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RESILIENCY ANALYSIS FOR COMPLEX ENGINEERED SYSTEM DESIGN 
 

ABSTRACT 
 

Resilience is a key driver in the design of systems that must operate in an uncertain operating environment, and is a 
key metric to assess the capacity for systems to perform within the specified performance envelop despite 
disturbances to their operating environment. This paper describes a graph spectral approach to calculate the 
resilience of complex engineered systems. The resilience of the design architecture of complex engineered systems 
is deduced from graph spectra. This is calculated from adjacency matrix representations of the physical connections 
between components in complex engineered systems. Furthermore, we propose a new method to identify the most 
vulnerable components in the design and design architectures that are robust to transmission of failures. Non-linear 
dynamical system (NLDS) and epidemic spreading models are used to compare the failure propagation mean time 
transformation. Using these metrics, we present a case study based on the Advanced Diagnostics and Prognostics 
Testbed (ADAPT), which is an Electrical Power System (EPS) developed at NASA Ames as a subsystem for the 
Ramp System of an Infantry Fighting Vehicle (IFV).  
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1 INTRODUCTION 
 
Conceptual design is the earliest stage in the overall process of engineering system design. Past research efforts 
(Leveson 2006, Jen 2005, Madni 2009, Ormon 2002, Kurtoglu T 2010), have recognized the significance of utilizing 
fault-tolerance analysis during the conceptual design phase. However, anticipating component failure rates and 
system performance is difficult as detailed knowledge of system components and their performance criteria are not 
yet available. Therefore, it is important to develop fault-tolerance engineering tools that can be used during the early 
design of complex systems because of the inherent uncertainty in the performance of individual components and 
their interaction effects during the product life cycle cost (Zhang 2011). Robustness in this context means operation 
of the system within the designed performance variance under all ranges of environmental conditions experienced in 
the field. For the engineered system to be robust, the design of the system is required to be robust, meaning that the 
system is able to function under the full range of environmental conditions that may be experienced during system 
operation (Youn B D 2011). Resiliency is recognized as maintaining system functions despite the existence of 
failures (Mehrpouyan 2013). This differs from traditional definitions of robustness because resiliency deals with the 
functional response of a system. As designers, it is important to be sure that these systems are able to perform the 
functions they were designed to perform; something that robustness does not strictly deal with. Instead, robustness 
correlates to the ability of a system to produce performance characteristics despite the presence of these internal and 
external stimuli. Complete functionality of a complex engineered system does not necessarily have to be maintained 
for the system to be considered robust.   

The main purpose of system reliability analysis is to determine the weakness of a design and to quantify the impact 
of component failures. The resulting analysis provides a numerical rank to identify which components are more 
important to system reliability enhancement or more critical to system failure. Design reliability analysis methods 
introduced in the research literature, such as the Function-Failure Design Method (FFDM) (Stone 2005), the 
Functional Failure Identification and Propagation (FFIP) (Kurtoglu 2008), and decomposition-based design 
optimization (Michelena 1997, McCulley 1996) have begun to adopt graph-based approaches to model the function 
of the component and the flow of energy, material, and signal (EMS) between them. This work extends this idea to 
demonstrate the effect of the design architecture on the robustness of the system being designed.  

In the past several years, scientific interest has been devoted to modeling and characterization of complex systems 
that are defined as networks. Such systems consist of simple components whose interactions are very basic, but their 
large-scale effects are extremely complex, (e.g., protein webs, social communities, Internet). Numerous research 
studies have been devoted to the effect of network architecture on the system dynamics, behavior, and 
characteristics. Since, many complex engineered systems can be represented by their internal product architecture, 
their complexity is dependent on the heterogeneity and quantity of different components as well as the formation of 
connections between those components. Because of this, system properties can be studied by graph-theoretic 
approaches. Complex networks are modeled with graph-based approaches, which are effective in representing 
components and their underlying interactions within complex engineered systems. 

Research findings by Ash et al. (Ash 2007) suggest that modular systems are less robust even though their individual 
components are designed with high robustness. Modularity describes the topology of a system or network. 
Modularity in a system is rather straight-forward. A system is modular if components or subsystems can be isolated 
from the greater system without compromising the structure of the rest of the system. For instance, a modular 
system topology is one that allows a component or subsystem to be removed without first removing many others. 
Networks are a little more difficult. A network is said to be modular if there are high concentrations of high 
connectedness in the network separated by low connectedness between ‘modules’. Bagrow et al. (Bagrow 2011) 
confirm these finding and further explain that the high robustness of modular systems is only possible if the 
components’ failure can be isolated to their modules. Furthermore, Hölttä et al. (Hölttä 2005) prove that while the 
hierarchical modular structure improves the system’s robustness, excessive use of modularity results in loss of 
performance. On the other hand, there are studies (Gershenson 2003, Ishii 2003) that support the increase of 
modularity in the design of complex engineered systems. Therefore, in order to design a robust system and to 
recommend or oppose the modular physical system architecture it is utterly important to understand the architectural 
properties of complex engineered systems and the effect of design architecture topology on the propagation of 
failures within a complex engineered system. 
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In this research, we adopt approaches from graph theory and social network analysis to understand the robustness of 
the design architecture of a complex engineered system. Specifically, this paper shows the relationship between 
graph spectral theory eigenvalue analysis and how optimizing (or altering) the graph of a system will change system 
connectedness, thereby changing the robustness of the system. To accomplish this objective, the network model of a 
safety-critical engineered system in the context of complex network theory is constructed. Its network properties are 
calculated to determine system robustness. Constructive design architecture change recommendations are made to 
optimize the system robustness.	

