PROCESSES
OF MACHINE DUPLICATION AND PART SUBCONTRACTING

IN MANUFACTURING CELL DESIGN

1. INTRODUCTION

Cellular Manufacturing (CM) is regarded as an application of Group Technology

which has played a significant role in improving the manufacturing productivity of small

to medium sized batch-oriented manufacturing systems over the past two decades.

Several benefits have been attributed to implementing CM systems including reduced

setup times, reduced queue times, reduced throughput times, reduced work-in-process

inventories, reduced finished good inventories, reduced labor cost, reduced material

handling, better space utilization, improved production control, and simplified process

planing (Jordan and Frazier 1993).

Considerable research has been reported in the published literature on the design

of CM systems. The motivation for this research came about as a result of the three-

phase methodology proposed by Logendran (1993). Very specifically, the research

reported here is related to the third phase. Thus, prior to introducing the research

problem, a brief description of each phase is provided below.

The first phase recognizes the fact that in modern manufacturing systems parts

can have alternative process plans and each operation required of parts can be performed

on alternative machines. Only a few studies have addressed the issue of alternative

process plans in manufacturing cell design (Kusiak 1987, Choobineh 1988, Rajamani et

al. 1990). Rajamani et al. developed a model which explicitly incorporated budgetary

and capacity limitations into the formulation. However, the disadvantage of this model is
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that the budgetary limitation is set for the operating cost of producing all parts. In a

deterministic manufacturing environment with stable demand patterns, it is only

reasonable for the parts manufacturing company to produce the number of units

demanded of each part by customers over the planning horizon. Thus, operating cost of

producing the parts should not be limited by budget, rather an item that should be

included in the objective function along with the amortized cost of purchasing the

machines. Therefore, the first phase presented a more realistic approach to the problem

of selecting a unique process plan for each part and the number of machines of each type

for setting up a CM system (Logendran 1992, Logendran et al. 1994).

Once a unique process plan for each part and the number of machines of each type

are determined in phase 1, the next phase focuses on identifying the assignment of parts

and machines to individual manufacturing cells. There has been a significant amount of

research devoted to this important problem which is referred to as the cell formation

problem in the published literature (McAulley 1972, Burbidge 1977, Rajagopalan and

Batra 1975, King 1980a, b, Waghodekar and Sahu 1984, Kumar et al. 1986, Kuisak 1987,

Tabucanon and Ojha 1987, Ballakur and Steudel 1987, Seifoddini and Wolfe 1987,

Choobineh 1988, Askin and Chia 1990, Vakharia and Wemmerlov 1990, Harhalakis et al.

1990, Rajamani et al. 1990, Chen and Inrani 1993, Kang and Wemmerlov 1993, Sankaran

and Kasilingam 1993, Atmani et al. 1995, Burke and Kamal 1995, Dugli and Huggahalli

1995, Seifoddini and Djassemi 1995). The investigation in phase two (Logendran and

Ramakrishna 1995) extended the previous research to include three important features: 1.

Splitting the lot into two if the total workload required of a part's operation on a machine

exceeded its daily unit capacity, 2. Possibility of performing two or more nonconsecutive

operations of a part on the same machine, and 3. When multiple units of a machine type

are considered, each unit can be assigned to a different cell if it results in reducing the

material handling cost.

In most practical problems, when parts and machines are assigned to

manufacturing cells, not all of the operations required of parts will be completely

processed by machines assigned to the same cell. Parts that require processing by

machines assigned to other cells are known as "bottleneck parts" and machines, in other
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cells, that process these parts are called "bottleneck machines". Published research on this

subject considered either duplicating bottleneck machines or subcontracting bottleneck

parts as a viable alternative to resolve these issues. Although implementing these

alternatives require additional investment, in the long run, savings can be realized due to

savings in material handling cost and/or machining (setup + run) time. Thus, phase 3

focused on the problem of creating disaggregated manufacturing cells, while

simultaneously dealing with machine duplication and part subcontracting under

budgetary restrictions (Ramakrishna 1994).

In the design of CM systems, there is clearly a need to incorporate practical

design constraints (Heragu 1994). The purpose of this research is to fulfill that need by

extending the phase 3 investigation to include two significant design issues: 1. The effect

of cell locations in simultaneously dealing with machine duplication and part

subcontracting, and 2. The maximum number of machines that can be assigned to each

cell.

The effect of cell locations can further be addressed by considering the layout

arrangements used for setting up manufacturing cells. Typically, two layout

arrangements, linear single-row and linear double-row, are used in CM systems

(Logendran 1991). Figure 1.1 shows a linear single-row layout arrangement. In this

case, the most efficient movement for material-handling carriers is the movement along a

straight line. If the distance between any two adjacent cells is assumed to be equal, then

the distance traveled between cells 1 and 4 is three times as much as the distance traveled

between cells 1 and 2. Figure 1.2 presents an alternative arrangement for the layout of

cells in manufacturing systems, namely the linear double-row cellular layout. Again, if

the distance between any two adjacent cells is assumed to be equal, then the distance

traveled between cells 1 and 4 is the same as that traveled between any two adjacent cells.

This is not the same as the distance traveled between cells 1 and 4 in a linear single-row

layout. In this research, rectilinear distances are assumed for the movement by part

orders between any two cells. It is, therefore, clear that not only the layout arrangement

used, but also the location of each cell has a significant effect on the reduction of material

handling costs which can be realized by machine duplication and part subcontracting.
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Another constraint is the maximum number of machines assigned to a cell, which

is limited by the size of a cell. There are a number of reasons why this is an important

issue. For example, an operator can attend to a limited number of machines, floor plan

dimensions may dictate the size of the cell, and to improve the utilization of operators, it

may be necessary to ensure that each operator is assigned a minimum workload. In

practice, the management can determine such upper and lower bounds for the number of

machines that can be assigned to a cell based on past experience (Askin and Chiu 1990,

Heragu 1994).

Figure 1.1 Single-row layout arrangement

Cl C2 C3

Figure 1.2 Double-row layout arrangement

Cl

C3

C2

C4

C4
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2. LITERATURE REVIEW

Group Technology (GT) has been known as the technique to classify the parts and

machines into part families and machine cells according to their commonalties. When

two or more machines are grouped together to construct machine cells used to

manufacture part families, the operations performed are referred to cellular manufacturing

(CM) (Offodile et al 1994). The concept of CM has been successfully applied to as many

manufacturing environments.

The main objective of designing a CM system is to create machine cells, identify

part families, and allocate part families to machine cells to acquire the minimum

intercellular movement of parts. The extension of a variety of approaches to the cell

formation problem can be categorized into three groups (Rajamani et al 1990; Heragu

1994).

- First identify machine cells and then assign parts to machine cells (Burbidge 1977, De

Beer et al. 1976, 1978, De Witte 1980, McAuley 1972, Rajagopalan and Batra 1975,

Faber and Carter 1986, Wemmerlov and Hyer 1986, Seifoddini and Wolfe 1987,

Srinivasan et al.1990, Srinivasan and Narendran 1991).

- First identify part families and then assign machines to part families (Carrie 1973, Han

and Ham 1986, Choobineh 1988, Kini et al. 1991, Offodile 1991).

- Identify machine cells and part families simultaneously (Burbidge 1971, 1973,

McCormick et al. 1972, King 1980a, b, Gongaware and Ham 1981, King and Nakornchai

1982, Chan and Milner 1982, Waghodekar and Sahu 1984, Chandrasekaran and

Rajagopalan 1986a, b, 1987, Kusiak and Chow 1988, Askin et al. 1991, Kusiak and

Chung 1991).

Even though there is extensive research dedicated to the cell formation problem,

realistically there are the "bottleneck" parts and machines which occur in relevant

occasion among the formed cell. The existence of these "bottleneck" parts and machines

initiate the material handling cost in terms of intercellular movement and, therefore,

minimizing or eliminating "bottleneck" machines or parts should be the meaningful issue.
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Seifoddini (1989) proposed the duplication procedure to reduce the number of

intercellular moves in order to make the machine cells more efficient. He presents a cost-

based duplication procedure which uses the duplication cost vs. an associatedreduction in

intercellular material handling cost to justify the decision about the duplication of

machines based on economics factors. Yet, there are two limitations in this study: (i) the

sequence of operations of parts, and (ii) budgetary limitations, an important managerial

issue of most parts manufacturing companies, were not considered. Logendran (1990)

presented a realistic two-phase methodology to describe the duplication process which

overcome these limitations.

Skinner (1974) refers to the concept of focused-factories, where subcontracting

has been recognized as concentrating on doing a few operations well within a plant and

acquiring the rest from the outside. Thus, subcontracting bottleneck parts is the other

alternative to reduce the material handling cost contributed by intercellular moves.

Vannelli and Kumar (1987) have developed two efficient algorithms to identify the

minimal number or minimal total cost of subcontractible parts while achieving

disaggregation. This method also has the flexibility in terms of number of cells and cell

size to let the designer generate a variety of cellular manufacturing systems' designs to

choose from.

In addition, previous research has focused on dealing with the issues of

duplicating bottleneck machines and subcontracting bottleneck parts during the formation

of manufacturing cells. Kumar and Vannelli (1985) proposed a method to identify the

minimum bottleneck parts and machines through either duplication of machines or

subcontracting of parts while the cells are formed. Their analysis used polynomially

bounded algorithms oriented toward finding minimal cut-nodes in either partition of the

bipartite part-machine graph.

The issues of duplicating bottleneck machines and subcontracting bottleneck parts

do not have to be dealt with, during cell formation. The paper presented by Kern and

Wei (1991) documented a method for identifying opportunities for reducing the number

of intercell transfers after an initial cell formation. First, their methodology recognized

how each "bottleneck" part/machine in the system contributed to the creation of intercell
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material transfers. Subsequently, the costs associated which each alternative was analyzed

to remove each bottleneck part/machine. Finally, a prioritized list of the cost for each

alternative is created to suggest the most cost-effective sequence of bottleneck

part/machine removal.

Also, Ramakrishna (1994) presented a model and a solution algorithm for

simultaneously dealing with duplicating bottleneck machines and subcontracting

bottleneck parts under budgetary restrictions. A higher-level heuristic algorithm, based

on a concept known as tabu search, was implemented to efficiently solve large-size

problems.

To the best of our knowledge, there has been no attempt in the past to evaluate the

impact of cell locations on the method used for reducing the intercell transfers caused by

the existence of bottleneck machines and parts. Moreover, the limit on the number of

machines assigned to each cell has been disregarded in research previously performed in

phase 3. The consideration of these issues to extend the phase 3 analysis is described in

the next section under Problem Statement.
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3. PROBLEM STATEMENT

Although duplicating bottleneck machines connected to each bottleneck part

requires additional capital, in the long run, savings in material handling costs can be

realized by not having to transport the parts between cells to complete their processing

requirements. However, there is no "true" savings in machining time on bottleneck

machines considered for duplication because the bottleneck parts still consume machining

time on the duplicated machines in the parts' original cell assignment. The limit on the

number of machines that can be assigned to each cell also has a significant impact on the

extent to which bottleneck machines may be duplicated.

The other alternative to eliminate or minimize the bottleneck parts in the system is

the strategy known as subcontracting the bottleneck parts to manufacturers outside the

company. Subcontracting cost consists of the purchase cost of buying the same part from

outside manufacturers which includes transportation, administrative and other costs

associated with subcontracting. Subcontracting bottleneck parts would result not only in

savings in material handling costs but also savings in machining time.

The finding from phase 3 suggests that one of three actions be taken for each

bottleneck part: 1. Leave the bottleneck part as in the initial solution, 2. Duplicate all of

the bottleneck machines connected to it, or 3. Subcontract the part. As pointed out

before, the effect of locations and the limit on the number of machines assigned to each

cell are important issues that can not be ignored when simultaneously dealing with

machine duplication and part subcontracting. The cell location, in particular, has an

interactive effect because the true savings in material handling cost realized due to

machine duplication is dependent upon where a cell is located in relation to another.

Consequently, the objectives of this research can be stated as follows.

(i) To develop a mathematical model which quantifies the effect of cell locations

maximizing the total net savings obtained due to machine duplication and part

subcontracting. The limit on budget and the limit on the number of machines assigned to

each cell are treated explicitly as constraints in the development of the model.
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(ii) To develop an efficient solution algorithm to solve the model specified in (i). The

algorithm should be capable of solving industry-size problems dealing with machine

duplication and part subcontracting.

In the next section, the assumptions and notations used in the development of the

mathematical model as well as the model are presented. The model is formulated as a

polynomial programming model. The computational complexity of the phase 3 problem

was investigated and proven NP-hard in the strong sense (Ramakrishna 1994). It means

that the computation time required to solve a problem would increase exponentially as the

number of variables introduced in the problem increases. Thus, a fairly large problem

can not be solved for its optimal solution within a reasonable computation time. The

research problem considered here, being an extension of the phase 3 problem, is also NP-

hard in the strong sense. Thus, a higher-level heuristic algorithm, based on a concept

known as tabu search, is introduced to search for the optimum or considered nearly

optimum for the problem with practical significance. Also, a simple example taken from

the previous research is solved to illustrate the functionality and efficacy of the proposed

tabu search-based heuristic solution algorithm.



4. MODEL DEVELOPMENT

4.1 BACKGROUND

10

The model developed in this research is an extension of the mathematical model

proposed by Ramakrishna (1994). Ramakrishna (1994) formulated the model for

simultaneously considering the effect of the role of duplicating and subcontracting

processes and their interaction in reducing/eliminating "bottleneck" elements. A general

and binary-integer programming model was formulated with the objective of maximizing

the net savings in costs as a result of machine duplication and part subcontracting.

Available machine capacities and budgetary limitation were the major constraints

included in his model. However, his research did not consider the possibility of locating

each cell in one of many potential locations on the shop floor. Also, the maximum

number of machines assigned to each cell was not considered a constraint in his model.

There is clearly a void which should be eliminated to enhance the applicability of the

model for designing manufacturing cells in practice. This research investigates

simultaneously the role of duplicating and subcontracting processes when alternative cell

locations are present for each cell, subject to budgetary restriction. Moreover, the model

considers the maximum number of machines assigned to each cell as a significant

constraint in the system.

The model assumptions are presented in the next section. This is followed by the

notations used in the development of the model and the description of the model

parameters and constraints. Finally, a mathematical model is presented and the

computational complexity of the research problem is stated.



4.2 ASSUMPTIONS

(1) The model assumes a planning horizon of one year.

(2) There are 260 work days per year as a result of having 5 work days per week, over a

period of 52 weeks.

(3) The (x,y) coordinates system is used for the location of cells.

4.3 NOTATIONS

1,2,...,m machines

1,2,...,n parts

1 = 1,2,...,c cells

m1 = numbers of bottleneck machines (ini m)

n1 = Number of bottleneck parts (n1 < n)

dqr = distance between cells q and r; dqq = 0

if machine type i is duplicated for part j in cell 1

otherwise

if part j in cell 1 is subcontracted

otherwise

if all machines connected to part j assigned to cell 1 is considered

for duplication

if part j assigned to cell 1 is either subcontracted or left as it was in

the original solution

ril = number of machines (units) of type i required to be duplicated in cell 1 due

to capacity requirements (a general integer variable, i.e., 0,1, 2,...)

volume of production for part j measured in units per day. On a yearly

basis, the number of units, Di = di * 260.

size of unit handling load for part j measured in units

x.1 1

0

Yji = 1

0

Zit = 1

0

11
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n. = number of unit loads of part j handled per day; n = [di/Li] +1. On a yearly

basis, the number of units loads, N.; = n.; * 260.

t1 cost($) incurred in moving a unit load of part j by a unit distance

= number of operations performed on part j

m(j,k) = machine (type) on which part j's kth operation is performed

c(j,k) = cell (number) in which part j's kth operation is performed

p(j,k) = sum of the setup and run times for part j's kth operation on machine

m(j,k). It is assumed that the required daily volume is produced in one

step. Thus, p(j,k) = setup time/di + run time for a unit of part j's kth

operation on machine m(j,k).

average cost representative of per unit machining (setup+run) time on

machine i

set of parts assigned to cell 1 and are connected to one or more machines in

other cells

set of parts connected to machine i

set of machines assigned to cell 1 and are connected to one or more parts in

other cells

set of machines connected to part j

incremental cost of subcontracting a unit of part j (i.e., cost of producing a

unit of part j outside - cost of producing a unit of part j in-house)

amortized cost of duplicating bottleneck machine (type) i

maximum dollar amount the parts manufacturing company is willing to

spend over a planning horizon of one year

C; = available capacity per each unit of machine type i on an annual basis

e,,,; 1 if cell 1 is located in grid (u,v), where u correspond to the row #

and v corresponds to the column #

0 otherwise

r; = number of rows considered in the grid/layout for locating cells

c; = number of columns considered in the grid/layout for locating cells

R; =

P1 =

PP; =

MM.; =

b.; =
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n1 = number of units of machines assigned to cell 1 after the initial part and

machine assignments to cells are made

N1 = maximum number of machines that can be assigned to a cell, including the

duplicated machines

4.4 MODEL DESCRIPTION

The problem is formulated as a polynomial linear programming model. The

formulation shown in the following mathematical model has an objective function which

focuses on maximizing the net savings in costs due to simultaneously considering

machine duplication and part subcontracting, when alternative cell locations for each cell

are available in the system. The factors considered in the development of the objective

function deserve an explanation. The sequence of operations of the bottleneck part is a

significant factor in evaluating the material handling costs incurred by intercellular

moves. In practice, there is no guarantee that the first operation of the bottleneck part

will be performed on a machine assigned to the same cell as that of the part. Taking these

factors into consideration, the saving in material handling cost due to duplicating

bottleneck machines connected to bottleneck part j assigned to cell 1 is evaluated as

n ti n
[Ni 11- {Clk(i.1)' kV! E e.1.4/ E e.20.-(i.1) {V2 1,11ifilf =U2 ÷IU2 Ull ifV/ =V2

1=1. EPI U2=1V1=I U2=1V2=I

(in in =u2 and in = V2}

n n It
+ E ck(j. k).c(j. + I) j. c(j , k +1) =1 + Xry(j.k 1)j)1 if c6,k + I)* 1) E E E Ee.2v2c(j.k 1)

k =1 u1=11,1-= 1 u2=1v2=1

tv2 if la = U2 +IU2 -111161.VI = V2 ÷I(V2 - 0+ (U2 - 211) if # U2and vi # V2

The amortized cost of duplicating bottleneck machines connected to bottleneck

part j assigned to cell 1 is evaluated as
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E { E Xi)/ ai }
1=1j EP! i MM

The net saving contributed by duplicating bottleneck machines connected to a

bottleneck part can be evaluated by subtracting the amortized cost from saving due to

duplication identified above. Now consider a situation where two bottleneck parts are

assigned to the same cell 1, and connected to a common bottleneck machine. In order to

evaluate the total net savings for each part, the amortized cost of the bottleneck machine

would have been subtracted from its savings. However, to evaluate the total savings for

both parts, the amortized cost should have been subtracted only once, provided the

available manned hours on the bottleneck machine is sufficient to meet the processing

time requirements of both parts. Therefore, the amortized cost of the bottleneck machine

must have been added as an adjustment to the total net savings for both parts to

compensate for the double counting performed in the evaluation of the total net savings

for each part separately. Thus the term, called adjustment is evaluated as:

E [ E (x0)- rill
1=li E Ms j Pin PPi

and
sx1

The saving in material handling cost due to subcontracting bottleneck part j

assigned to cell 1 is evaluated as

n n 11

[NI .1i Icto, E E eulvIl E E es/ 212c1 j.1) {1,2 VII w =w+lu2- wiffv1 = V2 + I(V2 V1)-1- (U2 w * w and sn*v2}
1=1 j PI U2 = I VI = I U2= I V2 = I

I n ti n
E k).c(j, 1) E Eeuldc(j.k) E Eeu2v2c(i.1 + I) 11/ 2 if U/ = U2 +IU2 Ull if VI = 1,2

k = I m=1171= I U2 = 1 V2 = 1

+1(112 V1)+ w * w and vi *1,2}}
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The saving due to subcontracting bottleneck part j (assigned to cell 1) contributed

by machining time saved on all of the machines where the part's operations are scheduled

to be performed is evaluated as

E E [Di Epu.k)Rmcik)ypI
1=1j k =1

The incremental cost associated with subcontracting bottleneck part j assigned to

cell 1 is evaluated as

E E Di biyji
1=lj EP,

Therefore the objective function, focusing on maximizing the total net saving in

costs for all bottleneck parts is presented in the next section. The constraints considered

in the model are described below, and are presented under the objective function in the

next section.

