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A review is made of methods which assess the bias

and non-normality of parameter estimates and predictions

obtained with nonlinear regression. Particular emphasis

is placed upon curvature measures of nonlinearity,

related measures of parameter and prediction bias, nd

the effects of reparameterizations. Alternate models of

individual tree height growth are compared on the basis

of mean square error, intrinsic nonlinearity, parameter

effects nonlinearity, and estimated bias. While results

are specific to the data examined, some general

conclusions are made concerning appropriate models for

individual tree height growth. Both the Richards and a

Weibull-type growth model are found to adequately

describe individual tree height growth, with low levels

of intrinsic nonlinearity, and acceptable parameter

effects nonlinearity following repararneterization. Some

evidence is found for a modification of either the

Richards or Weibull model to include an asymptotic



linear growth rate when modeling the height growth of

some western conifers past the age of 200.

Stem analysis data on Douglas-fir height growth in

mixed confier stands located in southwestern Oregon are

used to develop a system of dominant height growth and

site index prediction. The Weibull model is used

successfully to develop a polymorphic height growth

prediction equation. A linear model, estimated with

site index as the dependent variable, is used to predict

site index. A comparision is made of pooled least

squares and random coefficient estimation methods. The

random coefficient method is found to more closely model

the shape of early height growth, but appears to result

in more biased predictions and performs very poorly on

older height growth, with both the estimation and

validation data. Alternative error assumptions are

examined with the pooled data method. The best

performance in validation is obtained with assumption of

independent errors, heteroscedastic across trees.
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NONLINEAR MODELS OF HEIGHT GROWTH FOR

DOUGLAS-FIR IN SOUTHWESTERN OREGON

INTRODUCTION

The height growth of dominant and codominant trees

in even-aged forest stands is a major component of

volume growth. The prediction of future dominant height

growth is thus essential to accurate simulation and

prediction of future stand growth. Furthermore, the

height growth of dominant trees is often used as an

index of site productivity, as dominant height growth is

relatively independent of stand density. Thus, accurate

models of the height and age relationship can be used to

estimate site quality.

The height of dominant trees typically follows a

sigmoidal pattern with age. This implies that

mathematical functions which are capable of assuming a

sigmoidal shape are most appropriate for modeling height

growth. The most flexible of such functions are

generally nonlinear in some or all of their parameters,

requiring the use of nonlinear parameter estimation

techniques. In using nonlinear estimation methods, many

of the desirable properties associated with linear

estimation are lost. In finite samples, the parameter

estimates and predictions obtained are no longer



unbiased nor are they efficient.

The first chapter of this thesis will examine the

degree of nonlinearity inherent in modeling individual

tree height growth with standard data sets. Alternate

models of individual height growth will be compared on

the basis of bias and nonlinearity, as well as on the

more familar basis of mean square error.

In developing a general model for predicting

height growth across a variety of site indices, some

simplifying assumptions are required. The simplest

assumption is that height growth follows the same

general pattern across all site indices. Anamorphic

curves which can be scaled up or down to reflect

relative levels of site quality can be developed under

this assumption. If it is believed that height growth

follows different patterns on different site indices,

then a polymorphic prediction equation is appropriate.

Polymorphic equations can be developed with the

"parameter prediction" approach (Clutter, 1983).

The parameters of a polymorphic equation can be

estimated with either a pooled data approach or a

"random coefficient" approach (Ferguson and Leech 1978,

West 1981, Biging 1985).

Using a model found suitable from the work

reported in Chapter I, a polymorphic equation for

predicting height growth of Douglas-fir in southwestern

2



Oregon is developed and presented in Chapter II. The

pooled data estimation method is compared to the random

coefficient method. The effects of different error

assumptions under the pooled approach are also examined.

In addition to examining performance on the estimation

data, two validation data sets are used to compare

models and estimation methods. The results of this

validation arid a system for predicting site index and

height are presented at the end of Chapter II.

3



CHAPTER I

NONLINEAR REGRESSION DIAGNOSTICS:

APPLICATIONS TO INDIVIDUAL TREE HEIGHT GROWTH

Many biological processes are nonlinear in nature.

Much emphasis in biometrics is placed on finding

mathematical functions which can adequately describe

nonlinear growth. In the field of forest biometrics

numerous authors, including Grosenbaugh (1965), Prodan

(1968), Pienaar and Turnbull (1973), Yang, Kozak and

Smith (1978), and Bailey (1980), have examined and

applied various nonlinear functions to forest growth

processes.

Some of these mathematical functions have been

derived from theoretical relationships. Perhaps best

known is the Richards function. This function is

developed from a hypothesized relationship between

anabolic and catabolic metabolism, expressed

mathematically by von Bertalanfy (L951). Richards

(1959) generalized von Bertalanfys model by allowing

the hypothesized allometric constant to vary.

Other functions have had more empirical origins.

The shape of cumulative growth curves resemble

cumulative probability curves. Likewise, growth rate

curves resemble in shape probability density curves. It

seems logical then to use such mathematical functions to
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describe growth processes. Most successful have been

the Weibull function (Wang, Kozak and Smith, 1978), and

the log-logistic function (Monserud, 1984).

Whatever nonlinear function is choosen to represent

a growth process, a fitting method is needed to estimate

the parameters of the function. The most commonly used

method is nonlinear least squares. Most researchers are

fainilar with the many desirable properties of linear

least squares estimation. It is commonly assumed that

nonlinear least squares estimation has the same set of

desirable properties. In fact, similar results are only

obtained asymptotically, i.e. in very large samples.

For small samples, nonlinear least squares estimators

are capable of being significantly biased and

inefficient.



NONLINEAR LEAST SQUARES

Suppose that a growth process can be described by a

mathematical function f(x(3)1 where x is an explanatory

variable such as age, and is a p-dimensional vector of

functional parameters which we wish to estimate. Given

n pairs of an observed response and its associated

explanatory variable, (y,x1), we may write the model

as:

= f(x1) + et , i = l,.,.,n (1)

where eL is the error associated with the i-th

observation.

The nonlinear least squares (NLS) estimate of is

defined as the value of / which minimizes the sum of

the squared errors from equation (1). Provided that

f(x,fl) is defined and continuous for all possible

values of x and , the NLS estimator exists and is

unique (Nalinvaud, 1970).

If we assume that the errors (the e
L
's) about (1)

have zero expectation and are independently and

identically distributed with a constant variance,

then Jennrich (1969) and Malinvaud (1970) have shown

that the NLS estimator of is consistent. Furthermore,

= et/(n - p) is a consistent estimator of the

variance of the errors,

To obtain further results we must assume that the

first partial derivatives of f(.) with respect to (3

6
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exist and are continuous for all possible ( and for

each x . We further assume that the n x p matrix B

with elements , has full column rank such that the

p x p matrix A = B'B is nonsirigular. With these

additional assumptions the NLS estimator is asympto-

tically normally distributed with covariance matrix

Furthermore, the NLS estimator can be used to

consistently estimate A. (See Jennrich, 1969 or

Malinvaud, 1970).

Summarizing the results so far, the NLS estimator

is consistent and asymptotically normally distributed.

That is, for large enough samples, the NLS estimator can

be considered unbiased and normally distributed. How-

ever, in small samples the NLS estimator is generally

biased and non-normally distributed.

If we make an additional assumption that the errors

are normally distributed, than the NLS estimator

coincides with the maximum likelihood estimator. This

assumption assures us that the NLS estimator is

asymptotically efficient. However, in small samples the

NLS estimator is still to some degree biased and

possibly inefficient.

The implications of these results are that for

small samples the fitting of nonlinear models to

biological growth processes may result in misleading,

i.e. biased, estimates of the parameters of interest,
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and in biased predictions of future growth. Furthermore,

any tests of significance or confidence intervals based

upon the asymptotic normality of the NLS etimators may

be inexact.

The question naturally arises of when are NLS

estimators acceptably unbiased and efficient.

Fortunately, recent work has given us some diagnostic

tools which enable us to assess the degree of bias and

nonlinearity associated with particular data and models.

To gain some understanding of these diagnostics, it is

helpful to have some understanding of the geometry of

least squares.



A GEOMETRIC VIEW OF NLS ESTIMATION

The n observations on the dependent variable Y can

be thought of as a vector, which we shall term,

existing in an n-dimensional space. We refer to this n-

dimensional space as the sample space. For any

acceptable value of the p-dimensional vector , an n-

dimensional vector of predicted values is defined by

(/3) = f(x;'). This vector, ., also exists in the

sample space. As
f

is varied over all perrnissable

values, 3) traces a p-dimensional surface, which we

shall refer to as the solution locus. The least squares

estimator of is associated with the point on the

solution locus which is closest to the vector . For a

fuller treatment of these concepts the reader is

referred to Draper and Smith (1981).

Linear least squares can be thought of as a special

case of NLS estimation. In this special case the

solution locus is a linear subspace, a p-dimensional

hyperplane intersecting the origin. The linear least

squares estimator of is easily found by dropping a

perpendicular vector from to the solution locus. This

is also referred to as projecting onto the solution

locus. The well-known solution to the normal equations

of linear least squares accomplishes this projection

with a single iteration.