2 BACKGROUND 

Eliminating the likelihood of failures, and should failures occur, ensuring the continued operation of the system 
within a safe performance envelop until repairs can be made, are of paramount importance in mission critical 
complex engineered systems. To avoid the failures of critical components, setting aside the problem of identifying 
critical components, the engineering design literature recommends techniques such as Failure Mode Effects Analysis 
(FMEA) (Stamatis 2003) or a Function-Failure Design Method (Stone 2005) among many. While these techniques 
have proven useful where knowledge of failure modes and effects can be predicted, their most significant 
weaknesses are that they can neither readily handle interaction effects of failures nor identify the most vulnerable 
components without significant prior knowledge. While methods such as the FFIP technique address this issue 
(Kurtoglu 2008), significant expertise of engineers and a knowledge base of previous products are still required. 

In contrast to techniques relying on prior knowledge, the network topology analysis and biological concepts of 
resilience hold promise for addressing this problem in the engineering design domain. The study of network 
topologies provides interesting insights into the way that complex engineered systems are designed. Numerous 
studies (Albert 2000, Crucitti 2004) have attempted to measure the resilience of complex networks. In the design of 
networks, the design philosophy is not to predict that failures will occur, but, rather, to design with the knowledge 
that failures will occur – that is, that nodes will fail and external ‘attacks’ on the network may happen. The challenge 
for the network designer is to ensure that the network continues to operate, or fails gracefully, even under such 
circumstances. The results of these efforts conclude that many complex systems exhibit a surprising degree of 
tolerance against failure in a specific class of networks called scale-free networks (Goh 2002). A scale-free network 
is an inhomogeneous network in nature, meaning that a significant number of nodes have very few connections 
while a small number of particular nodes have many connections. The inhomogeneous feature of a scale-free 
network allows for higher failure tolerance under random failure of nodes, but the network is more vulnerable to 
failure when the most highly connected nodes fail (Jeong 2000, Tu 2000, Cohen 2000, D. S. Callaway 2000). In the 
case of designing resilient complex engineered systems, the design architecture can be modeled as a complex 
network and their resilience optimized by ensuring that critical components (nodes) are less vulnerable to failure 
while preserving the interconnectedness of interdependent components. 

There are two concepts that are most relevant: contagion spread and failure tolerance. A contagion spreads by 
altering the states of nodes, which is not dissimilar from the situation of a degraded flow from a component altering 
the performance of interdependent components. Usually, this is described as degradation in system performance, and 
robust systems are those that maintain performance within a tight tolerance despite perturbations. However, 
engineered system designs are naturally different from models such as the internet and World Wide Web 
representations of complex networks. As a result, the appropriate network representation is critical to the success of 
modeling engineered system design, since the representation affects the accuracy and efficiency of the calculation 
for system modularization and optimization. In order to evaluate different system design architectures for any given 
design problem, the graph theoretic formulation must not depend on any particular design architecture. Therefore, a 
general and precise analytical model such as a Non-Linear Dynamical System (NLDS) that uses a system of 
probability equations (D. S. Callaway 2000) for accurate modeling of viral propagation in complex networks can be 
used to investigate the behavior of failure propagation in complex engineered systems. This approach examines the 
propagation behavior via a number of stochastic contact trials per unit time, where the infection expands at a 
constant rate from an initially infected vertex. 

In addition, existing research literature on the analysis of disease epidemic spreading (Y. C. Wang 2003, Chakrabarti 
2008, Moreno 2002) and dynamics of information spreading in social networks (Lerman 2010, Acemoglu 2010)  are 
focused on modeling the failure propagation in complex engineered systems. Despite the fact that the two models 
share similar features, they are very different. For example, the disease-spreading model is based on the physical 
contact between individuals in a social network. Many factors such as biological characteristics of both the carrier 
and infectious agent play an important role in the mathematical model of the spread. However, information 
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spreading is possible through non-physical contact and via the use of communication infrastructures, also the 
decision of whether information should be spread to more individuals or not is made by individuals. Consequently, 
the paper focuses on the epidemic spreading of diseases, and these types of models inspire the proposed model. 

3 METHODOLOGY 

The initial part of the research focuses on producing synthetic networks that model real-world system design. In 
order to evaluate each design, a Modelica-based structural model (Tiller 2001) is created and converted into a graph 
representation of the system’s design architecture. The network is modeled by a connected graph G = (V, E), which 
is a collection of vertices V (also called nodes) with edges E between them. In this context, components of complex 
engineered systems are modeled as nodes of the graph and the connections between these components are the graph 
edges. These graph representations are then used as a tool to convert each design into an adjacency matrix of nodes 
(components) and edge connections. Let A signify the adjacency matrix of an engineered system under study with n 
components. A is defined as follows: 

௜௝ܣ ൌ ቄ1	∀ሾሺ݅, ݆ሻ|ሺ݅ ് ݆ሻ	ܽ݊݀	ሺ݅, ݆ሻ ∈ ∆ሿ
݁ݏ݅ݓݎ݄݁ݐܱ																																			0

