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PREFACE

In 1976, A. Granas, R.B. Guenther, and J.W. Lee wrote a paper
titled "On a Theorem of S. Bernstein" [6] in which they give conditions
for existence and uniqueness of solutions of certain ordinary differen-
tial equations. The problems considered formed a class of nonlinear
equations with Dirichlet, Neumann, Sturm-Liouville, or periodic boundary
conditions. In a subsequent paper [10] they present numerical methods
("shooting methods") for solving the Dirichlet, Neumann and Sturm-
Liouville problems; and gave proof that the methods converge. The case
of periodic boundary conditions was not considered in [10] although
this case is of considerable practical and theoretical importance.

Chapter Two of this thesis is concerned with the numerical aspects
of the periodic problem. Two numerical schemes are presented. The
first ("shooting") might be considered the most natural extension of
the methods used in [10]. The second, the technique of "quasilineari-
zation," is a scheme applicable to a wide variety of problems, although
it has not, to my knowledge, been applied to periodic boundary value
problems. In both cases, we prove that the methods converge under
suitable hypotheses; among them the hypotheses used in [6] to establish
existence and uniqueness of solutions. Finally, we do some numerical
experiments.

Chapter Three, "Bifurcation Theory," was motivated in part by an
informal seminar held in the spring of 1978 by John Lee, Ron Guenther,
and myself. There we considered several topics, among them the Euler

buckling beam problem and the degree theory of Krasnoselskii. We were



interested in showing basic facts about solutions of second order
boundary value problems involving a parameter.

Degree theory yields the results quickly, once the machinery is
set up. However, it seemed desirable to prove the results in an ele-
mentary fashion, relying only, if possible, on the basic theory of
ordinary differential equations.

Such a program is undertaken here. The approach is modeled, in
part, after a paper by Macki and Waltman [17]; but there are some major
differences. For one, the Macki and Waltman paper doesn't assume
uniqueness of initial value problems. We make this assumption, which
simplifies the proof greatly, and enables us to draw stronger conclu-
sions. In particular, we show that each bifurcating branch of solu-
tions forms a continuous curve, and we are able to make more definitive
statements about the initial "shape" of the curves. The exposition
here is indeed elementary: the major tools used are properties of
continuous functions, and some comparison theorems from ordinary

differential equations.
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BOUNDARY VALUE PROBLEMS AND BIFURCATION THEORY
FOR ORDINARY DIFFERENTIAL EQUATIONS

CHAPTER I. PRELIMINARIES
A. COMMENTS AND NOTATION

This paper will concern itself with finding the numerical solution

of second order nonlinear boundary value problems of the form: .

u" = f(t, u, u') on the finite closed interval [, B] Where

f:lo, Bl X Rx IR > IR is a continuous function.

A solution to such a problem is a real valued function u which is

twice differentiable on :[a, B] and satisfies the equation:
u"(t) = f(t, u(t), u’(t)) for each t€la, Bl.

Also, u may be required to satisfy the additional (boundary)

conditions:

1
=

au(a) + a'u'(a) + bu(g) + b'u’' (B) =

n
o

cu(a) + c'u’ (o) + du(g) + d'u’ (8)
a a b b
where rank | ¢ c¢' "d d'|= 2.
Special cases of the boundary conditions include:

jnitial conditions | : ufa) =A ul(a) =8B

n
=
[

—
fo~]
~—

"
o

Dirichlet boundary conditions 2 ufa)

Neumann boundary conditions : u'(a) =A u'(s) =8B



Sturm-Liouville boundary conditions: au(e) + a'u’(a) =0
du(g) + d'u’'(8) =0

and periodic boundary conditions : u(a) = u(B) u'(a) =

There are many excellent numerical schemes that provide
approximate solutions to problems with initial conditions. These
methods have the following characteristics: the interval [a, B] is
partitioned by a finite set of "grid" points o = tg<t;<... < tn = B,
and t; - t, ., is called the i-th stepsize. Given the initial data
u(e) and u’(a), approximations to the solution u and its derivative u’
are generated at each of the grid points. The approximations ¥ and

y% to u(t;) and u'(t,) may depend only on the immediately preceding

1 1

approximations ¥;_, and y%_i (as in the Runge-Kutta method we used),

1

or they may depend on some or all of the preceding values

In practice, the accuracy of the approximations depends on many

» as in the "multi-step" methods.

factors. Error is inherent: computing machines are unable to do real
number arithmetic with perfect precision; and since the number of grid
points is finite, the differential equation is only sampled at a finite
number of points. A common feature of useful algorithms is that if the
precision of computation is perfect, decreasing the stepsizes results
in better approximations to the true solution.

For a more thorough discussion, see [2].

Since we desire approximate numerical solutions to boundary value
problems, our philosophy is to somehow reduce such a problem to one or

more initial value problems, and then to use an initial value method



to provide us with a solution.

The following notation will be used: Cn[a, g] denotes the space
of n-times continuously differentiable functions on [a, 8] Cla, 8],
the continuous functions on [a, B]. A lower subscript on a function
will indicate a differentiation.

For example, if f = f(t, u, u'), fu(t, u, u') = %Uf(t, u, u’) and

fu'(t, u, u') = gavf(t, u, u'). The norms to be used are the "usual"

ones:

On Cn[a, B] we use

Hull = max Qu(t)], Ju'(t)]se-, (uM(e)p
te [a, B
On R we use the Euclidean norm:

|1 (x1502, Xn)II = /X2 + et x2
The norm on a product AxB, where A and B are Banach spaces, will be:

|| (a, b)lleB = max {llallA’ llbIIB}o



B. THEOREMS FROM ORDINARY DIFFERENTIAL EQUATIONS

The following definitions and theorems from the theory of
ordinary differential equations will be essential. They are stated in
the language of second order differential equations; in the terms that
they will be needed. (The results are usually stated in terms of a
first order system of differential equations. The transformation from
a second order equation to a first order system is straightforward

[7, 2bl). In what follows, f:[a, 8] x Rx R~ Ris a continuous

function.

DEFINITION: f satisfies a Lipschitz condition in a region

R, BIx R x R if there is a constant k so that if (t, x1, y1),
(t’ X2 yZ)ER’ then ]f(ta X1s .yl) - f(ta X2 .yZ)I = kIXl - XZI +

kly: - y2l.

DEFINITION: f is locally Lipschitz if f satisfies a Lipschitz

condition in some open neighborhood of each point in its domain.

REMARK: If f is continuously differentiable, then f is locally

Lipschitz [7, 2.3, Lemma 1].

THEOREM A (Uniqueness): If f is locally Lipschitz, then there is

at most one solution to the problem
u" = f(t, u, u') u(ty) = xo U (tg) = ap
PROOF: [7, 2.5, Theorem 3].

THEOREM B (Local Existence): Let f satisfy a Lipschitz condition

in R = [tg, to+ el x[xg-my Xg+nl X[oag -ns ag +n].



Let M = (t,m3X a)eR{lf(t’ x,a)|, |a]}. Then there exists a solution

u of

for t€[ty, ty + hl where h = min{e,

==
b

PROOF: [7, 2.5, Theorem 4].

THEOREM C (Existence of Maximal Solutions): Let f satisfy a local
Lipschitz condition in the region RCla, 8l x Rx R. If (tp, Xg,0g€R

then the initial value problem
u" = f(t, u, u') u(to) = Xg u’(tg) = ap

has a unique solution u with maximal domain of definition (that is, no
other solution to the problem has a larger domain). Further, suppose
that the maximal solution u is defined on an interval with endpoints a
and b. Define the function p(t) to be the distance of the point

(t, u(t), u'(t)) to the boundary of R. Then either li@p(t) =0 or

Tim| | (u(t), u'{t))|| = « for ¢ = a and ¢ = b.
t->C

PROOF: [7, 2.5, Theorem 11].

THEOREM D (Differentiable Dependence on Initial Conditions): Let
f be locally Lipschitz in the region RC[a, 8] x Rx R, and let u be
the uniquely defined solution with maximal domain to the initial value

problem

(to, X0» ao)ER.



Let the domain of u be the interval J and let [a, b] be any
closed subinterval of J containing ty. Then there is an ¢ > 0 such
that for every (t, x,a)such that ||(t, x, a) - (tg, Xg, @g)|| < ¢

there is a unique solution y of
u" = f(t, u, u') u(t) = x u' (t) = a,

whose domain contains [a, b]. Further, if f is continuously differen-
tiable, the function y will depend continuously and differentiably on

the initial condition (t, x, a).
PROOF: [7, 2.5, Theorem 9].

THEOREM E (Differentiable Dependence on Initial Conditions and a
Parameter): Let g:[a, 8] x R x Rx A > Rbe continuously differen-

tiable where Afganis an open set. Let u be the maximal solution to

u' = g(ts u, U', >\0) U(to) = Xo U'(to) = 0

Xg €A.

Let the domain of u be the interval J and let [a, b] be a closed
subinterval of J containing ty. Then there is an € > 0 so that if

[[(t, x5 ay A) = (tgs Xgs @gs Ag)|| < € there is a solution y of
u' = g(t, u, u’, 2) u(t) = x u'(t) = a A€A,

whose domain contains [a, bl. Further, y depends continuously and dif-

ferentiably on the initial conditions and parameter (t, X, o, A).