A second attribute of the solution locus in the

9
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linear case is important, the fact that straight,

parallel, and equally spaced lines in the parameter

space map into straight, parallel and equally spaced

lines on the solution locus. In other words, a uniform

grid of (3 coordinates translates to a uniform grid of

4(e) coordinates. This allows us to use the

covariance matrix of to develop exact confidence

intervals for as well as for

In the general nonlinear case, the solution locus

is not a linear subspace but rather a curved surface.

No exact analytical technique exists for finding the NLS

estimator. Instead, methods which are iterative and

approximate must be relied upon. Many of these methods,

however, to some extent mimic the linear solution method

by using a local linear approximation to the solution

locus. For example, in the Gauss-Newton method an

initial guess at is used to approximate the solution

locus. The observed vector is projected onto the

linear approximation provided by the initial guess,

resulting in a new guess at f3. This process is

repeated until the value of /3 converges. Thus the

Gauss-Newton method can be thought of as a series of

linear regressions.

The local linear approximation to the solution

locus is provided by the first term of a Taylor series

expansion of 4( ,r) about , the current guess at
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/,
)2(fl) (j) + (/3 - f)' _ (2)

where, is the vector of first partial derivatives

of j) with respect to fi. This local approximation

in effect replaces the solution locus with its tangent

plane at J/3). Once the NLS estimator of is found,

this same approximation is used to provide a consistent

estimate of the covariance matrix of

In the special case of linear least squares the

local approximation is exact and only a single iteration

is required to find the least squares estimator.

Furthermore, the covariance matrix of f3 is given

exactly by At . (In the linear case A (X'X)' ).

It may be intuitively seen that if the local linear

approximation is very good at approximating the solution

locus, a nonlinear model will behave very much like a

linear model. It follows then that a good diagnostic

tool would be some measure of how well the local linear

approximation mimics the solution locus.

Beale (1960) proposed an empirical measure of the

adequacy of the local linear approximation. His method,

in the simplest terms, consists of comparing, for a

number of points on the solution locus near the NLS

estimator, the actual distance between each point and

the NLS estimate with the distance estimate provided by

the local linear approximation.
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Bates and Watts (1980) have criticized Beale's

empirical measure on several grounds, proposing instead

their own measures, which are based upon concepts of

differential geometry. Bates and Watts point out that

the local linear approximation implies two assumptions.

The first, termed the planar assumption, assumes that

the solution locus is a plane in the vicinty of the

least squares solution. The second, the uniform

coordinate assumption, imposes a uniform coordinate

system upon this plane. More specifically, this assumes

that straight, parallel, and equally spaced lines in the

parameter space map into straight, parallel and equally

spaced lines on the solution locus.

Using second partial derivatives of 4(f3), Bates

and Watts calculate the curvature of the solution locus

at the least squares solution. The second partials are

first scaled to allow comparison of different models and

data sets. The scaling factor used is s'Ip, where s is

the standard error and p the number of parameters. This

scaling factor is derived from the following formula for

the radius of a (1 -) joint confidence region, r = s

p V'F(p,n-p; ).

Bates and Watts separate out the curvature due to

the planar assumption from that due to the uniform

coordinate assumption. This is accomplished by a

coordinate rotation in the sample space, the details of
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which can be found in their 1980 paper. Since the

solution locus may not be symmetric about the least

squares solution, the curvatures may vary in different

directions. Thus an iterative method is required to

find the maximum curvatures.

The two curvature measures proposed by Bates and

Watts are termed intrinsic non 1inearit' (I'1) and

parameter effects curvature (PE). The first can be

thought of as a measure of the discrepancy between the

tangent plane provided by the linear app roximation and

the true surface of the solution locus. As such, it can

be used as a measure of validity for the planar

assumption. The second is a measure of the departure of

the uniform coordinate system, which is imposed by the

linear app roximation, from the true coordinate system

of the solution locus. It is therefore a measure of

validity of the uniform coordinate assumption.

In order to assess the magnitude of their nonlinear

curvature measues, Bates and Watts suggest comparing

computed values to the value 1//F , where F is the

(1 -) critical value of the F-distribution with n-p and

p degrees of freedom. This correspond to the

standardized radius of a 100(1 -) per cent joint

confidence region. When curvature measures are greater

than this value they may be considered "large.

Large values of IN mean that the linear
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approximation of the solution locus is poor for a

particular combination of model and data. Prediction

bias may be high. Interpretation of the parameters is

hazardous because of the potential for high parameter

bias. Inference procedures based upon the asymptotic

normality of the parameter estimates are likely to be

very inexact. Remedies for high IN include selection of

a less nonlinear model and the collection of new data.

Generally more data is better; but certain settings of

the independent variables may be more valuable in the

reduction of high IN. For example, if the model has

inflection points, extreme points, or asymptotes,

settings of the independent variables which may be close

to these important locations may do more than other

points to reduce IN.

If IN is acceptably low, then the PE measure can be

examined. If prediction is the sole objective, however,

PE can be ignored, as it depends solely on the

parametrization. Reparametrization will not change

predicted values, nor will it change the IN measure.

The PE measure does provide an assessment of how good

are the approximate inference procedures based upon

asymptotic normality. Acceptable levels of PE imply

that the standard asymptotic t-tests and confidence

intervals can be used safely. Conversely, unacceptable

levels of PE imply these methods are likely to be



inexact. Reparameterization may provide a remedy for

unacceptable levels of PE, provided IN is acceptably

low.

Working with an assumption of normal errors, Box

(1971) developed an approximate expression for the bias

of NLS parameter estimates. He also developed an

approximation for the bias in predictions obtained by

NLS methods. He showed that the biases of both

predictions and parameters are of an order of magnitude

lower than their standard errors. This gives us a

practical, and reassuring, upper bound on the bias

inherent in NLS estimation.

A general formula for calculating Box's estimate of

parameter biases is presented in the Appendix, along

with a general formula for estimating prediction bias.

Also presented is a formula for estimating the bias of a

general nonlinear function of the parameters. This last

formula can be useful for obtaining a quick estimate of

the effect of a reparainetrization.

Ratkowsky (1981) showed that high parameter bias

was associated with high PE nonlinearity. In fact, when

attempting to reduce PE, parameter bias can be used as a

practical guide to parameters which are most in need of

reparameterization. He also showed that

reparametrization has no impact upon prediction bias;

prediction bias remains unchanged after

15
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reparameterization, and is solely dependent upon IN.

Bates and Watts (1980) and Ratkowsky (1981) have

applied the curvature measures diagnostics to many

commonly used nonlinear models and data. They have

found that PE is typically higher than IN; with IN

commonly well below the acceptable upper limit, and PE

often in excess of the acceptable limit. With

simulation studies, Ratkowsky has found that parameters

often behave in a close to linear manner, even when PE

is slightly above the critical value, provided that

parameter biases are low. He suggests a estimated bias

of one percent of the estimated parameter or less as a

rough criterion for a nearly linear parameter.

The two curvature measures of Bates and Watts, IN

and PE, and Boxes estimation method for biases, can be

used along with mean square error and visual assessment

of lack of fit to select appropriate nonlinear models.

If inference about parameters is an objective, the PE

measure and Box's estimate of parameter biases can be

used to help select among alternative parameterizations

of a selected model.
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HEIGHT GROWTH MODELS

The cumulative height growth of dominant trees in

even-aged stands shares a characteristic with many

biological growth processes; it follows a sigmodial-

shaped curve over time. Various mathematical functions

have been used to describe such height growth curves.

We have used the diagnostics discussed above to help in

our selection of appropriate nonlinear functions to

describe cumulative height growth over time.

Schumacher (1939) suggested the simple

ln(height)/reciprocal of age model, written as

H = b exp(b A (3)

where, H refers to cumulative height at age A.

Piennar and Turnbull (1973) presented the theory

behind the Richards (or Chapman-Richards) model, and

fitted it to some height growth data as an example of

its potential use. This three parameter model may be

most simply written as,

H = b1 [1 - exp(-bA)] . (4)

Since their paper, the Richards function has enjoyed

widespread use in the forest biometrics field.

