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Among the many safety hazards facing chainsaw operators, the phenomenon known as 

kickback is the most dangerous. Kickback occurs when the chain at the tip of the chainsaw is 

caused to stop abruptly, and transfers the energy of the cutting chain to motion of the saw. 

The saw will rotate backward toward the operator rapidly. The limited amount of published 

research on the topic of chainsaw kickback was conducted to develop standardized testing 

for consumer chainsaws. Modern chainsaws are equipped with safety measures such as low-

kickback cutting chains and hand-guard braking mechanisms. These mechanisms have greatly 

improved the safety of chainsaws, but their inherent mechanical simplicity leaves room for 

improvement.  

The current work presents the research that analyzed the possible methods for detecting 

kickback electronically. Phase 1 of this work utilized a set of two accelerometers and a single 

gyroscope to determine if it is possible to distinguish a kickback event from normal cutting 

operations. A method for applying weighting coefficients to the three sensor readings, then 

summing the three signal values was optimized to obtain the greatest margin between 

kickback and normal cutting. The result of this study was that kickback is most easily 

identified by using only a gyroscope and setting a threshold. Phase 2 focused on detecting 

kickback as early as possible. Three methods were attempted: Signal Differentiation, a 



Simplified Bag of Words method, and applying a Support Vector Machine with selective 

undersampling and a stack of classifier vectors. Signal differentiation, while detecting the 

kickback events earlier, also suffered from many false positives. The Bag of Words method 

was unsuccessful in creating results different than the threshold method from Phase 1. The 

Support Vector Machine classification was able to detect kickback an average of 19.4 ms 

before the simple threshold method with no occurrence of either false positives or false 

negatives. This method is the most reliable and provides the greatest likelihood of detecting 

kickback early. 
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Learning Approaches for the Early Detection of Kickback in Chainsaws 

1 Introduction 

1.1 The Problem of Chainsaw Kickback 

Chainsaw kickback is the most dangerous phenomena facing chainsaw operators. 

It is not the most prevalent chainsaw related injury, but it has the highest 

likelihood of causing a life threatening injury [1]. Chainsaw kickback has been a 

concern to chainsaw opertors and manufacturers since they first gained 

popularty among average consumers in the 1970s. Kickback is most dangerous to 

novice users who are unaware of the potential danger.   

Kickback occurs when the chain, as it travels around the tip of the chainsaw, is 

seized, causing the kinetic energy of the chain and drive system to transfer to 

rotational acceleration of the saw itself. This transfer of energy causes the tip of 

the saw to accelerate, which rotates the saw back toward the operator at high 

speed. The acceleration is so great, and the event happens so suddenly that an 

operator may not have time to react before the saw can make contact with him or 

her.  

In the 1970s there was a surge of chainsaw use by inexperienced operators. The 

saws were made available to the general public and more consumers were 
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purchasing them as a result of the energy crisis in this period of time. As a result 

the number of chainsaw accidents doubled from 1976 to 1979 [2]. 

In the 1980s, safety systems were incorporated on all consumer level chainsaws, 

as mandated by the United State Consumer Product Safety Commission. Chainsaw 

brakes were among the changes incorporated to modern chainsaws. The brakes 

consist of a mechanical lever that is forced forward at the onset of kickback. The 

mechanical lever is attached to a braking mechanism that stops the chain before it 

can cause damage to the operator.  

The mandated safety systems on chainsaws were effective but still leave room for 

improvement. There are still thousands of injuries a year that may be attributed 

to chainsaw kickback [3]. The brakes are difficult to design and often become less 

effective over time. The design of these brakes has not changed significantly in 30 

years. 

Even with current safety measures, many chainsaw related injuries still occur 

each year. An estimated 31,000 chainsaw related injuries occurred in 2010 [3], of 

which an estimated 64 percent could be attributed to kickback [4]. Chainsaw 

injuries are typically more severe than other cutting accidents. A wide swath of 

flesh is removed if contact is made with a moving chain, leaving behind a wound 

filled with dirt oil and wood debris [5,6,1].  
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The safety equipment with which modern chainsaws are required to be equipped 

has improved the safety of chainsaws for average consumers. There are still many 

ways that the safety of these powerful tools can be increased.  

Research has been conducted to better understand the causes of kickback and to 

help quantify the its dangers. The following sectin details to bodies of research 

that have attempted to better understand and quantify kickback. This is followed 

by an introduction to the current work which  details the methods and analysis 

performed to effectively detect kickback as early as possible. 

1.2 Prior Work 

In the 1980s when consumer chainsaw use became so prevalent, and the US 

Consumer Product Safety Commission made the decision to require certain safety 

features be added to chainsaws, several different organizations set-out to 

quantify the kinematics of a chainsaw during kickback. Most of the research took 

place from a regulatory standpoint to quantify the kickback energy for different 

saws equipped with different bars and chain. These values were then used to 

develop the standards that govern the design of chainsaws, today. The works 

discussed in this section are relevant in that they attempt to better understand 

that kinematic signature of kickback.  Two works are discussed that analyze the 

kinematics of kickback. First, the research used to develop the American National 

Standards Institute’s (ANSI) chainsaw kickback regulations is discussed. 
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Secondly,  a research paper that attempted to obtain a method for testing human 

reactions to chainsaw kickback by using a bio-mimetic robot is discussed.  

1.2.1 ANSI B175.1-2000 Gasoline Powered Chainsaws-Safety Requirements 

This standard details the methods for testing safety compliance of gasoline 

powered chainsaws. The research conducted in developing the testing device 

used to determine the kickback level for a chainsaw is relevant to this research. 

Section 5.11 of ANSI B175.1-2000 details the acceptance requirements for 

kickback and section 8 outlines the testing procedures [7].  

The kickback test machine is used to gather data about the energy of a kickback. 

The saw is mounted at the handles with a center of rotation about it’s center of 

mass. The saw’s throttle is adjusted to bring the engine to either 8000 RPM or 

10000 RPM. A coupon of Medium Density Fibreboard (MDF) is mounted on a 

horizontal slider, and a weighted pully system is pushed into the nose of the 

chainsaw. The angle of the coupon with respect to the chainsaw bar is adjusted 

until the highest energy kickback is obtained. The kickback energy is measured 

using a system of weights suspended pulleys. When a kickback is recorded, the 

saw rotates about it’s center of gravity and the coupon with a similar weighted 

pulley slides forward, away from the chainsaw. The linear energy in the 

horizontal direction, and rotational energy are measured from these values and 

input into a computer simulation. 
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The computer simulation is designed to simulate an average person’s reaction to 

kickback and model the reaction forces theoperators apply to the saw to arrest 

kickback. The result of this simulation is the Calculated Kickback Angle (CKA) 

which is used in the safety regulations as a way of quantifying the kickback 

severity, and thedanger of a given chainsaw.  

The research performed to develop the computer simulation utilized various 

operators intentionally causing kickbacks. The kickbacks were recorded using a 

video camera, then the motion data for the saw was tracked on the video screen. 

The position values were fit to a curve then differentiated to get velocity and 

acceleration. Using the acceleration profile of the saw during multiple tests, the 

reaction forces through the two handles were extrated using several assumptions 

to reduce the complexity of the problem. One major assumption made was that 

the reaction forces that were applied to the saw were applied equally by both 

hands, as otherwise there would be too many unkown forces to solve for. These 

reaction forces were then applied to the computer simulation as a function of 

time after the kickback event. The computer simulation applies a reaction force to 

the handle at each time increment until the energy obtained from the test is 

reached. The model considers the polar moment of inertia of the saw, and the 

position of the handles with respect to the saw’s center of gravity. These inputs 

are used to calculate the CKA for each saw [8] [9].  
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This research observed many interesting phenomena of chainsaw kickback and 

generated remarkably accurate results given the technology available. The goal of 

this research was to quantify the magnitude of kickback for the purposes of 

developing standards to reduce the dangers that average consumers would face 

when purchasing a chainsaw.  

1.2.2  Construction and Evaluation of a Chainsaw Kickback Simulator 

In this work a human-mimetic device was developed that was designed to match 

the anthropomorphic properties of the average (50th percentile) adult male’s 

upper body [10]. Kickback was simulated by driving a flywheel into the nose of a 

chainsaw equipped with a bar that had no chain. The flywheel had a similar 

inertia and speed to a typical small to medium sized chainsaw. The goal of this 

research was to develop a robotic mechanism that could mimic the passive 

human response to a kickback to obtain more detailed reaction information than 

the ANSI kickback test machine without putting a human operator in harm’s way.  

The kickback fixture was modeled after a human chainsaw operator from the 

waste up. A series of ball joints were placed at the shoulder, and elbow joints. 

Actuators were attached to each appendage and programmed to respond at 

response rates similar to a human.  

Five human subjects were equipped with electromyography sensors placed over 

the key muscle groups that would resist kickback. This data allowed the 
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researchers to identify the reaction times of the operators to the kickback events. 

Subjects were also equipped with white markers that were analyzed to trace the 

path of key joints of the operator. Several different tests were performed with a 

small chainsaw and a medium chainsaw. The results from the five test subjects 

were compared to the simulator and analyzed for statistical significance. For the 

smaller saw it was determined that the simulator was similar to the humans at 

the 95% confidence level, but the larger saw was not statistically similar.  

The poor performance with a heavier saw was believed to be the result of a rigid 

grip and lack of a wrist joint on the simulator. This type of simulator has promise 

for analyzing dangerous situations without endangering human operators but 

would need further refinement to reach a necessary level of reliability. The 

results from this type of simulation are more qualitative then quantitative so they 

are good for comparative analyses between multiple products but are less 

adequate for quantifying the kickback energies involved in a kickback event.  

1.3  

1.4 Current Work 

Developing a safer chainsaw will help both consumers and manufacturers of 

chainsaws. The continual cost reduction of semiconductors like sensors and 

microprocessors allows for more advanced technologies to be incorporated into 

chainsaws without dramatically increasing the price. In order to utilize the 
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reduced cost of sensors, research must be conducted to better understand their 

capabilities and determine the best method for detecting the occurrence of 

kickback.  Once a method for detecting kickback reliably is established, a method 

for braking the saw could be designed.  