PROOF: [7, 2.5, Theorem 10].



THEOREM F (Comparison Theorem): Let u and v be solutions to the
first order differential equations u'= g(t, u) v' = h(t, v),
respectively, where g(t, u) < h(t, u) for t€[la, 8] and g or h satisfies
a Lipschitz condition. Let u(a) = v(a). Then u(t) < v(t) for all
t€fa, Bl

PROOF: [4, 1.12].

COROLLARY F.1l: In the previous theorem, if t; > a, then either

u(ty) < v(ty) or u(t) = v(t) fora <t < t,.
PROOF: 1[4, 1.12].

COROLLARY F.2: In the previous theorem, assume g.and h satisfy a
Lipschitz condition. If u(a) < v(a) then u(t) < v(t) for all
te[as B] .

PROOF: [4, 1.12].

The main existence and uniqueness result for boundary value
problems to be used is an extension of a classical theorem by S.

Bernstein:

THEOREM G: Suppose f(t, u, u') is continuous in [a, 8] x R x R
and there is a consfant M>0 so that uf(t, u, 0) > 0 for |u| > M.
Suppose further that |f(t, u, u')| < A(t, u)u'2 + B(t, u) where
A, B > 0 are functions bounded for (t, u) in o, B8] x [- M, MI. Then

the problems

u" = f(t, u, u') u(a) =u(B) =0 (Dirichlet)

f(t, u, u') u'(e) =u'(s) =0 (Neumann)
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u" = f(t, u, u') u(a) = u(g) u'(a) = u'(s) (periodic)

all have at least one solution. If in addition, fu and fu,are bounded
and f, > 0 then the solution of the Dirichlet problem is unique, and
any two solutions of the Neumann or the periodic problem differ by a

constant. Finally, if in addition to this, f (t

y(tos Us u') > 0 for a

fixed tE€la, B], then solutions to the Neumann and the periodic

problems are unique.

PROOF: [6].



C. NEWTON'S METHOD

In this section we present one of our most important tools:
Newton's method--a scheme for finding the roots of a nonlinear equation.
We present it and its proof in a Banach space context, as we will need
it in this denera]ity for some of the applications.

Let (A, || ||) and (B, || ||) be Banach spaces, DC A an open set
and F:D + B continuously Frechet differentiable. Newton's method is an
iterative procedure used to solve the equation F(x) = 0. It works as
follows: an initial vector, Xys an approximation to the solution, is

guessed and a sequence is generated by solving the recursion formula

o
1]

Fx ) + Fr{x ) (x-x0) (1)

for X4l in D. If {xn} converges to some vector Xo in D, then (1)
reduces to F(xg) = 0, as desired.

The following convergence result will be used.

THEOREM H (Newton's Method): Let F:D € A > B, as above. Assume
that F(xg) = 0, that F'(xo)'lexistsand js continuous, and that F' (x)
is continuous at Xg. Then there is a & > 0 so that if |[xo - x1|] <,
-1

the Newton sequence x ., = X - F'(x.)

17X, a) F(x,) is well defined, and

converges to Xp.

PROOF: Without Toss of generality, we can assume X = 0 in the
proof. The main idea of the proof is to show that the function
G(x) = x - F'(x)"'F(x) is contractive in a certain ball centered at the

origin. First we show that the function

K(x) = x - F'(x)"'F(x) is o(x), that is,
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that  Tim k(x)
[1x11~0 TIxT]

[1x = F/(x)T'F(x)]]

1% = F/(0)7'F(x) + (F'(0)™" = F'(x))F(x)[]
<[ |x - F(0)TF)|] +

[F'(0)™ = F () HF() ],

= 0.

Write k(x)

and handle each piece separately.
First, ||x - F'(0)7'F(x)|] is o(x):

since F(x) = F(0) + F'(0)x + o(x) = F'(0)x + o(x), it follows that

1% - F'(0)'F(x)] |

[[x = F'(0)""(F'(0)x + o(x))]]

|1x = x + F'(0) " o(x)]|

o(x),

. -1, .
since F'(0)"  1is continuous.

-1 -1 -1

Next, ||(F'(0)™" - F'(x)” )F(x)|| is o(x). Because F'(0)

exists; lw%é?%lL is bounded in a neighborhood of 0, and

I|17T+0 (F'(O)'1 - F'(x)”") = 0, by the continuity of
F'(x) at 0.

Thus k(x) = o(x) as asserted. It follows that there is a 6:>0 so
that ||x - F'(x)7'F(x)]|<%||x|| for ||x||<61. Let €>0 be so that
{x: ||x||<e}cD. (Recall that D, the domain of F, is open). Let &> be
such that F'(x)'1 exists for ||x|[<82. Now let & = min{e, 81, &2}.
For all x, such that ||x1||<8, the Newton sequence will be well

defined. Further, x_converges to O because ||xn|L§%ﬁ ||x1]|. Hence

the proof is complete.
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DISCUSSION: To conclude then, if F is continuously
differentiable, the Newton sequence is well defined and will converge

to a solution of F(x) = 0 if

i) a solution y, of F(x) = 0 exists,
ii) F'(,yo\)'1 exists and is continuous at y,
iii) ||y, - y1|| is sufficiently small, where y; is the

initial guess.

We will use Newton's method often. In each application, in order
to check that the method converges, we must address each of these
conditions.

To handle the first condition, that roots exist, we will need
existence (and uniqueness) results, such as THEOREM G.- Finding good
first guesses--condition (iii) will be a problem, as We will see.
Estimates exist on "how close" is "close enough" but they are quite
unwieldy [ 91, [111].

Our "convergence" proof, then, will run along the following
lines: first, an existence theorem is used to conclude there are
solutions; second, we show that under suitable hypotheses condition
(ii) is satisfied, that is, that the relevant derivative is invertible
and finally, conclude that if our initial guess is close enough to a
root of F, the method will converge.

For a more complete discussion of Newton's method, as well as

many refinements, see [11].



D. THE DIRICHLET PROBLEM

In this section we illustrate how Newton's method can be used t
help solve the kinds of problems we are interested in.
Suppose f:{a, B] x R x R » R is continuously differentiable

and that we want to numerically solve the Dirichlet problem:
u" = f(t, u, u') u(a) = 0 u(g) = 0

Suppose that a unique solution, u(t), to this problem exists.
could, for example, assume the hypotheses of THEOREM G.

If we knew u'(a) (or u'(8)), then we could use an initial value
method to compute u(t). The plan then, is to somehow compute u’(a),
the missing initial condition.

First, let y(t, a) be the unique maximal solution (THEOREM C) t

the initial value problem
u' = f(t, u, u') u(ae) = 0 u'(a) = a

Now Tet h(a) = y(B, a), if it exists, i.e., if the solution
y(t, a) is defined on the entire interval [a, Bl. By THEOREM D it
follows that h is a differentiable function with an open domain.
Further, since the Dirichlet problem has a unique solution, h has a
unique root, namely, u'(a). To determine this root we apply Newton'

method to the function h and form the sequence

where a; is our initial guess, or "shooting slope.” We then iterate

until |h(a, )| is Tess than a prescribed tolerance.

12

0

We

0

S
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Note that h'(an) = ya(s, an), where ya(t, a_) solves the

n
differential equation:

vy (toa)) = £ (t, y(t, a ), y'(t, a )y, (t, a,) +

u n n a n
fu' (ts y(tsvan)s y (ts an))ya(ts an)
ya(a, an) =0 y;(a, an) =1

So for each iteration, we are required to solve two initial value
problems. A linear one-to determine ya(B, a
).

Now we must consider the problem of whether the sequence is well

n) = h (an), and a non-

Tinear one to determine h(an) = y(8, a,
defined, and if it converges to a solution. Note that THEOREM G gives
us conditions on f so that a unique solution to the Dirichlet problem
exists. In [10], it is shown that under the same hypotheses, condition
(ii) of Section C is fulfilled: that the relevant derivative is
invertible. Here we require that h'(a) # 0, where a is the correct
initial slope. So, we are assured convergence as long as the initial
guess is close enough.

If the initial guess is not close enough the Newton sequence may
not converge and may not even be defined. To carry out the iterative
step, recall that a, must be in the domain of h and h'(an) # 0. Here,

a, not in the domain of h means that the solution of the initial value

problem
u" = f(t, u, u') u(a) = 0 u'(a) = a

doesn't extend across the interval [a, B]. See [10] for an example.
This method can be modified to handle other boundary value

problems, such as Neumann or Sturm-Liouville. In each of these cases,
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we are missing a single initial condition--the root of an appropriately
defined real valued function. We then use Newton's method to find it.

For a discussion, see [10].
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CHAPTER II. THE PERIODIC PROBLEM
A. INTRODUCTION

In this chapter we consider two methods to solve the periodic

problem:

u' = f(t, u, u') u(a) = u(B) u'(a) = u’'(s)

The first,which I call "shooting," is a natural extension of the
method used in the last chapter to solve the Dirichlet problem. Next,
a technique known as quasilinearization is introduced. It is a method
applicable to a wide range of boundary value problems, but we use it
only for the problem at hand, the periodic problem. We show that in
each case, with the hypotheses of THEOREM G, the methods converge;
given, as always, a sufficiently good first guess.