ቅ                                                            

 
where Δ symbolizes the set of components. A is a square symmetric matrix with diagonal entries of zero. The edge 
connections between components are defined topologically. A topologically defined graph has components that are 
physically connected. For example, if two components are physically connected together within a design, they are 
connected within the graph and are represented with a “1” within an adjacency matrix.  
In addition, a degree matrix called D is used to define the number of connections associated with a specific node or 
component and is defined based on the following: 
 

௜௝ܦ ൌ ቄ݀௜													݀݁݃݁݁ݎ	݂݋	ݐ݊݁݊݋݌݉݋ܿ	݅	݄݊݁ݓ	݅ ൌ ݆
݁ݏ݅ݓݎ݄݁ݐܱ																																																													0

ቅ                                                        

 
Then, the Laplacian matrix is defined as	ܮ ൌ ܦ െ  .for unweighted graphs ܣ
 

௜௝ܮ ൌ ൝
݀௜																																																																							݅ ൌ ݆
െ1														݄݊݁ݓ	݅ ് ݆	݋ݐ	ݐ݆݊݁ܿܽ݀ܽ	ݏ݅	݅	݀݊ܽ	݆
݁ݏ݅ݓݎ݄݁ݐܱ																																																													0

ൡ 

 
In reviewing the literature in algebraic graph theory (Fax 2004, A. U. Jamakovic 2007, Wu 2011), the second 
smallest eigenvalue of the Laplacian matrix has appeared as a critical parameter for robustness properties of 
dynamic systems that operate as networks. The second smallest eigenvalue of a Laplacian matrix is known as the 
algebraic connectivity. The algebraic connectivity describes the average difficulty to isolate an individual node 
(component) from the rest of the system (Fig. 1). Because the algebraic connectivity of a graph increases with 
increasing node and edge connectivity, a higher algebraic connectivity will result in an increased number of paths 
between nodes. This inherently means that networks with higher algebraic connectivity are more robust (A. U. 
Jamakovic 2007). Additionally, another such parameter exists in the literature called spectral radius. In the review of 
literature from network theory, the spectral radius is the largest eigenvalue of the adjacency matrix (A. K. Jamakovic 
2006). Jamakovic et al. (A. K. Jamakovic 2006) conclude that a smaller spectral radius results in higher system 
resiliency against failure propagation throughout the system compared to other networks of similar average node 
degree. As this value is based on the evaluation of the eigen-spectrum of a single, unique characteristic equation, it is 
important to note that the value is not useful unless it is compared to another graph of similar size. It does not have a 
defined range of values. The spectral radius provides a high level analysis to compare two or more graphs. 
 
The number of modules present in a network is determined using the eigenvalues of the adjacency matrix 
representation of the design (S. D. Sarkar 2011, S. H. Sarkar 2013). To determine the number of modules, the 
eigenvalues of the adjacency matrix are ordered in descending order. The differences between the ordered 
eigenvalues define the number of modules in the system. If k corresponds to an eigenvalue of the adjacency matrix, 
the maximum difference is between the ࢎ࢑࢚ and ࢎ࢑࢚ା૚ eigenvalue. The number of modules is the k value where that 
difference is the greatest. Given the relative quantity of modules within a design, this information can be used for 

 (3) 

 (2) 

 (1) 
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insight into the robustness of a given design topology as well as the resilience to attack propagation for a specific 
design.  
 
The following constraints are defined while modeling the system under design as a network: 

1. A component is not connected to itself, meaning that the diagonal of the adjacency matrix is a diagonal of 
zeros. 

2. A system is represented as a connected system; therefore there is no isolated component (or set of 
components) not connected to any other component. Every node should have a path available to reach 
every other node in the network.  
 

 Maximizing the Design Robustness 3.1

This section demonstrates the effect on the design architecture from maximizing the algebraic connectivity for 
system robustness. A random, generic system is represented as a network. This system is not meant to describe 
possible real-world system architectures, but rather to show how changes in network topology manifest in graph 
analysis metrics. A genetic algorithm is developed to iterate through a random network and change the connections 
between nodes (components) within an adjacency matrix. This is done by maximizing the algebraic connectivity of 
the network in each iteration. Each generation (iteration) represents a system architecture that experiences binary 
cross-over and mutation events to produce the next generation. The system under design is modeled in binary values 
with values of 1 representing a connection between two components, and 0 otherwise. The developed algorithm 
performs evaluations on a binary bit string of characters, which represent the connections between two components. 
Even though the Laplacian matrix is used to define the algebraic connectivity, the adjacency matrix is manipulated 
in order to iterate through the design space. The design space is defined by combinations of generic system 
components, where each component is capable of having a connection with any other component. This results in all 
possible system design candidate architectures including some infeasible architecture. The evaluation process is 
computed on a sequence of design variables, where every possible connection between one component and another 
is a design variable, represented in a binary string of 1 or 0 characters similar to the following: 

	݊݃݅ݏ݁ܦ ൌ ሾ1011010101011111000… ሿ  
                                                                                             

For a more conventional problem, such as a design problem with defined design variables such as length, width, 
height, mass, etc., the algorithm manipulates the string so that the binary address of the design variables is changed 
from generation to generation. This is especially useful for a discrete problem that contains only a handful of 
possible design architectures. Fig. 2 depicts the steps of the algorithmic process to compute the algebraic 
connectivity of the system under design. The maximization of the algebraic connectivity in the genetic algorithm 
produces adjacency matrices with higher component degrees, representing a higher average number of connections 
per component and therefore a higher algebraic connectivity, as expected. 
 