An empirical approach was chosen to develop a detection algorithm over some 

sort of computational modeling. Computational models would be difficult to 

create with any accuracy. A computational model would rely on several 

probabilistic models with the following factors: the physical dimensions of the 

operator, the physical build of the operator, the position of the saw in relation to 

the operator at the onset of kickback, the position of the saw in relation to object 

causing kickback, the size and power of the chainsaw, the speed of the saw during 

a kickback event and the point of initial contact on the chain. Each factor is known 

to drastically affect the outcome of a kickback event.  

An empirical approach was chosen to help account for the variability between 

operators, and kickback scenarios. A series of tests were performed that could be 

classified as normal cutting that were then compared to kickback events. Every 

test was performed with several operators, and on many different sizes and types 

of logs. The chainsaw arrangement was constant for each phase of testing as a 

detection system would be developed for a specific chainsaw. 
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This paper presents a new safety system that will use a system of electronics to 

detect kickback. First, a background of chainsaws will present an outline of 

standard chainsaw anatomy, explain how and why kickback occurs, define some 

typical chainsaw cutting scenarios, discuss the history of chainsaw safety, and 

examine the current chainsaw brake mechanism. Then, the setup and methods for 

the two phases of data collection will be discussed. The first phase attempted to 

determine if kickback could be detected and the third phase looked into detecting 

kickback as early as possible. The next chapter details the analysis methods used 

for each phase of data collection, followed by a discussion of the results and 

conclusions.  
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2 Background 

2.1 Chainsaw Anatomy 

While all chainsaws are different, they all contain at least the following common 

elements: a power head, a drive sprocket, a guide bar, and a cutting chain, as are 

depicted in Figure 1. The power head provides rotational energy to propel the 

cutting chain. It is typically either a two-stroke gasoline engine, or an electric 

motor powered by either standard AC power, or a DC battery. Energy from the 

power head turns the drive sprocket, which moves the cutting chain about the 

guide bar. The chain travels around the guide bar, giving the cutting surface its 

shape. A U-shaped channel in the guide bar prevents the cutters from leaning 

over. Veins that run through the inside of the guide bar supply lubrication to the 

chain to increase cutting performance and reduce wear.  
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Figure 1: Efco model 152 Chainsaw showing the position of the (i) Power Head, (ii) Drive Sprocket, (iii) 

Guide Bar, and (iv) chain. 

Most chainsaws have a two-handle configuration. The rear handle holds the 

throttle-trigger and interlock that controls the saw’s engine while the top handle 

is used to help support and guide the saw. For a typical right-handed operator, 

the right hand holds the rear-handle and operates the throttle, while the left hand 

is placed on the top handle. The top handle carries the weight of the saw, as it is 

typically placed above the saw’s center of gravity and the hand guard is placed 

directly in front of this handle.  There are other configurations of chainsaw 

handles, but they are less common and are typically only for professional saws. 

(i) Power Head 

(ii) Drive Sprocket 
(hidden behind side cover) 

(iii) Guide Bar 

(iv) Chain 
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Figure 2 shows a typical arrangement for hand guard, handle, throttle trigger, and 

interlock placement. 

While chainsaws have changed the logging industry, replacing many handheld, 

labor-intensive tools, there are many dangers associated with their use. 

Compared to other cutting tools like circular saws and band saws, chainsaws have 

a much larger exposed cutting surface and typically do not have safety guards 

that protect the operators from accidental contact with the cutting surface. 

Chainsaws are also unique in that both the top and bottom of the cutting surface 

are exposed.  

 

Figure 2: Image of a typical chainsaw indicating position of the (i) Handguard, (ii) Front Handle, (iii) 

Rear Handle, (iv) Throttle Control, and (v) Throttle Interlock. 

 (i) Hand Guard 

 (iv) Throttle-Trigger 

 (v) Interlock 

(ii) Front Handle 

 (iii) Rear Handle 
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The cutting portion of a most chainsaws is a type of roller or leaf chain. Drive 

links that mesh with the drive sprocket are sandwiched by two plates, called tie-

straps. A cutter replaces a tie strap every second link (for larger chainsaws, the 

cutters are spaced further apart).   Each cutter has two parts, the chisel and the 

depth gage. The cutter uses a chisel type cutting mechanism that removes a small 

wood chip with each pass. The depth gage is a small lobe that is placed just before 

the cutter that sets the depth of each cut. Figure 3 shows a typical section of chain 

showing the placement of the different links. 

 

Figure 3: Segment of chainsaw chain indicating the different components 

2.2 Chainsaw Kickback  

On a typical chainsaw, the chain travels away from the operator on the top of the 

bar and back towards the operator on the bottom. When kickback occurs, the 

motion of the chain is suddenly transferred to a motion of the chainsaw body. The 

Drive Links 

  Chisel Cutter     Depth Gage   Tie-Straps 

Cutter Link 
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saw body rotates rapidly toward the operator. Figure 4 shows a typical chainsaw 

with arrows indicating the forces and rotation of the saw during kickback. The 

kickback event is so abrupt that the operator has little time to react. Figure 5 

shows a four-frame sequence of an operator experiencing kickback that was shot 

with a high-speed video camera. The first frame shows the saw when the initial 

contact was made. The second frame shows the saw penetrating the log a small 

amount before kickback occurs. The third frame shows the saw as the brake 

begins to actuate. Most chainsaws are equipped with a brake attached to the 

hand-guard that actuates when the hand-guard is forced forward. In the instance 

detailed in Figure 5, the inertial mass of the hand-guard forces it forward without 

contacting the operator. The final frame shows the position of the saw at the point 

where the operator was able to bring its motion to a stop, 60° from the point of 

first contact. This was an intentional kickback performed by a skilled operator. If 

a similar kickback were to occur unintentionally to an unprepared operator, the 

consequences could be devastating. 
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Figure 4: A typical illustration indicating the chain motion direction, and saw motions that occur during 

kickback. 

 

Figure 5: A sequence of images depicting a kickback event. (1) First contact was made with the log by the tip 

of the chainsaw bar. (2) The saw was able to cut into the log about ½ inch before the chain caught and 

kickback occurred. (3) The chain stops at this point. This kickback event was forceful enough to actuate the 

chain brake inertially. (4) The operator is able to stop the saw’s motion because he was prepared for the 

recoil. 

Chain Direction 

Direction of 

Kickback 

Acceleration 

Brake Actuation 

Saw 

Rotatio

n 

Danger 

Zone 
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The first type of kickback is the result of the cutters on the top portion of the nose 

of the bar becoming lodged, rather than cutting. As the chain passes around the 

nose of the guide-bar, the orientation of the depth gage to the cutter changes, 

allowing the cutter to penetrate deeper into the wood. An illustration of the 

phenomena is shown in Figure 6. This change in cutting depth causes the cutter to 

get stuck. The kinetic energy of the chainsaw chain and motor is then transferred 

to the saw body. This method for initiating kickback is the most common, and the 

most easily initiated.  

 

Figure 6: Typical Chainsaw bar equipped with high kickback chain illustrating the cutting depth change 

around the nose of the bar. 

The second type of kickback occurs when the work-piece pinches the sides of the 

chain as the cut is made. Logs frequently shift as cuts are being made causing the 

Normal Cutter 

Depth 

Cutter Depth on 

Saw Nose 

Direction of Chain Travel 
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chainsaw to bind, and stop its normal motion. If the chain is bound on the tip of 

the saw it can result in kickback. This mode of initiating kickback is much less 

common because typically this type of binding occurs when the saw has already 

progessed into a cut and binding the saw will cause the entire bar and chain to 

become lodged inside of a cut. Another phenomena that occurs from pinching the 

chain is known as linear kickback or pusback. This occurs when the top of the bar 

gets pushed and pushes the chainsaw out of the cut. This phenomena is not as 

dangerous because it does not cause a great deal of rotational energy, but it can 

still cause the operator to lose control of the saw.  

2.3 Chainsaw Normal Cutting Operations 

There are several types of cutting operations that a typical chainsaw will see. 

Each of these operations will have different motion and vibration characteristics 

that are important to characterize in order to establish a baseline of normal 

chainsaw use that must be distinguished from kickback by any type of detection 

system. The types of cuts performed during the three phases of data-collection 

were nose-clear vertical cuts, nose-clear horizontal cuts, boring cuts, bias cuts, 

and knot bumping.  

Nose-clear vertical cutting is performed on logs or trees that are downed and 

lying parallel with the ground as is pictured in Figure 7. The bar of the chainsaw is 

long enough that the nose of the bar protrudes beyond the backside of the log. 
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Cut Direction 

This type of cutting is seen most commonly when cutting a log into smaller pieces 

for fire wood or brush clearing. With this type of cutting it is important to support 

the log such that the weight of the log pulls the cut apart. When cutting 

downward into a log, if it’s supported in more than one place, the cut can try to 

close from the weight of the log. When cutting from beneath the log up, if the log 

is cantilevered it will have the same effect.  

 

Figure 7: Illustration of nose-clear vertical cutting indicating the direction of the cut 

Nose-clear horizontal cuts are performed during the tree-felling process. For this 

type of cutting, the saw is held on its side with the bar of the chainsaw parallel to 

the ground, and a cut is made in a vertical tree or log. A depiction of the 

orientation of the saw to the tree is shown in Figure 8. Felling trees is a fairly 

technical operation and requires the use of wedges to keep the weight of the tree 

from pinching the log into the cut.  
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Boring-cuts are made by pushing the nose of the chainsaw straight into the center 

of a log. A picture of an operator performing a boring cut can be seen in Figure 9. 

These types of cuts are performed to relieve in cuts in larger logs. The problems  

with the saw binding that can occur during nose-clear vertical cutting can be 

aleviated by beginning the cut in the center of the log. This type of cut is very 

susceptible to kickback as it utilizes the nose of the chainsaw. In order to safely 

bore into a log, the bottom portion of the nose is used to initiate the cut until a 

small knotch is created, then the rest of the bar can be plunged into the log. The 

initial kickback tests were performed by creating a notch in a downed log and 

performing the kickbacks inside this notch to prevent the operator from seeing as 

high a level of risk.  

