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Experimental sound velocities in gaseous ammonia, allene,

and carbon suboxide have been measured at high frequencies using the

optical diffraction method. In this method, ultrasonic waves gener-

ated in the gas act as a pseudo-grating and diffract the light rays

passing parallel through the cell. A small He-Ne gas laser is used

as a light source and ultrasound waves are generated using quartz

transducers of frequencies 0.56, 1.07, and 1.78 MHz.

The velocity of sound in ammonia has been measured from

1.0-14 MHz/atm with no detection of vibrational relaxation in this

range. The experimental velocity for ammonia is V. = (19. 087 ±

0.008) x 104 mZ/secZ at 300 °K which agrees within 0. 03% of the

static value based on a realistic statistical thermodynamical evalua-

tion of the heat capacity. The correction for gas imperfection in

ammonia has been determined experimentally by plotting V2 vs.

pressure. The value obtained, S = -151 ± 5 cc/mole at 297°K is



in excellent agreement with those available from independent sources.

Sound velocity measurements in allene extend from 0.3-33 MHz/

atm with the lower 1/4 of the dispersion curve for vibrational relax

ation covered. All of the vibrational degrees of freedom relax to-

gether with T = 5.2 ns at 300°K. The nonideality parameter has been

determined experimentally and we find S = -292 t 1 cc/mole at 298°K

in good agreement with values based on virial data.

Carbon suboxide has been studied from 1.1-41 MHz/atm and

has been found to be doubly dispersive with all of the vibrational spe-

cific heat with the exception of the lowest bend (v7 =63 cm 1) relaxing

at T1 = 48 ns at 300 o K. The nonideality correction in carbon subox-

ide is estimated to be S = -490 cc/mole at 300°K based on the best

fit of experimental data, taken at two different crystal frequencies,

to the theoretical dispersion curve. The high frequency relaxation

could not be observed, but on the basis of our data we estimate

T2 < 1 ns. The subject of multiple relaxation is discussed in detail

and includes a survey of gases known to exhibit. this behavior.

The intensity distribution of the first order diffraction images

produced in the optical diffraction method have been measured photo-

electrically for a number of selected gases. Intensity asymmetry has

been observed which may be due to the rapid acoustic absorption ex-

hibited by gases undergoing vibrational relaxation. Intensity asym-

metry can also result from nonzero alignment of the light rays with



the ultrasound field and it has not proved possible to satisfactorily

distinguish between these two effects.
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ULTRASONIC DISPERSION IN GASEOUS ALLENE, AMMONIA,
AND CARBON SUBOXIDE OBSERVED BY OPTICAL DIFFRACTION

INTRODUCTION

(1. 1) Vibrational Energy Transfer in Gases

Ultrasonic velocity measurements represent one of many differ-

ent experimental techniques used to determine molecular rate con-

stants in gases. In vibrational energy transfer, the rate constant is a

relaxation time associated with the limiting step in a quantum ex-

change process between the vibrational energy levels in a molecule

and its external degrees of freedom, translation and rotation. Vibra-

tional energy levels are referred to as internal degrees of freedom as

they are not as readily sensitive to rapid environmental temperature

fluctuations as is found with the translational and rotational energy

levels. Most molecules at room temperature require only a few self

collisions for their translational and rotational degrees of freedom to

readjust to an external temperature change, while the vibrational

states may require anywhere from ten to ten million collisions.

Temperature equilibrium on the molecular scale is defined in

terms of the Boltzmann equation which relates the average number of

molecules distributed over its various energy states to the absolute

temperature of the environment.



Ni =
Q

G
i

exp ( -E NT)

In equation (1), Q is the partition function,

average number of molecules in level

degeneracy G.,

( 1)

N. represents the

of energy Ei, and

and N is the total number of molecules. In as

much as the energy of the ith level is the sum of energies corres-

ponding to the electronic Eel, vibrational

E rot tr
, and translational E. , and G.

vib
E rotational

may be regarded as a pro-

duct of the degeneracies of these different energies, we may (provided

the Hamiltonian will factor) separate equation (1) into four independent

equations.

Electronic N
el

Vibration Nvib

rotRotation Ni

Translation Ntr

Equations (2abcd) define

(N/Qe1) exp (-E.el /kTel
)

(N/Qvib) Gvib (_EvibikTvib)

(NIQrot) Grot (-ErotikTrot)
1

(N/Qtr) Gtr (..Etr ikTtr)
i

(2a)

(2b)

(2c)

(2d)

an independent temperature corresponding

to each degree of freedom and true thermal equilibrium occurs only

when equation (2) is obeyed and Tel = Tvib = Trot = Ttr. Energy

transfer, then may be regarded as a study of the rate constants and

mechanisms by which a molecular system maintains its thermodynam-

ical energy equilibrium in the face of rapidly changing environmental

conditions. That the same molecule can exist in Boltzmann equilibrium

according to equation (2) and still possess different internal and external
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temperatures is a consequence of the vastly different equilibrium

rates each degree of freedom may possess for adjusting to external

temperature changes. A vivid demonstration of this was provided by

Millikan (70) who highly excited the vibrational energy levels in

carbon monoxide using an open, flowing system to prevent vibrational

deactivation on walls. With this technique he was able to maintain

the vibrational temperature in carbon monoxide at 993° K while the

translational and rotational temperatures remained at 286° K.

Herzfeld and Rice (38) have established the form of the relaxa-

tion equation which relates the momentary value of the internal ener-
Evib to the value it would have in equilibrium with the transla-

tional degrees of freedom at temperature T
tr. This relationship,

valid for one degree of vibrational freedom, is shown in equation (3).

-d
dt
Evib 1 vib vib

[E E (Ttr
)] (3)

where T is the relaxation time (reciprocal rate constant) de-

scribing the equilibration process. As indicated in equation (3) a

sudden change in translational temperature is followed by an exponen-

tial decay of vibrational energy to a new equilibrium temperature,

where, after T seconds the energy discrepancy

(rvib vibtr)
I is 37% or (1/e) of its original value. Since

polyatomic molecules possess (3N-6) degrees of vibrational freedom

[(3N-5) if linear] one would expect when equation (3) is generalized,
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to observe (3N-6) relaxation times. This assumes that each oscilla-

tory degree of freedom behaves independently of the others and the

relaxation process is describable as a group of parallel reactions.

Experimentally this has not been found to be the case. Only one re-

laxation time is usually observed indicating a series relaxation

process. For most molecules the rates of intermolecular and intra-

molecular vibrational-vibrational energy transfer are much faster

than the conversion of vibrational to translational or rotational ener-

gy. Because of this, the single relaxation time measured in polyatom-

ic molecules is associated with the transfer of energy into and out of

the vibrational level closest to the ground state of the molecule.

With a few exceptions, of which carbon monoxide is an example,

in gases at moderate temperatures and pressures the overwhelming

majority of quantum transitions which take place occur only during

molecular collisions. Landau and Teller (56) have shown that in

order for vibrational-translational energy exchange to occur, the

collision duration should be of the same order of magnitude as the

period of vibration of the oscillator. As a simple approximation, the

probability for deactivation is proportional to

Plc) = A exp [(-//v)/(1 / 4-rr
z

v) I (4)

where A is of the order of 103 [see equation (21) later] and v

is the relative velocity of the colliding molecules, v is the frequency

of the vibration in cycles per second and is the interaction
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distance during which the bulk of the kinetic energy of the collision

is converted into potential energy of interaction. Exponential repul-

sion due to the overlap between closed shell orbitals normally leads

to potentials where )2- is approximately 0.2 A (63, 101). Molecular

collisions occur over a wide range of velocities and only the fastest

of these encounters have sufficient velocity, according to equation (4),

to yield an appreciable probability of transition. Since the number of

molecules with high velocity decreases strongly with increasing v,

the two effects tend to cancel and it is possible to estimate the velocity

for which a transition is most likely to occur. For a diatomic mole-

cule with a vibrational frequency of 1000 cm-1 and reduced mass 20

this velocity is 2 x 105 cm/sec [see equation (27)].

Substituting the values of our hypothetical gas into equation (4)

provides an upper limit on the probability of vibrational energy trans-

fer. The results show P10 z 10-3 or under optimum conditions,

1000 collisions are needed per vibrational deactivation. The velocity

used in our calculation is about a factor of five faster than the

average relative velocity and because of this very few collisions occur

with sufficient kinetic energy to cause a transition. The overall trans-

ition probability when summed over all interactions is, therefore, ex-

pected to be substantially smaller than the most efficient value cal-

culated here.

In discussing vibrational energy transfer it has been implied
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that conversion of vibrational to translational energy can occur only

in those brief moments during which a molecule undergoes a collision.

Between collisions the molecule remains fixed in the quantum state

established during the preceeding encounter. No one molecule in

isolation can exchange a vibrational quantum with its external degrees

of freedom without violating the laws of conservation of momentum.

Molecules can, however, lose one quantum of vibrational energy at

any time by photon emission. The probability of radiative decay is

directly related to the Einstein coefficient for spontaneous emission.

Since radiative losses are independent of pressure and the frequency

of molecular collisions varies directly with pressure, we can expect

to reach a crossing point, as the pressure is lowered, where radia-

tive emission can no longer be ignored. Calculations by Lukasik (60)

indicate this point is reached at about one micron pressure and then

only for the higher lying vibrational levels which possess strongly

allowed electric dipole transitions.

A more important effect in influencing vibrational deactivation

at low pressures is the degradation of energy in wall collisions.

Little is known regarding such processes, but there is some indica-

tion that for simple polyatomic molecules wall collisions are very ef-

fective, requiring only one to ten collisions per deactivation (46, 51).

The exact pressure at which wall effects become important depends

on the cell dimensions as well as the vibrational relaxation time of



the gas being studied. Javan and his coworkers (51) in studying vibra-

tional fluorescence from the 00°1 level in CO
2

found wall effects be-

came important below 50 microns in a cell 2. 5 cm in diameter and

below 400 microns in a cell 0.8 cm in diameter. Since the majority of

investigations occur at higher pressures and in larger systems than

discussed above, the assumptions regarding molecular collisions as

the sole source of energy transfer appear valid.

(1.2) Experimental Methods in Vibrational Relaxation

Although many ingenious techniques have been devised to mea-

sure energy transfer processes, each in its simplest form may be

explained using the separated Boltzmann equations shown in equations

(2abcd). By supplying either kinetic energy or energy of a specific

wavelength it is possible to selectively alter, momentarily, the ener-

gy levels of one of the four degrees of freedom shown in equations

(2abcd). If this energy is supplied periodically at high frequencies or

in sudden abrupt bursts, it is possible to monitor the ensuing relaxa-

tion process. We will concern ourselves only with those methods

which influence the vibrational energy levels leading to measurement

of vibrational relaxation times.

Shock waves have been successfully used to measure vibrational

relaxation at temperatures from one to several thousand degrees

Kelvin (26, 69). The effect of a shock wave striking a gas is to
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abruptly increase its translational temperature to a thousand degrees

or higher leaving the internal degrees of freedom at the preshock

temperature. By monitoring the temperature of the gas, or a related

property such as density, it is possible to observe the length of time

required to re-establish equilibrium between the translational and the

remaining degrees of freedom.

In a shock heated gas energy is supplied to the translational

energy levels and flows into the vibrational energy levels. It is pos-

sible to reverse this technique, introducing energy into the vibrational

degrees of freedom and measure the subsequent time lag as the trans-

lational and rotational degrees of freedom equilibrate. Relaxation

times measured for the forward and reverse processes will be iden-

tical for similar temperatures as can be proven using the principle of

microscopic reversibility.

In the optic-acoustic effect (14, 97) a gas is illuminated by

infrared radiation of modulated intensity. In subsequent collisions

the vibrationally excited molecules exchange this energy with the

translational degrees of freedom increasing the kinetic temperature

of the gas. Since the light source is modulated, the gas will alter-

nately heat and cool producing a sound wave due to the periodic pres-

sure changes in the cell. By increasing the frequency of the modula-

tion it is possible to establish a non-equilibrium condition between

the vibrational and thermal energy states of the molecule, At this
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time a phase difference will appear between the modulation of the in-

cident radiation and the emitted sound wave. The vibrational relaxa-

tion time is determined from the degree of phase lag and the frequency

of modulation of the light source.

A technique closely related to the optic-acoustic method is

laser excited vibrational fluorescence (40, 73, 109). Here the mole-

cules studied are specially selected and possess a molecular absorp-

tion line coincident with a laser wavelength. The laser permits ex-

citation of a large number of molecules into a single vibrational

energy state from which fluorescence is observed to occur. By mea-

suring the phase shifts between the fluorescence and the modulated

laser beam over a wide range of frequencies and gas pressures it is

possible to obtain vibrational relaxation times for specific rate

processes.

One promising method, still in the development stage, is that

of infrared-microwave double resonance (24, 86). In this technique,

a modulated infrared source is used to excite chosen vibrational

energy levels. A microwave spectrometer with Stark modulation

then monitors subsequent transitions in the rotational energy levels

of selected vibrational energy states. Ideally, it should be possible

to excite a single vibrational state and then measure the rates of

energy transfer to each additional vibrational energy level in the

molecule. Such information is necessary if one ever wishes to
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separate, one from the other, the many rate constants which combine

to give the single relaxation time most commonly observed in energy

transfer studies.

Much greater detail regarding the many variations of experi-

mental techniques which may be employed in energy transfer studies

can be found in the monographs by Cottrell and McCoubrey (12) and

by Stevens (98). Yet to be discussed is one important means of

studying vibrational energy transfer in gases. This is the measure-

ment of the velocity and absorption of ultrasound as a function of fre-

quency. Historically this was the first method employed to observe

vibrational relaxation (76) and remains today the source of the great

majority of available data High frequency sound waves vary the

statistical energy equilibrium at sufficient speeds until the vibrational

energy levels can no longer follow the periodic fluctuations in external

energy. This is reflected in an anomalous absorption as energy is

irreversibly lost and as a velocity dispersion due to the alteration of

the effective heat capacity of the gas.

The velocity of sound in an ideal gas is described in equation

(5)

NRT
M

(1 +
C

)

v

Since the molecular weight and the gas constant, R,

(5)

are invariant

and the temperature of the gas can be measured accurately, it is
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possible to make quite accurate measurements of the heat capacity.

The heat capacity is a function of the Boltzmann energy distribution

summed over the translational, rotational, and vibrational energy

levels (electronic levels are rarely accessible to room temperature)

and C
v

may be written C = C tr
+ rot + C

vib At high sound

frequencies the vibrational heat capacity, Cvib, decreases to zero

and the resulting velocity dispersion may be fitted to a relaxation

equation. Since the bulk of the dispersion is due to the low lying

energy states which contribute heavily to Cvib, ultrasound measure

ments do have the disadvantage that little can be learned concerning

the higher lying energy levels.

Although a variety of standard methods are available for veloc-

ity measurements, the procedure used in this work is a novel optical

diffraction technique developed in this laboratory (36, 65, 100).

this method, a column of nearly planar ultrasonic waves generated in

the gas acts as a pseudograting and diffracts light rays passing paral

lel through the sound field. The diffraction phenomenon is a result of

the sinusoidal variation of the index of refraction in the gas produced

by the compressions and rarefaction accompanying the ultrasound

waves.