 

 Design Topology and Its Effect on Failure Propagation 3.2

The second part of the research determines how design architecture affects the propagation of failures throughout an 
engineered system. System robustness and resistance to topological failure propagation help to describe how a 
complex engineered system responds to internal and external stimuli.  

The cascading failure is modeled as a Contact Process (CP), introduced by Harris (Harris 1974), and has wide 
applications in engineering and science (Marro 2005, Durrett 1999). A typical CP starts with a component in its 
failure mode, which affects the neighboring components at a rate that is proportional to the total number of faulty 
components. For such a system with n components, given any set of initially faulty components, the propagation of 
failure between components exists in a finite amount of time. This paper presents a reasoning method based on the 
length of time that the failure propagation is active in the system. With this information, system architectures can be 
identified which are resilient to the transmission of failures. 

Spectral radius has thus far been presented as a quantity capable of producing insights into network resilience to 
propagating attacks. This metric is based off an evaluation of the network topology as a whole rather than the 
individual nodes providing avenues for attack propagation. In essence, the spectral radius metric does not capture a 

 (4) 
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network’s inherent ability to ‘bottle-neck’ failures with local topology. The following network propagation models 
allow for this type of analysis. 

3.2.1 Non‐Linear	Dynamical	System	(NLDS)	Modeling	

The NLDS propagation model provides an indication for the length of time to full propagation according to the 
graph layout defined by an adjacency matrix. In the proposed model, a universal failure cascading rate ߚ	ሺ0 ൑ ߚ ൑
1ሻ for each edge connected to a faulty component is defined. The model is based on discrete time-steps	∆ݐ, 
with	∆ݐ → 0. During each time interval, ∆ݐ, a faulty component i infects its neighboring components with 
probability ߚ. 

This process can be represented as a Markov chain since the process is treated as a discrete time stochastic process 
with a finite number of states, in this case	2ே. Each state in the Markov chain corresponds to a specific design 
system configuration of N components, each of which can be in one of the two possible states (Nominal or Failed), 
which results in 2ே possible configurations. In addition, the Markov property implies that the state of the system at 
time ݐ ൅ 1 is dependent only on the state of the system at time t is satisfied in this context. 

 
The proposed solution for solving a full Markov chain is exponential in size. In order to overcome this limitation, it 
is assumed that the states of the neighbors of any given component are independent of one another. Therefore, the 
non-linear dynamical system of 2ே variables is reduced to one with only N variables for the full Markov chain 
which can be replaced by Equation (6). This makes the large design problems solvable with closed-form solutions.  

The probability that a component i is failed at time t is defined by ௜ܲሺݐሻ and the probability that a component i will 
not be affected by its neighbors in the next time-step is denoted by ߞ௜ሺݐሻ. This holds if either of following happens: 

1. Each neighbor is in its nominal state. 
2. Each neighbor is in its failed state but does not transfer the failure with probability (1 െ  .(ߚ

With the consideration of small time-steps (∆ݐ → 0), the possibility of multiple cascades within the same ∆ݐ is small 
and can be ignored. 
 

ሻݐ௜ሺߞ ൌ ∏ ൬ ௝ܲሺݐ െ 1ሻሺ1 െ ሻߚ ൅ ቀ1 െ ௝ܲሺݐ െ 1ሻቁ൰௝:௡௘௜௚௛௕௢௥	௢௙	௜ ൌ 	∏ ሺ1 െ ߚ ∗ ௝ܲ௝:௡௘௜௚௛௕௢௥	௢௙	௜ ሺݐ െ 1ሻሻ 

In the above formula, it is assumed that ௝ܲሺݐ െ 1ሻ are independent from one another. 

As illustrated in Fig. 3, each component at time-step t, is either Nominal (N) or Failed (F). A nominal component i is 
currently nominal, however can be affected (with probability 1 െ  ሻሻ by one of its faulty neighbors. It isݐ௜ሺߞ
important to note that ߞ௜ሺݐሻ is dependent on the following: 

1. The failure birth rate β. 
2. The graph topology around component i. 

           

The probability of a component i become faulty at time t is defined by	 ௜ܲሺݐሻ: 
 

1 െ ௜ܲሺݐሻ ൌ ൫1 െ ௜ܲሺݐ െ 1ሻ൯ߞ௜ሺݐሻ														݅ ൌ 1…ܰ 
 
The above equation can be solved to estimate the time evolution of the number of faulty components	࢚ࣁ, given the 
specific value of β and a graph topology of the conceptual design, as follows: 
 

௧ߟ	 ൌ ∑ ௜ܲ
ே
௜ୀଵ ሺݐሻ 

3.2.2 Epidemic	Spreading	Model	(SFF)	

In this approach, the theoretical model is based on the concept that each component in the complex engineered 
system can exist in a discrete set of states. The failure propagation changes the state of a component from ‘nominal’ 
to ‘failure’ or from ‘failure’ to ‘fixed’. As a result, the model is classified as a susceptible - failed - fixed (SFF) 
model, in which components only exist in one of the three states. The state “fixed” prevents the component from 
failing by the same cause within the time span of the failure propagation epidemic. The densities of susceptible, 

 (5) 

 (6) 