 
Figure 8: Illustration of a horizontal cut made into a vertically oriented log, showing the direction of cut. 

Cut Direction 
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Figure 9: Image of a boring cut indicating the cut direction. 

Bias cuts are used during the tree-felling process and during some of the limbing 

processes. A cut is made at approximately a 45° angle to the centerline of the log 

or tree. Figure 10 shows an illustration of a bias cut being made into a vertical log. 

These cuts are used to relieve the pressure that can be put on the bar during . 

Limbing often uses bias cuts because branches come out of the tree at an angle, 

rather than perpendicular, and the cut is usually made vertically with respect to 

the tree.  

Cut Direction 
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Figure 10: Illustration of a bias cut made into a horizontally oriented log, showing the direction of cut. 

Knot-bumping is a process used sometimes to remove knots, or limbs from logs. 

This method requires that the operator swing the chainsaw like an axe or a 

hammer at the base of the knot. Figure 11 shows an illustration of knot bumping, 

indicating the direction of saw motion.This operation is a fairly technical 

operation and is not commonly performed by the average consumer. The saw can 

be swung upward or downard at the knot to remove it—that is to say that either 

the top of the chainsaw bar or the bottom can be used during knot bumping. The 

direction of knot bumping depends on the positions of the operator, log and knot 

to be removed with respect to oneanother.  

 

 

Cut Direction 
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Figure 11: Illustration of knot-bumping from above and below with arrows indicating the direction of 

motion. 

2.4 Chainsaw Safety History 

Modern versions of chainsaws came into use after advancements in 

manufacturing techniques during World War II. Chainsaws became a common 
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tool for lumberjacks around this time. It was during the energy crisis of the 1970s 

that a growing number of average consumers began using chainsaws to help with 

the high costs of heating by harvesting trees for firewood [11]. This increase in 

novice chainsaw use was correlated with an increase in chainsaw-related injuries 

[2,6]. 

In 1980, the US Consumer Product and Safety Commission (USCPSC) issued a 

mandate to increase the availability of safety systems on consumer level 

chainsaws [2]. As a result, all consumer level chainsaws were required to be 

equipped with safety mechanisms to help reduce the danger of kickback. These 

safety measures, along with more ergonomic chainsaw shapes, have provided a 

dramatic reduction in the occurrence of chainsaw-related injuries [12].  

The USCPSC issued a docket that describes the types of safety measures with 

which chainsaws must be equipped [13]. All chainsaws were required to be 

equipped with at least two of the following three mechanisms: a certified low-

kickback chain, a chain brake, or a nose guard.  

Low-kickback chains add an additional link in front of the cutter link that helps to 

reduce the change in cutter depth around the nose of the bar. These types of 

chain, while reducing the forces seen during kickback, also tend to reduce the 

performance of the chain by reducing the depth of each cut and preventing chips 

from being cleared from the cut as easily. Figure 12 shows one type of low-
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kickback chainsaw chain from Oregon®. This type of chain replaces a tie strap 

with a bumper that helps to reduce the change in cut angle that is shown in Figure 

6.  

Chainsaw brakes are designed to actuate when the saw rotates back toward the 

operator. The hand guard in front of the top handle on the saw is attached to a 

braking mechanism. As the saw rotates toward the operator during a kickback, 

either the operators wrist, or the inertia of the brake presses it forward which 

actuates a brake. The brake is effective in reducing the occurrence of injury in the 

event of a kickback. It does nothing to reduce the reaction force of the kickback 

event or deter the kickback event from occurring.  

 

 

Figure 12: Oregon® R-Series(90SG) Saw Chain, a type of low-kickback chain[13] 

Nose guards cover the nose of the guide-bar with a piece of plastic or metal, 

preventing the nose of the chainsaw from contacting the work piece. This system 

almost eliminates the occurrence of kickback, but limits the functionality of the 

  Bumper Link Chisel Cutter 
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chainsaw and may cause the saw to be more dangerous than without guard [12]. 

Any type of action that utilizes the tip of the chainsaw like felling trees, or 

removing limbs will be difficult or impossible to perform. Many operators 

commented on the precarious stances that must be used in order to perform 

certain tasks with a nose-guarded chain. They also commented on the increased 

likelihood of the chainsaw getting stuck during a cut. These guards are easy to 

remove and commonly are removed. Nose guards are typically only found on pole 

chainsaws and very small chainsaws (saws that have a bar that is 10-inches long 

or less) or on pole saws that have the cutting bar attached to the end of a long 

pole to trim tall trees from the ground. Mostly these saws do not have a brake 

mechanism because it would be too heavy, too complicated or too expensive for 

the product.  

Most chainsaws are equipped with a low-kickback chain and chainsaw brakes as 

they have the least impact on saw performance while still significantly improving 

the saw’s safety. Chainsaw brakes are an integrated part of the saw, and are 

typically not tampered with [12]. Nose guards while actually providing the 

greatest protection from kickback, are rarely put on chainsaws. Nose guards 

inhibit the functionality of the chainsaw, as they prohibit certain cuts that use the 

nose of the saw from being made. The nose guard must be removed to change the 

chain, so they are not typically permanently fixed to the bar. Because they are 

easy to remove, chainsaw operators tend to simply remove them [12].  
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2.5 Current Braking Systems 

Modern chainsaws are almost universally equipped with some sort of braking 

mechanism. The brake is the only system on chainsaws that protects the operator 

after kickback has occurred. The brakes are designed to actuate when the saw 

experiences a rapid rotation toward the operator. The hand-guard just in front of 

the top-handle is connected to a band brake that stops the motion of the cutting 

chain before contacting the operator.  

A weighted hand-guard is used to detect the occurrence of kickback. During a 

kickback, the hand guard is either forced forward by its own inertia, or the 

operator’s hand or wrist contacts the guard and pushes it forward if the saw 

rotates a large enough distance. The brake system is designed to actuate when 

rotational acceleration (α) of the saw exceeds a given threshold. The hand-

guard’s lever arm extends out from the center of rotation of the saw such that the 

mass at the end of the wrist-guard sees a tangential force (Ft) due to the 

rotational acceleration. Figure 13 shows the relative forces on the hand guard and 

the direction of saw rotation during a kickback.  
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Figure 13: A typical chainsaw showing the rotational acceleration (α) of the saw during kickback and the 

reaction force (Ft) on the hand guard. 

The brake mechanism is typically a band-brake that tightens around the saw’s 

centrifugal clutch drum. The band brake is applied by spring tension and is held 

back by an over-center linkage. As the hand-guard is forced forward, the over 

center linkage is pushed under-center stops resisting the tensions spring as is 

depicted in Figure 14. Once the band brake is engaged, it must bring the drive 

sprocket to a stop in less than 150ms [7], [14], [15]. The motor transmits power 

to the drive sprocket through a centrifugal clutch. Once braking is applied the 

clutch slips to prevent the motor from stalling.  
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Using a purely mechanical braking system has several advantages. The 

mechanism is simple and robust. If the brake is not actuated inertially, it will 

likely be actuated by the operator’s hand. The weighted system can be tuned by 

selecting the appropriate spring stiffness and hand-guard mass to provide the 

right cut-off acceleration, given a kickback event. The band brake that is typically 

used is a very simple and robust braking method that does not wear quickly and 

provides adequate stopping force. The system is so simple and reliable that it is 

has hardly changed in more than 20 years.  

The system can be thought of as two separate subsystems: kickback detection and 

saw braking. Kickback detection is achieved by the weighted hand-guard that 

experiences a reaction force from the rapid rotational acceleration. The kickback 

detection system must be able to reliably detect the rapid acceleration of the saw 

while avoiding accidental actuation due to the high-frequency, high-magnitude 

vibrations of the saw. The kickback acceleration magnitude is essentially 

 
 Figure 14:Chainsaw showing over-center linkage, band brake, and hand-guard position before actuation 

(left) and after brake actuation (right) 
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determined by the spring stiffness on the over-center linkage. To damp out the 

high-frequency noise of the saw’s normal use, the hand-guard is designed so it 

must travel through a certain rotation before tripping the over-center linkage. 

Damping out this high-frequency noise means that the saw must travel a larger 

distance before the brake is actuated.  

The braking mechanism is usually a band-brake. The band-brake is used because 

it is compact, simple, and it does not wear out quickly. It is also easily adapted to 

the use of a centrifugal clutch which transmits torque through the inside of a 

metal drum. The band brake wraps around the outside of the centrifugal clutch 

and is tightened around it with a spring. Centrifugal clutches use centrifugal 

forces to apply force to abrasive pads that transmit torque. This allows the motor 

to idle without rotating chain. The brake mechanism must be able to stop the 

chain when it is running at its maximum speed. This means that the band brake 

must slow the inertia of the saw and torque of the motor until the clutch begins to 

slip. 

The danger of a purely mechanical system is not necessarily in the most violent 

kickback events, but in the less forceful events. If the brake mechanism is not 

actuated inertially it must rely on contact with the operator to brake the chain. 

This means the saw must travel even further before stopping. If the operator’s 

hand is not in the correct position, there is nothing to stop the saw but the 

operator. 
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3 Exploritory Data Collection and Analysis 

An exploritory study was conducted initially to provide information for 

appropriate sensor selection and data collection methods. The goal of this study 

was to determine the appropriate sensor bandwidth, the dynamic range of the 

sensors to be used, and an adequate sampling rate. The results of this study will 

be used to design the data collection setup and methods that will be used for 

Phase 1 and Phase 2 data collection and analysis. Phase 1 uses a battery powered 

chainsaw and Micro-Electro-Mechanical Systems (MEMS) sensors to determine if 

it is possible to detect kickback. Phase 2 uses a more cost effective set of MEMS 

sensors on a gasoline powered chainsaw to determine how early kickback can be 

detected.  

3.1 Exploratory Data Collection 

Exploritory Data Collection Setup 

Exploritory data collection testing was performed with the components listed in 

Table 1. The saw was a high-end, consumer AC-electric chainsaw and the sensors 

used were from existing lab equipment.  

