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Light Detection and Ranging (LIDAR) is a powerful resource for coastal and 

wetland managers and its use is increasing. Vegetation density and other land cover 

characteristics influence the accuracy of LIDAR-derived ground surface digital 

elevation models; however, the degree to which wetland land cover biases LIDAR 

estimates of the ground surface is largely unknown. The minimum-bin LIDAR 

gridding technique has been proposed as a way to mitigate dense vegetation 

interference to generate LIDAR-derived digital elevation models (DEM). Past 

research has focused on the ability to resolve the marsh plain elevation and only 

limited research has investigated the overall DEM accuracy across the landscape 

using a wide range of cell sizes and land cover classes. 

I compared LIDAR-derived DEM accuracy across a 174 ha tidal wetland 

restoration site with a mix of native wetland and non-native agricultural pasture 

species. I found an optimum cell size of 1.4 m (1.96 m2) with a mean positive bias of 

4.5 cm and a mean absolute error of 24.3 cm. At cell sizes smaller than the optimum, 

vegetation interferes with the LIDAR sensor and positively biases DEM models. At 

cell sizes larger than 1.4 m, the DEM captures and favors low features within the 



 

 

landscape, such as channels and ditches, which thereby degrade overall DEM 

performance. 

In addition, I investigated LIDAR interference by twelve common tidal wetland 

vegetation associations across six Oregon estuaries, using survey-grade Global 

Positioning System (GPS) measurements of the wetland surface and quantitative 

vegetation data (percent cover by species) for each measurement location. The 

fundamental vertical accuracy (FVA) of the LIDAR datasets was 4.5 cm root mean 

square error (RMSE) and had no consistent positive or negative bias in open 

landcover. Within wetland vegetation communities, my results suggest that LIDAR 

estimates of the ground surface in tidal wetlands are typically 10 cm to 30 cm above 

GPS measurements. Plant associations dominated by Carex obnupta and Carex 

lyngbyei exhibited the largest discrepancy between LIDAR and GPS measurements 

(mean discrepancies 36.6 cm and 48.8 cm respectively). The smallest errors observed 

in the study were about 10 cm to 11 cm and occurred in several different plant 

associations, including two low tidal marsh associations dominated by a mixture of 

Deschampsia cespitosa, Distichlis spicata, Sarcocornia perennis and Jaumea 

carnosa. 

These results suggest that the minimum-bin gridding technique for LIDAR may 

mitigate vegetation interference by densely vegetated land covers within LIDAR-

derived DEM. However, care should be taken to select an appropriate cell size and 

validate the results before relying on the DEM for analysis. My research yields new 

information for coastal LIDAR users and increases our understanding of uncertainty 

in LIDAR-derived datasets to improve the ability to accurately evaluate and manage 

coastal environments.  
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1 INTRODUCTION 

The way we investigate and manage the environment and our existence within 

it is changing. Ecosystem Based Management (EBM) and Marine Spatial Planning 

(MSP) recognize that ecological, social, and environmental systems are linked, with 

complex relationships and feedbacks (Guichard and Peterson, 2009; McLeod and 

Leslie, 2009; Rosenberg and Sandifer, 2009). Managers are turning to EBM and MSP 

management approaches driven by scientific inquiry, analysis, and data to model 

environmental systems and assess impacts of management actions and other 

influences (Ricketts, 1992; Brock and Purkis, 2009). The shift to EBM and MSP is 

exciting and allows us to more effectively assess the outcome of management actions 

and describe environmental systems. Spatial modeling provides a key tool to EBM 

and often underlies key management decisions. As a result, understanding the 

strength and uncertainty of a chosen analysis path is critical to developing actionable 

information and environmental intelligence for management.  

Uncertainty, if properly understood and communicated, does not lead to 

inadequate analysis or decisions, and managers must be comfortable making 

decisions under conditions of uncertainty (Rosenberg and Sandifer, 2009). However, 

the risk of faulty decision-making significantly increases if uncertainty around the 

inputs to analysis is unknown and managers require highly accurate and precise 

analysis. Uncertainty could be the result of the source data or gaps in knowledge of 

what would happen to an environmental or social system under a given set of 

conditions. In both cases, problems associated with the quality of the data can 

propagate and affect a manager’s ability to make decisions, implement policies, or 

plan management interventions. If management action is taken based on faulty data, 

impacts may cascade to other sectors or lead to unexpected outcomes. EBM/MSP is 

capable of dealing with this uncertainty if the sources of uncertainty are known and 
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communicated throughout the management process (Ricketts, 1992; Brock and 

Purkis, 2009). 

 Geospatial analysis allows EBM/MSP frameworks to predict management 

outcomes across the landscape. Geospatial analysis is complex and typically blends 

many different data sources together into a final product. As a result, error in the 

source data and subsequent analysis is difficult to track and quantify. This, in turn, 

leads to incomplete understanding of the total error budget and how that translates to 

the products of analysis (Couclelis, 2003).  

1.1 Introduction to LIDAR 

Light Detection and Ranging (LIDAR) has emerged as a key tool for coastal 

EBM geospatial analysis because it is able to provide high spatial resolution, and 

highly accurate, elevation data compared to past digital elevation models such as the 

National Elevation Dataset (Brock and Purkis, 2009). LIDAR is a geospatial 

technology that uses a laser pulse to measure distance from the sensor to an object 

(Hodgson and Bresnahan, 2004; Wehr and Lohr, 1999). The sensor sends out tens to 

hundreds of thousands of laser pulses per second and accurately measures the time it 

takes for each pulse to travel from the sensor to the target, reflect off the target, and 

return to the sensor (Hodgson and Bresnahan, 2004; Wehr and Lohr, 1999).  LIDAR 

sensors can be mounted to multiple platforms, including tripods (static), airplanes, 

helicopters, boats, and vehicles.  Airborne platforms are the most common and the 

focus of this research.  

In concept, LIDAR survey flights are very similar to cutting a lawn with a 

lawnmower (Figure 1.1). The LIDAR sensor has a field of view that the sensor is 

capable of measuring during each pass over the area of interest. The swath width is 

the horizontal extent, perpendicular to the flight path of a single flight line, that a 

LIDAR system is capable of scanning (Beraldin et al., 2010). Swath width is a 

function of the field of view of the LIDAR sensor and the aircraft altitude above 

ground level (Beraldin et al., 2010). Multiple flight lines may be required to cover an 
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area of interest on the landscape, just as it takes multiple cutting paths to fully trim 

the grass in a homeowner’s lawn. 

The particular LIDAR sensor, flight altitude, swath width, and many other 

parameters determine the LIDAR pulse return density and success of the system in 

mapping terrains (Hodgson and Bresnahan, 2004; Wehr and Lohr, 1999). Higher 

density measurements are more likely to accurately capture the structure of the 

landscape because more data is available for interpolation and processing. Each 

LIDAR laser pulse is georeferenced with high accuracy using survey grade inertial 

measurement units (IMU) and Global Positioning System (GPS) receivers, yielding a 

three-dimensional (3D) dataset consisting of billions of irregularly spaced points 

across the landscape. LIDAR point cloud data collected during the survey flight is not 

directly useful for most EBM/MSP geospatial analysis because the point cloud must 

first be processed into a gridded digital elevation model (DEM). DEM generation 

uses statistical methods to filter and interpolate the LIDAR point cloud, deriving a 

modeled ground surface elevation in a raster format that is compatible with common 

geospatial analysis techniques (Meng et al., 2010). Gridded raster surfaces that 

represent the ground surface elevation at high spatial resolution provide an important 

base dataset to many environmental and ecological EBM/MSP studies that rely on 

geospatial data because many environmental and biological processes in coastal areas 

are tightly related to tidal inundation. 

EBM/MSP approaches and associated analysis require this elevation data to 

accurately assess and model the relationships between different environmental and 

ecological concerns (Guichard and Peterson, 2009; McLeod and Leslie, 2009; 

Rosenberg and Sandifer, 2009). For example, LIDAR can be used to model the extent 

of tidal influence, map hydrologic restrictions and flow paths through the landscape, 

assess likely plant communities, model tsunami inundation impacts and evacuation 

routes, identify landslides, and many other tasks (Brock and Purkis, 2009). 

In the context of tidal ecological research, LIDAR can be used as an important 

predictor of vegetation species presence and extent across the landscape (Moeslund et 
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al., 2011). Plant species presence within tidal wetlands is closely tied to the 

inundation frequency of tidal waters (Odum, 1985, 1988; Janousek and Folger, 2013; 

Cornu and Sadro, 2002). Elevation is a primary parameter of tidal inundation regimes 

because higher elevation areas of a tidal wetland are less likely to be flooded as the 

tidal waters rise and fall. As a result, elevation changes on the order of a few 

centimeters can lead to dramatic shifts in vegetation community structure (Janousek 

and Folger, 2013; Cornu and Sadro, 2002). 

1.2 Motivation and Organization of This Thesis 

Data accuracy and uncertainty in source data are critical challenges to 

EBM/MSP approaches that rely on comprehensive modeling and management 

strategies rooted in data. Understanding and communicating accuracy and uncertainty 

within DEM is critical to the success of inquiry and analysis of coastal ecosystems for 

both science and management purposes (Couclelis, 2003; Palmer, 2009; Simenstad et 

al., 2005). If the error budget of input data to an EBM/MSP approach is unknown or 

incomplete, managers and others cannot effectively weigh the efficacy of a particular 

management strategy against other candidate strategies.  

LIDAR data is heavily used within tidal wetland restoration and management at 

both site-specific and regional spatial scales. In these zones, environmental conditions 

and floristic development is often tightly linked to elevation (Cornu and 

Sadro, 2002; Brock and Purkis, 2009). These tight interactions require high resolution 

and accurate elevation data to accurately model and predict outcomes of management 

intervention (Palmer, 2009; Simenstad et al., 2005; Cornu and Sadro, 2002; 

Kentula, 2000). Changes in elevation of a few centimeters can result in completely 

different vegetation communities and tidal hydrology (Odum, 1985, 1988; Janousek 

and Folger, 2013; Cornu and Sadro, 2002). The true outcome of a restoration project 

may significantly differ from the projected outcome if the underlying analysis used to 

design a project is based on inaccurate source elevation data 

(Palmer, 2009; Simenstad et al., 2005; Cornu and Sadro, 2002; Kentula, 2000). 
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Vegetation planting plans, channel design, dike removal, and other restoration 

interventions are susceptible to inadequate accuracy in source elevation data. 

Restoration and management are necessary, but expensive. The best available 

science, analysis, and planning allow restoration and management projects to achieve 

the maximum ecological benefit while minimizing total cost. 

LIDAR-derived DEMs are typically much more detailed than DEMs derived 

from photogrammetry, such as the National Elevation Dataset (NED). Increased 

spatial resolution and highly accurate reported fundamental vertical accuracy in open 

terrain can lead analysts and researchers into asking questions that require resolving 

minute differences in elevation across many different land cover classes and terrains. 

Unfortunately, the total LIDAR error budget may be larger than the maximum 

acceptable error for the types of analysis the data can support, especially in land cover 

classes that were not evaluated for LIDAR delivery quality assurance and validation. 

For example, Ewald and Brophy (2012) delineated the area below highest 

measured tide (HMT) from a LIDAR-derived DEM for conservation and restoration 

planning purposes in the Tillamook Bay Estuary. The delineation of the HMT and 

other elevation-derived boundaries are sensitive to error in the DEM. Figure 1.2 maps 

HMT onto the flat (< 5 degree slope) landscape of the Tillamook Bay Estuary, 

Oregon. This example illustrates how sensitive DEM-based analysis can be, and has 

implications for the success of EBM/MSP approaches. The blue line in Figure 1.2 

represents the best estimate of where HMT falls within the landscape. The zone 

within  ± 0.5 m of the estimate is 174 m wide while the zone within ± 1.0 m is 374 m 

wide (Figure 1.2). This means that the blue line may fall anywhere within the 374 m 

wide strip around the estimate if the DEM has ± 1.0 m of error. The mapped elevation 

uncertainty bands in Figure 1.2 represent three common magnitudes of error in the 

DEM due to dense vegetation, as shown in Chapter 3. DEM uncertainty can have far-

ranging and significant impacts in situations where the delineation of HMT or other 

boundaries directly influences management of the landscape. 
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The goal of my research is to narrow a data gap in LIDAR error estimates by 

adding data from tidal wetlands in the Pacific Northwest. The fundamental questions 

that link my research together are: 

 Do tidal wetland vegetation communities interfere with LIDAR-derived 

estimates of the ground surface? 

 If they do interfere, how does the magnitude of error differ across those 

land cover types? For example, does LIDAR error differ in Carex obnupta 

high marsh (Figures 1.3 and 1.4) vegetation communities versus low marsh 

environments (Figure 1.5)? 

 Finally, can the effect of vegetation interference in LIDAR be mitigated 

using a simple minimum-bin filter DEM generation approach? 

My research does not definitively resolve any of the questions that I have asked, but 

in combination with the work of other researchers, it helps build a clearer picture of 

an uncertain world. 

This thesis is divided into four chapters plus appendices. Chapter One provides 

background information, an introduction to LIDAR and the organization of this 

thesis. Chapter Two assesses the effectiveness of the minimum-bin LIDAR filtering 

and gridding technique to mitigate the effect of vegetation in a LIDAR-derived DEM 

across a diked tidal wetland restoration site. Chapter Three investigates the role of 

twelve different vegetation communities common to Oregon tidal and coastal 

wetlands in LIDAR-derived DEM bias. Finally, Chapter Four concludes and 

summarizes the thesis. Six appendices accompany the main body of this thesis and 

provide definitions, diagnostic plots, summaries, and visualizations of the data and 

results. 
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1.3 Figures 

 

Figure 1.1: Airborne LIDAR scanning schematic. A LIDAR sensor is mounted on 

the aircraft where it scans the surface of the Earth with a lawnmower-like pattern, 

yielding a three-dimensional dataset consisting of LIDAR returns.  

 

Figure 1.2: Illustration of DEM uncertainty. Highest measured tide (HMT) and three 

uncertainty bands are mapped onto the DEM in flat terrain.  