Yang, Kozack and Smith (1978) presented a Weibull-

type function as a flexible growth curve. They compared

their Weibull-type curve to other functions on a fit to
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height growth dat:a. The three parameter Weibull-type

curve may be writ:ten as,

H = b1 [1 - exp(-b (5)

Bailey (1980) proposed the use of a generalized

Weibull functionr which includes, as special cases, both

the Weibull and Richards functions. This four parameter

model may be writ:ten as:

H = b [1 exp(-b ) I (6)

Monserud (1984) has recently used a log-logistic

function to describe height growth. The function is a

reparameterizaticn of a function proposed by Prodan

(1968). It is also equivalent to a model proposed by

Morgan, Mercer and Flodin (1975) for a nutritional

model. It is similar to a polynomial approximation to

the Prodan model, suggested by Proclan and used by King

(1968) for a height growth and site index model. The

model obviously has many parameterizations, a simple one

being,

H = b / [:1. + exp(b + b inCA)] (7)

Two other models are often used in biological

growth applications, the Gompertz and the logistic. The

Gompertz model is given by,
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H = b1 exp[-exp(b2, - b3A)] . (8)

The logistic may be written as,

H = b1 / [1 exp(b - b3 A)] (9)

Both the Gornpertz and the logistic have the undesirable

property, at least: when tree height is the dependent

variable, of not being constrained to go through the

origin. Bailey (1980) correctly stated that the

Gompertz and logisitic can be forced to go through the

origin by reparameterization. However, simply setting

b = 0, as Bailey suggested, will not accomplish this. One

way which will, however, is by rewritting (8) and (9)

with only two parameters as follows:

H = exp[b1 --exp(lnb1 - bA)1 - 1 (8a)

H = b1 / [1 + exp(ln(b1 -1) - bA)] - 1. (9a)



A SIMPLE EXAMPLE

Data on the height growth of a dominant Douglas-fir

tree growing on a medium-high site in southwest Oregon

was used as an example of the use of nonlinear

regression diagnostics. The data was collected by stem

analysis of a felled tree. The tree was sectioned at

the stump, breast height, and thereafter at 2.56 m

intervals up the stem. At each section age and the

height to the section were recorded. Figure 1.1

presents the pattern of cumulative height growth over

age.

The seven models mentioned above, the Schumacher,

Richards, Weibull, generalized Weibull, log-logistic,

Gompertz and logistic models, were all fit with NLS

estimation to the data. Figures 1.2-1.10 present the

fitted height growth curves. The nonlinearity measures

of Bates and Watts were calculated for each model.

Table 1.1 presents the results of these computations.

The four parameter generalized Weibull (6). appears

superior in terms of mean square error (s= 1.741),

followed closely by (5), the three parameter Weibull (sn-

= 2.311). The Richards (4), log-logistic (7), and three

parameter Gompertz (8) followed in order, and had mean

square errors of roughly the same order of magnitude.

The three parameter logistic (9) and Schumacher's model

20
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(1) fitted poorly, with mean square errors of 40.6 and

61.8. The constrained versions of the Gornpertz (8a) and

logistic (9a) fitted worst of all, with mean square

errors of 165.3 and 757.6.

From the values of mean square error associated

with each model and the visual evidence presented in

figures 1.2-1.10, we concluded that the only models

flexible enough to describe Douglas-fir height growth

were the Richards, Weibull, generalized Weibull and log-

logistic.

The acceptable values of the curvature measures

(for a 95 per cent confidence interval) with this sample

size are .2696 for a 2-parameter model, .2853 for a 3-

parameter model, and .2953 for a 4-parameter model.

From Table 1.1 it is apparent that all models have

acceptable IN, with the notable exception of the

generalized Weibull. Thus for all models except the

generalized Weibull, the solution locus is close to

linear in the vicinity of the least squares solution.

The 3-parameter Weibull is most nearly linear, followed

closely by the Richards.

The 4-parameter generalized Weibull appears to be

severely overparameterized. Further evidence for this

conclusion is provided by the asymptotic t-statistics

for the parameters of this model; two of the four are

not significantly different from zero.
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Figure 1.8. Constrained Gompertz height growth model.
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Table Ii. Parameters, iiean square errors and diagnostics for the nine nonlinear nodels fitted to the example data.

Medal

(3) (4) (5) (6) (7) (0) (Ua) (9) (9a)

bO 246.7 215.7 209.8 202.6 259.4 197.5 5.191 188.7 161.7
bi -20.04 .0234 .0096 .0015 5.213 .0400 .0659 2.105 .1764
b2 - 1.281 1.192 1.160 1.348 1.013 - .0621 -
b3 - - - .6645 - - - - -

error

square 61.85 3.151 2.311 1.741 5.610 9.601 165.3 40.58 576.0

18 .0432 .0188 .0162 5.456 .0864 .0324 .0833
.0608 .3793 .9014 383.6 83.86 .2007 .2754

P12 .0518 .3036 .2022 .1691 .2422



tEstimated with Box's procedure
Parameter effects nonlinearity
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Table 1.2. Estimated percentage biases for the
parameters of three selected models fitted to the
example data.

percentage bias

Model PE bO bi b2

Weibull (5) .9014 .0311 .0633 .0633
Richards (4) .3793 .0346 .0235 .0488
Log-logistic (7) 83.86 -9.888 -.2470 -.1524

Reparameterized models

Weibull (5a) .2022 .0048 .0126 .0633
Richards (4a) .3036 .0051 .0235 .0488
Log-logistic (7a) 2.281 .0106 -.2470 -.1524



34

We have found similar rapid rises in IN due to

adding an additional parameter to an already well-

fitting model form in other data sets and with other

nonlinear models. Apparently, IN is very useful in

identifying overpararneterized models.

The PE measures are larger than their acceptable

levels for every model except the Gompertz and the

Schumacher. This suggests that the other models are in

need of reparameterization if parameter inference or

interpretation are objectives.

At this point, we decided to restrict further

attention to three models, the Richards, Weibull, and

log-logistic. These three fit reasonably well, as

measured by mean square error; all three pass through

the origin as desired; and, all three have acceptable

levels of IN. At this point, if prediction had been our

sole objective, we could have stopped and choosen among

these three. However, we continued by examining

possible reparaineterizations for each of these models,

with the hope of finding new parameterizations with

lower PE. Such parametrizations would be more useful in

providing interpretable parameters; they would also

allow us to use inference procedures based upon

asymptotic normality with greater confidence.

In order to get some idea of which parameters are

contributing most to the PE nonlinearity, we examined
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Box's estimates of the parameter biases for each of the

three models. These biases are presented in Table 1.2.

Percentage bias is very high for the first

parameter in the log-logistic. The first parameter in

each model can be interpretated as the asymptotic limit

on height. You will note from Table 1.1 that the log-

logistic has a significantly higher value for this

parameter estimate than either the Richards or Weibull.

You may also note from figure 1.5 that the log-logistic

exhibits some lack of fit as the tree approaches its

asymptotic height. All this suggests a

reparameterization with a different scale for the

asymptote parameter. We tried the following

parameter izat ion,

H = e / [1 + exp(b + b3 ln(A)] . (7a)

In other words we replaced b1 with lfl(bf). This

paraineterization gave us a PE value of 2.828, a

significant reduction from the previous value of 83.86,

but still not acceptable. However, the percentage bias

for the asymptote was reduced from -9.884 to 0.0106.

The Weibull model had a PE value of .9014 for

parametrization (5). The percentage parameter biases

were all below one, but were higher for the asymptote

(the first parameter) and the rate parameter (second

parameter). The following parameterization, which
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replaces the first and second parameters from (5) with

their logarithms, was tried.

H = e [1 - exp(-e ) (5a)

This parameterization resulted in a PE value of .2022,

which is below the acceptable level of .2853. The

percentage biases for the two altered parameters were

also reduced. We concluded that the parameters from

(5a) are very close to being normally distributed.

The original Richards parameterization had the

lowest PE value of the three original parametrizations.

The estimated percentage parameter biases were all

below one percent. However, since the changing first

and second parameters to a logarithmic scale improved

the Weibull model, this was also tried for the Richards.

The result was an increase in the estimated bias of the

second (rate) parameter, and an increase in PE to .8873.

Thus, we settled on the following reparameterization of

the Richards,

H = e [1 - exp(-b (4a)

This pararneterization resulted in a slight decrease in

PE, from 0.3793 to 0.3036, and a decrease in percentage

estimated bias for the first parameter. The PE value

however remains slightly above the acceptable value.

We drew the following conclusions on the choice
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between the three models. For this particular data for

a single tree, the Weibull parametrization (5a) was

superior on four criteria; lowest mean square error,

lowest IN, lowest PE, and lowest parameter biases. The

first two criteria implied that the Weibull would

provide the best predictions. The second two criteria

implied that the parameters from (5a) were most nearly

normal of all the parameterizations examined.

The Richards model was a close second on all four

criteria. This implied that for a similar data set the

Richards might prove superior to the Weibull on one or

more of these criteria.

The log-logistic model was inferior to both the

Weibull and Richards on all four criteria. Perhap.s most

significant was the much poorer performance of the log-

logistic on the PE and parameter bias criteria. We

concluded that the log-logistic provided the least

interpretable parameters, and provided the most

difficulties in applying standard inference procedures.

Generalizing these conclusions beyond this

particular data may be hazardous. In order to obtain

more general empirical conclusions, we applied these

analysis methods to the observed height growth from many

more trees.



RESULTS WITH MANY TREES

We applied the nonlinear regression diagnostics

discussed above to five additional data sets. Two of

these data sets were collected for the Forestry

Intensified Research (FIR) Growth and Yield Project in

the second-growth mixed conifer stands of southwest

Oregon. The first of these consisted of stem analysis

data for 89 site quality, dominant Douglas-fir trees.