 

Table 1: Exploratory Data Collection Equipment 

Component Description 

Stihl MSE 180 C 120VAC 11 amp electric Chainsaw 
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PCB Piezotronics T356A66 3-axis 4 kHz ±500 g piezo-electric accelerometer 

Analog Devices ADXL335 3-axis 1.6 kHz ±3 g MEMS accelerometer 

ST LISY300AL 1-axis 88 Hz ±300°/s MEMS gyroscope 

National Instruments CompactDAQ 
NI 9234 accelerometer DAQ, NI 9201 voltage DAQ, 
and NI cDAQ-9138 chassis 

The sensors were mounted to the saw as depicted in Figure 15. The two MEMS 

sensors were mounted just beneath the handle in a sealed box and the piezo-

accelerometer was mounted on a small bracket just in front of the handguard. The 

data acquisition hardware was connected to a laptop and stored at a sampling 

rate of 10 kHz.  

 

Figure 15: Image indicating the location of sensors mounted to the AC electric chainsaw during Exploratory 

Data Collection 
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Exploratory Data Collection Methods 

Using the test setup described in baseline measurements were collected using the 

small Stihl electric chainsaw. The goal of this testing was to obtain baseline 

motion and vibration information for a typical chainsaw Table 2 lists the types of 

cutting operations performed on each of the several types of media. 

Table 2: Exploratory Data Collection Normal Cutting Operations 

Media Cutting Operation 

12-inch fir log 
Nose-clear vertical cut 

Bore-cut 

2-inch ash branch, cantilevered 3 
feet 

Nose-clear vertical cuts 

Vertical cuts at saw nose 

Simulated knot-bumping 

6-inch fir log 
Nose-clear vertical cut (bottom up) 

Bias cut 

Dry 4x6 beam 
Bias cut 

Nose-clear vertical cut 

10-inch rain-soaked oak log 
Nose-clear vertical cut 

Bore-cut 

The method for simulating kickback that was commonly used for demonstration 

purposes was to bore part way into a log, and push the nose of the bar into the 

back side of the cut. This causes the saw to kickback but it contacts the top of the 

bored cut before it can accelearte toward the operator. The simulated kickback 

operations performed are listed in Table 3. The first two kickback simulations 

listed in Table 3 utilized the standard simulation method. The third simulation 

used a second log, rather than the inside of the bored-cut to attempt to better 
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match reality. The last simulation was attempted on the outside of the log with no 

guarding.  

 

Table 3: Exploratory Data Collection Kickback Simulations 

Media Cutting Operation 
No. of 
Trials 

12-inch fir log Kickback simulations within bore-cut 8 

10-inch rain-soaked 
oak log 

Kickback simulations within bore-cut 11 

Simulated kickback by extending saw through notch to 
kickback on log hidden behind 

13 

Kickback on outside of log 4 

After initially reviewing the collected data a question was raised over the practice 

for safely simulating kickback. Because the nose of the saw stays within a knotch 

that is concave, it is difficult to determine what part of the kickback event is 

caused by the initial contact, and what part is caused by the saw contacting the 

top of the knotch. As a result, all future kickbacks were conducted on the outside 

of logs with some sort of guarding in place to protect the operator. 

3.2 Exploritory Data Analysis 

To better understand the noise characteristics of a chainsaw a spectral 

measurement tool was used to determine the dominant vibrational frequencies 

present during use. A Fast Fourier transform was chosen to characterize the 

vibrational noise of the chainsaw during normal use, as can be seen in Figure 16. 

A Fast Fourier transform (FFT) is an optimized method for determining the 
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discrete Fourier transform (DFT). A DFT transforms a function in the time 

domain into components of different frequencies. The Cooley-Tukey method that 

was used [16] to obtain the FFT is the most widely used FFT and is very efficient 

at converting time series data into the frequency domain [17]. Using this tool a 

picture of the dominant frequencies present in a dataset was obtained to assist in 

future sensor selection, signal filtering, and samplng rate selection.  

 
Figure 16: Spectral analysis of a saw during free running (black) and nose clear cutting (grey). 

In addition to obtaining the FFT, the time series of each test was plotted to 

identify the maxima for both normal cutting and kickback scenarios. This 

information was used to select appropriate sensors and to better understand the 

differences between normal cutting and kickback motions.  
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The results of the spectral analysis seen in Figure 16 shows that the dominant 

frequencies for both a free-running saw, and a saw during a standard nose-clear 

cut, have similar vibrational noise characteristics. The sprocket on the chainsaw 

was rotating at approximately 2200 RPM, which translates to about 37 rotations 

per second. The most prominent frequencies occur between between 500Hz and 

2200 Hz. A sampling rate was chosen that would capture these frequencies so 

that appropriate filtering could analyzed and selected later during post-

processing. For subsequent testing a sampling rate of no less than 5000 samples 

per second was used. Many of the shorter tests were sampled at 10,000 samples 

per second, and for longer tests where the size of the data became an issue, a 

sampling rate of 5000 samples per second was used. The matlab code used to 

perform these analyses can be found in Appendix A.1. 

Examining the maxima of each dataset, the dynamic ranges of sensors were 

chosen. The desired range of accelerometers was ±100 g and the gyroscopes 

were chosen to be at least 300 degrees per second.  

4 Phase 1: Detecting Kickback Reliably 

The goal of Phase 1 of the project was to determine if kickback could reasonably 

be detected and distinguished from normal cutting activities. A low-powered 

battery powered chainsaw was used that would create the lowest energy 

kickbacks. The difference between normal cutting and kickback with will be the 
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smallest with such a low-powered chainsaw, which allows the detection methods 

to be developed at the lower bound of possible detection levels. A series of cutting 

operations and intentionally inititated kickbacks would be performed and an 

empirical approach would be taken to determine the feasibility of detecting a 

kickback. Two types of MEMS accelerometers would be used to monitor the 

chainsaw along two axes, and two types of gyroscopes would be used to monitor 

rotation about the third axis. A method of combining the signals from three 

sensor axes was used that weighted the values from each sensor differently. An 

optimization scheme was used to find the combination of sensors that provided 

the largest margin between normal cutting and kickback.  

4.1 Phase 1 Data Collection Setup 

The first phase of testing was conducted with components selected specifically 

for this application. The components used are listed in table 2.  For this phase of 

testing MEMS sensors were chosen as these are more likely to be used on a 

production saw because of their small footprint, ease of integration, and low cost. 

Sensors were mounted under the handle, as far forward as possible because this 

is close to the same location that a control board would be located. The dynamic 

range was selected to be over 50 g with a target above 100g, and a bandwidth 

over 1.5kHz with a target over 2 kHz. These values were chosen after 

examination of the testing results from the exploratory data collection to capture 

as much of the necessary information as possible.  
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Table 4: Phase 1 Data Collection Equipment 

Component Description 

Oregon PowerNow 40V Max  40V Battery-powered prototype chainsaw 

Analog Devices ADXL001-250 1-Axis 22 kHz ±250 g MEMS accelerometer 

Analog Devices AD22281 1-axis 24 kHz ±70 g MEMS accelerometer 

Analog Devices ADXRS620 1-axis 2.5 kHz ±300°/s MEMS gyroscope 

Analog Devices ADXRS652 1-axis 2.5 kHz ±300°/s MEMS gyroscope 

National Instruments USB-6211 NI multifunction DAQ module 

Kickback Safety Shield 
Plexiglas shield to protect operators during 
testing 

For Phase 1, testing all of the sensors were mounted in a single box that was 

placed on the underside of the saw, just below the saw’s throttle trigger as is 

shown in Figure 17. The sensors were mounted inside a single box that was 

connected to the USB DAQ module. The plexiglas shield was designed and built to 

provide some protection for the operators in the event of a kickback, though it 

proved to be somewhat unnecessary for the low-power of the battery powered 

saw. Figure 18 shows an operator performing kickbacks with the Plexiglas shield 

in place. Data was acquired at a rate of 5,000 samples per second as it was 

determined during exploratory data collection that this would be a more than 

adequate rate. 
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Figure 17: Image indicating the location of sensors mounted to the battery-powered chainsaw during Phase 

1 testing. The orientation of the measurement axes are indicated by the x and y with the z-axis extending out 

of the picture perpendicular to the flat plane of the bar. 

 

 
Figure 18: Figure depicting Dr. John Parmigiani performing intentional kickback simulations with the 

Plexiglas shield in place for protection 

4.2 Phase 1 Data Collection Methods 

The first phase of data collection was conducted with a well-defined testing plan 

and sensors chosen as a result of the exploratory data collection. The testing 
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methods focused on normal cutting operations that would be most likely to give a 

false positive for a kickback event and attempted to provide more realistic 

kickback scenarios. In addition, several operators were used so that differences 

between operators could be accounted for. 

The normal cutting scenarios chosen were nose-clear vertical cuts, bias cuts, 

boring cuts and knot bumping. Table 5 shows the list of normal cutting scenarios 

performed. These scenarios were chosen based on the results of the exploratory 

data collection because they were either the most representative of normal 

cutting situations or they were at the extremes for vibration or gross 

accelerations.  

 

Table 5: Phase 1 Data Collection Normal Cutting Scenarios 

Media Cutting Operation No. of Trials 

12-inch fir log 

Nose-clear vertical cut 35 

Bias cut 16 

Boring cut 10 

8-inch vertical fir post Nose-clear horizontal cut 9 

2-inch ash branch, 
cantilevered 3 feet 

Vertical cuts at saw nose and branch tip 15 

Simulated knot-bumping 30 

Several new methods for simulating kickback were attempted because the 

kickback data obtained during the exploratory data collection was confounded by 

inadequate kickback initiation techniques. The experimental test methods used 

were designed to simulate the following two characteristics of realworld kickback 
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accidents: kickback typically occurs unexpectedly and kickback typically occurs 

during some sort of cutting operation. Kickback is typically unexpected because it 

occurs more frequently with inexperienced operators who are unaware of its 

dangers. Kickback frequently occurs during a cut or just prior to beginning a cut 

because the chainsaw will not kickback while the saw is idling with the chain not 

moving.  