The diffraction of light by ultrasound, especially in liquids, has

been the subject of numerous studies in the past and much of the early

work has been summarized by Bergmann ( 4, p. 248-335). In contrast
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to the mild success and advance of the method in liquids (5), studies of

ultrasound diffraction in gases has been severely limited due to very

feeble diffraction intensities. Usage of a laser light source (36) and

the introduction of coronagraph optics (100) have overcome the pre-

vious intensity problems. Presently the utility of the optical diffrac-

tion method as a means to study vibrational energy transfer in gases

is comparable to the standard instruments used in high frequency

velocity measurements.
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THEORY

(2. 1) Theoretical Correlations to Energy Transfer

The rate at which a system can be changed from one stationary

state to another under the influence of a perturbing force is evaluated

in quantum mechanics using time-dependent perturbation theory.

Here the coefficients of the eigen functions describe the rate of change,

and the square of the coefficient of a particular energy state gives the

probability of finding the system in that state at a given time. The

probability that a molecule originally in stationary state

found in ii is given bym

Pnm = 1Am(t) 12 where

LPn
will be

dt
Tri *--A (t) =

2h
d (6)

and H' is the perturbation causing the transition and V"m n

are time dependent wave functions.

Landau- Teller Procedure

The problem to which we wish to apply equation (6) is the de-

activation of a vibrational energy level in a diatomic molecule, BC,

experiencing a head on collision with an atom A. In addition to as-

suming a one dimensional interaction we will also consider the
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vibrational states of the diatomic molecule to be those of a harmonic

oscillator and that the dynamics of the encounter may be treated using

classical mechanics.

Since the time dependent wave function is the product of two

functions, one involving the time alone and the other the coordinates

alone

y-n(x, t) = LPn(x

-2Tri E t
(t) = ilin(x)e

h n
(7)

equation (6) may be written using just the harmonic oscillator wave

functions.

2Tri
(E

Am(t) = -2Tri h m_Ep
dt

hie gin dx (8)

Upon simplification, equation (8) reduces to

dt Am(t) H' (t) exp (27r ivt)mn (9)

where (E - E) = hv and H' (t) is the matrix element of them n mn

perturbation.

The interaction, H', responsible for the deactivation of the

oscillator, may, as shown below, be approximated as linear in the

normal coordinate of the vibration. The form of the perturbation to be

considered, then, is H' = x F(t), where F(t) describes the re-

pulsive forces experienced by the oscillator and atom undergoing a

head on collision. F(t) is initially zero, builds to a maximum at the
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distance of closest approach and again falls to zero. The function is

also even if we set t = 0 at the distance of closest approach and as-

sume that the dynamics of the encounter are unaffected by energy trans-

fer.

The probability that vibrational energy transfer will proceed

from the oscillator state i to during a collision is found by
n m

inserting the expression for H' into equation (9), integrating, and

squaring the result.

where

2 2

P =

4 XmnI
nm A (t) 12

2

Xmn = m x dx

- co

oo

and I = .5 F(t) cos (2 it vt) dt

0

The harmonic oscillator functions are given by

-t 2/2

qin = Nne Hn(0 , fax (11)

where

(10)

(10a)

(I0b)

a = (4.ff
2Mv /

and Nn is a normalizing constant, H (0 is the Hermite poly-

nomial, and M and v are the reduced mass and frequency of the

oscillator.

The matrix elements of the coordinates of the harmonic
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oscillator, Xmn, are readily solved and the results have been de-

scribed in many places, for example Pauling and Wilson (75, p. 80-

8 2) . The transition matrix, Xmn, is zero except for m = n + 1,

when its values are

v + 1
Xv,

v +1
= 2a

[T
X _

v, v-1 2a

(1 2a)

( 1 2b)

where v is the vibrational quantum number.

Two important properties concerning vibrational energy trans-

fer have been introduced with the solution of the harmonic oscillator

matrix elements. The first is that once the transition probability

between the ground state and the first excited state is known, the

probabilities for all other levels are also known. Since P isnm

proportional to X2 , squaring equations (1 2a) and (12b) indicatesmn

the relationship P
01:P1 2

:P
23' = 1:2:3 ... or in general

Pv, v-1 = v P10

v+1 z (v +1) P01

where the relationship between P01 and P
10

is given by the

Boltzmann equation.

-hv

e
kt

P01 -P10

(13a)

(13b)

(13c)
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The second consequence resulting from the harmonic oscillator ap-

proximation is the introduction of the selection rule Av = +1. For

simple molecules, at least, this rule appears to be obeyed reasonably

well. Hooker and Millikan (44) have shown, for example, that vibra-

tional excitation of the second overtone in carbon monoxide proceeds

at least nine times out of ten by successive quantum transitions rather

than by the direct v = 0 2 process.

For a transition from the first excited level to the ground state,

the square of the matrix element is

"fi
X

2
=

1

10 2a 4Tr vM
(14)

The probability for deactivation of the first excited state is, upon sub-

stitution of equation (14) into equation (10)

212
P10 hvM

(15)

The calculation of I introduces additional approximations and

the stepwise procedure is given in Cottrell and McCoulrey (12, p. 126-

128). The value of F(t) is determined using the classical equation

of motion to describe the encounter. The interaction forces occurring

during the collision are approximated using

V(r) = V
o

exp ( - r /I) (16)

where r is the distance between the atoms A and B for an
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A + BC collision, and 1, is the repulsion length parameter. The

longer ranged potential forces are neglected in this treatment. For

the collision of A with a diatomic molecule, B2,

1r = X -
2
(r

e
+x) (17)

where X is the translational coordinate and x is the vibrational

coordinate. The potential function may then be written

r /2k
V(X,x) = V ee e

-X/i.
0

which to a first order approximation is for x << 1

(18)

r /2ke-X/L
1

+--
,Q,

V(X, x) z V
o 2

e
e

(1 ) (19)

V0
e
/2k

X / 9.-The F(t) defined above becomes
V

e
r

e expressed as a
29..

function of time by the solution of the classical motion X = X(t).

The evaluation of equation (10b) now proceeds by contour integration

(12, p. 127) and I is found to be

where

I = 4Tr mv,e exp (
- 2Tr v

)v

m
A

(m
B

+ m
C

)

m = m + m + m
A B C

(20)

and m is the reduced mass of the encounter, and v is the rela-

tive velocity of the colliding particles at infinite distance before the

collision.
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Inserting the value for I into equation (15) gives the probabil-

ity for vibrational deactivation shown earlier in equation (4)

where

2
IT VP =

10
A exp

4
321T m

2

A = hM

and A is a unitless number on the order of 100 - 1000.

The concluding step in evaluating P10

(21) over all relative velocities in the gas

(21)

is to average equation

oo
2

P10 = .5 exp
4

Tr-
v11 ) dN (24

0

where N is the total number of molecules per unit volume and dN

is the fraction of molecules with approach velocities in the range

and vo + dvo. The Maxwell distribution law for relative motion is
2-my

odN = Nv (-7-1°) exp ] dvo kT 2kT o
(23)

For vibrational deactivation the difference between the approach and

receding velocities is hv

2 2my - my
0

(24)

Upon substitution of equations (23) and (24) into equation (22), the ex-

pression for P10 becomes
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oo
2 2

P = A( hkvT exp -47r v -
my ) dv (25)

10 kT) exp (2 2kT
0

The integral shown in equation (25) can not be evaluated in closed

form.

By assuming that the behavior of P10 is principally dominated

by the exponential term, it is possible to evaluate P
10

by deter-

mining the relative velocity for which an inelastic collision is most

likely to occur. This occurs when

d ,47r
2v , rnv 2

, , 41r
2v f

+
mv*

-r = 0 (26)
dv v 2kT *2 kT

v

or at a velocity
2 1 /3

* 41r v,tkT
v = ( )m

(27)

Substitution of this velocity, v , for v in the exponential portion

of equation (25) indicates
1/34 2

1 Tr v
2mP10 varies as exp 3

( kT2 )
(28)

This relationship lists the important parameters in vibrational-

translational energy transfer and predicts what trends one might ex-

pect for different oscillator frequencies, a change in temperature, or

a variation in the reduced mass of the interaction.

The actual evaluation of the integral in equation (28) is shown in

Herzfeld and Litovitz (37, p. 262-266) and involves the neighborhood
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of velocities near v with the pre-exponential velocity term con-

sidered a constant equal to v . The treatment is valid only if the ex-

ponential function falls off steeply on both sides of the velocity maxi-

mum. The results, which are an extension of the well known Landau

and Teller (56) expression, are shown in equation (29)

P10 = A

with the abbreviation

1/6 , 1/37 E'[2
(17T) exP (L-) 1112-12 kT 2kT

= m(47 2
v.1)

2
.

(29)

Absolute transition probabilities are not calculated using equa-

tion (29) due to the rather unrealistic molecular model used in the

development. It is significant, however, that the trends indicated in

the exponential term have been experimentally verified. Shock tube

investigations have shown for many simple gases that log of deactiva-

tion probability is indeed linear with the inverse cube root of the
1/3 2/3temperature (69). While graphs of

10
vs m v have not

yielded linear relationships (74), it is true that as the vibrational

frequency of BC decreases and the reduced mass of the encounter

decreases, the probability for energy transfer increases. Lambert and

Salter (54) have found that plots of Z10 (where Z10 = 1 /P
10

and

is the number of collisions per deactivation) against v themin

lowest vibrational frequency in the molecule, provide roughly linear

results with two broad classes of compounds distinguishable. The

first group contains compounds with no hydrogen atoms and the second
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group, exhibiting much faster relaxation times, contain two or more

hydrogen atoms.

Schwartz, Slawsky and Herzfeld Method

Before comparisons between theoretical and experimental colli-

sion probabilities can be performed it is necessary to treat the colli-

sion model more realistically. Improvements might be expected if

any of the following changes were made. 1) Treat the dynamics of

the encounter quantum mechanically; 2) Introduce a more realistic

interaction potential; 3) Expand the coordinate system to three di-

mensions; 4) Consider direct and indirect encounters; 5) Assess

the importance of rotational energy level occupation on vibrational

energy transfer; 6) Improve upon the basic approximation that transi-

tion probabilities are given by first order time dependent perturbation

theory [see, for example, Secrest and Johnson (90)].

The prqblem facing the theoretician can be stated rather suc-

cinctly. The very simple collision models, although physically un-

realistic, can be solved without introducing a great number of severely

limiting assumptions. A more sophisticated model, while describing

the interaction more accurately, begins to lose ground as formal sim-

plifications are introduced into the calculations. In such instances

the theoretician always faces the temptation to increase the physical

significance of his model by introducing a few variable parameters
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which are fit to existing experimental data.

The best known theoretical development using a more realistic

collision model is the method of Schwartz, Slawsky, and Herzfeld (88,

89). Their model, to a certain extent, does take into account the first

three improvements listed above. Although the best results are ob-

tained for homonuclear diatomic molecules, the method also allows

one to calculate transition probabilities in polyatomic molecules (103).

This has been done for a large number of molecules and in many cases

the calculated and experimental values agree within a factor of ten

(101, 103). The least accurate results are obtained when treating

either polar molecules or molecules with low moments of inertia about

one or more axes.

The three dimensional SSH results for an atom A colliding

with a molecule BC is shown in equation (30).
-hv

2 2 2rc
e

kT (1 - ekT ) mB mC
P10 (To) Zo Y( 2, 2) 2 1

P (LT) (30)

2(111B m)C
where

Y( 2, 2) 7, 0. 76 (1 + 1. 1 kT)

and Zo is a steric factor arbitrarily set equal to three, rc is

the distance of closest approach, ro and are constants in the

Lennard-Jones formula, and P
10

(LT) is the Landau Teller result

shown in equation (29).
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The remarkable agreement between the quantum mechanical

solution and the semiclassical Landau Teller results shown above has

been observed by Rapp (82). He has obtained similar results using

purely classical mechanics and notes when the semiclassical, and

classical methods are developed completely, the results are identical

with the SSH solution at the classical limit. Rapp distinguishes be-

tween collisions of atom A with either end of the molecule BC

which was not done in our development of the Landau Teller expres-

sion. Accordingly his results do not show the discrepancy in the ratio

of the oscillator masses as ours does upon comparison with Herzfelds

results. The significance of different theoretical methods has been

stressed in a recent review article by Rapp and Kossal (83) which is

quite extensive in its coverage.

Vibrational-Rotational Energy Transfer

One remaining topic to assess is the importance of rotational

energy level occupation on vibrational energy transfer. The Lambert

Salter plot mentioned previously suggested two classes of compounds,

those possessing two or more hydrogen atoms and those which do not.

Since molecules containing hydrogen atoms generally possess low

moments of inertia, and therefore, classically speaking, rather large

rotational velocities, the increased efficiency of energy transfer may

be due to rotational motion.
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Millikan and Osburg (71) have firmly established that rotational

energy level occupation does affect vibrational relaxation when they

demonstrated that para-H
2

relaxes vibrationally excited CO molecules

more than a factor of two faster than ortho-H
2

does.

Cottrell and coworkers have experimentally measured and cal-

culated the relaxation time ratios for the hydrides and deuterides of

methane (15), silane (15), phosphine (16), and arsine (11). They have

found that the deuterated molecules relax more slowly than the hy-

drides dispite their rather lower vibrational frequencies. This is in

direct contradiction to the predictions based on the SSH method. The

theoretical expressions derived by Cottrell for vibrational-rotational

energy transfer do predict the correct relaxation ratios for the hy-

drides and deuterides within ten percent with the exception of arsine

which disagrees only by a factor of two.

Moore (74) has derived a simple two parameter model for vibra-

tional-rotational energy transfer applicable to molecules in which the

rotational velocities of the atoms are greater than the translational

velocity of the molecule. The probability for vibrational deactivation

is obtained by substituting the rotational analogues for velocity and

reduced mass into equation (21) of the Landau Teller development.

The method proceeds by averaging over the thermal distribution of

angular velocities in the gas. The resulting equation has been adjusted

to fit experimental data using a steric factor Zo and the repulsive
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energy range parameter, Z. One exponential in the probability equa-

tion tends to dominate the results and it is remarkable that most data

can be fit within a factor of two or three to the simple relationship

-1. 78 Iv2 2,2)113
PIO = 7. 7 exp (

d2T
(31)

0where I is the moment of inertia in Amu A2, d is the distance

from the axis of rotation to the peripheral atom in

oscillator frequency in cm-1, and defined previously, equals

0.12 A.

The ability to fit a wide range of data to the simple expression

shown in equation (31) may or may not be a valid test for vibrational-

rotational energy transfer due to the initial adjustment of two para-

meters. Moore's method has been applied to other systems, however,

and with rather satisfying results (8, 95, 96).

Sharma has recently performed quantum mechanical calculations

on the CO2 -H2 (92) and CO2 -N2 (93) systems and finds that the

negative temperature dependence exhibited by both gas mixtures (92,

104) can be accounted for by considering long range forces and rota-

tional energy level occupation. There are no adjustable parameters in

his theory. The SSH method incorrectly predicts a positive tempera-

is the

ture dependence for the CO
2-H2

and CO
2
-N

2
systems.

Despite the recent investigations into the subject of vibrational-

rotational quantum exchange, the actual importance of such processes
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has not been conclusively established. It is difficult to assess for any

given molecule whether vibrational deactivation occurs predominately

through the translational or the rotational degrees of freedom. Also,

although the rotational energy levels are apparently involved in energy

transfer, the exact nature of the interaction is not satisfactorily under-

stood.