Swath Width

LIDAR Return

Dense vegetat ion
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Figure 1.3: Standing in a Carex obnupta wetland. In this figure, the 1.3 m (6 ft. 1in.) 

author is standing in a Carex obnupta (common name: slough sedge) tidal wetland. 

These wetlands are extremely difficult to work within and require “swimming” 

through the vegetation. Photo by Tammy Winfield.  



 

 

9 

 

Figure 1.4: Looking down in a Carex obnupta wetland. The ground surface is not 

visible when looking straight down (nadir) in a Carex obnupta wetland. 

 

 

Figure 1.5: A typical low tidal marsh in the Siletz River Estuary, Oregon (USA). In 

this photo, wetland ecologist John Christy is estimating percent cover of vegetation 

species present within a one square meter quadrat along a survey transect. The same 

survey methods were used to collect much of the data analyzed in Chapter Three. 

Photo by Laura Brophy.
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CHAPTER 2 

 

LIDAR IN COASTAL WETLANDS: SELECTING THE 

OPTIMUM CELL SIZE FOR A MINIMUM-BIN DIGITAL 
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2 LIDAR IN COASTAL WETLANDS: SELECTING THE 

OPTIMUM CELL SIZE FOR A MINIMUM-BIN DIGITAL 

ELEVATION MODEL 

2.1 Abstract 

Light Detection and Ranging (LIDAR) is an important tool for environmental 

analysis, especially in coastal and estuarine systems. LIDAR-derived digital elevation 

model (DEM) estimates of the ground surface elevation are positively biased in 

densely vegetated environments, such as some emergent, shrub, and forested tidal 

wetlands. The minimum-bin gridding technique has been proposed as a way to 

mitigate the effect of dense vegetation in LIDAR-derived DEM. Past research has 

focused on the ability to resolve the marsh plain elevation and limited research has 

investigated the overall DEM accuracy across the landscape using a wide range of 

DEM raster cell sizes. The purpose of this study is to test LIDAR-derived DEM 

accuracy from cell sizes ranging from 0.1 m to 6.0 m (0.01 m2 to 36.0 m2) and select 

an optimum cell size for a 174 ha tidal wetland restoration site in the Coquille River 

Estuary, Oregon, USA. Vegetation associations at the site were dominated by a mix 

of native tidal wetland species and non-native agricultural pasture species. We found 

an optimum cell size of 1.4 m (1.96 m2) with a mean positive bias of 4.5 cm and a 

mean absolute error of 24.3 cm. At cell sizes smaller than 1.4 m, dense vegetation 

interferes with the LIDAR sensor and positively biases DEM models. At cell sizes 

larger than 1.4 m, the DEM captures and favors low features within the landscape 

(e.g. channels) and degrades DEM performance. The results suggest that the 

minimum-bin gridding technique for LIDAR may mitigate vegetation interference 

within LIDAR-derived DEM; however, care should be taken to select an appropriate 

cell size and validate the results before relying on the DEM for analysis. 
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2.2 Introduction 

Coastal environments contain important ecosystems with complex interactions 

and feedbacks, often tightly linked to elevation through the interface between rising 

and falling tidal water levels and the shoreline (Elliott and Whitfield, 2011). Complex 

spatial modeling, planning, and mapping technologies for coastal management are 

increasing in efforts to manage the environment holistically (Ricketts, 1992; Brock 

and Purkis, 2009). Managers are turning to models to identify the extent of tidal 

influence, to predict the effect of different sea-level rise scenarios, to map habitats, 

and many other tasks that have direct implications on coastal communities and 

ecosystems (e.g., Diefenderfer et al., 2008; Poulter and Halpin, 2008; Schmid 

et al., 2011; Brock and Purkis, 2009; Chust et al., 2008; Lohani and Mason, 2001). 

Tidal wetlands are crucial landscapes nested within the coastal zone where elevation 

is a primary controlling factor in the development of vegetation, soil conditions, 

channel morphology, accretion, and other processes (Cornu and Sadro, 2002; Frenkel 

et al., 1981). Therefore, management and restoration of these landscapes often require 

elevation information at both high spatial resolution and high elevation accuracy to 

properly assess and predict potential outcomes of management interventions (Athearn 

et al., 2010). This is especially true in wetland restoration, where both passive and 

active approaches have been attempted with variable success 

(Palmer, 2009; Simenstad et al., 2005; Cornu and Sadro, 2002; Kentula, 2000).  

LIDAR (Light Detection And Ranging) is an emerging geospatial technology 

that is increasingly used by coastal and estuarine geospatial practitioners and 

scientists at both regional and site-specific spatial scales to provide high spatial 

resolution elevation data (Brock and Purkis, 2009). Airborne LIDAR uses a laser 

scanner mounted on an aircraft to scan the surface of the earth, much like a 

lawnmower (Wehr and Lohr, 1999). The particular LIDAR sensor, flight altitude, 

swath width, and many other parameters determine the LIDAR pulse return density 

and success of the system in mapping terrains (Hodgson and Bresnahan, 2004; Wehr 

and Lohr, 1999). Additionally, the filtering and interpolation techniques used to 
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transform as-received LIDAR point-cloud data to a raster-based digital elevation 

model (DEM) will affect the accuracy and efficacy of the model (Meng et al., 2010; 

Bater and Coops, 2009; Wehr and Lohr, 1999).  

Past research has shown that the estimated ground surface elevation derived 

from raster-based LIDAR-derived DEM are typically higher than surveyed elevations 

using survey-grade Global Positioning System (GPS) measurements of the tidal 

wetland ground surface (Schmid et al., 2011; Chassereau et al., 2011; Hladik and 

Alber, 2012; Athearn et al., 2010; Wang et al., 2009; Sadro et al., 2007; Montané and 

Torres, 2006; Rosso et al., 2006). These studies attribute the positive bias to dense 

wetland vegetation interfering with the LIDAR pulse and preventing it from reaching 

the true elevation of the marsh plain (Schmid et al., 2011; Hladik and 

Alber, 2012; Sadro et al., 2007). The separation of ground and vegetation in 

low-relief topography and short vegetation is challenging because statistical and 

morphological LIDAR classifiers typically look for large changes in slope and 

topographic shape, as well as shifts in surface elevation (Briese, 2010; Meng et 

al., 2010).  

LIDAR filters and classifiers are quite good at removing buildings and trees 

from a DEM where separation between ground and other landscape features is 

significant (Meng et al., 2010). They are not as effective where a consistent patch of 

dense grass covers large regions of the area of interest or other even landcover where 

separation between ground points and features on the surface is minimal (Meng et 

al., 2010). In addition, discrete return LIDAR systems are typically not able to 

discriminate vegetation canopy from ground because the half pulse length is longer 

than the vegetation is tall (Hladik and Alber, 2012). Therefore, LIDAR return filters 

and classifiers may identify the vegetation canopy as the ground instead of sparse 

points that better approximate the marsh plain. 

Studies of LIDAR error have focused on Spartina spp. dominated tidal 

wetlands (Schmid et al., 2011; Chassereau et al., 2011; Hladik and 

Alber, 2012; Wang et al., 2009). In these studies, the authors find that the mean 
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difference between LIDAR-derived elevations and GPS-surveyed elevations exhibit a 

positive bias of between 10 cm and 45 cm. Additionally, Montané and Torres (2006) 

found that topography within, and immediately surrounding, the LIDAR spot 

diameter did not significantly alter the results when comparing the difference between 

LIDAR-derived elevation and GPS-surveyed elevation in flat (i.e., < 10 degree slope) 

marsh topography. Hladik and Alber (2012) found that vegetation height was 

correlated with LIDAR error but that the difference between LIDAR-derived 

elevations and measured elevation was less than the total vegetation canopy height. 

Wang et al. (2009) found that LIDAR underestimated the canopy height of tidal 

wetland vegetation but that it was significantly correlated with leaves and other 

elements in the vegetation.  

Multiple studies have attempted to compare interpolation and filtering 

techniques to produce DEMs that better approximate the marsh plain elevation of 

tidal wetlands (Montané and Torres, 2006; Wang et al., 2009; Hladik and 

Alber, 2012). Hladik and Alber (2012) successfully developed correction factors for 

the main vegetation types within their study area using a field survey to map 

vegetation communities. Sadro et al. (2007) employed hyper-spectral remote sensing 

to map vegetation communities and developed species-specific correction factors. 

Their approach was successful but required significant ground control and advanced 

remote sensing to classify vegetation from remote data. As a result, the technical and 

analytical capabilities required to successfully mitigate vegetation interference of 

LIDAR may be difficult to apply for management purposes. Schmid et al. (2011) and 

Wang et al. (2009) employ a minimum-bin gridding technique to identify the 

optimum search radius for ground LIDAR returns and interpolate a raster DEM from 

the LIDAR point cloud. This gridding and interpolation technique selects the lowest 

LIDAR return within a specified search radius. As the search radius and cell size is 

increased, the probability of capturing a true ground also increases as more candidate 

LIDAR returns are considered. The minimum-bin technique is attractive because it is 

easy to implement and validate in the field. More complex methods (e.g. Sadro 
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et al., 2007), require resources and expertise beyond the scope of most regional or 

site-specific management (including restoration) efforts.  

The objective of this research was to explore the accuracy of LIDAR-derived 

DEM as cell size is increased from 0.1 m to 6.0 m with a 0.1 m step size using the 

minimum-bin technique. LIDAR data was filtered with the minimum-bin technique to 

generate digital elevation models over a 174 ha tidal restoration site in the Pacific 

Northwest (PNW). The reference baseline was established using a high-resolution 

survey-grade RTK GPS survey (> 13000 measurements). By using this high-

resolution RTK GPS survey, maps depicting the accuracy of LIDAR-derived DEM 

were generated to help reveal where the minimum-bin gridding method performed 

well and where further refinement or other interpolation methods may be more 

appropriate. This research contributes to a broader understanding of LIDAR error 

within tidal wetlands and to the Pacific Northwest where significant wetland 

restoration projects are taking place and are planned in the future.  

2.3 Methods 

2.3.1 Study Area 

The study area for this research was the 174 ha Ni-les’tun Unit of the Bandon 

Marsh National Wildlife Refuge in the Coquille River Estuary, Oregon (Figure 2.1). 

The Coquille River Estuary is a drowned river mouth estuary with an area of 9.2 km2 

draining an area of 2731.5 km2 with an average monthly river discharge of 70 m3
s-1 

(Engle et al., 2007; Bottom et al., 1979). Elevations across the study area ranged from 

0.6 m North American Vertical Datum of 1988 (NAVD88) to 13.4 m NAVD88, 

including a slope from the marsh plain to a road that borders the northern part of the 

marsh. The marsh plain made up the majority of the study area and had elevations 

between 0.9 m NAVD88 and 3.7 m NAVD88 with a mean of 1.95 m NAVD88. At 

the Ni-les’tun Unit study site, the Mean Higher High Water (MHHW) tidal datum 

was at an elevation of 2.17 m NAVD88 (Ewald, 2013a).  
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Ni-les’tun is a tidal wetland restoration site and is the largest tidal wetland 

restoration project implemented to date on the Oregon Coast. Construction began in 

2009 and continued through late summer 2011. The site was originally converted 

from tidal wetland to agricultural pasture in the late 19th and early 20th century 

through diking and ditching to exclude tidal exchange within the boundaries of the 

site (Brophy and van de Wetering, 2012; Hawes et al., 2008). Restoration actions 

undertaken to restore tidal flow included the removal or lowering of dike material 

along a natural levee, the removal of livestock, filling of more than 21 km of ditches, 

and the excavation of approximately 8 km of channels to facilitate tidal exchange 

within the site (Brophy and van de Wetering, 2012).  

LIDAR and GPS survey of this site were conducted prior to restoration in 2009. 

At that time, muted tidal exchange was present due to the presence of fish-friendly 

tide gates (Brophy and van de Wetering, 2012). On the lower portions of the study 

area, the muted tidal exchange allowed development of native tidal marsh vegetation 

dominated by Distichlis spicata and Carex lyngbyei (Brophy and van de 

Wetering, 2012). On higher ground, vegetation communities were dominated by a 

mix of non-native pasture species (primarily Festuca arundinacea and Agrostis 

stolonifera, and Lotus corniculatus) and native tidal marsh species (primarily 

Potentilla anserina and Juncus balticus) (Brophy and van de Wetering, 2012). For 

more information about the condition of the study area at the time of survey, please 

refer to Brophy and van de Wetering (2012).  

2.3.2 RTK GPS Survey 

Ducks Unlimited surveyed the Ni-les’tun Unit study site in preparation for 

restoration design and implementation (Ducks Unlimited, 2010). LIDAR data was not 

available at the beginning of the design phase of the restoration project. As a result, 

Ducks Unlimited conducted a dense Real Time Kinematic (RTK) GPS survey of the 

site to provide an accurate elevation dataset for design and engineering. They 

followed GPS survey techniques that collected dense measurements in areas of 
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complex topography or engineering importance, while relying on sparser 

measurements in flat and even terrain. Both pole-mounted mobile (e.g., all terrain 

vehicle) and handheld RTK GPS measurements were collected using dual frequency 

GPS receivers capable of resolving centimeter-level horizontal and vertical accuracy 

in real time (Schulte, 2013).     

The resulting dataset consisted of more than 18600 measurements. Of these, 

13128 measurements that represented topographic features within the study area were 

selected from the dataset and used in the analysis presented in this paper. The data 

were collected in the NAD83(CORS96, Epoch 2002) Oregon State Plane South 

horizontal coordinate system, NAVD88 (GEOID03) vertical datum (Schulte, 2013). 

For the analysis presented in this paper, the GPS survey data were reprojected to 

Oregon State Plane Lambert (EPSG: 2992) to match the LIDAR dataset and the 

Oregon State coordinate system standard using ArcGIS (version 10.1) from Esri.  

2.3.3 LIDAR Data 

The Oregon LIDAR Consortium (OLC), led by the Oregon Department of 

Geology and Mineral Industries (DOGAMI), is a partnership between multiple state 

and federal agencies charged with coordinating, collecting, and disseminating LIDAR 

data throughout Oregon using consistent methods and quality assurance procedures. 