In the last section of this chapter we present some numerical

results and draw some interesting conclusions.
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B. THE SHOOTING METHOD FOR PERIODIC PROBLEMS

Here we present a method to solve the periodic boundary value

problem
u" = f(t, u, u') u(e) = u(g) u'(a) = u'(s) (1)

where f:[a, B] X Rx R+ Ris continuously differentiable. For now,
assume there exists a unique solution to this problem. Let u(t, x, a)
be the unique maximal solution (THEOREM C) to the initial value

problem
u" = f(t, u, u) u(a) = x u'(a) = a (2)
Now define the functions g and h by:

g(t, x, a) = u(t, x, a) - x

h(t, x, a) = u' (t, x, a) - a

g(B, +, +) and h(g, -, +) are continuously differentiable
functions with a common open domain DC R*  (THEOREM D). D 1is non-
empty because (1) is assumed solvable. Finding a solution to the
periodic problem (1) is equivalent to finding a point (x, a)eD for

0. Finally, define F:DC R* -~ R? by

which g(8, x, a) = h(8, x, a)

g(8, x, a)
F(x, a) =
h(g, x, a)
F is continuously differentiable because g and h are.

Now apply Newton's method to the function F. The Newton sequence

becomes:



-1
[Xpg1s 8peyd = DX 2] = Fi(x > a ) Flx,a)

or, explicitly:

h -g g
_ __ 1 ja a
[Xppns Apgd = X, nl - IxMa~Ny9a - [’h g ](;]]
X X

where each function is evaluated at (B8, X an).

Note that
g, (t, x, a) = u,(t, x, a) -1
g,(ts x, a) = u.(t, x, a)
hx(t, X, a) = ux(t, X, a)
ha(t, X, &) = ua(t, X, a) - 1

and that ux(t, X, a) and ua(t, X, a) are both solutions of the

differential equation:

v'(t) = fu(t, u(t, x, a), u' (t, x, a))v(t) +

ﬂf(t,u(t, X, a), u'(t, x, a))v'(t)

These solutions statisfy the initial conditions:

ux(a, X, a) =1 ux(a, X, a) =0
u (a, x, a) =0 u;(a, X, a) =1

a

respectively.

To solve the boundary value problem (1), we guess the initial

17

conditions of a solution, (x;, a;). We then solve three initial value

problems: (2), (5a) and (5b) by a suitable initial value method.

Finally, we update our guess by the Newton method (3) or (4) to
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generate a sequence (xn, an) . We repeat this procedure until
g(8, g an) and h(s, Xoo an) are "sufficiently small." (In our numer-
)| +

Ih(Bn, X an)l < 10'7). We then take our most recent solution to (2),

ical work, "sufficiently small" meant that |g(8, Xos A

u(t, X an) to be our computed solution to (1).

REMARK: If f is linear (that is, if f(t, u, u’) = p(t)u +
q(t)u’ + r(t)) then it is an easy but annoying calculation to show that
Newton's method will converge in one step regardiess of the initial

data.
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C. CONVERGENCE OF THE SHOOTING METHOD

If we assume the hypotheses of THEOREM G, we know that the
periodic problem of the last section has a unique solution. In this
section we prove that under the same hypotheses the relevant derivative
in Newton's method is invertible near the "answer." That is, we show
that g, (8, xo, ag)h, (8, Xq, ag) - h (B, X0, 30)9,(B, X0, ag) # 0,
where (xg, ag) is the initial data satisifed by the unique solution to
(1).

From these facts and the discussion in Chapter I, Section C, we
conclude that if we can find a good first guess, the foregoing scheme
will converge. In the proof, we will retain the notation of the pre-

vious section.

THEOREM 1: Let f:[a, B] x R x R » R be continuously
differentiable, fu(t, u, p) >0 and fu(to, u, p) > 0 for a fixed
te€la, Bl. Then if (xg, ag)ED (the domain of F),

9, (B, X0, ag)h, (8, Xg, ag) - g,(8, xo» a0)hy (B, Xg» 2p) < 0.
PROOF: Let u be the solution of
u' = f(t, u, u') ufa) = X u'(a) = ag.

Note that u is defined on [a, Bl because (xg, ag)ED.

Define a(t) by

a(t) = (u (t) - 1(ul(t) - 1) - ug(thu,(t)

X
ux(t)ué(t) - u;(t)ua(t) - ué(t) - ux(t) + 1

That is, a(t) = g,h, - g h, evaluated at (t, xg, ag); see (B.4) above.
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Now define W(t) by

Observe that W(t) is the Wronskian of the two solutions ua(t) and
ux(t) to (5).

We have:

I claim that a(t) < 0 for t > t;, where t; is defined by
t, = inf {t:fu(t, u(t), u' (t)) > 03,
t€la, g
and the infinium is well defined and less than g by the hypotheses of
the theorem.
Once this is shown, A(R) < 0, and the result follows. The claim

follows from two facts:

i) - ult) +1 <0 for tela, 8]

ii) W(t) - u;(t) <0 for t > t;.

To verify (i) we must check that u,(t) > 1 for t€la, 8]. Recall

that u, satisfies the initial value problem

()

X

=
—
ct
~—
1]

f (t, u(t), u'(t))ux(t) + £t u(t), u'(t))u
1 u;(a) =0

o
—

2
~—

1]

If u, is not always greater than or equal to 1, by continuity
there must be a point t, so that ux(t) > 0 for t€[a, t,] and

Ux(tz) < 1.



Now define

z(t) = of (t-a)
tla, B

which is well defined since f is continuously differentiable.
Note that 2(t) > 0 for t > a, and 2" - fu,zf = Y,zeY(t-a) -
ful YeY(t'“) > 0.
Now let

1-Ux(t2)
y(t) = Ux(t) + ¢z(t), where 0 < ¢ < IV

y is positive on [a, t,] since 2(t) > O implies y(t) > u (t) > O for

X
te[a, t2]. Also,

ug - fuhux, = fuux >0on[a, ty], because
f 20 and u, > 0 there; it follows that

y" - fu,yf > 0.

Hence, y cannot have an interior positive maximum (as y" > 0
whenever y' = 0). Thus, y attains its maximum either at a or tj,

since y is positive on[a, ty]. But,

y(a) = u_(a) =1 and

X
y(tp) = Ux(tz) + ez(t,)
l-ux(tz)
<Ux(t2) + ETEZT_—_'z(tZ)
<1

This shows that y achieves its maximum at t = a and so

y'(a) < 0. Buty'(a) = uy (a) + e2'(a) = 0+ ey > 0, a contradiction,

-~ 1 where Y= max {fu'(ta U(t), U'(t)), 0}+1a
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which establishes inequality (i).

Now to verify (ii). First of all, the Wronskian W(t) satisfies

the initial value problem

W'{t) = f . (t, ult), u'(t))u(t) W(a) = 1.

See [4, 2.3], or verify it directly.

Since Uy satisfies the differential equation:

[
—
+
~—
i

N ot us uf)u (t) + f (8, u, u)uy(t)

ué will solve the initial value problem:

(u)" = (s u(t), u' (t)u, + k(t)  u (e) =1,

where k(t) = fu(t, u, u )ua.

I claim, first of all, that uy > 0 for t€(a, Bl, so that
k(t) > 0. This is so because u, > 0 in a deleted neighborhood of «
by the initial conditions, and for Uy to return to 0 would imply the

existence of a local positive maximum, a contradiction as before (as

" '

a > 0 whenever uj = 0). Hence k(t) > 0, and so by a standard compar-

json theorem (THEOREM F), ué(t) > W(t). Furthermore k(t) > 0 for

u

te(ty, ty + 8) for some § > 0, and so by Corollary F.1, ué(t) > W(t)
for t > t;. Hence the proof is complete. |

We now present the main theorem of this section.

THEOREM 2: Assume

i) f is continuous in [a, Bl x R x Rand there is a constant

M > 0 so that uf(t, u, 0) > 0 for |u] > M.



ii) |[f(t, u, u")| < A(t, u)u’2+ B(t, u) where A, B > 0 are
functions bounded for (t, u) in [a, B] X [ - M, M].
iii) f, and f . are bounded, f, 2 0 and fu(to, u, u') > 0 for a
fixed tgd o, BIl.

Then the problem
u" = f(t, u, u')’ u(a) = u(B) u'(a) = u'(g)

has a unique solution y. Further there is an ¢ > O such that if
|x1 - y(a)| + |a; - y'(a)] < ¢ then the sequence defined by equation

(B.4) is well defined and (xn, an) will converge to (y(a), y'(a)).

PROOF: The hypotheses are the hypotheses of THEOREM G, hence
the existence and uniqueness of a solution to the periodic problem is
assured. By THEOREM 1, the relevant derivative in Newton's method is

invertible. Finally, the existence of € is guaranteed by THEOREM H.