 (7) 
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failed, and fixed components, S(t), ࣋ሺ࢚ሻ and F(t) , respectively, change with time based on the normalization 
condition, which can be formulated as follows: The proposed methodology is based on the universal rate ሺࣆ) in 
which the failed components are fixed in the design, whereas susceptible components are affected by the failure at a 
rate ሺࣅሻ equal to the densities of failed and susceptible components. In addition, ࡷഥ  is defined as a number of 
contacts that each component has with other components  per unit time. It is important to note that the assumption 
made in this proposed model is based on the fact that the propagation of failure is proportional to the density of the 
faulty components. Therefore, the following differential equations can be defined: 
 

݀ܵ
ݐ݀

ൌ െܭߣഥܵߩ,						
ߩ݀
ݐ݀

ൌ െߩߤ ൅ ,ܵߩഥܭߣ
ܨ݀
ݐ݀

ൌ  ߩߤ

 
In order to estimate S(t), the initial conditions of F(0) = 0 (no design fix is implemented yet), S(0)≅1 (almost all the 
components are in their nominal or susceptible modes) , and ࣋ሺ૙ሻ ≅ ૙ (small number of faulty components exist in 
the initial design) is assumed. Therefore the following can be obtained for  

S(t): 	ܵሺݐሻ ൌ ݁ିఒ௞തఘிሺ௧ሻ 

In order to address the contact process in an engineered system, a general connectivity distribution P(k) is defined 
for each design network. At each time step, each nominal or susceptible component is affected with probability	ࣅ, in 
the case of being connected to one or more faulty components. At the same time, every faulty component is repaired 
in the system design. It is assumed that the designers of the system fix the faulty components with probability ࣆ. 
Because every component in an engineered system has different degrees of connectivity (k), the time evolution of 
࣋࢑ሺ࢚ሻ, ࢑ࡿሺ࢚ሻ, and ࢑ࡲሺ࢚ሻ which are the density of faulty, susceptible, and fixed components with connectivity k at 
time t is considered and analyzed. Therefore the Equation (9) can be replaced by the following: 

࣋࢑ሺ࢚ሻ + ࢑ࡿሺ࢚ሻ + ࢑ࡲሺ࢚ሻ ൌ ૚. 

As a result, the global variables such as ࣋࢑ሺ࢚ሻ, ࢑ࡿሺ࢚ሻ, and ࢑ࡲሺ࢚ሻ are expressed by an average over the different 
connectivity classes; i.e.,  

ሻݐሺܨ ൌ෍ ܲሺ݇ሻܨ௞
௞

ሺݐሻ. 

The above equations combined with initial conditions of the system design at t = 0 can be defined and evaluated for 
any complex engineered system. 

4 CASE STUDY 

The paper explores the design space for two case studies to demonstrate the features of graph spectral theory on 
complex engineered system design. The Advanced Diagnostics and Prognostics Testbed (ADAPT) is designed based 
on the requirement to generate, store, distribute, and monitor electrical power in an exploration vehicle. The 
Electrical Power System (EPS) testbed developed at NASA Ames Research Center is used as an example to describe 
the spectral analysis process while the Ramp System of an Infantry Fighting Vehicle (IFV) is used to provide 
comparisons between designs. 

Additionally, two failure propagation models are implemented on the Infantry Fighting Vehicle (IFV) network 
models in an effort to examine their topological structure for resilience to failure propagation. These models, the 
Non-Linear Dynamical System Model and the Epidemic Spreading model, are presented with two cases of different 
failure origins, a highly connected component (an electrical ground node) and a minimally connected component (an 
electrical circuit breaker node). 

 Graph Spectral Theory 4.1
 
Spectral graph approaches were utilized on the ADAPT testbed and the IFV ramp networks. This analysis includes 
an evaluation of network robustness from algebraic connectivity, overall network resilience to propagations from 
spectral radius, and an evaluation of modularity. 

 (8) 

 (10) 

 (9) 

 (11) 



- 7 - 
 

4.1.1 ADAPT	Electrical	Power	System	(EPS)	

Fig. 4 displays the Modelica (Tiller 2001) representation of an existing design of an EPS (Poll 2007). Modelica is a 
language for hierarchical object oriented modeling of engineered systems, which was developed through an 
international effort. The EPS model contains a power source connected through a series of relays to an inverter and 
several loads consisting of a large fan, a direct-current (DC) resistor and an alternating current (AC) resistor. A series 
of four AC or DC voltage sensors and three current transmitters measure the voltage and current at different points 
throughout the circuit. 
 

The Modelica representation of the system is converted to a network representation as described in Section 3. The 
generated network is used to convert the system into an adjacency matrix of nodes (components) and edge 
connections. Including the electrical ground, the EPS system consists of twenty-five nodes or “components”. These 
nodes and edges define the connectedness of the system, or the design architecture of the system. 

The first step is to create the adjacency matrix of the network representation of the EPS system. The first row depicts 
the battery and its connections to other components in the system. The first column of the first row is represented by 
a set of zeros, since the battery is not connected to itself. The second column of the first row is assigned one 
representing the battery's connection to the circuit breaker. Therefore, each row in the matrix represents a component 
in the design and each column signifies the component's connections with other components in the system. Then the 
degree matrix and Laplacian matrix for the EPS, which resulted from Equations (2) and (3) are created. A table of 
the eigenvalues resulting from the adjacency matrix and the Laplacian matrix can be found in Table 1.  
 

