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PREFACE

In 1976, A. Granas, R.B. Guenther, and J.W. Lee wrote a paper

titled "On a Theorem of S. Bernstein" [6] in which they give conditions

for existence and uniqueness of solutions of certain ordinary differen-

tial equations. The problems considered formed a class of nonlinear

equations with Dirichlet, Neumann, Sturm-Liouville, or periodic boundary

conditions. In a subsequent paper [10] they present numerical methods

("shooting methods") for solving the Dirichlet, Neumann and Sturm-

Liouville problems; and gave proof that the methods converge. The case

of periodic boundary conditions was not considered in [10] although

this case is of considerable practical and theoretical importance.

Chapter Two of this thesis is concerned with the numerical aspects

of the periodic problem. Two numerical schemes are presented. The

first ("shooting") might be considered the most natural extension of

the methods used in [10]. The second, the technique of "quasilineari-

zation," is a scheme applicable to a wide variety of problems, although

it has not, to my knowledge, been applied to periodic boundary value

problems. In both cases, we prove that the methods converge under

suitable hypotheses; among them the hypotheses used in [6] to establish

existence and uniqueness of solutions. Finally, we do some numerical

experiments.

Chapter Three, "Bifurcation Theory," was motivated in part by an

informal seminar held in the spring of 1978 by John Lee, Ron Guenther,

and myself. There we considered several topics, among them the Euler

buckling beam problem and the degree theory of Krasnoselskii. We were



interested in showing basic facts about solutions of second order

boundary value problems involving a parameter.

Degree theory yields the results quickly, once the machinery is

set up. However, it seemed desirable to prove the results in an ele-

mentary fashion, relying only, if possible, on the basic theory of

ordinary differential equations.

Such a program is undertaken here. The approach is modeled, in

part, after a paper by Macki and Waltman [17]; but there are some major

differences. For one, the Macki and Waltman paper doesn't assume

uniqueness of initial value problems. We make this assumption, which

simplifies the proof greatly, and enables us to draw stronger conclu-

sions. In particular, we show that each bifurcating branch of solu-

tions forms a continuous curve, and we are able to make more definitive

statements about the initial "shape" of the curves. The exposition

here is indeed elementary: the major tools used are properties of

continuous functions, and some comparison theorems from ordinary

differential equations.
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BOUNDARY VALUE PROBLEMS AND BIFURCATION THEORY
FOR ORDINARY DIFFERENTIAL EQUATIONS

CHAPTER I. PRELIMINARIES

A. COMMENTS AND NOTATION

This paper will concern itself with finding the numerical solution

of second order nonlinear boundary value problems of the form:,

u" = f(t, u, u') on the finite closed interval [a, 13] where

f:[(1, x IRx IR ÷ IR is a continuous function.

A solution to such a problem is a real valued function u which is

twice differentiable on ja, M and satisfies the equation:

u"(t) = f(t, u(t), (t)) for each 'LE [a,

Also, u may be required to satisfy the additional (boundary)

conditions:

au(a) + eu'(a) + bu(0 + bsu'(0 = A

cu(a) + c'u'(a) + du(R) + d'ulW = B

ra a' b b'l
where rank L c c' d d'j = 2.

Special cases of the boundary conditions include:

initial conditions

Dirichlet boundary conditions

Neumann boundary conditions

: u(a) = A Le(a) = B

u(a) = A u(R) = B

: u'(a) = A u' (R) = B
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Sturm-Liouville boundary conditions: au(a) + a'u'(a) = 0

du(o) + d'u'(0) = 0

and periodic boundary conditions : u(a) = u(s) u'(a) =

u'

There are many excellent numerical schemes that provide

approximate solutions to problems with initial conditions. These

methods have the following characteristics: the interval [a, M is

partitioned by a finite set of "grid" points a = to < t1<"- < tn =

and ti - ti_l, is called the i-th stepsize. Given the initial data

u(a) and u'(a), approximations to the solution u and its derivative u'

are generated at each of the grid points. The approximations yi and

yi to u(ti) and Le(ti) may depend only on the immediately preceding

approximations yi_i and 4_, (as in the Runge-Kutta method we used),

or they may depend on some or all of the preceding values

(yj, y)o<j<i_i, as in the "multi-step" methods.

In practice, the accuracy of the approximations depends on many

factors. Error is inherent: computing machines are unable to do real

number arithmetic with perfect precision; and since the number of grid

points is finite, the differential equation is only sampled at a finite

number of points. A common feature of useful algorithms is that if the

precision of computation is perfect, decreasing the stepsizes results

in better approximations to the true solution.

For a more thorough discussion, see [2].

Since we desire approximate numerical solutions to boundary value

problems, our philosophy is to somehow reduce such a problem to one or

more initial value problems, and then to use an initial value method
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to provide us with a solution.

The following notation will be used: Cn[a, 0] denotes the space

of n-times continuously differentiable functions on [a, 13]; C[a, N,

the continuous functions on [a, N. A lower subscript on a function

will indicate a differentiation.

For example, if f = f(t, u, u'), fu(t, u, u') = u, and

f
u
,(t, u, u') = u, u'). The norms to be used are the "usual"

au

ones:

On cn[a, a] we use

Iluii = max flu(t)1, lu
(n)

(01}
tekx,1

On Rn we use the Euclidean norm:

11(xl,'", Xn)11 x2 + + x2
1

The norm on a product AxB, where A and B are Banach spaces, will be:

11(a, b)11Axg max {IlallA9 11131113}'
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B. THEOREMS FROM ORDINARY DIFFERENTIAL EQUATIONS

The following definitions and theorems from the theory of

ordinary differential equations will be essential. They are stated in

the language of second order differential equations; in the terms that

they will be needed. (The results are usually stated in terms of a

first order system of differential equations. The transformation from

a second order equation to a first order system is straightforward

[7, 2b]). In what follows, f:fa, al x IL* IR is a continuous

function.

DEFINITION: f satisfies a Lipschitz condition in a region

Rcla, f3]x IR x IR if there is a constant k so that if (t, xi, yi),

(t, x2, Y2) ER, then If(t, x1, y1) f(t, x2, Y2)I < kixi x2I

klY1 Y2I.

DEFINITION: f is locally Lipschitz if f satisfies a Lipschitz

condition in some open neighborhood of each point in its domain.

REMARK: If f is continuously differentiable, then f is locally

Lipschitz [7, 2.3, Lemma I].

THEOREM A (Uniqueness): If f is locally Lipschitz, then there is

at most one solution to the problem

u" = f(t, u, U' ) U(t0) = X0 U' (to) = ao

PROOF: [7, 2.5, Theorem 31.

THEOREM B (Local Existence): Let f satisfy a Lipschitz condition

in R = [to, to + 6] x [xo - n, xo + n] X [ ao - n, ()to + n]
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Let M = (t,me c)eR{lf(t, x,a) I, lal}. Then there exists a solution

u of

u" = f(t, u, u- ) u(to) = xo u'(to) = ao

for tE[to, to + h] where h = min { e,

PROOF: [7, 2.5, Theorem 4].

THEOREM C (Existence of Maximal Solutions): Let f satisfy a local

Lipschitz condition in the region RC[tx, 13] x Rx R. If (to, xo,cto)ER

then the initial value problem

u" = f(t, u, u'). u(to) = X0 u'(to) = ao

has a unique solution u with maximal domain of definition (that is, no

other solution to the problem has a larger domain). Further, suppose

that the maximal solution u is defined on an interval with endpoints a

and b. Define the function p(t) to be the distance of the point

(t, u(t), u'(t)) to the boundary of R. Then either limp(t) = 0 or
t-*c

limIl(u(t), Le(t))11 = - for c = a and c = b.

PROOF: [7, 2.5, Theorem 11].

THEOREM D (Differentiable Dependence on Initial Conditions): Let

f be locally Lipschitz in the region Rc[a, x R x IR, and let u be

the uniquely defined solution with maximal domain to the initial value

problem

u" = f(t, u, u')

(to, xo, ao)ER.

U(to) = xo ) = ao
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Let the domain of u be the interval J and let [a, b] be any

closed subinterval of J containing to. Then there is an e > 0 such

that for every (t, x, a) such that II(t, x, a) - (to, xo, 040)11 < 6

there is a unique solution y of

u" = f(t, u, u') u(t) = x ut(t) = a,

whose domain contains [a, b]. Further, if f is continuously differen-

tiable, the function y will depend continuously and differentiably on

the initial condition (t, x, a).

PROOF: [7, 2.5, Theorem 9] .

THEOREM E (Differentiable Dependence on Initial Conditions and a

Parameter): Let g:[ a, x lR x itx A 4- Rbe continuously differen-

tiable where Ac Rn is an open set. Let u be the maximal solution to

u" = g(t, u, u', xo)

Xo EA.

U(to) = xo U'(to) = a0

Let the domain of u be the interval J and let [a, b] be a closed

subinterval of J containing to. Then there is an e > 0 so that if

II(t, x, a, X) - (to, X0, a0, a )11 < 6 there is a solution y of

u" = g(t, u, u', x) u(t) = x u'(t) = a AEA,

whose domain contains [a, bl. Further, y depends continuously and dif-

ferentiably on the initial conditions and parameter (t, x, a, x).

PROOF: [7, 2.5, Theorem 101.
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THEOREM F (Comparison Theorem): Let u and v be solutions to the

first order differential equations u'= g(t, u) vs = h(t, v),

respectively, where g(t, u) < h(t, u) for tE[a, a] and g or h satisfies

a Lipschitz condition. Let u(a) = v(a). Then u(t) < v(t) for all

tE[a, a].

PROOF: [4, 1.12].

COROLLARY F.1: In the previous theorem, if t1 > a, then either

u(t1) < v(t1) or u(t) v(t) for a < t < tl.

PROOF: [4, 1.12].

COROLLARY F.2: In the previous theorem, assume g. and h satisfy a

Lipschitz condition. If u(a) < v(a) then u(t) < v(t) for all

tE[a, a].

PROOF: [4, 1.12].

The main existence and uniqueness result for boundary value

problems to be used is an extension of a classical theorem by S.

Bernstein:

THEOREM G: Suppose f(t, u, u') is continuous in [a, a] x1RxR

and there is a constant M> 0 so that uf(t, u, 0) > 0 for lul > M.

Suppose further that If(t, u, u')I < A(t, u)u'2 + B(t, u) where

A, B > 0 are functions bounded for (t, u) in [a, (3] x [- M, M1. Then

the problems

u" = f(t, u, u') u(a) = u(s) = 0 (Dirichlet)

u" = f(t, u, u'( a) = u'(a) = 0 (Neumann)



8

u" = f(t, u, u') u(a) = u(s) us(a) = u'(f3) (periodic)

all have at least one solution. If in addition, fu and fupare bounded

and f
u
>0 then the solution of the Dirichlet problem is unique, and

any two solutions of the Neumann or the periodic problem differ by a

constant. Finally, if in addition to this, fu(to, u, u') > 0 for a

fixed t0 E[ci, then solutions to the Neumann and the periodic

problems are unique.