Constraints (1) and (2) ensure that each cell can only occupy one location.

Constraint (3) ensures that the total number of machines assigned to each cell does not

exceed the maximum limitation.

Constraint (4) ensures that the total amount spent on duplicating bottleneck machines and

subcontracting bottleneck parts be within the budgetary limitation (B) specified by the

parts manufacturing company.

Constraint (5) ensures a feasible capacity is maintained on those bottleneck machines

chosen for duplication, assuming that the bottleneck machines chosen are currently not

included in the bottleneck part's home cell.

Constraints (6), (7), (8) and (9) specifically impose the requirement that a bottleneck part

is left to remain a bottleneck as it was in the initial solution, subcontracted, or all of the

bottleneck machines connected to it are duplicated.



4.5 MATHEMATICAL MODEL

Maximize

n it n n
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4.6 COMPUTATIONAL COMPLEXITY OF THE RESEARCH PROBLEM

(7)
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The mathematical model developed above is a polynomial programming model.

The model presented in Ramakrishna(1994) can be considered a special case of the model

proposed above because his research did not take into consideration the effect of

alternative cell locations. The complexity of that problem was investigated and proven

NP-hard in the strong sense ( Logendran and Ramakrislma 1993). As the special case is
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already strongly NP-hard, it can be concluded that the research problem investigated here

is also NP-hard in the strong sense.

Even for the special case (Ramakrishna 1994) the possibility of employing an

implicit search algorithm such as the branch-and-bound technique is ruled out as such

algorithms would turn out to be too time consuming even for a problem with moderate

number of bottleneck machines and bottleneck parts. Therefore, a higher-level heuristic

algorithm based on a concept known as tabu search was introduced to solve large-scale

problems encountered in industry practice. Following this lead, a tabu search-based

heuristic algorithm has been proposed in the next chapter to efficiently solve large

problems.



5. HEURISTIC ALGORITHM

5.1 INTRODUCTION
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Tabu search-based algorithms have been successfully implemented to obtain

optimal or near optimal solutions to a wide variety of combinatorial problems including

employee scheduling (Glover and Mc Mil lan 1986), space planing and architectural

design (Glover et al. 1985), job shop scheduling (Eck 1989), machine scheduling (Laguna

et al. 1989), quadratic assignment problems (Skorin-Kapov 1989), traveling salesman

problems (Knox 1989, Malek et al. 1989, Heap et al. 1989), and a variety of other

problems. The core of Tabu search is its capability of overcoming the problem of being

trapped in a local optimum, if one was encountered, during the search. Tabu search uses

flexible memory structures (to permit search information to be exploited more thoroughly

than by the rigid memory structures), conditions for strategically constraining and freeing

the search process (incorporated in tabu restrictions and aspiration criteria), and memory

functions of varying time spans for intensifying and diversifying the search (by

reinforcing good history attributes and driving the search into new regions)(Glover 1990).

The motivation for developing a tabu-search based heuristic algorithm for solving

the problem addressed in this research are the computational complexity of the problem

considered which is shown NP-hard in the strong sense, and the property of tabu search

itself which has been proven to find the optimal or near optimal solution within a

reasonable time span.

5.2 MECHANISM

The problem investigated focuses on allocating each cell to a location while

simultaneously dealing with the processes of machine duplication and part

subcontracting. In this context, each cell can be located in one of several locations of a
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given layout (alternative cell locations) and for a solution representing specific cell

locations, each bottleneck part can be considered for one of three options (alternative part

options) -subcontracting, duplicating machines connected to it, or neither. The tabu

search based heuristic is applied to find the optimal/near-optimal solution in both levels

of the problem; the alternative cell locations considered as outside search, and the

alternative part options considered as inside search.

The final solution for the problem is composed of the solution corresponding to

optimal/near-optimal cell locations together with the solution corresponding to

optimal/near-optimal part options that contribute to the maximum total net saving for the

entire system. The tabu search-based heuristic is applied to the outside search to move

from a solution representing specific cell locations to another. For the inside search, it is

applied to move from one part option to another. Once the outside search is performed to

obtain the solution representing specific cell locations, the search process is switched to

the inside to search for the optimal/near optimal part options as well as the resulting total

net saving in costs for the outside solution. The search process is then switched back to

the outside search to find a new and better solution representing specific cell locations. In

general, the entire search performed by the outside search and the inside search is

recognized as the evaluation procedure for the outside search. In other words, the inside

search is a subset of the outside search which is the navigator of the entire search process.

The flow chart shown in Figure 5.1 illustrates the mechanisms incorporated in the tabu

search-based procedure. The pseudo code is provided in appendix E.1, as well.

5.3 STEPS ASSOCIATED WITH THE HEURISTIC ALGORITHM

Notation:

A feasible solution (FS) for the problem considered here consists of a sequence of

cell locations called FSc and a sequence of bottleneck part options for the given cell
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location FSc called FSp. Two different sets of seeds considered for such a feasible

solution are defined as follows.

- Sc(FSc) = [FS'c: FS'c is a sequence of cell locations obtained from FSc by perturbing

on each location, but one location at a time. The perturbation is performed by swapping

the cell occupying a location with the cell next to it, occupying a location in the nearest

neighborhood.]

- Sp(FSp) = [FS'p : FS'p is a sequence of alternative part options corresponding to a

given cell location FSc. FS'p is obtained from FSp by perturbing on options for each

bottleneck part, yet one bottleneck part at a time. The perturbation on a bottleneck part

option is to change the current bottleneck part option to an alternative part option for

every bottleneck part.

The steps associated with the tabu search-based heuristic algorithm can be

summarized as follows:

Figure 5.1 The mechanisms incorporated in the tabu search-based procedure.

((1) Start with initial Cell Locations)

(2) Perturb on Cell Locations

Evaluate Z, for (1)

(7) Evaluate ZI...Z, for (2)

(8) Perform the Tabu Search for Cell Locations
- Constant/Variable Tabu-list sizes
- Long-term memory (Yes/No)

END

3) Start with initial Part Options

(4) Perturb on Part Options

Evaluate Z, for (3)

(5) Evaluate Zi...Z for (4)

(6) Perform the Tabu Search for Part Options
- Constant/Variable Tabu-list sizes
- Long-term memory (Yes/No)

END (inside search
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Step 1: Generate the outside initial solution for alternative cell locations. [loci, loc,

loch] where loci denotes the location for cell i and N is the total number of cells in the

manufacturing system. In this problem the outside initial cell location is simply assumed

as [1,2,...,1\1].

Step 2: Using the outside initial feasible solution (FSco) generated in step 1 as a node,

perform the outside perturbations to completely evaluate its seeds Sc(FSco) by perturbing

on each location, one location at a time. In other word, when the cell occupying a

location is swapped with the cell next to it, occupying a location in the nearest

neighborhood, the other cells remain at their original cell locations. The result of the

perturbation is a sequence of locations which are considered the seeds of the initial cell

locations configuration, Sc(FSco).

Step 3: Evaluate the optimal/near-optimal total saving for outside initial feasible solution

(FSc0) obtained from step 1 by performing an inside search. The inside search is initiated

by finding the initial solution listed below. This procedure involves the 10 evaluations

listed below.

1). Evaluate the total savings contributed by duplicating the bottleneck machines

connected to bottleneck part j assigned to cell 1 as DUJI, where

ri ti ri
z p t, Icku.1) XnKj. kW E E evivii E 0,20,().0 fv2 w = U2 +IU2 tf = V2

DUJI= i= I j EP/ 112=1111=1 1/2=1V2=1

-11(V2 VI)-1- ( U 2 U1) lf 14, u2and vi = V2 }

k/ I r It ri it
[..d.(1. i) . I) (XmO.A)ill C(J,k +1). 1+ xmo.4 +lull ca,k + 1)# 1) : Ee.lorom I I e.2,2,0 k I)

k =1 u1 =1v1 =1 U2 = 11,2 = 1

f,2 VII If = U2 +1U2 - Ull ifvi = VI +I(V2 V 1)4- - U If 111 and vi VI

2). Evaluate the cost of duplicating the bottleneck machines connected to bottleneck part j

assigned to cell 1 as Ell, where
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3). Evaluate the savings contributed by subcontracting bottleneck part j assigned to cell 1

as SCii , where

t tiri
E [ NI ti Id m hi) E v co.r2,(;1) V2 1/11/ = il2 IU2 uil = V2

Scr= = e U2= VI = I U2 = 1,2 = I

VI)+ (u2 -14) tf 241# U2 and VI = V21

k -1 I1 ti I1 ti
5 &G. Al. c( j. k + I) 5 EQuIvIc(j.1) 5 5 eu2r2(j. k + I) 1112 VII ifut = u2+1U2 uij if vi = V2

+ k -= 1 in = 11,1=1 U2 = 1V2 =1

+1( 2
VI)-I- (U2 Ull if U 1 # U2 and vi # v2}}

+ E E [Di E pU, k) Rmo. )yi
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4). Evaluate the incremental cost associated with subcontracting part j assigned to cell 1 as

F- where

Fjl = E E D,
1=1 el)r

5). Evaluate the net savings due to duplicating the machines connected to bottleneck part

j as NDUJI and the net saving due to subcontracting the part itself as NSCii, where

NDUil = DUji Eli ; j E PI and 1 = 1, 2, , c

NSCil = SCSI -Fji ; j E P1 and 1= 1, 2, , c.

6). Evaluate maximum contribution due to each bottleneck part as MAXCON:

MAXCON = Max [NDUji, NSCji]

If MAXCON < 0, neither duplication of bottleneck machines nor subcontracting

of bottleneck part will be considered for part j at the present time. Thus. MAXCON will

be set equal to zero. Later, duplicating machines connected to part j may be found

attractive when some or all of these bottleneck machines have been duplicated due to
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their connections to other parts assigned to the same cell. Yet, a part currently found

unattractive for subcontracting would remain unattractive throughout the search.

At this point, the inside initial feasible solution (FSpo) is evaluated by assigning

the option that contributes the most MAXCON to each bottleneck part. Moreover, the

total savings for the initial solution denoted by TS is evaluated as:

TS= MAXCON ;j E Pi and 1 = 1, 2, ...., c

7). To evaluate the objective function value Z for the inside initial solution denoted by

Z11t, an adjustment term should be added to TS where:

adjustment = E I E (x0)-
1 =1iEMs j 131nPPi

and

s # 1

8). To deal with the budgetary restriction, first the total expenses (E) is evaluated as :

E =E E tE E[ E(cyl)-d , E yfi

1,-ljEPI 1= I 1 E MS E PumPP, 1=Ij EP1

and

s*1

If (E-B) is positive, the budgetary restriction would be violated. For every dollar

violated, the objective function is penalized by 10 monetary units. The 10 monetary units

used as penalty is not critically important. The point is that the value chosen for penalty

should be large enough to make the over budgetary solution highly unattractive compared

to other feasible solutions. The corresponding penalty is evaluated as:

Penalty 1 = 10 (E-B) if (E-B) > 0

= 0 otherwise

9). To ensure that the limitation on the number of machines assigned to each cell is met,

the number of machines currently assigned to each cell is compared with the maximum

allowable number. A penalty would be incurred if the total number of machines

currently assigned to a cell exceeded the maximum. In this research, a penalty of 50000

monetary units is used for every machine that exceeded the maximum limit in each cell.



Again, the monetary value assumed for the penalty should be sufficiently large to make

an infeasible solution unattractive in comparison to other feasible solutions.

Penalty 2 that is assigned to penalize the infeasible solution is evaluated as:

Penalty 2

=0

50000 ( n1- N1) if (n1- NO> 0

otherwise

10). Considering the adjustment term, the budgetary limitation, and the maximum

number of machines that can be assigned to each cell, the total net saving for the inside

initial solution (Ziint) is evaluated as:

Ziint = Ziint adjustment - Penalty 1 - Penalty 2
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Step 4: Use the inside initial solution (FSpo) obtained in step 3 as a node, to completely

evaluate its seeds Sp(FSpo) by perturbing on a bottleneck part's options for each

bottleneck part, but one part at a time. When an option of a bottleneck part is being

perturbed, the other bottleneck parts remain at their current options. This perturbation is

performed in the ascending order of bottleneck parts. That is, bottleneck part 1(bpi)

would be perturbed first, followed by bp2, bpi and so on. The results of this perturbation

is the set of different bottleneck parts' options which are considered the seeds of the

inside initial solution (FSpo).

Step 5: Evaluate the total saving (Z) for each seeds obtained in step 4. The evaluation

procedure is similar to the procedure described in step 3 except the sixth evaluation which

evaluates the maximum contribution due to each bottleneck part as MAXCONii. Instead,

the net saving contributed by each bottleneck part according to the bottleneck part's

option configuration (CON) is now evaluated.

CON = NDUJI when part j takes the duplicating option

= NSCii when part j takes the subcontracting option

= 0 when part j takes neither
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As a result, the total saving due to the parts' option configurations, TS, can be evaluated

as :

TS = CON ;j E Pi and 1= 1, 2, ...., c

Step 6: Perform tabu search for parts' option (inside) level to find the optimal/near-

optimal parts' option configuration by moving from the inside initial configuration (FSpo)

to the "best" candidate among its seeds. This move is called the in_move (or

in_iteration). The value of move is evaluated as the total saving after the move - total

saving before the move. Thus an improving move would have a positive value of move.

At each iteration, the parameters considered for the inside tabu search have to be updated

as follows:

(1) Inside tabu list (in_tabu list)

The in-tabu list is a parameter because it is used as a list to prevent the search

being performed by perturbing on a part's option that was most recently perturbed.

Whenever an in move is performed, the in_tabu list is updated by moving into this list

the bottleneck part that is being perturbed and its original option. The bottleneck parts

with their original options that appear in the in_tabu list indicate that these options have

been chosen for the corresponding bottleneck parts before at some previous iterations. At

the present iteration these particular bottleneck parts are not allowed to move to the

history options that are still in the in_tabu list unless an aspiration criterion which allows

the tabu status to be overridden is satisfied.

A list of a parts and their history options remain in the in_tabu list only a certain

number of iterations determined by the in_tabu list size. The in_tabu list is updated

circularly according to its size. It means that if the in_tabu list was stored up to its size,

the oldest entry must be removed before the next entry is stored. Two types of tabu list

sizes are considered in this research; the fixed tabu-list size and the variable tabu-list size.

Based on preliminary experimentation the tabu-list size is evaluated as follows:

- The fixed tabu list size for the inside search is determined by the following formula
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The fixed size of in tabu list = L(N*K)/51 , if (N*K)/5 is a real number with a

decimal value < 0.5

= r(N*K)/5 1 , if (N*K)/5 is a real number with a

decimal value 0.5

- The variable tabu-list sizes for the inside search are determined by the following

formulae.

The initial size of in_tabu list = L(N*K)/5J , if (N*K)/5 is a real number

with a decimal value < 0.5

= F(N*K)/51 , if (N*K)/5 is a real number

with a decimal value 0.5

The decreased size of in tabu list = L(N*K)/6.5J , if (N*K)/6.5 is a real

number with a decimal value < 0.5

= F(N*K)/6.51 , if (N*K)/6.5 is a real

number with a decimal value ?_ 0.5

The increased size of in tabu list = L(N*K)/4J , if (N*K)/4 is a real number

with a decimal value < 0.5

= r(N*K)/41 , if (N*K)/4 is a real number

with a decimal value 0.5

where N = total number of bottleneck parts in the system.

K = the maximum number of all possible options for each part.

According to the formulae above, the in_tabu list sizes are dependent on the

number of bottleneck parts (N) and the number of alternative options for each bottleneck

part (K). Because there are only three options, K=3 for every bottleneck part. Thus, the

in_tabu list sizes are truly dependent on the number of bottleneck parts.

The aspiration level/criterion for the inside search, called in AL, is initially set

equal to the total saving contributed by the inside initial solution. This list is updated as

and when the total saving evaluated for the current parts' option configuration is found to

be better than the total saving for the best parts' option configuration found so far.
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(2) Inside candidate list (ICL) and inside index list (IIL)

The inside candidate list contains the potential configuration selected to perform

future perturbations, while the inside index list consists of the local optima evaluated as

the inside search progresses.

First, the inside initial solution FSpo is admitted into both ICL and IIL, and used

as a initial node for perturbation. When all ofthe seeds have been evaluated for the initial

node, the configuration that contributes to the highest objective functionvalue (Z) is

selected and admitted into the ICL and used as the new node for the next perturbation.

The new configuration in ICL would receive a star if its objective function value (Z1) is

greater than its initial objective function value (Z0). The star indicates that it has potential

for becoming the next local optimum.

The new configuration FSp1 is then perturbed in a similar fashion. The next

configuration to be admitted into the ICL is selected as that having the highest objective

function value (Z2) from among the seeds perturbed from FSp1. If Z2 Z1, then the

configuration corresponding to Z1 would receive double stars, and would be admitted

into the IIL as the first local optimum obtained for the inside search. Otherwise, Z2

would receive a star. A configuration receiving a star has the potential for becomingthe

next local optimum. When a configuration receives double stars it is the next local

optimum and, therefore, admitted into the IIL. The final solution for the inside search,

indicating which option should be used for each bottleneck part, is selected as the

configuration which gives the best total saving (Z) from among the local optimums

identified (entries in the IIL).