The other was similar data for 40 site-quality, dominant

ponderosa pines.

The third and fourth data sets were contributed by

Joe Means of the USFS's Pacific Northwest Forest and

Range Experiment Station. The third data set consisted

of stem analysis data for 6 dominant Douglas-fir trees

from high elevation, old-growth sites in the Oregon
Cascades. The fourth data set was similar data for 4

dominant mountain hemlock trees, also from high

elevation sites in the Oregon Cascades.

The fifth, and final, set consisted of stem

analysis data on a single spruce tree from Austria, and

was obtained from Prodan (1968), who attributed the

original data to Guttenberg (1915). This data set has

been used as an example by both Pienaar and Turnbull

(1973) and Yang, (1978).

Table 1.3 presents weighted averages of mean square

38
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error, IN and PE for each of these data sets. The

individual values of each statistic for each tree were

weighted by the number of observations per tree.

In the largest of the data sets, the 89 Douglas-fir

trees from southwest Oregon, the Weibull model (5a) was

superior in terms of mean square error and PE. However,

the Richards model performed nearly as well by those two

measures and had slightly lower IN. All three models

fit reasonably well and had acceptable IN. None of the

three had acceptable PE values.

The ponderosa pine data from the same region had

more problems with parameter effects nonlinearity.

While all three models had acceptable levels of IN, PE

was high in each case. No clearcut choice among the

three models was apparent. The log-logistic proved

superior in terms of mean square error, although the

Richards and Weibull models fitted nearly as well. The

Richards had the lowest IN, but once again all three

models were very close. The Weihull had the lowest PE

value.

The spruce tree data is best fit by the log-

logistic model, in terms of mean square error. However,

the Richards model has the lowest values for IN and PE.

The two sets of data from the high elevation, old-

growth stands had similar results. The log-logistic
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(feet)

Douglas-fir (5a) 1.5265 .0217 .7345
SW Oregon (4a) 1.5379 .0184 1.631
89 trees (7a) 1.5513 .0539 2.931

Ponderosa pine (5a) 1.9361 .0215 2.344
SW Oregon (4a) 1.8527 .0151 10.00
40 trees (7a) 1.8224 .0365 7.971
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Table 1.3. Weigthed averages for mean square error, IN
and PE for the five data sets.

mean square
data model error IN PE

(meters)

Douglas-fir (5a) .82442 .0374 .3970
Oregon Cascades (4a) 1.8527 .0411 .4126
6 trees (7a) 1.8224 .1015 2.987

Mountain hemlock (5a) .53897 .0494 .2713
Oregon Cascades (4a) .43527 .0464 .5769
4 trees (7a) .31711 .6772 18.93

Spruce (5a) .31327 .0427 .4704
Austria (4a) .16114 .0347 .3533
1 tree (7a) .09065 .1734 4.335



= eb / [1 + exp(b + b ln(A) I + b4 A . (7b)
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model proved best in terms of mean square error, but had

relatively high levels of IN and PE. In fact, the log-

logistic fit to the mountain hemlock data was the only

fit which had unaccepatble IN for an entire data set.

The Weibull and Richards models were considerably better

in terms of the curvature measures.

The trees in these two data sets ranged in age from

just over 200 years to just over 400 years old.

Examination of plots of height over age for these trees

indicate that height growth does not decline

indefinitely, but instead appears to maintain a

constant, although slow, rate at advanced ages. The

slow approach to an asymptote which is characteristic of

the log-logistic best approximates this, which may

account for that model's superior fit to this data.

The three sigrnodial-shapec3 models used here can be

modified to represent an asymptotic constant growth

rate. The Richards can be reparameterized as

H = e' [1 - exp(-b2 A)]b3 + b*A (4b)

the Weibull as

H = e' [1 - exp(-eA) I + b A (Sb)

and the log-logistic as
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These 4-parameter models were fit to those data sets in

which trees older than 200 years were measured. Table

1.4 presents the results of these fits. For the

Douglas-fir data the addition of a linear asymptotic

growth rate significantly improved the fit. It did so

with some loss in linearity, raising both the IN and the

PE measures. However, IN was still acceptable for the

Weibull and Richards models, and the parameter biases

for these two models wera all below one percent. The

high nonlinearity of the log-logistic model was

aggravated with the addition of a fourth paraneter; IN

was raised above the acceptable level and the already

high PE was further increased.
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TABLE 1.4 Weighted averages for mean square error, IN
and PE for the three old-growth data sets fitted with
linear asymptotic growth.

mean square
data model error IN PE

(meters)

Douglas-fir (5b) .25904 .1138 .5909
Oregon Cascades (4b) .22698 .0893 .9574
6 trees (7b) .21372 .3557 10.81

Mountain hemlock (5b) .13528 .2898 2.935
Oregon Cascades (4b) .16988. .1861 12.23
4 trees (7b) .15080 10.66 305.9

Spruce (5b) .07414 .1393 .6393
Austria (4b) .00847 .0358 .5395
1 tree (7b) .00817 .5471 11.68



CONCLUS IONS

Of all the models examined, the Richards, Weibull

and log-logistic seem to be the best fitting models for

height growth data. None of these three appear to be

consistently superior to the others for all height

growth data. While the Weibull model has the lowest

mean square error for the second growth Douglas-fir

data, the log-logistic has the lowest mean square error

in all the remaining data sets. However, the Richards

is in every case a close second.

The log-logistic exhibits relatively high intrinsic

nonlinearity, reaching unacceptable levels with some

data. The Richards and Weibull models are consistently

better in terms of IN, maintaining acceptable levels for

all the data we examined.

The Weibull parameterization (5a) appears best in

terms of parameter effects nonlinearity, consistently

outperforming the best parameterizations of the Richards

and log-logistic. If parameter inference or

interpretation are objectives, the Weibull may be

preferred on this basis. While the Richards often has

unacceptable levels of PE, its parameter biases

generally remain under one percent, indicating that

approximate inference methods may be used with caution.

The log-logistic has severe parameter effects

nonlinearity, with parameter biases often above one
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percent. The parameters of the log-logistic should be

interpretated only with extreme caution.



CHAPTER II

POLYMORPHIC HEIGHT GROWTH AND SITE INDEX

MODELS FOR DOUGLAS-FIR IN

SOUTHWESTERN OREGON

Height growth of even-aged stands is a major

component of their volume growth. Also, since height

growth is relatively independent of stand density,

height growth can be used as a measure of site

productivity. Site index, defined as the average height

of the dominant trees in an even-aged stand at a select-

ed base age, is the common term for such a measure.

Equations for predicting height growth and site

index have been a major concern to forest biometricians.

Early efforts (e.g. Bruce 1926, Osborne and Schumacher

1935.) used single measurements of height and age from

many stands. Such cross-sectional data were used to fit

a general "guide curve", i.e. an estimate of the general

height growth pattern, which could then be scaled up or

down to reflect differences in site index. Site index

was estimated by solving the general guide curve

equation for site index. The resulting equations were

termed anarnorphic since they exhibited the same shape

for all site indices.

Most recent height growth and site index efforts

have utilized stem analysis data, which provides real
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growth series data, i.e multiple observations of height

and age from individual trees. Curtis (1964) presents

the many advantages of using stem analysis data, the

prime one being a greater ability to model polymorphic

height growth patterns. The resulting predictions of

height growth follow different patterns for different

site indices, an attribute thought more representative

of the true height growth behavior.

A standard practice in estimating polymorphic

height growth models has been to pool stem analysis data

and use the pooled data to estimate a single equation

capable of polymorphism across site indices (e.g. Curtis

1974, Monserud and Ek 1976, Krumland and Wensel

1977, and Monserud 1984).

An alternative approach is to fit seperate height

growth models to individual trees (or a group of trees

from the same sample plot) and then predict the

parameters of the resulting growth models from site

index. King (1966) used such an approach in developing

site index curves for Douglas-fir in the Pacific

Northwest. This approach may be termed a random

coefficients CRC) approach (Swamy 1970). Biging (1985)

used a RC procedure to estimate height growth curves for

mixed conifer stands in northern California. Ferguson

and Leech (1978). and West (1981) have used a a two-stage

RC method to predict yields, diameter growth and
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mortality. A RC approach is believed to be capable of

better modeling differences in growth trends, or

mortality trends, across sites.

The major objective of this study was to develop a

Douglas-fir height growth and site index model for use

in the mixed conifer stands of southwestern Oregon. In

developing such a model we compared the performance of

pooled estimation procedures to the performance of RC

estimation procedures. This comparision was performed

on the data used to develop both models, and, on two

validation data sets.