23
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D. QUASILINEARIZATION

In this section we present a numerical technique known as
quasilinearization, a method applicable to a large variety of boundary
value problems. The technique is actually a clever use of Newton's
method, and we will see that it will converge in the case of periodic
boundary conditions.

Suppose f:la, Bl xR xR+ R is continuously differentiable and

that we wish to solve
u" = f(t, u, u')  ueBCla, BINC3a, Bl (1)

where BC[ o, B] denotes a space of functions on [o, B] that satisfy
certain boundary conditions: Let Bi, B»:C* &, Bl ~R be continuously
differentiable functions and N(Bi) = {veC¥ a, B]IBi(u) = 0}. Then
BClo, Bl = N(B1)ON(B2).

This framework contains all the boundary value problems mentioned
above as well as many more. (For example, if we wish to consider a
problem with Sturm-Liouville boundary conditions, we let
B,(u) = au(a) + a' u (a) and B,(u) = du(g) + &' u (g)). In particular,
we include the possibility of nonlinear, inhomogeneous boundary
conditions.

Now define the function

F:Cqa, Bl ~Cla, Bl xR xR by
F(u) = (u" - f(t, u, u"), Ba(u), Bz2(u)) (2)
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Since solutions of (1) are precisely the roots of F, Newton's

method may apply. We start with a vector u;€C2%[a, 8l and try to solve

0= F(un) + F'(un)(un+1 - un) . (3)

for un+

IECZ[a, B].

Since
F'(u)h = (h" - fu(t, u, u')h - fu'(t’ u, u')h', Bi(u)h, Bz(u)h),

solving (3) is equivalent to solving the differential equation:

0=u" - f(t, Ups un)‘+ (u

n n+l n

fu(ts uns un)(un+1 - un) = fur(ts uns uﬁ)(un+1 - un)' (4)
with the boundary conditions:

0= By(uy) + Bi(u )u, - u) (5)

0 =Ba(u ) + Bo(u )u\ - u) (6)
or, rewriting (4):

u;+l = fu(t, Up s un)un+1 + fu,(t, us un)un+1

f(t, u un) - fu(t, Ups un)'un - fu;(t, un,-un)‘un ' (7)

Note that the differential equation (7), taken together with the
boundary conditions (5) and (6) form a linear problem for u ., for
each n. Solution of linear problems is straightforward, see Section F.
Also note that if u, converges to some function ug, equation (3)

implies that F(ug) = 0, so up is a solution to (1), as desired.
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REMARKS: If B; and B, are Tinear, as they will be in many of

the problems we consider, equations (5) and (6) reduce to

Bl(un+1) =0 ; (8)
Bz(u

1
—
(e
~—

n+1) =

Finally, if in addition, f is 1inear, the problem defined by
equation (7) together with boundary conditions (8) and (9) is identical
to the original problem (equation 1), and so the method will converge

in a single step for any initial guess uj.
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E. CONVERGENCE OF QUASILINEARIZATION

To insure convergence of the preceding scheme we must consider
the three conditions given in the discussion of Newton's method at the
end of Chapter 1, Section C. Suppose that F(ug) = 0, and consider the
question of whether F' (up) 'exists. Since in our case F'(ug) is a
Tinear differential operator, if F'(Ug) is one-to-one then F’(uo)'1
will exist and be continuous. (In fact, F'(ug)”! will be given by a
Green's function [ 4, 10.15] and so will be a compact Tinear operator).
Hence to verify the existence and continuity of F'(uo)'1 we must check
that the only solution to the equation F'(ug)h = 0 is the solution
h = 0.

Explicitly we require that the problem

h" = fu(t, Ug, Ug)h + fu,(t, ug, ug)h’ (1)

with the boundary conditions:
Bi(ug)h = 0 B3(ug)h = 0

has only the zero solution. We state below two important boundary
value problems for which this is the case. Our first example is based

on the following theorem from ordinary differential equations.

THEOREM I: Let f:[a, 8] x R x R > R satisfy the condition

[f(t, u, py) - f(t, us, pp)| < Kluy - up| + L|py - po| where K, L > 0

-y )2 -
are constants so that K(Bga) + L(g o) < 1. Then the Dirichlet

problem
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has a unique solution.
PROOF: [3, 1.1.1l.
As a consequence, we deduce:

~ THEOREM 3: Let f be as in the preceding theorem. Then the
Dirichlet problem u" = f(t, u, u') u(a) = A u(B) = B has a
unique solution ug. Further, there is an € > 0 so that if
[{u; - ug|| < €, the sequence u, given by equation (D.3) is well

defined and will converge to ug.

PROOF: The proof is immediate in view of the remarks at the

beginning of this section. We need only check that

h* = f,(ts ug, ug)h + f ., (t, u, ug)h’

h(a) = h(B) = 0 (2)

_has only the zero solution.

But Ifu(t, g, Ug)| < K and lfuz(t, upg, Ug)| < L where K, L are
as in THEOREM I, and so the solution to (2) is unique, by THEOREM I.
Finally, convergence for the periodic problem is assured by the

following theorem:

THEOREM 4: Let f satisfy the hypotheses of THEOREM G. Then the

Dirichlet, Neumann, and periodic problems:
u" = f(t, u, u') u(a) = u(B) =0

u" = f(t, u, u') u(a) =u'(B) =0
u" = f(t, u, u') u(a) = u(B) u'(a) = u'(8)
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all have unique solutions. Let ug be the unique solution to any one of
these problems. Then there is an € > 0 so that if ||u; - ugl| < e,
the sequence generated by equation (3) is well defined, and U, will

converge to ug.

PROOF: THEOREM G guarantees the existence and uniqueness of the

solutions. We need only check that the only solution of
hll = fu(t, uo, U(,))h + ful(t, UO, ué)h' .

with the specified boundary conditions is h = 0. It is shown in

[ 10, 5.3] that this is the case.



F. LINEAR PROBLEMS WITH PERIODIC

BOUNDARY CONDITIONS

30

To solve a nonlinear boundary value problem with periodic boundary

conditions, the method of quasilinearization requires us to solve a

sequence of Tinear differential equations with periodic boundary condi-

tions. In this section we outline a method to accomplish this task.

Other boundary conditions are handled similarly.

Suppose we wish to solve

where p, q, r are continuous functions on[a, B].

Let:

vy solve the problem u" + p(t)u’ + q(t)u

(t)
u(a) =1 u'(a) =

v, solve the problem u" + p(t)u’ + q(t)u =
u(a) = 0 u'(a) =

w solve the problem u" + p(t)u’ + q(t)u =
(a) =

u(a) = 0 u’

o

Taking advantage of the linearity, we see that the general

solution of (1) is of the form y(t) = w(t) + xvi(t) + yva(t)

Xs YER.

r(t)

We must choose x and y so that y satisfies the boundary conditions.

Letting:
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we want

Pp(a) = x = ¢c + xa + yb = y(B)
p'(a) =y =c' +xa' +yb' = ¢'(B)

Solving for x and y, we get:

(a-1)x+by=-c¢c

ax+(b'-1y= -c or

R bR

(a -1)(b" = 1) - a'b,
b' -1 - blrec
[ -a’ a-bjl(cj'

(c + bc' = cb')/a

Now letting A

B

1
A

x
1]

(c" +a'c-c'a)/a

<
n

Note that A = A(1) of Section C. In particular, if the hypotheses
of THEOREM 1 are satisfied, A # 0.
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G. NUMERICAL RESULTS

The two numerical methods outlined for solving differential
equations with periodic boundary conditions, "shooting" and "quasi-
linearization," were programmed in FORTRAN and a number of examples
were run on the CYBER 70 machine at OSU. Plots 1, 2 and 3 were done
with the GERBER plotter. The initial value method used is the clas-
sical RUNGE-KUTTA method of order four [2, 2.4].

Recall that with "shooting" we keep iterating until
lu (B) - u (a)| and Iué(B) - ué(a)l are both "sufficiently small."

n n
Sufficiently small here means that

u(8) - u {a)| + |u'(8) - u'(a)] < 107

If we reach this point, the method has "converged" and we stop.

In the case of quasilinearization, convergence is taken to mean

that

max {|u

t;

e (£ = (e | Ty, (£) - wi (e < 207,
where ti is the set of grid points.

In each example, unless noted, our initial guess is u; = 0 for
quasilinearization and uj(a) = 0 ui(a) = 0 for "shooting." The
total central processor time used per problem depended on the complex-
jty of the function f, the number of grid points used, and the number
of iterations. (We used 50 evenly spaced grid points for all examples
except for Plot 3, where we used 100). Typical central processor time

per iteration with 50 grid points was around .5 seconds.
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EXAMPLE 1. (See Plot 1).

u" = - 6u - 120(t - 1)3 + 24 with periodic boundary conditions on
[0, 21.

This Tinear problem has the explicit solution u(t) = - 20t3 +
20t + 4.

For this problem, as with all the linear problems run, both

methods converged in one iteration, as theoretically they must.

EXAMPLE 2. u" = .lu - sinh(u’) - .95 with periodic boundary
conditions on [- 1, 1].