(3) Number of iterations without improvement for the inside search (IN_INT)

The number of iterations for the inside search (in_iteration) is increased by one

every time an in_move is performed. The numberof iterations without improvement

( IN_INT) is increased by if no improvement is found after an in_move is performed and

reinitialized to zero whenever there is an improvement over the previous in_move.

The number of iterations without improvement is used as a stopping criterion to

terminate the inside search. IN_INT is dependent on the size of the problem considered
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(i.e., the larger the problem, the larger is the ININT required to terminate the search).

The number of iterations without improvement for the parts' option level is proportional

to the number of bottleneck parts and the number of alternative options for each

bottleneck part.

- For the fixed tabu list size, the inside stopping criterion is determined by the number of

iterations without improvement for the inside search (ININT):

IN INT = L(N*K)/reduction factor] , if (N*K)/reduction factor is a real

number with a decimal value < 0.5

=r(N*K) /reduction factorl , if (N*K)/reduction factor is a real

number with a decimal value 0.5

where N = total number of bottleneck parts

K = maximum number of options for each bottleneck part (always equals to 3)

reduction factor is assumed equal to 7 for the inside search, judged by the

preliminary experimentation performed in this research.

- For the variable tabu list size, the inside stopping criteria are determined by;

(i) If there is no improvement within the last [int (IN_INT/3)] iterations with the

initial in_tabu list size, then decrease the in_tabu list size to the decreased size evaluated

in step 6.

(ii) If there is no improvement within the last [int (IN_INT/3)] iterations with the

decreased size of in_tabu list, then increase the in tabu list size to the increased size

evaluated in step 6.

(iii) If there is no improvement within the last [int (IN_INT/3)] iterations with the

increased size of in_tabu list, then stop the inside search and start diversifying.

Step 6x: To diversify the inside search performed in step 6, the mechanism called long-

term memory has been implemented in the inside search.

The inside long-term memory (IN_LTM) is the frequency matrix that keeps track

of the tenure of the bottleneck parts and its options. In other words, the IN_LTM will

keep track of the number of times that each option has been used by each bottleneck part
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according to the history of solutions obtained for the inside search. The IN_LTM is

updated regularly as the inside search progresses. Every time an in_move is performed,

the entry in the frequency matrix (IN_LTM), which corresponds to the new part's option

configuration is increased by one. By keeping track of the frequency of bottleneck part's

options being used, the IN_LTM provides the information about which options are the

most or least frequently used by each bottleneck part.

Using the information obtained from the frequency matrix, IN_LTM, the long-

term memory based restart is generated. The restarts generate new initial configurations

which are intended to diversify the search into new regions that were not previously

investigated.

The new initial configuration is determined by the bottleneck parts' option

configuration that was the best configuration found in the last restart. Two types of inside

long-term memory are considered in this research: the inside long-term memory based on

minimal frequencies (IN_LTM_MIN) and the inside long-term memory based on

maximal frequencies (IN_LTM_MAX).

- The inside long-term memory based on maximal frequencies generates the restart by

fixing the option for the bottleneck parts according to the maximal entry from the

frequency matrix throughout the subsequent search.

The inside long-term memory based on minimal frequencies generates the restart by

fixing the option for the bottleneck parts according to the minimal entry from the

frequency matrix throughout the subsequent search.

Once the restart configuration is obtained, reinitialize the in tabu list and repeat

the inside search (by performing step 4, 5, and 6) using this restart configuration as a new

starting point until the required number of restarts for the inside search has been attained.

The number of restarts required for the inside search is assumed equal to 2 in this

research.

The minimal frequencies-based search will create new initial configurations in the

new search regions that have not been investigated so far (diversifying the search). On

the other hand, the maximal frequencies-based search will further explore in the regions
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considered "good" during the previous restart (intensifying the search). As the required

number of restarts for the inside search has been reached, the inside search is terminated.

Step 7: When the inside search is terminated, the optimal/near-optimal bottleneck parts'

option configuration would be determined as the one that contributes to the highest total

saving found throughout the inside search. The direction of the search would be switched

to the outside level.

Perform steps 3 through 6 (inside search) for each cell locations configuration

outside, searching the seeds (Sc(FSco)) to evaluate the optimal/near-optimal bottleneck

parts' option and the corresponding total saving. Every time an inside search is

performed to obtain the new cell locations configuration in the seeds (Sc(FSco), the

parameters for the inside search that have to be reinitialized are in_tabu list, ININT,

ICL, IIL, in AL, and IN_LTM.

Step 8: Perform the tabu search, in the same fashion as the inside search, for the cell

locations level (outside search). This process starts by moving from the initial cell

locations configuration to the "best" candidate among its seeds. The out_move is

identified by the move that transforms a cell locations configuration into another cell

locations configuration considered among the seeds. By using the optimal/near-optimal

total saving evaluated from the inside search for each cell locations configuration in the

seeds, the out_move is performed in the same manner as the in move. The value of the

move and the aspiration criterion would also investigated in a similar fashion to those for

the inside search. The following parameters for the outside tabu search are updated as the

search progresses.

(1) Outside-tabu list (out_tabu list)

Every time an out_move is performed, the cell that is moved to the next adjacent

location would be admitted into the out-tabu list along with its original location. The

out_tabu list is updated circularly as the in_tabu list is updated in the inside search. Two

types of out_tabu list are considered.
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- The fixed tabu-list size for outside search is determined by the following formula.

The fixed size of out tabu list = L(C-1)12] , if (C-1)/2 is a real number

with a decimal value < 0.5

= [(C-1)/21 , if (C-1)/2 is a real number

with a decimal value ?_ 0.5

- The variable tabu-list sizes for outside search is determined by the following formulae.

The initial size of out_tabu list = L(C-1)/2_1 , if (C-1)/2 is a real number

with a decimal value < 0.5

= F(C-1)/21 , if (C-1)/2 is a real number

with a decimal value ?_ 0.5

The decreased size of out_tabu list = L(C-1)/3] , if (C-1)/3 is a real number

with a decimal value < 0.5

= [(C -1)/31 , if (C-1)/3 is a real number

with a decimal value 0.5

The increased size of out_tabu list = L(C-1)/1.5] , if (C-1)/1.5 is a real number

with a decimal value < 0.5

= F(C-1)/1.51 , if (C-1)/1.5 is a real number

with a decimal value 0.5

where C is the total number of cells.

For the perturbation of cell locations, the maximum number of seeds that can be

generated is equal to (C-1) which means the out move is limited to (C-1) alternatives.

Realistically, therefore, the sizes of out_tabu list are proportional to (C-1) which is the

number of seeds for each out_move.

Similar to the inside search, the aspiration criterion/level, namely out_AL, is

created and initially set equal to the total saving for the initial cell locations configuration.

The out_tabu status can be overwritten only when the corresponding cell locations

configuration contributes to a total saving greater than the aspiration level at the current

iteration.
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(2) Outside candidate list (OCL) and outside index list (OIL)

An outside candidate list (OCL) and an outside index list (OIL) are created for the

outside search in the same fashion as the inside search. OCL contains the potential cell

locations configurations selected to perform future perturbation, while OIL consists of the

local optima evaluated as the outside search progresses. The approaches used for

admitting the cell locations configuration into the OCL and OIL are comparable to those

for the ICL and IIL. Thus, the OCL and OIL are analogous to the ICL and IIL,

respectively. The final configuration/solution, indicating which locations should be taken

by each cell, is selected as the entry into the OIL which contributes the most total saving.

(3) The Number of iterations without improvement for outside search (OUTINT)

The number of iterations without improvement for the outside search is created

and updated similar to that for the inside search. The number of iterations without

improvement for the outside search, namely OUTINT, is increased by one if no

improvement is found after moving from one cell locations configuration to another.

Similar to step 7 for the inside search, the number of iterations without improvement,

OUT INT, would be used as a stopping criterion to terminate the outside search. The

OUT INT, used as the stopping criterion for the outside search, should be increased as

the size of the problem considered became larger. The number of iterations without

improvement for the outside search is evaluated as follows:

- For the fixed out tabu list size, the number of iterations without improvement for the

outside search (OUTINT) is determined by:

OUT_INT = L(C * N) / (reduction factor *

where C = total number of cells

N = total number of bottleneck parts

M = total number of bottleneck machines, and

the reduction factor is assumed equal to 0.67 for the outside search, based on the

preliminary experiment in this research.
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- For the variable out_tabu list sizes; the outside search stopping criterion is determined

by :

(i) If there is no improvement within the last [int (OUT_INT/3)] iterations with

the initial out tabu list size, then decrease the out_tabu list size to the decreased size

given by L(C-1)13_1 , if (C-1)/3 is a real number with a decimal value < 0.5

or F(C-1)131 , if (C-1)/3 is a real number with a decimal value 0.5

(ii) If there is no improvement within the last [int (OUT_INT/3)] iterations with

the decreased out_tabu list size, then increase the out_tabu list size to the increased size

given by L(C-1)/1.5] , if (C-1)/1.5 is a real number with a decimal value < 0.5

or F(C-1)/1.51 , if (C-1)/1.5 is a real number with a decimal value 0.5

(iii) If there is no improvement within the last [int (OUT_INT/3)] iterations with

the increased out tabu list size, then stop performing the outside search.

Step 8x: To diversify the outside search the same mechanism, namely the long-term

memory used with the inside search, is used. Outside long-term memory (OUT_LTM),

comparable to IN_LTM, is the frequency matrix that keeps track of the tenure of cell

locations. Similar to the IN LTM, the OUT LTM matrix is updated continuously as the

outside search progresses. Whenever an out_move is performed to move a current cell

locations configuration to a new cell locations configuration, the entries of the

OUT_LTM that correspond to the new cell locations configuration are increased by one.

By keeping track of this frequency matrix, the OUT_LTM provides the information about

which specific location is most or least frequently occupied by each cell. The frequency

entries in the OUT LTM will also be used to construct the restarts for the outside search,

in the same manner the entries in the IN_LTM are used in the inside search. Two types

of outside long-term memory are considered in this research.

- OUT LTM MAX generates the restarts by fixing the position of the cell according to

the maximal entry from the frequency matrix throughout the subsequent search.

- OUT LTM MIN generates the restarts by fixing the position of the cell according to

the minimal entry from the frequency matrix throughout the subsequent search.
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Once the restart configuration is obtained, the out tabu list has to be reinitialized

and the outside search repeated using this restart configuration as a new starting point

recursively, until the required number of restarts for the outside search has been reached.

In this research, the number of restarts for the outside search is assumed equal to 2.

The entire search would be terminated when the required number of restarts for

the outside search (2) has been reached. The optimal/near-optimal cell locations

configuration would be the one with the highest total saving evaluated throughout the

search process. Moreover, the optimal/near-optimal cell locations configuration along

with its optimal/near-optimal bottleneck parts' options configuration will be combined to

obtain the final (optimal/near-optimal) solution for the original research problem.
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5.4 APPLICATION OF THE HEURISTIC TO EXAMPLE PROBLEM

A simple example is considered to illustrate the functionality of the steps

associated with the heuristic algorithm. The example illustrated here was derived from an

example previously considered by Ramakrishna (1994) in the context of assessing the

role of duplicating and subcontracting processes in the design of cellular manufacturing

systems.

The original machine-part load matrix for this problem is presented in table B.1

(Appendix B). Table 5.1 presents the solution obtained for part-machine assignments

with 3 cells, using the methodology proposed by Logendran (1991). For these

assignment of parts and machines, there are a total of 5 bottleneck parts and 4 bottleneck

machines as shown in Table 5.2. Also, the following assumptions have been made:

(i) Distance between any two cells = 1 unit

(ii) Cost for moving a unit load of a part by unit distance = $1.00

(iii) Size of unit load = 50

(iv) Amortized cost of bottleneck machines:

M1 = $700; M2 = $900; M3 = $1200; M4 = $1500

(v) Daily volume of production of bottleneck parts:

P1 = 365; P2 = 456; P3 = 321; P4 = 409; P5 = 487

(vi) Incremental cost of subcontracting the bottleneck parts:

b1 = 0.675; b2 = 0.35; b3 = 0.9; b4 = 0.65; b5 = 0.57;

(vii) Average cost per unit of machine time:

R1 = $25; R2 = $27; R3 = $32; R4 = $39; R5 = $27;

R6 = $46; R7 = $41

(viii) Budgetary limit:

B = $500,000

(ix) Maximum number of machines that can be assigned to a cell

N1 =10 ; I = 1, 2, 3
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Table 5.1 Machines and part assignments for the three cells

Cell

Number

Machine

Assignments

Part

Assignments

1 M7 M2 M6 P1, P4, P5, P6, P7, P9, P10

2 M4 M3 P3, P11, P12, P13

3 M1 M5 P2, P8, P14

Table 5.2 Bottleneck parts and bottleneck machines with respect to original part and
machine numbers

Bottleneck Part # Original Part #

1 5

2 7

3 8

4 9

5 10

Bottleneck Machine # Original Machine #

1 1

2 3

3 4

4 6

Step 1: Generate the outside initial solution for alternative cell locations simply as:

FSc0 = [1,2,3]. It means that cell 1 is initially assigned to location 1, cell 2 is initially

assigned to location 2, and cell 3 is initially assigned to location 3.
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Step 2: Using FSco = [1,2,3] as a node, evaluate its seeds by perturbing on a location , yet

one location at a time. As a result, the seeds of FSco are evaluated as:

Sc(FSco) = [2,1,3] and [1,3,2]

These are the only 2 seeds that can be evaluated according to the perturbation stated in

Step 2 of the heuristic algorithm for this 3-cell example problem.

Step 3: Given the outside initial solution FSco = [1,2,3] as the cell locations

configuration, evaluate the optimal/near-optimal total saving by performing the inside

search. The inside search is initiated by evaluating the initial solution for bottleneck

parts' options level. The following evaluations describe the procedure to obtain FSpo :

1). The savings contributed by duplicating bottleneck machines connected to each

bottleneck part are evaluated as:

DU5,1 = 8320

DU7,1 = 2600

DU8,3 = 3640

DU9,1= 9360

DUio,i = 5200

2). The cost of duplicating the bottleneck machines connected each bottleneck part is

evaluated as:

E5,1 = 700

E7,1 = 1200

E8,3 = 1500

E9,1 = 1900

Elo,i' 900

3). The savings contributed by subcontracting each bottleneck part is evaluated as:

SC5,1= 68850.6

SC7,1 = 25766
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SC8,3 = 77768.6

SC9,1 = 77178.4

SC10.1= 75888.8

4). The incremental cost associated with subcontracting each bottleneck part is evaluated

as:

F5.1 = 64057.5

F7,1 = 41496

F8,3 = 75114

F9,1 = 69121

F10,1 = 72173.4

5). The net savings due to duplicating the machine connected to each bottleneck part is

evaluated as:

NDU5,1 = 8320 - 700 = 7620

NDU7,1 = 2600 - 1200 = 1400

NDU8,3 = 3640 - 1500 = 2140

NDU9,1 = 9360 1900 = 7460

NDU101 = 5200 - 900 = 4300

The net saving due to subcontracting each bottleneck part is evaluated as:

NSC5,1 = 68850.6 64057.5 = 4793.1

NSC7,1 = 25766 - 41496 = -15730

NSC8,3 = 77768.6 - 75114 = 2654.6

NSC9,1 = 77178.4 - 69121 = 8057.4

NSC10,1= 75888.8 - 72173.4 = 3715.4

6). The maximum contribution due to each bottleneck part is evaluated as:

MAXCON5,1 = max [7620, 4793.1] = 7620

MAXCON7,1 = max [1400, -15730] = 1400

MAXCON8,3 = max [2140, 2654.6] = 2654.6
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MAXCON9,1 = max [7460, 8057.4] = 8057.4

MAXCON10,1 = max [4300, 3715.4] = 4300

From MAXCONil above, the inside initial solution FSpo is evaluated as:

FSpo = [1,1,2,2,1]

Note: - 1 indicates option of machine duplication

- 2 indicates option of part subcontracting

- 0 indicates option of neither machine duplication nor part subcontracting

And the total savings for this initial solution is evaluated as:

TS = 7620 + 1400 + 2654.6 + 8057.4 + 4300 = 24032

7). Although the bottleneck parts 1, 2, and 5 in the parts' option configuration FSpo =

[1,1,2,2,1] are assigned to the same cell 1, they are not connected to a common bottleneck

machine. Thus, the adjustment term is evaluated as:

adj = 0

8). In the budgetary restriction, the total expense (E) for this initial bottleneck parts'

option [1,1,2,2,1] is evaluated as:

The expense for bottleneck part 1 (due to duplication) = E5,1 = 700

The expense for bottleneck part 2 (due to duplication) = E71 = 1200

The expense for bottleneck part 3 (due to subcontracting) = F8,3 = 75114

The expense for bottleneck part 4 (due to subcontracting) = F9,1 = 69121

The expense for bottleneck part 5 (due to duplication) = E101 = 900

The total expense (E) = 700 + 1200 + 75114 + 69121 + 900

= 147035

The budgetary limit B = $500,000. As the expense (E) does not exceed the budget, the

penalty for exceeding the budgetary limit is evaluated as:

Penalty = 0
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9). To accommodate the constraint for the maximum number of machines that can be

assigned to each cell (NI), the total number of machines currently assigned to each cell

(n1) for the initial bottleneck parts' option [1,1,2,2,1] is evaluated as:

cell 1 n1 = 5 machines N1 = 10 machines

cell 2 n2 = 2 machines N2 = 10 machines

cell 3 n3 = 4 machines N3 = 10 machines

With N1= 10 machines, the total number of machines in each cell currently does not

exceed this limit. As a result, the penalty for exceeding the maximum number of

machines that can be assigned to each cell is evaluated as:

Penalty 2 = 0

10). Taking into consideration of the adjustment, the budgetary restriction, and the limit

on the number of machines that can be assigned to each cell, the objective function value

(Z1int) for the inside initial solution is evaluated as

Zlint = 24032 + 0 - 0 - 0 = 24032

Step 4: Using the inside initial solution FSpo obtained in step 3 = [1,1,2,2,1] as a node,

evaluate its seeds by perturbing on options for each bottleneck part, yet one part at a time.

The seeds of FSpo are given by

Sp(FSpo) = [0,1,2,2,1], [2,1,2,2,1], [1,0,2,2,1], [1,2,2,2,1], [1,1,0,2,1], [1,1,1,2,1],

[1,1,2,0,1], [1,1,2,1,1], [1,1,2,2,0], and [1,1,2,2,2].

Step 5: Evaluate the total savings (Z) for each seed obtained in step 4 by using the

procedure outlined in step 3. For example, consider the seed Sp(FSp1) = [0,1,2,2,1]. The

net saving contributed by each bottleneck part is

CON5,1 = 0 because part 5 shows preference for neither duplicating option or

subcontracting option.

CON7,1= NDU7,1 = 1400 because part 7 takes the duplicating option.

- CON8,3 = NSC8,3 = 2654.6 because part 8 takes the subcontracting option.

- CON9,1= NSC9,1= 8057.4 because part 9 takes the subcontracting option.
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- CON10,1= NDU10,1 = 4300 because part 10 takes the duplication option.