PROOF: [6].
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C. NEWTON'S METHOD

In this section we present one of our most important tools:

Newton's method--a scheme for finding the roots of a nonlinear equation.

We present it and its proof in a Banach space context, as we will need

it in this generality for some of the applications.

Let (A, II II) and (B, II
II) be Banach spaces, Dc A an open set

and F:D B continuously Frechet differentiable. Newton's method is an

iterative procedure used to solve the equation F(x) = 0. It works as

follows: an initial vector, xl, an approximation to the solution, is

guessed and a sequence is generated by solving the recursion formula

0 = F(xn) + F'(xn)(x11.4.1-xn) (1)

for x
n+1

in D. If {x
n
} converges to some vector xo in D, then (1)

reduces to F(x0) = 0, as desired.

The following convergence result will be used.

THEOREM H (Newton's Method): Let F:D c A B, as above. Assume

that F(x0) = 0, that F'(x0)-lexistsand is continuous, and that F' (x)

is continuous at xo. Then there is a d > 0 so that if 11x0 xill <6,

the Newton sequence x
n+i

= x
n

- F'(x
n

)

-1
F(x

n
) is well defined, and

converges to xo.

PROOF: Without loss of generality, we can assume x = 0 in the

proof. The main idea of the proof is to show that the function

G(x) = x - F
,

(x)
-1

F(x) is contractive in a certain ball centered at the

origin. First we show that the function

k(x) = x - F'(x)-1F(x) is 0(x), that is,
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that lim k(x)

11)(11'0 11x11

Write k(x) = 11x F1(x)-1F(x)I1

Ilx F1(0)-'F(x) + (F1(0)-1 - F'(x)-1)F(x)II

<1Ix - F1(0)-1F(x)11 +

11(F1(0)-1 - F1(X)-1)F(x)11,

and handle each piece separately.

First, Ilx - F1(0)-1F(x)11 is o(x):

since F(x) = F(0) + F1(0)x + o(x) = F1(0)x + o(x), it follows that

ilx F'(0)-1F(x)11 = Ilx F'(o)-1(Fi(o)x + 0(x))11

= Ilx - x + F1(0)-1o(x)11

= o(x),

since F1(0) is continuous.

Next, 11(F1(0)-1 - F1(x)- )F(x)I1 is o(x). Because F1(0)-1

exists, I is bounded in a neighborhood of 0, and

urn

0

_1

11
(F1(0) - F1(x)-1) = 0, by the continuity of

x11'

F1(x) at 0.

Thus k(x) = o(x) as asserted. It follows that there is a 61>0 so

that Ilx - F1(x)-1F(x) II<1/211x11 for 11x11<61. Let e>0 be so that

{x: 11x11<s}cD. (Recall that D, the domain of F, is open). Let 62 be

such that F1(x) 1 exists for 11x11<62. Now let S = min{c, S1, 62}.

For all xi such that Ilxi1l<6, the Newton sequence will be well

defined. Further, x
n

converges to 0 because
n -6

11)(111. Hence
2

the proof is complete.



11

DISCUSSION: To conclude then, if F is continuously

differentiable, the Newton sequence is well defined and will converge

to a solution of F(x) = 0 if

i) a solution yo of F(x) = 0 exists,

ii) r(y0)-1 exists and is continuous at yo,

iii) 11y0 - yill is sufficiently small, where yl is the

initial guess.

We will use Newton's method often. In each application, in order

to check that the method converges, we must address each of these

conditions.

To handle the first condition, that roots exist, we will need

existence (and uniqueness) results, such as THEOREM G. Finding good

first guesses--condition (iii) will be a problem, as we will see.

Estimates exist on "how close" is "close enough" but they are quite

unwieldy [9], [11].

Our "convergence" proof, then, will run along the following

lines: first, an existence theorem is used to conclude there are

solutions; second, we show that under suitable hypotheses condition

(ii) is satisfied, that is, that the relevant derivative is invertible

and finally, conclude that if our initial guess is close enough to a

root of F, the method will converge.

For a more complete discussion of Newton's method, as well as

many refinements, see [11].
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D. THE DIRICHLET PROBLEM

In this section we illustrate how Newton's method can be used to

help solve the kinds of problems we are interested in.

Suppose f:(a, x IR x IR IR is continuously differentiable

and that we want to numerically solve the Dirichlet problem:

u" = f(t, u, u') u(a) = 0 u(s) =

Suppose that a unique solution, u(t), to this problem exists. We

could, for example, assume the hypotheses of THEOREM G.

If we knew u'(a) (or u'W), then we could use an initial value

method to compute u(t). The plan then, is to somehow compute u'( ),

the missing initial condition.

First, let y(t, a) be the unique maximal solution (THEOREM C) to

the initial value problem

u" = f(t, u, u u(a) = 0 u'(a) = a

Now let h(a) = y(f3, a), if it exists, i.e., if the solution

y(t, a) is defined on the entire interval [ a, 13]. By THEOREM D it

follows that h is a differentiable function with an open domain.

Further, since the Dirichlet problem has a unique solution, h has a

unique root, namely, u'(a). To determine this root we apply Newton's

method to the function h and form the sequence

h(a
n

)

a
n+1

= a
n h'(an)

where al is our initial guess, or "shooting slope." We then iterate

until Ih(a
n

)1 is less than a prescribed tolerance.



13

Note that hi(an) = ya(a, an), where ya(t, an) solves the

differential equation:

ya (t, an) = fu(t, y(t, an), ys(t, an))Ya(t, an) +

fu, (t, y(t, an), yr(t, an))y;(t, an)

ya(a, an) = 0 y;( , an) = 1

So for each iteration, we are required to solve two initial value

problems. A linear one-to determine y
a
(a, a

n
) = hi(a

n
), and a non-

linear one to determine h(a
n

) = y(a, an).

Now we must consider the problem of whether the sequence is well

defined, and if it converges to a solution. Note that THEOREM G gives

us conditions on f so that a unique solution to the Dirichlet problem

exists. In [10], it is shown that under the same hypotheses, condition

(ii) of Section C is fulfilled: that the relevant derivative is

invertible. Here we require that h'(a) 0, where a is the correct

initial slope. So, we are assured convergence as long as the initial

guess is close enough.

If the initial guess is not close enough the Newton sequence may

not converge and may not even be defined. To carry out the iterative

step, recall that an must be in the domain of h and h'(an) O. Here,

a
n
not in the domain of h means that the solution of the initial value

problem

u" = f(t, u, u u(a) = 0 u'(a) = a
n

doesn't extend across the interval [a, ffl. See [10] for an example.

This method can be modified to handle other boundary value

problems, such as Neumann or Sturm-Liouville. In each of these cases,
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we are missing a single initial condition--the root of an appropriately

defined real valued function. We then use Newton's method to find it.

For a discussion, see [10].



CHAPTER II. THE PERIODIC PROBLEM

A. INTRODUCTION

In this chapter we consider two methods to solve the periodic

problem:

u" = f(t, u, u') u(a) = u(s) u'( a) = u'(3)

15

The first,which I call "shooting;' is a natural extension of the

method used in the last chapter to solve the Dirichlet problem. Next,

a technique known as quasilinearization is introduced. It is a method

applicable to a wide range of boundary value problems, but we use it

only for the problem at hand, the periodic problem. We show that in

each case, with the hypotheses of THEOREM G, the methods converge;

given, as always, a sufficiently good first guess.

In the last section of this chapter we present some numerical

results and draw some interesting conclusions.



B. THE SHOOTING METHOD FOR PERIODIC PROBLEMS

Here we present a method to solve the periodic boundary value

problem

16

u" = f(t, u, u') u(a) = u(s) u'(a) = u'(fi) (1)

where fi[ a, 13] x Rx FR -> Ris continuously differentiable. For now,

assume there exists a unique solution to this problem. Let u(t, x, a)

be the unique maximal solution (THEOREM C) to the initial value

problem

u" = f(t, u, u(a) = x u'(a) = a (2)

Now define the functions g and h by:

g(t, x, a) = u(t, x, a) - x

h(t, x, a) = u'(t, x, a) - a

g(13, ) and h(o, ) are continuously differentiable

functions with a common open domain Dc R2 (THEOREM D). D is non-

empty because (1) is assumed solvable. Finding a solution to the

periodic problem (1) is equivalent to finding a point (x, a)ED for

which g(f3, x, a) = h(f3, x, a) = 0. Finally, define F:Dc R2 /R2 by

F(x, a) =1:9(13,

x, a)]

h(13, x, a)]

F is continuously differentiable because g and h are.

Now apply Newton's method to the function F. The Newton sequence

becomes:
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[x
n+1'

a
n+1

] = [x
n'

a
n

] - F1(x
n'

a
n

) F(x
n'

a
n

) (3)

or, explicitly:

[x =
1

h
a

-g
a
g

a ] [x
an]n+1' n+1 n' n

]

gxha -h
x
g
a -h g

x
h (4)

where each function is evaluated at (3, xn, an ).

Note that

gx(t, x, a) = ux(t, x, a) - 1

g
a
(t, x, a) = u

a
(t, x, a)

hx(t, x, a) = u'x(t, x, a)

halt, x, a) = u'a(t, x, a) - 1

and that ux(t, x, a) and ua(t, x, a) are both solutions of the

differential equation:

v"(t) = fu(t, u(t, x, a), u'(t, x, a))v(t) +

f,(t,u'(t, x, a), u'(t, x, a))v'(t)

These solutions statisfy the initial conditions:

(5)

U
x
(a, x, a) = 1 u ; (a, x, a) = 0 (a)

u
a
(a, x, a) = 0 uia (a, x, a) = 1 (b)

respectively.

To solve the boundary value problem (1), we guess the initial

conditions of a solution, (xl, al). We then solve three initial value

problems: (2), (5a) and (5b) by a suitable initial value method.

Finally, we update our guess by the Newton method (3) or (4) to
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generate a sequence (xn, an) . We repeat this procedure until

g(fi, xn, an) and h(B, xn, an) are "sufficiently small." (In our numer-

ical work, "sufficiently small" meant that Ig(s, xn, an)) +

Ih(N, xn, an)1 < 10-7). We then take our most recent solution to (2),

u(t, xn, an) to be our computed solution to (1).

REMARK: If f is linear (that is, if f(t, u, u') = p(t)u +

q(t)u' + r(t)) then it is an easy but annoying calculation to show that

Newton's method will converge in one step regardless of the initial

data.
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C. CONVERGENCE OF THE SHOOTING METHOD

If we assume the hypotheses of THEOREM G, we know that the

periodic problem of the last section has a unique solution. In this

section we prove that under the same hypotheses the relevant derivative

in Newton's method is invertible near the "answer." That is, we show

that gx((3, xo, ao)ha(f3, xo, ao) - hx(I3, xo, ao)gaN, xo, ao) # 0,

where (x0, a0) is the initial data satisifed by the unique solution to

(1).