This problem has the unique (by THEOREM G) solution u = 9.5.

Here, quasilinearization converged in a single step, and shooting

required three steps.
EXAMPLE 3: (See Plot 2).
u" = 2(t2 tan(t) - u)(u’ = 2t tan(t) + 1) + 4t sec?t

with periodic boundary conditions on [- 1, 11. This nonlinear

problem has the explicit solution
u(t) = (t2 - 1)tan(t).

Quasilinearization converged in four iterations. Shooting failed
to converge with zero initial data and even with the seemingly very
good initial data uj(-1) =0 uip(-1) = 3.2. It did converge
after three iterations with the initial data u;(-1) = 0

up(-1) = 3.12.  The true initial slope o satisfies 3.11 < o < 3.12.
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EXAMPLE 4: (See Plot 3).
u" = u + log(u’'2 + .001) + 500t> - 100t"* + 70t3

with periodic boundary conditions on [~ .75, 1]. No explicit solution
is known.

Plot 3 shows clearly how convergence of each method is taking
place. The vi's are successive iterates of shooting, and the ui's are
the iterates of quasilinearization. Note that each iterate of quasi-
linearization is periodic. " After six iterations each (which the plot
doesn't show) the two computed solutions were in five place agreement,

and differed by less than 107% from Us.

NOTE: Quasilinearization failed to converge for this problem

when the interval [- .75, 1] was replaced with [- 1, 1}.
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CHAPTER II. BIFURCATION THEORY

A. INTRODUCTION

To motivate the idea of bifurcation, consider the following

boundary value problem:

u' + Au=0 u(0) = 0 u(l) = 0

It is easily seen that the solutions of u" + Au = 0

are precisely:

u(t) = a sin VA t A>0
u(t) = At A=0
a(t) = pe’ M | pem’M A<O

where a, A € R. In order to satisfy the second boundary condition,
u(1l) = 0; we must have that A = 0 or a sin YA = 0. To obtain non-

trivial solutions to the problem, then, we must choose A = (nm)?

37

n=1, 2, 3. .... If we plot all such solution pairs (A, a) we obtain

the following diagram:

Figure 1.

g
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We see there is a "splitting" of solutions at the critical values

Ay = (nm)2. For this reason, we call these points "branch points" or

"bifurcation points."

Bifurcation phenomena occur in many parts of physics. For
example, consider the Euler buckling beam problem. Here we have a uni-
form rod of length 1 pinned at its ends, and subjected to a given
compressive force. If we let v(s) be the height of the beam at arc
length s, then the beam will satisfy the following equilibrium equation

and boundary conditions:
v+ AV Yl - v'2 =0 v(0) = 0 v(l) =0

where A is proportional to the applied force.

er’//// ¢v(s)

\/+ FOREE

Figure 2.

Note that v = 0 is a possible solution, the solution that

Hi

corresponds to no buckling. But intuitively, as well as analytically,
there are other solutions. Indeed, if we graph the possible solutions,
v(0) vs. X we obtain the following diagram (which we will justify

later).
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Figure 3.

The similarity of the two examples should be striking. Note that
the branch points for the two problems are precisely the same. This
should not be surhrising. For |v'| small, |v| is also small. There-
fore one would expect the linear problem v" + Av = 0 v(0) = v(1)=0
to be a good approximation to the nonlinear problem v* + Av v1 - v 2 =0
v(0) = v(1) =0.

Another similarity, not evident from the pictures, is that in each
case, a point on the n-th branch (the branch emanating from (nm)?)
corresponds to a solution of its problem having n - 1 interior zeros
onl0, 11.

There are many approaches to bifurcation theory. Of note are:
Degree Theory [191], Liaupunov-Schmidt Theory [161, [20] and
Perterbation Theory [15]1, [20]. These theories are all quite general,
and for us, needlessly complicated.

We set our sfghts a little lower. We wish to obtain the major
results of bifurcation theory for a large class of physically important

problems, in as elementary (and painless) a fashion as possible.
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In the next section we describe a fairly general setting for
bifurcation problems. We define what is meant by a branch point, and
present a theorem that gives us necessary conditions for branching.

To prove sufficient conditions, we must specialize the problem.
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B. SETTING
Let F:B x R~ C be a continuous function, where (B, || |[;) and
(C, || I|C) are Banach spaces. Suppose F(0, ) = 0 for all )& R.

DEFINITION: AO js a branch point (or bifurcation point) for F if

there is a sequence (u , A ) €B x R such that F(u, A,) =0,

n
An,+ Ags [lupll >~ 0and [Ju |}|#0 for all n.

DEFINITION: A, 1s a strong branch point (or strong bifurcation

point) for F if there is a continuous curve Y:(-€, €) > B x R such
that v(t) = (u(t), A(t)), F(v(t)) = 0, ¥(0) = (0, Ay), and ||u(t)][#0
whenever t#0.

Suppose that F = F(u, A is continuously Frechét differentiable
with respect to its first variable at the origin uniformly for A in a

bounded set. That is, we suppose F can be written as:
F(u, A) = L(u, x) + N(u, a)

where L(+, A):B > C is a continuous linear operator, » - L(-, A) is

continuous, and N(u, \) satisfies
y [INCu,N | .
im =
lull>0 TTuT]

uniformly for X in a bounded set. Then we have:

THEOREM 5: With F, L, and N as above, if L™ (-, 2,) exists and is

continuous, then Ao is not a branch point for F.

PROOF: If Ao were a branch point for F, then by definition, there

would be a sequence (un, AnriB x R so that F(un, X ) =0, i.e.,

n
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L(un, An) + N(un, An) = 0.
If L7'(., A,) exists, then L™ (-, A) exists for all A sufficiently
close to Ao‘ Consequently, there is a n; > 0 so that L'l(', An) exists

for all n > n,. So for sufficiently large n we have:

-l
N R '
-1
[0 ) a1 -l
u || u ||
-1
But Tim ||L (N(un’ An)’ )‘n)|| = 0
n-oo -
[ug ]
because
-l
LT (N Cugs 2D A . [ INQu s ) ]
f_ HL ('a )\n)ll
™ 1™

and | L™ (-, An)ll > ||IL7 (., AO)II as n ~ »,. This contradiction

proves the theorem.
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C. NONLINEAR STURM-LIOUVILLE PROBLEMS
Henceforth, we will consider the nonlinear eigenvalue problem:
- u"(x) + q(x)u(x) = Ala(x) - f(x, u(x), u'(x))Tu(x) (1)
with the Sturm-Liouville boundary conditions:

a;u(0) + a,u’(0) =0
biu(l) + bu’(1) = 0 (B.C.)

Unless stated to the contrary, we will assume that

a) f:[0, 11 xI xJ > R is continuous, locally Lipschitz, and

f(x, 0, 0) = 0 (where I,J C Rare open intervals containing 0);

b) a and q are continuous real valued functions on [0, 1], and

a(x) > 0;

c) the linear problem - u" + qu = Xau with the boundary
conditions (B.C.) has an infinite number of simple eigenvalues
0 < Ag <M1 <.l with 1im A, = = and such that the eigenfunction cor-
responding to Ay has k simple zeros in (0, 1).

A number of important remarks are in order: Hypotheses (a) and
(b) guarantee that solutions of initial value problems for (1) are
unique. Hypothesis (c), the assumptions on the linear eigenvalue
problem, hold for the classical Sturm-Liouville systems, see [4, 10].

Note that the hypotheses are satisfied by the problem of Euler
buckling, withgq = 0, a=1, f(x, u, u’') =1-/1 - u'2, and Dirichlet

boundary conditions.
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Finally, note that this problem fits into the framework of
Section B. Let F:C?[0, 1] x R > C[0, 11 x R2? be defined by:

1]

F(u, A) = (- u" + qu - Ala - flu, a,u(0) + a.u’(0),

bu(l) + bou’(1)).

Note that F(0, A) = 0 for all ) and that F is continuously Frechét
differentiable with respect to its first argument at the origin pro-
vided f is continuously differentiable.

In this case:

L{u,A) = (- u" + qu - xau, a,u(0) + a,u’(0),
by u(1) + bou'(1))

and N(u,A) = F(u,x) - L(u,A). We claim that in this case, branching
for F can only occur at theeigenvalues {Ai} of the linear problem:

If A#Aj j=1,2,3 ..., the lTinear problem L(u, A) = 0 has u =0
as its only solution. Hence L(., )) is one-to-one and L'l(-, x)
exists, is continuous, and is given by a Green's function [4, 10.15].
Hence, by THEOREM 5, A is not a branch point for F. (This result is
true even if f is not continuously differentiable, but merely locally
Lipschitz. The proof, in this more general case, relies on properties
of the function 6(1, +, +) which will be defined in the next section.

The result follows from LEMMA 3 of Section E).
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D. THE PRUFER SUBSTITUTION

We wish to study the nontrivial solutions to equation (1) by the
polar coordinate functions r and 6 defined (up to an additive multiple

of 27 in the case of 6) by the equations:

c
—

x
~—

1]

r(x)cos8(x) (2)
u'(x) = r(x)sing(x) (3)

We will derive a system of differential equations, satisfied by r
and 6, equivalent to equation (1) in the case of nontrivial solutions.
Note that if r(x,) = 0 then u(x,) = u'(xe) = 0, and since solutions for

0. Thus,

initial value problems for (1) are unique, this implies u
if u(x) is a nontrivial solution to (1), r(x)? = u(x)? + u’'(x)? never
vanishes.