TS = 0 + 1400 + 2654.6 + 8057.4 + 4300 = 16412

adjustment = 0

E = 157047

penalty 1 = 0

The total number of machines currently assigned to cell 1 = 7 machines.

The total number of machines currently assigned to cell 2 = 2 machines.

The total number of machines currently assigned to cell 3 = 4 machines.

penalty 2 = 0

Total saving (Z1) = 16412

Using the same approach, the total saving for each of the seeds obtained in step 5 is

evaluated as

Sp(FSp1) = [0,1,2,2,1], the total saving Z1 is equal to 16412

Sp(FSp2) = [2,1,2,2,1], the total saving Z2 is equal to 21205.1

Sp(FSp3) = [1,0,2,2,1], the total saving Z3 is equal to 22632

Sp(FSp4) = [1,2,2,2,1], the total saving Z4 is equal to 6902.1

Sp(FSp5) = [1,1,0,2,1], the total saving Z5 is equal to 21377.4

Sp(FSp6) = [1,1,1,2,1], the total saving Z6 is equal to 23517.4

Sp(FSp7) = [1,1,2,0,1], the total saving Z7 is equal to 15974.6

Sp(FSp8) [1,1,2,1,1], the total saving Z8 is equal to 25334.6

Sp(FSp9) = [1,1,2,2,0], the total saving Z9 is equal to 19732

Sp(FSp 10) = [1,1,2,2,2], the total saving Z10 is equal to 23447.4

Step 6: Perform the inside search by considering the in_move. The in_move transforms a

sequence of bottleneck parts' option considered for the initial solution into another

sequence of bottleneck parts' option for one of its seeds. The value of in_move is

evaluated by the total saving after the move - total saving before the move.

For example, the total saving for the initial feasible bottleneck parts' options

configuration (Z0) is $24032. The first in_move would select [1,1,2,1,1] as the next

configuration because it has the highest total savings from the configurations considered
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as seeds. Should there be two or more seeds which have the same value of move, the

best-first strategy is used to break ties.

After performing the in_move, the following parameters have to be updated

before the search is continued.

(1) Inside-tabu list (in_tabu list)

In the example, the first in_move is performed to move the initial feasible

bottleneck parts' option configuration [1,1,2,2,1] to the next bottleneck parts' option

configuration which is [1,1,2,1,1]. Noticeably, the fourth bottleneck part is the one that

has been perturbed. Thus the bottleneck part (bottleneck part 4) along with its original

option (2) are moved into the in_tabu list as the first element..

in_tabu list = [ p4(2)]

The interpretation of this entry in the in_tabu list is that option 2 has been chosen

for bottleneck part 4 in the most recent iteration and it has been changed to another option

(1 in this case).

The inside aspiration level (in_AL) is also updated when the total savings

evaluated for the current feasible solution is higher than the best total savings found so

far. For the first in_move, the total savings evaluated for the new configuration (25334.6)

is higher than the total savings for the initial feasible solution (24032). Therefore, the

in AL is set equal to the total savings for the new configuration.

- in_AL = 25334.6

In addition, the in_tabu list size for this example is determined as follows:

- The fixed size of in_tabu list = L(5*3)/5i = 3

- The variable sizes of in tabu list

The initial size of in_tabu list = L(5*3)/5] = 3

The decreased size of in_tabu list = L(5*3)/6.5i = 2

The increased size of in_tabu list = F(5*3)/41= 4
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(2) Inside candidate list (ICL) and inside index list (IIL)

As stated before, the initial bottleneck parts' option configuration is admitted into

the ICL. The new configuration obtained for this example is also admitted into both ICL

and IIL as it will be selected to perform future perturbations. Moreover, the new

configuration has a better total savings (25334.6) than the total savings of the initial

configuration (24032). Thus, it is given a star, to indicate that it has the potential of

becoming the next local optimal.

- ICL = { [1,1,2,2,1], [1,1,2,1,1]* }

- IIL = { [1,1,2,2,1], [1,1,2,1,1]

(3) Number of iterations without improvement for the inside search (ININT).

Every time an in_move is performed, the number of iterations for the inside

search (in _iteration) is increased by one. If there is no improvement in total savings

according to the recent in_move, the number of iteration without improvement for the

inside search (IN INT) is also increased by one. On the other hand, if for any

in_iteration there is an improvement in total savings, the number of iteration without

improvement for the inside search (ININT) will be reset to zero.

For this example, evidently there is an improvement according to the first

in_move. Therefore, the number of iteration without improvement for the inside search

(IN INT) is reset to zero.

- in_iteration = 1

-IN INT = 0

The number of iterations without improvement (IN_INT) is used as the stopping

criterion to terminate the inside search which is determined as follows.

- For the fixed in_tabu list size, the inside stopping criterion is determined by the number

of iterations without improvement for the inside search (ININT)

IN INT = [(5*3)17] = 2

- For the variable in_tabu list size, the inside stopping criteria are determined by:
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(i) If there is no improvement within the last [int(IN_INT/3)] interactions with the

initial in_tabu list size (3), then decrease the in_tabu list size to the decreased size of

in_tabu list (2).

(ii) If there is no improvement within the last [int(IN_INT/3)] iterations with the

decreased size of in_tabu list (2), then increase the in tabu size to the increased size of

in_tabu list size (4).

(iii) If there is no improvement within the last [int(IN_INT/3)] iterations with the

increased size of in_tabu list (4), then stop the inside search.

The results for the inside search with fixed tabu-list size for FSco = [1,2,3] using

FSpo = [1,1,2,2,1] as an initial bottleneck parts' option configuration are shown in table

5.3

Table 5.3 Results obtained for the inside search of FSco = [1,2,3], starting with FSpo =
[1,1,2,2,1] as an initial bottleneck parts' option configuration.

# in iteration Entries into ICL Total Savings (Z) Entries into IIL

0 [1,1,2,2,1]" 24034 [1,1,2,2,1]

1 [1,1,2,1,1]. 25334.6 [1,1,2,1,1]

2 [1,1,1,1,1] 24820

3 [1,1,1,1,2] 24235.4

The inside search, starting with [1,1,2,2,1], is terminated after 3 iterations have

been performed because the number of iterations without improvement for the fixed tabu-

list size of 2 (IN INT = 2) has been reached. The best configuration for the inside search

is [1,1,2,1,1] which is also the first entry into the IIL with a highest total savings of

$25334.6.
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Step 6x: To diversify the inside search performed in step 6, the inside long-term memory

is implemented. The inside long-term memory (IN_LTM) is the frequency matrix that

keeps track of the tenure of an option for each bottleneck part throughout the inside

search. Every time a new bottleneck parts' option configuration is constructed, the

entries in IN_LTM matrix corresponding to the bottleneck parts and their respective

options in the configuration are increased by one.

Originally, the entries in IN_LTM are all initialized to zero. After the first

in_move, from initial bottleneck parts' option configuration [1,1,2,2,1] to the next

configuration [1,1,2,1,1], is performed, the IN_LTM would be updated as shown in table

5.4.

Table 5.4 Updated IN_LTM frequency matrix after moving to the new configuration
[1,1,2,1,1]

Option 0

(Neither)

Option 1

(Duplicating)

Option 2

(Subcontracting)

Bottleneck Part 1 0 1 0

Bottleneck Part 2 0 1 0

Bottleneck Part 3 0 0 1

Bottleneck Part 4 0 1 0

Bottleneck Part 5 0 1 0

As the inside search progresses the IN_LTM frequency matrix is updated

regularly. The corresponding IN_LTM frequency matrix for the inside search after the

number of iterations without improvement (ININT) has been reached in step 6 is

presented in Table 5.5
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Table 5.5 The IN_LTM frequency matrix for the inside search of initial cell location
configuration, SFc0 = [1,2,3], starting with SFpo = [1,1,2,2,1] as an initial bottleneck
parts' option configuration.

Option 0

(Neither)

Option 1

(Duplicating)

Option 2

(Subcontracting)

Bottleneck Part 1 0 4 0

Bottleneck Part 2 0 4 0

Bottleneck Part 3 0 2 2

Bottleneck Part 4 0 3 1

Bottleneck Part 5 0 3 1

In order to use the long-term memory based on the maximal frequency for the

inside search (IN LTM MAX), the next restart is activated by considering the maximal

entry in the IN_LTM frequency matrix and fixing the bottleneck part and its respective

option corresponding to this maximal entry.

For example, the maximal entry in the IN_LTM frequency matrix is equal to 4,

and it corresponds to both option 1 of bottleneck part 1 and option 1 of bottleneck part 2.

The row-wise first best strategy is used to break ties. Therefore, the maximal entry of 4

according to option 1 of bottleneck part 1 is used for generating the first new restart. The

new initial configuration for the next restart is constructed from fixing the option of

bottleneck part 1 to 1 and the other bottleneck parts remain at the same options as they

were in the best configuration found in the last restart. As a result, the new initial

configuration for the next restart is [1,1,2,1,1]. The underline indicates that option 1 for

bottleneck part 1 is now fixed throughout the next restarted search. The search for the

next restart would be performed in a similar fashion according to the procedure described

in step 6. The results obtained with the first long-term memory restart and the resulting

IN_LTM are shown in Table 5.6 and 5.7, respectively.
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Using the same approach, the results obtained with the second long-term memory restart

are presented in Table 5.8.

Table 5.6 Results obtained for the inside search of FSco = [1,2,3], starting with FSpo =
[1,1,2,1,1] as the inside first restart configuration.

# in iteration Entries into ICL Total Savings (Z) Entries into IIL

0 [1,1,2,1,1]'- 25334.6 [1,1,2,1,1]

1 [1,1,2,1,2] 24750

2 [1,1,2,2,2] 23447.4

Table 5.7 The IN_LTM frequency matrix for the inside search of FSco = [1,2,3], starting
with FSpo = [1,1,2,1,1] as the inside first restart configuration.

Option 0

(Neither)

Option 1

(Duplicating)

Option 2

(Subcontracting)

Bottleneck Part 1 0 3 0

Bottleneck Part 2 0 3 0

Bottleneck Part 3 0 0 3

Bottleneck Part 4 0 2 1

Bottleneck Part 5 0 1 2

When the number of restarts for the inside search (2) has been reached, the inside

search would be terminated and the optimal/near-optimal bottleneck parts' option

configuration would be selected as the one which contributes to the highest total savings

form among the best solution obtained with each restart. Table 5.9 presents the best

solution obtained with each restart for this example
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Table 5.8 Results obtained for the inside search of FSco = [1,2,3], starting with FSpo =
[1,1,2,1,2] as the inside second restart configuration.

# in iteration Entries into ICL Total Savings (Z) Entries into IIL

0 [1,1,2,1,2] 24750 [1,1,2,1,2]

1 [2,1,2,1,2] 21223.1

2 [2,1,2,1,1] 21807.7 [2,1,2,1,1]

3 [2,1,1,1,1] 21293.1

4 [2,1,1,2,1] 20690.5

Table 5.9 Summary of results obtained from the inside search of FSco = [1,2,3] with two
long-term memory restarts.

Number of Restart The Best Solution in the IIL Total Savings

Initial Restart [1,1,2,1,1] 25334.6

First Restart [1,1,2,1,1] 25334.6

Second Restart [1,1,2,1,2] 24750

The optimal/near-optimal solution for this example is given by the bottleneck

parts' option configuration of [1,1,2,1,1], contributing to a total savings of $25334.6.

However, this being a simple example, the long-term memory based on maximal

frequency did not improve upon the best solution obtained from the initial restart.

Step 7: Repeat steps 3 through 6 (inside search) for each cell locations configuration in

the seeds obtained form step 2 (i.e., FSc(FSpo) = [2,1,3] and [1,3,2]). Table 5.10 shows

the results for the inside search of each cell locations configuration in the seeds of [1,2,3].
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Table 5.10 Results obtained for the inside search of each cell locations configuration in
FSc(FSpo).

The Cell Location

Configurations in the Seeds

of [1,2,3]

The Optimal/Near-Optimal Bottleneck

Parts' Option Configuration Obtained

for the Inside Search

Corresponding

Total Savings

[2,1,3] [1,1,2,1,1] 19354.6

[1,3,2] [1,1,2,1,1] 27154.6

Step 8: Similar to step 6 of the inside search, the out_move is now performed. The

out move transforms a sequence of cell locations configuration to another sequence of

cell locations in its seeds Sc(FSc). The value of out_move and the aspiration criterion

would also investigated in the same fashion as those for the inside search.

For this example, the out_move transforms the initial feasible cell locations

configuration [1,2,3] to a new cell locations configuration [1,3,2] since it contributes to

the highest total saving in its seeds.

Similar to the inside search (step 6), the following parameters for the outside

search are also updated during the search.

(1) Outside-tabu list (out_tabu)

Consider the out_move in this example which moves the initial feasible cell

locations configuration[1,2,3] to the next configuration [1,3,2]. The cell is moved to the

next adjacent location would be admitted into the out_tabu list along with its original

location. For the first out_move, cell 2 has been moved to the next adjacent location

(moved from position 2 to position 3). Thus, cell 2 along with its location (2) would be

moved into the out tabu list as the first entry.

out_tabu = [loc2(2)]

The interpretation of this entry in the out_tabu list is that cell 2 occupied location

2 in the most recent iteration and it has been moved to the next adjacent location (location
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3). The out_tabu list is updated regularly as the in tabu list for the inside search. Two

types of out_tabu list are considered as well. The fixed tabu-list size and the variable

tabu-list sizes are determined by the formulae stated previously. However, it is not

appropriate to consider the variable tabu-list sizes because the number of cells is too

small in this example.

- The fixed tabu-list size for the outside search is determined by the following formula.

The fixed size of out_tabu list = 43-1)/2i = 1

As for the inside search, the outside aspiration level (out_AL) is initially set equal

to 25334.6 obtained for the initial cell locations configuration [1,2,3]. As the outside

search progresses the out_AL is updated if the total saving evaluated for the current

configuration is found to be better than the best configuration found so far. Thus, out_AL

is updated to 27154.6 according to the new configuration [1,3,2].

Again, the out_tabu list forbids the search from moving to a configuration

represented by the entries in the out_tabu list. However, the out_tabu status can be

overwritten when the total saving evaluated for that configuration is better than the

current aspiration level (out_AL).

(2) Outside candidate list (OCL) and outside index list (OIL):

Similar to the inside search, the initial feasible cell locations configuration is

admitted into both OCL and OIL. The next configuration is also moved into the OCL as

it will be considered to perform future perturbations. As this configuration contributes to

a higher total saving compared to the initial configuration, it is also given a star because

it has the potential of becoming the next local optimum.

- OCL = { [1,2,3], [1,3,2] *1

OIL = { [1,2,3] }

(3) The number of iterations without improvement for the outside search

Similar to the inside search, the number of iterations without improvement for the

outside search (OUT INT) is increased by one, if there is no improvement in the total
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saving relative to the recent out_move. However, if in any iteration there is an

improvement in total savings, the number of iterations without improvement will be

reinitialized to zero. In this example, the first out_move shows an improvement in total

savings (from 25334.6 to 27154.6). Thus, the number of iterations without improvement

(OUT_INT) is set equal to zero.

The number of iterations without improvement is used as a stopping criterion to

stop the outside search. The number of iterations without improvement for the outside

search is determined by:

- For the fixed out tabu list size (notice that only the fixed tabu-list size is considered in

this example), the outside search stopping criterion is determined by the number of

iterations without improvement (OUTINT):

OUT INT =1-(3*5) / (0.67*4)1 = 6

The results obtained from performing the outside search is presented in table 5.11

Table 5.11 Results obtained for the outside search starting with FSco = [1,2,3] as the
initial cell location configuration

# out iteration Entries into OCL Total Savings (Z) Entries into OIL

0 [1,2,3]- 25334.6 [1,2,3]

1 [1,3,2].. 27154.6 [1,3,2]

2 [2,3,1] 19354.6

The effect of cell locations in this example problem can be seen from the results

presented in Table 5.11. Different cell locations configurations can have a significant

impact on evaluating different maximum total savings. Therefore, taking cell location

into consideration can be beneficial in determining the best solution for the entire system.

However, this example has only 3 cells. The three different cell locations shown in Table

5.11 are the only distinguishable cell locations configurations. As a result the outside
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search in this example problem has been shortened. The use of long term-memory for the

outside search is implemented a similar fashion as for the inside search. However, as the

problem is small, the use of long-term memory did not improve the best solution obtained

for the initial restart.
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6. EXPERIMENTAL DESIGN

6.1 DETERMINATION OF THE OPTIMAL TOTAL SAVINGS

In the previous chapter, the optimal/near optimal total savings for the example

problem was obtained with the tabu search-based heuristic using fixed tabu-list size and

LTM_MAX (TSH 2). The same maximum total saving of $27154.6 was obtained with

the remaining five of the six tabu search-based heuristic. The heuristics solution should

be compared to the global optimal solution to determine how good or bad the solution is.

An attempt to determine the optimal solution for the example problem has been made to

compare the results with the solutions obtained from the tabu search based-heuristics. As

the mathematical model for the research problem is a polynomial programming model,

there is a possibility of determining the global optimal solution for small problem

structures. This can only be accomplished by decomposing the polynomial programming

model to give linear binary/general integer programming models where the cell locations

are fixed. The illustration on how it is decomposed is provided in Appendix A.1 to A.3.

The objective function of the decomposed problems would consist of linear terms. As

such, SuperLINDO (1989) computer software can be used to optimally solve the

decomposed problems. The maximum of the maximum objective function values

obtained from the decomposed problems would also be the global optimal solution for the

polynomial programming model, representing the original research problem.

The maximum number of different cell locations for this example problem with 3

cells is equal to 6 as shown in Figure 6.1. Of these 6 different cell locations, only 3 can

be considered distinctively different. For example, configurations [1,2,3] and [3,2,1]

representing pattern 1 have the same distances between any two cells. Thus, only 3

patterns will contribute to evaluating different total savings if alternative cell locations are

considered. Therefore, each pattern is solved for the global optimal solution, using the

SuperLINDO software. The global optimal solution for the original problem would be



the pattern of cell locations which contribute the maximum total savings along with its

best bottleneck part options configuration.

Figure 6.1 The three patterns of cell locations

Pattern 1 FSc = [1,2,3]

Cl C2

Pattern 2 FSc = [2,1,3]

C2 Cl

Pattern 3 FSc = [1,3,2]

Cl C3

C3

C3

C2

and FSc = [3,2,1]

C3 C2

and FSc = [2,3,1]

C3 Cl

and FSc = [3,1,2]

C2 C3

Cl

C2

Cl
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In Table 6.1, the best solution obtained for each pattern with each of the six tabu

search-based heuristics is compared to the optimal solution obtained with SuperLINDO

software.

The best solution obtained for the small problem with tabu search-based heuristics

matches with the optimal solution obtained with SuperLINDO (1989) software. This

demonstrates that tabu search-based heuristics will have a high potential for finding good

near-optimal solutions, if not optimal solutions, in medium and large problem structures.