DATA

Data for this study was collected by the Southwest

Oregon Growth and Yield Project, a cooperative study on

the growth of mixed conifer stands in southwestern

Oregon. As part of this project, one or two dominant

Douglas-fir trees were felled in each of 246 sample

stands. Potential site index trees were selected from

among these by elimination of any trees with evidence of

past top damage or height growth suppression. 126

Douglas-fir tree.s were so selected0 Stem analysis was

conducted on each potential site tree; with sectioning

at stump height (1.0 ft (.3048 rn)), breast height (4.5

ft (1.37 in)), and at 8.4 ft (2.56 in) intervals

thereafter up the stem. Age of each section was

determined by ring counts, providing an observation of

tree height and age for each section. Stem analysis

revealed past top damage or height suprression on 23

potential site trees, leaving 103 quality site trees.

Of these, 14 were under the breast height age of 50

years, leaving 89 trees as old or older than the

selected base age of 50.

On all the felled dorninants the most recent full

five-year height growth was identified by whorl count

and measured to the nearest tenth-foot (3.048 cm). The

whorl count was confirmed by a ring count on a section

made directly below the fifth whorl from the tree tip.
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Thus, at least two observations of height and age were

available on 404 dominant Douglas-fir trees.

The height growth data described above was divided

into three groups; a set of growth series observations

of height and age on the 89 selected site index trees

which were above the breast height age of 50, a set of

five year height growth observations on 404 dominant

trees, and a set of growth series observations on 14

site quality trees which fell below 50 years in breast

height age. The first data set was used to develop

height growth and site index prediction equations. The

second two data sets were used as validation data sets.

All data were transformed to height above breast

height (total height - 4.5 ft) and breast height age.

Further reference to height and age shall mean height

above breast height and breast height age.



ANALYSIS

Height growth model. The Weibull-type function

described in Chapter I was taken as the general form for

height growth. The results from Chapter I indicate that

the Weibull model is an acceptable choice for individual

tree height growth. When fit individually to the 89

site quality trees, the Weibull had the lowest overall

mean square error, and the lowest parameter effects

nonlinearity of the three models examined. It had

acceptably low intrinsic nonlinearity for all 89 trees.

For an individual tree model, the Weibull model

has three parameters, one which may be consider as the

asymptotic limit of growth, another which may be thought

of as a growth rate parameter, and a third which may be

thought of as a shape parameter. This distinction

between the second and third parameters is somewhat

arbitrary, as they jointly determined both the shape and

rate of growth.

A general height growth model, polymorphic with

respect to site index, can be created by expressing two

or more of the parameters of the Weibull-type model as

functions of site index. In its most general form, with

all three parameters expressed as functions of site

index, this may be written as,

f3(S)
H = f(S)[l - exp(-f(S)A )]
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where, H is height above breast height, S is site

index, and A is breast height age.

Other authors (e.g. Payandeh 1974, Monserud and Ek

1976, Carinean and Hahn 1981, Krumland and Wensel 1977)

have used a similar approach with the Richards model and

the following functional relationships,

a
f.(S) = a1S

f1(S) = a3

f3(S) = a4S
a5

These authors have used a constant rate parameter

and have expressed the asymptote and the shape

parameters as functions of site index. Other

combinations are possible, but apparently have not been

examined. The most general form we examined used the

functions f and f3 as expressed above, but replaced

the constant rate parameter, fLlwith the following

function,

= exp( a3 + alnS

This general model form has six parameters in a

complex nonlinear form. We expected some difficulty in

obtaining nonlinear least squares estimates with pooled

data. Initials attempts to estimate the six parameter

model confirmed this. The parameters of the asymptote

function, f seemed to be the most unstable. This led
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us to develop a method of constraining the model and

reducing the dimensionality of the estimation problem.

Estimates of site index for each of the 89 site

trees were obtained by using the individual fits of the

Weibull model to predict height at age 50, the selected

base age. The 3 parameter individual tree height growth

model can be reduced to two parameters by constraining

the curve to go through the estimated site index at age

50. The model may be written,

b3 b3
H = S[l - exp(-bL A )1 / [l-exp(-b 50

One or both of the two parameters of this

constrained model may be expressed as functions of site

index in order to create a polymorphic height growth

model.

Results from Chapter I indicate that

reparametrization can facilitate nonlinear parameter

estimation. We found the most success with the

following parameterizations of five models. An

unconstrained 6 parameter model,

b1 + bLlnS b
H = e [l-exp(-exp(b + b1lnS

an unconstrained 5 parameter model,

b + blnS

+ b5S mA))] (1)

H = e [l-exp(-exp(b3 + blnS + b5lnA))] (2)



a constrained 4 parameter model,

b
l-exp(--exp(b3 + b4lnS + bsS C mA))

H=S
b

1-exp(-exp(b3 + blnS + b5S mA))

a constrained 3 parameter model, with the rate

parameter expressed as a function of site index,

l-exp( -exp( b + b inS + b mA)
H=s I

l-exp( -exp( b + b inS + b5 mA)

and a constrained 3 parameter model, with the shape

parameter expressed as a function of site index,

H =S

b4
l-exp( -exp( b3 + b5 S mA)

b
l-exp( -exp( b3 + b3 S mA)

Estimation Methods. Models (1)-CS) can be estimated

either with pooled stem analysis data or by a random

coefficient (RC) approach. The pooled data approach

assumes that the parameters of the height growth model

are nonrandom functions of site index. The RC approach

procedes with the assumption that the height growth

model parameters are random functions of site index.

The pooled data approach combines all observations

into a single nonlinear squared error minimization (non-

linear least squares) problem. We shall refer to this

approach as pooled least squares (PLS). The estimation
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method finds the parameter estimates which result in the

lowest sum of squared errors between predicted height

and observed height. If we wish to make probability

statements about the parameter estimates of the predic-

tiôns, we must make assumptions about the distributions

of the errors about the model.

The simplest, but most restrictive, set of

assumptions we can make is that the errors about the

model are independently and identically c1istrihuted

with zero mean and constant variance. With this set of

assumptions the parameters and predictions are

consistent and asymptotically normally distributed, even

with a nonlinear model (Jennrich 1969, Malinvaud 1966).

We shall term estimates obtained under these assumptions

as the PLS1 estimates. This assumption ignores the

likely correlation among errors from the same tree, and

the possibility of nonconstant variance across trees.

A second set of assumptions recognizes the second

of these two problems. Errors are assumed to be

independent and identically distributed within a tree,

but the variance of the errors is allowed to vary among

trees. Fmenta (1971) presents a consistent two-stage

estimation method under these assumptions for linear

models, which by analogy can be extended to nonlinear

models using techniques described in Bard (1974). The

mean square errors from the individual tree model fits
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to each tree are used as estimates of the true variance

about the model for each tree. This method of

estimating individual tree error is independent of the

lack of fit of the general model. The inverses of these

estimated variances are used as weights in a weighted

nonlinear least squares estimation. Estimates obtained

under these assumptions we shall term PLS2 estimates.

A third set of assumptions go a step further and

recognize the likely serial correlation among errors

within a tree. By assuming a first-order serial

correlation scheme, with a correlation coefficient which

is constant across trees, we can consistently estimate

the correlation coefficient by techniques outline in

Kmenta (1971), and use a nonlinear estimation method as

presented by Bard (1974). The errors from the

individual tree fits are used to estimate the first-

order serial correlation coefficient. Estimates obtained

under this, set of assumptions we shall term PLS3

estimates.

Curtis (1974) procceded under a different set of

assumptions when fitting pooled stem analysis data. He

ignored serial correlation within a tree, but assummed

nonconstant variance across ages (implying that within a

tree the error had nonconstant variance, but that

variance is constant across trees for a given age). A

similar set of assumptions was used by Monserud (1984)
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with the addition of a first-order serial correlation

scheme, assuming a constant first-order correlation

coefficient across trees. For our study we identified a

fourth set of assumptions, similar to Curtis (1974),

which allowed for nonconstant variance across ages. An

iterative estimation procedure was used. Errors from the

PLS1 fit were used to estimate error variance for 5-year

age classes. The inverses of these estimated variances

were used as weights in weighted non] inear least

squares. We repeated this process with the errors

resulting from the second fit, and so on, until

convergence of the age class weights were obtained. (The

convergence criteria used was 10 , after Monserud,

1984). We thhall refer to estimates obtained under this

set of assumptions as PLS4 estimates. The estimation

method used with this set of assumptions does not

seperate out the lack of fit error of the general model

from the estimated age class variances.

The random coefficients approach proceeds from the

assumption that the height growth model itself is

random, varying from tree to tree. A two-stage

estimation methods is called for under this premise.

The first stage invoLves fitting individual height

growth models to each tree. The second stage involves

prediction of the individual tree model coefficients by

site index.
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The RC approach is thought to account better for

intertree variability. With pooled estimates, the

prediction for a given age and site index is of the

conditional mean height of the pooled sample. With RC

estimates, the corresponding prediction is the height at

the given age on the height growth curve predicted for

the given site index. These predictions are not

necessarily the same. As explained by Biging (1985),

with linear models pooled estimation methods tend to

result in flatter (i.e., regressed towards the mean)

regression lines than do the average regression lines

estimated by a random coefficients approach. It is not

known if a similar effect can be expected with nonlinear

models.