Assume u(x) is a nontrivial solution to (1). Define

r(x) = AAxJZ + u'{x)2 or r(x) = - Ja(xJZ ¥+ u’(x)2 and then 8(x) is

defined by (2), mod 2n. If we differentiate (2),

t

u' = r'cosd - r'sined’ (4)

and so, by (3)

r'cosd - rsineg’ = rsing, or
r'cosd = rsinfd’ + rsine (5)
8'rsind = r'cosd - rsind (6)

so substituting into equation (1) we get,

-(r'sine + rcoses’') + qrcose = Ala - flrcose (7)
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Multipiying (7) by E—S—,—S@-and using (5), we can get a problem for 6:

~(r'cos6sinér™’ + cos?88') + qcos?6 = Ala - flcos?8
-((rsineg’ + 1"51'ne)s1°nev"1 + c0s2688') = Afa - flcos?6 - qcos?H
-(sin%68’ + cos?68' + sin?6) = rla - flcos?6 - qcos?9

8' = - sin%6 - A[a - f(x, rcos6, rsind)jcos28 + qcos? (8)
Multiplying (7) by sin 6and using (6), we can get a problem for r:

-(r'sin?6 + 8'rsin6coss) + grsindcosé = Ala - flrsinbcosd

-(r'sin?6 + (r'cos® - rsinf)cos®) = Ala - flrsinbcosd -
qrsinécoso

-(r'sin?6 + r'cos?6 - rsindcosd) = Ala - flrsin6cosh -
qrsinécoso

1]

r' = rsinfcos8[l + q - Ala - f(x, rcos8, rsing)]] (9)

Since all the steps in the derivation of the system (8), (9) are
reversible when r#0, a solution (r, 6) of the system (8), (9) with r#0
gives a nontrivial solution u of equation (1) given by equation (2).
This solution also satisifes (3).

Now define:

OSE

as =~
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- b,
arctan(- b ) - km b,#0

0
=
1]
. S

where arctan takes values in (- %—, %—).

If the functions r and 6 satisfy the system (8), (9) (with a
fixed A), are defined over [0, 1], and satisfy the boundary conditions
8(0) = a 8(1) = B, for some k; then u(x) = r(x)cose(x) will satisfy
(1) as well as the Sturm-Liouville boundary conditions (B.C.).

From now on, fix the initial condition 6(0) = a. Our plan is to
find a nontrivial solution of (1) which satisfies the boundary condi-
tions (B.C.) by the following "shooting" method: we seek values
r(0) = uo and X so that the initial value problem (8), (9) with A =X,
and initial conditions 6(0) =a, r(0) = ue is such that its solution
extends across [0, 1] and also satisfies 6(1) = B, for some integer k.

Note that such solutions can only exist for nonnegative k. Indeed
6(0) = a<m/2 and if 6(xo) = /2, then 8'(xe) = -1 by (8) so 6(x)<n/2
for all x. By the same argument, ¢ = -1 whenever 6 = /2 - km,

hence 6 is decreasing at the points 6

m/2 - km. This observation
shows that if 6(1) = B then the function u defined by (2) has precisely
k interior zeros in [0, 1].

To analyze the shooting method outlined above, we let 6(x, u, A),
r(X, u, A) be the unique maximal solution to the system (8), (9) which
satisfies the initial conditions 6(0) = a and r(0) = p. 6(x, u, A) and

r(x, u, A) are well defined because solutions to initial value problems
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for the system (8), (9) are unique.
Now set f = 0 in equations (8) and (9) to obtain the following

system:

- sin%¢ - [Aa - glcos?¢ (10)

©
il

©
il

= pcosdsind[l + q - Aa] (11)

This system is equivalent to the second order equation -v" + qv =
Aav. More precisely, if v(x) is a nontrivial solution to -v"(x) +

q(x)v(x) = xa(x)v(x), then p(x) and ¢(x) defined by:

p(x)cosd(x) (12)
p(x)sing(x) (13)

<
—

X
~—

1

<
—
P
~—
1

satisfy (10), (11) and p(x)#0. Conversely, if (10), (11) hold with
o(x)#0, then (12) defines a nontrivial solution to -v" + qv = Aav.

Furthermore, if we let ¢(x, A) be the solution of the initial
value problem defined by equation (10) with the initial condition
¢(0, A) = a; then ¢(x, A) = 8(x, 0, A). This follows from the unique-
ness of solutions to the initial value problem for the system (8), (9).
Clearly r(x, 0, A) = 0 satisfies (9) when u = 0 and then the differen-
tial equation (8) for 8(x, 0, A) is identical to (10), the equation for
®(x, 1), because f(x, 0, 0) = 0. Since ¢(0, 1) = 6(0, 0, 1) = o, we
conclude that 8(x, 0, A) = ¢(x, A).

Since the system (10), (11) is linear, it has solutions which are
defined on [ 0, 1] regardless of the initial data. The domain of the
functions (1, +,+) and r(1, <, <) is an open subset of R’ by
THEOREM E. Since solutions of the system (10), (11) extend across
[0, 11, ¢(1, A) = 6(1, O, A) exists for all A; hence the domain of
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6(1, «, *) (and of r(1, +, ¢)) contains the line u = 0, in the
Au-plane.
Recall thaf by hypotheses (c), the linear problem -v" + qv = Xav
with the boundary conditions (B.C.) has a sequence of eigenvalues Aj
and eigenfunctions vj(x), j=0,1,2, «»« . It is a consequence of

the linear Sturm-Liouville theory that the j-th eigenfunction

vj(x) = o(x, Aj)cos¢(x, Aj) and that 6(1, O, Aj) = ¢(1, Xj) = 85



50

E. LOCAL BIFURCATION

In this section we prove our main result: solutions to the
nonlinear Sturm-Liouville problem (1), (B.C.) do bifurcate at the

critical values Aj. We will require the following three lemmas:

LEMMA 1: Suppose r(x, u, A) and 8(x, u, A) satisfy the system
(8), (9) with the initial conditions 8(0, u, A) = o r(0, u, A) = u.
Restrict A to 1ie in [0, A*]. If >0 there is a §>0 so that if |u[<é
then |r(x, u, A)|<e for all x€[0, 1].

PROOF: Since the domains of 6(1, +, +) and r(1l, , <) are open
and contain the line u = 0, by compactness there will be a §,>0 so that
r(l, u, A) exists for all |u|<81, A€[0, A*]. Since r(1, 0, 1) =0
for all X, the lemma follows from the uniform continuity of the func-

tion l"(l, *, ') on [-51, 51]X[0, )\*].

LEMMA 2: The function 6(1, 0, A) = ¢ (1, A) is strictly decreasing
in A. Furthermore, if f is continuously differentiable and A is
restricted to [0, A*] then there is a 6>0 so that if |u|<§ then

8(1, u, A) will be strictly decreasing in A as well.

PROOF: The first assertion follows directly from the comparison
theorem (THEOREM F). Hence we know that ¢, (1, A)<0. To deduce the
second part, we want to show that the strict inequality ¢x(1, A)<0 is
true. From this we deduce that if f is continuously differentiable,
8, (1, u, 1) will exist and be continuous, and Qx(l, 0, A) = @A(l, A).
Hence by uniform continuity of 6A(1, «, *) there will be a 6>0 so that

6A(1, H, A0 for all (u, A)e[-8, SIx[0, A*].
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) satisfies the equation:
¢y = -2¢,singcoso[l - ra + q] - acos*d (14)

with the initial condition ¢A(O)= 0, as canbe seen by differentiating (10).
Set r(x) = 2sind(x)cosd(x)[1 - xa(x) + q(x)]. We then have

¢ * rd,= -acos?¢ (15)
X
Jr(t)dt
Mulitplying (15) by the integrating factor e® , integrating, and

using the fact that ¢A(O) = 0, we get:

r(t)t r(t)dt
(ef 9,(x))" = -a(x)cos*¢(x)e’
X . X
-fr(t)dt fr(s)ds
¢A(X) = -e ! jﬁ(t)cosz¢(t)e° dt.

0
Now, since a(x)>0 and cos?¢(x)>0 almost everywhere, we get that

Hi

) (1)< 0, proving the result. (Note that cos?¢(x) = 0 on some interval

would imply by (10) that ¢'(x) = 1 on this interval which is impossible).

LEMMA 3: If Afkj, there isa n(r)>0 so that if |u|<n then

B

d i . RTI . . .
and if A<AJ 8(1, u, A)>o(1 AJ) BJ

if A>Aj 8(1, u, A)<o(1, Aj)

PROOF: The proof in both cases is similar, so suppose A<Aj. By
previous remarks, 6(1, «, *) is a continuous function with an open
domain D CR? containing the 1ine u = 0 (see Figure 4). By LEMMA 2,
8(1, 0, A) is strictly decreasing in A and so 6(1, 0, A)>6(1, O, Aj) =

¢(1, Aj) = Bj‘ By continuity of 6(1, «, +), there is an open ball BCD
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of radius n(A)>0 about (0, A) so that 6(1, u, )\)>Bj for each (u, A)eEB.