The first method for initiating unexpected kickback consisted of inserting one-

inch dowels two feet into the end of a log then boring into the log such that the tip 

of the saw would contact the dowel and kickback out of the log. This type of 

kickback is similar to the first type of kickback discussed in Section 2.2. The 

dowels used were made of high-density polyethylene and aluminum.  Figure 19 

shows a picture of this test with the aluminum dowel imbedded in the end of the  

 
Figure 19: A log with an imbedded aluminum rod designed to cause the saw to kickback unexpectedly 

during a cut. The pre-cut swatch allows for the saw to kickback out of the cut once the saw contacts the 

aluminum dowel. 
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log with the approximate pre-cut swath location. The operator cut down from the 

top to clear a path for the saw to kickback, then bored in from the side until 

contact was made with the aluminum dowel.  

The second method  consisted of performing a standard nose clear vertical cut on 

a 12-inch log with a second log behind and slightly below the first log. Figure 20 

shows the arrangement used for this simulation. This is a common real-world 

scenario for initiating kickback. Typically the chainsaw operator is unaware that 

there is a second log behind the first and kickback occurs when the nose of the 

saw contacts the second, hidden log. This method is also similar to the first type 

of kickback discussed in Section 2.2.   

 

 
Figure 20: Nose-clear vertical cut with a second log behind that will contact the danger-zone of the nose of 

the chainsaw causing a kickback in the direction indicated. 

These two methods for testing kickback were unsuccessful in generating the 

results desired. Using the first method, the aluminum and  HDPE dowels did not 
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catch on the saw as intended. The second method was fairly difficult to get the 

saw to kickback without simply cutting into the second log. During both tests the 

saw, when it did kickback, the saw did not exit the pre-cut swath as the saw 

tended to bind on the sides of the cuts.  

Another kickback method was attempted to reproduce linear kickback. Linear 

kickback commonly occurs when making a nose-clear vertical cut in the middle of 

a log that is supported at either end of the log. The cut closes behind the saw as it 

progresses, and pinches the chain. Figure 21 shows the attempt made during 

testing to initiate linear kickback. This type of cut was attempted but a linear 

kickback was unsuccessful because the saw was not powerful enough to 

overcome the increased friction on the bar.  

 
Figure 21: Test of linear kickback. The top of the cut closes onto the top of the saw bar, pinching the chain 

which pushes the saw backward out of the cut toward the operator. Attempts to replicate this phenomenon 

were unsuccessful. 
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The most successful method for initiating kickback required the several operators 

to press the top of the nose of the saw into the outside of a log. The log was held in 

a fixture that oriented the log so it’s center axis was parallel with the ground. 

Kickbacks were initiated with the saw in two orientations. For the first 

orientation, the operator held the saw with the flat plane of the bar perpendicular 

to the ground, and the second orientationg the saw was held such that the flat 

plane of the bar was parallel with the ground. This second orientation proved to 

generate higher energy kickbacks  because the saw nose can stay in contact with 

the log for a longer period of time as the saw is moving along the straight axis of 

the log, rather than the small contact patch of the rounded log. In addtion the 

fibers of the wood that run vertically in a tree are much more difficult to cut, so 

they tend to get caught in the cutters and cause higher energy kickbacks.  

Given that causing kickback manually on the outside of the log was the only 

successful method, it was the method used numerous times to collect data with 

four different operators. Table 6 lists the number and type of simulated kickbacks 

that each operator performed.  

Table 6: Phase 1 testing kickback simulations performed 

Operator Kickback type No. of trials 

Operator 1 Vertical 5 

Operator 2 Vertical 15 
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Horizontal 11 

Operator 3 

Vertical 31 

Horizontal 26 

Operator 4 

Vertical 12 

Horizontal 9 

 

4.3 Phase 1 Analysis 

The first phase of testing focused on the ability to detect a kickback and 

effectively distinguish it from normal cutting operations.  Initial analysis methods 

consisted of filtering the data, then examining the differences between the 

maxima of normal cutting and the maxima of the each kickback. The next set of 

analyses looked at an optimized method of combining the sensor readings from 

multiple sensors in a way that increases the sensor’s ability to detect kickback, 

but decreases the likelihood of a false detection.  
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4.3.1 Phase 1 Optimization Method 

Filtering methods 

The sensors that were used for this testing have built-in analog filters that keep 

the measurements within their respective design limits, however additional 

digital filter was performed with the stored readings. The analog filters are 

taylored to each MEMS circuit. Gyroscopic sensors operate by monitoring the 

frequency of small vibrating arms. The corealis effect of rotation of the sensor 

causes a change in frequency of the vibrating arms with corresponds to a change 

in rotational velocity. Because these sensors are looking for changes in vibration, 

they typically have a lowerbandwidth than accelerometers.  

The data was filtered using a Butterworth, third order low-pass filter. There are 

many types of digital filters. A Butterworth filter utilizes a set of algorithms that 

attenuates frequencies in the stop-band —in this case high frequencies. The 

Butterworth filter was used because it can be used as a digital approximation of a 

fairly simple analog circuit that uses two inductors, a capacitor, and a resistor. 

The pass-band is flat, with no rippling, and drops off at a rate dependant on the 

order of the filter. Implementing a detection system would require replacing the 

digital filter with an equivalent analog circuit to reduce the required computing 

power.  
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Optimization Method  

To increase the reliability of this detection system, an optimization scheme was 

used to combine and weight the three sensors in such a way as to hopefully 

attenuate the normal cutting signals while amplifying the kickback signal. A 

combination of multiple signals was first proposed after examining the last set of 

kickbacks during exploratory data collection.  

 It was obvious during the inspection of the data during the kickback 

events that a kickback was occurring, but when compared with the data taken 

during normal cutting, the difference between the magnitudes of the two signals 

were not substantial. Two samples of the data taken during exploratory data 

collection can be seen in Figure 22. A brief portion of the normal cutting data 

shows some large-magnitude vibrations that approach the intensity of the 

kickback data. The kickback had a peak value that was approximately 30% higher 

than the maximum value found during normal cutting. Because this margin was 

detected with a limited amount of data, it was believed that a false positive (a 

kickback detection when no kickback occurred) was possible. A margin of at least 

an order of magnitude more than this was desired so methods for improving this 

margin were pursued.   

It was observed that during normal cutting operations, the accelerations along 

the X-axis tended to have a similar sign and phase to accelerations along the Y-
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axis. In contrast, the accelerations along the X and Y axes tended to be opposite in 

magnitude while remaining in phase. Based on this observation a simple function 

was implemented that leveraged this difference between the two scenarios. The 

signal from acceleration along the X-axis was subtracted from the acceleration 

along the Y-axis. This combination caused the difference between sensors during 

kickback to double, and the difference during normal cutting to be attenuated. 

This simple formula is shown in Equation (1).  

            (1) 

In this equation    is the combined signal, and ay and ax are the accelerations in 

the x and y directions, respectively (measured in multiples of the acceleration of 

gravity, g). The results of this simple combination of the two signals are seen in 

Figure 23. 
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Figure 23: The same portions of data from Figure 22 plotted using the KBXY0 function. The signal for 

normal cutting (left) is attenuated while the signal for kickback (right) is amplified. 

Based on the promising results of the combination of the two signals from 

Exploratory testing, a method for optimizing the combination of these signals was 

developed. This method included a third signal from the gyroscope measuring 

rotation about the Z-axis. The goal was to find a combination of the three signals 

that would multiply each signal by a weighting coeficient then sum the values to 

give the greatest difference between normal cutting and kickback. (2) shows the 

combination of signals that was optimized to get the greatest difference between 

normal cutting and kickback.  

              (2) 

Figure 22: Samples of normal cutting data (left) and kickback data (right) taken during exploratory data 

collection. Note the marginal difference in magnitudes between maxima of both cutting scenarios. 
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Here,   is the optimized equation used to detect kickback,    is the rotational 

velocity of the saw about Z-axis in °/second, and  ,  , and   are scaling factors for 

each sensor.  

The optimization was performed by adjusting two of the three scaling factors 

above and below zero. The values for acceleration were varied from between -2 g 

and +2 g and the values for the rotational velocity were held constant at .1 °/s. 

During typical operation the rotational velocity of the saw tended to be on the 

order of ten times greater than the data obtained from the accelerometers. 

Because of this, the gyroscope was scaled down an order of magnitude so the two 

sensors would be considered relatively equally in the optimization scheme.  

The optimization was performed by chosing a set of scaling factors, and applying 

them to the sensors to obtain the output of    with respect to time. All of the data 

taken during normal cutting operations were combined into a single dataset, 

while each kickback event was placed in it’s own dataset. For each set of the 

applied weighting factor values, the maximum value of normal cutting    and the 

maximum value for each individual kickback event     were  collected and a 

normalized difference    was calculated. Equation 3 shows the method used for 

calculating the normalized difference of each combination of scaling factors.  

  ( ,  )  
    ( ,  )    ( ,  )

  ( ,  )
 

(3) 
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For each kickback, the maximum value of     was found, and the corresponding values 

for  ,  , and   were collected and plotted on a histogram to see which 

combinations were the most prominent. The most prominent values for  ,  , and 

  were collected then applied individually to the data. The average differences for 

all kickback events were then analyzed for accuracy and rates of error. This 

method of optimization was published in [18]. 

4.3.2 Phase 1 Optimization Results 

The optimization technique was performed on the data in four separate 

configurations. The first configuration contained all three sensor readings from 

the 2 accelerometers and the one gyroscope. The other three configurations 

examined the three possible combinations of two sensors. If a combination of two 

sensors would perform well, it could potentially reduce the cost of the necessary 

sensors.  

The optimization provided the most successful scaling factors for each kickback 

event. These results can be seen in Figure 24 where the magnitude of the 

histograms correspond to the number of kickback events that had the given 

scaling factors. The most prominent scaling factors were than reapplied to the 

data sets and their accuracies were measured which can be seen in Table 7. The 

table shows the statistics for the margin between the maximum value of normal 

cutting and kickback for each given scaling factor, indicated by the 

  (        )   (max              ). There is also a statistic for the 
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percentage of kickback events that were greater than the maximum normal 

cutting value (  >0).  