From these facts and the discussion in Chapter I, Section C, we

conclude that if we can find a good first guess, the foregoing scheme

will converge. In the proof, we will retain the notation of the pre-

vious section.

THEOREM 1: Let f:[a, f3]xIRxIR .+1R be continuously

differentiable, fu(t, u, p) > 0 and fu(to, u, p) > 0 for a fixed

tdE[a, 0]. Then if (xo, adED (the domain of F),

gx(f3, xo, ao)ha(, xo, ao) ga(13, xo, ao)hx(13, xo, ao) < 0.

PROOF: Let u be the solution of

u" = f(t, u, u u(a) = xo up(a) = ao.

Note that u is defined on [a, 0 because (x0, adED.

Define A(t) by

a(t) = (ux(t) - 1)(u;(t) - 1) - u)'((t)ua(t)

= ux(t)u;(t) - u;((t)ua(t) - u;(t) - ux(t) + 1

That is, A(t) = gxha - gahx evaluated at (t, xo, ao); see (B.4) above.
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Now define W(t) by

W(t) = ux(t)q(t) - u;((t)ua(t).

Observe that W(t) is the Wronskian of the two solutions u
a
(t) and

ux(t) to (5).

We have:

A(t) = W(t) - ua(t) - ux(t) + 1

I claim that A(t) < 0 for t > t1, where t1 is defined by

t1 = inf ft:fu(t, u(t), u'(t)) > 0},
tE[ a, NI

and the infinium is well defined and less than 12, by the hypotheses of

the theorem.

Once this is shown, A(3) < 0, and the result follows. The claim

follows from two facts:

i) - ux(t) + 1 < 0 for tekx, 131

ii) W(t) - ua(t) < 0 for t > t1.

To verify (i) we must check that ux(t) > 1 for tE[a, N. Recall

that u
x
satisfies the initial value problem

u;((t) = fu(t, u(t), u'(t))ux(t) + fu,(t, u(t), Le(t))Wx(t)

ux(a) = 1 Lx(a) = 0

If u
x
is not always greater than or equal to 1, by continuity

there must be a point t2 so that ux(t) > 0 for te[a, tj and

u
x
(t2) < I.
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Now define

z(t) = el(t-a) - 1 where i= max { fu, (t, u(t), us(t)), 01+ 1,

te[

which is well defined since f is continuously differentiable.

Note that z(t) > 0 for t > a, and z " - fu, Ei = y2eY(t-a) -

f ,ye
y(t-a)

> 0.

Now let

1-ux(t2)

At) = ux(t) + ez(t), where 0 < E <
z(t2)

.

y is positive on [a, t2] since z(t) > 0 implies y(t) > u
x
(t) > 0 for

tqa, t2] . Also,

ux" - feux, faux > 0 on [ a, t2] , because

fu > 0 and ux > 0 there; it follows that

Y" fu'y
0.

Hence, y cannot have an interior positive maximum (as y" > 0

whenever y' = 0). Thus, y attains its maximum either at a or t2,

since y is positive on [ a, t2] . But,

y(a) = ux(a) = 1 and

Y(t2) = ux(t2) ez(t2)

1-u,)

(t2)

<u
x
(t2) z(t2) Z(t2)

<1

This shows that y achieves its maximum at t = a and so

y' (a) < 0. But y'( a) = ux' (a) + '(a) = 0 + ey > 0, a contradiction,
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which establishes inequality (i).

Now to verify (ii). First of all, the Wronskian W(t) satisfies

the initial value problem

W'(t) = fu,(t, u(t), u'(t))W(t) W(a) = I.

See [4, 2.3], or verify it directly.

Since u
a

satisfies the differential equation:

ua(t) = f
u a
(t, u, u')u

a
(t) + f

u
,(t, u, u')u'(t)

u
a
(a) = 0 ua( a) = 1,

ua will solve the initial value problem:

(ua)' = fus(t, u(t), u'(t))ua + k(t) ua(a) = 1,

where k(t) = fu(t, u, u')ua.

I claim, first of all, that ua > 0 for tE[a, ffl, so that

k(t) > O. This is so because u
a
> 0 in a deleted neighborhood of a

by the initial conditions, and for ua to return to 0 would imply the

existence of a local positive maximum, a contradiction as before (as

u"
a

> 0 whenever u'
a

= 0). Hence k(t) > 0, and so by a standard compar-

ison theorem (THEOREM F), ua(t) > W(t). Furthermore k(t) > 0 for

tE(t1, t1 + 6) for some d > 0, and so by Corollary F.1, ua(t) > W(t)

for t > t1. Hence the proof is complete.

We now present the main theorem of this section.

THEOREM 2: Assume

i) f is continuous in [a, OxIRxIRand there is a constant

M > 0 so that uf(t, u, 0) > 0 for lul > M.
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ii) If(t, u, u')1 < A(t, u)e2 + B(t, u) where A, B > 0 are

functions bounded for (t, u) in [a, a] x [ - M, M].

iii) fu and areare bounded, fu > 0 and fu(t , u, u 0 for a

fixed toEia, J.

Then the problem

u" = f(t, u, u') u(a) = u(s) ) = u'(a)

has a unique solution y. Further there is an E > 0 such that if

'xi y(a)1 lal Y'(a)I < E then the sequence defined by equation

(8.4) is well defined and (x
n'

a
n
) will converge to (y(a), y'( a)).

PROOF: The hypotheses are the hypotheses of THEOREM G, hence

the existence and uniqueness of a solution to the periodic problem is

assured. By THEOREM 1, the relevant derivative in Newton's method is

invertible. Finally, the existence of e is guaranteed by THEOREM H.
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D. QUASILINEARIZATION

In this section we present a numerical technique known as

quasilinearization, a method applicable to a large variety of boundary

value problems. The technique is actually a clever use of Newton's

method, and we will see that it will converge in the case of periodic

boundary conditions.

Suppose f:[ a, B] x ]R x ]R ±R is continuously differentiable and

that we wish to solve

u" = f(t, u, u') uEBC[a, 131nC2[a,, B] (1)

where BC[a, 13] denotes a space of functions on [a, 13] that satisfy

certain boundary conditions: Let Bi, B2:C2[a, Bl -*]t be continuously

differentiable functions and N(Bi) = {uEC2[a, B1 Bi(u) = 01. Then

BC[a, 13] = N(B1)nN(B2).

This framework contains all the boundary value problems mentioned

above as well as many more. (For example, if we wish to consider a

problem with Sturm-Liouville boundary conditions, we let

B1(u) = au(a) + a' u' (a) and B2(u) = du(B) + d' u' (B)). In particular,

we include the possibility of nonlinear, inhomogeneous boundary

conditions.

Now define the function

F:C2[a, B1 C[a, (3] x lR x]R by

F(u) = (u" - f(t, u, ), B1(u), B2(u)) (2)
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Since solutions of (1) are precisely the roots of F, Newton's

method may apply. We start with a vector u1EC2Ect, f31 and try to solve

0 = F(un) + Flun)(un+1 -

for u
n+1

GC2[0t,

Since

F'(u)h = (h" - fu(t, u, u')h - fu(t, u, u')h', B1( )h, B;( )h),

solving (3) is equivalent to solving the differential equation:

0 = un - f(t, un, un) + (un+, - un)"

fu(t, un, ic1)(un.4.1 - un) - fu,(t, un, ul'i)(un+1 - un)'

with the boundary conditions:

0 = B1(un) + BI(un)(un+1 - un)

0 = B2(un) + B(Un)(un+1 - un)

or, rewriting (4):

n+1 = fu(t' un, )U+1 + fu, (t, un, udul14.1 +

f(t, un u1) - fu(t, un, u'n)Un - fu,(t, u ,.usn)Un

(3)

(4)

(5)

(6)

(7)

Note that the differential equation (7), taken together with the

boundary conditions (5) and (6) form a linear problem for un+1
for

each n. Solution of linear problems is straightforward, see Section F.

Also note that if u
n
converges to some function uo, equation (3)

implies that F(uo) = 0, so uo is a solution to (1), as desired.



REMARKS: If B1 and B2 are linear, as they will be in many of

the problems we consider, equations (5) and (6) reduce to

Bi(un+1) = 0

B2(u0.1) = 0

26

(8)

(9)

Finally, if in addition, f is linear, the problem defined by

equation (7) together with boundary conditions (8) and (9) is identical

to the original problem (equation 1), and so the method will converge

in a single step for any initial guess u1.
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E. CONVERGENCE OF QUASILINEARIZATION

To insure convergence of the preceding scheme we must consider

the three conditions given in the discussion of Newton's method at the

end of Chapter 1, Section C. Suppose that F(u0) = 0, and consider the

question of whether F' (uo)- sexists. Since in our case Fs(uo) is a

linear differential operator, if FI(u0) is one-to-one then F1(4)-1

will exist and be continuous. (In fact, F'(u0)-1 will be given by a

Green's function [4, 10.15] and so will be a compact linear operator).

Hence to verify the existence and continuity of r(uo) we must check

that the only solution to the equation F'(uo)h = 0 is the solution

h E O.

Explicitly we require that the problem

h" = fu(t, uo, .116)h + fu,(t, uo, u6)111

with the boundary conditions:

Bi(uo)h = 0 13(uo)h = 0

( 1 )

has only the zero solution. We state below two important boundary

value problems for which this is the case. Our first example is based

on the following theorem from ordinary differential equations.

THEOREM I: Let f:[a, alxRx[R÷Rsatisfy the condition

If(t, u1, Pi) f(t, u2, P2)I < Klul u2I + LIN p21 where K, L > 0

8
are constants so that 1((-a)2 + L(-a2 ) < 1. Then the Dirichlet

problem

u" = f(t, u, u'). u(a) = A u(s) = B
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has a unique solution.

PROOF: [3, 1.1.1].

As a consequence, we deduce:

THEOREM 3: Let f be as in the preceding theorem. Then the

Dirichlet problem u" = f(t, u, u' ) u(a) = A u(s) = B has a

unique solution uo. Further, there is an E > 0 so that if

uoll < c, the sequence un given by equation (D.3) is well

defined and will converge to uo.

PROOF: The proof is immediate in view of the remarks at the

beginning of this section. We need only check that

h" = fu(t, uo, uflh + fu,(t, u , ulDh'

h(a) = h(s) = 0 (2)

has only the zero solution.

But Ifu(t, uo, 14)1 < K and Ifu,(t, uo, 4)1 < L where K, L are

as in THEOREM I, and so the solution to (2) is unique, by THEOREM I.