Biging (1985) applied a RC approach to height

growth using linear model techniques developed by Swamy

(1970). In order to apply the linear methods it was

necessary to linearize the nonlinear height growth model

(the Richards model in this case) by presetting two

coefficients. Swamy's (1970) method also requires that

the second-stage coefficients appear in the first-stage

model which is fit to each tree. The second-stage RC

estimates are obtained as a weighted average of the

first-stage coefficients. This further limits the

flexibility of the Swamy method.

A more flexible approach was presented by Ferguson
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and Leech (1978), with refinements contributed by Davis

and West (1981). In this approach the second-stage

coefficients need not appear in the first-stage model

which is fit to each tree. The second-stage of

estimation is a system of regressions on the first-stage

coefficients. As pointed out by Ferguson and Leech, the

second-stage estimation is exactly analogous to the

"seemingly unrelated regression" estimation problem

presented by Zeilner (1962). A generalized least

squares (GLs) estimation procedure is considered most

appropriate for such estimation problems. We shall

refer to the Ferguson and Leech approach as RC-GLS.

Ferguson and Leech (1978) developed their

procedures using linear models. In the problem faced

here, the first-stage model is nonlinear in form. The

second-stage model, however, is linear. In the Ferguson

and Leech approach, the linear least squares estimates

of the first-stage coefficients and their covariances

are used in the second stage. In our problem we used

nonlinear least squares estimates of the first-stage

coefficients and their covariances. These nonlinear

estimates are consistent, but not necessarily unbiased

nor efficient, even with the assumption of normal

errors. However, they are maximum likelihood estimates

under the assumption of normal errors. The good

performance of the Weibull model, in terms of the



61

nonlinear curvature measure discussed in Chapter I, help

justify our reliance upon these nonlinear estimates.

The exact distribution of the estimated variances

obtained with RC-GLS techniques is not known, as pointed

out by Davis and West (1981), even for the purely linear

case.

The RC-GLS estimation proceeds on the assumption

that the first-stage coefficients are correlated within

each tree's model and that each tree has its own error

variance. If we make a further assumption, which may

not be tenable, that the first-stage coefficients are

uncorrelated and have constant variances, we may use

ordinary least squares estimation technques to predict

the first-stage coefficients. We shall refer to such

estimates as RC-OLS estimates.

Evaluation of Estimation Methods. The prime objective

of this study is to provide a system which gives "good"

predictions of future height growth. A secondary

objective is to provide "good" estimates of site quality

via a site index prediction system. We defined "good"

as predictions and estimates which are nearly unbiased

and have relatively low variances over the ages 50 to

150 and for site indices ranging from 50 to 130.

We are not particularly interested in making

probability statements about the parameters in our

model. However, we would like the parameter estimates
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to be robust, i.e. to be relatively constant under

differing sets of statistical assumptions. The six

estimation methods described above differ because each

seeks to obtain efficient estimates of the model

parameters under different assumptions. Furthermore,

the RC approach is thought to model more effectively

polymorphism across site index which may be partly

obscured with pooled estimation methods.

With a single data set it is not possible to

determine which set of assumptions are most appropriate

for modeling tree height growth across site indices. In

fact, since not every possible set of assumptions about

the model errors was examined, it is possible that

another estimation method based upon a different set of

assumption is most appropriate.

With these considerations in mind we decided to

examine the performance of each estimation method on

three data sets. The first data set is the stem

analysis data from the 89 site trees which were over 50

years of age. This was the data on which each

estimation method was applied. On this data we examined

mean overall bias, and bias in each 5-year age class and

10 foot site index class. Variances of the prediction

errors for each model were examined similarly, but are

not directly comparable across models due to the

differing assumptions about the error variance.
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The other two data sets are validation data sets,

i.e. these data were not used to estimate the model

parameters. The first was the 5-year height growth data

for 404 dominant Douglas-fir trees. The begining height

and age were used to estimate site index, and this

estimated site index and end of growing period age were

used to predict end of growing period height. The

differences between this predicted and the observed end

of growing period heights were examined for bias and

variance over age and site index classes.

The second validation data set consisted of the

stem analysis data from the 14 site quality trees which

where under 50 years of age. Two approaches where taken

to validate the height growth model on this data. To

validate as best as possible just the height growth

prediction component of the system, the final age and

height observation of each tree was used to estimate

site index for each tree. The height growth curve

predicted for that site index was then used to predict

height at each observed age. The differences from

observed height were then examined for bias and variance

in 5 year age classes. The second approach was designed

to assess the overall performance of the combined site

index and height growth prediction system. The first

height and age observation over the age of 15 was used

to estimate site index, and the cuve associated with
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this predicted site index used to predict height at each

observed age. The differences with observed heights

were also examined for bias and variance in 5 year age

classes.

Site, Index Models. Heger (1968) and Curtis (1974)

suggested that for a given age site index could be

adequately described by a simple linear regression on

height. With the data of this study, initial plots of

site index over height for each five year period

exhibited some nonhinearities, particularly at young

ages. These plots suggested the following model,

ln(S/H) = b + b ln(H)

where, S = site index (height above breast height at

breast height age 50), H = height (ft) above breast

height, and b , b are coefficients which vary

with age.

The individual tree fits to the simple Weibuhl

height growth model were used to obtain estimates of

each tree's height at age 5 and for every five years

therafter up to the age of the tree, or age 100,

whichever was less. Individual regressions using the

above model were fit to each of the five year heights.

Plots of b1 and b over age showed two curvilinear

trends with age, with both parameters passing near or

through zero at age 50. This suggested that both
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parameters be modeled by a linear and a quadratic term

of age, giving the following model,

S = a1 (A-SO) + a(A-5O)1+ a3 (A-50)lnH

+ a (A5O)2 lnH . (6)

This model has the desirable property of

predicting ln(S/H) = 0, i.e. S=H, at age SO. It was fit

to the actual height and age observations, rather than

the predicted 5 year interval heights, in order to avoid

any possible bias arising from a lack of fit of the

Weibull height growth model.

Computational Methods. Linear regressions, which were

used in developing the site index model, were performed

with the BMDP statistical analysis program, IBM-PC

version. Nonlinear regressions were computed with our

own FORTRAN implementation of the Marquardt algorithm,

compiled and run on a IBM-PC/XT in double precision.

RC-GLS estimation was accomplished with our own

FORTRAN implementation of the algorithm outlined by

Ferguson and Leech (1978) and modified by West (1981).

The program was checked by using the example presented

by Ferguson and Leech. Our program produced the same

estimates reported by West (1981).

Microcomputer graphics programs were used

extensively in screenings of data and the assessment of

model forms and fits. The assessment of error bias and
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variance on the validation data sets were accomplished

with FORTRAN programs written specifically for these

purposes.
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RESULTS

Height growth - pooled estimation versus random

coefficients. Models (1) and (3) could not be estimated

with pooled nonlinear least squares. Using many sets of

starting values, the Marquardt algorithm was allowed to

iterate up to 150 times, but the convergence criteria

(l0 ) were never met.

The random coefficients methods did, however,

produce estimates for all five models. The RC-GLS

estimates which may be preferred on theoretical grounds

over the RC-OLS estimates, always produced a lower

prediction mean square error than the RC-OLS estimates.

(Prediction mean square errors were computed by using

the RC estimates to predict height for each age and site

index pair, and summing the squared differences from

predicted and observed height, and dividing by the

number of observations.)

PLS1 estimates, as well as RC estimates, were

obtained for the 5-parameter model (2), and both of the

3-parameter constrained models. The pooled estimates,

when obtainable, resulted in a considerably lower mean

square prediction error than the RC-GLS estimates for

the same model.

Greater success was found in fitting the

constrained models. PLS estimates were obtained for

models (4) and (5), but not for model (3). RC-OLS and
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RC-GLS estimates were obtained for all three models.

Once again, where PLS estimates were obtainable they had

lower mean square prediction error when compared to the

best RC estimates for the same model. The mean square

errors for all the PLS1, RC-OLS and RC-GLS estimates are

presented in Table 11.1. The parameter estimates for

the same models are presented in Table 11.2.

The lowest mean squared prediction error was

obtained by the PLS estimates for model (4), the

constrained model with the rate parameter expressed as a

function of site index. The best RC estimates, in terms

of mean squared prediction error, were the GLS estimates

for the constrained model (3).

Figures 11.1-11.3 present the predicted height

growth curves for site indices 65, 95 and 125, for the

PLS1, RC-OLS and RC-GLS estimates of model (4). The

PLS1 estimates appear to exhibit a greater degree of

polymorphism, with considerable flatter curves for low

site indices than for high site indices. The RC curves

generally have a lower asymptote for the same site index

than the PLs1. Closer examination of predictions for

younger ages. revealed that the RC predictions follow a

more curved pattern at ages below 50 than do the PLS1

predictions. The higher values of the shape parameter

for the RC models, evident in Table 11.2, confirm this

greater curvature.
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Table 11.1 Mean square errors for five height growth
mode is (estimation data).