LIDAR point cloud and derived highest-hit and bare-earth raster models are now 

available for much of Western Oregon. To date, the OLC has acquired more than 

69000 km2 of LIDAR data with a minimum acceptable point density of 8.0 

returnsm-2 over terrestrial surfaces (DOGAMI, 2013, 2008).  

OLC partnered with The National Science Foundation (NSF) OpenTopography 

Facility (http://opentopography.org, NSF Award Numbers 0930731 and 0930643) to 

disseminate LIDAR point-cloud data. NSF OpenTopography archives all OLC 

LIDAR point-cloud data, and many other LIDAR datasets across the United States, 

and makes them available for download using convenient online query tools. NSF 

OpenTopography delivers the OLC LIDAR data in NAD83(CORS96, epoch 2002) 
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Oregon State Plane Lambert horizontal coordinate system and NAVD88 (GEOID03) 

vertical datum (Kleber, 2013).  

2.3.3.1 Collection 

LIDAR data used in this study was collected by a contractor (Watershed 

Sciences, Inc.) for OLC over the study area on June 14, 2008 as part of a large project 

(651 km2) to map the South Coast of Oregon (Watershed Sciences, Inc., 2009a). The 

instrument used to perform the survey was a Leica ALS50 Phase II set to acquire data 

at ≥ 105000 pules per second at an altitude of 900 meters above ground level (AGL) 

with a scan angle of ±14°(field of view 28°) (Watershed Sciences, Inc., 2009a). These 

flight parameters yielded a swath width of 221 meters at ground level and a nominal 

spot diameter of 19.8 cm at nadir on flat topography (Watershed Sciences, 

Inc., 2009a). Flight path was structured to provide ≥ 50% side-lap between opposing 

flight-lines, yielding ≥ 100% total overlap to minimize the influence of laser 

shadowing and other artifacts (Watershed Sciences, Inc., 2009a). Aircraft altitude and 

position were measured by differential GPS on-board the aircraft twice per second 

and corrected using a network of survey-grade GPS receivers located at known 

benchmarks on the ground (Watershed Sciences, Inc., 2009a). The attitude of the 

aircraft was measured by an inertial management unit at 200 times per second 

(Watershed Sciences, Inc., 2009a). The LIDAR data was georeferenced and 

processed to align flight-lines, remove artifacts (e.g., birds), and classify ground 

points using TerraScan, TerraMatch, and proprietary tools developed by Watershed 

Sciences prior to delivery to DOGAMI (Watershed Sciences, Inc., 2009a). For more 

information about LIDAR data collection, please refer to Watershed Sciences, 

Inc. (2009a).  

Within the Ni-les’tun Unit study area there were 12686962 LIDAR returns. 

Nearly all returns are first-return, with only 8172 second-returns, and 251 

third-returns. 2841579 returns were classified as ground-returns, while the remaining 

9845383 returns were left unclassified. The classification of LIDAR returns within 
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the dataset is of limited use for this study because the minimum-bin method relies 

only on selecting the lowest LIDAR return within a given area and does not use more 

complex filters or interpolators to derive a modeled ground surface.  

2.3.3.2 Density 

LIDAR returns across the Ni-les’tun Unit study area had a mean point density 

of 7.2 returnsm-2 (range: 0.0 returnsm-2 to 31.0 returnsm-2), including terrestrial 

surfaces and open water regions near the tide gate. The highest point densities were in 

the overlap between 15 flight-lines which cover the site, while the lowest were over 

regions of the study area inundated with water at the time of acquisition (Figure 2.2).  

2.3.3.3 Absolute Accuracy 

Absolute vertical accuracy of LIDAR compares the elevation of a known 

elevation (e.g., survey-grade GPS measurement) to the nearest LIDAR laser point in 

open terrain with no obstructions to the ground surface. Watershed Sciences, 

Inc. (2009a) reports a fundamental vertical accuracy Root Mean Square Error 

(RMSE) of 4.5 cm (mean -1.5 cm, 4.6 cm standard deviation) on 12377 RTK GPS 

points collected on road surfaces spread across the extent of LIDAR collection. An 

independent dataset (109 measurements) collected by DOGAMI to perform quality 

assurance checks on the data found an RMSE of 5.8 cm (mean ± 4.7 cm, 3.4 cm 

standard deviation) (DOGAMI, 2009). To further validate the absolute accuracy, a 

subset of the RTK GPS survey that forms the base of the research presented in this 

paper was analyzed to compute the fundamental vertical accuracy of the LIDAR data. 

The estimated non-slope corrected absolute vertical RMSE of the LIDAR data is 10.4 

cm (non-parametric bootstrapped 95% CI: 9.5 cm to 11.4 cm; R=10000 replicates) 

based on 294 independent RTK GPS measurements along a road bordering the study 

area which included two slopes of up to ± 10 degrees. Similarly, the estimated non-

slope corrected vertical Mean Absolute Error (MAE) of the LIDAR data is 8.1 cm 

(non-parametric bootstrapped 95% CI: 7.4 cm to 8.9 cm; R=10000 replicates) over 
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the same dataset. Differences between these estimates of absolute LIDAR accuracy 

can be explained by examining a small subset of the overall LIDAR collection area 

for this study, the use of differing topography, survey equipment, survey date and 

times that result in different satellite geometries for each survey.  

2.3.4 DEM Generation & Performance 

Digital elevation models (DEMs) were generated from the LIDAR using the 

Geoscience Network (GEON) Points2Grid Utility (version 1.0.1, available at 

http://opentopography.org/index.php/Tools/otforge/points2grid) with cell sizes 

ranging from 0.1 m to 6.0 m (0.01 m2 to 36.00 m2) and a step size of 0.1 m, yielding 

60 DEM candidates to evaluate model performance. When generating these DEMs, 

both unclassified and ground-classified LIDAR returns were considered, and each 

DEM shared the same spatial extent and was created using the same source LIDAR 

data.  

To evaluate the accuracy of each candidate DEM, the raster DEM was queried 

at the spatial location of each RTK GPS point. The difference between the LIDAR-

derived DEM elevation (HLIDAR) and the RTK GPS surveyed marsh surface elevation 

(HGPS) is the LIDAR-GPS discrepancy (see Eq. 2.1).  

𝐷 = 𝐻𝐿𝐼𝐷𝐴𝑅 − 𝐻𝐺𝑃𝑆 (2.1) 

LIDAR-GPS discrepancy (D) is consistently reported in centimeters and calculated 

from spatial data referenced in the same horizontal datum, vertical datum, and the 

NOAA National Geodetic Survey (NGS) GEOID03 geoid model.  

Two common magnitude-based measures of model performance are Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE) (Willmott and 

Matsuura, 2005). RMSE and MAE are defined in Equations 2.2 and 2.3 below, where 

HLIDAR and HGPS are the orthometric heights of a location derived from LIDAR and 

RTK GPS, respectively.  
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝐻𝐿𝐼𝐷𝐴𝑅 − 𝐻𝐺𝑃𝑆)2

𝑛

𝑖=1

 (2.2) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐻𝐿𝐼𝐷𝐴𝑅 − 𝐻𝐺𝑃𝑆|

𝑛

𝑖=1

 (2.3) 

RMSE, MAE, mean discrepancy, and standard deviation were calculated for 

each cell size candidate DEM using the full dataset of 13128 RTK GPS 

measurements as the true (i.e., observed) ground surface. The RTK GPS 

measurements were assumed to have zero horizontal or vertical error. The LIDAR-

derived DEM elevation was the predicted elevation. In reality, the GPS data are not 

error-free, but are more accurate than the LIDAR data in both horizontal and vertical 

coordinates. The data was bootstrapped using a basic nonparametric method and 

100000 replicates to derive confidence intervals for each metric (Canty and 

Ripley, 2013; Davison and Hinkley, 1997).  

RMSE is often misinterpreted because it is sensitive to the variability within the 

magnitude and distribution of discrepancies between predicted and observed values 

(Willmott and Matsuura, 2005). Therefore, MAE is the preferred model performance 

metric for the purposes of selecting the best performing cell size. RMSE and MAE 

are reported throughout the body of this research to aid in the comparison with other 

studies.  

The gstat package in the R statistical environment was used to interpolate 

LIDAR-GPS discrepancy across the study area for select cell sizes using an inverse 

distance weighted (IDW) interpolation technique and a 5.0 m cell size (R Core 

Team, 2012; Pebesma, 2004). These visualizations aid in the interpretation of RMSE, 

MAE, and the other performance metrics.  
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2.4 Results 

DEM accuracy increased with cell size until an inflection point near 1.4 m as 

the influence of vegetation is mitigated by the minimum-bin gridding technique 

(Figure 2.3a). Low features within the landscape were captured by the gridding 

technique and degrade DEM performance after cell size enlarged beyond the 

optimum. Minimizing MAE yielded (1 in Table 2.1) an optimum cell size of 1.4 m 

(1.92 m2) for this dataset. If RMSE (2 in Table 2.1) was used to define the optimum 

DEM cell size instead of MAE, the optimum cell size was 1.2 m (1.44 m2). LIDAR-

GPS discrepancy derived from a DEM with a cell size of 1.4 m falls 2.9 cm below, 

and is statistically different from, a cell size of 1.2 m (two-sided paired t-test: p-value 

< 0.001, 95% CI: -3.1 cm to -2.7 cm). Mean LIDAR-GPS discrepancy is positive for 

both cell sizes. A cell size of 1.4 m yields a statistically significant mean positive bias 

of 1.6 cm above known elevation (two-sided t-test: p-value < 0.001, 95% CI: 0.9 cm 

to 2.3 cm). A cell size of 1.2 m yields a statistically significant mean positive bias of 

4.5 cm above known elevation (two-sided t-test: p-value < 0.001, 95% CI: 3.8 cm to 

5.2 cm). 

Even at the optimum cell size, the DEM is still positively biased when 

compared to known ground elevations. Mean LIDAR-GPS discrepancy remains 

positive until a cell size of 1.6 m is achieved. At cell sizes greater than 1.6 m, DEM 

are negatively biased as the minimum-bin method continues to capture and favor low 

features within the landscape. Median and mean LIDAR-GPS discrepancy fall with 

increasing cell size (Figure 2.3b). 

Figure 2.4 reveals the spatial pattern of LIDAR-GPS discrepancy across the 

study area. Minimum-bin LIDAR-derived DEM elevations underpredict (typically 

70 cm to 90 cm below) the measured elevation along channels and the man-made 

dike that form the southern edge of the site adjacent to the Coquille River. These 

features are characterized by high ground, a moderate to steep slope, and low ground 

over a short horizontal distance. For example, the minimum-bin filter is likely to 
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select a LIDAR return from an adjacent low riverbank rather than the surveyed 

wetland surface. The likelihood of upslope areas being assigned an elevation lower 

than the true ground elevation increases as the cell size is increased.  

The minimum-bin LIDAR-derived DEM overpredicted elevations in the 

northwestern (NW) quadrant of the study area (Figure 2.4). Overprediction is most 

pronounced at small cell sizes and decreases with increasing cell size. Even at the 

maximum cell size of 6.0 m, regions within the NW quadrant are still positively 

biased (typically 50 cm to 70 cm) where vegetation is characterized by dominant 

Carex obnupta with 100% cover (Brophy and van de Wetering, 2012).  

Figure 2.5 plots regions within the study area that have a mean LIDAR-GPS 

discrepancy within ± the upper 95% confidence limit (8.9 cm) of absolute MAE of 

the LIDAR system as evaluated using RTK GPS points with open sky conditions 

along the road bordering the study area. The highest percentage of the study area 

(58%) is within the MAE 95% confidence interval with a cell size of 2.0 m. At cell 

sizes smaller than 2.0 m, the percentage of the site that falls within the 95% 

confidence interval range quickly increases. At cell sizes greater than 2.0 meters, the 

proportion of the site that falls within the upper limit of the MAE 95% confidence 

interval slowly falls (Figure 2.3d).  

At small DEM cell sizes, most of the study area is outside the 95% MAE 

absolute vertical accuracy threshold (Figure 2.3d). As cell size is increased, areas near 

channels and low vegetation transition to within 95% MAE absolute vertical accuracy 

threshold. At cell sizes near 2.0 m, regions of the DEM that lie near channels and 

ditches fall outside the acceptable MAE range, because low features in the landscape 

are favored by the minimum-bin method. This trend continues throughout the larger 

cell sizes and is most pronounced at the 6.0 m cell size (Figure 2.5).  

2.5 Discussion 

DEM accuracy initially increases as cell size is increased from 0.1 m to an 

optimum of 1.4 m as the effect of dense vegetation is mitigated by the minimum-bin 
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gridding method. After the optimum cell size is reached and cell size is increased 

further, DEM accuracy begins to degrade as the gridding method captures and favors 

low features (e.g., channels) in the landscape. This pattern occurs because more 

LIDAR return samples are available to the minimum-bin filter as cell size increases, 

thereby increasing the probability of one of those returns capturing the true ground 

elevation within the search radius instead of hitting vegetation. However if the cell 

size is too large, the DEM will be biased towards low features because many of the 

LIDAR samples around each DEM raster pixel centers include a return that represents 

the elevation of a channel or other low feature at the edge of the search radius. 