For the best solution [1,1,2,1,1] found here, the total expense is equal to $147035 and the

total number of machines that has already been assigned to cells 1, 2, and 3 is equal to 8,

2, and 4, respectively. To further reinforce this observation, the comparison is extended
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to include three different cases which involve the budgetary limitation and the limitation

on the maximum number of machines that can be assigned to each cell.

Case 1 considers the situation when only the budget is limited to $50,000 (B =

$50,000). The comparative results are presented in Table 6.2.

Case 2 considers the situation when only the maximum number of machines that can be

assigned to each cell is limited to 6 (Nc = 6). The comparative results are summarized in

Table 6.3.

Case 3 considers the situation when not only the budget is limited to $50,000 but also

the maximum number of machines that can be assigned to each cell is limited to 6 (B =

$50,000 and Nc = 6). The comparative results are presented in Table 6.4.

Table 6.1 Results obtained with the heuristics and the global optimum solution -Single-
row layout.

Lindo Tabu Search

Pattern 1 Optimal Solution = Initial Solution - Cell Location = [1,2,3]

[1,1,2,1,1] - Best Solution = [1,1,2,2,1]

Total Saving = 25334.6 - Total Saving = 24032

Pattern 2 Optimal Solution

[1,1,2,1,1]

Total Saving = 19354.6 Final Solution Cell Location = [1,3,2]

Pattern 3 Optimal Solution = Best Solution [1,1,2,1,1]

[1,1,2,1,1] Total Saving = 27154.6

Total Saving = 27154.6

For the example problem, the best solution obtained from tabu search-based

heuristics matches with the optimal solution obtained from SuperLINDO (1989) software

for the basic case as well as the three cases including the constraint on budgetary
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Table 6.2 Results obtained with the heuristics and the global optimum solution (B =
$50,000) - Single-row layout.

Lindo Tabu Search

Pattern 1 Optimal Solution = Initial Solution - Cell Location = [1,2,3]

[1,1,1,1,1] - Best Solution = [1,1,1,1,1]

Total Saving = 24820 - Total Saving = 24820

Pattern 2 Optimal Solution =

[1,1,1,1,1]

Total Saving = 18840 Final Solution - Cell Location = [1,3,2]

Pattern 3 Optimal Solution = - Best Solution = [1,1,1,1,1]

[1,1,1,1,1] - Total Saving = 26640

Total Saving = 26640

Table 6.3 Results obtained with the heuristics and the global optimum solution
(Nc = 6 ) - Single-row layout.

Lindo Tabu Search

Pattern 1 Optimal Solution = Initial Solution - Cell Location = [1,2,3]

[1,0,2,2,2] - Best Solution = [1,0,2,2,2]

Total Saving = 22047.4 - Total Saving = 22047.4

Pattern 2 Optimal Solution =

[1,0,2,2,2]

Total Saving = 16067.4 Final Solution - Cell Location = [1,3,2]

Pattern 3 Optimal Solution = - Best Solution = [2,1,2,2,2]

[2,1,2,2,2] - Total Saving = 22440.5

Total Saving = 22440.5
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Table 6.4 Results obtained with the heuristics and the global optimum solution

(B = 50,000 with Nc = 6) - Single-row layout.

Lindo Tabu Search

Pattern 1 Optimal Solution = Initial Solution - Cell Location = [1,2,3]

[1,0,1,0,0] - Best Solution = [1,0,1,0,0]

Total Saving = 9760 - Total Saving = 9760

Pattern 2 Optimal Solution =

[0,0,1,0,1]

Total Saving = 4620 Final Solution - Cell Location = [1,3,2]

Pattern 3 Optimal Solution = - Best Solution = [0,0,1,0,1]

[0,0,1,0,1] - Total Saving = 9820

Total Saving = 9820

limitation, maximum number of machines assigned to each cell, or both. It implies that

the tabu search-based heuristics have a very high-potential for finding the optimaUnear-

optimal solution whether or not the constraints are binding.

The determination of the optimal solution for the double row layout is constructed

in a similar fashion. The comparative results for including none, one, or both constraints

for the double row layout arrangement are summarized in Tables 6.5, 6.6, 6.7, and 6.8,

respectively.

As shown in Figure 6.2, the distance between any two cells is the same in both

layout arrangements. This explains why the results obtained for the example problem

with both layout arrangements are the same.

In conclusion, the tabu search-based heuristics have a very high potential for

finding optimal or good near-optimal solutions for both single-row layout and double-row

layout arrangements whether or not the constraints are binding. Thus, the use of tabu

search-based heuristic to search for the optimal/near-optimal of medium and large

problems is a valuable attempt.
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Table 6.5 Results obtained with the heuristics and the global optimum solution
(no constraints included) - Double-row layout.

Lindo Tabu Search

Pattern I Optimal Solution = Initial Solution - Cell Location = [1,2,3]

[1,1,2,1,1] - Best Solution = [1,1,2,2,1]

Total Saving = 25334.6 - Total Saving = 24032

Pattern 2 Optimal Solution =

[1,1,2,1,1]

Total Saving = 19354.6 Final Solution - Cell Location = [1,3,2]

Pattern 3 Optimal Solution = - Best Solution = [1,1,2,1,1]

[1,1,2,1,1] - Total Saving = 27154.6

Total Saving = 27154.6

Table 6.6 Results obtained with the heuristics and the global optimum solution (B =
$50,000) - Double-row layout.

Lindo Tabu Search

Pattern 1 Optimal Solution = Initial Solution - Cell Location = [1,2,3]

[1,1,1,1,1] - Best Solution = [1,1,1,1,1]

Total Saving = 24820 - Total Saving = 24820

Pattern 2 Optimal Solution =

[1,1,1,1,1]

Total Saving = 18840 Final Solution - Cell Location = [1,3,2]

Pattern 3 Optimal Solution = - Best Solution = [1,1,1,1,1]

[1,1,1,1,1] - Total Saving = 26640

Total Saving = 26640
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Table 6.7 Results obtained with the heuristics and the global optimum solution
(Nc = 6) - Double-row layout.

Lindo Tabu Search

Pattern 1 Optimal Solution = Initial Solution Cell Location = [1,2,3]

[1,0,2,2,2] - Best Solution = [1,0,2,2,2]

Total Saving = 22047.4 - Total Saving = 22047.4

Pattern 2 Optimal Solution =

[1,0,2,2,2]

Total Saving = 16067.4 Final Solution - Cell Location = [1,3,2]

Pattern 3 Optimal Solution = - Best Solution = [2,1,2,2,2]

[2,1,2,2,2] - Total Saving = 22440.5

Total Saving = 22440.5

Table 6.8 Results obtained with the heuristics and the global optimum solution
(B = 50,000 with Nc = 6 ) - Double-row layout.

Lindo Tabu Search

Pattern 1 Optimal Solution = Initial Solution - Cell Location = [1,2,3]

[1,0,1,0,0] - Best Solution = [1,0,1,0,0]

Total Saving = 9760 - Total Saving = 9760

Pattern 2 Optimal Solution =

[0,0,1,0,1]

Total Saving = 4620 Final Solution - Cell Location = [1,3,2]

Pattern 3 Optimal Solution = - Best Solution = [0,0,1,0,1]

[0,0,1,0,1] - Total Saving = 9820

Total Saving = 9820
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Figure 6.2 Single and double-row layouts for configuration [1,3,2]

Single-Row Layout Double-Row Layout

Cl C3 C2 Cl C3

C2

The distance between Cl and C2 = 2 units in both layout arrangements.

6.2 COMPARISON OF TABU SEARCH-BASED HEURISTICS

The mechanisms that have a significant impact on tabu search-based heuristics are

(i) using fixed versus variable tabu-list sizes, and (ii) using long-term memory versus not

using it. To examine the effect of these mechanisms, six different tabu search heuristics

have been constructed as shown in Table 6.9 and tested on different problem structures

Table 6.9 The six different tabu search-based heuristic algorithms

Inside Outside

tabu size LTM MIN LTM MAX tabu size LTM MIN LTM MAX

TSH 1 const - - const -

TSH 2 const Yes - const Yes

TSH 3 const - Yes const - Yes

TSH 4 var - var - -

TSH 5 var Yes - var Yes

TSH 6 var Yes var - Yes



62

As seen from Table 6.9, the tabu search-based heuristics that apply long term-

memory for both inside and outside searches are TSH 2, 3, 5, and 6. TSH 2 & 5 are

based on the maximum frequency (LTM_MAX), while TSH 3 & 6 are based on the

minimum frequency (LTM_MIN). The variable tabu-list sizes in both inside and outside

searches are implemented in TSH 4, 5, and 6

To compare the performance of the six different tabu search-based heuristics, a

single-factor experiment is constructed. In this case, the factor is characterized by each of

the different tabu search-based heuristic and measured by the highest total saving

evaluated. As the test problems used with each heuristic can be different, the experiment

is conducted as a randomized complete block design using the test problem as a block.

Otherwise, the influence of differences in structure of the test problems can contribute to

identifying a difference in the performance of the heuristics. Using the randomized

complete block design the difference can be wholly attributed to the difference in

performance of each heuristic itself, and not the difference between test problems. In this

research each of the six heuristics is tested with a block (sample) size of 12, representing

12 different test problems.

The 12 different test problems are constructed to include none, one or both

constraints which are the limitation on budget and the maximum number of machines that

can be assigned to each cell. As a result, these problems can be categorized into four

different classes:-

- One out of the 12 problems with no limitation on budget or the maximum number of

machines that can be assigned to each cell.

- Three out of the 12 problems include the limitation on budget but do not include the

limitation on maximum number of machines that can be assigned to each cell.

- Two out of the 12 problems include the limitation on the maximum number of machines

that can be assigned to each cells but do not include the limitation on budget.

- Six out of the 12 problems include both constraints which probably is more meaningful

when compared to an actual manufacturing system.
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Test problems are generated randomly to exhibit the features corresponding to

these 4 classes. For more details on randomized block designs, the reader is advised to

refer to the text by Montgomery (1991).

Three different problem structures are tested in this research. Each problem

structure is defined by the number of cells, the number of bottleneck parts, and the

number of bottleneck machines in the cellular manufacturing system. The first problem

structure is similar to the example problem considered in Section 5.5 which consists of

three cells (C), five bottleneck parts (P), and four bottleneck machines (M), denoted by

3C*5P*4M. The machine-part load matrix for the first problem structure is shown in

Table B.1 (Appendix B). The same problem structure was previously used by

Ramakrishna (1994). The second , considered as the medium-size problem structure, is

denoted by 5C*13P*8M. The machine-part load matrix for this problem structure is

derived from published literature (Seifoddini, 1989), and is presented in Table B.3

(Appendix B). The third, considered as the large-size problem structure, is denoted by

8C*27P*21M. The machine-part load matrix for this problem structure is also derived

from the published literature (Burke and Kamal, 1995), and is shown in Table B.5

(Appendix B).

In addition, the parameters used with the tabu search-based heuristics for each

problem structure are given in Table B.7 (Appendix B). The data for these parameters are

generated randomly from uniform distributions for each problem structure. These are as

follows: Amortized cost of bottleneck machines from [3000,6000], daily volume of

production of bottleneck parts from [300,800], incremental cost of subcontracting the

bottleneck parts from [0.2,0.6], and the average cost per unit of machining time from

[30,60]. The randomly generated data used with 3C*5P*4M, 5C*13P*8M, and

8C*27P*21M problem structures are shown in Tables B.2, B.4, and B.6 , respectively.

For each problem structure, 12 different blocks (test problems) are generated and

the maximum total saving for each block with each of the six heuristics is determined.

An analysis of variance is performed to determine if the average total savings obtained

for those 12 problems is significantly different between the six heuristics. In this

experiment, the significance level a, also referred to as type I error, is assumed equal to
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5% (o=0.05). When a difference in the average total saving is found, a Least

Significance Difference (LSD) test is performed to identify which heuristics contributed

to the difference. In this research LSD is selected instead of other tests such as Duncan's

Multiple Range, Newman Keul's and Tukey's, because it is available in Excutstat

(Version 3.0), a computerized statistical programming software package.
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7. RESULTS AND DISCUSSIONS

The experimental results for each test problem obtained from applying each

heuristic algorithm along with the CPU time are illustrated in Table C.1- C.6 (Appendix

C), for the 3C*5P*4M (single row layout), 5C*13P*8M (single row layout),

8C*27P*21M (single row layout), 3C*5P*4M (double row layout), 5C*13P*8M (double

row layout), and 8C*27P*21M(double row layout) problem structures, respectively.

Also, the results from the analysis of variance along with the LSD analysis for each

layout arrangement and each problem structure are presented in Table D.1- D.6

(Appendix D).

The summary of the results above for the total savings along with the LSD

analysis for each problem structure are shown in Table 7.1 and Table 7.2 for single row

layout and double row layout, respectively. Furthermore, the results obtained from the

LSD analysis are summarized in terms of the homogeneous group for each problem

structure as presented in Table 7.3-7.5 and Table 7.6-7.8 for single row layout and double

row layout, respectively. The "X" used in these tables denote the heuristics that do not

differ significantly based on the LSD analysis.

Consider the single row layout arrangement. The results presented in Table 7.1

indicate that there is no significant difference among the six heuristics at a = 0.05 for

every problem structure tested. For the small size, 3C*5P*4M problem structure, TSH 1-

6 determine the exact same maximum total saving of $92047.83 as shown in Table 7.3.

The medium size, 5C*13P*8M problem structure, also does not indicate a

significant difference among the six heuristics as seen from the results presented in Table

7.4. However, TSH 2 & 5 determined a better maximum total savings of $299633 than

other TSHs' which determined a total savings of $299343. The percentage difference is

only 0.0968 % which is small enough to ignore the difference between these two groups

of TSHs.

In Table 7.5, the results of 8C*27P*21M problem structure do not indicate a

significant difference between the TSHs with a = 0.05, even though there is a numerical
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Table 7.1 Summary of results obtained for the comparison of TSH 1-TSH 6 for single

row layout.

Average Total Savings (Z)

with Number of Blocks =12

Problem Structure

3C*5P*4M 5P*13P*8M 8C*27P*21M

TSH 1 92047.83 299343 1405560

TSH 2 92047.83 299663 1406870

TSH 3 92047.83 299343 1406950

TSH 4 92047.83 299343 1404370

TSH 5 92047.83 299663 1407260

TSH 6 92047.83 299343 1407670

Is Z significant Different

between TSH at a 0.05?

No No No

TSH 1 vs TSH 2 No No

TSH 1 vs TSH 3 - No No

TSH 1 vs TSH 4 No No

TSH 1 vs TSH 5 No No

TSH 1 vs TSH 6 No No

TSH 2 vs TSH 3 No No

TSH 2 vs TSH 4 No No

TSH 2 vs TSH 5 - No No

TSH 2 vs TSH 6 No No

TSH 3 vs TSH 4 No No

TSH 3 vs TSH 5 - No No

TSH 3 vs TSH 6 No No

TSH 4 vs TSH 5 No No

TSH 4 vs TSH 6 No No

TSH 5 vs TSH 6 - No No
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Table 7.2 Summary of results obtained for the comparison of TSH 1-TSH 6 for double
row layout.

Average Total Savings (Z)

with Number of Blocks =12

Problem Structure

3C*5P*4M 5P*13P*8M 8C*27P*21M

TSH 1 92047.83 237559 952839

TSH 2 92047.83 235971 1041730

TSH 3 92047.83 237260 1030070

TSH 4 92047.83 242256 1018240

TSH 5 92047.83 229500 932038

TSH 6 92047.83 229465 925261

Is Z significant Different

between TSH at a 0.05?

No Yes Yes

TSH 1 vs TSH 2 - No Yes

TSH 1 vs TSH 3 - No No

TSH 1 vs TSH 4 Yes No

TSH 1 vs TSH 5 - Yes No

TSH 1 vs TSH 6 Yes No

TSH 2 vs TSH 3 - No No

TSH 2 vs TSH 4 - Yes No

TSH 2 vs TSH 5 - Yes Yes

TSH 2 vs TSH 6 - Yes Yes

TSH 3 vs TSH 4 - Yes No

TSH 3 vs TSH 5 - Yes Yes

TSH 3 vs TSH 6 Yes Yes

TSH 4 vs TSH 5 Yes No

TSH 4 vs TSH 6 Yes Yes

TSH 5 vs TSH 6 No No
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difference in the total savings obtained with each TSH. TSH 6 determined the best total

savings followed by TSH 5, TSH 3, TSH 2, TSH 1, and TSH 4.

Table 7.3 The LSD analysis of the results obtained from 3C*5P*4M (single row layout)
problem structure in term of Homogeneous Group

Heuristics Average Total Savings Homogeneous Group
TSH 1 92047.83 X

TSH 2 92047.83 X
TSH 3 92047.83 X

TSH 4 92047.83 X

TSH 5 92047.83 X

TSH 6 92047.83 X

Table 7.4 The LSD analysis of the results obtained from 5C*13P*8M (single row layout)
problem structure in term of Homogeneous Group

Heuristics Average Total Savings Homogeneous Group

TSH 2 299663 X

TSH 5 299663 X
TSH 6 299343 X

TSH 3 299343 X
TSH 1 299343 X
TSH 4 299343 X

On the other hand, the results from double row layout arrangement determined a

significant difference between the TSHs on the 5C*13P*8M and 8C*27P*21M problem

structures. For the 3C*5P*4M small-size problem structure, TSH 1-6 evaluate the exact

same maximum total savings of $92047.83 as presented in Table 7.6.

For the 5C*13P*8M problem structure shown in Table 7.7, TSH 4 performed the

best with an average total savings of $242256. The next homogeneous group consists of
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TSH 1, TSH 3, and TSH 2 which evaluate an average total savings of $237559, $237560,

and $235971, respectively. In contrast, both TSH 5 and TSH 6 evaluate "inferior" total

savings compared to the other homogeneous groups.

Table 7.5 The LSD analysis of the results obtained from 8C*27P*21M (single row
layout) problem structure in term of Homogeneous Group

Heuristics Average Total Savings Homogeneous Group
TSH 6 1407670 X

TSH 5 1407260 X
TSH 3 1406950 X

TSH 2 1406870 X

TSH 1 1405560 X

TSH 4 1404370 X

Table 7.6 The LSD analysis of the results obtained from 3C*5P*4M (double row layout)
problem structure in term of Homogeneous Group

Heuristics Average Total Savings Homogeneous Group
TSH 1 92047.83 X

TSH 2 92047.83 X

TSH 3 92047.83 X

TSH 4 92047.83 X

TSH 5 92047.83 X
TSH 6 92047.83 X

Although there are 4 different homogeneous groups among the TSHs in the

8C*27P*21M problem structure, the best homogenous group consists of TSH 2, 3, and 4,

which evaluate the maximum total savings of $1041730, $1030070, and $101824,

respectively. The total savings of $932038 and $925261 evaluated with TSH 5 and TSH
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6, respectively are noticeably worse than the total savings evaluated with TSH 2, TSH 3,

TSH 4, and TSH 1. The same was true for the 5C*13P*8M problem structure.