Hence the result.

r(0)=y I T
Domain of
\ e(la ’a’)
n(M i 1
U)\‘ )\
J
B(1, 1y A)>6y ; B
- | /’-‘s
“s-_. ’// S e e o e e e - -
Figure 4.

We now prove our main result:

THEOREM 6: For each j = 0, 1, 2, **+ , there is a §(j)>0 so that
for |u|<8(j) there is at least one solution A(u) of 6(1, u, ) = Bj‘
If, in addition, 6(1, u, A) is strictly decreasing in X for |u|<8(j)
there is a uniquely defined function £j(u), which is continuous, and

isfi 1, 1w £:(1)) = 8. and £: (0) = A..
satisfies 0(1, w J(u)) BJ and ; (0) \J

PROOF: (See Figure 5). Fix a Asxj and 75Aj. Take
0<8(j)<min(n()), n(X)) where n(X) is chosen as in the previous lemma,
and, in addition, so small that the function 6(1, «, +) is defined for
all (u, A)E[-8(3), S(3Nx[A, X1

By LEMMA 3, 6(1, u, A)>8; and 6(1, u, X)<B; for all luf<s(j). By

the continuity of 6(1, +, ¢) and the intermediate value property, there

will be at least one value of A, A(u), so that 6(1, w, A(u)) = Bj.
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If 6(1, u, *) is strictly decreasing (c.f. LEMMA 2), it is clear

that there is precisely one value of X, call it £.(u) that satisfies

J
6(1, u, £j(u)) = B5- It is clear that the linear problem 6(1, 0, +) =
Bj has the unique solution A = Aj. .
////l \‘s T - -
Domain of
e(ls 's')
- ~ ,’ \\..._.
1 PN S vy vy e oy | Y
. 4 v
8(3)1 N Ay ‘ / M
\ - /
> =R. 0<
8 BJ BJ BJ
—*~\\\\ ’,r’—"-—-‘~—__-____/’,’

Figure 5.

It remains to check the continuity of £j (see Figure 6). Fix a
point |uo|<8(j) and let €>0 be given, and small enough so that

(Mo, £j(Uo) - €), (uo, £j(uo) + ¢) and the line segment joining these

two points 1ies in the domain of 6(1, -, +).

By strict monotonicity of 6(1, woe, )s 6(1, uo, £j(uo) - €)>Bj

and 6(1, wo, £j(uo) + e)<8j. Since 6(1, +, +) is continuous with an
open domain, we can construct balls of some suitably small radius >0

so that 6(1, u, A) is defined for all |u - po| <o , £j(Uo)-=€-Q§K§

£j(uo) + ¢ + 03 is strictly decreasing in X for fixed uin this region,

and

j(UO) - €)

e(ls Hs x)<8j for all (Us A)EBO(UOs £j(U0) + 8)-

6(1, u, k)>8j for all (u, A)€B (uo, £
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By strict monotonicity of 6(1, u, *), then, for each u such that

|u - wo|<o there is a unique X = £j(p) so that o6(1, u, £

S) = 8y,

and further [A - £;(uo)| = [£5(u) - £5(uo)|<e, as desired.

J

Domain of
8(1, 'a')

———— o
——
- ——

Figure 6.

We have thus shown that the numbers Aj are branch points of
problem (1), (B.C.). If f is continuously differentiable, we can get
a stronger result, namely, that the numbers Aj are strong branch points

for problem (1), (B.C.).

THEOREM 7: Suppose in addition to hypotheses a, b, c of
Section C, that f is continuously differentiable.

Then the functions £.(u) as in the proof of THEOREM 6 are well defined

J
for all j =0, 1, 2, *--, and each £j is differentiable.

PROOF: In the proof of LEMMA 2, we saw that ex(l, 0, Aj)<0 for

all j =0, 1, 2, «-«. Since 8(1, 0, Aj) = Bj’ we can use the implicit

function theorem [8, 3.11] to conclude the existence of numbers &(j)>0

and functions £j that satisfy 6(1, u, £j(u)) = Bj for |u|<s8(j).



Furthermore, the functions £j will be continuously differentiable.

55
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E. BIFURCATION DIAGRAMS

The goal of a bifurcation diagram is to represent geometrically
what is happening analytically. The idea is to map a (possibly very)
large dimensional space and a parameter onto R? retaining as much
information as possible.

What is usually done for the more general problem F(u, A) = 0 is
that a functional 2 is introduced and a "bifurcation diagram" consists
of the pairs (A, 2(u)) such that F(u, A) = 0. For example, in the
Euler buckling beam problem we graphed A vs. v'(0). Different func-
tionals, then, can lead to different "bifurcation diagrams."

In the case of the Sturm-Liouville problem we are considering,
there is a natural choice: 1let 2(u) = r(0) = u. This choice is a good
one: for each point in the (A, n)-plane, we have a uniquely determined
initial value problem, and hence, a unique function u(x, u, A).
Further, if u#0, u(x, u, A)#0.

In this section we would 1ike to discuss some of the geometric
aspects of our problem. We have shown that branching does occur at
the eigenvalues of the linear problem. There remain a number of
unanswered questions: What is the initial "shape" of the branches?
How far do the branches extend? Is there "secondary" branching? Do
the branches always represent "all" the solutions to the problem?
(This last question is answered in the negative by EXAMPLE 2).

The global nature of the branches isa difficult question. For some
1nterestingresu1ts,see[21Lv Note that we can rule out secondary branch-
ing in regions where 6(1, u, +) is strictly decreasing. (Recall that itwas

this assumption that enabled us to define £j(u) uniquely).
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We now present a result which partially answers the question of

initial shape:

THEOREM 8: Suppose, in addition to the standing hypotheses on f,
that f(t, u, u’)>0 for O<u? + u'?¢8. Then for each Aj there exists an
e>0 so that if AG(Aj, Aj + ¢) then problem (1), (B.C.) has at least
two solutions having j interior zeros. Hence, if 8(1, u, ) is
strictly decreasing, the branching is initially to the right. (Like-
wise, if f<0 for O<u? + u'2<§; and 6{(1, u, ) is monotone, the branch-

ing is initially to the left).

PROOF: The proof in both cases is similar, so we just consider
f>0 (see Figure 7). Let 6 = 6(x, p, A) and r = r(x, u, A) have their
usual meanings. By LEMMA 1, and the hypotheses, there is a §,>0 so
that f(x, rcosé, rsin6)>0 provided 0<|u|<§, and A is restricted to Tie
in a closed bounded interval which contains Aj in its interior. If

0<|uo|<8, we have:

8’ = -sin?g - (Aja - q)cos?e + Ajfcosze
8'> - sin?e - (Aja - q)cos?6
and hence, by a comparison with (10), 6(1, wo, Xj)>8j = ¢(1, lj)-
Now, since 6(1, <, +) is continuous, there is an open ball
BE(Aj, Le) With center (xj, Ue) and radius €>0 so that if
(A, w)eB_(r55 mo), 6(1, M, A)>B5. So 8(1, wo, A)>B5 for A in
(Xss >‘j + €).

J

Fix X in (A5, A5+ e). By LEMMA 3, if |u| is chosen small

enough, 6(1, u, A)<Bj. By continuity of 6(1, +, +), there is a u

between 0 and p, such that 6(1, u, A) = Bj' That there are at least
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two solutions comes from the fact that we have only specified |uo|,

i.e., the proof works for ue and -u.

r(0)=u

Ho

H

COROLLARY 8.1:

theorem,

——— e ——

— —

-

boe . Domain of
1 ; e(ls's')

Figure 7.

If in addition to the hypotheses of the previous

f is continuously differentiable, £j(0) = 0, and so the bi-

furcation curve intersects the A-axis orthogonally.

PROOF :

If f(x, u, u')>0 (or f(x, u, u')<0) for O<u® + u'?®

sufficiently small, we have that f(x, <, *) has a local minimum or

Tocal maximum at (0, 0). If f is continuously differentiable, then,

fu(x’ 0’

differentiable near u = 0.

gives

0) = f,.(x, 0, 0) = 0. By THEOREM 7, £j(u) is continuously

Differentiation of the equation

0(1, u, £.(n))

J B

J

Bu(1s 1y £5(0)) + 8, (1, wy £5())E5(0) = 0
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(1, 0, r.) + , 0, AL)E! =
eu( 0 xJ) ex(l 0 xJ)J(o) 0

Since ek(l, 0, Aj) =¢A(1’ xj)<o, it follows that £j(0) =0 if

0. eu satisfies

eu(l’ 0, AJ.)

2 d

du f

8' = -2sindcoso[l + q - A(a - f)]eu-kcos

which can be seen by differentiating (8). Evaluate this initial value

df -
problem at (x, O, Aj) and note that ;- _5 = 0 to see that 6,(x, 0, Aj)

satisfies the problem
y' = -2sinbcos8[l + q - A;(a - f)ly
y(0) = 0.