Finally, convergence for the periodic problem is assured by the

following theorem:

THEOREM 4: Let f satisfy the hypotheses of THEOREM G. Then the

Dirichlet, Neumann, and periodic problems:

u" = f(t, u, u') u(a) = u(s) = 0

u" = f(t, u, u'). u'(a) = u'(a) = 0

u" = f(t, u, u') u(a) = u(a) u'(a) = u'(a)
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all have unique solutions. Let uo be the unique solution to any one of

these problems. Then there is an e > 0 so that if II ui - uo II Es

the sequence generated by equation (3) is well defined, and un will

converge to uo.

PROOF: THEOREM G guarantees the existence and uniqueness of the

solutions. We need only check that the only solution of

h" =
u
(t, uo, uDh + f

u
(t, uo, IJO)h'

with the specified boundary conditions is h = 0. It is shown in

[10, 5.3] that this is the case.



30

F. LINEAR PROBLEMS WITH PERIODIC
BOUNDARY CONDITIONS

To solve a nonlinear boundary value problem with periodic boundary

conditions, the method of quasilinearization requires us to solve a

sequence of linear differential equations with periodic boundary condi-

tions. In this section we outline a method to accomplish this task.

Other boundary conditions are handled similarly.

Suppose we wish to solve

h"(t) + p(t)u'(t) + q(t)u(t) = r(t)

u(a) = u(f3) u'( a) = ut(f3) (1)

where p, q, r are continuous functions on [a,

Let:

vl solve the problem u" + p(t)u' + q(t)u = 0

u(a) = 1 u'( a) = 0

v2 solve the problem u" + p(t)u' + q(t)u = 0

U(a) = 0 Ui(a) = 1

w solve the problem u" + p(t)u' + q(t)u = r(t)

U(a) = 0 le(a) = 0

Taking advantage of the linearity, we see that the general

solution of (1) is of the form 11)(0 = w(t) + xvi(t) + yv2(t)

x, yE R.

We must choose x and y so that 1p satisfies the boundary conditions.

Letting:



we want

a = v1((i) b = v2(13) c = w(13)

a' = vi(s) b' = v2(s) c' = w'($)

Act) = x = C + xa + yb =

4),(.) = y = c' + xa' + yb' =

Solving for x and y, we get:

(a - 1) x + by = - c

a x + (b' - 1)y = - c' or

b' 1.j

a -1 xl

a

=

Now letting A = (a - 1)(b' - 1) -

_y_,

1
- 1 -b

= _ _

- a' a bi

x = (c + bc' - cbTA

Y = (c' + a' - c'a)/A

Cl
cd
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Note that A = A(1) of Section C. In particular, if the hypotheses

of THEOREM 1 are satisfied, A # 0.



G. NUMERICAL RESULTS

The two numerical methods outlined for solving differential

equations with periodic boundary conditions, "shooting" and "quasi-

linearization," were programmed in FORTRAN and a number of examples

were run on the CYBER 70 machine at OSU. Plots 1, 2 and 3 were done

with the GERBER plotter. The initial value method used is the clas-

sical RUNGE-KUTTA method of order four [2, 2.4].

Recall that with "shooting" we keep iterating until

lunM - un(a)I and lu,;(5) - u111(a)1 are both "sufficiently small."

Sufficiently small here means that

lun u (n 0)1 + !LIU - us(a)I < 10
-7

If we reach this point, the method has "converged" and we stop.

In the case of quasilinearization, convergence is taken to mean

that

max{lu_i_1(ti) - un(ti)I, - u;1(ti)I} < 10
_7

,

t. "
1
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where ti . is the set of grid points.

In each example, unless noted, our initial guess is ul E 0 for

quasilinearization and ul(a) = 0 u1( a) = 0 for "shooting." The

total central processor time used per problem depended on the complex-

ity of the function f, the number of grid points used, and the number

of iterations. (We used 50 evenly spaced grid points for all examples

except for Plot 3, where we used 100). Typical central processor time

per iteration with 50 grid points was around .5 seconds.
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EXAMPLE 1. (See Plot 1).

u" = - 6u - 120(t - 1)3 + 24 with periodic boundary conditions on

[0, 21.

This linear problem has the explicit solution u(t) = - 20t3 +

20t + 4.

For this problem, as with all the linear problems run, both

methods converged in one iteration, as theoretically they must.

EXAMPLE 2. u" = .1u - sinh(u') - .95 with periodic boundary

conditions on [- 1, 1].

This problem has the unique (by THEOREM G) solution u E 9.5

Here, quasilinearization converged in a single step, and shooting

required three steps.

EXAMPLE 3: (See Plot 2)

u" = 2(t2 tan(t) - u)(u' - 2t tan(t) + 1) + 4t sec2t

with periodic boundary conditions on [- 1, 1]. This nonlinear

problem has the explicit solution

u(t) = (t2 - 1)tan(t).

Quasilinearization converged in four iterations. Shooting failed

to converge with zero initial data and even with the seemingly very

good initial data ul(-1) = 0 ul(-1) = 3.2. It did converge

after three iterations with the initial data ul(-1) = 0

ul(-1) = 3.12. The true initial slope a satisfies 3.11 < a < 3.12.
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-5.00

.75 1.00 1.25 1.50 1.75 2.00

PLOT 1.

THE SOLUTION OF
U"=-S*U-120(T-1)**3+24
ON [0,22 BY NEWTONS METHODx"s m RK THE TRUE SOLUTION

PLOT 2.

THE SOLUTION OF
U"=2*(T*TTAN(T)-U)*(U' -20TTAN(T)+1)+4T*SEC(T)**2
ON E-1.91.1 By OUASILINEARIZATION
X"S MARK THE TRUE SOLUTION
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EXAMPLE 4: (See Plot 3).

= u + log(u'2 + .001) + 500t5 - 100t4 + 70t3

with periodic boundary conditions on [- .75, 1]. No explicit solution

is known.

Plot 3 shows clearly how convergence of each method is taking

place. The v.'s are successive iterates of shooting, and the u.'s are

the iterates of quasilinearization. Note that each iterate of quasi-

linearization is periodic. After six iterations each (which the plot

doesn't show) the two computed solutions were in five place agreement,

and differed by less than 102 from u3.

NOTE: Quasilinearization failed to converge for this problem

when the interval .75, 1] was replaced with [- 1, 1].
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CHAPTER II. BIFURCATION THEORY

A. INTRODUCTION

To motivate the idea of bifurcation, consider the following

boundary value problem:

u" + Au = 0 u(0) = 0 u(1) = 0

It is easily seen that the solutions of u" + Au = 0 u(0) = 0

are precisely:

u(t) = a sin A t

u(t) = At

u(t) = Ae -At - Ae. -At

X>0

X=0

X<0
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where a, A E R. In order to satisfy the second boundary condition,

u(1) = 0; we must have that A = 0 or a sin VT= 0. To obtain non-

trivial solutions to the problem, then, we must choose A = (n7)2

n = 1, 2, 3. .... If we plot all such solution pairs (A, a) we obtain

the following diagram:

a

Figure 1.

92
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We see there is a "splitting" of solutions at the critical values

an = (nTr)2. For this reason, we call these points "branch points" or

"bifurcation points."

Bifurcation phenomena occur in many parts of physics. For

example, consider the Euler buckling beam problem. Here we have a uni-

form rod of length 1 pinned at its ends, and subjected to a given

compressive force. If we let v(s) be the height of the beam at arc

length s, then the beam will satisfy the following equilibrium equation

and boundary conditions:

v" + Av 1 - v'2 = 0 v(0) = 0 v(1) = 0

where A is proportional to the applied force.

v(s)

Figure 2.

FORCE

Note that v E 0 is a possible solution, the solution that

corresponds to no buckling. But intuitively, as well as analytically,

there are other solutions. Indeed, if we graph the possible solutions,

v(0) vs. A we obtain the following diagram (which we will justify

later).
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Figure 3.

4Tr
91T2

A

The similarity of the two examples should be striking. Note that

the branch points for the two problems are precisely the same. This

should not be surprising. For Ivil small, Ivy is also small. There-

fore one would expect the linear problem v" + Xv = 0 v(0) = v(1)= 0

to be a good approximation to the nonlinear problem v" + Xv 1 - v 2 = 0

v(0) = v(1) =0.

Another similarity, not evident from the pictures, is that in each

case, a point on the n-th branch (the branch emanating from (n702)

corresponds to a solution of its problem having n - 1 interior zeros

on [0, 11.

There are many approaches to bifurcation theory. Of note are:

Degree Theory [19], Liaupunov-Schmidt Theory [16], [201 and

Perterbation Theory [15], [20]. These theories are all quite general,

and for us, needlessly complicated.

We set our sights a little lower. We wish to obtain the major

results of bifurcation theory for a large class of physically important

problems, in as elementary (and painless) a fashion as possible.



40

In the next section we describe a fairly general setting for

bifurcation problems. We define what is meant by a branch point, and

present a theorem that gives us necessary conditions for branching.

To prove sufficient conditions, we must specialize the problem.
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B. SETTING

Let F:B x C be a continuous function, where (B,
11 1113) and

(C, 11 Ilc) are Banach spaces. Suppose F(0, A) = 0 for all AE1R.

DEFINITION: A is a branch point (or bifurcation point) for F if

there is a sequence (un, An) EB x R such that F(un, An) = 0,

An An, Ilunll 0 and Ilun11#0 for all n.

DEFINITION: A
o

is a strong branch point (or strong bifurcation

point) for F if there is a continuous curve y:(-c, ÷Bx Rsuch

that Y(t) = (u(t), A(t)), F(Y(t)) = 0, Y(0) = (0, A0), and Ilu(t)II#0

whenever t#0.

Suppose that F = F(u,A) is continuously Frechet differentiable

with respect to its first variable at the origin uniformly for A in a

bounded set. That is, we suppose F can be written as:

F(u, A) = L(u, A) + N(u, A)

where L(, A):B C is a continuous linear operator, A A) is

continuous, and N(u, A) satisfies

I IN(u,A)II

lim

uniformly for A in a bounded set. Then we have:

THEOREM 5: With F, L, and N as above, if L-1(, Ao) exists and is

continuous, then A0 is not a branch point for F.

PROOF: If A were a branch point for F, then by definition, there

would be a sequence (un, An)EB x so that F(u An) = 0, i.e.,
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L(un, An) + N(un, An) = 0.