(2. 2) Propagation of Ultrasound in Gases

The study of the velocity of sound as a function of sound wave

frequency provides a convenient probe with which to study vibrational

relaxation processes. At frequencies near one MHz the sound wave is

varying the statistical equilibrium of the external degrees of freedom

with such rapidity that the vibrational degrees of freedom may no

longer follow the fluctuations. The general theory of sound propaga-

tion in fluids and the accompanying relaxation phenomena is well

known. It has been found convenient to derive the relaxation equations

for an ideal gas and to apply nonideality corrections to experimental

velocity measurements before comparing with the theoretical expres-

sions.

Relaxation Equations

Except at very high frequencies, sound waves are propagated

adiabatically and reversibly. The velocity at which sound is
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transmitted is determined by the relationship between the pressure and

density of the gas as shown in equation (32).

V2 = (dP/dp)s (32)

Using standard thermodynamic relations, equation (32) may be

developed in terms of an ideal gas; or, using a more precise equation

of state, in terms of a real gas. For an ideal gas, reversible adi-

abatic pressure changes follow the relationship

P = kp (33)

where k is a constant and y is the ratio of specific heats.

Substituting equation (33) into (32) and using the ideal equation

of state gives the velocity expression disucussed earlier in equation

(5)

2 RT
V.

M
(1 +

C
tr +C rot +Cvib ) (34)

The principle of the equipartition of energy, from classical mechanics,

states that each external degree of freedom contributes 1/2 R to

the heat capacity of the molecule and each vibrational degree of free-

dom, R. At room temperature the translational and rotational

energy levels are classically distributed and the principle of equi-

partition of energy is applicable. The vibrational contribution to the

heat capacity, based on the harmonic oscillator approximation, is



given in equation (35) for a molecule containing (3n-6) vibrational

degrees of freedom.

C
vib /R =

3n-6 2hv.
-hv. -hv. -2

e
kT

e
kT -

Rather than evaluate equation (35) directly to obtain
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(35)

it is

more convenient to use available tables which list the harmonic oscil-

lation contributions to the thermodynamics functions (77, 105).

At higher frequencies the sound waves begin not to equilibrate

with the internal degrees of freedom, and the vibrational contribution

to the heat capacity decreases to zero. Herzfeld and Rice (38) first

accounted for the resulting velocity dispersion through the develop-

ment of a relaxation equation giving the vibrational relaxation time of

the gas. The form of the velocity equation used most often was de.

rived by Kneser (50) and is shown in equation (36).

+ C00(.02'T 2
RT [ 1+ R

C 2 +C2
00

+ (02-r 2

(36)

o

where Co and Coo represent the static and high frequency heat

capacities, respectively, and co is the angular frequency of the

sound wave.

Equation (36) reduces to the normal velocity expression for very

low frequencies (when w T << 1)

R T
V

2

M
= (1 +.--R

)
o C0

(37)



and at high frequencies (co >> 1) reduces to equation (38).

2 RT
V

oo
= --- (1 +)M

co

Kneser's results may be rearranged in terms of V
o
2 and

give a convenient form of the relaxation equation.
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(38)

to

2
C V2 - V

2 0
'T

2Tr fC
o

2

(39)( 2
-voo V2

Using equation (39) it is possible to determine the relaxation

time of a gas with just one velocity measurement at a frequency within

the dispersive region. The standard practice, however, is to calcu-

late a theoretical dispersion curve of V.2 versus (f/P) based on

equation (39). This is fitted to the experimental data and he relaxa-

tion time is determined from the frequency,

point of the curve.

T =
2Tr fc C

1
Co

f, at the inflection

(40)

The relaxation equations just presented are valid for polyatomic

molecules in which all of the vibrational specific heat is associated

with a single relaxation time. For the few molecules where there is

a large frequency discrepancy between modes, the rate of energy

transfer through such modes may be slow enough to provide a bottle-

neck in the series relaxation process. In such instances, two relaxa-

tion times might be expected to occur. The theoretical sound velocity



31

equation for a doubly relaxing gas may be derived from the basic equa-

tions for sound dispersion given by Richards (84). This has been done

by Valley and Legvold (107) and the results are shown in equation (41).

RT /Co + Aka 2 + Boa 4

2 2\ Co + + Eco

where

1 + R

A = (C + C ) T 2
+ ( C + C ) T 2

oo 2 1 00 2

B = C T T2
00 1

2

2

D = (C + C )2 T 2
( Coo + C1)

2
T

2

2 + 2C C T T
00 2 1 1 2 1 2

E = C2 T2 T2
00 1 2

(41)

represent the relaxation time for the first and secondand T1,
T2

steps, respectively, and Ci, C2 represent the heat capacity that

lags in the first step and in the second step, respectively.

The experimental relaxation parameter T represents a bulk

relaxation process summed over many oscillator states. Comparisons

between such bulk processes and the individual collision probabilities

calculated in section (2.1) are possible due to the relationship between

the relaxation time and the rate constants for the harmonic oscillator

[see, for example, Herzfeld and Litovitz (37, p. 86-90)]. This

relationship is shown in equation (43) for a molecule possessing

(3n-6) vibrational degrees of freedom.
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(43)

cvib
v1and denote the heat capacity and frequency of the lowest

1

vibrational mode in the molecule and Z is the number of collisions

per molecule per second.

The calculation of the collision frequency is generally based on

the kinetic theory expression for a gas of rigid spheres,

1/2
2 Tr kTZ = 4n0- ()m

namely,

(44)

where n is the number of molecules per unit volume, Cr is the

collision diameter, and m is the molecular mass. Should the

Lennard Jones parameters be available, more accurate values of the

collision frequency can be calculated using equation (45),

1/2
Z = 40-20 (2, 2)*

TrkT (45)

where the function 0 (2, 2) has been tabulated in Appendix I-M of

Hirshfelder, Curtis, and Bird (39)

Real Gas Behavior

In order to apply the relaxation equations discussed in the pre-

ceding section, experimental velocity measurements must be cor-

rected to ideality. Deviations from ideal gas behavior may be de-

scribed using the virial equation of state
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(46)

where B and C are the second and third virial coefficients with

respect to pressure. At moderate pressures only the second virial

correction need be retained to provide an adequate equation of state.

Using equation (46) (with C set equal to zero) and the velocity ex-

pression shown in equation (32), it is possible to derive the relation-

ship between the real and ideal sound velocities in a gas. This has

been done, for example, by Cottrell and McCoubrey (12, p. 8- 10)

and is reproduced in equation (47)

where

V2
2 2S

V V. [1 + ( RT) P1

RT (RT)
2

S = B + + B"
v C v 2C C

v v p

(47)

and Cv, C are the heat capacities at constant volume and constant

pressure, respectively, and B , B', and 13" represent the
v v

second virial coefficient with respect to volume and its first and

second temperature derivatives.

Since Bv = B RT, equation (47) could just as easily have
p

been written in terms of B . However, the virial equation expanded

in terms of (V ) has proven to be more useful than equation (46) and

most available data is for Bv.

The nonideality parameter S, shown in equation (47), may



34

also be written in terms of the reduced second virial coefficient, B ,

as indicated in equation (48)

where

S = b [B + (y - 1) B1
+(21) B2]

2
b

o 3
= Tr N 0-3

(48)

and N is Avogudro's number and B1, B2 represent the first

and second temperature derivatives as defined in Hirshfelder,

Curtiss, and Bird (39, p. 232).

The most convenient means to evaluate equation (4 7) is to use

experimental virial data which has been fitted to an empirical equa-

tion of the form

B = f + gT-1 + hT 2

v
(49)

where f, g, and h are variable parameters.

In many instances virial data have been used to determine inter-

molecular potential functions and only these force constants are

available. The relationship between the second virial coefficient,

B , and the potential function, V(r), for spherical molecules is
v

shown in equation (50)

00

B = 2Tr N J (1 - e
-V(r)/kT

) r 2dr

0

(50)

where r represents the distance between interacting molecules.
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For nonpolar molecules a commonly used intermolecular poten-

tial energy function is the Leonard-Jones (6-12) potential.

12 6

V(r) = 4E Rr) - () (51)

where the parameters 0 and E have the dimensions of length

and energy. Hirschfelder et al. (39, p. 1114) have tabulated solutions

of equation (50) in terms of B , B1, and B
2

using the Lennard

Jones potential. This allows the direct evaluation of S using

equation (48).

The expression for the second virial coefficient shown in equa-

tion (50) may readily be solved in terms of the square well potential

function. Even though this potential model is unrealistic, the pre-

sence of three adjustable parameters R, bo, and E /k, provide

an accurate representation of B , B', and B", even for many
v v v

polar molecules. Should the force constants for the square-well poten-

tial be available, they may be substituted into equations (52abc) to

obtain virial data.

= b [1 - (R3 - 1)(eE /kT-
1)]By

(E/ k)
eE

kT
v

= b (R3 - 1)
o T2

(R3
(E /k) (E /k)B" =-bo - 1) [23

E/kT

(52a)

(52b)

(52c)

The Berthelot equation of state, shown in equation (53), provides

a rather good representation of the temperature variation of the second
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n2

2
) (V - nb) = nRT

TV
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(53)

where n is the number of moles of gas, and a and b are

empirial constants. The Berthelot equation may be multiplied out

and rearranged in the form of a virial equation as shown in equation

(54) [see, for example, Kauzmann (49, p. 34-40)].

2PV
1 + [b - ] + b (--

n + ...nRT RT 2 V v

from which the second virial coefficient, B
v

a
B

v
= b -

RT
2

is seen to be

(54)

(55)

The empirical parameters a and b can be related to the critical

constants for the gas by subjecting the Berthelot equation of state to

the necessary restraints (dP/dV = 0 and d
2P/dV2

= 0) and evalu-

ating the coefficients. The resulting expression, equation (56),

RTc 2

9
[1 - 6 (E) ]

128 Pc (56)

may be used in conjunction with equation (47) to obtain accurate values

of S, but only for nonpolar molecules.

Translational Dispersion

At high ultrasound frequencies, when the wavelength of sound is
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approaching the mean free path in the gas, the adiabatic condition

governing sound propagation breaks down and equation (3 2) is no longer

valid. The resulting increase in velocity, known as translational (or

viscothermal) dispersion, is another type of nonideality correction to

be subtracted from experimental velocity measurements. Among the

available theories for translational dispersion, the exact Navier-

Stokes and Burnett equations are both acceptable up to a few hundred

MHz/atm, after which the Burnett equation is the more accurate (28).

The Burnett propagation equation for a monatomic Maxwellian

gas is given by Greenspan (29) as

where

1,61 21 1 18 i
3) k

4( 21 1 91
r r1 25 4 25 3 50 2 + 10 r

23 i
+ k

2 (1 + -) + 1 0
10 r

k (a

r =-.

V

+V
ick)

)

tr (k)

V2 p
o

Y 001

(57)

and k is a normalized propagation constant, r is related to the

Reynolds number for the gas by r ----. (Re /N), a is the amplitude

absorption coefficient, ri is the viscosity and (Vtr /V
o)

gives the

fraction of translational dispersion.

An approximate solution to equation (57) has been given in the



form of a series expansion (29)

7 1 43 i 4 203 1

k + 10 40 2 2000 3

from which the dispersion relationship is

43 1

Vtr (1 40 2 + )
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(58)

(59)

The approximate solution shown in equation (59) is valid for a

monatomic gas and gives satisfactory results up to 100-200 MHz/atm

(7).

Greenspan (29) has modified the Burnett equation to a diatomic

gas and finds only a slight change in the approximate solution.

V = Vtr (1 - 0.985 12 ) (60)
r

Holmes and coworkers (41, 42) have tested the modified Burnett equa-

tion using diatomic, as well as polyatomic, molecules over a wide

range of frequencies. They find that the Burnett equation for diatomics

can be directly used for polyatomic molecules with satisfactory re-

sults.

Translational dispersion in gases may, therefore, be approxi-

mately evaluated using equation (60) arranged in a slightly more con-

venient form (57).

Vtr = Vo [1 + Br12(f/P) 2] (61)
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where is viscosity in cgs units, (f/P) is in MHz/atm, and B

is a constant equal to 48 for a monatomic gas and 44 for a polyatomic

gas.

In most all instances, translational dispersion below ten MHz/

atm is insignificant and use of equation (61) is unnecessary.

(2.3) Diffraction of Light by Ultrasonic Waves

The suggestion that light could be diffracted by ultrasonic waves

was first advanced by Brillouin (10) in 1921 while treating the theoreti-

cal aspects of the scattering of light by thermal density fluctuations.

The experimental verification of Brillouins prediction was achieved

ten years later by Debye and Sears (18) and also by Lucas and

Biquard (59). Since then many investigators have studied this phenom-

enon under a variety of experimental conditions. In most all cases,

however, the work pertained to liquids where the effect is far more

pronounced. Most of the early theoretical ground work can be ac-

credited to Raman and Nath (78, 79, 80, 81). In addition to giving

the correct relationship for the angular separation of the diffracted

orders, their papers also provided the first acceptable theoretical

description of the intensity distribution over several different orders

of diffraction. The theoretical treatment of ultrasonic diffraction has

been the subject of numerous investigations and a monograph on the

subject has been written by Berry (5). Also, the subject has been
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reviewed rather extensively by Bergmann (4, p. 248-335), Born and

Wolf (6, p. 593-610), and by Martinez (64, p. 37-54).

Contrasting the progress in liquids, interest in the theoretical

aspects of the problem in gases has been slight. The evaluation of

the wave equation for diffraction in a gas is necessarily more corn=

plex due to the rapid absorption of the ultrasound energy. Absorp-

tion does not occur to any appreciable extent in liquids and has been

neglected in the theoretical problem. This prevents the direct applica-

tion of the available intensity formulas to gases, but one can expect

that at increasingly higher gas pressures the intensity formulas will

be applicable as an approximation.

To illustrate what effect the introduction of an absorption term

has on the diffraction intensities, we will compare theoretical results

based on a nonabsorbing medium to results where acoustic absorption

is allowed to occur.

David (17) has treated the nonabsorbing case and describes the

index of refraction varying with the sound wave frequency as

Tr zn = no + n
1 Acos (2-- ) (62)

where n is the instantaneous index of refraction, no is the index

of refraction in the absence of the sound field, n1 is the amplitude

change in the index of refraction due to the pressure wave and z is the

direction of sound propagation. A convenient form of David's results



may be presented as the ratio of first order diffraction intensities

shown in equation (63)

I( +)

I(-)

where

(1 - ((3 +1)
+1) sin(13 - 0

0-
71 X d

A2

with the limiting restraint that

Tr). d << 1
2A2
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(63)

(64)

for the intensity ratio to be valid.

In equation (63) the subscripts + and - correspond to deflection

of the diffracted light with or against the direction of the sound field

and X is the wavelength of incident light, A is the ultrasound

wavelength, p is the angle between the light rays and sound wave

front, and d is the path length through the sound field.

Two cases of equation (63) are of special interest. The first is

the expression for zero incidence of the light rays which is

I(+)
I(-)

1 when 3 = 0 (65)

The second point of interest is when the intensity ratio is at a
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maximum. This occurs at the Bragg condition when j3 = /2A.