Table 7.7 The LSD analysis of the results obtained from 5C*13P*8M (double row
layout) problem structure in term of Homogeneous Group

Heuristics Average Total Savings Homogeneous Group
TSH 4 242256 X

TSH 1 237559 X

TSH 3 237260 X

TSH 2 235971 X

TSH 5 229500 X

TSH 6 229465 X

Finally, the use of long-term memory and variable tabu list sizes in tabu search-

based heuristics can be described as follows:

In the single row layout arrangement, TSH 2, 3, 5, and 6 which use the long-term

memory have consistently determined a better maximum total savings than TSH 1 and 4

which did not use the long-term memory. This is true on all problem structures with the

exception of the small problem structure (3C*5P*4M). When the size of the problem

becomes larger, the difference in performance of TSH 2, 3, 5, and 6 is more pronounced

than TSH 1 and 4 as seen from the better total savings evaluated in Table 7.5. For the

comparison of the use of long-term memory based on maximal frequency (LTM_MAX)

with the use of long term-memory based on minimal frequency (LTM_MIN), the

heuristics using LTM_MIN (TSH 3 and 6) have determined the better average total

savings than the heuristics using LTM_MAX (TSH 2 and 5) in the 8C*27P*21M

problem structure. However, for the 5C*13P*8M problem structure, LTM_MAX

performed better than LTM_MIN, but only with a negligible percentage difference.

Thus, in general, the use of long term-memory based on minimum frequency

( LTM_MIN) is more efficient than the use of long term-memory based on maximum

frequency (LTM_MAX). The use of variable tabu-list sizes determined a better
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maximum total savings only when combined with the use of long-term memory. From

the Table 7.5, the average maximum total savings with TSH 6 is better than TSH 3 and

that with TSH 5 is better than TSH 2. In contrast, the use of variable tabu-list size in

itself (TSH 4) determined an inferior solution than TSH 1.

With the double row layout arrangement, the combined use of long-term memory

and variable tabu-list sizes in TSH 5 and TSH 6 clearly determined solutions inferior to

the rest of the heuristics (TSH 1, 2, 3, and 4). Again, this is true for all problem

structures except the small problem structure (3C*5P*4M). When long term-memory is

not considered, TSH 4 which uses the variable tabu-list size has consistently determined a

better average maximum total savings than TSH 1 which did not use the variable tabu

list-size as seen from the results presented in Table 7.7 and 7.8. Clearly, TSH 4 has

outperformed the other heuristics in terms of average total savings for the 5C*13P*8M

problem structure. For the 8C*27P*21M problem structure, although TSH 2 and 3

determined a better average total savings than TSH 4, in a statistical sense TSH 2, 3, and

4 all belong to the same homogeneous group. Thus, in general, the use of variable tabu-

list size and no long-term memory (TSH 4) is more efficient to search for the maximum

total savings in the double-row layout arrangement.

Table 7.8 The LSD analysis of the results obtained from 8C*27P*21M (double row
layout) problem structure in term of Homogeneous Group

Heuristics Average Total Savings Homogeneous Group
TSH 2 1041730 X
TSH 3 1030070 X X
TSH 4 1018240 X X X
TSH 1 952839 X X X
TSH 5 932038 X X

TSH 6 925261 X

In conclusion, it can be stated that for the single-row layout arrangement TSH 6,

characterized by the tabu search-based heuristic with the use of long-term memory based
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on minimal frequency (LTM_MIN) and constant tabu-list size, has high potential to

outperform the other heuristics. Therefore, TSH 6 is recommended for solving the

problem considered in this research. For the double row layout, in two out of three

problem structures, TSH 5 and 6 were found inferior to the rest of the heuristics.

Furthermore ,TSH 4, incorporating the use of variable tabu list-sizes and no long term

memory, was found to be the efficient heuristic for solving the problem considered in this

research. Thus, for the double-row layout arrangement, TSH 4 is recommended.
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8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The problem of simultaneously dealing with duplicating bottleneck machines and

subcontracting bottleneck parts is investigated in the presence of alternative cell

locations. The model for this problem is formulated as a polynomial programming model

and is proven to be NP-hard in the strong sense. This rules out the possibility of

employing an implicit enumeration-based technique to determine the optimal solution

even on problems with moderate number of bottleneck parts and bottleneck machines. A

higher-level heuristic, based on a concept known as tabu-search, is proposed to efficiently

solve the problem.

Six different versions of the tabu search-based heuristic algorithm are tested on

three different problem structures and two different layout arrangements. An extensive

statistical analysis based on a randomized-block design has been performed to compare

the performance of six heuristics (TSH 1 - TSH 6) using maximum total savings as the

criterion. For the single- row layout arrangement, TSH 6, the tabu search-based heuristic

using long term-memory based on minimal frequency (LTM_MIN) and constant tabu list

size, is recommended. However, for the double-row layout arrangement, TSH 5 & 6

were found inferior to other heuristics. Therefore, TSH 4, characterized by the use of

variable tabu-list sizes and no long term-memory, is recommended for solving this

problem.

Further research can be performed by taking into consideration of other important

practical design constraints (Heragu 1994).

In this research, the limit on the number of machines assigned to each cell

includes the machines originally assigned and those that are duplicated. Realistically,

this can be changed due to technological and safety considerations. Technical

considerations may dictate two or more machines to be placed in the same cell to avoid

redundancy. A good example of this is the heat-treatment station. Conversely, two or

more work stations cannot be placed in the same cell because of safety considerations,
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such as painting and welding work stations. These work stations should be located in

different cells or as far as possible because there may be a high interaction between them.

Future research can be performed by including these special constraints in the model to

evaluate more meaningful solutions to the problem.

In the evaluation of material handling costs, only the inter-cell moves are

considered in this research. In practice, however, there are some huge cellular

manufacturing systems where the material handling cost contributed by inter-cell moves

quite significant that it can not be disregarded. Future research may also be performed by

including intra-cell moves in the model to determine the effect of cell locations in the

processes of machine duplication and part subcontracting.
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APPENDIX A.1

Pattern 1: Mathematical Formulation for the Example Problem in SuperLINDO

MAX 8320 X151 + 2600 X471 + 4680 X491 + 4680 X191 + 5200 X3101

+ 3640 X683 + 4793.1 Y51 - 15730 Y71 + 8057.4 Y91 + 6247.8 Y101

+ 2654.6 Y83 - 1200 R41 - 700 R11 - 900 R31 - 1500 R63

SUBJECT TO
2) X3101 +R41 +RI1 <= 5

3) R63 <= 6
4) 64057.5 Y51 + 41496 Y71 + 69121 Y91 + 69641 Y101 + 75114 Y83

+ 1200 R41 + 700 R11 + 900 R31 + 1500 R63 <= 500000

5) 2.5 X3101 - 8 R31 <= 0

6) 1.35 X471 + 1.03 X491 - 8 R41 <= 0
7) 2.42 X151 + 2.48 X191 - 8 R11 <= 0

8) 2.26 X683 - 8 R63 <= 0
9) Y51 + Z51 <= 1

10) Y71 + Z71 <= 1

11) Y91 +Z91 <= 1

12) Y101 +Z101 <= 1

13) Y83 + Z83 <= 1

14) X151 - Z51 = 0

15) X471 - Z71 = 0

16) X491 + X191 - 2 Z91 = 0

17) X3101 -Z101 = 0

18) X683 - Z83 = 0
END
INTE X151

INTE X471

INTE X491

INTE X191

INTE X3101

INTE X683

INTE Y51

INTE Y71

INTE Y91

INTE Y101
INTE Y83
INTE Z51

INTE Z71

INTE Z91

INTE Z101
INTE Z83

GIN R41

GIN R11

GIN R31

GIN R63
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APPENDIX A.2

Pattern 2: Mathematical Formulation for the Example Problem in SuperLINDO

MAX 4160 X151 + 5200 X471 + 3020 X491 + 2340 X191 + 10400 X3101

+ 1820 X683 + 633.1 Y51 - 13130 Y71 + 8057.4 Y91 + 11447.8 Y101

+ 834.6 Y83 - 1200 R41 - 700 R11 900 R31 - 1500 R63

SUBJECT TO
2) X3101 +R41 +RI1 <= 5

3) R63 <= 6

4) 64057.5 Y51 + 41496 Y71 + 69121 Y91 + 69641 Y101 + 75114 Y83

+ 1200 R41 + 700 R11 + 900 R31 + 1500 R63 <= 500000

5) 2.5 X3101 - 8 R31 <= 0

6) 1.35 X471 + 1.03 X491 - 8 R41 <= 0

7) 2.42 X151 +2.48 X191 - 8 R11 <= 0

8) 2.26 X683 - 8 R63 <= 0

9) Y51 + Z51 <= I

10) Y71 + Z71 <= 1

11) Y91 + Z91 <= 1

12) Y101 +Z101 <= 1

13) Y83 + Z83 <= 1

14) X151 -Z51 = 0

15) X471 -Z71 = 0

16) X491 +X191 -2 Z91 = 0

17) X3101 - Z101 = 0

18) X683 - Z83 = 0

END
INTE X151

INTE X471

INTE X491

INTE X191

INTE X3101

INTE X683

INTE Y51
1NTE Y71

INTE Y91

INTE Y101
INTE Y83

INTE Z51

INTE Z71

INTE Z91

INTE Z101
INTE Z83

GIN R41

GIN R11

GIN R31

GIN R63
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APPENDIX A.3

Pattern 3: Mathematical Formulation for the Example Problem in SuperLINDO

MAX 4160 X151 + 2600 X471 + 7020 X491 + 2340 X191 + 5200 X3101

+ 1820 X683 + 633.1 Y51 - 15730 Y71 + 8057.4 Y91 + 6247.8 Y101

+ 834.6 Y83 - 1200 R41 - 700 R11 - 900 R31 - 1500 R63

SUBJECT TO
2) X3101 +R41 +R11 <= 5

3) R63 <= 6

4) 64057.5 Y51 +41496 Y71 + 69121 Y91 + 69641 Y101 + 75114 Y83

+ 1200 R41 + 700 R11 + 900 R31 + 1500 R63 <= 500000

5) 2.5 X3101 - 8 R3I <= 0

6) 1.35 X471 + 1.03 X491 - 8 R41 <= 0

7) 2.42 X151 + 2.48 X191 - 8 R11 <= 0

8) 2.26 X683 - 8 R63 <= 0

9) Y51 + Z51 <= 1

10) Y71 + Z71 <= 1

11) Y91 + Z91 <= 1

12) Y101 +Z101 <= 1

13) Y83 + Z83 <= 1

14) X151 - Z51 = 0

15) X471 Z71 = 0

16) X491 +X191 - 2 Z91 = 0

17) X3101 -Z101 = 0

18) X683 - Z83 = 0
END
INTE X151

INTE X471

INTE X491

INTE X191

INTE X3101

INTE X683

INTE Y51

INTE Y71

INTE Y91

INTE Y101

INTE Y83
INTE Z51

INTE Z71

INTE Z91

INTE Z101
INTE Z83

GIN R41

GIN R11

GIN R31

GIN R63
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APPENDIX B.



Table B.1 Machine-part load matrix for 3C*5P*4M problem structure (14 parts and 7 machines originally)

P1 P4 P5 P6 P7 P9 P10 P3 P11 P12 P13 P2 P8 P14 Total Workload
on Machine (hrs)

# of Machines

M2 0.5 0.61 0.9 2.09 1.35 5.45 1
M6 0.5 4.55 2.26 7.31 1
M7 0.55 4.74 3.61 1.47 3.87 4.68 18.92 3
M3 2.5 3.03 0.71 1.61 7.85 1
M4 1.35 1.03 3.1 0.58 0.99 7.05 1
M1 2.42 2.48 0.69 2.44 2.72 10.75 2
M5 1.22 4.45 3.84 9.51 2
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Table B.2 Generated data for 3C*5P*4M problem structure (14 parts and 7

machines originally)

prob1 prob2 prob3 prob4 prob5 prob6 prob7 prob8 prob9 prob10 prob11 prob12
Amortize cost of m/c m1 3851 5756 5665 5881 5508 5577 3053 4786 3659 5933 4071 5788

m2 4167 5571 4134 5166 5698 4591 3941 5696 5530 4913 4374 3679
m3 3119 4705 3573 3886 5393 4779 4664 3962 4767 3258 3853 5378
m4 3842 4524 3294 4554 5609 5330 3357 3774 3626 5398 5940 4146

Daily Demand p1 737 388 569 366 615 772 540 492 370 761 473 324
p2 727 458 571 683 727 717 796 480 560 349 463 642
p3 456 322 572 305 763 543 626 602 451 452 423 677
p4 750 724 640 594 425 338 368 495 495 684 635 741

p5 418 718 534 597 736 402 318 657 766 468 444 717
Subcontracting Cost b1 0.33 0.3 0.48 0.34 0.31 0.56 0.39 0.52 0.48 0.58 0.46 0.5

b2 0.3 0.25 0 43 0.35 0.54 0.29 0.52 0.29 0.59 0.59 0.2 0.59
b3 0.36 0.29 0.32 0.29 0.32 0.37 0.57 0.49 0.2 0.24 0.55 0.44
b4 0.45 0.35 0.55 0.28 0.39 0.29 0.46 0.2 0.24 0.34 0.5 0.46
b5 0.56 0.54 0.42 0.53 0.59 0.3 0.57 0.27 0.23 0.33 0.59 0.39

Machine Operating Cost r1 51 50 31 37 55 30 58 46 36 58 39 38
r2 47 41 45 54 47 34 53 41 37 58 58 54
r3 60 51 37 48 44 33 53 48 39 35 31 44
r4 35 53 41 52 56 35 49 44 41 46 57 53

r5 43 44 41 54 43 36 58 30 40 34 48 36
r6 48 34 48 39 35 35 35 53 37 49 33 59

r7 38 43 40 50 49 39 51 36 32 40 49 58



Table B.3 Machine-part load matrix for 5C*13P*8M problem structure (42 parts and 16 machines originally)

P2 P4 P7 P10 P18 P28 P32 P37 P38 P40 P42 P1 P5 P6 P8 P9 P11 P12 P14 P15 P16
M2 1.8 2.4 1.59 1.54 0.6 1.3 1.61 1.29
M9 1.23 0.77 2.15 1.08 1.61 2.06 2.41 2.28 1.12 1.88

M16 1.69 1.14 1.68 1.75 2.42 0.86 0.52 2.27
M1 1.42 1.46
M5 1.35 2.45 1.09 1.48 1.97 1.04

M15 1.44 1.55
M4 1.36 0.88 1.38
M6 1.86 1.51 1.77 1.83 0.74 1.18 1.55 0.55 1.96
M8 0.7 2.1 1.92 1.76 2.11 0.83 1.06 2.36
M3

M14 0.56
M7 0.97

M10 0.75
M11
M12 2.19
M13

P19 P20 P21 P23 P29 P31 P33 P34 P39 P41 P3 P17 P35 P36 P13 P25 P26 P31 P22 P24 P27
M2
M9

M16
M1

M5 1.26 0.57 1.97 1.4 0.65 1.88 0.87
M15 0.95 2.39 1.45 0.55
M4 1.81 1.56 1.43 1.06
M6 2.12 0.55 1.63 1.02 1.29 1.65
M8 1.95 0.66 1.64 1.12 2.03 1.72 1.16 0.61
M3 1.32 0.88 0.74 1.93 2.26

M14 1.2 2.04 1.2
M7 2.4 2.24

M10 0.69 0.99 1.39 2.4
M11 0.58 1.61 1.23 1.69
M12 0.59 0.83 0.93
M13

_ 2.39 2.19
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Table B.4 Generated data for 5C*13P*8M problem structure (42 parts and 16

machines originally)

prob1 prob2 prob3 prob4 prob5 prob6 prob7 prob8 prob9 prob10 probll probl2
Amortize cost of m/c m1 3918 5348 5503 3868 3499 5612 3472 4239 5656 4348 3891 4590

m2 4023 5510 3805 4373 4588 3676 5489 4054 3303 4889 3273 5152
m3 5433 4015 3985 3041 5671 4699 3669 3914 3711 4879 4010 3220
m4 4689 5782 3848 4569 5187 4191 5519 3562 5932 4742 4579 5497
m5 4941 5090 3264 3952 5457 5131 5660 5681 5033 5692 3035 5446
m6 3975 3604 3978 4400 3481 5193 4354 3157 5131 3034 4396 5222
m7 5973 3714 5289 5242 5406 5362 3594 5827 4048 4218 3499 4236
m8 5387 3105 3261 3021 4044 5170 5824 5071 3905 3982 5998 5578

Daily Demand p1 697 320 411 569 329 698 514 421 446 526 698 725
p2 643 678 532 461 697 669 746 485 463 742 310 472
p3 509 605 633 360 511 593 723 676 640 727 432 517
p4 569 756 519 437 496 491 591 528 334 346 473 726
p5 425 672 424 540 409 680 714 695 449 780 755 381

p6 334 736 600 318 431 368 610 499 791 639 535 514
p7 527 761 531 343 358 621 795 480 762 692 545 318
p8 593 324 406 397 699 796 378 609 650 443 523 712
p9 722 330 796 585 725 380 709 553 497 447 711 630

p10 508 541 649 536 498 444 641 389 420 608 703 649
p11 343 303 779 662 777 696 797 636 647 388 301 653
p12 413 702 482 760 756 617 512 681 447 421 529 729
p13 606 553 339 328 328 396 760 601 653 625 516 562

Subcontracting Cost b1 0.23 0.32 0.55 0.29 0.37 0 43 0.42 0.28 0.32 0.45 0.57 0.5
b2 0.24 0.48 0.46 0.56 0.34 0.56 0.5 0.25 0.35 0.53 0.26 0.59
b3 0.41 0.29 0.45 0.54 0.27 0.58 0.3 0.38 0.28 0.39 0.42 0.51

b4 0.34 0.43 0.52 0.21 0.26 0.29 0.53 0.42 0.33 0.48 0.57 0.55
b5 0.59 0.47 0.49 0.25 0.52 0.59 0.34 0.2 0.29 0.2 0.52 0.28
b6 0.53 0.27 0.32 0.39 0.58 0.39 0.59 0.52 0.38 0.22 0.55 0.42
b7 0.45 0.59 0.36 0.5 0.48 0.58 0.53 0.53 0.25 0.42 0.41 0.38
b8 0.46 0.51 0.47 0.23 0.3 0.3 0.34 0.55 0.58 0.46 0.54 0.49
b9 0.56 0.38 0.3 0.28 0.34 0.32 0.58 0.43 0_36 0.35 0.29 0.25
b10 0.41 0.3 0.51 0.57 0.34 0.24 0.51 0.29 0.24 0.46 0.25 0 24
b11 0.55 0.3 0.41 0.3 0.31 0.32 0.25 0.38 0.3 0.53 0.33 0.57
b12 0.48 0.32 0.43 0.41 0.51 0.31 0.27 0.49 0.22 0.53 0.48 0.37
b13 0.37 0.45 0.45 0.43 0.27 0.49 0.55 0.51 0.3 0.55 0.41 0.54