Figure 2.6 presents the density distribution of LIDAR-GPS discrepancy 

measurements for DEM with cell sizes of 0.5 m, 1.4 m (optimum DEM), 4.0 m, and 

6.0 m. The ideal distribution is centered on zero with a symmetric rise and fall. A 

DEM generated with a cell size of 0.5 m has the highest density of LIDAR-GPS 

discrepancy around 15 cm and is skewed toward the right. The MAE-minimized 

optimum DEM with a cell size of 1.4 m has the narrowest spread of any considered 

cell size and is symmetric around the median LIDAR-GPS discrepancy, 6.4 cm. At 

larger cell sizes, the distribution widens further and the peak shifts to the left. Wider 

and flatter distributions indicate that the DEM is less accurate for a given 

measurement location. This trend can also be observed in the standard deviation of 

LIDAR-GPS discrepancy (Figure 2.3c). Standard deviation is high throughout the 

range of considered cell sizes. As cell size is increased, changes to standard deviation 

of LIDAR-GPS discrepancy are a function of both a wide range of discrepancies and 

variable performance of the minimum-bin technique. All 13128 RTK GPS 

measurements in the dataset are considered to evaluate vertical accuracy for each 

candidate DEM. Therefore, a small subset of LIDAR-GPS discrepancy measurements 

may stand in stark contrast to the majority of other discrepancies and these 

measurements will act as influential data points to increase the standard deviation. A 

minimum standard deviation LIDAR-GPS discrepancy value of 38.8 cm occurs at a 

cell size of 1.2 m, consistent with the optimum DEM cell size as obtained by 
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minimizing RMSE. Standard deviation of LIDAR-GPS discrepancy falls rapidly at 

cell sizes smaller than this value and rises quickly at cell sizes greater than 1.2 m.  

A high-quality DEM for quantitative analysis approximates the true elevation at 

a given location and the topography around it. Ideally, the DEM will reveal breaks in 

the topography such as small channels and ridges. A disadvantage of the minimum-

bin filter is that at large cell sizes, small breaks in topography are lost within the 

landscape (Schmid et al., 2011). For example, at a cell size of 6.0 m any low LIDAR 

return within 6.0 m of a given location will be selected for that pixel elevation. This 

has the effect of increasing the modeled size of a 0.5 m wide channel that represents 

the low feature within the search radius. Any pixel center that is within a radius of 6.0 

meters would inherit a low-elevation LIDAR return that fell within the channel. The 

mean DEM-derived elevation within the 6.0 m search radius would be negatively 

biased towards the low channel elevations. More advanced LIDAR return classifiers, 

especially classifiers that examine the slope and shape of topography around a given 

area, are more likely to accurately model the topography as well as elevation across 

the landscape (Briese, 2010). Therefore, minimizing the cell size when employing the 

minimum-bin technique is desirable to retain small topographic features in the 

landscape and prevent exaggeration of low features.  

The success of a LIDAR system for creating a DEM is dependent on capturing 

LIDAR returns that represent the ground surface while removing bias from 

vegetation. If LIDAR laser pulses are unable to reach the ground there is little chance 

of success for a LIDAR classification and interpolation strategy. Even the minimum-

bin method, which selects the lowest return within the search radius, will 

overestimate the ground surface. High return density LIDAR is more likely to provide 

a LIDAR return representing the ground because there are more returns per unit area. 

The Ni-les’tun Unit LIDAR survey has a mean point density of 7.2 returnsm-2 (range: 

0.0 returnsm-2 to 31.0 returnsm-2) when compared against other studies, which 

typically range between 0.7 returnsm-2 and 4.0 returnsm-2 (Schmid et 

al., 2011; Chassereau et al., 2011; Hladik and Alber, 2012; Wang et al., 2009). 
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Despite the use of higher LIDAR return density data, the Ni-les’tun LIDAR survey 

shows evidence of a positive bias in the region dominated by Carex obnupta (NW 

corner of Figure 2.4).  

The data presented in this paper is consistent with past research. A cell size of 

1.4 m (1.96 m2) provided the best accuracy, yielding an MAE of 24.3 cm (RMSE 

39.7 cm) and a mean positive bias of 1.6 cm. Schmid et al. (2011) considered cell 

sizes of between 2.0 m and 10.0 m, selecting an optimal cell size of 4.0 m in Spartina 

alterniflora and a cell size of 10.0 m in Juncus roemerianus by minimizing the Root 

Mean Square Error (RMSE) on 280 survey-grade GPS measurements in South 

Carolina. Wang et al. (2009) used 240 survey-grade GPS measurements and cell sizes 

between 0.5 m and 6.5 m, finding that an optimum cell size of 3.5 m by minimizing 

the overall RMSE on a dataset with vegetation dominated by Spartina maritima, 

Sarcocornia fruticosa, Limonium narbonense, and Juncus maritimus. The 

minimum-bin method was successful in mitigating much of the vegetation bias within 

DEM and the optimum cell size for the Ni-les’tun LIDAR dataset is much smaller 

than past studies have found. This may be the result of higher LIDAR-density, dense 

ditch networks, or different vegetation communities from past studies.  

2.6 Conclusion 

The results of this investigation yield new information about the effect of cell 

size on LIDAR-derived DEM accuracy. The minimum-bin method successfully 

mitigated positive bias in DEM caused by dense vegetation. Optimum cell size for the 

Ni-les’tun Unit dataset is 1.4 m (1.96 m2). Mean absolute error at this cell size was 

24.3 cm with a mean bias of 1.6 cm. At cell sizes smaller than the optimum, 

LIDAR-derived DEM are positively biased due to dense vegetation interference. At 

cell sizes larger than the optimum, channels and other low features within the search 

radius are assigned to raster DEM cell center thereby negatively biasing the DEM. 

Understanding vertical elevation uncertainty in LIDAR data is a critical challenge 

facing environmental analysis and management strategies. Small errors in an 
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elevation model could lead to significant differences in the products of analysis, 

which in turn may lead to the development and implementation of policy and 

management strategies based on faulty or inaccurate data. Further research is needed 

to understand how existing LIDAR filtering and interpolation strategies behave in a 

variety of landscapes and vegetation communities.  
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2.8 Tables and Figures 

 

 

Figure 2.1: Minimum-bin study area map. The study area for this research is the 

Ni-les’tun Unit of the Bandon Marsh National Wildlife Refuge in the Coquille River 

Estuary, Oregon, USA. 

 

 

 

Figure 2.2: LIDAR density across the Ni-les’tun Unit study area. The mean LIDAR 

return density is 7.2 returnsm-2. The horizontal coordinate system is Oregon 

Statewide Lambert (EPSG: 2992; units: International Feet). 
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Table 2.1: DEM model performance metrics. Cell size is reported in meters, all other 

units are in centimeters. 1 optimum RMSE cell size. 2 optimum MAE cell size. 
 

Cell Size MAE RMSE % Valid Mean_± SE SD Median 1st Qu. 3rd Qu. 

0.2  39.73 63.98 6.68 32.38 ± 0.51 55.18 22.10 10.36 45.72 

0.5  30.65 47.89 21.54 19.24 ± 0.38 43.85 14.94 5.18 32.61 

1.0  25.46 39.94 39.63 7.84 ± 0.34 39.17 9.75 -0.30 22.66 

1.2 1  24.48 39.09 45.71 4.50 ± 0.34 38.84 7.93 -2.44 19.51 

1.4 2  24.27 39.65 50.80 1.62 ± 0.35 39.61 6.40 -4.57 17.37 

1.5  24.30 40.09 52.89 0.29 ± 0.35 40.09 5.79 -5.95 16.46 

2.0  25.54 43.52 57.68 -5.62 ± 0.38 43.15 3.05 -12.31 13.11 

4.0  33.79 59.91 53.28 -20.25 ± 0.46 53.19 -4.88 -31.09 7.62 

6.0  40.29 65.19 44.88 -29.56 ± 0.51 58.10 -12.19 -44.20 3.87 
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Figure 2.3: Minimum-bin DEM calibration plots. DEM performance diagnostic 

metrics with cell sizes of 0.1 m to 6.0 m, with a 0.1 m step size. Confidence intervals 

were generated from a non-parametric bootstrap with 5000 iterations. 
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Figure 2.4: LIDAR-GPS discrepancy spatial distribution. This figure plots the 

difference between LIDAR-derived DEM elevations and measured RTK GPS 

elevations across the site and interpolated using IDW. Each facet of the figure 

represents a different cell size, ranging from 0.2 m to 6.0 m. 
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Figure 2.5: DEM accuracy thresholds. Each facet of the figure represents the cell size 

in meters. 

 

 

 

Figure 2.6: Density distribution of LIDAR-GPS discrepancy for selected cell sizes. 

The distribution of discrepancies is unimodal throughout their range. The figure 

extents are truncated to within 100 cm of zero. Density represents the probability of a 

given discrepancy based on all 13128 LIDAR-GPS discrepancy measurements.  
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3 LIDAR INTERFERENCE BY VEGETATION IN OREGON 

TIDAL MARSH DIGITAL ELEVATION MODELS 

3.1 Abstract 

Light Detection and Ranging (LIDAR) is a powerful resource for coastal and 

wetland managers and its use is increasing. Vegetation density and other land cover 

characteristics influence the accuracy of LIDAR-derived ground surface digital 

elevation models; however the degree to which wetland land cover biases LIDAR 

estimates of the ground surface is largely unknown. We investigated LIDAR 

interference by tidal vegetation across six Oregon estuaries and twelve common 

wetland types using survey-grade Global Positioning System (GPS) measurements of 

the wetland surface and quantitative vegetation data (percent cover by species) for 

each measurement location. Our results show that LIDAR estimates of the ground 

surface are typically 10 cm to 30 cm above GPS measurements of the wetland surface 

in Oregon tidal wetland plant associations. Plant associations dominated by Carex 

obnupta and Carex lyngbyei exhibited the largest discrepancy between GPS and 

LIDAR measurements (mean discrepancies 36.6 cm and 48.8 cm respectively). The 

smallest errors observed in the study were about 10 cm and occurred in two low tidal 

marsh associations dominated by Deschampsia cespitosa, Distichlis spicata, 

Sarcocornia perennis and Jaumea carnosa. Our research yields new information for 

coastal LIDAR users, increases our understanding of uncertainty in LIDAR-derived 

datasets, and improves our ability to accurately evaluate and manage coastal 

environments.  

3.2 Introduction 

Coastal zones are challenging to manage because of their complexity 

(Shackeroff et al., 2009; Guichard and Peterson, 2009). Holistic coastal management 

policies have gained popularity, but require the adoption of complex spatial 
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modeling, planning, and mapping technologies and techniques (Ricketts, 1992; Brock 

and Purkis, 2009). New models seek to identify the extent of tidal influence, predict 

the effect of different sea-level rise scenarios, map habitats, and many other tasks that 

have direct implications on coastal communities and ecosystems (Brock and 

Purkis, 2009). The shift to managing the environment as a system instead of discrete 

elements is exciting, and reflects the principles of Ecosystem Based Management 

(McLeod and Leslie, 2009). 

Increased reliance on complex models and analysis requires accurate and 

complete source data (Palmer, 2009; Simenstad et al., 2005). While geospatial 

technologies and techniques such as LIDAR (Light Detection And Ranging) are 

potentially more accurate than some other methods, they are far from perfect. 

Unfortunately, GIS (Geographic Information Sciences) does a poor job of identifying, 

communicating, and propagating uncertainty (Couclelis, 2003). Uncertainty is a 

challenge to EBM approaches that rely on comprehensive modeling and management 

strategies rooted in data. Understanding and communicating uncertainty within digital 

elevation models (DEM) is critical to the success of inquiry and analysis of coastal 

ecosystems for both science and management purposes. For example, LIDAR data is 

heavily used within tidal wetland restoration and management at both local and 

regional spatial scales. In coastal zones, environmental conditions and floristic 

development are often strongly associated with elevation (Odum, 1985, 1988; Cornu 

and Sadro, 2002; Brock and Purkis, 2009). Strong associations require high resolution 

and accurate elevation data to accurately model and predict outcomes of management 

intervention (Simenstad et al., 2005; Cornu and Sadro, 2002; Kentula, 2000). Plant 

communities are very sensitive to small changes in elevation; a difference of a few 

centimeters in elevation between sites causes differences in tidal hydrology and 

therefore plant community composition (Odum, 1985, 1988; Cornu and Sadro, 2002).  

Airborne LIDAR is a remote sensing technology that uses a laser scanner 

mounted on an aircraft to scan the surface of the earth. Many LIDAR data collection 

parameters determine the LIDAR pulse return density and success of the system in 
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mapping terrains including aircraft altitude, LIDAR sensor, flight altitude, swath 

width, pulse width, pulse frequency, and many others (Hodgson and 

Bresnahan, 2004; Wehr and Lohr, 1999). Additionally, filtering and interpolation 

techniques used to transform as-received LIDAR point-cloud data to a raster-based 

DEM influence the accuracy and efficacy of models for a particular purpose (Meng et 

al., 2010; Bater and Coops, 2009; Wehr and Lohr, 1999). The absolute vertical 

accuracy, the ability to accurately measure elevation in ideal conditions, is on the 

order of 5 cm to 20 cm for modern instruments (Beraldin et al., 2010). The error 

budget within a LIDAR dataset is more difficult to quantify and dependent on land 

cover class (Beraldin et al., 2010; Briese, 2010). For example, LIDAR filters and 

classifiers are well suited for removing buildings and trees from a DEM where 

separation between ground and other landscape features is significant (Briese, 2010; 

Meng et al., 2010). The filters are not as effective in large regions covered by a 

consistent patch of dense grass or other land-cover where separation between ground 

points and features on the surface is minimal (Briese, 2010; Meng et al., 2010). Yet, 

the influence of specific tidal wetland vegetation on the quality of LIDAR-derived 

DEM is currently unknown.  

Past research has shown that estimated ground surface elevation from raster-

based LIDAR-derived DEM are typically higher than surveyed elevations using 

survey-grade Global Positioning System (GPS) measurements of the tidal wetland 

ground surface (Schmid et al., 2011; Chassereau et al., 2011; Hladik and 

Alber, 2012; Athearn et al., 2010; Wang et al., 2009; Sadro et al., 2007; Montané and 

Torres, 2006; Rosso et al., 2006). Most studies of LIDAR error have focused on 

Spartina spp. dominated tidal wetlands along the Atlantic and Gulf coasts of the 

United States. Additional research has been undertaken in San Francisco Bay 

(Athearn et al., 2010), Italy (Wang et al., 2009), and Denmark (Moeslund et 

al., 2011). In these studies, the mean difference between LIDAR-derived elevations 

and GPS-surveyed elevations is between 10 cm and 45 cm. Micro-topography within 

the LIDAR spot diameter does not significantly affect LIDAR error (Montané and 
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Torres, 2006). Hladik and Alber (2012) found that vegetation height was correlated 

with LIDAR error but that the difference between LIDAR-derived elevations and true 

elevation was less than the total vegetation canopy height. Wang et al. (2009) found 

the bias was correlated with basal leaves and other low elements in herbaceous 

wetlands.  