If L-'(., Ao) exists, then L-'(, A) exists for all A sufficiently

close to A . Consequently, there is a n1 > 0 so that L
n
) exists

for all n > n1. So for sufficiently large n we have:

But

because

N(un, An) = L(un, An)

L
1

(N(u , An), An) = - un

-1(N(un, An), An)
11 II unll

Ilunll Ilu 11

IIL-1(N(un, An), An) II

IIL-1(N(un, An)' An)II < 1IL

IlunI1

IIN(u , A )11
,

and 111_-'(, An)II A0)11 as n ... This contradiction

proves the theorem.
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C. NONLINEAR STURM-LIOUVILLE PROBLEMS

Henceforth, we will consider the nonlinear eigenvalue problem:

- u"(x) + q(x)u(x) = A[a(x) - f(x, u(x), u'(x))]u(x) (1)

with the Sturm-Liouville boundary conditions:

aiu(0) + a2u'(0) = 0

biu(1) + b2u'(1) = 0

Unless stated to the contrary, we will assume that

(B.C.)

a) f: [0, xIx3+ IR is continuous, locally Lipschitz, and

f(x, 0, 0) = 0 (where I, J c1R are open intervals containing 0);

b) a and q are continuous real valued functions on [0, 1], and

a(x) > 0;

c) the linear problem - u" + qu = Aau with the boundary

conditions (B.C.) has an infinite number of simple eigenvalues

0 < X < XI < ... with lim A
n

= ... and such that the eigenfunction cor-

responding to
Ak

has k simple zeros in (0, 1).

A number of important remarks are in order: Hypotheses (a) and

(b) guarantee that solutions of initial value problems for (1) are

unique. Hypothesis (c), the assumptions on the linear eigenvalue

problem, hold for the classical Sturm-Liouville systems, see [4, 101.

Note that the hypotheses are satisfied by the problem of Euler

buckling, with q E 0, a E 1, f(x, u, 1 - 1 - u'2', and Dirichlet

boundary conditions.
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Finally, note that this problem fits into the framework of

Section B. Let F:C2[0, 1] x 1R C[0, 11 x ]R2 be defined by:

F(u, A) = (- u" + qu - Ma - flu, aiu(0) + a2e(0),

biu(1) + b2u'(1)).

Note that F(0, x) = 0 for all x and that F is continuously Frechet

differentiable with respect to its first argument at the origin pro-

vided f is continuously differentiable.

In this case:

L(u,A) = (- u" + qu - Aau, alu(0) + a2u'(0),

biu(1) + b2e(1))

and N(u,x) = F(u,x) - L(u,A). We claim that in this case, branching

for F can only occur at the eigenvalues {xi} of the linear problem:

If A #AJ. j = 1, 2, 3 ... , the linear problem L(u, x) = 0 has u = 0

as its only solution. Hence L(, x) is one-to-one and L-1(, A)

exists, is continuous, and is given by a Green's function [4, 10.15].

Hence, by THEOREM 5, A is not a branch point for F. (This result is

true even if f is not continuously differentiable, but merely locally

Lipschitz. The proof, in this more general case, relies on properties

of the function 8(1, ) which will be defined in the next section.

The result follows from LEMMA 3 of Section E).
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D. THE PRUFER SUBSTITUTION

We wish to study the nontrivial solutions to equation (1) by the

polar coordinate functions r and 8 defined (up to an additive multiple

of 27 in the case of 8) by the equations:

u(x) = r(x)cos8(x) (2)

u1(x) = r(x)sin0(x) (3)

We will derive a system of differential equations, satisfied by r

and 8, equivalent to equation (1) in the case of nontrivial solutions.

Note that if r(x0) = 0 then u(x0) = e(x0) = 0, and since solutions for

initial value problems for (1) are unique, this implies u E 0. Thus,

if u(x) is a nontrivial solution to (1), r(x)2 = u(x)2 + u'(x)2 never

vanishes.

Assume u(x) is a nontrivial solution to (1). Define

r(x) = Vu(x)2 + u'(x)2 or r(x) = - u(x)2 + u'(x)2 and then 8(x) is

defined by (2), mod 27. If we differentiate (2),

u' = r'cos8 - r'sin00' (4)

and so, by (3)

r'cos8 - rsin80' = rsine, or

r'cos8 = rsin001 + rsin8 (5)

6'rsin8 = r'cose - rsine (6)

so substituting into equation (1) we get,

-( 'sine + rcos801) + qrcose = - f]rcose (7)



46

cor
Multiplying (7) by

SO
and using (5), we can get a problem for 0:

- (ricosesiner
-1

+ cos200') + qcos20 = A[a - f]cos20

- ((rsin60' + rsinO)siner + cos200') = Ma - f]cos20-qcos20

(sin200' + cos200' + sin20) = Ma - f]cos20 - qcos20

0' = - sin20 - A[a - f(x, rcose, rsin6)]cos26 + qcos20 (8)

Multiplying (7) by sin °and using (6), we can get a problem for r:

- (r'sin20 + Crsinecos0) + qrsinecos0 = A[a - f]rsin0cos0

- (r'sin26 + (ricose - rsine)cos0) = Ma - flrsin0cos0 -

qrsinecose

- (rtsin26 + r'cos26 - rsinecos0) = Ma - f]rsin0cos0 -

qrsinecos0

r' = rsinecos6[1 + q - Ma - f(x, rcos0, rsin6)]] (9)

Since all the steps in the derivation of the system (8), (9) are

reversible when 00, a solution (r, 6) of the system (8), (9) with 00

gives a nontrivial solution u of equation (1) given by equation (2).

This solution also satisifes (3).

Now define:

a

arctan(-
a2

) a2 #0

2
a2=0



bi

arctan(- -67 ) - k7 b2#0

b2 =0
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where arctan takes values in (- , ).

If the functions r and 0 satisfy the system (8), (9) (with a

fixed A), are defined over [0, 1], and satisfy the boundary conditions

e(o) = a e(1) = Bk for some k; then u(x) = r(x)cos0(x) will satisfy

(1) as well as the Sturm-Liouville boundary conditions (B.C.).

From now on, fix the initial condition 0(0) = a. Our plan is to

find a nontrivial solution of (1) which satisfies the boundary condi-

tions (B.C.) by the following "shooting" method: we seek values

r(0) = po and 3 so that the initial value problem (8), (9) with A = A,

and initial conditions 0(0) =a, r(0) = po is such that its solution

extends across [0, 1] and also satisfies 0(1) = Bk for some integer k.

Note that such solutions can only exist for nonnegative k. Indeed

0(0) = a<7/2 and if 0(x0) = 7/2, then 0'(x0) = -1 by (8) so 0(x)<7/2

for all x. By the same argument, 6' = -1 whenever 0 = 7/2 - 1(7,

hence 0 is decreasing at the points 0 = 7/2 - 1(7. This observation

shows that if 0(1) = Bk then the function u defined by (2) has precisely

k interior zeros in [0, 1] .

To analyze the shooting method outlined above, we let 0(x, p, A),

r(x, p, A) be the unique maximal solution to the system (8), (9) which

satisfies the initial conditions 0(0) = a and r(0) = p. 0(x, p, A) and

r(x, p, A) are well defined because solutions to initial value problems
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for the system (8), (9) are unique.

Now set f = 0 in equations (8) and (9) to obtain the following

system:

= - sin2(ti - [Xa - q] cos211) (10)

p' = pcos4sinq[1 + q - Aa] (11)

This system is equivalent to the second order equation -v" + qv =

Aay. More precisely, if v(x) is a nontrivial solution to -v"(x) +

q(x)v(x) = Aa(x)v(x), then p(x) and q(x) defined by:

v(x) = p(x)cosq(x)

v1(x) = p(x)sinqi(x)

(12)

(13)

satisfy (10),(11) and p(x)#0. Conversely, if (10), (11) hold with

p(x)#0, then (12) defines a nontrivial solution to -v" + qv = Aay.

Furthermore, if we let p(x, x) be the solution of the initial

value problem defined by equation (10) with the initial condition

(A(0, A) = a; then q(x, A) = 0(x, 0, A). This follows from the unique-

ness of solutions to the initial value problem for the system (8), (9).

Clearly r(x, 0, A) E 0 satisfies (9) when p = 0 and then the differen-

tial equation (8) for 0(x, 0, A) is identical to (10), the equation for

(A(x, A), because f(x, 0, 0) = O. Since cb(0, A) = e(0, 0, A) = a, we

conclude that 0(x, 0, A) = (1)(x, A).

Since the system (10), (11) is linear, it has solutions which are

defined on [0, 1] regardless of the initial data. The domain of the

functions 0(1, -,.) and r(1, ) is an open subset of 322 by

THEOREM E. Since solutions of the system (10), (11) extend across

[0, 1], (A(1, A) = 0(1, 0, A) exists for all X; hence the domain of
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0(1, -, ) (and of r(1, -, )) contains the line p = 0, in the

4-plane.

Recall that by hypotheses (c), the linear problem -v" + qv = Xav

with the boundary conditions (B.C.) has a sequence of eigenvalues Xj

and eigenfunctions vi(x), j = 0, 1, 2, . It is a consequence of

the linear Sturm-Liouville theory that the j-th eigenfunction

1J 00=gx,XJ k00(x,XJ )ancthate(1,0,Xj ) = 4)(1, XJ ) = 3J -
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E. LOCAL BIFURCATION

In this section we prove our main result: solutions to the

nonlinear Sturm-Liouville problem (1), (B.C.) do bifurcate at the

critical values Ai. We will require the following three lemmas:

LEMMA 1: Suppose r(x, p, A) and 0(x, p, A) satisfy the system

(8), (9) with the initial conditions 0(0, p, A) = a r(0, p, A) = p.

Restrict A to lie in [0, Al. If e>0 there is a (S>0 so that if Ipl<6

then Ir(x, p, A)I<c for all xE[0, 11.

PROOF: Since the domains of e(1, ) and r(1, -) are open

and contain the line p = 0, by compactness there will be a 61>0 so that

r(1, p, X) exists for all Ipl<S1, AE[O, X*]. Since r(1, 0, A) = 0

for all A, the lemma follows from the uniform continuity of the func-

tion r(1, ) on [-SI, SI]x[0, X*].

LEMMA 2: The function 0(1, 0, A) = (1)(1, A) is strictly decreasing

in A. Furthermore, if f is continuously differentiable and A is

restricted to [0, Al then there is a 6>0 so that if Ipl<6 then

0(1, p, X) will be strictly decreasing in A as well.

PROOF: The first assertion follows directly from the comparison

theorem (THEOREM F). Hence we know that A(1, X)<0. To deduce the

second part, we want to show that the strict inequality (PA(1, A)<0 is

true. From this we deduce that if f is continuously differentiable,

0),(1, p, A) will exist and be continuous, and 02,(1, 0, A) = (px(1, A).

Hence by uniform continuity of 0x(1, ) there will be a 6>0 so that

A
(1, p, A)<0 for all (p, A)E[ -6, 61x[0, X*].
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(1) satisfies the equation:

(1);', = -2(PAsinq)cos,1[1 - as + q] - acos2q) (14)

with the initial condition (pA(0)= 0, as can be seen by differentiating (10).