Machine Operating Cost r1 58 44 58 43 55 39 43 55 38 32 55 42
r2 35 47 30 44 42 42 48 31 36 41 34 37
T3 49 46 48 57 53 34 39 42 49 52 43 46
r4 55 31 32 31 36 49 36 43 48 51 40 48
r5 58 46 33 47 31 48 51 35 44 48 54 48
r6 48 47 44 36 60 38 58 54 34 47 43 45
r7 40 49 43 41 31 60 33 48 47 34 38 50
r8 31 33 30 46 56 50 46 55 36 39 32 37
r9 40 42 54 45 51 30 30 48 44 41 40 31

r10 47 41 32 41 40 38 43 51 44 39 58 54
r11 39 32 58 33 59 36 35 55 53 47 60 52
r12 43 43 58 33 56 53 56 36 58 40 42 36
r13 48 49 43 37 47 45 60 36 39 48 52 41

r14 45 43 40 34 52 49 46 49 35 56 47 46
r15 37 55 32 31 33 46 53 43 59 38 32 51

r16 44 40 50 56 55 32 34 33 31 33 45 59



Table B.5 Machine-part load matrix for 8C*27P*21M problem structure (80 parts and 40 machines originally)

P4 P5 P9 P24 P33 P39 P49 P57 P58 P65 P66 P12 P13 P54 P61 P64 P73 P77 P78 P3 P10 P19 P20 P36 P48 P50 P6 P17
M1 117 0.87 0.94 0.65 0.88 1.03 1.44 1.66 113 1.74
M3 012 1.1 1.96 085 1.38 1.01 1.16 0.79 116 1.17
M7

M32
0.56 0.e2 0.66 1.38 tee 0.06 1.34 0.81 1.26 am
1.23 1.25 0.92 1.47 1.91 0.01 0.65 1.55 1.64 1

M2 0.98 1.4 1.76 1.12 1.58 0.59 0.56
MIO tea 0.86 au 0.e3 1.68 0.69 1.04 0.58
M16 1.91 1.13 019 1.58 0.63 0.87 1.09
M21 1.14 0.78 1.11 1.25 1.28 1.54 0.77
M31 1.47 1.34 1.34 1.14 1.31 1.37
M4 1.7 1.65 1.78 1.58 0.86 1 07 0.53
M9 0.54 1.87 151 0.84 0.57 1.18 1.85
M20 1.77 1.18 1.07 0.77 1.2 0.57
1615

1.31 1.34
M8

1.03 1.42
M22

0.96 0.65
M23 1.96 0.79 0.64
M37

1.58 0.9
M39

1.69 1.5
Me
M12 1.25
M26 1.06
M38
M40 1 07
Mt t
M13
M14
M17
M35
MI5
M18
M33
M34
M36 1.51 1.93
M19
M25
M28
M30 094
M24
M27 1.45
M29



Table B.5 Machine-part load matrix for 8C*27P*21M problem structure (80 parts and 40 machines originally)
(continued)

P26 P27 P28 P46 P56 P89 P70 P76 P1 P2 P14 P15 P29 P30 P38 P40 P43 P44 P45 P59 P60 P82 P63 P7 P11 P18 P37 P42 P58

1.62 0.98

1.85 1.45
1.19

0.66

1.25 0.87 1.94 1.52 1.02 1.47 1.72 1.26 1.89
099 1.94 1.22 1.75 ar 0.84 ass 0.72
0.62 1.59 0.79 1.42 0.74 1.17 125 1.86
1.86 1.43 1.03 0.83 1.94 0.85 684 162
1.54 1.29 1.24 1.32 0.0 0.98 1.45 0.8
0.88 0.84 1.73 1.38 662 1.09

1.91 0.53 1.08 1.11 0.91 0.8 1.44 1.3 0.69 1.6 1.04 1.86 688
091 0.94 1.02 0.91 1.44 0.92 654 1.74 1.46 0.72 1.43 1.32 ani
1.61 0.71 1.22 0.62 061 1.36 0.52 0.87 1.31 1.43 0.96 1.9 0.94 0.65
1.75 657 0.73 1.14 0.56 1.04 1.98 1.61 1.58 0.71 0.63 1.87 0.87
1.99 654 0.55 1.83 676 161 1.71 1.81 1.82 121 129 1.5

1.11 0.79 1.47 ass 1.75 0.84
097 064 0.51 1,96 1.8 1.97
1.84 1.43 0.94

1.3 1.64 1.92 0.72 1.1 1.69 1.85 1.48
1.56 1.91 1.67 0.85 165

0.57

1.91 1.04 aal
162

1.71



Table B.5 Machine-part load matrix for 8C*27P*21M problem structure (80 parts and 40 machines originally)
(continued)

P67 P79 P80 P21 P22 P52 P75 P23 P31 P32 P41 P51 P74 P71 P72 P8 P16 P25 P34 P35 P47 P53 P68

1.86

094 1.59

1.06 1.28 1.33 1.69 1.65 1.53 1.32 016
1.16 0.66 107 0 61 077 0.71

1.67 0.75 1.97 129 1.31 ass
1.11 01 127 1.35 0.85 0.96

1.33 0 52 08 0.73 0.52
1.08 1.39 as 1.13 1.98

1.37 1.58 1.68 093 1 48
0.98 1.49 1.88 1.31 1.55
1.99 1.7 0.59 077 1.75 0.8
1.4 1.29 1.99 1.84 0.74

0.74 108 1.53 1.88 1.23 1.5 0.8 0.67
1.75 083 ass 1.15 1.38 1.88 1.45 1.58

065 1.99 1.17 062 052 1.34
158 0.82 1.76 1.18 103 1 03 1.23 082

1.18 1.60 1.31 1.98 15 0.71 0.75 108 148
199 1.17 1.83 1.85 1.79 0.6 tee 122 0.75
055 136 0.57 1.59 057 as 117 102 1.4
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Table B.6 Generated data for 8C*27P*21M problem structure (80 parts and 40

machines originally)

prob1 prob2 prob3 prob4 prob5 prob6 prob7 prob8 prob9 prob10 prob11 probl2

Amortizecostormic m1 5714 5949 3789 4000 5858 4735 4399 5502 5851 5086 3664 3603

m2 3207 4091 3582 3575 4661 5456 3373 4941 5854 3384 3068 5595

m3 4701 3025 3421 3090 3481 5667 3896 4715 3668 3143 3100 5626

m4 3006 5212 4557 4179 3305 5045 5379 4228 5517 4097 5389 5230

m5 5144 4461 5658 5461 5568 4329 5167 5604 3543 4905 3549 5516

m6 3491 4348 3393 5719 5328 3964 4863 5204 3157 5474 4878 4369

m7 5251 4416 3789 4785 4671 5118 4510 5235 5737 3974 4969 3892

m8 3793 3025 4629 5049 4921 5021 4888 4182 3481 4330 4775 3362

m9 5702 3858 5506 4031 4404 4496 3232 4239 4476 5407 4685 5723

m10 3993 3787 3115 3777 5216 4657 3015 3857 5137 3198 4023 4366

m11 4679 4900 4806 5586 5413 3133 4498 4986 5823 3425 3606 3172

m12 5823 5671 5836 3890 3570 5032 3908 5932 3583 3903 4436 5143

m13 3496 3349 4081 5410 4838 4423 4711 5138 5149 4724 5838 5352

m14 5975 5864 3779 3804 4416 4192 4544 5993 3839 3742 3505 3008

m15 4608 4703 5937 4347 3991 3515 5663 4261 5402 5888 3880 4724

m16 4253 3918 5735 4053 5751 3938 4977 3434 4322 5524 5564 4184

m17 5979 3761 5018 5157 3086 3182 3283 5285 5264 5040 5631 5255

m18 5159 5254 5885 5706 5113 3398 5337 3447 4188 5399 5588 4623

m19 4479 5091 3272 3148 3497 5811 5391 4625 4837 5126 3371 4624

m20 5632 3748 4744 3448 3011 4321 4323 4198 4893 5509 5956 4157

m21 3938 3965 3246 4099 5317 5239 5818 5387 3475 4387 3194 4100

Daily Demand p1 367 711 328 552 408 480 455 422 590 559 737 394
p2 741 334 639 491 705 763 570 662 788 789 429 412
p3 412 333 366 704 781 670 314 697 399 778 343 339
p4 540 598 305 357 640 416 608 506 319 631 520 731

p5 746 673 515 716 742 308 645 580 588 748 698 510
p6 795 391 591 646 742 510 595 318 599 786 424 353
p7 763 501 783 691 492 357 591 324 451 492 772 657
p8 334 665 497 341 486 653 490 544 460 473 611 626
p9 445 565 546 447 566 716 583 671 730 704 655 740

p10 446 692 373 753 331 463 409 744 326 676 374 547
p11 538 617 396 467 487 580 696 562 388 577 615 655
p12 424 493 332 477 314 431 539 314 603 398 720 339
p13 534 680 435 388 417 788 551 309 728 515 437 700
p14 658 776 307 592 624 690 351 537 782 653 525 787
p15 691 421 390 442 689 535 426 348 781 743 561 478
p16 584 541 762 527 449 527 376 761 737 469 535 651

p17 748 356 461 386 461 695 337 339 626 655 556 753
p18 681 777 791 692 322 469 560 723 619 330 345 714
p19 534 725 409 643 575 421 581 754 398 558 687 378
p20 537 337 508 404 672 749 391 457 493 363 609 677
p21 529 603 393 461 701 442 366 306 781 351 353 744
p22 732 439 765 380 471 444 706 362 531 749 777 379
p23 791 432 313 346 480 332 483 516 777 582 771 691
p24 307 601 556 449 517 480 458 429 764 763 398 448
p25 486 447 482 731 606 488 337 307 372 339 624 459
p26 594 665 762 721 628 535 798 722 523 669 469 301
p27 679 343 499 734 636 331 421 507 739 558 425 677

Subcontracting Cost b1 0.6 0.57 0.55 0.31 0.55 0.49 0.4 0.23 0.5 0.27 0.59 0.49
b2 0.22 0.38 0.51 0.21 0.24 0.47 0.49 0.42 0.29 0.47 0.34 0.45
b3 0.59 0.41 0.24 0.51 0.4 0.33 0.6 0.4 0.36 0.42 0.23 0.26
b4 0.33 0.48 0.47 0.24 0.34 0.52 0.29 0.51 0.39 0.51 0.44 0.29
b5 0.39 0.39 0.45 0.43 0.55 0.45 0.58 0.36 0.24 0.24 0.29 0.41
b6 0.56 0.33 0.46 0.25 0.35 0.54 0.45 0.47 0.52 0.39 0.2 0.25
b7 0.43 0.22 0.22 0.45 0.49 0.24 0.33 0.45 0.53 0.34 0.27 0.33
b8 0.56 0.46 0.3 0.56 0.45 0.21 0.32 0.41 0.35 0.28 0.3 0.54
b9 0.24 0.56 0.21 0.44 0.49 0.45 0.38 0.24 0.51 0.22 0.5 a5

b10 0.5 0.5 0.56 0.24 0.22 0.56 0.43 0.54 0.25 0.39 0.46 0.51
b11 0.59 0.32 0.36 0.2 0.2 0.29 0.4 0.47 0.34 0.5 0.48 0.42
b12 0.26 0.42 0.59 0.37 0.2 0.31 0.52 0.35 0.21 0.41 0,37 0.59
b13 0.25 0.21 0.52 0.22 0.42 0.37 0.4 0.33 0.5 0.31 0.52 0.42
b14 0.54 0.24 0.56 0.32 0.34 0.56 0.53 0.37 0.25 0.38 0.37 0.41
b15 0.24 0.27 0.52 0.23 0.53 0.57 0.52 0.35 0.3 0.54 0.29 0.57
b16 0.26 0.28 0.38 0.59 0.36 0.39 0.44 0.51 0.57 0.45 0.4 0.27
b17 0.51 0.49 0.44 0.24 0.25 0.25 0.3 0.5 0.52 0.56 0.29 0.55
b18 0.22 0.6 0.38 0.43 0.47 0.33 0.43 0.22 0.26 0.45 0.22 0.25
b19 0.38 0.43 0.56 0.51 0.49 0.57 0.58 0.26 0.53 0.47 0 3 0.38
b20 0.54 0.59 0.2 0.31 0.58 0.53 0.3 0.32 0.55 0.27 0.6 0.33
b21 0.25 0.23 0.31 0.23 0.51 0.28 0.53 0.26 0.52 0.25 0.28 0.55
b22 0.59 0.46 0.35 0.37 0.51 0.41 0.27 0.37 0.44 0.54 0.28 0.59
b23 a 4 0.49 0.56 0.21 0.24 0.27 0.55 0.44 0.33 0.46 0.52 0.2
b24 0.35 0.53 0.26 0.57 0.44 0.32 0.31 0.44 0.24 0.28 0.38 0.37
b25 0.4 0.55 0.3 0.57 0.36 0.28 0.55 0.39 0.49 0.37 0.28 0.29
b26 0.23 0.28 0.21 0.53 0.37 0.26 0.48 0.28 0.5 0.39 0.55 0.26
b27 0.33 0.32 0.58 0.33 0.42 0.53 0.44 0.6 0.41 0.32 0.5 0.39
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Table B.6 Generated data for 8C*27P*21M problem structure (80 parts and 40

machines originally) (continued)

Machine Operating Cost r1 35 31 44 55 37 53 44 53 42 31 54 40
r2 49 50 41 43 35 38 35 31 40 31 34 45
r3 50 56 50 56 32 40 37 38 59 42 42 46
T4 54 32 33 39 43 56 53 55 39 50 54 37
r5 51 51 45 34 36 51 52 48 49 52 57 40
r6 35 42 47 50 47 53 58 42 39 51 52 44
r7 53 40 46 36 53 39 42 31 57 38 33 55

r8 44 44 50 46 50 45 34 52 41 37 30 53
r9 34 50 37 31 54 49 31 35 36 47 36 30

r10 56 54 47 52 40 38 44 50 58 45 34 40
r11 44 59 50 34 58 55 45 58 32 35 34 31

r12 36 40 53 54 38 57 34 54 48 47 43 56
r13 51 60 46 53 60 59 52 41 46 57 31 41

r14 46 37 48 46 36 53 49 33 34 39 48 52
r15 40 54 40 60 50 58 36 47 41 36 43 57

r16 37 34 46 45 45 47 43 56 48 57 51 34

r17 42 49 55 36 36 36 34 31 44 55 46 47
r18 50 31 36 34 33 58 46 38 30 55 39 35

r19 33 57 32 44 59 57 34 49 56 52 59 42
r20 35 48 35 37 40 54 53 37 53 48 55 36

r21 49 51 35 52 31 35 35 48 39 42 45 39

r22 51 53 59 46 53 55 58 56 31 51 56 56

T23 60 39 38 58 46 40 34 42 44 43 35 35
r24 57 48 33 53 43 55 47 47 34 36 47 35

r25 43 32 39 42 46 37 40 59 55 43 59 36
r26 50 53 36 34 42 33 59 31 43 35 44 37

r27 32 47 57 53 51 31 32 38 41 45 43 32
r28 56 33 52 53 39 50 45 45 34 35 57 47

29 38 44 54 44 41 57 33 51 38 42 55 37
r30 42 47 44 58 41 30 48 38 54 59 39 50
r31 51 45 48 40 45 47 51 38 40 42 53 44
r32 40 31 52 44 34 58 55 30 38 49 51 52
r33 48 56 56 35 52 40 52 42 40 41 35 31

r34 60 45 56 39 49 42 37 41 59 44 44 49
r35 56 51 37 34 43 48 42 48 46 47 57 52

r36 40 54 35 34 50 51 42 35 58 47 58 42
r37 32 38 45 46 34 59 41 54 37 43 41 44

r38 38 35 32 39 40 46 48 52 52 47 44 39
r39 34 48 55 56 55 49 46 36 49 31 50 38

r40 51 37 59 54 50 46 55 56 38 30 38 57



Table B.7 Parameters used in tabu search-based heuristics for each problem structure (single row and double row layout)

Parameters

3C*5P*4M 5C*13P*8M 8C*27P*21M

Inside search Outside search Inside search Outside search Inside search Outside search

Tabu List

Size

Fixed : 3

Variable :

-initial : 3

-decreased : 2

-increased : 4

Fixed : 1

No Variable :

Fixed : 8

Variable :

-initial : 8

-decreased : 6

-increased : 10

Fixed : 2

Variable :

-initial : 2

-decreased : 1

-increased : 3

Fixed : 16

Variable :

-initial :16

-decreased : 12

-increased : 20

Fixed : 4

Variable :

-initial :4

-decreased : 2

-increased : 5

Number of

Iterations w/o

Improvement

2 6 6 12 12 15

Number of

Restarts 2 2 2 2 2 2
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APPENDIX C.
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Table C.1 Results obtained for 3C*5P*4M problem structure (Single-row layout)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 145536 145536 145536 145536 145536 145536

Problem 2 150077 150077 150077 150077 150077 150077

Problem 3 53957.8 53957.8 53957.8 53957.8 53957.8 53957.8

Problem 4 95004.2 95004.2 95004.2 95004.2 95004.2 95004.2

Problem 5 173725 173725 173725 173725 173725 173725

Problem 6 128536 128536 128536 128536 128536 128536

Problem 7 77934 77934 77934 77934 77934 77934

Problem 8 87156.5 87156.5 87156.5 87156.5 87156.5 87156.5

Problem 9 81117.6 81117.6 81117.6 81117.6 81117.6 81117.6

Problem 10 81920.8 81920.8 81920.8 81920.8 81920.8 81920.8

Problem 11 26475 26475 26475 26475 26475 26475

Problem 12 3134 3134 3134 3134 3134 3134

Avg. Total Savings 92047.83 92047.83 92047.83 92047.83 92047.83 92047.83

CPU Time (sec)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 0.1 0.3 0.3 0.1 0.3 0.3

Problem 2 0.3 0.6 0.5 0.2 0.4 0.4

Problem 3 0.2 0.6 0.6 0.3 0.7 0.6

Problem 4 0.2 0.7 0.4 0.2 0.5 0.4

Problem 5 0.1 0.3 0.2 0.1 0.3 0.3

Problem 6 0.1 0.1 0.2 0.2 0.3 0.3

Problem 7 1 1.4 1.4 0.3 0.5 0.5

Problem 8 0.1 0.3 0.3 0.2 0.3 0.3

Problem 9 0.5 1 0.7 0.2 0.4 0.5

Problem 10 0.2 0.4 0.4 0.2 0.5 0.4

Problem 11 0.2 0.9 0.4 0.2 0.4 0.4

Problem 12 0.1 0.3 0.2 0.2 0.4 0.5
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Table C.2 Results obtained for 3C*5P*4M problem structure (Double-row layout)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 145536 145536 145536 145536 145536 145536