Table 1: Eigenvalues generated in EPS Design Architecture 

Adjacency Matrix Eigenvalues -3.236 -2.196 -1.978 . . . 1.931 2.068 3.324 
Laplacian Matrix Eigenvalues 1.457E-15 0.247 0.338 . . . 4.596 5.211 9.324 

 

From the eigenvalues of the adjacency matrix, a spectral radius of 3.324 is computed. As stated previously, this 
number is not directly usable without a comparison to other designs. However, as this example is meant to show the 
process of converting a complex engineered system model to a network, the implications of the spectral radius will 
be discussed further with the comparison of the ramp models.  
 

Table 2: Spec EPS Design Architecture 

EPS System Results 

EPS Design ID Components 
Min Node 

Degree 
Max Node 

Degree 
Avg. Node 

Degree 
Spectral 
Radius 

Algebraic 
Connectivity 

Modules 

1 25 1 8 2.4800 3.3243 0.2473 11 

 

As seen from Table 2, nearly half of the components within the EPS system are also modules. Since many electrical 
components can only be connected in certain configurations, the possible system design space is limited. The 
analyzed EPS has components connected in both series and parallel connections, with the parallel connections 
representing electrical modules. Alternatively, the algebraic connectivity of the system is rather high when compared 
to the Ramp designs, as discussed in the next section. This is mainly due to the properties of an electrical circuit. The 
EPS is modeled with a ground as a component within the system graph. An electrical ground must exist and be 
connected to the proper components in order to complete the circuit. As a result, circuits tend to be interconnected, 
which increases the average node degree of the graph and the algebraic connectivity. However, this relationship does 
not always apply. As will be seen in a Ramp design case study, a high average node degree does not always 
correspond directly to an increased algebraic connectivity. Some systems contain subsystems, which are independent 
of the overall system, but highly interconnected within their own subsystems (high average node degree). Therefore, 
if the rest of the system is sparsely connected, the isolated area of high interconnectedness drives the average node 
degree of the system up, while the algebraic connectivity remains low as it relates to the Laplacian of the overall 
system. 

4.1.2 Ramp	System	of	the	Infantry	Fighting	Vehicle	(IFV)	
 

Algebraic Connectivity Spectral Radius 
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To demonstrate the benefits and scalability of using spectral graph theory on complex engineered systems, a ramp 
system of the Infantry Fighting Vehicle (IFV) is modeled and analyzed next. The modeled ramp is located at the rear 
of the IFV and used for the speedy exit and entry of the troops and the power-operated ramp is also fitted with a 
door. A hierarchical Modelica ramp model consists of an EPS (Fig. 4), a mechanical ramp subsystem, a controller 
subsystem, and a crew subsystem. 

Graph spectral analysis was conducted on three different design architectures of the ramp system. Fig. 5, 6, and 7 
(Appendix) illustrate the design options. Each design implemented in Modelica is a system of subsystems. 
Therefore, every “component” seen in the designs is actually a system of components making up a larger nodal 
percentage of the system as a whole. Each design consists of at least a unique EPS and mechanical subsystem. In 
addition, each design has modeled troops entering, exiting, and residing within the vehicle. 
 
The graph representations of the three ramp designs are shown displayed in Fig. 8. In addition, Table 3 provides 
pertinent information concerning the three designs for use with both propagation models. Included is the design 
identification number to be used during the analysis, the number of nodes (components) contained within each 
design, the minimum degree, the maximum degree, the average degree, and the number of modules. 
 

Table 3: Spec Ramp Design Architectures 

Ramp Design System Properties 
Ramp 

Design ID 
Components 

Min Node 
Degree 

Max Node 
Degree 

Avg. Node 
Degree 

Spectral 
Radius 

Algebraic 
Connectivity 

Modules 

1 
2 
3 

33 
48 
70 

1 
1 
1 

6 
7 
10 

2.3030 
2.3750 
2.3714 

2.8106 
2.9474 
3.3899 

0.0479 
0.0481 
0.0295 

10 
34 
47 

 

Each ramp design is analyzed for failure propagation by evaluating the design architecture for the length of time to 
full propagation (NLDS) and for the breadth of propagation (SFF) when a failure is introduced. The third ramp 
design consists of the highest number of modules, yet has the lowest algebraic connectivity. This is an important 
insight, as it is commonly known that modularity in complex engineered systems is useful for system construction 
and maintainability, but the isolation of failures into a single module typically makes the system less robust, as 
shown.  

 Failure Propagation Models 4.2
 
Two failure propagation models are used to explore the design space of the ramp system of an infantry-fighting 
vehicle (IFV) to demonstrate resilience against cascading failure. Three complete ramp system designs will be 
assessed with a non-linear dynamical system propagation model (NLDS) and an epidemic spreading model. 
 

Table 4: Initial Faulty Components in the Ramp Designs 

The Node Number of the Faulty components in Design Graphs 
Faulty Components Ramp Design #1 Ramp Design #2 Ramp Design #3 

Circuit Breaker 5 17 16 
Ground 23 38 51 

 
Table 4 provides the information for failure origin utilized in this simulation. Node numbers have been provided 
which correlate to the node numbers used in Fig. 8. 