Set r(x) = 2singx)cosgx)[1 - Xa(x) + q(x)]. We then have

(pi r (PA= -acos2q) (15)

x
I r(t)dt

Mulitplying (15) by the integrating factor e° , integrating, and

using the fact that q (0) = 0, we get:

X x

I r(t)dt I r(t)dt
(e° ci) A(x))' -a(x)cos24(x)e°

x x

X-f r(t)dt ( f r( s)ds

(I)

X
(x) = -e ° la(t)cos2(1)(t) ° dt.

)

0

Now, since a(x)>0 and cos2q(x) >0 almost everywhere, we get that

cpx (1)< 0, proving the result. (Note that cos2q(x) E 0 on some interval

would imply by (10) that (1)1(x) E 1 on this interval which is impossible).

LEMMA 3: If VA., there isa fl(X)>0 so that if Ipl<11 then

if x>x. o(1, p, x)q(1, xj) =

and if x<x. 0(1, 11, x) >q(1, xj) = 13j.

PROOF: The proof in both cases is similar, so suppose X<Xj. By

previous remarks, 0(1, ) is a continuous function with an open

domain D cR2 containing the line p = 0 (see Figure 4). By LEMMA 2,

0(1, 0, x) is strictly decreasing in A and so 0(1, 0, A)>0(1, 0, Xj) =

q(1, X.) =
J

By continuity of 0(1, -), there is an open ball BcD
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of radius 11(X)>0 about (0, X) so that 8(1, p, A)ni for each (p, A)EB.

Hence the result.

r(0)=p

Domain of
0(1, ,)

n( X)

0(1, P, A)nj;

Figure 4.

We now prove our main result:

THEOREM 6: For each j = 0, 1, 2, , there is a d(j)>0 so that

for Ipl<6(j) there is at least one solution A(p) of e(1, p, -) = (3j.

If, in addition, 0(1, p, A) is strictly decreasing in X for Ipl<6(j)

thereisauriquelYcleinedfunction.C(u), which is continuous, and

satisfies 0(1, p, Li(p)) = (3.j and Li (0) = A.

PROOF: (See Figure 5). Fix a A<X.
J

and T>x.. Take

0<(50)<min(n(X), n(T)) where TI(X) is chosen as in the previous lemma,

and, in addition, so small that the function 0(1, ) is defined for

all (p, A)E[4(j), 6(j)1X[ X, :i.

By LEMMA 3, 8(1, p, A) >Bi and 0(1, p, 7-)<Bi for all Ipl<S(j). By

the continuity of e(1, ) and the intermediate value property, there

will be at least one value of A, A(p), so that e(1, p, X(p)) = f3j.
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If 8(1, p, -) is strictly decreasing (c.f. LEMMA 2), it is clear

that there is precisely one value of A, call it Xj(p) that satisfies

0(1, P, xj(P)) = y It is clear that the linear problem 0(1, 0, ) =

Bj has the unique solution A = Aj.

- - Om.

ri.(X4 _
'

Po )- - - fl r1(
IT)

Aj+1 X

e>p,.

Nu*

Figure 5.

Domain of
0(1, ,)

It remains to check the continuity of Xi (see Figure 6). Fix a

point Ipol<6(j) and let c>0 be given, and small enough so that

(Po, ,c.(po) E), (ho, £.(po) c) and the line segment joining these

two points lies in the domain of 0(1, -).

By strict monotonicity of 8(1, po, ), e(1, ho, Xj(p0) -

and 8(1, ho, xj(po) 6)<0,j- Since 8(1, ) is continuous with an

open domain, we can construct balls of some suitably small radius o >0

so that 0(1, p, A) is defined for all 1p pol <a , x(P0)- s-a<X<

C.(Po) + c + a; is strictly decreasing in A for fixed pin this region,

and

0(1, P, A)>I3i for all (p, x)EB,(Po, xj(Po)

0(1, p, A)<13j for all (p, X)EBG(Po, c(po) +
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By strict monotonicity of 0(1, p, -), then, for each p such that

1p - poka there is a unique X = fj(p) so that 0(1, p, Ci(p)) = Sj

and further IX - c-(110)1 = Ic.(P) C.(1-10)1<c, as desired.

r(0) = p

2o. uo

`1 v ..

Figure 6.

0=8. 0< 0. .

We have thus shown that the numbers X. are branch points of

problem (1), (B.C.). If f is continuously differentiable, we can get

a stronger result, namely, that the numbers are strong branch points

for problem (1), (B.C.).

THEOREMq: Suppose in addition to hypotheses a, b, c of

Section C, that f is continuously differentiable.

TherithefunctionsXj(11 ) as in the proof of THEOREM 6 are well defined

for all j = 0, 1, 2, and each L. is differentiable.

PROOF: In the prOof of LEMMA 2, we saw that 0, Xj)<0 for

all j = 0, 1, 2, Since 0(1, 0, Xj) = 8j, we can use the implicit

function theorem [8, 3.111 to conclude the existence of numbers 6(j)>0

andfunctionsljthatsatisfyo(1,11,C4)) = 8j for Ipl<8(j).
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Furtherliwe,thefnctimx.will be continuously differentiable.
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E. BIFURCATION DIAGRAMS

The goal of a bifurcation diagram is to represent geometrically

what is happening analytically. The idea is to map a (possibly very)

large dimensional space and a parameter onto ]R2 retaining as much

information as possible.

What is usually done for the more general problem F(u, X) = 0 is

that a functional k is introduced and a "bifurcation diagram" consists

of the pairs (x, k(u)) such that F(u, x) = O. For example, in the

Euler buckling beam problem we graphed a vs. v'(0). Different func-

tionals, then, can lead to different "bifurcation diagrams."

In the case of the Sturm-Liouville problem we are considering,

there is a natural choice: let t(u) = r(0) = p. This choice is a good

one: for each point in the (x, p)-plane, we have a uniquely determined

initial value problem, and hence, a unique function u(x, p, X).

Further, if p#0, u(x, p, X)#0.

In this section we would like to discuss some of the geometric

aspects of our problem. We have shown that branching does occur at

the eigenvalues of the linear problem. There remain a number of

unanswered questions: What is the initial "shape" of the branches?

How far do the branches extend? Is there "secondary" branching? Do

the branches always represent "all" the solutions to the problem?

(This last question is answered in the negative by EXAMPLE 2).

The global nature of the branches is a difficult question. For some

interesting results, see[ 21]. Note that we can rule out secondary branch-

ing in regions where 0(1, p, ) is strictly decreasing. (Recall that it was

this assumption that enabled us to define .(p) uniquely).
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We now present a result which partially answers the question of

initial shape:

THEOREM 8: Suppose, in addition to the standing hypotheses on f,

that f(t, u, u')>0 for 0<u2 + u'2<cS. Then for each there exists an

c>0 so that if Xe(Xj, Xj + c) then problem (1), (B.C.) has at least

two solutions having j interior zeros. Hence, if 0(1, p, ) is

strictly decreasing, the branching is initially to the right. (Like-

wise, if f<0 for 0<u2 + u'2 <5; and 0(1, p, ) is monotone, the branch-

ing is initially to the left).

PROOF: The proof in both cases is similar, so we just consider

f>0 (see Figure 7). Let 0 = 0(x, p, X) and r = r(x, p, X) have their

usual meanings. By LEMMA 1, and the hypotheses, there is a 61>0 so

that f(x, rcosO, rsine)>0 provided 0<lpl<5, and X is restricted to lie

in a closed bounded interval which contains Xj in its interior. If

0<lpol<6, we have:

0' = -sin26 - (X.a - q)cos20 + X.fcos20

q)cos28

and hence, by a comparison with (10), 0(1, PO, aj) >Sj = P(1, Xj).

Now, since e(1, ) is continuous, there is an open ball

BE(Xj, po) with center (xi, po) and radius c>0 so that if

(X,I-)cE3(X.110,0(1,11,X)>-S0 e(1, po, XN. for X inj, 13j.
J

(xi' xi + 6).

Fix X in (Xj, Xj + c). By LEMMA 3, if Ipl is chosen small

enough, 0(1, p, A.)<I3j. By continuity of 8(1, -), there is a IT

between 0 and po such that 0(1, u, A) = 8.j. That there are at least



two solutions comes from the fact that we have only specified luol,

i.e., the proof works for Po and -Po.

r(0)=p

Po S E

Figure 7.

I
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Domain of
e(1, , )

A. +c

J

e>si e<fii

_

COROLLARY 8.1: If in addition to the hypotheses of the previous

theorem, f is continuously differentiable, sy0) = 0, and so the bi-

furcation curve intersects the A-axis orthogonally.

PROOF: If f(x, u, u')>0 (or f(x, u, u')<O) for 0<u2 + u'2

sufficiently small, we have that f(x, ) has a local minimum or

local maximum at (0, 0). If f is continuously differentiable, then,

fU(x, 0, 0) = fu,(x, 0, 0) = O. By THEOREM 7, Xj(p) is continuously

differentiable near u = O. Differentiation of the equation

gives

0(1, 11, xj(p)) =

19(1, p, xj(p)) ex(1, P, xj(p)).Ci( ) =0
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e u(1, o, x) + eA " J
(1 o, x.).C.(0) = 0

Since
X
(1, 0, A.) = (I) (1, X.)<O, it follows that .C.(0) = 0 if

0 u(1, 0, A) = O. e satisfies

0' = -2sinOcos0[1 + q - A(a - f)]e -Xcos2 d f
du

P
(°) = 0

which can be seen by differentiating (8). Evaluate this initial value

problem at (x, 0, A) and note that
df

-I

p=0
Aj= 0 to see that 0 (x, 0, )

dp II

satisfies the problem

y' -2sinOcos0[1 + q - Xj(a - f)ly

y(0) = O.

Thus0(x,O,A.)E0.Inparticular,e(1,0,X.)=. O.

Note that the preceding corollary, together with THEOREM 8

justifies the bifurcation diagram we gave for the buckling beam prob-

lem (Figure 3). Recall we had:

-v" = X(1 - (1 - i-vi2))v v(0) = 0 v(1) = 0

Here f(t, v, v') = 1 - 1-17, and so f(t, v, v')>0 if v'tO. By

THEOREM 8, the branching is to the right. Furthermore, f is continu-

ously differentiable, and so by COROLLARY 8.1, the bifurcation curve

is orthogonal to the A-axis.

The hypothesis that fu(x, 0, 0) and fu,(x, 0, 0) exist in the

preceding corollary is necessary, as the following example shows:
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EXAMPLE 1: Consider the problem:

-u" + X(1 - (- u2+u'2))u = 0 u(0) = 0 u(Tr) = 0

Note that f(x, u, u') = - u2+u'2<0 (so the branching is to the left),

and that fu(x, 0, 0) and fut(x, 0, 0) do not exist.

u(x) = csinx is a solution for this problem as long as

X(1 + 1cl) = 1.

So for c>0 we have c = -1

and c<0 we have c = -
1

+ 1

c = u'(0) = r(0) = p, so our bifurcation diagram looks like:

A

Figure 8.