Th , 0, A.) = 0. i , , 0, A.) = 0.
us eu(x AJ) 0. 1In particular eu(l 0 J) 0

Note that the preceding corollary, together with THEOREM 8
justifies the bifurcation diagram we gave for the buckling beam prob-

lem (Figure 3). Recall we had:
-v'= Al - (1 - VISV v(0) = 0 v(l) =0

Here f(t, v, v') =1 - vI-v'2, and so f(t, v, v')>0 if v'#0. By
THEOREM 8, the branching is to the right. Furthermore, f is continu-
ously differentiable, and so by COROLLARY 8.1, the bifurcation curve
is orthogonal to the X-axis.

The hypothesis that fu(x, 0, 0) and fu.(x, 0, 0) exist in the

preceding corollary is necessary, as the following example shows:
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EXAMPLE 1: Consider the problem:
-u" 4+ A(1 - (- uzvu'2))u =0 u(0) =0 u(x) =0

Note that f(x, u, u’) = - Juzfu'2<0 (so the branching is to the left),

and that fu(x, 0, 0) and fu,(x, 0, 0) do not exist.

u(x) = csinx is a solution for this problem as long as
A1+ |e|) = 1.
So for c¢>0 we have ¢ = %—- 1

and c<0 we have ¢ = - %-+ 1

¢ =u'(0) = r(0) = u, so our bifurcation diagram looks like:

Figure 8.

EXAMPLE 2: The following example (due to Paul Rabinowicz [ 18 ]
shows bifurcation at the value A = 1, and a continuum of solutions
emanating from it. Note that there are an infinite number of other

"branches" not reachable from the main one.
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The problem is:
-u" = A(1+ sinviz#ur2))u u(0) =0 u(m) =0

Note that u(x) = csinx is a solution, as long as A(1l + sinc) = 1,

. -1 . . .
i.e., A= TFsin ¢ So we get the following diagram:
c=r(0)=u
2'”-* \
n |
L
(LI
2

1
3
O
/

Figure 9.

Note that for this problem f(x, u, u') = =sin/uz+u’2 = -sinc.
Note that for small positive values of c, f<0; and so by THEOREM 8, we
expect branching to the left. For small negative values of ¢, >0 and

so we expect branching to the right.
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G. NUMERICAL METHODS AND EXAMPLES

Here we present a simple, yet effective, numerical method to
compute bifurcation diagrams for a special case. Let g:R* > R be

continuously differentiable. We wish to solve
u" = g(x, u, u', ) u(0) = 0 u(l) = 0, (1)

a nonlinear Dirichlet problem with a parameter. Let y(x, A, A) be the

solution of the initial value problem
u" = g(x, u, u’,"A) u(0) = 0 u'(0) = A (2)

Our problem is to determine the locus of points (A, A)ERR? such that
y(1, A, A) = 0. As before, y(1, +, *) is a continuously differentiable
function with an open domain. We could use a two-dimensional Newton's
method to find roots of y(1, -, +), but in our case we desire control
of the norm of the solution. (If we carried out the two-dimensional
program for the problem u" = -[Afa - f] - qlu; we are likely to get
the solution u = 0).

To get a nontrivial solution to (1) then, the idea is to fix the
jnitial condition y'(0) = A and use a one-dimensional Newton's method

in A. That is, for each A, we form the function
h(x) = y(1, A, 1)

and try to find its roots, by Newton's method.

The Newton's sequence becomes:

_ h(x,) y(1,A1)
e Y S yxil,A,AnS

n
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So to carry out the iterative step, we must solve two initial
value problems; (2), to compute y(1, A, An) and the following linear

problem: to compute yx(l, A, An):

A= 9, uy v, Ap)
)

g,(t, u, u’,"A

u uy + g, (t, u, u', An)ux +

n

uA(O) =0 ui (0) =0

As before, we iterate until |y(1, A, An)l is sufficiently small.

Note that if g(x, u, u'y, A) = - (Afa - fl - q)u as in the last
section, we are guaranteed branching at the values Xo, A1, ***, where
7& is the j-th eigenvalue of the linear problem -u" + qu = Aau with
Dirichlet boundary conditions. Hence in this case, there will be
roots of y(1, A, <), A#0 for X close to 73, if 0<|A| is sufficiently
small. |

To compute a bifurcation diagram, we choose |A|>0 small. If we
want the j-th branch, we “shoot" with X&, i.e., we set A= 73.

We then compute a root of y(1, A, «) = 0. We repeat this process
for different values of A, and generate a sequence of pairs (Ai’ Aji)

where y(1, Ass X::) = 0. We then connect these points to form an

Ji
approximate “bifurcation diagram."
This scheme was programmed in FORTRAN, and a number of examples

were run and the results plotted.

EXAMPLE 1: u" = -A2(1 + 4y, u(0) = 0 u(1) = 0. (See

2
Plot 4). Here f(t, u, u') = - %;—. The linear problem u" = -A%u
u(0) =0 u(l) = 0 has eigenvalues X = w, 2w, 3w, <+ so we expect

bifurcation at these critical values. Moreover, if u>0 on [0, 1],
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f(t, u, u')<0, and if u<0 on [0, 1], f(t, u, u )>0. In particular,
any point on the branch emanating from w (the first branch) defines a
problem with no interior zeros on [0, 1]. If r(0) = u'(0)>0 then, u>0
and so by THEOREM 8, we expect the "top part" of the first branch to
branch left. Likewise, we expect the "bottom part" of the first
branch to branch to the right. Notice that we cannot predict the

behaviour of the other branches.

EXAMPLE 2: u" = -A2%(1 + u? - u*)u u(o) =0 u(l) = 0
(see Plot 5). Here f(t, u, u’') = -u? + u*. Once again, the linear
problem has eigenvalues A = 7, 2w, 3w, -+, and so we expect branching
at these critical values. Note that if (u, A) is a solution to this
problem, so is (-u, A) and so we expect the diagram to be symmetric
about the line pu = 0. Finally, notice that f(t, u, u’)<0 for
0<|u® + u 2| small, so by THEOREM 8, we expect branching to the left.
(If |u] >1, however, f(t, u, u')>0 and so we would guess that the

branches would eventually branch to the right).
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APPENDIX I

FORTRAN PROGRAM FOR THE SHOOTING METHOD
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APPENDIX II

FORTRAN PROGRAM FOR QUASILINEARIZATION
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APPENDIX III
FORTRAN PROGRAM TO GENERATE BIFURCATION DIAGRAMS

FROGRAM RUFUS(OUTPUT,TAPELD=20)
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AS

SUBROUTINE RKUTTA4ITSyXSsASsHsITER,U,yUL)

RKUTTAB_IS A STANDARD RCUTIhE TO_INTE GRATE OUR INITIAL VALUZ FrIELIMS
IT SOLVES _Uzz=F(T,U, Ut.FA a) WITH Ull)=¢ UZLL)I=LS
WELL AS THE CINEAR PRCBLEM
vee=F2l( I.u.ut.PﬁRA)‘v0F3(I.L.U¢.PﬁRA)‘UtOFh(I. sUZy PArA Vvicdi=s vl
REAL K1yK29K39Kitgllol2o034Lb
SIMENSION L(5ul)
QATA INF/1000000.7/
T=TS
X=XS
A=z AS
uL=0.
BuL=C,
00 1 I=1,IT7zZR
U{I)=x
Ti=T+H/2.
T2=T ¢H
F2T=F2(Ti4XeA)
F3T=F3(T1,sx4A)
FoT=Fe(T1yXyA)
Ki=H*DUL
LISH®(F2 (T o X oA PUL*FILToXo L) *OULHFLIT 4X, 402
K2=H* (DU . +L1/2.)
L2=HO(F2T 2 {UL*KL1/2.)¢F3T*(DUL*LL/2e)*F&LT)
K3=H*(0u_+.2/2,)
LISH®(F2T® (UL *K2/2)+FIT2(DULYLC/2.)+F4&T)
Ke=H*(DJ_ +L 3)
LUsH® (F2UT 24 XeAY *(UL*KI) #FI(T2 4Ry A2 (CULFLIIHFL T X0 A))
ULZUL* (K14 Co®K2+2.2K3¢ KL} /6
QUL=DUL*LL1¢Ca*1L242.%L34Lu)/6,
ii(;&%S(JL).GI.thD.OR.(ABS(OU;).GI.IhF)) GO 10 2
Li=H*F (T4 X ,A)
K2=H*(A+i1/2,.)
L2THAFITL 4 X+K1/2e9A4172,)
K3=H®* (A+L 2/2.)
LI=HOF (TLyA#K2/2e9A¢L272,)
KL=H®*(A+_3)
LE=H2F (T2 4 X¢tKI A+ 3}
X=X+ (K1+2.2K2+2. *KI¢+KL) /B
A=Ar (L1422, %L 2¢Co %3¢ 0) /B,
%F;EABS(x).GI.INF).O&.(ABS(A).GI.INF!) G0 TJ 2
CONT INUE
UCITER®L) =X
RETURN
END
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