Considerable research has attempted to quantify LIDAR error in tidal wetlands, 

and subsequently to apply DEM correction factors to mitigate the influence of 

vegetation (Montané and Torres, 2006; Wang et al., 2009; Hladik and Alber, 2012). 

Hladik and Alber (2012) successfully developed correction factors for the main 

vegetation types within their study area using a field survey to map vegetation 

communities. Sadro et al. (2007) employed hyper-spectral remote sensing to map 

vegetation communities and developed species-specific correction factors. Schmid 

et al. (2011) and Wang et al. (2009) employ a minimum-bin gridding technique to 

identify the optimum search radius for ground LIDAR returns and interpolate a raster 

DEM from the LIDAR point cloud. While these studies, and our own, yield important 

information about the performance of LIDAR within tidal wetlands, they are specific 

to the wetlands and vegetation communities they sampled. Oregon wetlands differ 

significantly from the ecosystems studied previously; hence past research may not be 

applicable to this region. In Oregon, tidal wetlands are often heavily influenced by 

wintertime fluvial input driven by heavy rain (Lee et al., 2009; Engle et 

al., 2007; Bottom et al., 1979). Low marsh is typically dominated by Jaumea 

carnosa, Distichlis spicata, and Salicornia perennis (Jefferson 1975; Brophy et 

al., 2011). High marsh is more abundant in Oregon and is characterized by 

Deschampsia cespitosa, Potentilla anserina, Agrostis stolonifera, and Juncus balticus 

(Jefferson, 1975; Seliskar and Gallagher, 1983; Brophy et al., 2011).  

The objective of this research is to explore the LIDAR-derived DEM error of 

12 typical Oregon tidal wetland vegetation communities. High-accuracy GPS survey 

techniques and co-located vegetation surveys identify the marsh plain elevation and 

species-level quantitative vegetation cover at each measurement location. The results 
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of this analysis complement existing research by adding data from the Pacific 

Northwest, United States across a variety of study areas and vegetation communities 

along the Oregon coast.  

3.3 Methods 

3.3.1 Study Areas 

The study area for this research consists of high, mid, and low tidal marsh sites 

and one tidal wetland restoration site within six Oregon estuaries, compiled from the 

data of Janousek and Folger (2013), Brophy and van de Wetering (2012), and Brophy 

et al. (2011). These estuaries include Netarts Bay Estuary, Siletz River Estuary, 

Yaquina River Estuary, Alsea River Estuary, Coos Bay Estuary, and the Coquille 

River Estuary (Figure 3.1).  

The geomorphic settings for five of the six estuaries in this study are drowned 

river mouth estuaries, a type that is common in Oregon (Lee et al., 2009; Bottom et 

al., 1979). Netarts Bay differs from the others and represents a bar built estuary (Lee 

et al., 2009; Bottom et al., 1979). Drowned river mouth estuaries refer to a river 

where current sea level has flooded the river mouth following sea level rise at the end 

of the last ice age (Bottom et al., 1979). Heavy rainfall and small watershed size lead 

to significant wintertime freshwater input to the estuary (Lee et al., 2009; Engle et 

al., 2007; Bottom et al., 1979). Tidal range is between 1.6 m and 1.9 m and varies by 

estuary (Lee et al., 2009).  

3.3.2 Field Survey 

Janousek and Folger (2013), Brophy and van de Wetering (2012), and Brophy 

et al. (2011) conducted fieldwork as part of their studies and we compiled their data 

for the work presented in this paper (Table 3.1). Measurements included a 

quantitative survey of species-level percent cover within a one square meter quadrat 

and high-accuracy survey-grade elevation survey of the marsh plain elevation. 

Elevation information was used within these studies to relate tidal hydrology to other 
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physical site characteristics, and to relate physical drivers to floristic development and 

other biotic responses (Janousek and Folger, 2013; Brophy and van de 

Wetering, 2012; Brophy et al., 2011). Janousek and Folger (2013) and Brophy 

et al. (2011) characterized least-disturbed tidal wetlands in multiple estuaries on the 

Oregon coast. Both Janousek and Folger (2013) and Brophy and van de 

Wetering (2012) collected data in the Coquille River Estuary. Brophy and van de 

Wetering (2012) collected measurements at 213 locations within a wetland restoration 

project at the Ni-les’tun Unit of the Bandon Marsh National Wildlife Refuge, the 

largest tidal wetland restoration project implemented to date on the Oregon Coast. 

Data were collected prior to restoration in this diked former tidal wetland; the pre-

restoration vegetation communities consisted of non-native pasture species 

intermixed with native tidal marsh species. Brophy and van de Wetering (2012) also 

collected data at 60 locations in a least-disturbed mid to high elevation tidal marsh 

reference site, also located within the Bandon Marsh National Wildlife Refuge.  

3.3.2.1 Vegetation Data 

Trained botanists and ecologists familiar with Pacific Northwest tidal wetland 

species assemblages performed quantitative surveys of vegetation at each 

measurement location. These surveys used a one square meter quadrat placed along a 

transect or located using a stratified random sample design (Janousek and 

Folger, 2013; Brophy and van de Wetering, 2012; Brophy et al., 2011). Janousek and 

Folger (2013) used stratified random sampling to select quadrat locations. Brophy and 

van de Wetering (2012) and Brophy et al. (2011) measured vegetation in randomly 

placed quadrats within transects placed in representative major vegetation 

communities and physical environmental settings.  

At each vegetation survey location, the percent cover of each species within the 

quadrat frame was estimated and recorded. Janousek and Folger (2013) estimated the 

Relative Percent Cover, the per-species percent cover of only the uppermost layer of 

vegetation. Therefore, bare ground plus total plant cover always summed to 100%. 
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Brophy and van de Wetering (2012) and Brophy et al. (2011) also estimated the cover 

of each species within the quadrat but considered layering of multiple species 

(Absolute Percent Cover), allowing total plant cover to exceed 100%. Cover of 

bryophytes and macroalgae were measured by Janousek and Folger (2013) but not by 

Brophy et al. (2011) or Brophy and van de Wetering (2012). For our study, we 

included bryophyte and macroalgae cover estimates as part of bare ground cover for 

three reasons: they were unlikely to significantly bias LIDAR due to their low growth 

forms and short height, they were rare within the dataset, and their coverage was 

always low (< 10 percent cover).  

While similar, the use of Absolute Percent Cover and Relative Percent Cover 

precludes direct comparison between vegetation data. To allow direct comparison, we 

adjusted the Absolute Percent Cover values for each species proportionately to create 

equivalent estimated Relative Percent Cover values for the vegetation data of Brophy 

and van de Wetering (2012) and Brophy et al. (2011). The result, Relative Percent 

Cover from Absolute Cover (CRFA, Eq. 3.1), was approximately equivalent to the data 

of Janousek and Folger (2013).  

𝐶𝑅𝐹𝐴 = 𝐶𝐴 ∗
𝑇𝑅𝑃𝐶𝑒𝑠𝑡

𝑇𝐴𝑃𝐶
 (3.1) 

𝑇𝑅𝑃𝐶𝑒𝑠𝑡 = {
     100, 𝑇𝐴𝑃𝐶 ≥ 100
 𝑇𝐴𝑃𝐶, 𝑇𝐴𝑃𝐶 < 100

 (3.2) 

𝑇𝐴𝑃𝐶 = ∑ 𝐶𝐴 (3.3) 

For each vegetation plot, the absolute percent cover measurement for a given 

species (CA) was multiplied by the ratio of estimated Total Relative Percent Cover 

(TRPCest, Eq. 3.2) over Total Absolute Percent Cover (TAPC, Eq. 3.3). If TAPC was 

less than 100%, the sum of all species present in the plot (TAPC, Eq. 3.3) was 

assigned as the value of TRPCest. If TAPC was greater than or equal to 100%, the 

entire plot is covered by vegetation, and 100% is assigned as the value of TRPCest.  
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The aggregated vegetation dataset from Janousek and Folger (2013), Brophy 

and van de Wetering (2012), and Brophy et al. (2011) included 77 species. The most 

abundant species in the dataset were Agrostis spp., Juncus balticus, and Potentilla 

anserina. Thirty-eight species were rare within the dataset (fewer than 10 

observations and cover never exceeded 20%). The top thirty-nine species and percent 

cover of bare ground were used for analysis. 

3.3.2.2 Vegetation Plot Horizontal Coordinates 

We assigned Cartesian coordinates to each of the vegetation plots using two 

methods, direct measurement and distance along a transect baseline. Janousek and 

Folger (2013) directly measured the Cartesian coordinates of each vegetation plot 

using Real Time Kinematic (RTK) GPS. Their data was reported in North American 

Datum of 1983 (NAD83) Universal Transverse Mercator Zone 10 North (UTM Zone 

10N, EPSG: 26910). Brophy and van de Wetering (2012) and Brophy et al. (2011) 

located vegetation plots along transects. Each end of the transect was positioned in 

the NAD83 UTM 10N coordinate system coordinates using an RTK GPS receiver 

and monumented with a permanent marker (metal fencepost driven 60-100 cm into 

the soil). Individual vegetation plots were located in the UTM 10N coordinate system 

using a distance along the baseline between the transect ends, a known transect start 

end, and a constant one meter offset perpendicular to the baseline (Brophy and van de 

Wetering, 2012; Brophy et al., 2011).  

The horizontal coordinates of each vegetation plot were reprojected from UTM 

10N to Oregon State Plane Lambert (EPSG: 2992) using ArcGIS 10.1 (version 10.1, 

http://esri.com) from Esri. This was necessary to match the LIDAR data and other 

datasets used in our analysis and interpretation.  

3.3.2.3 Elevation Survey 

All three studies that provided data for our analysis employed survey-grade 

GPS measurement techniques to generate accurate measurements of the ground 

http://esri.com/
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surface elevation near vegetation survey locations. Janousek and Folger (2013) 

measured the elevation of each vegetation plot using a Trimble 4700 GPS receiver 

and rapid static GPS survey methods. The vertical error of their measurements was 

between 0 cm and 4 cm (Std. Dev.: 1.2 cm), computed from the elevation difference 

between repeated GPS measurements of the National Geodetic Survey (NGS) 

benchmark at South Beach, Oregon (Janousek and Folger, 2013). RTK GPS 

surveying for Brophy and van de Wetering’s (2012) vegetation transects was 

conducted using RTK GPS techniques on a pole-mounted roving receiver (Pat 

Schulte, Ducks Unlimited, personal communication). We recovered and resurveyed 

local benchmarks established during the original survey and found a vertical error of 

less than 5 cm. Brophy et al. (2011) collaborated with NOAA National Geodetic 

Survey (NGS) for their survey, established local geodetic control, and were 

successful in mapping the wetland surface in their study, however they did not report 

vertical accuracy for their RTK GPS survey. The NGS team collected rapid-static 

GPS occupations (processed using NOAA Online Positioning User Service) of 

benchmarks throughout the study area and found an overall error of less than 2 cm. In 

all studies used in our analysis, experienced GPS field crews performed the survey, 

established local geodetic control, and employed modern RTK GPS and rapid-static 

receivers capable of centimeter-level measurements (Janousek and Folger, 2013; 

Brophy and van de Wetering, 2012; Brophy et al., 2011). 

The elevation of most of our vegetation plots was not directly measured using a 

GPS at the center of the plot. Therefore, we created a Triangulated Irregular Network 

(TIN) DEM to compare GPS-surveyed elevation at each vegetation plot to LIDAR-

derived DEM and point cloud measurements. TIN DEM linearly interpolate between 

RTK GPS measurements (i.e., vertices of the TIN) to build a DEM without 

constraining the data to a rectangular raster format. Vertical relief within Oregon tidal 

wetlands is minimal and all vegetation plots had multiple GPS measurements within 

10 m. Interpolation effects to be minimal and our final TIN accuracy is sufficient for 

our purposes.  
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3.3.3 Vegetation Associations 

We assigned vegetation association memberships to each vegetation plot by 

grouping the quantitative vegetation data into twelve distinct clusters. Clustering the 

data is needed to reduce the effects of colinear relationships between species that 

aggregate together on the landscape (McCune et al., 2002). For example, Galium spp. 

is typically associated with high vegetative cover of Carex obnupta. Clustering 

compresses hyper-dimensional vegetative data (39 species and bare ground) into a 

simple association code while retaining underlying relationships in vegetation.  

We computed vegetation dissimilarity between data points using a Sørenson 

(also called Bray-Curtis) dissimilarity matrix (Oksanen et al., 2013). Clusters were 

derived and assigned to data points using a flexible-beta agglomerative hierarchical 

clustering approach using packages cluster and vegan in the R statistical environment 

(Maechler et al., 2013; Oksanen et al., 2013; McCune et al., 2002). We also 

evaluated Sørenson dissimilarity coupled with the complete and average clustering 

method in addition to Euclidean distance coupled with Ward’s clustering method 

(Maechler et al., 2013; Oksanen et al., 2013; McCune et al., 2002).  

To evaluate the optimum dendrogram cutoff height, we calculated the average 

p-value of all species at dendrogram cutoff heights between 0.0 (i.e., every vegetation 

plot is its own association) to a maximum value of 7.8 (i.e., all vegetation plots 

belong to the same association) with a step size of 0.01 following the methods of 

Dufrêne and Legendre (1997). The cutoff height that minimizes the average p-value 

across all species within the plot is the optimum height. For our dataset, an optimum 

cutoff of 2.12 yielded 12 vegetation associations.  

Our team of Pacific Northwest tidal wetland experts critically reviewed the 

optimum output of all four clustering strategies. Field experience and professional 

best judgment of this expert team most approximated the clustering approach created 

using Sørenson dissimilarity and the flexible-beta linkage, so those methods were 

selected for our analysis. The other three clustering results significantly differed from 

our team’s judgments and were excluded.  
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3.3.4 LIDAR Data 

We analyzed LIDAR data collected by the Oregon LIDAR Consortium (OLC). 