Estimation method

Model

PLS1 RC-OLS RC-GLS

(1) - 64.37 60.21

(2) 22.12 76.11 73.20

(3) - 58.97 50.20

(4) 21.40 72.12 63.08

(5) 23.36 69.12 51.45
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Table 11.2 Parameter estimates for five height growth
models (parameter variances in paranthesis).

Model (1)

1 2

Parameter

3 4 5 6

RC-OLS .4036 .9958 -11.58 1.345 1.556 -.2633
(.5887) (.1297) (1.786) (.3936) (.5143) (.1133)

RC-GLS .5977 .9548 -10.74 1.171 1.315 -.2124
(.5718) (.1259) (1.728) (.3801) (.4660) (.1024)

Model (2)

PL Si 6.063 -.1439 -12.22 1.571 1.146
(.0389) (.0017) (.0613) (.0029) (.0001)

RC-OLS .4036 .9958 -11.58 1.345 1.447
(.5887) (.1297) (1.786) (.3936) (.0004)

RC-GLS 1.185 .8255 -7.043 .3585 1.424
(.2764) (.0134) (1.285) (.0622) (.0003)

Model (3)

RC-OLS - - -11.17 1.261 1.457 -.2437
(3.141) (.1525) (.1318) (.0064)

RC-GLS - -10.83 1.193 1.371 -.2260
(3.105) (.1459) (.1066) (.0051)

Model (4)

PLS 1 - - -13.31 1.806 1.148
(.0708) (.0034) (.00004)

RC-OLS - - -11.17 1.261 1.433
(3.141) (.1525) (.0003)

RC-GLS - - -6.961 .3450 1.414
(1.231) (.0596) (.0003)

Model (5)

PL Si - - -5.065 - 1.154 -.4569
(.0002) (.0002) (.0003)

RC-OLS - - -5.445 - 3.061 -.3590
(.0043) (.2601) (.0126)

RC-GLS - - -5.392 - 1.611 -.0436
(.0041) (.1046) (.0005)
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Subjectively, it appeared that the shape of the

RC curves were closer to the shape we observed in

individual tree plots below the age of 50. However,

examination of bias and variance across ages and site

indices for the RC models revealed that these models

performed poorly at ages over 50, with high negative

bias (underprediction) and high variance.

Many of the site index trees had only a few

height/age observations past the age of 50. We theorized

that the individual fits which resulted in the first-

stage coefficients adequately modeled the early stages

of height growth, but that there was insufficient data

in the later years for the height growth pattern past 50

years to be adequately described by the first stage

coefficients.

The pooled estimation method, represented by the

PLS1 estimates, appears more capable of modeling after

age 50 height growth patterns.

Height growth - different error assumptions with pooled

data. Estimates for the best pooled model, model (4),

where obtained under the four sets of error assumptions

outlined above; the PLS1 estimates assuinmed completely

independent errors with constant variance, the PLS2

estimates assumed independent errors, heteroscedastic

across tree, the PLS3 estimates assumed first-order

serial correlation within a tree, heteroscedastic across
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plots, and the PLS4 estimates assumed independent

errors, heteroscedastic across ages.

Since each set of estimates were obtained by

minimizing a differently weighted sum of squared errors,

the mean square errors are not directly comparable.

However, the parameter estimates can be compared for

robustness to different error assumptions. Table 11.3

presents the parameter estimates and their estimated

standard errors for each of the four sets of parameters.

The estimated standard errors under the four error

assumptions did not follow any pattern which might be

expected from theory. When the assumption of constant

variance is violated, ordinary least squares estimates

(such as the PLS1 estimates) are expected to result in

biased estimation of parameter variances. Generalized

least squares methods, such as PLS2, PLS3 and PLS4, are

expected to give better estimates of these variances.

In the linear case, under heteroscedasticity, whether

this bias is negative or positive depends upon the sign

of the correlation between the square of the independent

variable and the variance of each observation (Kmenta

1971). If the assumption of independence is violated

with positive serial correlation, as would be expected

with height growth, the variances of the parameters are
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Table 11.3 Parmeter estimates for model (4) under four
pooled error assumptions (parameter
variances in paranthesis).

Parameter
Error
assumption 3 4

PLS1 -13.306 1.806 1.148
(.07078) (.00339) (.00004)

PLS2 -6.217 .2812 1.144
(.01734) (.00089) (.00005)

PLS3 -5.449 .1752 .9913
(.01376) (.00104) (.00008)

PLS4 -6.092 .2485 1.223
(.00408) (.00018) (.00005)
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underestimated by ordinary least squares estimation

(Kmenta 1971). Since we did not know the true nature of

the error distribution, we could not predict any

specific underestimation or overestimation of parameters

variances. However, with a likely positive correlation

among errors within each tree, and a possible increasing

variance with age, an underestimation of variance seemed

more likely. Contrary to this expectation, the

generalized least squares estimation methods resulted in

slightly lower estimated variances for most of the

parameter estimates.

The PLS1 estimates for the first two parameters

(the parameters of the function predicting the rate

parameter) are considerably different from the estimates

obtained by the other three methods. The two parameters

are highly correlated, with estimated correlations of -

.98 or greater under each of the four error assumptions,

a fact which might exaggerate minor differences. How-

ever, these differences did result in perceptibly

different predicted height growth curves, as can be seen

in figures 11.4 through 11.6. The major differences

occur after age 50. Under 50 years of age, the major

difference was exhibited by the PLS3 curve, which had no

inflection point (due to an estimated shape parameter

less than unity).

Site index estimation. The site index model (6) fit
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reasonably well to the stem analysis data. All four

parameters appeared highly significant. Regression

lines for selected ages are presented in figure 11.7.

The estimated function was examined for bias and

variance across age and site index classes. Mean error

was between -1 and 1 for all age classes between 20 and

85 years. In this same range, the standard error of

estimate ranged from 1.18 to 7.53 feet (.360-2.30 m).

The overall stand error of estimate was 6.56 feet (2.00

m).

The fit of model (6) was compared to two other

models; a simplified version of (6) in which the squared

(age - 50) terms were removed, and the empirical model

form used by Morserud (1984). The Monserud model is the

following linear regression for site index,

S=b1+b(lnA) +b3AlnA+b4H+b5}1/A

The overall standard error of estimates were 7.42

ft (2.26 in) for the simplified version of model (6), and

6.80 ft (2.07 m) for Monserud's model. The simplified

version of model (6) was considerably more biased at

younger and older ages than the quadratic version.

Monserud' model had only slightly higher bias at younger

and older ages, but was not constrained to predict
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Table 11.4 Parameter estimates and fit statistics for
site index prediction model (6)

parameter coeficient standard
estimate error

mean square error = .005539

Relative mean square residual = .00938

Adjusted R-square = .99062

a1 -.0521778 .0018171

a .000715141 .0000356

a3 .00797252 .0003944

a -.000133377 .0000064
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actual height for site index at age 50. We decided to

use model (6) for prediction of site index. The

parameter estimates and goodness of fit statistics for

this model are presented in Table 11.4.

3Liidation - 5-year dominant height growth data. We

validated eight models on the 5-year height growth data

for dominant Douglas-firs; the four sets of pooled

estimates for model (4), the two sets of RC estimates

for model (3), and the two set of RC estimates for model

(4). Table 11.5 presents the resulting mean errors and

mean square errors for each model. These are presented

for the entire data, and for two subdivisions of the

data, those trees under age 50 and those over age 50 (at

the begining of the growth period).

The PLS3 estimates performed best on the overall

data, followed closely by the PLS2 estimates. Both of

these models had lower mean square errors on this

validation data than then they had on the estimation

data, despite the fact that site index was estimated for

the validation data. The PLS1 estimates, while

producing a higher validation mean square error than the

PLS2 and PLS3 estimates, had only a slightly higher mean

square error than on the estimation data. The PLS4

estimates gave the worst overall performance of the

pooled estimation technqiues on this validation data.

The RC estimates were all significantly higher in
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overall validation mean square error than the pooled

estimates. This was primarily due to very poor

performance on the over 50 validation data, with both

severe underprediction and higher variance. Of the

pooled estimates, PLS3 and PLS2 were best on the over 50

data.

Validation results for the data under 50 were less

clear. The PLS1 estimates had the lowest variance and

mean square error, but the largest bias (underpredic-

tion) of all the pooled estimates. The RC estimates all

had larger mean square errors than the pooled estimates,

largely due to higher biases (underprediction).

Validation - Young site trees. Validation on the stem

analysis data was performed with two estimates of site

index; an estimate obtained from the last age and height

observation on a tree (assumed to be the best prediction

available), and, by an estimate obatined from the first

age and height observation after age 15 (assumed to be a

less reliable estimate). Using the first estimate

attempts to eliminate as much as possible the error in

site index estimation, and thereby isolating to some

degree the error of the height growth model. With the

second estimate we attempted to measure the combined

error involved in using a joint site index and height

growth prediction system.