4.2.1 Non‐Linear	Dynamical	System	Model	(NLDS)	

In order to gauge the degree of failure propagation in the design architectures (Fig. 9), an initial set of components in 
a state of failure is defined so the failure can propagate along the underlying graph structure of the architecture. For 
the sake of comparison, each topology has been compared twice, once with an initially failed, minimally connected 
component and once with a highly connected component. Additionally, in order to compare different architectures, 
each cascade is set to originate from the internal EPS subsystem, or electrical power system of each conceptual 
design. Specifically, a minimally connected circuit breaker and a highly connected ground terminal are selected as 
the failure origins. 
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As it can be seen in Fig. 9 the population of the infected components with respect to time is the same for all three 
different design ramps. In the EPS sub-system of each ramp design, the circuit breaker has two connected 
components that can be infected. Therefore, all three designs propagate similarly until a component is failed which 
can cause a drastic increase in infected population size. This occurred near the sixth time step for each design. For 
instance, when the failure reaches the ground node of the EPS, the failure is able to spread much more quickly 
because the ground node is the most highly connected component in each design. The result confirms the 
expectation that a more highly connected component propagates failure to neighboring component more quickly, 
while a minimally connected component, such as a circuit breaker, results in slower failure propagation. 

As can be directly observed from Fig. 10, a failure originating from a more highly connected component (in this 
case the EPS ground) propagates much more rapidly. 

The NLDS model proves that more highly connected components spread a failure much faster. Therefore, nodal 
hubs, or very modular areas of a design are more detrimental to the rapid spread of a failure. However, simply 
having modular design structures does not suggest an inadequacy in resilience towards failure cascades. As can be 
seen from Table 3, a large percentage of the components within each design are considered modular hubs. 

An important design aspect to note, however, is that there was no significant evidence for either initial failure state 
to suggest that one ramp design was more resilient to failure cascades than any others. This is based on the 
assumption that cascading time defines resilience and not infected population size. When the same, minimally 
connected circuit breaker has failed in each design, the time to full propagation for each design is approximately 
fourteen time steps. When the ground terminal is initially failed, the time to full propagation is approximately eight 
time steps. Additionally, the shape of each relationship, representing the progression of failed population size, does 
not indicate any design being more resilient to failure propagations. 

4.2.2 Epidemic	Spreading	Model	(SFF)	

Unlike the NLDS model, the SFF epidemic spreading model is based on the idea that failure propagation can be 
stopped by fixing the faulty components. The SFF model operates by the spread of a failure from an initially failed 
component just as the NLDS model does. However, the SFF model is not a probabilistic model that is solely 
dependent on the architecture of an adjacency matrix as the NLDS model is. Instead, the SFF model requires a time 
step dependent simulation of the spread of a component failure. As with the NLDS model, a time step is regarded as 
sufficiently close to zero so that only the current population of failed components transmit a failure. 
 
 Each "faulty" component has an opportunity to infect a neighboring susceptible component in the next time step. In 
one time step, a component infects its connected neighbors according to a uniform failure probability. The 
simulation run for the SFF model was conducted at ࣅ ൌ ૚૙%. After a component has had an opportunity to infect its 
neighbors, the infected component would then be fixed in the conceptual design to resist the same failure according 
to the probability of failure removal ࣆ ൌ ૚૙%. A repaired component is either considered faulty without the ability 
to transfer the failure to the neighboring components or is susceptible but resistant to the failures of its connected 
neighbors. Therefore, the cascading failure could be stopped with the provision that enough faulty components 
become repaired in the design before they are able to fully propagate the failure. That is, propagations can be halted 
if all transmission routes are blocked by repaired components. 

The same designs were used with the epidemic spreading model as were used with the NLDS model. Additionally, 
the same initial failure conditions were used. An EPS circuit breaker was initially failed as a minimally connected 
component. A ground node was then initially used to propagate the failure as a highly connected component. Fig. 11 
shows the epidemic spreading graphs for an initially failed circuit breaker within the EPS for each ramp design. 

In order to compare the time evolution of faulty component density in the three different conceptual ramp designs, a 
component with an equal number of connections from the EPS subsystems of the ramps is chosen as an initial faulty 
component. The reason for this is the fact that SFF failure propagation is based on connections, therefore the results 
must be reported in terms of faulty component density. As it is depicted in Fig. 11, each data set is representative of 
a set of components with the same degree, e.g., ramp #1: red colored data set represents six components in the 
system design with only three connections. Therefore, each set of components has a failure density ranging from 0 
to 1; 0 means that no components of that degree are infected and a 1 means that every component of that degree 
being infected. Fixed components are not considered faulty. Consequently, a plot of faulty component density 
fluctuates intermittently between 0 and 1, but eventually settles at 0 as all failed components are fixed in the system 
design. In the legend of each graph, a k value is given which is indicative of the degree of the components followed 
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by the number of components within that data set. When a minimally connected component, such as a circuit 
breaker, is chosen as a failure origin, it is compared to an initially infected highly connected component, such as a 
ground, and the failure spreads more slowly, as expected. 

Fig. 12 illustrates the simulation results for an initially failed, highly connected ground terminal. The plots present 
more immediate increases in infection density, regardless of component degree when a highly connected component 
is failed initially. However, once the initial infection has passed, and the failure density begins to subside, the 
reduction of infection density is not dependent on architecture. This is because a stopped failure is repaired 
according to a uniform probability. This failure is not then passed between connected components. 