OLC is led by the Oregon Department of Geology and Mineral Industries (DOGAMI) 

and represents a partnership between multiple state and federal agencies. Through 

coordination and a central responsible agency, OLC collects LIDAR data across 

much of Oregon using consistent methods and quality assurance procedures. To date, 

the OLC has acquired more than 69000 km2 of LIDAR data with a minimum 

acceptable point density of 8.0 returnsm-2 over terrestrial surfaces 

(DOGAMI, 2013, 2008). The National Science Foundation (NSF) OpenTopography 

Facility (http://opentopography.org, NSF Award Numbers 0930731 and 0930643) 

partnered with OLC to disseminate LIDAR point-cloud data. NSF OpenTopography 

archives all OLC LIDAR point-cloud data, and many other LIDAR datasets across 

the United States, and makes them available for download using convenient online 

query tools. NSF OpenTopography delivers the OLC LIDAR data in NAD83 

(CORS96) (Epoch 2002) Oregon State Plane Lambert horizontal coordinate system 

and NAVD88 (GEOID03) vertical datum (Kleber, 2013).  

LIDAR data was collected by Watershed Sciences, Inc. for OLC across our 

study areas. Data was collected during the winter, to minimize the influence of 

vegetation (Watershed Sciences, Inc. 2009b, 2009c; DOGAMI, 2008). The LIDAR 

instrument was capable of recording four or more returns per laser pulse (Watershed 

Sciences, Inc. 2009b, 2009c; DOGAMI, 2008). LIDAR instrument and flight path 

parameters were structured to provide a minimum illuminated spot size of between 

15 cm and 40 cm, laser scan angle of less than ± 15 degrees, and  ≥ 50% side-lap  

(≥ 100% overlap) between opposing flight-lines to minimize the influence of laser 

shadowing and other artifacts (Watershed Sciences, Inc. 2009b, 2009c; DOGAMI, 

2008). Aircraft altitude and position were measured by differential survey-grade GPS 

on-board the aircraft and corrected using a network of survey-grade GPS receivers 

located at known benchmarks on the ground (Watershed Sciences, Inc. 2009b, 2009c; 

DOGAMI, 2008). The LIDAR data was processed to align flight-lines, remove pits, 
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birds, and other artifacts from the data and classify ground points using TerraScan, 

TerraMatch, and proprietary tools developed by Watershed Sciences prior to delivery 

to DOGAMI (Watershed Sciences, Inc. 2009b, 2009c; DOGAMI, 2008).  

3.3.5 LIDAR-GPS discrepancy 

Our objective is to measure the difference between LIDAR-derived DEM 

elevation and the GPS surveyed marsh surface elevation within common Oregon tidal 

wetland vegetation communities. Two different approaches are investigated within 

our research. 

First, Watershed Sciences delivered bare-earth digital elevation models to 

DOGAMI. Raster-based DEMs are typically preferred for GIS purposes because they 

are more computationally efficient and easier to use than point clouds. Therefore, 

Oregon LIDAR users will most likely use the raster bare-earth DEM for coastal 

management objectives. Each vegetation plot data point was assigned an elevation 

drawn from the spatially-coincident raster cell value of the bare-earth DEM elevation.  

Second, past research suggests a minimum-bin gridding technique is capable of 

mitigating the effect of vegetation (e.g., Ewald, 2013b; Schmid et al., 2011). 

Minimum-bin techniques search a radius around a given raster cell center for the 

lowest LIDAR return and assign the elevation of that return to the raster cell value 

(Ewald, 2013b; Schmid et al., 2011). As the search radius is increased, the probability 

of capturing a LIDAR return that represents the true ground surface instead of 

vegetation increases. We assigned the elevation of the lowest LIDAR return within a 

1.0 m radius of each vegetation plot center as the minimum-bin LIDAR-derived 

elevation for that plot. We chose a 1.0 m search radius because the vegetation 

quadrats that were used to survey vegetation were 1.0 m2. In addition, the vegetation 

and topography (e.g., presence of channels) beyond a 1.0 m distance from the plot 

center was unknown.  

The difference between LIDAR-derived elevation and the GPS elevation is the 

LIDAR-GPS discrepancy, reported in centimeters. Two variants of this metric are 
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used within our research. The first variant is the difference (DBE, Eq. 3.4) between the 

bare-earth DEM elevation (HBE) and the GPS surveyed elevation (HGPS).  

𝐷𝐵𝐸 = 𝐻𝐵𝐸 − 𝐻𝐺𝑃𝑆 (3.4) 

The second variant is the difference (DMB, Eq. 3.5) between minimum-bin 

LIDAR-derived elevation (HMB) and the GPS surveyed elevation (HGPS).   

𝐷𝑀𝐵 = 𝐻𝐵𝐸 − 𝐻𝐺𝑃𝑆 (3.5) 

3.3.6 Statistical Analysis 

Our dataset provides statistical challenges because many of our vegetation plots 

are nested within transects, as well as nested within estuaries. Therefore, each 

observation is not truly independent of the others, and the potential for spatial 

autocorrelation between observations of the same species assemblage is high. To 

address these concerns we employed mixed-effect modeling techniques.  

Mixed-effect models (also called mixed models) are capable of analyzing 

uneven and nested sampling designs (Bates, 2010; Zuur et al., 2009, 2007). They 

grew out of medical and social science fields that required modeling a population-

wide response while allowing members of an observational unit (i.e., level) within the 

population to have unit-specific responses (Bates, 2010). For example, every subject 

in a drug study will respond differently to a dosage of a given drug. Mixed models 

allow each subject to respond differently to the drug while modeling the population-

wide response. In this example, each individual would be a categorical co-variate 

random-effect and the dosage would be a fixed-effect covariate.  

In the context of our research, each vegetation plot was a member of a transect 

which was nested within an estuary. The unique combinations of transect and estuary 

are the random effect and the vegetation cluster assignment is the sole fixed effect. 

LIDAR-GPS discrepancy was the continuous response for our mixed models. If two 

vegetation plots with the same vegetation association assignment and transect were 
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observed within the dataset, they were treated as repetitions of the same individual. 

However, if two vegetation plots had different vegetation associations but shared the 

same transect they were treated as separate individuals.  

We constructed mixed models using package lme4 (version 1.0-4) in the R 

statistical environment (Bates et al., 2013; R Development Core Team, 2012). 

Models were fit using restricted maximum likelihood and Satterthwaite’s 

approximation for degrees of freedom. The vegetation association name was the fixed 

effect in the mixed model. Two different random-effect structures were evaluated. 

Model A used only the unique combination of vegetation transect and estuary. The 

Model B random-effect structure added vegetation percent cover estimating method 

(i.e., absolute vs. relative). The goal of this model was to test whether our adjustment 

to relative percent cover (Section 3.2.2) altered our results. 

We selected Model B from our two candidate models using Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), two model 

selection metrics rooted in information theory and entropy (Anderson, 2008). AIC 

and BIC penalize models by the number of parameters they contain. Simple models 

that accurately model the results are preferred over complex models that slightly 

improve the model performance (Anderson, 2008). Model selection can be performed 

by minimizing AIC or BIC across a suite of candidate models (Anderson, 2008). 

Model B was the simplest model and had a lower AIC and BIC than Model A (Table 

3.2). We therefore selected Model B for our analysis. Vegetation associations were 

statistically compared using multiple comparison contrasts with Tukey-Kramer 

adjustment, implemented in the R package multcomp (Hothorn et al., 2008).  

3.4 Results 

LIDAR-derived DEM are positively biased across a wide variety of tidal 

wetland vegetation associations (Figure 3.2, Table 3.3). The LIDAR-GPS 

discrepancies of all 12 distinct vegetation associations are strongly statistically 

different from zero (mixed-effect model ANOVA Type III p-value < 0.01). Wet 
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pasture dominated by slough sedge (Carex obnupta, association F) and mid-elevation 

tidal marsh dominated by Lyngbye’s sedge (Carex lyngbyei, association H) are 

statistically different from the other vegetation types but not each other (multiple 

comparisons with Tukey-Kramer adjustment p-value < 0.05). Vegetation association 

F is positively biased by a mean LIDAR-GPS discrepancy of 36.6 cm (95% CI: 29.6 

cm to 43.6 cm) in the minimum-bin DEM and 39.4 cm (95% CI: 32.2 cm to 46.5 cm) 

in the DOGAMI bare-earth DEM (Table 3.3, Figure 3.2). Vegetation association H is 

positively biased by a mean LIDAR-GPS discrepancy of 48.8 cm (95% CI: 40.3 cm 

to 57.3 cm) in the minimum-bin DEM and 45.1 cm (95% CI: 36.4 cm to 53.8 cm) in 

the DOGAMI bare-earth DEM.  

Low to mid elevation tidal wetland marsh, represented by associations A and G, 

had the smallest LIDAR-GPS discrepancy and are not statistically different from each 

other. Vegetation association A (low marsh dominated by tufted hairgrass 

(Deschampsia cespitosa) and low marsh succulents) had a mean positive bias 10.4 cm 

(95% CI: 5.6 cm to 15.2 cm) in the minimum-bin DEM and 12.3 cm (95% CI: 7.5 cm 

to 17.2 cm) in the bare-earth DEM. Similarly, vegetation association G (low tidal 

marsh dominated by seashore saltgrass, Distichlis spicata) had a mean minimum-bin 

LIDAR-GPS discrepancy of 10.6 cm (95% CI: 3.9 cm to 17.3 cm) and the bare-earth 

DEM had a mean discrepancy of 12.0 cm (95% CI: 5.2 cm to 18.8 cm). Other 

vegetation types typical of mid to high native tidal marsh and diked pasture have 

mean LIDAR-GPS discrepancy estimates of between 10 cm and 20 cm. Vegetation 

associations B, C, D, E, I, J, K, and L are not statistically significantly different from 

each other (multiple comparisons with Tukey adjustment, p-value > 0.05), although 

all are statistically different from zero.  

Throughout the vegetation types we evaluated, the minimum-bin DEM 

performs slightly better than the DOGAMI bare-earth DEM. With 95% confidence, 

the DOGAMI bare-earth DEM elevation is between 2.0 cm and 3.1 cm above the 

minimum-bin DEM elevation across the entire dataset (mean 2.5 cm, paired two-

sided t-test, p-value < 0.001). Mean LIDAR-GPS discrepancy estimates calculated 
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from the bare-earth DEM and the minimum-bin DEM are statistically different for 

vegetation associations A, B, D, E, I, J, K, and L (paired two-sided t-test, p-value      

< 0.05). Vegetation association H differs from the other associations in that the 

estimated mean minimum-bin LIDAR-GPS discrepancy estimate falls above the 

mean bare-earth LIDAR-GPS discrepancy estimate. Association H is 

underrepresented in our dataset with only seven observations. Within association H, 

the minimum-bin DEM and the bare-earth DEM are not statistically different 

(two-sided paired t-test p-value: 0.43). 

3.5 Discussion 

Our results show that LIDAR-derived DEM are positively biased in tidal 

wetlands. The bare-earth DEM and the minimum-bin filter show similar LIDAR-GPS 

discrepancy estimates within each vegetation association. Carex obnupta and Carex 

lyngbyei wetlands have the largest discrepancy. A large difference between LIDAR-

derived estimates of the ground surface and measured GPS elevations is intuitive 

within these environments because both Carex obnupta and Carex lyngbyei grow in 

extremely dense and even stands, often at heights of a meter or more.  

Many of our estimates of the difference between LIDAR-derived elevation and 

GPS-surveyed elevation are similar to past studies in other parts of the world. Schmid 

et al. (2011) found a mean bias of 29.7 cm in Juncus roemerianus environments, 

which is similar to the bias in our Juncus balticus mid and high tidal marsh 

associations (associations C and K, Table 3.3).  Our estimates of LIDAR-GPS 

discrepancy in low tidal marsh with Salicornia spp. (association A and G, Table 3.3) 

are similar to Schmid et al. (2011) and Hladik and Alber (2012), who found mean 

bias of around five to ten centimeters. Sadro et al. (2007) found a slightly higher 

mean discrepancy of 18 cm in Salicornia spp. wetlands compared to our estimates. In 

Distichlis spicata wetlands (association G, Table 3.3), we found LIDAR-GPS 

discrepancy to be significantly less than estimates provided by Hladik and Alber 

(2012) as well as Sadro et al. (2007). Our study adds LIDAR accuracy information 
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for common tidal wetland and wet pasture communities typical of the Pacific 

Northwest. As mentioned earlier, Carex obnupta and Carex lyngbyei wetland 

vegetation (associations F and H, Table 3.3) have the largest LIDAR-GPS 

discrepancy within our dataset. In these associations, the range of LIDAR-GPS 

discrepancy varied from only 3 cm to over 94 cm with mean estimates of 36.6 cm and 

48.8 cm, respectively.  

LIDAR is an active remote sensing system that relies on the ability of the light 

pulse to reach the ground. Rosso et al. (2006) found that laser pulses were unlikely to 

penetrate the canopy of Spartina spp. Unfortunately, our results show that LIDAR 

estimates of the ground surface are positively biased even when the minimum-bin 

technique is used. This suggests that the LIDAR laser pulse never reaches the ground 

surface within the vegetation communities we studied.  

Figure 3.3 provides three examples of LIDAR point-cloud samples within one 

meter of the GPS measurement. The left panel was collected within a Carex obnupta 

(association F, Table 3.3) stand with vegetation heights of around 1.3 m. The lowest 

LIDAR return for this area was around 95 cm above the measured ground elevation. 

The middle panel is a point cloud sample collected in Carex lyngbyei. Both Carex 

spp. vegetation types effectively prevent LIDAR from reaching the ground. The far 

right panel of Figure 3.3 was collected in low tidal marsh dominated by Deschampsia 

cespitosa and succulents (association A, Table 3.3). Minimum-bin LIDAR-GPS 

discrepancy for this plot was 5.7 cm. Across all three panels, LIDAR penetration to 

the ground surface appears unlikely. As a result, more advanced filtering procedures 

are unlikely to improve LIDAR-based estimates of the ground surface elevation 

because no LIDAR information is available for the filters.  