EXAMPLE 2: The following example (due to Paul Rabinowicz [18 ]

shows bifurcation at the value A = 1, and a continuum of solutions

emanating from it. Note that there are an infinite number of other

"branches" not reachable from the main one.
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The problem is:

-u" = A(1 + sinu2+u'2))u (0) = 0 u(7) = 0

Note that u(x) = csinx is a solution, as long as X(1 + sinc) = 1,

i.e., X-
l+sin c .

So we get the following diagram:

c=r(0)=1.1

-

air
2

7

7
2

- Tr

2

- 7 .

- 37
2

Figure 9.

1
2

Note that for this problem f(x, u, = -sinVu2+u,2 = -sinc.

Note that for small positive values of c, f<0; and so by THEOREM 8, we

expect branching to the left. For small negative values of c, f>0 and

so we expect branching to the right.



G. NUMERICAL METHODS AND EXAMPLES

Here we present a simple, yet effective, numerical method to

compute bifurcation diagrams for a special case. Let g:IR4 IR be

continuously differentiable. We wish to solve

u" = g(x, u, u',
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u(0) = 0 u(1) = 0, (1)

a nonlinear Dirichlet problem with a parameter. Let y(x, A, x) be the

solution of the initial value problem

u" = g(x, u, u', X) u(0) = 0 u1(0) = A (2)

Our problem is to determine the locus of points (A, A)EIR2 such that

y(1, A, A) = O. As before, y(1, ) is a continuously differentiable

function with an open domain. We could use a two-dimensional Newton's

method to find roots of y(1, -), but in our case we desire control

of the norm of the solution. (If we carried out the two-dimensional

program for the problem u" = -[Ala - f] - q]u; we are likely to get

the solution u = 0).

To get a nontrivial solution to (1) then, the idea is to fix the

initial condition y'(0) = A and use a one-dimensional Newton's method

in X. That is, for each A, we form the function

h(X) = y(1, A, A)

and try to find its roots, by Newton's method.

The Newton's sequence becomes:

h(Xn) y(1,A,Xn)
A
n+1 = An

) An yx(1,A,Xn)
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So to carry out the iterative step, we must solve two initial

value problems; (2), to compute y(1, A, Xn) and the following linear

problem: to compute yx(1, A, An):

ux" = gu(t, u, u', Afl)ux + gu, (t, u, us, Xn)ux +

g
X
(t, u, u', an)

u
X
(0) = 0 u' (0) = 0

As before, we iterate until Iy(1, A, An)I is sufficiently small.

Note that if g(x, u, ui, X) = - (Ala - f] - q)u as in the last

section, we are guaranteed branching at the values To, T1, where

. is the j-th eigenvalue of the linear problem -u" + qu = Xau with

Dirichlet boundary conditions. Hence in this case, there will be

roots of y(1, A, ), A#0 for A close to if 0 <IAI is sufficiently

small.

To compute a bifurcation diagram, we choose lAl>0 small. If we

want the j-th branch, we "shoot" with aj, i.e., we set A= Ty

We then compute a root of y(1, A, ) = O. We repeat this process

for different values of A, and generate a sequence of pairs (Ai, Aji)

where y(1, Ai, Aii) = O. We then connect these points to form an

approximate "bifurcation diagram."

This scheme was programmed in FORTRAN, and a number of examples

were run and the results plotted.

EXAMPLE 1: u" = -
A2(1 t,,i)u

(0) = 0 u(1) = O. (See

Plot 4). Here f(t, u, u') = - The linear problem u" = -A2u

u(0) = 0 u(1) = 0 has eigenvalues A = 7, 2ff, 37, so we expect

bifurcation at these critical values. Moreover, if u>0 on 10, 1],
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f(t, u, u') <O, and if u<0 on [0, 1], f(t, u, u ) >O. In particular,

any point on the branch emanating from 7 (the first branch) defines a

problem with no interior zeros on [0, 1]. If r(0) = us(0)>0 then, u>0

and so by THEOREM 8, we expect the "top part" of the first branch to

branch left. Likewise, we expect the "bottom part" of the first

branch to branch to the right. Notice that we cannot predict the

behaviour of the other branches.

EXAMPLE 2: u" = - A2(1 u2
U 4 )U U(0) = 0 u(1) = 0

(see Plot 5). Here f(t, u, u') = -u2 + 0. Once again, the linear

problem has eigenvalues A = 7, 27, 37, "', and so we expect branching

at these critical values. Note that if (u, A) is a solution to this

problem, so is (-u, A) and so we expect the diagram to be symmetric

about the line p = O. Finally, notice that f(t, u, u') 0 for

0<lu2 + u 21 small, so by THEOREM 8, we expect branching to the left.

(If lul >1, however, f(t, u, u')>0 and so we would guess that the

branches would eventually branch to the right).
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APPENDIX I

FORTRAN PROGRAM FOR THE SHOOTING METHOD

SUdROUTINE NEWTON
C
C NEWTON IS A ROUTINE THAT WILL SOLVE SECONO ORDER 0.E.AS OF THE FOAM
C ut=F(T,J,Jt) iY NEWTONS METH05.
C /INITIAL/ CONTAINS Ti- THE -EFT HAND ENCPOINT OF THE INTEqVAL.
C STEP- THE NUMBER OF STEPS TO TAKE,
C STSP1=STEP+1
M ANJ H=THE STEPSI/E.
C /GUESS/ CONTAINS THE InITIAL GUESS) A=u(T1) A =U(T1)
C THE ROUTINE CALLS UPON RKUTTA TO INTEGRATE THE NONLINEAR PROBLEM AS
C WELL AS THE TWO LINEAR PROBLEMS. IT THEN UPDATES THE GUESS
C U(T110t(T1), dY NEATONS METHOO. THE ROUTINE STOPS WHEN
0 A3S(U(72)-U(T1114A3S(U*(T21-Us(T1)1 IS SUFFICIENTLY SMALL.
C

INTEGEF STEP.STEP1
COmMON/SOL/UUJJ1,0U(1J0)
COmION/INITIAL/T1,STEP.STEP1.8
CONMON/GUESS/X,A
DATA ERR/.J005410//
OJ 1J 1=1.5
CALL RKUTTA(AF,AF,GXF,GAF,HXF,HAF)
PRINT 215
PRINT 200,(U(K),K=1.STEP1)
G=AF-A
R=AF-A
IF(1AdS(G)+AdS(R1)...T.ERR) GO TC 20
OET=(GXF-1.)*(HAF-1.1-GAF+HXF
IF(A1S(OET).LT.ERR) CO TO 20
A=X-1G*(HAF-1.1-4*CAF)/OET

15 A=A-(R4(GAF-1.)-0.HXF) /0ET
20 PRINT 150./.0ET

PhiNT 220 .A,A,AF,AF,GXF.GAF,HxFolAF,G.R
151 CONTINLE

RETURN
150 FORmATI AFTER ITERATION OET = o,F10.3)
251 FOR1AT(515A,F10.51)
211 FORMAT(/'
223 FONMAT110(4A.F10.5))

ENJ
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SU3ROUTINE RKUTTAtY.A.UX.UA.OUX.DUAI
C
C RKUUTA IS A RuNGE-KUTTA METHOC JF OROER 4 USED 3Y SU3ROUTINE NEwT04
C TO INTEGRATE A NONLINEAR PROBLEI CF THE FORM urt=FlT,u,us).
L IT CALL:, SU3ROUTINE LITTLE TO INTEGRATE A PAIR OF LINEAR PRO3LEMS
C EXTERNAL TO THE ROUTINE ARE TIE THREE FUNCTIONS F(T.U,us)
C F2(Tfu.ut) THE SECCNO PARTIAL OF F ANO
C FOCT,U,Uti THE THIRC PARTIAL OF F.
C

COMION/SOL/u(1C0),OULt10J)
COmICN/INITIAL/T1,STEPISTEP10
C.:110N/UvAL/YHT.AmTFT,AFT
COMArN/GuEJS/AS,AS
REAL KI.KZ,KJ.K4,L1.4.2.13.64
INTEGER ..TEP,STEPI
DATA It,F/1.i00GGD./
(=AS
A=AS
ux=1.
CUA=J.
UA=J.
DUA=1.
T=T1
DO 1 I=t,STEP
U(I)=Y
TH=T*H/2.
TF=T+H
Ki=r1A
L1=F(T,Y,A)
K2=H(A.L1/2.)
1.2=1F(TR.f+K1/2.,A+L1/2.1
KJ=44(AtL2/2.)
L3 =H*F(TH,r+KE/2.,A4L2/2.)
K4=H4(A+L3)
L4=1'F(TFor.K3.A.L3)

yFT=r+0(1+2.1K2+2.*K3 .K41/6.
AFT=4 4.1L1.2.*L2+2.*L3+L41/6.
AHT=CAFTPA1/2.
yHT=(yFTI.Y)/2.
CAL:. LITTLE(UAJOUX,T,TH,TF,Y,A)
CALL LITTLE(UA.JuA,T,THOF,Y,A)
y=rFT
A=AFT
T=TF
IFICAEIS(A)+AriS(Y)).GT.INF) STOP
CONTINUE
U(ITER1)=Y
RETURN
ENO

SUiROJTINE LITTLE(V.J4IT,TH,TF.Y.A)
COM1CN/SOL/U(1001.0U(1001
00,110N/IAITIAL/T1,STEP,STEP1.H
COMICN/UVAL/YHT.AHTOFT,AFT
REAL Ki.K2,K3 .K4.L1,L2,L3,L4
OATA INF/1,l0J0J00./
KI=Ov
LI=1*(F2(T,Y,A) *V+F3(T.Y00111
K2=H1044.1.1/2.)
1.2=H(F211H.YHT.AHT) (yrK1/2.)+F3rTH0HT,AHTIr0V+L1/2.11
K3=m.o(OV4L2/2.1
L3=H*(F2tTH,yHT,AmT16/4.K2/2.1 +F3rTH,YHT,AHTI(OV4L2/2.),
K4=.1*(34aLs)
L4=H*(F2(TF,YFT,AFT)*(v+K3)+F3(TF0.FT,AFT)*(0V4L3)1
v=41-(K1+2.K2+2.K34.K4)/5.
DV=JV.(LIP2.*L24.2.9.3.L4)/6.
IF(lA3S(v)+AdS(04)).GT.INF) STOP
RETURN
ENJ
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FORTRAN PROGRAM FOR QUAS IL INEARIZAT ION

SUBROUTINE QUASI

C C CUASI IS A ROUTINE THAT WILL SOLVE SECOND OROER D.E.XS OF THE FORM
C u$:=F(t,u,u*) VIA THE METHOO OF CUASILINEARIZATION.
C THE SOLUTION ANO ITS DERIVATIVE U ANO 30 ARE IN /SOL/ AND MUST 3E SET
C TO THE INITIAL GUESS iEFORE QUASI IS CALLED

IN /INITIAL/ Ai:E. THE VARIA3LES
C T1- THE LEFT HANJ ENOPOINT CF THE INTERVAL,
C STEP- THE NUMBER OF STEPS ThE ROUTINE IS TO TAKE,
C STEP1=STEP1
C ANJ H - THE STEPSIZE.
C THE METHOD INLGRATES THREE LINEAR PRO3LEMS 3Y SUBROUTINE LITTLE AND THE SOLUT
C ION UN AT THE N-TH STEP IS A LINEAR CCM9INATION OF THESE SOLUTIONS. IF
C NUp?M(ON+1 -UN)= MAX( A35(UN+1 -UNIT', ABS(UN,1* -UNt)) IS LESS THAN A SPECIFIES
C EkkOR=ERR THE ROUTINE STOPS.
C N IS SET AT AN UPPER LIMIT CF 10
C
C EXTERNAL TO THE ROUTINE ARE ThE THREE FUNCTIONS F(T,U,U*1
C F2(T,U,U*) THE SECCNO PARTIAL OF F AND
C FS(T,U,Ut) THE THIRC PARTIAL OF F.
C

REAL mAX.41(100),0,11(1001.42(1,OV2(1001,011001,0W(100)
RCA,. NORM
INTEGER GTEP,GTEP1
COHON/SOL/U(101.11,JUI1001
CUMMON/INITIAL./T1,STEP,STEP1,H
DATA ERR/.3JJ0301/
JO 10 I=1.3
MAA=G.