The results of this optimization shown in Table 7 showed that the data from the 

gyroscope was the best at detecting a kickback event. The gyroscope readings had 

the highest difference between kickback and normal cutting operations. The knot 

bumping scenarios were analyzed separately because they tended to be the 

closest to kickback but it is a less commonly used operation. From the 

combination of the three sensors, it was shown that the two accelerometers 

tended toward a weighting of close to zero, and the gyroscope tended towards it’s 

maximum rating. The next closest sensor combination used the Y-axis 

accelerometer and the gyroscope readings. The y-axis acceleration was 

minimized here was well. The matlab code for this analysis can be found in 

Appendix A.2. 
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Figure 24: A histogram presenting the most successful scaling factors for each kickback event with the 

following four sensor configurations: all three sensors with the gyroscope value held constant (top left), the 

two accelerometers (top right) , acceleration along the y-axis and rotational velocity along the z-axis (bottom 

left), and acceleration along the x-axis and rotational velocity along the z-axis (bottom right). 
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Table 7: The weighting factors that generated the greatest margin between normal 

cutting and kickback from figure 24 were applied to the entire data set, and the 

results are noted in this table.  

Vertical, Horizontal & Bias Cutting 

Sensors 
Weighting Factors    

  >0 
      Mean Max Min 

X,Y,&Z 0.1 0.1 1 3.92 6.12 0.63 100% 

Y&Z 0.05 0 0.2 11 14.87 2.81 100% 

X&Z 0 0.4 0.18 4.06 6.54 0.65 100% 

X&Y 2 0.1 0 -0.2 1.16 -0.98 22% 

Z 0 0 1 11.2 14.99 2.89 100% 

Knot bumping 

Sensors 
Weighting Factors    

  >0 
      Mean Max Min 

X,Y,&Z 0.1 0.1 1 2.39 6.12 0.63 100% 

Y&Z 0.05 0 0.2 2.37 14.87 2.81 100% 

X&Z 0 0.4 0.18 2.43 6.54 0.65 100% 

X&Y 2 0.1 0 0.15 1.16 -0.98 45% 

Z 0 0 1 2.36 14.99 2.89 100% 
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5 Phase 2: Detecting Kickback Early in the Event 

The goal of Phase 2 of the project was to find the method that would allow 

kickback to be detected as early as possible. A higher-powered gasoline chainsaw 

was used that would create much more energetic, and therfore much faster, 

kickbacks.  Because a gasoline saw has much more power, a much more powerful 

kickback event may occur that will accelerate the chainsaw much more quickly. 

Detecting a faster kickback early will be more challenging than it would be for a 

lower powered battery saw, putting this scenario at the upper bound. A new set 

of sensors that were more cost effective were chosen. Two gyroscopes were used, 

and a single 3-axis accelerometer was used to monitor acceleration. Three 

analysis methods were applied to the data set to try to detect kickback as early as 

possible while holding the rate of false positives to a minimum. The three analysis 

methods used to classify the kickback data were signal differentiation, a 

Simplified Bag of Words (Naïve Bayes Model), and a Support Vector Machine with 

Selective Under Sampling and a Classifier Vector Stacking. 

 

5.1  Phase 2 Data Collection Setup 

Several changes in the data collection setup were implemented after Phase 1. 

Most notably, the chainsaw was switched to a gasoline powered chainsaw. The 

gasoline chainsaw is more powerful and produces more energetic kickback 
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events. These saws are inherently more dangerous, so there is more latitude to 

increase their safety. In addition, having a high-energy kickback event places an 

early detection at the upper-bound of a kickback speed. If an early kickback 

detection is possible with a gasoline saw, it is definitely possible with an electric 

chainsaw. 

 Phase 2 testing utilized a different set of MEMS sensors that were more 

cost appropriate for this application. The gyroscopes had a much larger dynamic 

range, and the accelerometer used was a 3-axis, digital accelerometer. The setup 

used for the data collection is shown in Table 8. 

Table 8: Components used during Phase 2 testing 

Component Description 

Efco 152  3.4 hp 52cc gasoline powered chainsaw 

STMicroelectronics LY3100ALH 1-axis 140 Hz ±1000°/s MEMS gyroscope 

InvenSense ISZ-500 1-axis 140 Hz ±500°/s MEMS gyroscope 

STMicroelectronics LIS331HH 3-axis 1 kHz ±24 g MEMS digital accelerometer 

National Instruments USB-6211 NI multifunction DAQ module 

Kickback Safety Shield Plexiglas shield to protect operators during testing 

The sensors were mounted to the saw beneath the powerhead in a single box as 

can be seen in Figure 25. The two gryoscopic sensors output simple anaolg 

voltage outputs that were measured and recorded by the data acquisition setup. 

The LIS331HH digital accelerometer was mounted to an evaluation board with 

it’s own data acquistion software. The two programs recorded data 

simultaneously, but were not synchronized. Data was sampled at 5000 samples 

per second for the gyroscopes and the digital accelerometers were sampled at 
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around1000 times per second. An issue with the data acquisition software that 

came with the digital accelerometer caused the sampling rate to vary for each 

sample. 

Phase 2 Data Collection Methods 

The testing procedures for the second phase were simplified and focused on the 

tests that were shown to be the most effective from Phase 1 testing. Because the 

differences between the multiple operators were not significant, a reduced 

number of operators were used. Normal cutting experiments were limited to 

nose-clear vertical cuts, bias cuts, and knot bumping to reduce in setup time, and 

increase the number of cuts recorded. Kickback scenarios were limited to purely 

vertical kickbacks on the outside of logs that were described in Section 4.1 Phase 

1 Data Collection Methods. 

 
Figure 25: Image of Efco chainsaw equipped with sensor box used during Phase 2 testing. 

Sensor Box 

Efco 152 
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This round of testing focused on obtaining a large number of samples of kickback 

and longer duration normal cutting experiments. This round of testing used the 

more powerful and more dangerous gas powered chainsaw, so it was more 

difficult to collect a large number of kickback readings. The operator became 

fatigued from the more forceful kickbacks and, as a result, took more frequent 

breaks. 

The tests took place over two sessions with similar experiments. The second 

session was necessary because there was an error with the data-acquistion of the 

accelerometers in the first session. Table lists the type and number of tests 

performed during the two sessions. The kickback activities performed we all 

vertical kickbacks. 

Table 9: Phase 2 testing scenarios 

Session Cutting/ kickback operation No. of  trials 

Session 1 

Nose-clear vertical cut 21 

Bias cut 16 

Knot-bumping 27* 

Vertical  kickback 32 

Session 2 Nose-clear vertical cut 35 
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Bias cut 42 

Knot-bumping 20 

Vertical  kickback 109 

5.2 Phase 2 Analysis 

The focus of the data analysis in Phase 2 is different than it was for Phase 1. 

During Phase 1 testing, it was important to accurately and reliably identify when 

a kickback occurred. After examining the results from this phase of testing, it was 

decided that detecting kickback was easily achievable, but now it was important 

to detect the occurrence of kickback as early as possible.  

When a kickback occurs, the energy of the chain and motor rotating is transferred 

to gross motions of the saw itself. This transfer of energy occurs during the brief 

instant when the chainsaw is still in contact with the object. In order to reduce 

the intensity of a kickback, the energy present in the chainsaw must be reduced in 

the brief moment that it is in contact with the log.  

The only practical methods for reducing the energy in the chainsaw are to begin 

braking the saw, to decouple the chainsaw engine from the drive sprocket, or 

both before the saw loses contact with the interfering object. When examining the 

gyroscopic signal it is easy to identify the point at which the saw has lost contact 
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with the log, as this is the point where the slope of the rotational velocity becomes 

negative.  

Figure 24 shows gyroscope readings of a typical kickback event. The time from 

the beginning to the peak of the kickback can vary significantly. There are several 

factors that effect the magnitude and duration of a kickback event, so many 

kickbacks will tend to be longer in duration. It is difficult to determine the exact 

start point of a kickback event. Typically the saw will cut into the log for a brief 

moment before the chain catches on the nose. This amount of time varies greatly 

 
Figure 26: A typical gyroscope signal from a gasoline powered chainsaw. Note the length of time for the 

entire event (40 ms), and the length of time the saw is in contact with the log (20 ms). 
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depending on the operator, the type of log, the type of chainsaw, and the bar and 

chain being used. It is important to normalize the data for kickbacks at a certain 

time point. This allows the kickback signals to be aligned and analysis operation 

can be performed on specific time points.  

Two methods were considered to allign the data. The first method identified 

kickback by the maximum rotational velocity for the each kickback event. The 

second method selected a threshold based on the maximum values experienced 

during normal cutting, then examined the kickback data for the first peak above 

this threshold. Ultimately the second method gave more consistant kickback 

shapes because of the variability of the kickback events. Using the first method 

often caused the kickbacks to be identified at many different time periods relative 

to the initiation of kickback, whereas the second methods tended to line the data 

up much more reliably. Some of the difficulty in using the first method was also 

the result of the signal saturating during many of the more intense kickback 

events. This caused the signal to be chopped off at the upper threshold of the 

sensor and the identification point (ID point) is selected almost arbitrarily based 

on which reading was marginally higher. This can be seen visualy in Figure 27. 

This first method shows a greater variability in the signal than the second method 

does. For the rest of the Phase 2 analysis, the kickback events were identified 

using this method. It is important to note that the kickback event itself can 

continue beyond the Method 2 ID point for some time, or it can end abruptly after 
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the ID point depending on the type of interaction that caused the kickback to 

occur.  

 
Figure 27: Plots of all of the kickback signals from their identification point and the previous 200 samples. 

Method 1 picked the highest point during the entire kickback event, and method 2 used the highest point of 

the first peak above a threshold of 300°/second. 

This section covers several methods of detecting a kickback event as early as 

possible. The methods pursued were signal differentiation, a simplified Bag of 

Words method, and support vector machine learning. 

5.2.1 Signal Differentiation 

Signal Differentiation Methods 

To perform the signal differentiation, the signals from the two accelerometers 
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before, then differentiated with respect to time. Differentiating the signal gives 

the change in acceleration(also known as jerk, in g/s), for the accelerometers on 

the X and Y axes, and the rotational acceleration (°/s2) of the gyroscope. An 

optimization scheme was used to determine the best low-pass cutoff frequency. 