2
I(
I( -

) X
( sin 6) when p = -2-A- (66)

These results can be compared with those obtained by Decius

(19) who included acoustic absorption and described the index of

refraction varying with the sound wave frequency as

n = 1 + n e-az 27r zcos ()A (67)

which represents the conditions in a dilute gas. Decius has taken the

special case for zero incidence and has solved the wave equation for

the light diffraction according to the perturbation method developed by

Brillouin (10). His results indicate that at zero incidence the ratio of

first order diffraction intensities is given by

-4i{a
I( - ) e

where

=
aA
27r

when J3 = 0 (68)

Equation (68) predicts that in regions of rapid acoustic absorp-

tion the diffraction intensities will be asymmetrical even at zero in-

cidence in contrast to the case in liquids. Since soundwaves are ir-

reversibly absorbed during vibrational relaxation, Decius' results

indicate that intensity asymmetry for the first order diffraction
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images should occur in this region. In addition, his theoretical

development for an absorbing gas indicates image broadening of the

Lorentz shape will also take place.

The intensity ratio predicted using equation (68) for gases

undergoing vibrational relaxation depends on the specific heat being

lost and may be as large as a factor of three or four. This effect

tends to be lost due to the diffraction asymmetry which occurs if the

zero incidence condition is not accurately met. A calculation of the

intensity ratio at the Bragg angle indicates this factor can be dominant.

The importance of critical alignment of the light rays with the sound

field is shown upon evaluation of the Bragg angle which is only a few

milliradians for most gases.

The subject of intensity asymmetry of the first order diffraction

images is discussed in further detail in the Appendix.

Fortunately, the relationship upon which velocity calculations

are based is independent of the angle of incidence and is shown in

equation (69)

nX. = A sin ne =
V sin ne (69)

where n is the diffraction order and 0 is the angle of diffraction.

Diffraction angles are very small which allows sin 0 to be written

as

sin 0
22

6

F
(70)
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where 6 is the diffraction distance between the zero order and

first order diffraction light and F is the distance at which the dif-

fraction image was recorded, or the focal length of the lens system.

The error introduced by the approximation shown in equation (70) is

less than 0.01 percent with the optical diffraction apparatus used in

these studies. Introducing the sine approximation into the diffrac-

tion equation gives the resulting velocity expression shown in equation

(71)

X. f FV = (71)

Systematic errors in velocity measurement may be minimized by

using a standard gas of known velocity to determine the focal length

of the optical system. This reduces equation (71) to the final form

used in evaluating experimental velocity data.

Vexp
std (

2s std
25

exp

fexp
fstd

(72)

where 26 represents the distance between the (+1) and (_1)

diffraction images.
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EXPERIMENTAL

(3. 1) Description of Optical Diffraction Apparatus

The optical diffraction instrumentation used in this investigation

has been described previously by Martinez (64, p. 55-81) and also by

Strauch (99, p. 2343). To avoid repetition only recent modifications

of the apparatus will be discussed at any length.

In the optical method, ultrasonic waves generated in the gas act

as a pseudo-grating and diffract light rays passing parallel throughthe

cell. A diagram of the apparatus is shown in Figure 1. The light

source is a Spectra-Physics model 131 He-Ne gas laser rated at one

mW output power at 6328 X. The laser beam is expanded and colli-

mated by passage through a 150 mm telescope objective, a pinhole

aperture and the first cell lens. Both cell lens (constructed from boro-

silicate crown glass) are plano- convex f/20 lenses of 1500 mm focal

length. As the light field pas ses parallel through the sound field gener-

ated by the quartz transducer, a small (usually< 0.01%) percentage of

the intensity will be diffracted. The diffraction images, as well as the

zero order laser beam, are focused on the first lens of the coronagraph

optics.

The coronagraph optics are a simple system of masks and lens

originally designed by Lyot (61) for the purpose of studying the solar

cornona. The optical problem presented here is similar as it is

necessary to photograph weakly diffracted images lying only a few
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Figure 1. Diagram of optical diffraction apparatus.
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millimeters from the very intense undiffracted laser beam. Lyot

optics are quite effective in reducing stray background light due to

internal lens reflections and to aperture diffraction (which occurs

along the edge of the cell lens). A detailed discussion of the design

of the coronagraph optical system used here can be found in Strauch

(99, p. 23-33) and also in Strauch and Decius (100).

The diffraction images emerging from the Lyot optics are re-

corded on low sensitivity Kodak type 649-F glass plates. The reso-

lution of this emulsion is extremely high, being approximately 2000

lines /mm. Exposure times are generally between 0.0025-10 sec-

onds, except for very low gas pressures.

The distance between the first order diffraction images usually

varies between four to ten millimeters and can be measured to an

accuracy of ±0. 002 mm using a Gaertner model M1170-342 compar-

ator. The width of the diffraction dots changes from an average of

0.03 mm in nondispersive regions to 0.15 mm in regions of strong

acoustic absorption. Under the most severe conditions the images

are still capable of being measured to an accuracty of ±0.01 mm.

Photographs are taken using an Orbit Monorail Precision

Camera manufactured by Burke and James, Inc. The camera has

been bench mounted and rests on a dove-tail slide which allows over

50 exposures to be made on a single 4" x 5" photographic plate. A

Synchro Compur Shutter has exposure speeds of 1/400 to 1 second
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as well as time.

The Hartley oscillator used to excite the quartz transducer was

constructed by Martinez (64, p. 63). Stability of the oscillator is

generally one part per million during exposure times. The frequency

is monitored using a Hewlett Packard Model 5232A counter. R. F.

voltages applied to the transducer usually vary in the 10-150 volt

range.

The x-cut quartz transducers used to generate the sound wave

in the cell were obtained from Valpey Corporation and have tolerances

for flatness and parallelism within ±0. 00005". The Brashear method

(102) has been used to silver the faces of the crystals. Crystals,

1.75" in diameter, with fundamental frequencies of 0.56, 0.99, 1. 07,

and 1.78 MHz were used in this study.

Temperature measurements are obtained using an aged, Fen-

wall GB 32J2 bead thermistor. The bridge circuit is manufactured

by E. H. Sargent and Company. The sensitivity of the bridge has

been adjusted to one millivolt per degree Centigrade and voltage

changes are recorded on a ten my Brown Class 15 Electronik record-

ing potentiometer. The thermistor was calibrated using a NBS

standardized thermometer which is marked off in 0. 02oC divisions.

The data points have been fitted to a second order curve using a

least squares computer program. All calibration data points were

found to fall within ±0. 05°C of the least squares curve.
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The vacuum system for the introduction and removal of gases

from the cell is of conventional design and is composed of two parts.

An all glass section for use at pressures below one atmosphere con-

sists of a standard taper outlet for the introduction of gas samples, a

mercury manometer, a thermocouple vacuum gauge (RCA Model-

1946) and a series of two cold traps (one for the collection and dis-

posal of gas samples and the other to protect the vacuum pump). The

high pressure section is constructed from 1/4"" stainless steel tubing

and numerous Whitey valves and contains a system of three stainless

steel traps which may be used for the purification and storage of gas

samples. Three Swagelok Outlets are available for the direct attach-

ment of gas cylinders to the line. Absolute pressures are measured

on a helicoid gauge which reads from 0-200 lbs/in2. The cell itself

is constructed from a solid block of aluminum and is capable of with-

standing a pressure of ten atmospheres. A detailed cross section

diagram of the optical diffraction cell is shown in Figure 2. The indi-

vidual sections are bolted together and are held pressure tight using

0 rings.

(3.2) Operation of the Optical Diffraction Equipment

The basic operation of the optical diffraction apparatus is not

difficult and will be described briefly in the following paragraphs.

The attainment of high precision velocity data does require a basic
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knowledge of the instrument and the location of possible sources of

error. Accordingly, those areas which may influence the overall

quality of the results will be presented in somewhat greater detail.

After allowing the Hartley oscillator a sufficient warm-up

period (usually one hour) the gas to be studied is introduced into

the cell and the oscillator is tuned to obtain a visual diffraction

image. Rather than tune to a maximum diffraction intensity it is

best to locate a position which gives satisfactory intensity and ex-

hibits a stable resonance without drifting. This allows the use of

the same resonant frequency throughout the experiment which is

fairly important.

Systematic errors in velocity determinations are minimized

by using a standard gas of known velocity to calibrate each diffrac-

tion image obtained with the experimental gas. In the past, double

exposures were made at a single camera setting, giving a super-

position of the diffraction images for the experimental and standard

gases. This was done since the diffraction image was established

by a slit when the Mercury lamp light source was used. Accurate

measurement of the distance between the slit images proved difficult

and the superposition of exposures provided a method whereby align-

ment errors would tend to cancel in the resulting velocity calcula-

tions. With the introduction of the laser light source, this practice

is no longer followed. The laser yields point images and absolute
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distance measurements between diffraction dots are accordingly

more reliable. It is still necessary, of course, to match laboratory

conditions between the experimental and standard gases as closely

as possible.

The Kodak 649-F emulsion used in this work is of extremely

high contrast. It is therefore necessary to take several exposures

at any given gas pressure to insure a diffraction image suitable for

measurement. The method of data taking used in this investigation

was first to introduce the standard gas and take a sequence of cali-

bration photographs covering the gas pressures to be studied using

the experimental gas. The system would then be evacuated for about

an hour, and after flushing the cell several times, the experimental

gas photographs were taken. This method yields about six data

points per plate and is a fairly rapid procedure as only one gas

change occurs during the entire sequence. The proper exposure

times for the experimental and standard gases should be determined

in advance by photographing a few selected points at varying pres-

sures. Plots of log P versus log t may then be used to estimate

exposure times at any selected pressure.

Before commencing a series of experiments, the alignment

of the optical system was checked. To insure parallel passage of

the light rays through the cell, the pinhole aperture should be accur-

ately placed at the focal length of the first cell lens. The proper
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positioning of the pinhole is aided by placing a mirror in the cell and

reflecting the image back to the mask. 'Proper alignment is obtained

by adjusting the reflected image to as small a size as possible. When

the alignment is complete, the distance from the pinhole to the first

cell lens should be the same as the distance from the second cell

lens to the point of focus on the Lyot optics. This should be true

since the collimating and focusing lenses (which also serve as win-

dows for the ultrasonic cell) have equal focal lengths.

Determining the focal plane of the camera may be done visually

by moving the plate holder back and forth or photographically (which

is the preferred method).

Adjustment of the cell tilt is rather critical as this determines

the intensity ratio for the plus and minus first order diffraction

images. Asymmetry effects are exaggerated using a high contrast

emulsion and unless the zero incidence requirement is accurately

met, distance measurements become less precise. The cell tilt is

varied by means of a vertical vernier which also serves as a support

for one end of the optical diffraction cell. The distance between the

two cell supports is about 100 mm and changing the vernier by 0.1

mm affects an angle change of approximately one milliradian. After

visually determining the best cell tilt, photographs should be taken

at 0.1 mm distances on both sides of this position. The alignment

is most sensitive for gases which give large diffraction angles.
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The purity of gas samples may deteriorate while in the optical

diffraction cell if the system is not sufficiently air tight. The appa-

ratus should be leak tested before each experiment using the thermo-

couple vacuum gauge. If the gauge is properly calibrated it is pos-

sible to estimate the amount of leakage into the system during an

experiment. If the amount of impurity introduced into the cell is

sufficient to alter the composition of the gas, the vacuum line should

be inspected for possible leakage, Often_ the problem is associated

with outgassing of the system. The high pressure stainless steel

tubing used throughout most of the vacuum line is of l/801 internal

diameter and the pumping rate is extremely slow. During active

periods of research, the system should always be kept under vacuum

between experiments.

Temperature measurement is not completely reliable as the

thermistor seems to respond to the R. F. radiation transmitted from

the oscillator. This effect can be observed by evacuating the cell and

noting the erratic behavior of the bridge circuit when the oscillator

is tuned in and out of resonance. Fortunately, the use of a standard

gas tends to minimize this problem. For best results, the same

resonant frequency should be used with both the standard and experi-

mental gases. The effect diminishes as the oscillator voltage is

decreased and, accordingly, the most accurate velocity measure-

ments are made at lower voltages.
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Measurement of diffraction in regions of strong acoustic absorp-

tion is made easier by a slight modification of the Lyot optics. In the

second focal plane of the Lyot optics an inverted image of the illum-

inated cell appears, but more importantly, (as will be seen shortly)

the ultrasonic diffraction grating is visible due to the Schlieren effect.

Schlieren photographs of the ultrasound grating in n-pentane and

CC1
2

F2 are shown in Figure 3. Also included are background photo-

graphs of the cell image taken when the transducer was not oscillat-

ing. At 2 MHz/atm appreciable soundwave absorption does not occur

in n-pentane and the ultrasonic wave train penetrates well into the

illuminated area of the cell. The Schlieren photograph of CC12F2

was taken in the middle of the gases' vibrational dispersion region.

The absorption is so great in this case that the ultrasonic waves are

completely absorbed within a few millimeters of the crystal face.

With the coronagraph masking system, background radiation is re-

duced in the second focal plane by employing an iris to remove the

circular image of the cell opening. Also an ink dot is placed on the

second objective lens to remove the centrally located reflection

image. By increasing the size of the mask in this plane to exclude

the cell image where diffraction is not occurring, the, background rad-

iation can be substantially reduced.

Since diffraction in cases of strong acoustic absorption occurs

only within a small portion of the total illuminated area, it is
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Figure 3. Schlieren photographs of the ultrasound grating in n-pentane and C C12
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beneficial to reduce the diameter of the light beam passing through

the cell. Circular apertures ranging in size from 8-26 mm have

been made which may be placed in front of the first cell lens. The

transducer is then raised until the crystal is almost, but not quite,

within the illuminated area. In special instances it may prove feas-

ible to replace the first cell lens with an optical flat and to use the

laser beam directly. Attention must be given, however, to the

wavelength of sound, as the ultimate resolution of the diffracted

image is proportional to the number of illuminated lines in the dif-

fraction grating.

Exposure times at high (f/P) typically run 100 seconds or more.

Since image quality is reduced in these regions it would be desirable

to switch to a more sensitive emulsion. Usage of Kodak Type V-F

photographic plates would reduce exposure times by a factor of 100.

The resolving power is better than 225 lines/mm which is more than

adequate.

One further consideration when working in difficult regions is

to keep the cell lens meticulously clean and free from dust. The pro-

cedure for lens cleaning and polishing has been given by Strauch (99,

p. 25).
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(3.3) Preparation of Standard and Experimental Gases

Standard Gases

Standard gases of known velocity are used in the determination

of experimental velocities as has been indicated in equation (72).

Ideally it is best to select a standard gas whose velocity is close to

the gas undergoing investigation. Argon and nitrogen were used

throughout the present study and were obtained from Matheson Com-

pany. Matheson lists the purity as 99.995% for argon and 99. 997%

for nitrogen.

The velocity of sound for these gases has been calculated using

equation (47). A convenient form of the velocity equation for room

temperature calculations is shown in equations (73) and (74) for

nitrogen and argon, respectively.

(Nitrogen) V2 = (415.515)(1 +6.46x10 -4P) T(m2 /sec2
) (73)

(Argon) V2 = (346.881)(1+5.13x104P) T(m2 /sec2
) (74)

where T is in °K, P is in atm, and the nonideality corrections

have been calculated using the Lennard Jones parameters.

Ammonia

Anhydrous ammonia was obtained from the Matheson Company
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and has a list purity of 99. 99% NH3, 0. 01% N2. As was noted by

Strauch (99, p. 57) and also in this study, gas samples taken from

a full cylinder of ammonia contained one to two percent nitrogen.

Since ammonia is almost entirely present in the cylinder in liquid

form, initial samples might be expected to be rich in nitrogen due

to the wide separation of vapor pressures between these two gases.