Table 11.6 presents the results using the first
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(better) estimate of site index. With this validation

data the RC estimates outperform the pooled estimates in

both bias and mean square error. The RC estimates are

very close in performance among themselves, with the 4-

parameter model (3) doing only slightly better than the

3-parameter model (4). Surprisingly, the RC-GLS

estimates performed no better than the RC-OLS estimates,

in fact, slightly worse.

The pooled estimates have both higher prediction

error variance and higher bias, with a mean

overprediction of between 1.87 and 4.91 ft (.570-1.50

m). Among the pooled estimates, the PLS1 estimates were

best and the PLS4 estimates were worst.

Table 11.7 presents the results obtained using the

second, and presumably poorer estimate of site index.

With these estimates of site index the RC estimates no

longer outperform the pooled estimates in mean square

error, largely due a high positive bias. The variance

of the prediction errors is lower with the RC estimates,

suggesting that the RC curves follow the shape of height

growth better, but are consistently underpredicting.

The patterns of bias over age for the pooled estimates

suggest that their curves are flatter but higher,

resulting in less total underprediction.

It is difficult to draw strong conclusions from
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Table 11.5 Validation results of eight selected models
on the 5-year dominant height growth data, overall and
by two age classes.

mean error mean square error
ages ages

0-50 50+ total 0-50 50+ total

Model (3)

RC-OLS 2.71 7.81 6.32 11.98 178.1 124.0
RC-GLS 2.24 8.75 6.23 8.75 177.2 121.2

Model (4)

PL Si 1.45 -2.52 -1.36 4.89 41.6 27.6
PL S 2 1.31 .88 1.01 6.61 12.3 11.3
PL S3 -.76 .32 .45 5.04 9.6 8.5
PLS4 1.17 4.12 3.26 5.91 58.1 41.1

RC-OLS 2.16 5.89 4.80 8.31 129.8 99.6
RC-GLS 2.36 7.54 6.02 10.19 162.8 112.5
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Table 11.6 Validation results for eight selected models
on the under age 50 stem analysis data, using each
tree's last height/age observation to estimate site
index.

Model (3)

mean error variance mean square
error

RC-OLS -.449 6.261 6.462
RC-GLS -.576 6.254 6.586

Model (4)

PLS1 -1.868 7.239 10.729
PLS2 -2.338 7.764 13.229
PLS3 -4.908 11.732 35.825
PLS4 -2.238 6.964 11.974

RC-OLS -.774 6.255 6.855
RC-GLS -.531 6.610 6.892
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Table 11.7 Validation results for eight selected models
on the under age 50 stem analysis data, using each
tree's first height/age observation after age 15 to
estimate site index.

Model (3)

mean error variance mean square
error

RC-OLS 2.975 9.084 17.937
RC-GLS 2.850 9.211 17.335

Model (4)

PLS1 2.340 13.027 18.501
PLS2 1.448 13.027 16.050
PLS3 -.760 20.080 20.657
PLS4 1.352 12.704 14.532

RC-OLS 2.963 9.325 18.105
RC-GLS 2.726 9.630 17.067
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this small validation data set, but the results suggest

that there may be an underprediction of site index using

young site quality trees that was not evident in the

estimation data set. The 15-20 year old height

observations in the estimation data set were actual tree

heights anywhere from 30 to 115 years ago. The

observations from the young validation data set were

actual tree heights anywhere from 5 to 30 years ago.

The young stands may well have had different origins and

are exhibiting a different height growth pattern.

Comparing the validation results with the results

for the estimation data for the same age range we found

that the variance of the prediction errors were lower on

the validation data. However, the biases were generally

larger with the validation data. The mean-square

errors, which combines variance and squared bias, for

the validation data were close in magnitude to the mean

square errors for the pooled estimates on the estimation

data. Thus, in mean square error terms all of the

models performed as well or better than expected,

although there is some evidence of bias.



CONCLUSIONS

The following conclusions can be drawn about the

performances of the different estimation methods on the

estimation and validation data.

The RC estimation methods do appear to better model

the shape of height growth under the age of 50 than do

the pooled estimation methods. However, the RC approach

appears to result in predictions with greater bias

(underprediction) than do the pooled estimation methods.

Furthermore, the RC models do very poorly in predicting

height growth past 50 years of age. This may be due to

the relatively few trees in the estimation data with a

significant number of observations past age 80.

Due to the very poor performance of the RC methods

past age 50 we can not recommend their use, at least

with nonlinear models such as the Richards, Weibull and

loglogistic, and with stem analysis data that does not

include a significant portion of data in the upper end

of the range for which predictions are desired.

While the pooled estimation methods perform better

overall than the RC methods, they do appear to predict a

flatter height growth curve at early ages than observed

with individual trees. However, the pooled methods

perform significantly better in the older ages,

suggesting that such methods are more responsive to

sparse data at the margins of the data.

91
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The pooled estimation approach did not appear to be

very robust to different error assumptions. The

estimated height growth curves had different shapes,

particularly at later ages, depending upon the error

assumptions. The PLS1 curve, estimated under the

assumption of independent and constant variance errors,

had the most distinctively different shape.

Validation of all models on the dominant five-year

height data showed the pooled estimates to be superior

to the RC estimates, both under and over 50 years of

age. Among the pooled estimates, the PLS2 and PLS3

estimates, both of which assumed nonconstant variance

across trees, performed the best. The PLS3 estimates ,

which further assume a first-order serial correlation

structure, performed slightly better than the PLS2

estimates. However, the height growth curves predicted

with the PLS3 estimates do not have an inflection point,

which is inconsistent with the observed pattern of

height growth on individual trees.

Validation of all the models on the young stem

analysis data produced different results. Using the

best available estimates of site index, the RC models

performed better than the pooled models. All models

tended to overestimate height to some degree. The RC

models appear to model the shape of the observed height

growth curves better. Using poorer estimates of site
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index (obtained with younger age and height

observations) the difference between the pooled and RC

models tended to disappear, suggesting that the flatter

shape of the pooled curves tends to compensate for site

index estimation errors. The small size of the young

stem analysis validation data makes strong conclusions

difficult to make. The observed mean square error on

this validation data was higher than that observed on

the other validation data set, but still of roughly the

same order of magnitude as the mean square error of the

estimation data.

For a general purpose height growth and site index

estimation we recommend model (6), (found on page 65),

for the prediction of site index and the PLS2 estimates

for the predcition of height growth. The PLS2 estimates

performed reasonably well on both validation data sets,

and had both a general form, and a polymorphic response

across site index, which appeared intuitively

reasonable. However, we cannot conclude from this

single data set that this error assumption is always

most appropriate when modeling dominant tree height

growth.

In modeling height growth and site index we are

forced to deal with complex nonlinear estimation

problems and the probable violation of many of the

assumptions of normal least squares theory. We have
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tried to use, as much as possible, consistent estimation

methods. We have examined estimation procedures under

alternative error assumptions, with the objective of

testing the robustness of our models. We have found

that the estimates are not strongly robust to varying

error assumptions. This finding underscores the value

of validation.



SUMMARY AND CONCLUSIONS

Numerous nonlinear models for individual tree

height growth were examined on two bases, accuracy of

prediction, and the degree of nonlinear curvature. The

Richards, Weibull and log-logistic models were found to

provide very accurate predictions. Both the Richards

and Weibull were found to have acceptable levels of

nonlinearity, and thus provided close to unbiased

predictions. The degree to which the parameter

estimates of the Richards and Weibull models approach

being normally distributed was improved upon by

reparameterjzation. The Richards model tended to have a

slightly lower intrinsic nonlinearity, while the Weibull

model had better values of parameter effects

nonlinearity, implying a more nearly normal distribution

for its parameter estimates. Both the Richards and

Weibull models had considerably better curvature

measures than the log-logistic.

The Weibull model was sucessfully used to develop

a polymorphic, site index based, height growth predic-

tion model from stem analysis data. Two general methods

of estimation were compared, pooled data estimation and

a random coeffiecients approach. While the pooled data

methods tended to flatten the predicted height growth

curves, their predictions were less biased and more

accurate, particulary for older ages.
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Within the pooled estimation method, several

alternate error assumptions were examined. The shape of

the predicted height growth curves was found to be not

very robust, particularly at extremes of the data (i.e.

high and low site indices, older ages). The most

success on validation data sets was found with an

assumption of independent, heteroscedastic across trees.

An estimate of individual tree error variance was

obtained from individual tree model fits, which is some-

what independent of the general model's lack of fit.

In conclusion, the Weibull and Richards models

were found to be the best models of those examined for

modeling individual tree height growth. In modeling

polymorphic height growth across site indices, pooled

data estimation methods performed better than random

coeficient methods, although the latter appeared to

model the shape of early height growth more accurately,

but at a cost of higher bias. Pooled estimation methods

were found to be not very robust to alternate error

assumptions, emphasizing the need for validation.
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