An optimization like the one described in section 0was also employed to 

determine the best combination of signals that allow kickback to be detected the 

earliest.  

Signal Differentiation Results 

The results of using a differentiation method for detecting kickback were less 

successful at detecting kickback. The detections that were successful were 

detected slightly earlier in the even but there were many occurrences of false 

dections and the margins between the normal cutting kickback event were much 

less than those found using the undifferentiated signal.  

Figure 28 shows a typical kickback event with the undifferentiated, filtered signal 

in blue, and the differentiated signal in green. From this it is possible to see that 

the peak of the differentiated signal occurs 10 to 20 milliseconds earlier than the 

undifferentiated signal. The unfortunate side effect of using a differentiated signal 

is the amplification of any signal noise. Additional filtering can be used, but this 

will cause the peak of signal to shift later in time.  
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Figure 29 shows a comparison between a kickback event, a knot bumping even 

and a section of nose-clear vertical cutting. The axes along the y-axis for the three 

graphs are all the same scale, making it easy to tell that distinguishing normal 

cutting from kickback would be easy. When the kickback event is compared to the 

knot bumping event, it is apparent that the knot bumping event has a higher 

magnitude than kickback for the differentiated signal. Of the know bumping 

experiments, 31% were greater in magnitude than all of the kickback events. 

Things like starting the chainsaw, or letting it contact the log too aggressively 

could easily reach the rotational acceleration of kickbacks. Because of the poor 

results with this method of differentiation. The optimization scheme was 

 
Figure 28: A typical kickback with the filtered signal in blue and the differentiated signal in green. The flat 

region was a result of the gyroscope reaching its dynamic range limit. Note that the differentiated signal 

peaks earlier than the undifferentiated gyroscope signal. 
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ineffective. There was no combination of signals that would effectively reduce the 

high magnitudes seen during knot bumping. Were a differentiated signal to be 

used a much higher rate of false positives could be expected. The matlab code for 

this analysis can be found in Appendix A.3.1 

 
Figure 29: Figure showing the gyroscope data of undifferentiated (blue) and differentiated (green) of 

kickback (top), knot bumping (middle), and normal cutting (bottom) data. The peaks of the differentiated 

signal are labeled on the kickback and knot bumping plots to show the dramatic difference between 

magnitudes. 
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5.2.2 Simplified Bag of Words  

Simplified Bag of Words Analysis Methods 

The Bag of Words method is commonly used to classify different types of written 

documents for search queries or to detect email spam. The Bag of Words method 

is a type of naïve Bayes model for classification. Rather than classifying an entire 

document based on the presence of a single word or phrase, the Bag of Words 

method counts to occurrence of each word in the document, regardless of any 

grammar or order. The quantity of each word is stored and correlated with 

probabilities associated with different queries.  

To use the Bag of Words method for this scenario, the sampling window of 50 

data points is considered the “document”, and the “words” are different regions of 

data values. To classify the chainsaw data, a number of data samples above a 

certain threshold would indicate a kickback event. To optimize the method for 

detecting kickback, the threshold, was varied and the number of samples that 

were above the threshold were recorded. For the 200 data points of each 

kickback event, a 50 datapoint window was examined and the number of 

occurences above the given threshold were counted and stored. For all of the 

normal cutting data, a 50 data-point window was examined for ever point of the 

data and the number of instances above the given threshold were recorded. This 

method was repeated for several different threshold values. Once all of the data 

was classified, the maximum number of “word” counts during normal cutting was 
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compared to the minimum number of word counts for a kickback at each point 

leading up to the identification point. The threshold value and number of word 

counts that could detect kickback the earliest without falsely detecting kickback 

in the normal cutting data would be selected as the classifier. 

Simplified Bag of Words Results 

The results from the Simplified Bag of Words analysis resulted in a poor quality 

classification method. There are two variables that can be adjusted to optimize 

this detection mechanism. The threshold, and the number of words for a 

classification. Because this method is similar to an averaging method which can 

be viewed as a type of filtering, only the gyroscope data was examined. Because of 

the results from the optimization method performed in Phase 1, the data set most 

likely to succeed would be the gyroscope data. If the analysis of the gyroscopic 

data proved successful, the study could be expanded to include accelerometer 

readings. 

The normal cutting data was analyzed first. Using these results a minimum value 

for the threshold could be applied to the kickback data and the number of counts 

between the two sets could be analyzed. Figure 30 shows the results of the 

normal cutting analysis (top) and the kickback analysis (bottom). From the 

normal cutting data it can be seen that the first threshold level where less than 

100% of a 50 data point window were counted occurs at a threshold of 215 
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degrees per second. This means that for the window size of 50 points, any 

threshold below 215 will result in the occurrence of at least one false positive.  

The bottom of Figure 30 presents the location of the first point above the various 

thresholds for the kickback data. Each kickback event was analyzed by  

counting the number of over-thresholds for each window of 50 data points 

leading up to the kickback identification point. The dashed vertical line 

represents the minumum threshold limit based on the normal cutting data. Even 

at these higher thresholds, there are points that do not first cross the threshold 

 
Figure 30: Results of the bag of words analysis. The top plot shows the maximum number of over-threshold 

counts for the normal cutting data. The bottom plot shows the distance away from the kickback ID point 

that the first threshold was detected. 
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until 2 milliseconds before the kickback Identification point. This means that 

there would only be 10 over-threshold counts for the worst case kickback events. 

This is not much different than simply setting a threshold as in the optimization 

method from Phase 1.  

If a threshold of 225 degrees per second were chosen, the average kickback event 

would be detected 3.5 millseconds before the identification point. If any number 

of threshold-counts greater than 1 were used, the average kickback detection 

would occur later in the kickback event. Because the result of this analysis were 

only marginally better than the results of simply using a threshold, further 

analysis of the accelerometer kickback data was not pursued. The matlab code for 

this analysis can be found in Appendix A.3.2. 

5.2.3 Support Vector Machine Learning 

Support vector machines (SVM) are a type of supervised artificial intelligence 

used for classification and regression analysis. This method is more efficient than 

many other methods because it uses only the most difficult data vectors to learn 

from rather than build a model with every point. A good illustration to help 

understand this concept would be a classifier built to differentiate between 

pictures of cats and pictures of dogs. The classifier would select the pictures that 

are the most difficult to differentiate and learn the difference between this 

smaller set. If the classifier can distinguish between the most difficult pictures, it 

should easily differentiate easier pictures.  
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There are two inputs used to train the classifier: a training matrix,  ,  of input 

vectors,   , belonging to either of two classes, and a second vector, y, containing 

the classifications of each input vector. A training set,  , will take the following 

form. 

  {*  ,   )|    
 ,    *  ,  +}   

 
 (4) 

  Here, p, is the number of data sets in the training set that are n data points long.  

A positively classified vector is given a value of +1 and a negatively classified 

vector is given a value of -1. The matrix x of training data as it would appear in 

Matlab is made of p examples of vectors that are n data-points long. The matrix   

takes the following form: 

  

[
 
 
 
  ( )   ( )    ( )

  ( )   ( )    ( )

    
  ( )   ( )    ( )]

 
 
 

 
(5) 

The row-vector   stores the classification of each vector    in the following form: 

  ,                       - (6) 

Each data vector is mapped as an individual point in high-dimensional space—

that is, a space with many more than 3 dimensions that can easily be visualized. 

The Maximal Margin Plane (MMP) is a plane that separates the two data classes 

with the maximum margin between the two classes. The MMP is defined by the 

normal vector w. The support vector machine identifies the data-vectors that are 
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closest to the maximal margin plane by setting up a margin on either side of the 

plane, called a soft margin. The vectors selected by the SVM to take part in 

learning the classification are called support vectors. Equation (7) is the decision 

function used to map the data into high-dimensional space.  

 ( )  ∑       

 

   

 
(7) 

Here,   defines the vector normal to the maximal margin plane, and   is the bias 

offset of the plane (note that here the dot represents the dot product of the two 

vectors). The maximal margin plane occurs when D(x) = 0. The soft margins 

occur when D(x) =1 for the positive classifier and when D(x) = -1 for the 

negative classifier. The support vector machine choses w and b such that the 

three criterion of the decision function are met. A two dimensional depiction of 

the mapping of points around the maximal margin plane is shown in Figure 

Figure 31 [19,20,21]. 
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Figure 31: A two dimensional representation of the maximal margin plane, and the soft margin used to find 

the support vectors, and define the classifier vector, K. 

The data sets that fall within the soft margin of the decision function are placed 

into a matrix of support vectors,  . The distance each support vector is from the 

maximal margin plane is known as the Support Vector Coefficient, and are placed 

in vector  . The classifier vector, K, is defined by equation 7. 

         

 

(8) 

The classifier vector, K, is a vector the length of the original input data,   . Every 

piece of data that is to be classified, is simply multiplied by the transpose of, K. 

The result is a scalar value. If this multiplication is above a certain threshold, the 
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data can be classified as a positive event, and if it is not above the threshold, it is 

classified as a negative event. The threshold is determined by applying each 

vector from the training data set to the classifier. The number of false positive and 

true positive detection helps to set the threshold. There may not be a threshold 

that is perfect at classifying every event, so, in these cases, a decision must be 

made as to what level of inaccuracy is acceptible. The threshold is raised to 

decrease the occurrence of false negatives and is decreased to avoid false 

negatives. 

The support vector machine package that was used for this analysis was the 

LIBSVM package.  This package provides tools to use several different SVM 

kernels with applications that can be run on many different programming 

platforms. This package also has several data repositories for testing different 

data sets.  

5.2.3.1 Parameter Imbalance 

Parameter Imbalance Analysis Methods 

One potential pitfall with the use of SVM occurs when the training data set is 

imbalanced. This occurs when the ratio of positive to negative instances is far 

greater or less than one. In order to minimize the amount of error, the support 

vector machine tends to push maximal margin plane toward the minority dataset. 

This causes the classifier to fail to identify the minority class. In the case of this 
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project, as is frequently true for SVM classification, the minority case is more 

unique and more critical to identify.  