Problem 2 150077 150077 150077 150077 150077 150077

Problem 3 53957.8 53957.8 53957.8 53957.8 53957.8 53957.8

Problem 4 95004.2 95004.2 95004.2 95004.2 95004.2 95004.2

Problem 5 173725 173725 173725 173725 173725 173725

Problem 6 128536 128536 128536 128536 128536 128536

Problem 7 77934 77934 77934 77934 77934 77934

Problem 8 87156.5 87156.5 87156.5 87156.5 87156.5 87156.5

Problem 9 81117.6 81117.6 81117.6 81117.6 81117.6 81117.6

Problem 10 81920.8 81920.8 81920.8 81920.8 81920.8 81920.8

Problem 11 26475 26475 26475 26475 26475 26475

Problem 12 3134 3134 3134 3134 3134 3134

Avg. Total Savings 92047.83 92047.83 92047.83 92047.83 92047.83 92047.83

CPU Time (sec)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 0.1 0.3 0.3 0.1 0.3 0.3

Problem 2 0.3 0.6 0.5 0.2 0.4 0.4

Problem 3 0.2 0.6 0.6 0.3 0.7 0.6

Problem 4 0.2 0.7 0.4 0.2 0.5 0.4

Problem 5 0.1 0.3 0.2 0.1 0.3 0.3

Problem 6 0.1 0.1 0.2 0.2 0.3 0.3

Problem 7 1 1.4 1.4 0.3 0.5 0.5

Problem 8 0.1 0.3 0.3 0.2 0.3 0.3

Problem 9 0.5 1 0.7 0.2 0.4 0.5

Problem 10 0.2 0.4 0.4 0.2 0.5 0.4

Problem 11 0.2 0.9 0.4 0.2 0.4 0.4

Problem 12 0.1 0.3 0.2 0.2 0.4 0.5
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Table C.3 Results obtained for 5C*13P*8M problem structure (Single-row
layout)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 348848 348848 348848 348848 348848 348848

Problem 2 370989 370989 370989 370989 370989 370989

Problem 3 226390 230229 226390 226390 230229 226390

Problem 4 260698 260698 260698 260698 260698 260698

Problem 5 487509 487509 487509 487509 487509 487509

Problem 6 203291 203291 203291 203291 203291 203291

Problem 7 335610 335610 335610 335610 335610 335610

Problem 8 366278 366278 366278 366278 366278 366278

Problem 9 305014 305014 305014 305014 305014 305014

Problem 10 197124 197124 197124 197124 197124 197124

Problem 11 275526 275526 275526 275526 275526 275526

Problem 12 214835 214835 214835 214835 214835 214835

Avg. Total Savings 299342.7 299662.6 299342.7 299342.7 299662.6 299342.7

CPU Time (h:mm:ss)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 00:00:29 00:02:40 00:01:35 00:01:18 00:06:26 00:03:45

Problem 2 00:00:39 00:46:47 00:43:26 00:02:26 00:07:28 00:05:55

Problem 3 00:29:23 02:40:07 02:31:10 00:02:29 00:07:47 00:06:52

Problem 4 00:00:48 00:39:25 00:50:17 00:02:21 00:07:13 00:07:54

Problem 5 00:21:06 02:41:41 02:12:41 00:01:36 00:05:09 00:05:7

Problem 6 00:00:46 00:06:59 00:01:43 00:01:25 00:04:50 00:03:45

Problem 7 00:46:50 03:17:48 04:25:16 00:02:12 00:08:12 00:07:8

Problem 8 00:25:35 00:25:35 01:43:41 00:02:17 00:06:27 00:05:57

Problem 9 00:59:20 03:32:58 04:08:09 00:02:41 00:08:24 00:09:30

Problem 10 00:00:36 02:31:53 02:13:58 00:01:59 00:09:07 00:06:42

Problem 11 00:34:40 02:36:55 03:35:08 00:01:52 00:05:05 00:05:44

Problem 12 00:10:36 01:17:40 01:45:01 00:02:18 00:06:10 00:04:44
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Table C.4 Results obtained for 5C*13P*8M problem structure (Double-row
layout)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 272863 272863 272863 272863 272863 272863

Problem 2 290454 290454 290454 290454 290454 290454

Problem 3 180132 168349 168349 183819 163409 163409

Problem 4 194690 194690 194690 209738 191942 191942

Problem 5 431089 431089 431089 415164 411975 411979

Problem 6 142321 142321 157791 153651 135041 135041

Problem 7 253860 253860 253860 267285 253860 253860

Problem 8 321688 321688 321688 321688 301668 301668

Problem 9 237998 237998 237998 253144 235399 235399

Problem 10 155264 155264 155264 155264 134315 133886

Problem 11 229683 222403 222403 229683 222403 222403

Problem 12 140670 140670 140670 154320 140670 140670

Avg. Total Savings 237559.3 235970.8 237259.9 242256.1 229499.9 229464.5

CPU Time (h:mm:ss)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 00:00:13 00:04:05 00:00:43 00:00:22 00:06:16 00:04:22

Problem 2 00:00:20 00:37:13 00:34:11 00:00:39 00:08:35 00:06:19

Problem 3 00:21:01 01:41:24 01:44:35 00:02:07 00:11:17 00:12:43

Problem 4 00:00:30 00:14:25 00:13:22 00:01:12 00:07:30 00:06:15

Problem 5 00:11:02 01:10:08 01:08:33 00:01:14 00:07:51 00:05:05

Problem 6 00:05:05 00:01:05 00:01:03 00:00:40 00:06:26 00:05:51

Problem 7 00:12:48 00:58:38 00:58:47 00:01:26 00:11:46 00:12:03

Problem 8 00:26:32 02:41:40 02:17:40 00:02:04 00:08:20 00:08:58

Problem 9 00:38:07 02:07:30 02:21:42 00:02:05 00:20:30 00:25:31

Problem 10 00:22:35 01:22:13 01:42:35 00:02:02 00:07:43 00:09:50

Problem 11 00:23:50 01:21:44 01:38:41 00:02:11 00:14:27 00:07:10

Problem 12 00:01:06 00:18:40 00:25:04 00:01:49 00:03:31 00:02:14
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Table C.5 Results obtained for 8C*27P*21M problem structure (Single-row
layout)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 1841090 1841090 1841090 1841090 1841090 1841090

Problem 2 1446440 1446440 1446440 1446440 1446440 1446440

Problem 3 1284850 1284850 1284850 1284850 1284850 1284850

Problem 4 1213520 1216980 1213520 1215610 1217280 1215610

Problem 5 1801680 1801680 1801680 1801680 1801680 1801680

Problem 6 1887450 1887450 1887450 1887450 1887450 1887450

Problem 7 1319400 1319400 1319400 1318950 1318950 1318950

Problem 8 1356710 1359400 1356710 1359440 1359440 1359440

Problem 9 1313420 1319270 1330070 1295230 1322570 1334590

Problem 10 1242500 1246140 1242500 1242500 1246140 1242500

Problem 11 1147200 1147200 1147200 1147200 1149040 1147200

Problem 12 101900 101900 101900 1018850 1019000 1018850

Avg. Total Savings 1329680 1330983 1331068 1404941 1407828 1408221

CPU Time (h:mm:ss)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 1:43:47 10:18:47 8:04:16 2:02:39 15:45:06 13:12:22

Problem 2 1:58:01 13:29:32 12:11:31 1:59:36 15:18:34 14:22:52

Problem 3 2:42:37 13:11:39 11:09:27 2:12:11 13:13:20 8:13:29

Problem 4 1:46:44 10:24:52 10:51:01 1:20:54 8:16:28 10:01:19

Problem 5 1:55:11 10:39:25 7:59:30 1:58:41 14:50:28 10:22:21

Problem 6 1:55:50 6:47:12 9:50:40 1:37:23 14:18:38 14:54:42

Problem 7 1:52:28 9:54:36 10:17:53 2:24:24 9:42:42 16:15:43

Problem 8 2:04:18 13:16:56 13:07:20 2:08:55 12:12:23 13:19:00

Problem 9 1:44:17 10:54:51 13:54:12 1:45:32 10:48:35 15:23:35

Problem 10 1:47:04 11:05:45 11:40:27 1:53:27 11:30:56 12:14:18

Problem 11 1:35:00 13:09:55 9:17:29 2:09:10 11:33:09 11:09:25

Problem 12 2:09:44 11:43:22 10:18:16 1:33:05 13:17:42 11:59:21
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Table C.6 Results obtained for 8C*27P*21M problem structure (Double-row
layout)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 1435230 1435230 1435230 1466110 1305410 1309410

Problem 2 986720 1039820 1001370 988407 911592 910717

Problem 3 925766 937772 925766 925766 824687 815958

Problem 4 845843 867843 845843 866812 760540 755151

Problem 5 1406280 1406280 1406280 1357600 1273860 1273860

Problem 6 1477080 1508020 1491180 1477080 1384640 1380650

Problem 7 964049 966324 964049 917428 855921 831910

Problem 8 992869 1021830 996716 992869 909507 891799

Problem 9 924527 940431 924284 892768 834855 831368

Problem 10 928893 932645 928893 929907 835679 826406

Problem 11 793206 766577 793206 766001 689710 687855

Problem 12 641654 677929 648024 638113 594065 588048

Avg. Total Savings 1026843 1041725 1030070 1018238 931705.5 925261

CPU Time (h:mm:ss)

TSH 1 TSH 2 TSH 3 TSH 4 TSH 5 TSH 6

Problem 1 1:19:30 10:06:29 8:12:39 1:13:40 10:30:24 9:47:22

Problem 2 1:39:29 7:56:32 10:16:35 1:23:35 11:03:38 9:35:29

Problem 3 1:46:38 11:45:51 9:31:58 1:49:57 7:02:06 8:24:39

Problem 4 1:11:43 8:38:09 6:10:55 1:14:46 5:37:22 7:09:38

Problem 5 1:04:37 9:57:47 10:06:26 1:16:07 11:43:13 10:53:06

Problem 6 1:00:05 7:52:21 7:46:33 1:12:31 6:29:02 8:10:50

Problem 7 1:05:46 9:25:17 7:19:44 1:20:58 10:22:06 8:15:59

Problem 8 1:25:24 6:37:09 7:53:18 1:22:58 10:47:26 8:32:06

Problem 9 1:12:43 4:14:42 7:21:39 0:56:51 8:04:25 7:43:07

Problem 10 1:14:05 8:44:18 7:27:11 1:17:21 8:53:42 7:17:17

Problem 11 1:30:42 7:16:39 5:37:24 1:10:36 6:51:13 6:35:59

Problem 12 1:15:01 7:11:18 6:47:37 1:13:34 7:10:40 7:59:35
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APPENDIX D.
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Table D.1 Results obtained from analysis of variance for 5C*13P*8M problem
structure (single-row layout)

Source of Variation Sum of
Squares

Degree of
Freedom

Mean Square F-ratio

MAIN EFFECTS
- Treatments (TSH) 1.63755e+06 5 327509 1

- Blocks (Problems) 4.96992e+11 11 4.51811e+10 137954

RESIDUAL (Error) 1.8013e+07 55 327509

TOTAL
(CORRECTED)

4.97012e+11 71

Contrast Differences LSD limits

TSH 1 - TSH 2 -319.917 468.214

TSH 1 - TSH 3 0 468.214

TSH 1 - TSH 4 0 468.214

TSH 1 - TSH 5 -319.917 468.214

TSH 1 - TSH 6 0 468.214

TSH 2 - TSH 3 319.917 468.214

TSH 2 - TSH 4 319.917 468.214

TSH 2 - TSH 5 0 468.214

TSH 2 - TSH 6 319.917 468.214

TSH 3 - TSH 4 0 468.214

TSH 3 - TSH 5 -319.917 468.214

TSH 3 - TSH 6 0 468.214

TSH 4 - TSH 5 -319.917 468.214

TSH 4 - TSH 6 0 468.214
TSH 5 - TSH 6 319.917 468.214
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Table D.2 Results obtained from analysis of variance for 5C*13P*8M problem
structure (double-row layout)

Source of Variation Sum of
Squares

Degree of
Freedom

Mean Square F-ratio

MAIN EFFECTS
- Treatments (TSH) 1.50559e+09 5 3.01117e+08 9.32654
- Blocks (Problems) 4.57555e+11 11 4.115959e+10 1288.35
RESIDUAL (Error) 1.77573e+09 55 3.22861e+07
TOTAL
(CORRECTED)

4.60837e+11 71

Contrast Differences LSD limits
TSH 1 - TSH 2 1588.58 4648.79
TSH 1 - TSH 3 299.417 4648.79
TSH 1 - TSH 4 -4696.75 4648.79
TSH 1 - TSH 5 8059.08 4648.79
TSH 1 - TSH 6 8094.83 4648.79
TSH 2 - TSH 3 -1289.17 4648.79
TSH 2 - TSH 4 -6285.33 4648.79
TSH 2 - TSH 5 6470.5 4648.79
TSH 2 - TSH 6 6506.25 4648.79
TSH 3 - TSH 4 -4996.17 4648.79
TSH 3 - TSH 5 7759.67 4648.79
TSH 3 - TSH 6 7795.42 4648.79
TSH 4 - TSH 5 12755.8 4648.79
TSH 4 - TSH 6 12791.6 4648.79
TSH 5 - TSH 6 35.75 4648.79
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Table D.3 Results obtained from analysis of variance for 8C*27P*21M problem
structure (single-row layout)

Source of Variation Sum of
Squares

Degree of
Freedom

Mean Square F-ratio

MAIN EFFECTS
- Treatments (TSH) 9.22896e+07 5 1.84579e+07 1.09586
- Blocks (Problems) 5.34201e+12 11 4.85637e+11 28832.6
RESIDUAL (Error) 9.26384e+08 55 1.63433e+07

TOTAL
(CORRECTED)

5.34303e+12 71

Contrast Differences LSD limits
TSH 1 - TSH 2 -1306.67 3357.74
TSH 1 - TSH 3 -1387.5 3357.74
TSH 1 - TSH 4 1189.17 3357.74
TSH 1 - TSH 5 -1697.5 3357.74
TSH 1 - TSH 6 -2115.83 3357.74
TSH 2 - TSH 3 -80.8333 3357.74
TSH 2 - TSH 4 2495.83 3357.74

TSH 2 - TSH 5 -390.833 3357.74

TSH 2 - TSH 6 -809.167 3357.74

TSH 3 TSH 4 2576.67 3357.74
TSH 3 - TSH 5 -310 3357.74

TSH 3 - TSH 6 -728.333 3357.74

TSH 4 - TSH 5 -2886.67 3357.74
TSH 4 - TSH 6 -3305 3357.74
TSH 5 - TSH 6 -418.333 3357.74
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Table D.4 Results obtained from analysis of variance for 8C*27P*21M problem
structure (double-row layout)

Source of Variation Sum of
Squares

Degree of
Freedom

Mean Square F-ratio

MAIN EFFECTS
- Treatments (TSH) 1.6495e+11 5 3.299e+10 2.80889

- Blocks (Problems) 4.73044e+12 11 4.3004e+11 36.6151

RESIDUAL (Error) 6.45967e+11 55 1.17449e+10

TOTAL
(CORRECTED)

5.54135e+12 71

Contrast Differences LSD limits

TSH 1 - TSH 2 -88886 88665.9

TSH 1 - TSH 3 -77231 88665.9

TSH 1 - TSH 4 -65400.2 88665.9

TSH 1 - TSH 5 20801 88665.9

TSH 1 - TSH 6 27578.1 88665.9

TSH 2 - TSH 3 11655 88665.9

TSH 2 - TSH 4 23485.8 88665.9

TSH 2 - TSH 5 109687 88665.9

TSH 2 - TSH 6 116464 88665.9

TSH 3 - TSH 4 11830.8 88665.9

TSH 3 - TSH 5 98032 88665.9

TSH 3 - TSH 6 104809 88665.9

TSH 4 - TSH 5 86201.2 88665.9

TSH 4 - TSH 6 92978.3 88665.9
TSH 5 - TSH 6 6777.08 88665.9
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APPENDIX E.1: PSEUDO CODE FOR TABU SEARCH-BASED HEURISTIC
ALGORITHM.

OUTSIDE SEARCH

Generate the initial cell locations configuration

Evaluate the total saving for the initial cell location configuration by Call subroutine (INSIDE SEARCH)

Initialize the outside candidate list (OCL) and the outside index list (OIL)

Initialize the outside long-term memory (OUT_LTM frequency matrix) // all heuristics except TSH 1 and TSH 4//

do

Initialize the outside tabu-list (out_tabu list)

do

{

Evaluate the cell locations seeds configuration

Evaluate the total saving for each cell locations seed configuration by Call subroutine (INSIDE

SEARCH)

Use the evaluated total saving to sort the seeds of cell location configuration in a non-decreasing

order

for ( all sorted cell location configuration seeds )

the best solution outside < 0

check against OCL

if (out_move status *tabu) or (out_move status = tabu but out_AL criteria is satisfied)

out_tabu list location of cell that was moved to the next adjacent position

OCL 4-- the current cell locations configuration

update out_AL

update OIL

update OUT_LTM frequency matrix // all heuristics except TSH 1 and TSH 4 //

if (there is an improvement in total saving)

Else

out_iter_w/o_improvement = 0

update best solution outside

out_iter_w/o_improvement = out_iter_w/o_improvement + 1

) while (out_iter_w/o_improvement < OIT)

Identify the new restart using OUT_LTM frequency matrix

) while ( the number of restart < 2)

// all heuristics except TSH 1 and TSH 4 //
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APPENDIX E.1: PSEUDO CODE FOR TABU SEARCH-BASED HEURISTIC
ALGORITHM (CONTINUED).

subroutine ( INSIDE SEARCH)

Generate the initial part options configuration by selecting the maximum contributing option for each bottleneck part

Evaluate the total saving for the initial part options configuration

Initialize the inside candidate list (ICL) and inside index list (IIL)

Initialize the inside long-term memory (IN_LTM frequency matrix) // all heuristics except TSH I and TSH 4 //

do

{

Initialize the inside tabu-list (in_tabu list)

do

{

Evaluate the part options seed configurations

Evaluate the total saving of each part options seed configuration

Use the evaluated total saving to sort the seeds of part options configuration in a non-decreasing

order

for (all sorted part option configuration seeds)

(

the best solution inside ( 0

Check against ICL

If (in_move status # tabu) or (in_move status = tabu but in_AL criteria is satisfied)

{

in_tabu list 4-- part and option that was moved

ICL < the current part option configuration

update the in_AL

}

Update IlL

Update IN_LTM frequency matrix

if (there is an improvement in total saving)

{

}

Else

{

in_iter w/o_improvement = 0

update best solution inside

// all heuristics except TSH I and TSH 4 //

in_iter_w/o_improvement = in_iter_w/o_improvement + 1

}

} while (in_iter_w/o_improvement < IIT)

Identify the new restart using IN_LTM frequency matrix

) while (the number of restart < 2)

Return: the best part option solution and corresponding total savings

// all heuristics except TSH 1 and TSH 4 //