Vegetation will grow to different heights in different locations with varying 

environmental conditions and stressors (Odum, 1985, 1988; Cornu and 

Sadro, 2002; Brock and Purkis, 2009). In patchy and disturbed vegetation 

communities, such as our pasture and restoration site study areas, variability in 

LIDAR-GPS discrepancy is likely. To be successful, a DEM correction procedure 
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would need both an accurate high-resolution vegetation map and correction factors 

specific to the mapped vegetation types. Complex methods, such as those used by 

Sadro et al. (2007), require resources and expertise beyond the scope of most regional 

and site-specific studies, as well as most on-the-ground restoration efforts.  

Variability in LIDAR-GPS discrepancy measurements may also lead to noise in 

correction factors and may introduce new sources of error into analysis that are not 

easy to trace. Site specific corrections, such as those applied by past research, may be 

an appropriate method to develop locally-optimized LIDAR datasets, but ground 

control and field validation of the corrected DEM is necessary using an independent 

dataset. In addition, LIDAR-GPS discrepancy is likely a function of the combined 

effect of multiple layered species. Past research has focused on single-species patches 

or vegetation associations with low diversity. In situations where multiple species are 

present, the combined effect of the species together may better predict LIDAR-GPS 

discrepancy when compared to single species effects. Our clustering approach honors 

the effect of co-occurring species by compressing the vegetation associates into an 

association classification. Within our associations, there may be variability in 

LIDAR-GPS discrepancy that may be possible to explain with statistical models 

although it would be difficult to identify and model.  

In an effort to extract species-specific influences on LIDAR-GPS discrepancy, 

we built and optimized Boosted Regression Tree (BRT) models following the 

procedure described by Elith et al. (2008). BRTs are a machine-learning technique 

that builds a series of regression trees and automatically selects variables and 

interactions that predict the model response (Elith et al., 2008; Hastie et al., 2005). 

Our BRT models were ultimately abandoned because the results indicated co-linearity 

between species and did not match field experience. For example, BRT identified 

Carex obnupta and Galium spp. as the two most important predictors of LIDAR-GPS 

discrepancy. In Oregon tidal wetlands, Galium spp. often co-occurs with dense Carex 

obnupta. It is likely that Carex obnupta is the species that most significantly 

contributes to LIDAR-GPS discrepancy, not Galium spp.; but the co-occurrence of 
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the two species obscures their contributions. Other species had similar relationships 

within the BRT model, and we therefore abandoned the BRT approach. Other 

statistical tools, such as hierarchical partitioning and Bayesian mixture models may 

provide better results, but the nested structure of our data did not lend itself to those 

analysis methods (Nally, 1996; Hastie et al., 2005).  

3.6 Conclusion 

We found that LIDAR-derived digital elevation models are positively biased by 

vegetation in Oregon tidal wetlands. LIDAR-GPS discrepancy was measured in six 

Oregon estuaries with twelve common wetland vegetation types, using survey-grade 

GPS measurements of the marsh plain elevation and LIDAR-derived elevations at the 

same location. LIDAR estimates of the ground surface in tidal wetlands were 

typically 10 cm to 30 cm above GPS measurements of the wetland surface. Plant 

associations dominated by Carex obnupta and Carex lyngbyei exhibited the largest 

discrepancy between LIDAR and GPS measurements, with mean discrepancies of 

36.6 cm and 48.8 cm respectively. Low tidal marsh associations dominated by a 

mixture of Deschampsia cespitosa, Distichlis spicata, Sarcocornia perennis and 

Jaumea carnosa had the smallest mean discrepancies of 10 cm to 11 cm. Our 

research yields new information for coastal LIDAR users and increases our 

understanding of uncertainty in LIDAR-derived datasets improving our ability to 

accurately evaluate and effectively manage coastal environments.  
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3.8 Tables and Figures 
 

 

Figure 3.1: Vegetation interference study area. Our dataset consists of 466 locations 

in six Oregon estuaries from three studies (Janousek and Folger, 2013; Brophy and 

van de Wetering, 2012; Brophy et al., 2011). 

 

 

Table 3.1: Estuary data sources. The number of observations (n) and source of data 

used within this research compiled from three past studies in six estuaries. 

 
Estuary  n Source  

Netarts Bay Estuary 20 Janousek and Folger (2013)  

Siletz River Estuary 44 Brophy et al. (2011)  

Yaquina River Estuary  52 Janousek and Folger (2013)  

Alsea River Estuary 17 Janousek and Folger (2013)  

Coos Bay Estuary 39 Brophy et al. (2011)  

Coquille River Estuary 273 Brophy and van de Wetering (2012) 

Coquille River Estuary 21 Janousek and Folger (2013)  

 

 

Table 3.2: Mixed-model performance values for each of the two candidate models. 

Model A random effect structure included the unique transect-estuary combination 

and vegetation cover estimation method. Model B included only the unique transect-

estuary combination and was selected as the optimum model for our analysis. 

 
Model Name AIC BIC Log-likelihood Deviance  Rand. Eff. 

Model A  3477 3539 -1724 3493 estuaryTransectCombo 

veg cover method  
 

Model B  3476 3534 - 1724 3492 estuaryTransectCombo 
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Figure 3.2: Mean LIDAR-GPS discrepancy by vegetation association. Hollow 

diamonds represent the mean LIDAR-GPS discrepancy for the DOGAMI Bare-earth 

DEM. Filled circles represent mean LIGAR-GPS discrepancy for the Minimum-bin 

DEM with a cell size of 1.0 m. Solid vertical lines represent the 95% confidence 

interval of the estimate. 

                                                                                                                                                                                                                                                                                                                       

              

Figure 3.3: Three LIDAR samples within 1.0 m of the GPS point. Hollow diamonds 

represent unclassified LIDAR returns from the DOGAMI dataset. Filled circles 

represent ground-classified returns. The dashed line represents the LIDAR-GPS 

discrepancy of the DOGAMI bare-earth DEM. The left panel is a plot that was 

assigned to vegetation association F and is dominated by Carex obnupta. The middle 

panel was a sample of vegetation association H and is 40% Carex lyngbyei. The right 

panel is from vegetation association A and has a mix of Deschampsia cespitosa and 

low marsh succulents. 
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Table 3.3: LIDAR-GPS discrepancy by vegetation association. Mean LIDAR-GPS discrepancy for each of the twelve 

vegetation associations are reported in centimeters for both the minimum-bin and Bare-earth DEM. All vegetation associations 

have mean LIDAR-GPS discrepancy estimates that are statistically different from zero (p-value < 0.01). 
 

   Min-bin DEM Bare-Earth DEM 

Association Description  Name n Mean ± SE Min. Max. Mean ± SE Min. Max. 

Mid-elevation tidal marsh dominated by Lyngbye’s 

sedge (Carex lyngbyei)  

H 7 48.8 ± 4.4 19.4 88.5 45.1 ± 4.4 14.9 72.6 

Wet pasture dominated by slough sedge (Carex 

obnupta)  

F 24 36.6 ± 3.6 2.7 94.8 39.4 ± 3.6 -0.9 89.5 

Wet pasture dominated by slough sedge (Carex 

obnupta) and water parsley (Oenanthe sarmentosa)  

B 28 19.5 ± 3.0 -14.4 69.1 21.5 ± 3.0 -15.6 69.0 

Moist pasture dominated by Baltic rush (Juncus 

balticus)  

K 25 19.6 ± 3.3 6.5 25.6 20.0 ± 3.3 6.1 30.8 

High tidal marsh or pasture dominated by Pacific 

silverweed (Argentina pacifica)  

E 35 18.6 ± 2.9 -9.9 67.0 23.2 ± 2.9 -2.0 63.8 

High tidal marsh dominated by Baltic rush (Juncus 

balticus)  

C 53 18.2 ± 2.6 -8.4 45.0 21.0 ± 2.6 -18.2 44.9 

Moist pasture dominated by tall fescue (Festuca 

arundinacea)  

I 74 16.9 ± 2.7 -3.5 24.9 20.5 ± 2.7 -0.3 38.7 

Creeping bentgrass (Agrostis stolonifera) wetland  J 39 15.7 ± 2.6 2.0 31.9 19.4 ± 2.6 0.8 52.6 

Moist pasture, dominated by a mix of non-native 

pasture species and Pacific silverweed (Argentina 

pacifica)  

L 38 13.3 ± 2.8 5.8 22.0 15.9 ± 3.2 2.3 22.6 

Mature high tidal marsh dominated by tufted hairgrass 

(Deschampsia cespitosa)  

D 34 11.8 ± 3.0 -18.8 43.0 13.5 ± 3.1 -7.1 49.9 

Low tidal marsh dominated by seashore saltgrass 

(Distichlis spicata)  

G 23 10.6 ± 3.4 -6.6 21.3 12.0 ± 3.5 -16.7 22.9 

Low tidal marsh, dominated by a mix of tufted 

hairgrass (Deschampsia cespitosa) and low marsh 

succulents  

A 84 10.4 ± 2.4 -16.9 57.4 12.3 ± 2.5 -14.8 56.5 
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4 CONCLUSION 

LIDAR-derived DEM are positively biased by tidal wetland vegetation. We 

found that LIDAR-GPS discrepancy was between 10 cm  and 30 cm across a wide 

range of Oregon tidal wetland communities spanning low to high tidal marsh. Plant 

associations dominated by Carex obnupta and Carex lyngbyei exhibited the largest 

discrepancy between LIDAR and survey-grade GPS measurements. Carex obnupta 

wetlands had a mean LIDAR-GPS discrepancy of 36.6 cm. Mean LIDAR-GPS 

discrepancy in Carex lyngbyei tidal wetlands was 48.8 cm. 

The minimum-bin filter technique is capable of partially mitigating vegetation 

bias within bare-earth DEM. We found an optimum cell size of 1.4 m (1.96 m2) by 

evaluating accuracy between cell sizes of 0.1 cm and 6.0 m with a 0.1 m step size in 

the DEM of a diked tidal wetland restoration site in Oregon. The minimum-bin 

technique improves DEM performance at cell sizes smaller than the optimum. At cell 

sizes larger than the optimum, the minimum-bin filter captures and negatively biases 

the DEM towards channels, ditches, and other low features within the landscape. Our 

results suggest that minimum-bin techniques may be an appropriate method to 

generate a locally optimum DEM but should include ground-truthing to validate the 

results. The optimum cell size will vary by LIDAR collection parameters, return 

density, ground cover, and topography. 

Our research yields new information for coastal LIDAR users and increases 

understanding of uncertainty in LIDAR-derived datasets, thereby improving the 

ability to accurately evaluate and effectively manage coastal environments. Future 

research that evaluates the impact of LIDAR return density on DEM accuracy will 

further expand understanding of LIDAR error in tidal wetlands. Additional 

measurements of LIDAR error in tidal wetlands will further refine estimates of 

LIDAR error by land cover class.  However, these estimates will remain sensitive to 
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the particular type of LIDAR instrument used, flight parameters, seasonal effects, and 

many other influences. 

Applying correction factors to the DEM based on land cover class requires even 

more complex analysis and introduces new errors into the analysis, further expanding 

the total error budget. The correction factor technique assumes that LIDAR error is 

the same in all land covers, similar to the training data, and that the ability to identify 

land cover is error free. A more defensible approach is to continue research on 

LIDAR uncertainty in a variety of land cover classes to inform understanding of 

uncertainty in each of them. We must strive to communicate uncertainty within data 

products we produce and ask questions that are answerable given the input data. 

LIDAR represents one of the most recent advances to drastically shift how we 

look at and manage the environment. The rapid advancement of sensor technology 

and the techniques to analyze data will shift how we map and manage the 

environment into the future. As with all new disruptive technologies, we will continue 

to learn and refine methods, including both improving sensor capability and 

understanding of its challenges and errors. LIDAR will not be the last innovation in 

geospatial science. Therefore, we must carefully examine and quantify uncertainty 

instead of blindly trusting and extending the technology beyond its capabilities 

simply because it is exciting and the best available technology.  

Coastal zones are challenging to manage because of their complexity, and 

managers must be comfortable making decisions under conditions of uncertainty. 

However, the sources and magnitude of that uncertainty must be known and 

communicated to prevent flawed or incomplete decision-making and inquiry. 
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APPENDIX A SPECIES PRESENT WITHIN THE STUDY PLOTS  

Table A.1. Tidal wetland species scientific name, six-letter abbreviation, and number 

of observations within the dataset. Number of observations are not exclusive, and 

multiple species can be present within a single vegetation plot. 