A convenient means of purification consisted of expanding the

gas into the system and condensing liquid ammonia in a stainless

steel trap at -78°C. The vacuum line was then evacuated and ap-

proximately one half of the sample removed by vacuum fractiona-

tion. The remaining half was stored in the trap until needed. Several

samples were prepared in this manner and, as indicated in section

(4. 1), no inconsistencies in the velocity data were obtained.

Allene

A lecture gas bottle of allene was purchased from the Matheson

Company. A typical lot analysis provided with the gas listed the

impurities as 0.25% oxygen, 0.80% nitrogen, 0. 48% carbon dioxide,

0.56% propylene, and 0. 68% methyl acetylene. The purification of

allene proceeded as follows. The allene was transferred to a stain-

less steel trap and held under vacuum at 110°C using an ethanol

liquid-solid slush. The oxygen and nitrogen appeared to separate

from the sample almost immediately but the evacuation procedure
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was continued for one hour. Carbon dioxide was removed by vacuum

distilling the allene sample several times through a trap containing

Linde 4R molecular sieves. No attempt was made to separate the

propylene and methyl acetylene from the allene sample.

Carbon Suboxide

Carbon suboxide samples were prepared by the dehydration

of malonic acid with phosphorus pentoxide (57). The by-products

of the reaction are water, acetic acid, and carbon dioxide, leaving

only a 10% by weight yield of carbon suboxide theoretically attainable.

The reagents were mixed in a one liter flask in the following propor-

tions: 20 gm malonic acid, 40 gm ignited sand, and 200 gm phosphor-

us pentoxide. The preparation entailed a vacuum distillation carried
4,

out over a two hour period at a reaction temperature between 140-

150
o

C. The distilled gases were passed through a lime tower and

collected in U-tubes for immediate purification. The method of

purification followed was similar to that given by Miller and Fate ley

(67). Carbon dioxide was removed by vacuum evaporation with the

raw product held at -110°C for 8-12 hours. The prepurified product

was held at -30°C using an o-xylene slush and the carbon suboxide

removed by vacuum fractionization.

The final product contained about one ml of carbon suboxide and

it proved necessary to repeat the above reaction approximately ten
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times to obtain enough sample to perform satisfactory velocity meas-

urements. Carbon suboxide was stored at liquid nitrogen tempera-

tues at all times, except while in the optical diffraction cell. The

final product has been analysed on an Atlas CH 4 Mass Spectrome-

ter and a Beckmann IR-7 Infrared Spectrophotometer. The results

indicate 3 ± 1% carbon dioxide as the only impurity detectable.
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62

The velocity of sound in gaseous ammonia has been measured

over the range 1.1-13.7 MHz/atm. This investigation is an exten-

sion of previous work in this laboratory by Strauch (99, 100) who

covered the range 0.15-2.1 MHz/atm. The present velocity meas-

urements failed to detect sound dispersion in ammonia. As an upper

limit, our velocity data suggest T < 2 ns. Jones, Lambert, Saksena,

and Stretton (47) have recently found that the rotational and vibrational

modes relax together at 1-1-- 0.73 ns. Thus the relaxation of the vibra-

tional degrees of freedom in ammonia is among the fastest reported

for a simple molecule. The aspect of the ammonia problem which

makes it truly unique is the wide separation of relaxation times

between the hydride and deuteride forms. The relaxation time for

ND
3

is T= 13 ns (16) which is 18 times slower than for NH3. This

behavior is found in no other molecule and cannot be explained in

terms of the conventional theories outlined in section (2. 1).

Experimental Data

Real sound velocities in ammonia have been calculated from

experimental data using equation (72) and were corrected to 300oK
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(75)

where T is the experimental temperature in °K. The experimental

sound velocities are listed in Tables 1 and 2 along with the diffraction

distances, frequencies, temperatures, and pressures used in the

velocity calculations. Nitrogen has been used as a standard gas and

the sound velocities shown in Table 1 were calculated from equation

(73). Three separate crystals of frequencies 0.996, 1.07, and 1. 78

MHz were used in the present measurements. The R. F. voltage ap-

plied to the crystals did not exceed 130v. Exposure times varied from

0.0025-70 seconds for gas pressures ranging from 1.0-0.08 atmos-

pheres.

Since the ammonia measurements are in a nondispersive region,

the nonideality parameter, S, (identified in equation (47)) has been

evaluated experimentally using the velocity data from photographic

plate (4-11-680 ). The nonideality correction is linear with pres-

sure as is indicated in Figure 4 and S has been determined from the

slope by least squares analysis. The result is S = -150. 8±5 cc/

mole. This value has been used to calculate the idealized sound

velocities shown in Table 2. Using Figure 4, V2

i can also be evalu-

ated from the intercept. The least squares analysis yields V. =

(19. 090*0. 005)x104m2/sec2 for the seven data points indicated.



Table 1. Velocity of sound in nitrogen (standard gas).

2
V. V2

Pressure Temperature Frequency Diffraction 1 realPlate
(oK)

4 2 2 4 2 2
Identification (atm) (KHz) Distance (mm) (x10 m /sec ) (x10 m /sec )

8-9-67 #1 0, 554 299. 87 995.829 5.3314 , 12.4601 12, 4646

0,168 300.31 .683 5.3256 12,4783 12.4797

4-11-68 #1 0. 993 296.84 1069. 422 6. 3133 12. 3341 12.3420

0.724 296.75 .417 6.3125 12.3304 12.3362

0, 517 296. 68 .413 6, 3145 12. 3275 12, 3317

0.420 296.60 .412 6.3137 12.3242 12.3275

It 0.318 296.53 .410 6.3152 12.3213 12.3238

0.237 296.53 .408 6.3149 12.3213 12.3231

0, 179 296. 59 . 407 6. 3147 12.3238 12. 3253

6-28-68 #1 0.982 298.67 1775. 957 10,4495 12,4102 12.4180

0,789 298.74 .952 10,4488 12.4131 12,4194

0.458 298.83 ,943 10.4484 12.4168 12.4195

7-31-68 #3 0. 157 298. 60 1063. 901 6. 2715 12.4073 12, 4085

0,105 299.12 .881 6.2731 12.4289 12.4298

11 0,081 299.03 ,880 6.2702 12.4251 12.4257



Table 2. Ideal velocity of sound in ammonia at 300°K.

Identification

Pressure

(atm)

Temperature

(°K)

Frequency

(KHz)

Diffraction

Distance (mm)

2V 300oK

1(10
4

m
2

sec
2

)

2
Vi

(x104 m
2

sec
2)

f/P

(MHz/atm )

8-9-67 #1 0.167 301.74 995.679 4.2994 19.0414 19.0815a 5.96

ft 0.554 301.07 .986 4.3162 18.9559 19.0891
b 1.80

4-11-68 #1 0.992 297.10 1069.426 5.1320 18.8599 19.0988 1.08

0.724 297.08 .421 5.1226 18.9167 19.0908 1.48

0.517 297,02 .417 5.1168 18.9687 19.0930 2.07

0.418 297.03 .415 5.1136 18.9807 19.0816 2.56

0.320 297.01 .412 5.1099 19.0130 19.0894 3.34

0.234 296.94 .412 5.1064 19.0402 19.0971 4.57

0.180 296.94 .411 5.1052 19.0515 19.0945 5.94

6-28-68 #1 0.980 298.50 1775.957 8.5038 18.8447 19.0801° 1.81

11 0.792 298.54 .952 8.4928 18.8906 19.0808d 2.24

0.456 298.61 .947 8.4736 18.9705 19.0802 3.89

7-31-68 #3 0.157 297.91 1063.922 5.0810 19.0373 19.0749 6.79

0.105 298.84 .892 5.0758 19.0744 19.0998 10.10

0.078 299.46 .882 5.0674 19.0587 19.0774 13.71

2
Velocities listed on plates 8-9-67 #1 and 6-28-68 #1 are representative of a total of 17 V measurements made under similar conditions.
The average values are as follows: a) 19.0823; b) 19.0888; c) 19.0796 and d) 19.0841.
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Only data from photographic plate (4-11-68#1) has been used to

determine the nonideality correction as the parameter S does vary

with temperature. Ammonia measurements from this plate all lie

within a narrow temperature range, 296.6 t 0.2°K.,

The nonideality correction S = -151 cc/mole at 297°K is in

complete agreement with the value obtained by Cottrell, Mac Far lane,

and Read (13) (S = -142 ±10 cc/mole at 303°K) and with the virial

data of Lambert and Strong(55). A rather fortuitous agreement for

ours and Cottrell's value is obtained when S is evaluated using the

square well potential for ammonia listed in Hirschfelder, Curtiss,

and Bird (39, p. 160). The parameters are: bo = 30.83 cc/mole,

E/k = 692°K, and R = 1.268. Using equations (47) and (52abc) we

find S = -150.6 cc/mole at 297°K and S = -141.9 cc/mole at 303°K.

The above results disagree somewhat with a recent experimen-

tal value obtained by Jones et al. (47) which is S = -195 ± 13 cc/mole

at 298 °K. Since all measurements are performed at or below one

atmosphere, the disagreement listed above does not affect seriously

the final idealized velocity values obtained.

Experimental Results

Idealized sound velocity measurements in ammonia, corrected

to 300 K, are shown in Figure 5 along with data also obtained in this

laboratory by Strauch and Decius (100), Addition of a small He-Ne
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laser, along with some modifications in the experimental procedure,

has increased the precision of the velocity measurements from the

±0. 18% reported in 1966 to the present ±0.04%.

The ideal velocity of sound in ammonia can be evaluated using

equation (34) provided the vibrational specific heat is known with

sufficient accuracy. Haar (31) lists the vibrational heat capacity of

ammonia as (C /R) = 3.2939 ± 0.003. His results are based on

spectroscopic data and the methods of statistical mechanics. The

partition functions used in his calculations include contributions

from vibrational anharmonicity, vibrational-rotational coupling,

rotational stretching, and rotational quantum effects. Particular

attention was given to the treatment of the rotational and vibrational

anharmonic effects due to the v2 mode associated with the inversion

of the pyramid. The sound velocity based on these calculations is

listed below, together with experimental velocities (corrected to

300 °K) obtained by Jones et al. (47) and in the present investigation.

V2 = (19.092±0.003) x 104 m2/sec2 (Cy from Haar)

V =.
2 (19.087±0.008) x 104 m2/sec 2 (this work )i

V (.= 19.084+0.006) x 104 m 2/sec 2 (Jones et al.

The most promising feature of the optical diffraction method is its

accuracy, which approaches that which may be attained using spec-

troscopic data and the methods of statistical mechanics.
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The present velocity measurements show no dispersion up to

14 MHz/atm. An upper limit can be placed on the vibrational relaxa-

tion time in ammonia by using equation (39). If we assume that a

velocity dispersion equal to three times the standard deviation of the

data would be detectable, then the vibrational relaxation must be

above T < 2 ns. This observation is in agreement with the results

of Jones et al. (47), who find both the vibrational and rotational de-

grees of freedom relax together at T = 0. 73 ns.

Discus sion

The most striking feature in comparing transition rates for

ammonia and heavy ammonia is that NH
3

-NH3 collisions are ten

times more efficient in promoting vibrational energy transfer than

ND
3

-ND
3

collisions. This efficiency is not found for the hydrides

and deuterides of related compounds as may be seen in Table 3. The

discrepancy in the collision probabilities between NH3 and ND
3

can-

not be justified using the conventional theories outlined in section

(2. 1). This opinion is at least superficially substantiated by the

predictions shown in Table 3 for vibrational-translational and vibra-

tional-rotational energy transfer. While rotational effects have

been used by some investigators to explain why the hydrides tend to

relax faster than the deuterides, this argument does not appear to

extend to the ammonia results.



Table 3. Ratios of collision probabilities, P10 (H)/P 10(D), for the hydrides and deuterides of simple molecules.

Vib- Rot Vib- Trans P
10(H)/P 10(D) Temperature

Molecules Equation (31) SSH Method Experimental oK

CH4' CD
4

1.8 0.42 135) 1.4 (39) 298

SiF14, Si D4 1.4 0.2 (41) 1.4 (39) 298

NH3' ND
3

1.3 0.8 (78) 10.0 (78) 298

PH
3'

PD
3

1.1 0. 1 (41) 1. 5 (40) 303

As H
3'

AsD
3

1. 1 0.04 (41) 0.6 (41) 303

H20, D20 1.0 1 (84) 0.8 (83) 410

HC1, DC1 1.0 0.02 (42) 2. 6 (82) 700

HBr, DBr 1.0 1.9 (82) 700

HI, DI 1.0 2.5 (82) 700
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Cottrell and Matheson (11) have interpreted the NH3' ND
3

problem in terms of the inversion phenomenon. The v2 mode in

NH3 and ND
3

is the vibration associated with the inversion of the

pyramid. Each vibrational state in this mode is split into two com-

ponents and the potential energy function is represented by a double

minimum. The spacing for each level is demonstrably more anhar-

monic in the case of NH3 (20) where the splitting for the first three
- -energy levels of the .1,2 state is 0.66 cm 1 (v=0), 35.7 cm 1

(v =1)

2and312.5 cm 1

ND3
(v=2). The splitting in ND3( 20) is much smaller,

for example, 2.4 cm 1 for the first excited level of the v2 state.

The average time required to penetrate the potential hill is

inversely proportional to, the energy difference of the two sublevels.

If the molecules are viewed classically we can predict the length of

time the ammonia molecule will remain in one configuration before

suddenly inverting to its mirror image. For the v2 (V =1) levels we

find 2. 1 x 1014 inversions/second for NH3 and 1.4 x 1013 inversions/

second for ND3. Cottrell and Matheson have compared these inver-

sion times with the period of duration of a molecular collision and

have suggested that the probability of an inversion occurring during

a collision is quite high for NH3.

If oriented collisions occur in NH3' a sudden inversion would

be expected to be highly repulsive if the molecules are sufficiently

close. This increase in the sharpness of the force-time relationship
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of the encounter means a much shorter repulsive range parameter.

As shown in equation (21), a more rapid conversion of kinetic to

potential energy increases the probability for an inelastic collision.

Unfortunately, the weakness of the present arguement is rather

serious as it is not valid to consider the inversion phenomenon from

a classical point of view. Nevertheless, the possibility that the inver-

sion phenomenon may be the most important factor contributing to the

highly efficient NH3-NH3 collisions has been brought forth. It is

suggested that a more rigorous quantum mechanical calculation

along these lines should be pursued. It is also evident that vibration-

rotation coupling is important here inasmuch as NH3 is the first ex-

ample of a molecule in which the heat capacities due to both types of

motion disappear together.

(4.2) Allene

The vibrational relaxation time in allene (propadiene) has been

determined by sound velocity measurements over the range 0, 3-33

MHz/atm. The lower 1/4 of the dispersion region has been observed

and the results indicate that all of the vibrational degrees of freedom

relax together at T =5.2 ns at 300o
K. The two lowest vibrational

modes in allene (v
11

= 354 cm 1
and v

10
= 842 cm 1) are widely

separated and for a small number of gases the presence of such a

gap leads to two vibrational relaxation times. This has not been
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observed in the present investigation.

Information regarding the physical properties of allene has been

summarized by Gallant (25) and the chemistry of allene has been

extensively reviewed by Griesbaum (30).

Experimental Data

The velocity of sound in allene at 300°K with argon and nitrogen

as standard gases has been determined from laboratory measurements

using equations (72), (73), (74) and (75). The sound velocities so

obtained are listed in Tables 4 and 5, together with the experimental

data necessary for the calculations. Diffraction images were re-

corded on Kodak 649-F glass plates with the exception of the series

(5 -9 -69#2) where Kodak III-F emulsion was used. Exposure times

varied from 0.0025-200 seconds for gas pressures in the range 3.7-

O. 032 atmospheres. A 1.07 MHz crystal and R. F. voltages ranging

from 10-170 volts were used in the generation of the sound wave.