5 DISCUSSION  

The first ramp design consisted of the fewest number of components. Each ramp design was highly modular, 
especially the third design, which is the most modular EPS. The third ramp design is a good example of why looking 
at the average node degree and algebraic connectivity independently is an unreliable exercise. As can be seen from 
the results in Table 2, the first two ramp designs are very similar. This is not the case with the third ramp design, 
which has a smaller algebraic connectivity with more modules. This is due to the third EPS design used with that 
ramp variant. When compared to the other two EPS designs, the third design has an algebraic connectivity half that 
of the other two. In addition, the third EPS design has more components than the others with a similar average node 
degree. However, the maximum node degree of the third design was greater than the other EPS variants. Upon 
further examination, the third EPS design is found to have many components that are only connected to two 
components, one which supplies electrical current and one that receives current, making it simpler to make a 
component independent from the rest of the system. Additionally, a limited number of components are connected to 
many others. This small number of components is what drives the average node degree of the system up; making 
each EPS design appear similar by average node degree. However, because the algebraic connectivity is a measure 
of the difficulty in making a component independent of the rest of the system, the algebraic connectivity of the third 
ramp design remains low because of the number of components that have a fewer number of connections. The low 
algebraic connectivity is consistent with the recommendation for modular physical system architectures that may 
have the unintended downside of making the systems less tolerant to failure. 

After both models were applied to each of the three ramp designs, the NLDS model did not show any relevant 
evidence to suggest that any one ramp design (graph layout) was more resilient to propagations than the others. 
However, conclusions can still be drawn from the results and are discussed below. The length of time to full 
propagation was not significantly different between designs. The NLDS model can adequately identify those design 
components that are critical to a system and whose failure would cause shutdown of the whole system, as can be 
seen by the differences in failure origins. Conversely, the SFF model can be used to compare different conceptual 
design architectures for resilience to propagation. This can be done by analyzing how a failure propagates through a 
system and then fixing failed components to inhibit the propagation of the failure. The SFF model determined that 
ramp design #3 was more resilient to specific nodal attacks, as both simulations indicated a similar infection breadth. 
This result is consistent with the observation of spectral analysis, since the design #3 is more modular compared to 
the other designs. Therefore, it has a high robustness only because the failure of components can be isolated to its 
module.  

A couple of telling conclusions can be drawn from the result of the case study. Firstly, the NLDS models showed 
that connectivity plays a major role in how fast an epidemic spreads. A few components with a higher degree 
increase the speed of infection throughout a system. This was conclusively shown because the third ramp design, 
having a few nodes with a higher degree than the other designs, will propagate a failure faster. Secondly, larger 
systems will lessen the impact of random or targeted attacks. The ramp system designs showed this because the 
normalized percentage of failure began to equalize between components with fewer connections and components 
with more connections that were used as failure origins when the system size increased. Both conclusions provide 
insight into design architectures that can be more resilient to failures. 

6 CONCLUSIONS AND FUTURE WORK 

Establishing robustness during the conceptual design phase is a difficult yet important aspect to the design of 
engineered systems. Utilizing complex network theory in conjunction with spectral analysis has provided useful 
insight into the design of robust complex engineering systems. Spectral analysis provides valuable metrics in 
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quantifying certain aspects of complex networks. These metrics are algebraic connectivity, modularity, and spectral 
radius. As stated in this paper, the algebraic connectivity represents the difficulty in making one node independent of 
the rest of the system. A higher algebraic connectivity denotes increase in components’ connectivity and higher 
robustness of the overall system. Because of the close correlation between complex networks and complex 
engineered systems, algebraic connectivity is a good metric to be considered to determine the resilience of the 
architecture of complex systems. 

To determine the resiliency characteristics of complex engineered systems, two case studies involving complex 
engineered systems were analyzed using spectral analysis. Utilizing the algebraic connectivity as the main analysis 
metric, both case studies provided evidence for the validity of using graph spectral theory on complex engineered 
systems. 

Further, in the second part of the research based on the two propagation models, a Non-Linear Dynamical System 
(NLDS) model and an epidemic spreading model are developed for use during the early design of complex systems. 
From the two models, equations are provided to model the propagation characteristics of failures in complex 
engineered systems. The NLDS propagation model provides an indication for the length of time to full propagation 
according to a graph layout. The SFF epidemic spreading model provides an indication of the extent of a cascade 
according to a graph layout. 

While both models provide an indication into properties relating to failure propagation, they both require the 
accurate modeling of a complex engineered system as a graph. This is no trivial task. Because the graph of a system 
is dependent on how connections are defined, it becomes increasingly important to develop a standard methodology 
for modeling. In this paper, the ramp designs were modeled based on physical connectivity. To more accurately 
analyze these propagations, additional research would analyze the effect on a complex engineered system if its graph 
were created using different, and perhaps more complicated metrics of design dependency. Such justifications could 
include expanded physical connections that are inclusive of secondary component interactions. They do not 
necessarily have a physical connection interface and may be produced as a consequence of system operation. This 
could include heat, noise, and vibration related interactions, among others. In addition, justifications related to 
energy, material, and signal (EMS) flows would be a necessary next addition to analyze these models for 
applicability with complex engineered systems. EMS flow relations would create connections between components 
that share a flow. For instance, two components would be connected as a part of a thermodynamic process if the 
same working fluid travels from one component to the other. 

Analyzing multiple adjacency matrices created with various connection justifications per design would provide a 
more complete look at a design's resilience to propagations. This would add computational expense in the analysis 
of the design and designer effort to create the matrices. An automated method to create the adjacency matrices 
would solve this issue; however, this would require an interface between a design tool such as a CAD suite and a 
matrix creator. 

In order to validate the use of these models, performance data of an engineered system that is operating in a state of 
failure is a necessary next step. By analyzing the time dependent response of a system under failure, the propagation 
properties predicted by these models can be verified. 
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