 
Name n   Name n 

1 Agrostis spp. (AGRspp) 299  21 Trifolium wormskioldii (TRIWOR) 36 

2 Juncus balticus (JUNBAL) 239  22 Trifolium repens (TRIREP) 30 

3 Potentilla anserina (POTANS) 182  23 Oenanthe sarmentosa (OENSAR) 27 

4 Deschampsia cespitosa (DESCES) 163  24 Grindelia stricta (GRISTR) 26 

5 Distichlis spicata (DISSPI) 156  25 Juncus effusus (JUNEFF) 23 

6 Sarcocornia perennis (SARPER) 152  26 Plantago spp. (PLAspp) 22 

7 Jaumea carnosa (JAUCAR) 151  27 Hypochaeris radicata (HYPRAD) 22 

8 Schedonorus arundinaceus 

(SCHARU) 

132  28 Achillea millefolium (ACHMIL) 22 

9 Triglochin maritima  (TRIMAR) 125  29 Rumex spp. (RUMspp) 20 

10 Lotus corniculatus (LOTCOR) 116  30 Phalaris arundinacea (PHAARU) 20 

11 Holcus lanatus (HOLLAN) 116  31 Vicia nigricans ssp. gigantea 

(VICNIG) 

19 

12 Carex lyngbyei (CARLYN) 92  32 Spergularia spp. (SPEspp) 19 

13 Glaux maritima (GLAMAR) 74  33 Festuca rubra (FESRUB) 17 

14 Atriplex patula (ATRPAT) 73  34 Alopecurus pratensis (ALOPRA) 14 

15 Hordeum spp. (HORspp) 65  35 Alopecurus geniculatus 

(ALOGEN) 

14 

16 Carex obnupta (CAROBN) 54  36 Castilleja ambigua (CASAMB) 13 

17 Cuscuta pacifica (CUSPAC) 53  37 Typha latifolia (TYPLAT) 12 

18 Symphyotrichum subspicatum 

(SYMSUB) 

47  38 Angelica lucida (ANGLUC) 11 

19 Galium spp. (GALspp) 47  39 Juncus bufonius (JUNBUF) 10 

20 Eleocharis palustris (ELEPAL) 38     
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APPENDIX B GLOSSARY 

Absolute Percent Cover The percentage of a one square meter quadrat covered by a given 

 species, reported as a percentage and including layering within a 

 plot; calculated total (sum) cover by all species in a plot may exceed 

 100%; see Section 3.3.2.1 

Accuracy A metric used to describe the difference between a known value 

 and a measured value; differs from precision 

 

Pasture An agricultural field primarily used to raise livestock, often with 

 vegetation species planted for that purpose 

AIC Akaike Information Criterion; a model selection metric based in 

 Information Theory; see Anderson (2008) 

Airborne LIDAR A LIDAR system flown onboard an aircraft such as a fixed-wing 

 airplane or helicopter 

Bare-earth DEM A DEM digitally removed of trees, buildings, and other objects that fall  

 above the ground surface; see DEM 

 

BIC Bayesian Information Criterion; a model selection metric based in 

 Information Theory; see Anderson (2008) 

Cell size The geographic length of one side of a raster cell 

Channel A depression in the landscape, sometimes constructed, that conveys water 

CORS96 An adjustment to the North American Datum of 1983 (NAD83) 

Datum The specifications of a measurement system, to which measurements can  

 be referenced and communicated (e.g., NAVD88 and MHHW) 

DEM Digital Elevation Model; a digital representation of terrain; usually in a  

 raster data model referenced to a common datum for the purposes of  

 describing topographic relief 

Differential GPS A technique that requires two or more GPS receivers to provide position 

 correction factors from a stationary reference receiver at a known location 

 to a roving GPS receiver 

Dike A constructed berm to restrict or prevent water from entering an area 

Ditch A constructed water conveyance structure, often designed to rapidly 

 drain frequently inundated land (e.g., an agricultural field) 
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DOGAMI Oregon Department of Geology and Mineral Industries 

EBM Ecosystem Based Management; see McLeod and Leslie (2009) 

EPSG A code used to reference a standardized geographic coordinate system, 

 datum, or coordinate transformation to the Geodetic Parameter Registry 

 provided by the European Petroleum Survey Group 

Error The difference between a measured value and the true value, considering 

 both accuracy and precision 

 

Geoid The shape the oceans would take if they covered the Earth, absent of land,  

 and subjected only to the gravitational forces and rotation 

GEOID03 A model of the geoid published by NOAA National Geodetic Survey and 

 used to compute NAVD88 orthometric heights 

GPS Global Positioning System 

High marsh Tidal marshes that lie high within the tide frame (usually 40 cm or greater 

 above mudflat), above low and mid marsh; typically peat over silt  

 substrate; see Seliskar and Gallagher (1983) 

HMT Highest Measured Tide; the highest tide recorded at a location 

LIDAR Light Detection and Ranging; a remote sensing technique that uses an  

 active laser to measure the distance from the sensor to the target. 

Least-disturbed wetland A wetland, free of major alterations and typically vegetated with species 

  adapted to the hydrologic and environmental conditions of the site 

LIDAR pulse The burst of energy emitted from the laser of a LIDAR instrument 

Low marsh A wetland located low in the tide frame slightly above mudflat; 

 typically clay or sand substrate; see Seliskar and Gallagher (1983) 

MAE Mean Absolute Error; see Section 2.3.4 

MHHW Mean Higher High Water; a tidal datum; the mean elevation of the higher 

 high water peak of each tidal day over the National Tidal Datum Epoch 

Mid marsh A transitional wetland between low and high marsh; with a silty substrate; 

 see Seliskar and Gallagher (1983) 

Minimum-bin DEM A digital elevation model created by assigning the elevation of the lowest 

 LIDAR return within a given raster cell or search radius of a pixel center 

MLLW Mean Lower Low Water; a tidal datum; the mean elevation of the lower 

 low water trough of each tidal day over the National Tidal Datum Epoch 

MSP Marine Spatial Planning; see McLeod and Leslie  (2009) 
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NAD83 North American Datum of 1983; a standardized horizontal coordinate 

 system and datum for North America 

Native wetland A wetland, typically undisturbed, with vegetation species indigenous to the 

 region and adapted to site-specific environmental conditions 

Natural levee A natural berm, typically formed by fluvial deposition of sediment onto a 

 river bank during flooding conditions.  

NAVD88 North American Vertical Datum of 1988; a standardized orthometric  

 vertical datum for North America 

NGS NOAA National Geodetic Survey 

NOAA National Oceanic and Atmospheric Association 

OLC Oregon LIDAR Consortium; a collection of state and federal agencies  

 that coordinate, acquire, and disseminate LIDAR data within Oregon  

Orthometric height The vertical distance from a location to the geoid 

Pacific Northwest An ecoregion in the United States and Canada; consisting of Oregon, 

 Washington, Idaho, and British Columbia; typically west of the Cascade 

 Mountain range but including the Columbia River watershed 

Precision A measure of random error in a estimated value; the degree of closeness  

 from one repeated measurements suite of a value to another set of repeated 

 measurements of the same quantity 

 

Pulse return density The number of LIDAR measurements within a given ground region  

 divided by the area of that region 

Raster A dot matrix data model that encodes data into a rectangular grid of 

 equal size pixels. Pixels are usually square.  

Relative Percent Cover The percentage of a one square meter quadrat covered by a given species, 

 reported as a percentage and excluding layering within a plot; calculated  

 total (sum) cover by all species in a plot may not exceed 100%; see 

 Section 3.3.2.1 

 

Restoration A management intervention designed to return the environmental  

 conditions and processes to a natural state that existed before disturbance 

RMSE Root Mean Square Error; see Section 2.3.4 

Species assemblage A community of co-occurring species; also see vegetation association 

Spot diameter The illuminated ground area from a LIDAR pulse  
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Tidal datum A vertical datum that is referenced against a defined phase of the tide such 

 as Mean Higher High Water (MHHW). 

Tidal wetland A wetland inundated by the tides at least once a year. 

 

Tide gate A water control structure designed to prevent water from entering an area 

 (e.g. agricultural field) on a rising tide but allow water to exit the area  

 during a falling tide or during periods of flooding 

Uncertainty The degree of confidence in an estimate of the difference between an 

 estimated and true value; differs from accuracy and precision 

UTM Universal Transverse Mercator; a projected horizontal coordinate system  

 with sixty zones covering the surface of the Earth. Each zone is  

 individually projected using a secant transverse Mercator projection. 

Vegetation association A community of plant species that typically co-occur on the landscape; 

 also see species assemblage 

 

Wetland Land area where soil development, vegetation communities, and 

 environmental conditions reflect water-saturated soil; soil surface may be 

 periodically inundated with water
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APPENDIX C VEGETATION SPECIES DIAGNOSTIC PLOTTING 

 

Figure C.1. Minimum-bin LIDAR-GPS discrepancy scatter plots faceted by species, including zero percent cover data 

points. Refer to Table A.1 to associate six-letter species codes to each species. 
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Figure C.2. Minimum-bin LIDAR-GPS discrepancy scatter plots faceted by species, excluding zero percent cover data 

points. Refer to Table A.1 to associate six-letter species codes to each species. 
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Figure C.3. Minimum-bin LIDAR-GPS discrepancy histogram plots faceted by species, excluding zero percent cover data 

points. Refer to Table A.1 to associate six-letter species codes to each species. 
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Figure C.4. DOGAMI bare-earth LIDAR-GPS discrepancy scatter plots faceted by species, including zero percent cover data 

points. Refer to Table A.1 to associate six-letter species codes to each species. 
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Figure C.5. DOGAMI bare-earth LIDAR-GPS discrepancy scatter plots faceted by species, excluding zero percent cover 

data points. Refer to Table A.1 to associate six-letter species codes to each species. 
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Figure C.6.  DOGAMI bare-earth LIDAR-GPS discrepancy histogram plots faceted by species, excluding zero percent cover       

data points. Refer to Table A.1 to associate six-letter species codes to each species. 
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APPENDIX D QUANTITATIVE CLUSTERING OF 

VEGETATION DATA 

The figures and tables in this appendix support the quantitative vegetation data 

clustering approach used within this thesis. Clustering involves many decisions 

including the type of clustering method and where to break the resulting dendrogram 

to form the clusters. Although the hope is that the final cluster assignments reflect the 

trends within the data, one critique of clustering techniques has been that they are 

somewhat arbitrary. Rather than making arbitrary decisions, we followed the methods 

proposed by Dufrêne and Legendre (1997) to break the dendrogram by minimizing 

the average p-value across all species. We computed the full Indicator Species 

Analysis suite of cluster performance metrics across the full range of dendrogram 

heights with a 0.01 step size. Figure D.1 plots these metrics. Figure D.2 plots the 

mean percent cover of each tidal wetland species within each cluster assignment. 

Table A.1 relates the species number along the X axis of Figure D.2 to its name. 
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Figure D.1. Dendrogram cutoff height calibration plots. The dashed red line represents the selected cutoff height. 



 

 

8
3
 

 

Figure D.2. Mean percent cover of each species faceted by vegetation association cluster assignment. Relate species number 

to species name using Table A.1. 
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Figure D.2 (continued). Mean percent cover of each species faceted by vegetation association cluster assignment. Relate 

species number to species name using Table A.1. 
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Figure D.3. The number of observations of each species faceted by vegetation association cluster assignment. Relate species 

number to species name using Table A.1. 
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Figure D.3 (continued). The number of observations of each species faceted by vegetation association cluster assignment. 

Relate species number to species name using Table A.1. 
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APPENDIX E NON-METRIC DIMENSIONAL SCALING 

Non-metric dimensional scaling (NMDS) is a multivariate technique to 

visualize high dimensional data. We used NMDS to visualize the difference between 

datapoints and clusters within my 40-dimensional vegetation composition 

hyperspace. In addition, we fit gradients to the NMDS ordination. These fits were 

weak (r2 < 0.10), but may still provide context to the vegetation association clusters 

(Figure E.2, Table E.1, Chapter 3). NMDS was performed using the package vegan 

(version 2.0-7; Oksanen et al., 2013). A convergent NMDS solution was not found 

after 50000 iterations. The final stress after 50000 iterations was 0.174, on the upper 

limit of acceptable based on the recommendations provided within McCune et 

al. (2002). 

 

Figure E.1. NMDS stress plot 



 

 

89 

 

 

Figure E.2. NMDS plot of vegetation data. Data points are colored by vegetation 

association. Data points are colored by vegetation association, with gradients fit to the 

ordination space. Relate the NMDS vector to its gradient using Table E.1. 

Table E.1. NMDS Gradients 

 NMDS Gradient NMDS1 NMDS2 R2 p-value 

1 NAVD88 Elevation -0.9377 0.3475 0.051 < 0.001 

2 LIDAR Point Density (all returns) 0.4450 -0.8955 0.020 0.009 

3 Std. Dev. LIDAR Intensity (all returns) -0.7166 0.6975 0.082 < 0.001 

4 Total Plant percent cover 0.7361 - 0.6768 0.022 0.007 

5 Bare-ground percent cover -0.7360 0.6770 0.022 0.006 
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Figure E.3. Species centroids within the NMDS ordination space. Each black triangle 

represents the cluster centroid (also shown in Figure E.2). Solid circles represent the 

species centroid. Refer to Table A.1 to associate six-letter species codes to each 

species.
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APPENDIX F 

 

Vegetation Association Cluster Diagnostic Plotting 
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APPENDIX F VEGETATION ASSOCIATION CLUSTER DIAGNOSTIC PLOTTING 

 

Figure F.1. Minimum-bin LIDAR-GPS discrepancy boxplot by vegetation association cluster 
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Figure F.2. DOGAMI bare-earth LIDAR-GPS discrepancy boxplot by vegetation association cluster 
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Figure F.3. Minimum-bin LIDAR-GPS discrepancy histogram plots faceted by vegetation association cluster. Table A.1 

relates species number to species name. 
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Figure F.4. DOGAMI bare-earth LIDAR-GPS discrepancy histograms faceted by vegetation association cluster. Table A.1 

relates species number to species name. 
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APPENDIX G 

 

Mixed Effect Model Validation Plots
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APPENDIX G MIXED-EFFECT MODEL VALIDATION PLOTS                                    

                                           

Figure G.1. Minimum-bin LIDAR-GPS mixed model validation plots 
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Figure G.2. DOGAMI bare-earth LIDAR-GPS mixed-model validation plots 
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APPENDIX H 

 

Spatial Reference 
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APPENDIX H SPATIAL REFERENCE 

H.1 Horizontal Coordinate System 
 

Name Oregon Statewide Lambert 

Projection Lambert Conformal Conic 

Datum North American Datum of 1983 (NAD83) 

- CORS96 - Epoch 2002 

Spheroid Geodetic Reference System 1980 

(GRS80) 

Units International Feet (0.3048 m exactly) 

EPSG Code 2992 

  

1st Standard Parallel 43.0 degrees 

2nd Standard Parallel 45.5 degrees 

Central Meridian -120.5 degrees 

Latitude of Projection’s Origin 41.75 degrees 

False Easting 1312335.958 Intl. Ft. 

False Northing 0.000 Intl. Ft. 

H.2 Vertical Datum 
 

Datum North American Vertical Datum of 1983 

(NAVD83) 

Units Meters 

Geoid Model GEOID03 
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