LITTL (0.14.,A,AP,11,0111,0.)
CALL LiTTL (1.;.$3,3P,V2,0V2,C.)
CALL LITTL (6.,0.,C,CP.0,0W,1.)
GET.(1.-AP)(1.-31-49P
PRINT 203,0E7
IF(A3S(OET).LT.ERR) GC TO 12
C1=TGP-CPd+0.3PT/SET
C2=(C-OAP.CPA) /OET
50 5 V=1,STE01
Y=wi.T.0141(o).C2V2(J)
Z=34(J)+C1gOV1(JT+C2*OV2IJ)
NORM=AdS(U(J)-Y1,-A3S(GU(J1-Z)
IF (NOPM.GT.NAA) MAX:NORM
U(0)=Y
00(01=Z

5 COATINlE
?RINT 22u.I.MAA
PRINT 2BJ,IU(K),K=1,STEPi)
allAX.LT.EiRT GO TO 11

12 CONTINLE
11 CONTINLE

RETURN
12 PRINT 212

GO TO 11
21J FORMATI5(5A,F10.51)
205 FORMAT(' OET = .F10.3)
211 FORMAN JET IS ZERO, TOUGH LUCO
223 FORAT( AFTER ITERATION ,I3,' MAX = ,F10.5)

END

71
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SUBROUTINE LITTL (YS,ASO,A,V,DIO,R)

C LITTL IS A ROLTINE THAT MILL INTEGRATE OUR SECOND ORDER LINEAR PROBLEMS
C BY A RuNGE-KuTTA mETHOO OF ORDER 4. YS ANO AS ARE THE INITIAL VALUE AND SLOPE
C Y ANO A BILL BE THE FINAL VALUE ANI SLOPE, V,JV ARE MATRICES CONTAINING THE SO
C LUTION ANO R IS A FLAG- A NUMBER tITrim O. OR 1. DEPENDING ON HHETrER THE
C HCmOGENEOuS OR THE INHOMOGENGOS PRCEILEm IS TO 3E INTEGRATED.

INTEGER 3TEP,3TEP1
REAL V(100),04(100),INF
k.EAL
COMION/INITIAL/TS,STEP,STEP10
COIHON/SOL/O(100),DO(130)
DATA INF/luGGJO./
T=T3
Y=TS
A=AS
K1=3.
K2=3.
K3=0.
K4=5.
L1=).
L2=3.
L3=1.
L4=3.
00 1 I=1,STEP1
Y=Yt(KI*2..<21.2.*K34.K41/6.
A=Af.(L1*2.*L24.2.*L34.L4)/6.
IF((44,AW,Y).GT.INF) GO TO 2
V(I)=Y
OV(I)=A
T1=T+H/2.
T2=T4-1
YT=O(I)
AT=JU(I)
YFT=o(I*1)
4FT=Ou1I+1)
YHT=(YFT4YT)/2.
AHT=(AFT'AT)/2.
K1=H.A
L1=1*(F2(T,(T,AT)*YF3(T.YT,AT)*A

X 4R.0(F(T,YT,AT)-F2(T.YT,AT).0YT-F3(T,YT,AT)*AT))
K2=1,,(A.L1/2.)
L2=H*(F2(TI,YHT.AHT)*(YfK1/2.).F3(T1,YHT.AHT)*(A+L1/2.)

A R*(F(TI,YHT,AHT)-F2(T1,YHT,AHT)*YHT-F3(T1,YHT,AHT)FAMT))
K3=H*(A.L2/2.)
L3=4.,(F2(%,YriT,AHT14(Y+K2/2.1rF3(TI,YHT,AHT)*(A+L2/2.)

f,:o'(F(T1,YHT,AHT)-F2(TI,YHT.AhT)*YHT-F3(11,YHT,AHT)*AHTI)
K4=H.(A+L3)
L4=H*(F2(72,YFT,AFT)*(YK31.F3(72,YFT,AFT1 .0(A+L3)

X rR*(F(T2,YFT,AFT)-F2(1.2,YFT,AFTI*YFT-F3(T2,YFT,AFT)+AFT))
T=T2

1 CONTINUE
2 RETURN

END
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APPENDIX III

FORTRAN PROGRAM TO GENERATE BIFURCATION DIAGRAMS

PROGRAM RUFuS(OUTPUTJAPE10=0)
C

THE FOLLOWING PROGRAM GENERATES A BIFURCATION DIAGRAM fCk THE PR03LEm
C U:=F(T,U,ut,PARA) wItH DIRICHLET 8JUNDARy CCNOITIONS.
C UFF=F(T.J,ut) WITH DIRICHLET d0u,.CARr CONCiTIONS.
C WE SHOOT wITH THE PARAMETER PAkA
C u CONTAINS THE COmPLTEC EIGENFuNSTION.
C
C

A.3 ARE MATkICES CONTAINING THE POINTS EFARA,u*(E».
STEP IS THE NUMBER CF STEPS THE INITIAL VALUE ROUTINE IS TO TAKE.
PARA1 IS THE INITIAL $SHOOTINGt GUESS.

S
COMMON /LAM/PARA
INTEGER STEP,STEP1
REAL u(2dL:1
REAL A(231,3(20,
REAL M
DATA TOL/.00001/
DATA T.STEP/0.,50/
STEP1=STEP+1
H=1./FLOAT(STEP1
x=0.
PARA1=0.

C
THIS LOOP CONTRCLS THE hUliclEk OF dRAttCHES.

C INITIALIZE THE SHOOTING PARAMETER.
C

DO 13 N3=1,3
PARA1=PAkA1+3.1

THIS LOOP PICKS UP THE POSITIVE ANO NEGATIVE SIDES OF THE dRANCH.
C

DC 13 N2=1,2
pARA=PARA1
m=(-1.)*.N2

C
THIS LOOP CONTRCL5 THE NUMBER OF POINTS CN EACH SIDE OF THE 3RANCH.

CC

DO 12 N1=1,20
Nk=N1-2

C HERE WE USE A LINEAR INTERPCLATICN TC GET A SETTER SHCUTINS vA,UE.
IF(N1.GE.31 PARA=2.*PARA-3(,4)

C HERE WE SET THE INITIAL SLOPE.
A(N1)=m*FLCAT(N1)/2.5

C
C IN THIS LOOP wE ITERATE USING NEWTONS METH(); THE vAv:AlLi fA-ZA
C IN ORDER TO SATISFv uz(0)+.3.
C

DO lb 1=1,10
CALL RKuTTA4ET,X,AEN11,H,STEP,L,FLI
F= U(STEP1)
IFI(A3S( F)..-T.TOL).0R.(AES(FE).LT.TOLI) GC TC 11

C NEWTONS METHOC TO UPDATE PARA.
PARA=PARAF/F-

10 CONTINUE
C SAVE THE COMPUTED VALUE CF FARA.

11 E(N1) =PARA
12 CONTINUE

PRINT 160,EU(I),I=1,511
160 FORmATt5(1A,F10.51)
13 CONTINUE

STOP
END
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SUBROUTINE RKUTTA4ITS.XS,AS,M,ITER.U'ULI
C
C RKUTTA4 IS A STANDARD RCUTINE TJ INTEGRATE OUR INITIAL VALUE PmJE:-.11S.
C IT SOLVES Utf=F(T,U,Ut,PARA) WITH Ut(L)=AS
C AS WELL AS THE LINEAR PRCBLEM
C Vt:=F2(T,U,UX.PARA)*V*F3(T.L,U*,PARA1V2+F4IT,U,Ut,PAmi.) V(Z)=J vtl;i1=,;
C

REAL Kl,K2,K3,K4.1.1,L2,L3,L4
DIMENSION L(5ii0)
DATA INF/1000000./
T=TS
X=XS
A= AS
UL=C.
DUL=C.
00 1 I=1,ITER
U(I)=X
T1=T+H/2.
1.2=T+H
F2T=F2(T1,X,A)
F3T=F3(T1,A,A)
F4T=F4(T1,X,A)
K1=H*DUL
L1=14*(F2(T,X,A)*UL+F3(T,X,A)*OUL*F4(T,X,A))
K2=H.(DU,*.L1/2.)
L2=H.(F2T (UL.K1/2.)..F3T*(OUL4.(-1/2.14-F4T)
K3=F1(0U.+1.2/2.)
L3=H*(F2T (UL+K2/2.)*F3T*(DUL,L2/2.)444T)
K4=H(DJ,,,,L3)
L4=H*(F2(12,X,A)(UL.K3)+F3(72,A,A1*(CUL+L3)+F4(Ti.X,A))
UL=UL+((141.2.*X2+2.KS4K4)/6.
DUL=OUL+14-1+2.*L2+2.*L3+L4)/6.
IF(CAES(JL).GT.INF).0R.(ABS(OU6).GT.INE)1 GO TO 2
K1=HA
L1=HF(T,X,A)
K2=H*(10-L1/2.1
L2=H.F(T1,XtK1/24,AIL1/2.)
K3=H*(A.L2/2.)
L3=HF(T1,xX2/2.,A+L2/2.)
K4=t4.(A+L.3)
L4=H+F(T2,X.KJ'A.L3)
X=X+(K1+2..K2+2.4K3K4)/6.
A=A10(L1.2.*L24-E.'04.L41/6.
IEHABS(X).GT.INF).0R.(ABS(A).GT.INFI) GO TJ 2
T=T2

1 CONTINUE
U(ITER1)=X

2 RETURN
ENO