For sound velocities at nine MHz/atm and higher the experi-

mental and standard gas pressures were not matched as accurately

as possible. Instead, standard gas pressures were chosen which

tended to approximate the diffraction intensity exhibited by the exper-

imental gas. This was necessary in order to extend the range of the

instrument as the diffraction intensities recorded for standard gases

are very weak at low pressures. Since the purpose of the standard



Table 4. Velocity of sound in argon and nitrogen (standard gases).

Plate
Identification

Pressure
(atm)

Temperature

(o K)

Frequency

(KHz)

Diffraction

Distance (mm)

V.
4
V.

2 2(x10 m /sec )

2
V

real
(x104 m2/sec2)

5-5-69 #2 3.74 298.08 1068.231 6.8511 10. 3398 10.3597
(Argon)

2.58 298. 14 . 230 6.8535 10.3419 10.3556
1.84 298.22 .200 6.8535 10. 3447 10.3544

If 1.29 298.26 .201 6.8549 10.3461 10. 3529
0.88 298.56 .200 6.8536 10.3565 10.3611

5-7-69 #1 0.630 300.94 1067. 968 6, 8194 10.4390 10.4424
(Argon)

11 0.408 301.06 .963 6.8200 10.4432 10.4454
0.287 301.07 .960 6.8221 10.4435 10.4451

11 0.209 301.17 .901 6.8144 10,4470 10.4482
0,155 301. 14 , 904 6.8124 10.4460 10.4468
0.133 301. 10 .901 6.8124 10.4446 10.4453

5-9-69 #1 0.132 297.23 1073. 666 6.3092 12.3503 12.3512
(Nitrogen)

11

11

0.132
0. 132

297.43
297.54

. 661

. 660
6.3054
6.3048

12, 3587
12. 3632

12.3596
12.3641

0.132 297.99 .641 6.2962 12.3819 12.3828
11 0.132 298, 05 .640 6.2948 12.3844 12.3853

5-9-69 #2 0.118 298.64 1069. 551 6. 2568 12.4089 12.4097
(Nitrogen)

to 0. 118 298.64 .550 6. 2733 12.4089 12.4097
0.118 298. 64 .551 6. 2655 12.4089 12. 4097
0. 118 298.69 .550 6.2656 12.4110 12. 4118

11 O. 118 298.69 .550 6.2605 12.4110 12. 4118
0.092 298.82 .544 6.2685 12.4164 12,4170
0,092 298.82 .554 6.2596 12.4164 12. 4170
0.092 298.82 .543 6.2546 12.4164 12. 4170

to



Table 5. Ideal velocity of sound in allene at 300°K.

Plate
Identification

Pressure
(atm)

Temperature
o

( K)

Frequency

(KHz)

Diffraction

Distance (mm)

2
V o300 K

4 2 2(x10 m /sec )

V2
i
4 2 2(x10 m /sec

f/P

) (MHz/atm)

5-5-69 #2 3.74 298.03 1068,242 8.6098 6.6030 7.2568 0.286
2.58 298.06 . 218 8.4830 6.8032 7.2537 0.414
1.84 298.10 .202 8.4002 6.9363 7.2578 0.580
1.29 298.13 . 201 8.3444 7.0305 7.2554 0.828
0.88 298.29 .210 8.3004 7.1044 7.2583 1.214

5-7-69 #1 0.629 301.00 1067.976 8.2366 7.1342 7.2431 1.698
0.407 300.98 .966 8.2124 7.1802 7.2507 2.626
0.286 301.14 .963 8.2085 7.1979 7.2474 3.740
0.209 301.20 ,902 8.1848 7.2135 7.2497 5.105
0.150 301.33 ,903 8.1740 7.2242 7.2501 7.119
0.105 301.38 .901 8.1596 7.2475 7.2657 10.14

5-9-69 #1 0.118 298.26 1073.659 8.2572 7.2530 7.2738 9.07
11 0.086 298.39 . 670 8.2458 7.2661 7.2812 12.46

0.0710 298.61 . 664 8.2325 7.2854 7.2978 15,12
0.0526 299.18 .634 8.1906 7.3372 7.3465 20.41
0.0447 299.10 .625 8.1740 7.3672 7.3751 24.02

5-9-69 #2 0.0974 298.74 1069.548 8.2133 7.2509 7.2678 10.98
11 0.0789 298.77 .545 8.1839 7.3024 7.3163 13.55
11 0.0789 298.77 .545 8.1948 7.2841 7.2980 13.55

0.0632 298.78 .544 8.1739 7.3227 7.3338 16.92
0.0632 298.79 ,544 8.1746 7.3092 7.3203 16.9

11 0.0391 298.97 .538 8.1128 7.4223 7.4292 27.4
0.0391 298.96 .538 8.1160 7.4119 7.4188 27.4
0.0322 299.01 .537 8.0826 7.4769 7.4827 33.2
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gas is to evaluate the focal length of the optical system the selection

of the gas pressure should, theoretically, have no effect on the accur-

acy of the experimental velocity data. On the contrary, the seating

of the cell lens may be affected by changes in pressure within the cell.

This could be expected to have some effect on the focal length and

accordingly, gas pressures should be matched whenever possible.

At low pressures, however, the cell lens are held firmly in place

by the external pressure and small variations in the internal pres-

sure should not affect the velocity data.

The nonideality parameter used to correct the measured sound

velocities in allene is S = -292 ± 1 cc/mole at 298°K. This value was

determined experimentally by plotting velocity squared versus pres-

sure outside the dispersion region as shown in Figure 6. The slope

was evaluated by least squares analysis and the data is taken from

plate (5-5-69#2). Although experimental sound velocities are cor-

rected to 300oK, the nonideality correction strictly applies to the

mean temperature over which the velocity measurements were per-

formed. Since the nonideality correction is small to begin with, this

second order correction has been neglected.

An estimate of the accuracy of the experimentally determined

nonideality parameter, S, has been obtained using the Lennard Jones

parameters (34) (E/k = 194.9°K and 0-= 6. 43X) and equation (48). The

result finds S = -276 cc /mole at 300°K in fair agreement with the



72

70
a)
(f)

0
6.8

(.1

6.6

1.0 2.0

Pressure (crtm)
Figure 6.

3.0

Sound velocity in allene at 300°K vs pressure.

4.0



79

experimental value.

In addition, S has been evaluated using equation (47) with virial

data obtained from the Berthelot equation, reported in equation (56).

The critical constants for allene are Tc = 393 K and P = 51.6 atm
c

(25) and the ensuing calculations yields S = -279 cc/mole at 300°K.

Experimental Results

The 11 normal modes of vibration in allene and their contribu-

tion to the heat capacity are listed in Table 6. The vibrational heat

capacities were calculated using the harmonic oscillator rigid rotor

approximation and the spectroscopic data of Lord and Venkateswarlu

(58) with the exception of v9 which was taken from Mills, Smith and

Duncan (72). The large separation between the two lowest frequencies

in allene suggests the possibility of double dispersion with the lowest

mode relaxing independently of the rest. The total heat capacity

would therefore be 6. 1123R under static conditions, 4.5820R with the

loss of all modes except v and 3.0000 R with the loss of all of the

vibrational degrees of freedom. Ideal sound velocities in allene

calculated using equation (34) to determine the three limiting veloci-

ties yields:

V2 = 7.2444 x 104m2 /sect

2vm = 7.5846 x 104
m2 /sec2

static velocity

all modes except v11 relaxing
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Table 6.

Vibration

11
(E)

10(E)

v4(B1)

v
9(

E )

v
3

(A1)

v
7

(B2)

v
2

(A1)

v6(332)

1
(A1)

v
5

(B2)

v 8(E)

The vibrational heat capacity of allene at 300°K.

Frequency cm-1 C.. /R

354 1.5820

842 0.5962

865 0.2805

999 0.3880

1076 0.1546

1398 0.0552

1440 0.0480

1957 0.0074

2996 . 0001

3005 . 0001

3085 . 0002

Vibrational total C /R = 3.1123
v



V
z = 8.3011 x 104m2 /sec high frequency velocity
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Measured sound velocities in allene, corrected for nonideality

are shown in Figure 7. The results favor the interpretation that all

the vibrational modes in allene relax together with T = 5.2 ns. The

data have been fitted to the theoretical curve for a single relaxation

shown in equation (36). The center of the dispersion is located at

fc = 62 MHz/atm.

Since it is not immediately apparent from Figure 7 whether the

allene data should be interpreted as singly or doubly relaxing, this

point will be discussed in greater detail. We have observed a 3. 3%

velocity dispersion which, as seen from the limiting velocities above,

is enough to cover 70% of the dispersion curve for the first step in

the multiple relaxation process. The curvature of the dispersion

observed in our velocity measurements is much too steep to be asso-

ciated with a two step relaxation.

In contrast to rate processes which have comparable relaxation

times, the term multiple relaxation is generally associated with a

separation of steps by a factor of ten or greater. Should the allene

data be force fitted to a double dispersion curve we find for the slower

process a relaxation time T1 = 7.0 ns. Using the present definition

of multiple dispersion implies that the deactivation of the lowest

mode (v11 354 cm-1 ) is equal to or faster than T
2

<0.7 ns. While

it will not be denied that such a relaxation time is feasible, allene
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would have the distinction of being the fastest vibrationally relaxing

molecule reported in the literature.

The possibility that part of the velocity dispersion seen in

Figure 7 could be due to translational effects has been considered,

but a calculation of translational dispersion at 33 MHz/atm using

equation (61) indicates an increase in velocity of only 0.025%.

A more serious problem is the effect of the impurities (0. 6%

propylene and 0. 7% methyl acetylene) on the velocity data reported

for allene. The relaxation time for propylene is T = 1.5 ns (43)

which is some three to four times faster than allene. Methyl acetyl

ene has s not been investigated but would be expected to relax com-

parably to allene on the basis of their similar structure and lowest

modes of vibration (328 cm-1 for methyl acetylene versus 354 cm 1

for allene). The role of catalyst molecules in promoting energy

transfer is not well understood and there is a certain amount of

conflicting literature on the subject. McCoubrey and coworkers

(3, 45, 62) have extensively investigated the role of impurities on the

vibrational relaxation times of polyatomic molecules. Their results

indicate that additives exhibit the greatest catalytic effect on a sam-

ple gas under the following conditions.

i) The impurity has a much faster relaxation time than the sample

gas.

ii) The impurity has a faster translational velocity, or, in the
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classical sense, a faster rotational velocity.

iii) There is an enhanced attraction between the impurity and sample

gas due to dipole moments or chemical affinity.

On the basis of the above criteria, one would not expect propyl-

ene or methyl acetylene to exert too great an influence on the vibra-

tional relaxation time in allene. Indeed the observed value reported

for allene agrees rather well with the Lambert Salter correlation

(54) for molecules containing two or more hydrogen atoms.

The error introduced in the reported relaxation time for allene

due to the presence of impurities can be estimated using equation

(2. 118) from Cottrell and McCoubrey (12, p. 32)

1
X

A
XB

T TAA
TAB

(76)

In equation (76), T is the experimentally observed relaxation time

(for a gas composed mainly of A molecules with some B molecules

TAA
is the relaxation time for the pure gas, A, and T

AB
is the

relaxation time for a hypothetical gas in which only AB collisions

occur. X
A

and X
B

are the respective mole fractions for gases A

and B.

If we assume that for a gas composed of allene, propylene, and

methyl acetylene, the most efficient transfer of vibrational-transla-

tional energy occurs during propylene-propylene collisions, equation
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(76) may be solved to provide an error estimate. As an upper limit

we set
TAB

= 1.5 ns and X
B

= 0.013; then from the observed relaxa-

tion time in allene, T = 5.2 ns, we can calculate the relaxation time

for the pure gas, TAA. Solving equation (76) gives TAA = 5.4 ns.

This indicates that impurities in the allene sample would be expected

to decrease the relaxation time only by about four percent.

(4. 3) Carbon Suboxide

Carbon suboxide has proven itself to be an interesting, if some-

what elusive, molecule to study. It is one of several which have a

very low vibrational frequency; in this instance the bending of the

central CCC group at 63 cm -1
(68). The possibility of multiple

relaxation exists as the next lowest vibrational frequency is at 550

cm 1. This has been found to be the case and the longer of the two

relaxation times has been determined to be T1 = 48 ns. The 63 cm 1-

bend relaxes independently of the other vibrational modes at T2 < 1 ns.

Until recently there has been some disagreement regarding the

shape of the carbon suboxide molecule. The geometry has been

interpreted as being both linear (57) and bent (85). As the two forms

would be expected to possess differing heat capacities, very accur-

ate measurement of this parameter should distinguish between the

two structures. Unfortunately our heat capacity measurements on

carbon suboxide are subject to some ambiguity due to the presence
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of carbon dioxide impurity. This prevented an accurate comparison

of the velocity limits of our sample with those predicted by statistical

thermodynamics. It has now been fairly well established that carbon

suboxide is linear (52). However, our velocity data, within the limita-

tions just mentioned, appear to be about 0.5-1% higher than the the-

oretical value based on the linear interpretation. Election diffraction

studies (1) indicate carbon suboxide is linear; but the molecule does

show a large shrinkage effect which has been ascribed to the large

mean amplitude of vibration about the central carbon atom.

Information regarding the chemical and physical properties of

carbon suboxide may be found in a review article by Grauer (27).

Experimental Data

The experimental study of carbon suboxide has proved difficult

for a number of reasons. The synthesis of the compound has certain

drawbacks and yields are correspondingly small, What product is

obtained must be tediously fractionated to reduce the carbon dioxide

impurity. At no time was there more than one to two liters of gas

available for study. This meant that extreme care had to be prac-

ticed in order to insure the purity of the sample, which from neces-

sity was used over and over many times. Carbon suboxide is also

unstable and polymerizes rapidly at pressures much above 30-40 cm

Hg. Long term storage can only be accomplished at liquid nitrogen
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temperature.

Velocity measurements on carbon suboxide were performed

over the range 1.1-22 MHz/atm using the 0.56 MHz crystal and 3.7-

41 MHz /atm using the 1.07 MHz crystal. The sound velocities were

calculated in the standard manner using equations (72), (73), and (75).

Experimental data taken with the 1.07 MHz crystals are shown in

Tables 7 and 8 and with the 0.56 MHz crystal in Tables 9 and 10.

Real sound velocities were corrected to ideality using equation (47)

and S = -550 cc/mole. The R. F. voltages applied to the crystals

were in the range 85-200 volts. The exposure times for carbon

suboxide are from 0.04-160 seconds for pressures from 0.50-0.026

atmospheres. Nitrogen was used as a standard gas with the excep-

tion of series (8-17-68#1) which was taken with argon. Exposure

times varied from 0.5-15 seconds for the standard gas with pres-

sures from 0.50-0.08 atmospheres.

Nitrogen is not ideally suited as a standard gas for carbon

suboxide measurement. This is due to the large difference in mole-

cular weights and hence diffraction angles between the two gases.

This introduces a moderate but fortunately constant error in velocity

measurements due to optical distortion in the lens system. The

effect is especially noticeable when using the 1.07 MHz crystal

where diffraction angles are the greatest. The nature of this cor-

rection has been tested independently by pairing together three



Table 7, Velocity of sound in nitrogen (1, 07 MHz crystal).

Plate
Identification

Pressure
(atm)

Temperature

(°K)

Frequency

(KHz)

Diffraction

Distance (mm)

V
2

4 i 2 2(x10 m /sec )

V
2

real
(x104 m 2 /sec2)

12-13-68 #1 0, 291 299, 51 1069, 350 6, 2488 12, 4451 12.4475
II 0, 207 299. 63 . 349 6, 2487 12, 4501 12.4517

0, 155 299. 80 . 347 6, 2440 12, 4571 12.4583
12-9-68 #2 0,151 299.07 1069, 372 6, 2542 12, 4268 12, 4280

11 0, 118 299. 09 . 370 6, 2598 12, 4276 12, 4286
0, 118 299. 05 .370 6, 2570 12, 4260 12.4270

12-10-68 #1 0,103 299.22 1069, 329 6, 2458 12, 4330 12. 4339
of 0. 103 299.26 . 327 6, 2506 12.4347 12.4356

0, 103 299.23 . 328 6, 2508 12, 4334 12, 4343
12-10-68 #2 0. 092 301.65 1069. 299 6.2188 12, 5340 12, 5348

11 0, 089 301. 68 . 298 6, 2120 12, 5352 12, 5360
12-10-68 #3 0,079 299.57 .301 6,2397 12,4476 12.4482
2-5-69 #2 0,155 299.98 1069, 302 6. 2443 12.4646 12.4658

11 0, 145 300. 04 . 302 6.2418 12, 4671 12.4682
11 0,132 300. 04 . 303 6, 2424 12, 4671 12.4682

2-5-69 #1 0. 117 300, 10 1069. 301 6. 2414 12.4696 12.4706
11 0,105 300, 14 .301 6.2428 12, 4713 12, 4722
11 0, 092 300. 13 .302 6, 2381 12, 4708 12.4715

0, 079 300.19 .301 6, 2380 12, 4733 12. 4739



Table 8. Ideal velocity of sound in carbon suboxide (1.07 MHz crystal).

Plate
Identification

Pressure
(atm)

Temperature

(oK)

Frequency

(KHz)

Diffraction

Distance (mm)

2
oV 300 K

(x104 m
2

/ sec
2)

V?

4
(x104 m

2
/sec

2
)

f/P

(MHz/atm)

12-13-68 #1 0.290 299.76 1069.344 10.5366 4.3094 4.3670 3.69
0.208 299.72 .344 10.4574 4.3779 4.4194 5.14
0.154 299.76 .343 10.3962 4.4256 4.4568 6.95

12-9-68 #2 0,118 297.51 1069.369 10.3906 4.4681 4.4924 9.03
0.095 297.49 .369 10.3658 4.4986 4,5185 11.3
0.078 297.29 .369 10.3505 4.5106 4.5264 13.8

12-10-68 #1 0.066 300.72 1069.304 10.2577 4.5266 4.5402 16.2
11 0.053 300.87 .305 10.2432 4.5450 4.5564 20.3
It 0.044 300.98 .302 10.2247 4.5600 4.5691 24.2

0.038 301.30 1069,298 10.2064 4.5614 4.5696 28.0
0.033 301.75 .287 10.1774 4.5712 4.5781 32.5

12-10-68 #3 0.026 299.55 .290 10.2195 4.5754 4.5809 40.7
2-5-69 #2 0.114 300.75 1069.302 10.3438 4.4595 4.4806 9.34

11 0.101 300.72 .301 10.3206 4.4776 4.4965 10.6
0.082 300.66 .300 10.3024 4.4955 4.5108 13.3

2-5-69 #1 0.066 300.20 1069.303 10.2982 4.5056 4.5178 16.2
0.049 300.75 .300 10.2694 4.5256 4.5347 22.0
0.034 300.78 .299 10.2534 4.5322 4.5386 31.3
0.026 300.63 .301 10.2516 4.5369 4.5419 40.7



Table 9. Velocity of sound in nitrogen (0.56 MHz crystal).

2

Plate Pressure
ViTemperature Frequency Diffraction Vreal

(°K) (x104
2 2

Identification (atm) (KHz) Distance (mm) (x104 m 2
/sec

2)
(x10 m /sec )

12-18-68 #1 0.497 299.92 558.218 3.2608 12.4621 12.4661

0.447 299.96 .218 3.2630 12.4638 12.4674

ft 0.394 299.96 .219 3.2634 12.4638 12.4669

12-17-68 #1 0.290 299.56 560.665 3.2764 12.4472 12.4496

0.236 299.66 .664 3.2814 12.4513 12.4532

0.185 299.77 .706 3.2840 12.4559 12.4574

12-17-68 #2 0.342 299.84 558.216 3.2628 12.4588 12.4615

11 0.134 299.97 .207 3.2628 12.4642 12.4653

8-17-68 #1 0.258 300.53 559.738 3.6060 10.4248 10.4262

(Argon)

0.207 300.52 .737 3.6043 10.4245 10.4256

0.170 300.55 .733 3.6040 10.4255 10.4264

8-16-68 #1 0.125 299.80 559.747 3.2880 12.4571 12.4581

ti 0.125 299.82 .747 3.2875 12.4580 12.4590

0.125 299.83 .747 3.2876 12.4584 12.4594

tt 0.125 299.85 .748 3.2867 12.4592 12.4602

0.125 299.86 .748 3.2868 12.4596 12.4606

8-15-68 #1 0.094 300.35 559.769 3.2812 12.4800 12.4807

8-16-68 #2 0.143 300.77 559.738 3.2906 12.4974 12.4985

0.143 300.77 .738 3.2894 12.4974 12.4985

0.143 300.77 .738 3.2909 12.4974 12.4985

0.143 300.78 .738 3.2902 12.4979 12.4990

0.143 300.78 .739 3.2911 12.4979 12.4990



Table 10. Ideal velocity of sound in carbon suboxide (0.56 MHz crystal).

Plate
Identification

Pressure
(atm)

Temperature

(
oK)

Frequency

(KHz)

Diffraction

Distance (mm)

2
V3000K

(x104 m2/sec2)

V2
i

(x104 m2 /sec2))
f/P

(1V1Hz/ atm )

12-18-68 #1 0.496 299.81 558.223 5.6201 4.1992 4.2954 1.12
0.447 299.77 . 219 5.6210 4.2045 4.2907 1.25
0.395 299.74 . 218 5.6126 4.2184 4.2948 1.41

12-17-68 #1 0.287 299.94 560.703 5.6077 4.2513 4.3073 1.96
0.236 299.96 .703 5.5910 4.2908 4.3372 2.37
0.183 299.97 .718 5.5634 4.3412 4.3775 3.07

12-17-68 #1 0.339 299.65 558.219 5.5948 4.2431 4.3095 1.65
0.130 299.70 .220 5.5002 4.3912 4.4173 4.28

8-17-68 #1 0.258 300.58 559.737 5.6010 4.2832 4.3339 2.17
0.206 300.53 .738 5.6206 4.3097 4.3502 2.72
0.171 300.53 .737 5,5814 4.3396 4.3737 3.27

8-16-68 #1 0.124 300.54 599.744 5.5424 4.3752 4.4003 4.51
0.092 300.54 .744 5.5068 4.4320 4.4511 6.06
0.069 300.50 .746 5.4784 4.4786 4.4930 8.07
0.057 300,46 .748 5.4674 4.4972 4.5089 9.80
0.046 300.41 .748 5.4572 4.5148. 4.5243 12.1

8 -15 -68 #1 0.067 300.07 559.760 5.4754 4.4808 4.4943 8.38
8-16-68 #2 0.123 300.78 559.740 5.5427 4.3938 4.4185 4.55

0.070 300.79 .738 5.4815 4.4918 4.5062 8.06
0.045 300.75 .740 5.4580 4.5312 4.5407 12.4
0.030 300,70 .741 5.4490 4.5469 4.5533 18.8
0.025 300,65 .741 5.4434 4.5570 4.5625 22.6
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different standard gases; Kr, Ar, and N2, using both the 0.56 MHz

and 1.07 MHz crystals. Real sound velocities squared in carbon

suboxide have been semi-empirically corrected for optical distor-

tion by subtracting 0.072 x 104 m2 /sect from measurements obtained

using the 1.07 MHz crystal.

Experimental Results

Sound velocity measurements in carbon suboxide, shown in

Figure 8, reveal a multiple relaxation process with all of the vibra-

tional modes, except the bend v7 = 63 cm 1, relaxing together at

T
1

= 48 ns.

Ideal sound velocities in carbon suboxide have been calculated

for 300 K using vibrational heat capacities based on the spectroscopic

data of Miller and Fateley (67) and Miller, Lemmon and Witkowski

(68). The normal modes of vibration and their contribution to the

heat capacity are listed in Table 11. The values of the heat capacity

predicted by statistical thermodynamics are C = 7. 078R under static
v

conditions, 4.485R after the loss of all modes except v7, and 2.50OR

with just the external degrees of freedom excited. The theoretical

velocity limits corresponding to the above heat capacities are

V2 = 4.1845 x 104 m2/sec 2 static velocity

V2 =4.4841 x 104 m2/sec2 all modes except v
7

relaxingal
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Figure 8. Ideal sound velocity in carbon suboxide samples at 300°K.
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Table 11. The vibrational heat capacity of carbon
suboxide at 300°K.

Vibration Frequency crn-1 C /R

v7(E) 63 1.9848

v6(E) 550 1.1544

v5(E) 577 1.0958

v
2 830 0.3074

v4 1573 0.0302

V
1 2200 0.0031

v3 225 8 0.0024

Vibrational Total C /R = 4.5781
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V2 = 5.1331 x 104 m2/sec2
co

high frequency velocity

where V o2 , and V2 have been defined in equations (37) and (38) and
co

V2 is the intermediate limiting velocity should the separation of them.

two relaxation processes be complete.

The dispersion curve which fits the velocity data in Figure 8

has been calculated using equation (36) with Co = 7. 078R and C
co

4.485R. The velocities reported are bulk measurements, and are

seen to be higher than the predicted limiting velocity, V 2
, by an

amount corresponding to 4. 7% CO2 impurity.

The correction of the observed sound velocity of the impure

carbon suboxide sample was carried out on the assumption that both

M and Cv in the formula

V. = RT
(1+ R

)M Cv

should be expressed as mole weighted averages

M= (1-X) MA + X MB

= (1-X)C + X C
A vB

(34)

(77a)

(77b)

where X is the mole fraction of carbon dioxide and the subscripts A

and B refer respectively to carbon suboxide and carbon dioxide.

For relatively small impurities, it is found that the percentage

velocity correction is roughly 1/2 the percentage carbon dioxide
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impurity. The lower mass of carbon dioxide dominates the correc-

tion, and causes the impure gas to have a higher velocity than that of

pure carbon suboxide.

Study of the carbon suboxide sample by mass spectrometer and

infrared analysis does not accurately fix the carbon dioxide content,

but suggests a carbon dioxide level of 3 ± 1 mole percent. On the

other hand, agreement of the experimental asymptotic value, V
2

,

with theory requires the assumption of 4. 7% impurity. Alternately,

should the carbon suboxide molecule be bent rather than linear, the

reassignment of the specific heat could feasibly account for the ob-

served discrepancy.

In order to confirm that the difference in experimental and the-

oretical velocity limits is due, at least in part, to carbon dioxide

impurity, additional velocity measurements were performed on a

more pure sample. The carbon suboxide sample being used in the

investigation was vacuum fractionated to 1/4 of its original size.

The total pressure attainable when this small amount of carbon

suboxide was introduced into the apparatus was only 0.11 atm and

accordingly the velocity data extend over a small range, 9. 3-41 MHz/

atm. Great care was taken to introduce a uniform sample into the

system so that the tendency for carbon dioxide to vaporize first

would not affect the results. The velocities obtained are of high

precision and are shown in the inset in Figure 8. A decrease in
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velocity has been noted corresponding to a sample containing 97.1%

C302 and 2. 9% CO2. These data points in particular are quite con-

vincing that the beginning of the second vibrational relaxation step,

corresponding to the loss of v7, has not yet begun.

The catalytic effect of carbon dioxide on the relaxation of car-

bon suboxide appears to be slight. The carbon suboxide sample

shown in the inset gives a slightly longer relaxation time, 'T1 = 50 ns.

If this difference can be regarded as significant, then by linear extrap-

olation, the relaxation time in pure carbon suboxide would be between

53-54 ns.

An upper limit for the relaxation of the 63 cm 1 bend may be

estimated using the multiple dispersion equation. The velocity curve

shown in Figure 9 has been calculated from equation (41) using Co =

7.078R C
1

= 2.593R C = 1 985R, Coo= 2.500R, T = 48 ns, and

T2 1.0 ns. The velocity component due to the presence of carbon

dioxide has been subtracted out using equations (77ab) with the

mole fraction, X = 0.047, varying about 20% to account for carbon

dioxide's preferential vapor pressure. Mass spectrum analysis of

several carbon suboxide samples indicated that the low pressure

samples were about 20% richer in carbon dioxide than high pressure

measurements. The vapor pressure correction tends to decrease

the nonideality parameter, and the value S = -490 cc/mole is based

on the best fit of carbon suboxide data at two different crystal
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frequencies.

On the basis of the dotted portion of the double dispersion curve

in Figure 9, corresponding to T2 = 1.0 ns, we conclude the

relaxation of the v7 mode in carbon suboxide is equal to or less than

one nanosecond.
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Figure 9. Observation of multiple relaxation in carbon suboxide.
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DISCUSSION OF MULTIPLE RELAXATION

Polyatomic molecules generally exhibit a single vibrational

relaxation time associated with all of the vibrational specific heat of

the molecule. The rate determining step is with few exceptions (101)

the transfer of energy between the lowest vibrational mode and the

external degrees of freedom. For the few molecules where there is

a large frequency discrepancy between modes, the transfer of energy

through such modes may also prove to be a rate determining step.

In these instances, multiple relaxation would be expected to occur.

This has been observed in only a few gases to date; namely SO2 (53,

62, 94), C2H6 (2, 43, 54, 106), CH2C12 (91), CH2Br2 (32, 66), and

in the present investigation C302 (35, 36). In each of these molecules

there is a large energy gap between the lowest and the second lowest

fundamental modes of vibration.

A summary of gases in which multiple relaxation processes are

known to occur is presented in Table 12. Also listed are molecules

which have been reported to be singly relaxing, but appear to have

the same qualifications found in molecules exhibiting multiple relaxa-

tion. That this table is amazingly small is a result of the rapid proc-

esses of vibrational-vibrational energy transfer which occur during

molecular encounters. Collision numbers rather than relaxation

times are reported in Table 12 as these data are more meaningful



Table 12. Room temperature collision numbers for molecules expected to exhibit double dispersion.

Compound V (1) v (2) i AV Z21 Z10 Reference

SO
2

519 1151 2 113 7480 520 McCoubrey (62)

2380 330 Lambert (53)

CH
2

C12 283 704 2 138 450 23 Sette (91)

CH2Br2 174 576 3 54 ? Meyer (66)

C
2
H6 289 821 3 ? 100 16 Valley (107)

92 10 Holmes (43)

74 20 Lambert (54)

C302 63 550 9 -17 460 S 3 this work

C
3

H4 354 842 2 134 33 this work

CH3OH 335 1030 3 35 7 Ener (23)

CH=2 CHCH3 177 417 2 ? 6 Holmes (43)
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from a comparative as well as a theoretical point of view. The

collision number, Z10, is defined as the average number of collisions

necessary to transfer one quantum of vibrational energy from the

ground to the lowest excited vibrational state in a molecule. Z21 is

the number of collisions associated with the exchange of vibrational

energy between the lowest and second lowest vibrational modes, v(1)

and v(2). These values have been calculated from experimental

relaxation times using amodifi-ed form of expression (43), which,applies

to a singly relaxing gas, and are shown in equations (78) and (79).

vibZ21 = Z T1C2

3n-6

=

Cvib

am)
)

hZ10 =ZT2 1 - exp kT

1

1 - exp (-12-1-2J\kT j

vibwhere C2 is the heat capacity of the second lowest vibrational

(78)

(79)

mode and the other terms are as defined previously. In the case of

carbon suboxide, the heat capacity term, Cvib, has been modified

to include both modes v6 and v5 at 550 cm 1 1and 577 cm since

they are close enough to both to be effective in transferring energy

to the v7 = 63 cm 1 vibration. Calculation of Z, the number of col-

lisions per molecule per second, is based on the rigid sphere model

(equation (44)) for all molecules listed with the exception of C3H4
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and C302° For C3H4, where Lennard Jones parameters are avail-

able, Z was calculated using equation (5. 6) of Cottrell and McCoubry

(12, p. 75). The value for C302 was estimated using the Z obtained

from C
3
H4 taking into account their difference in masses.

In Table 12, Av refers to the energy discrepancy for kinetic

reactions involving transfer of vibrational energy from the second

lowest mode to an overtone of the first; hence AV = V ( 2 ) - iv(1), i =

2, 3, ... For molecules such as ethane and propylene in which the

lowest mode is the hindered internal rotation, the potential function

describing the torsional oscillation is very anharmonic and AV is

not well known, although one could use the restricted rotor model

and, for example, the data of Weiss and Leroi (108).

Collisional deactivation numbers for CH2Br2 have not been

listed in Table 12 as this molecule has been interpreted by Meyer

(66) and again by Hageseth (32) to be triply dispersive. The modal

assignment associated with these three relaxation times, based

entirely on experimental specific heats, is;

T
1

= 4600 nanoseconds (V = 576, 1091, 1183 cm 1)

T2 = 30 nanoseconds (v = 174, 810, 1388 cm 1)

T
3

= 1.5 nanoseconds (v = 637 cm 1)

This assignment is most probably incorrect. It is interesting to note
1

that two modes only 61 cm 1 apart (V = 576 and v9 = 637 cm ) are
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reported to have relaxation times of 4600 ns and 1.5 ns respectively.

Such a separation is very unlikely if not impossible. Although the

experimental data presented by Meyer and Hageseth indicate that

more than a single relaxation process is occurring, the data are

not sufficiently accurate to justify the empirical assignments these

authors presented, especially in view of the current theoretical inter-

pretation of multiple vibrational relaxation.

To date, theoretical studies of multiple relaxation in gases

have been based entirely on the method of Schwartz, Slawsky, and

Herzfeld (88, 89). Tanzos (103) in extending the SSH method to

polyatomic molecules predicted double dispersion in CH2C12 in

accord with the experimental work of Sette, Busala and Hubbard

(91). In calculating the rate of deactivation of the vibrational energy

of a particular mode, Tanzos considered complex collisions involv-

ing total changes of up to three quanta. His results indicated that

CH
2
C12 should be doubly relaxing with the second and all higher

modes associated with the slower process, and the lowest mode

associated with the high frequency relaxation. The rate determin-

ing step for CH
2
C12 is a three quantum process in which the CC1

stretching vibration v
3

704 cm 1 transfers one quantum of vibra-

tional energy to the first overtone of the CC12 bend -v4 = 283 cm-1,

the excess energy being taken up by the translational motion
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) + CH
2

C12 CH2C12 (2v
4

+ CHZC12 +138 cm 1
(80)

A similar calculation carried out by Dickens and Linnett (21)

on SO2 indicates the same pattern; the rate determining step being

the transfer of vibrational energy from the symmetric stretching

vibration v
1

= 115 1 cm 1 to the first overtone of the bend v
2

= 521

-1cm .

S02(v
1)

+ SO2 S02(2v
2)

+ SO2 + 113 cm 1

These results also agree with the experimental data (53, 62).

Dickens and Schofield (22), noting Meyer' s unusual report of

three relaxation times in CH
2
Br

2
performed an SSH calculation on

this molecule with the now anticipated results. Double dispersion

was predicted with the lowest mode relaxing independently of the

rest, and the rate determining step for the slower process being

(81)

the deactivation of the second lowest vibrational mode to the lowest.

Although their calculations are extended to take into account transi-

tions involving up to four vibrational quanta, it is not stated whether

the rate determining step is transfer to the ground state, or the first

or second overtone of the v A = 174 cm-1 vibration.

CH
2
Br

2
(v ) +CH

2
Br

2
-4-CH Br ) + CH

2
Br

2

1+ 54 cm (82a)

- 1
CH

2
Br

2 2
(v ) + CH2Br2 CH r

2
(2v

4 2
) + CH Br

2
+ 228 cm (82b)
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- 1
CH

2
Br

2(v 2)
+ CH2Br2 CH2Br2(v4) +CH

2
Br

2
+ 402 cm (82c)

Although the SSH method does not yield well defined selection

rules for vibrational energy exchange during collisions, the method

does predict two trends that are well established.

(i) The probability for energy transfer to occur increases as

less energy must be transferred into translation.

(ii) The probability for energy transfer to occur decreases as

more vibrational quantum number changes are required.

The kinetic expressions for CH
2
Br

2
listed in equations (82a, b,

c) show how these two trends tend to oppose each other in promoting

energy transfer between the vibrational level of one mode and the

overtone level of a second, much lower mode.

The C302 molecule represents an extreme case of this situa-

tion. The transfer of vibrational energy between the two bending

vibrations v6 = 550 cm 1 and v7 = 63 cm 1 may be represented by

nine equations

C302(v 6)

C
3
0

2
(v

6
)

C
3
0

2
(v6)

+ C302

+ C
3
0

2

+ C302

-1
C 0 (9 v7) + C

3
0

2
-17 cm

C 0
2

(8v
7

) + C302 +46 cm-1

C 0 (v 7) + C302 + 487 cm
1

(83a)

(83b)

(83i)

Equation (83a) is a 10 quantum process and is expected to have
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a very small transition probability. To see this effect one need look

only at the matrix element of the perturbation Vkl which must be

nonzero during the encounter. In order for the vibrational integral

to be nonzero, one term in Vkl must contain each vibrational co-

ordinate whose quantum number is changed, raised to the power of

the quantum number change. Hence for process (83a) we need a

term F
19

(o-bend) )9. However, since such terms become

rapidly small for increasing powers of the vibrational coordinate

we would expect the F19 contribution to be very small indeed. Con-

trast this with equation (83i) which would be represented by a matrix

element F11 -bend) (clibend) A priori we would expect neither equa-

tion (83a) nor (83i) to be the most favorable transition path. Unfor-

tunately a theoretical evaluation of these kinetic equations would be

a most difficult task since angle dependent collisions summed over

each atom would have to be considered.

Despite the success of the SSH theory and the apparent simi-

larity between gases exhibiting multiple relaxation, the prospect of

reliably predicting such behavior either theoretically or empirically

is still not completely satisfactory. The trend is always that more

gases are predicted to be doubly relaxing than actually is found to

be the case. Tanzos (103), for example, finds the SSH method pre-

dicts CHC1
3

and CC1
4 should also exhibit two major relaxation times

whereas only single relaxation processes have been observed
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experimentally (91). An empirical rule of thumb states that for

molecules in which the second lowest vibrational frequency is more

than twice that of the lowest, double relaxation is expected. However

as shown in Table 12, allene, propylene, and methanol meet these

requirements but are singly dispersive.

Basic to an understanding of multiple relaxation is knowledge

regarding the rates of intramolecular and intermolecular energy

transfer in gases. These areas are just presently being investi-

gated.
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INTENSITY ASYMMETRY OF FIRST ORDER
IMAGES IN ULTRASOUND DIFFRACTION

Intensity asymmetry of first order diffracted light, as indicated

in Section (2. 3), may be due to one or both of the following:

i) Nonzero incidence between the impinging light rays and

the propagating sound waves.

ii) Rapid absorption of the ultrasonic grating.

The generalized theories of light diffraction through ultrasound

have been developed for liquids and do not include an absorption

term to take into account process (ii) above. Decius (19) has solved

the wave equation for light diffraction in an absorbing medium for the

special case of zero incidence. His results, stated in equation (68),

indicate diffraction asymmetry for the absorbing gas

I( +)

I(-)
-410-

e (when (3 = 0) (68)

where the symbols are as previously defined.

In addition to predicting intensity asymmetry, Decius' develop-

ment indicates that in regions of rapid acoustic absorption, image

blurring of the Lorentz shape will take place. The form of the

Lorentz broadening is indicated in equation (84).

2Anl
I + E---) 1

X
X. 2 2 2(sine + a X.

(84)
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where the terms have been defined in Section (2. 3).

Since experimental intensity data are not available for gases

undergoing vibrational relaxation, a number of gases were selected

and the diffraction intensities were recorded. A photomultiplier

(RCA Type 1P21) lockin-amplifier assembly was used to measure

image intensities. The power supply for the He-Ne gas laser is a

Spectra-Physics Model 252 laser exciter which permits up to 50 per-

cent modulation of the output beam. The line shape of the (+1) and

(-1) diffraction images was traced photoelectrically by modulating

the laser at 20 KHz and scanning over the diffraction pattern with a

narrow slit.

Table 8 lists the gases that were studied experimentally along

with the necessary parameters for the calculation of the theoretical

intensity asymmetry using equation (68). As most gases were scan-

ned at 1 MHz/atm the intensity ratios calculated in Table 8 are also

for 1 MHz/atm. The values reported, therefore, do not necessarily

represent the maximum diffraction asymmetry observable for the

gas. In order to evaluate exp(-416) it was necessary to employ

equations (36), (37), (38) and also from Cottrell and McCoubrey

(12, p. 17-19) equations (2.46), (2.52), (2.58) and (2.59). Because

of the nature of the calculations no attempt was made to employ non-

ideality corrections.

The experimental results (not shown) are tentative, due to the
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limitations of the scanning method and the difficulties in satisfying

the zero incidence restriction. It was readily observable experi-

mentally, however, that as the ratio of exp (4K 0-) became progres-

sively larger

i) The intensity asymmetry of the diffracted orders increased.

ii) The image tended to become diffuse and broaden into an

oval shape.

iii) The overall signal intensity became much weaker.

Figure 10 shows the first order diffraction images for C CI F3

over the range 0. 2 to 20 MHz/atm. This gas is undergoing disper-

sion and exhibits an absorption maximum at 1.5 MHz/atm (87). The

extent of the broadening can be observed by comparison with the well

resolved nitrogen data lying on both sides of the C Cl F3 sequence.

The intensity asymmetry between the (+1) and (-1) diffraction orders

may be seen on the original photographic plate, but is not well rep-

resented in Figure 10 due to the difficulties associated with the

copying process.

The theoretical asymmetry intensities for C Cl F3 at the (f/p)

values listed in Figure 10 are listed below:

(f/p) 0. 2 0.6 2.0 6.0 2.0

exp (- 40) 1.29 1.90 2. 24 1.44 1.14

At frequencies above 10 MHz/atm the classical contribution to the
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absorption coefficient becomes important and this term has been in-

cluded in the calculations. If it were possible to make very accurate
I( +)
I(- )'measurements of the intensity ratio, this method could be

used to measure vibrational relaxation times in gases.

Unfortunately, the diffraction asymmetry theoretically pre-

dicted for an absorbing gas is obscured by the asymmetry which

results when the zero incidence condition is not satisfied. David's

theory for nonabsorbing gases, developed in Section (2. 3), gives the

intensity asymmetry as a function of the angle, p, between the

impinging light rays and the sound wave front.

where

I(+) - 1/2) sin (13 +1/2)ff
I(- ) = [(T3-

+1/2) sin (i3 - 1/2)

A
P = T P

(63)

I( +)Using equation (63) we see that the ratio of is unity at
I(- )

normal incidence in nonabsorbing media. At the Bragg angle, when

the asymmetry is at a maximum, equation (63) reduces to the fol-

lowing expression.

I( +)
I(- )

2

(sin 0-) =
X

when -

As the acoustic wavelength becomes smaller (e. g. , by examining

(66)

gases of progressively lower sound velocities) equation (66) indicates
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that the maximum intensity asymmetry observed should be getting

larger. This progressive pattern is similar to that predicted for

absorbing gases as can be noted from Table 8. The intensity asym-

metries which have been experimentally observed could, therefore,

be ascribed to a failure to meet the zero incidence requirement.

The Bragg angle is very small and varies from one to three milli-

radians.

The great limitation of David's theory is that it is not applicable

in the region of interest and intensity ratios cannot justifiably be

calculated. The limiting inequality imposed on David's theory is

shown in equation (64).

irX d 0-
2- = -2-

2A
<< 1 (64)

The gas listed in Table 8 which comes closest to satisfying this re-

straint is C
2
H4 where (0 /2) = 0.36 (at 1 MHz/atm) and, using

I( +)equation (66), = 1. 2. The theory is not at all applicable to
I(-)

C Cl F3 where (072) = 1.42; but for comparison, = 90.I(+)
I(-)

The sensitivity of the (+1) and (-1) diffraction orders

to departure from zero incidence has been demonstrated experi-

mentally. Figure 11 reveals the intensity asymmetry which occurs

in C Cl F3 (at 0.6 MHz/atm) as the angle between the light rays and

the sound wave front is varied. It should be noted that the scale

showing angle tilt does not indicate at zero radians the condition of
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normal incidence. This position refers to the cell setting for the

C Cl F3 sequence shown in Figure 10.

The experimental method employed in this preliminary study

proved to be insufficient to distinguish between diffraction asymmetry

arising from acoustic absorption and from non-zero incidence of the

light beam and sound waves. Using the proper instrumentation it

should be possible to test the validity of equation (68) which was de-

rived by Decius for zero incidence and an absorbing gas, Also it

would be significant to extend Decius results to take into account the

angle effect on the diffraction asymmetry. Finally, the method

should be explored to determine if meaniful relaxation parameters

could be determined from intensity data.



Table 8. Diffraction asymmetry at one MHz/atm in gases undergoing vibrational relaxation.

Gas T(T(µ sec) V2 x 104m
2 /sect 2 4 2 2Voox 10 m /sec -2x 10 4K0"

e (I +/I-)

OCS 1.6 5.189 5.812 1.7 1.50 1.11

C
2

H4 0.22 10.979 11.857 4.0 0.73 1.12

BF
3

0.090 4.401 4.904 3.3 1.80 1.27

CF
4

0.76 3.279 3.779 5.0 2.32 1.59

C CI
2

F
2

0.078 2.330 2.750 3.7 3.40 1.65

C Cl F3 0.24 2.725 3.184 7.5 2.84 2.34

C Br F3 0.20 1.900 2.233 6.4 4.06 2.86

S F
6

0.78 1.866 2.277 9.2 4.04 4.53

Vibrational relaxation times are from Cottrell and McCoubrey (12, p. 77-122).



Figure 11. Intensity asymmetry in the first order diffraction images in C CI F3 when the zero
incidence condition is not fulfilled.
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