There are several standard methods for handling parameter imbalance. Typically 

they consist of either over-sampling the minority case, under-sampling the 

majority case, adjusting the error weighting to reflect the importance of the 

minority case [22], or synthesizing additional minority cases [23,24]. These 

methods each have their own inherent problems that often cause the data quality 

to be sacrificed in order to obtain the appropriate location of the maximal margin 

plane.  

The method used to deal with the data imbalance in this case has been used in 

similar ways in several publications [25,26]. Rather than taylor the data sets so 

that they become balanced, this method attempts to find the samples from the 

majority dataset that are closest to the maximal margin plane, and uses only these 

cases as inputs into the SVM. This method is sometimes called active learning, but 

a good name for it is selective under-sampling. The input negative cases are  

For this analysis, the amount of data obtained for normal cutting scenarios is 

several orders of magnitude larger than the amount of data obtained for the 

kickback events. The kickback event lasts approximately 40 milliseconds whereas 

there is close to an hour of normal cutting data. This level of parameter imbalance 

is actually under representative of what can be seen during real-world use. A 
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normal chainsaw operator may never see a kickback event in the use of their 

chainsaw, or, if they do, it is only a few times over the span of many hours of 

operation. So it is important that the normal cutting data not accidentally trigger 

a deteciton.  

To apply the selective undersampling to this data set, a random selection of data 

was chosen from the normal cutting data that had three times the number of data 

sets than the kickback data sets (this is an acceptible level of data imbalance). 

This data set was learned by the SVM, and the support vectors were noted and 

saved. The data from each test that were found to be within the margin were than 

analzed by placing the data into a histogram to determine which of the data was 

most commonly selected as a support vector. Any areas of the data that had a 

higher incidence of being close the maximal margin would than be used in the 

final analysis to decide the final support vector. 

Parameter Imbalance Results 

The method for handling parameter imbalance was used to select the most 

challenging normal cutting events. It could also be used to give an understanding 

of how easily the data can be classified. Examining the number of support vectors 

that are selected to perform the machine learning provides n excelent insite into 

how easily the two data classes can be distinguished. 
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The first parameter imbalance analysis that was performed examined the ability 

of each of the sensor readings individually. Portions of data were selected 

randomly from the normal cutting data and then applied to the SVM. The results 

of this simple analysis can be seen in Table 10. Based on these results it is 

apparent that the gyroscope has the most easily classified data. The decision was 

made to only classify the gyroscope data based on these results and the results 

from the Phase 1 analysis that similarly showed that gyroscope data was the most 

successful at classifying kickback.  

 

Table 10: Results of the imbalanced parameter list showing the ability to classify the 

different sensor readings. 

Sensor analyzed 
Number of normal 
cutting data vectors 

Average number of 
vectors selected to 
be support vectors 

Number of random 
sample iterations 

Z-axis Gyroscope 150 4.78 1607 

X-axis Accelerometer 150 52.13 1503 

Y-axis Accelerometer 150 43.6 1821 

The imbalanced parameter analysis was performed using only the gyroscope 

data. The data for each kickback event was 150 data points long. Each kickback 

was split into 10 regions of 50 points that overlapped by 40 points. These ten 

regions were each analyzed for selective undersampling individually. The reason 

for dividing the data into regions is explained in the following section. For each 

kickback region of 142 kickback vectors, 150 vectors of normal cutting data were 

randomly selected from the normal cutting data set. The kickback data and 
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normal cutting data was supplied to the SVM and the support vectors were noted 

and saved. This process was repeated 2,142 times with a different set of 

randomly selected normal cutting data each time. The locations of the selected 

support vectors were stored for each set of randomly selected normal cutting 

data, and a histogram was created to determine which regions of normal cutting 

data were more likely to be selected as support vectors. These histograms can be 

seen in Figure 32. Each kickback region was analyzed separately so there is a 

histogram that corresponds to each kickback region.  The bin size for the 

historgram was 350 data points wide, and the 200 bins with the most data points 

were used to develop a selectively undersampled data set for each kickback 

region. The matlab code for this analysis and that of the following section are 

contained in Appendix A.3.3. 
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Figure 32: Histogram showing the most prominent normal cutting points for each region of the stacked 

classifier vector. The selective undersampling points would be inputs for the SVM to build a classifier for 

each region of kickback. 
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5.2.3.2 Classifier Vector Stacking 

Classifier Vector Stacking Methods 

In order to detect kickback as early as possible, it was decided to use several 

classifier vectors simultaneously. Because the kickback signal rapidly increases in 

magnitude it is apparent that kickback events will become easier to detect as they 

reach the end of the kickback. This means that the accuracy of detecting a 

kickback event will grow as the kickback progresses. This is not to say, though, 

that it is impossible to detect a kickback early, it just will have a higher 

susceptibility to error. 

To attempt to detect as many kickbacks as early as possible a stack of classifier 

vectors will be used. The classifier vector, K, is found for specific time periods of 

the kickback that correspond to a length of time before the kickback’s ID point. 

These regions are analyzed by the SVM separately and an idividual classifier 

vector, K, is generated for each time-frame prior to the kickback event. The 

earliest classifier that can be used is one that can successfully classify all the 

negative instances of normal cutting without false positives and can identify at 

least one of the kickback events. Figure 33 shows an illustration of the different 

regions that will be used to create the stack of classifiers. This figure uses the 

second type of kickback identification points.  
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Figure 33: Signal of a kickback showing the potential classifier regions of a kickback event. (Note that the 

classifier regions are for illustration purposes and are not to scale.)  

Classifier Vector Stacking Results 

Using the selectively undersampled normal cutting data, a stack of classifier 

vectors was developed. Each classifier vector, Ki, was developed using the 

respective selectively undersampled data points from normalcutting and the data 

region corresponding to a given time prior to the kickback identification point. 

The resulting stacked classifier matrix was a ten by 50 matrix. Every 50 data 

points was multiplied by this matrix as follows.  
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Here,    test value that must be compared to the threshold for each classifier   . If 

any    is greater than its respective    the data is given a positive classification, 

and a kickback is identified.  

To determine the vector of ten values of   the classification matrix,   was applied 

the entire normal cutting data set. The highest resulting values of   were then 

used as the threshold value of   with an additional 10% safety margin.  

The classifier was then applied to the kickback data. The classifier vector was 

applied to a given region of 50 data points for each kickback event. Then, the 

region was moved forward, by a single data point and repeated, until 150 regions 

prior to kickback were analyzed. The point at which kickback first was detected 

was stored and can be seen in Figure 34. From this figure it can be seen that the 

earliest detection point occurs at -29.4 ms prior to the kickback identification 

point, the latest detection occurred at -0.2 ms prior to the identification point and 

the average distance was 19.32 ms from the identification point. All of the 

kickback classifier vectors ended up being used at some point, though each 

detection vector did not always correspond to the detection algorithm that would 

have been appropriate for the given time region.  
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Figure 34: A graph of the earliest kickback detection prior to the kickback identification point. The events 

are presented in descending order for clarity. The average detection occurred 19.3233 ms prior to the 

identification point. 
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6 Discussion 

This work has explored several methods for detecting kickback and attempting to 

detect it as early as possible. The different methods had varying degrees of 

success. Table 11 summarizes the the four methods used to detect the occurrence 

of kickback. The  

Table 11: Summary of the four kickback detection methods 

Detection method 

Time prior to detection 

Accuracy 

Number of false 

positives Min Max Mean 

Optimization 0 ms 15 ms 5.2 ms 100% 0 

Differentiation 5.2 ms 18.1 ms 7.8 ms 93% 9 

Bag of Words 0.4 ms 15 ms 5.2 ms 100% 0 

SVM Learning 0.2 ms 29.4 ms 19.3 ms 100% 0 

The Optimization method revealed that gyroscopes provided the greatest 

difference between normal cutting and kickback events. The accelerometers were 

capable of detecting kickback a large portion of the time, but they never proved as 

useful as the gyroscopes, as was verified with each of the four methods of 

detecting kickback 

The differentiation method was a useful method that could potentially be used if 

it is accepted that knot-bumping, which is a somewhat rare cutting method, will 

trigger a kickback event. This method is easy to implement compared to the other 

Phase 2 analyses. 
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The Bag of Words method was unable to provide any improvement over the 

optimization method which simply utilizes a threshold. Adjusting the threshold 

and number of word counts revealed sharp drop off for the level at which no false 

positives were detected. For this method to be successful, only one word could be 

counted at a higher threshold, which is the same as the optimization method.  

As can be seen by the results, the detection method capable of detecting kickback 

the earliest with a 100% accuracy for the given data available for verification is 

the Stacked Support Vector Machine method that utilized Selective 

Undersampling for the training data. At worst, this method performed as well as a 

simple threshold, and on average, it is capable of detecting kickback 19.3 ms 

before the kickback event with a maximum of 29.4 ms before the kickback 

identification point which is, on average, three times earlier than the next best 

method while still maintaining 100% accuracy.  

This method if capable of detecting kickback early and reliably in a way that could 

drastically improve the effectiveness of chainsaw brake mechanisms. Twenty 

milliseconds is enough time for a brake mechanism to actuate and begin braking a 

chainsaw. A safety system such as this could potentially prevent thousands of 

serious injuries and dozens of deaths a year if it were implemented on all 

chainsaws. Not only will this help save lives and money in medical expenses, but 

it could potentially make chainsaw more marketable to a wider range consumers 

that may have otherwise been intimidated by such a dangerous tool. 
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6.1 Source of Error 

One of the main difficulties with developing these detection mechanisms was 

working with sensor technology that could be priced reasonably enough to be 

incorporated on a consumer level chainsaw. Finding sensors that had the 

necessary requirements of dynamic range and low cost proved to be difficult. 

Gyroscopes in the appropriate ranges tended to be easier to find than 

accelerometers. Many MEMS sensors are geared toward cellphones and other 

entertainment devices that do not experience such high vibrations or large 

accelerations. Phase 2 testing was affected by this a great deal because of a 

greater focus on finding lower cost senors. The sensors used for Phase 2 testing 

had much too low of a dynamic range. As time passes, the cost of sensors will 

drop and their quality will improve. An accelerometer in the appropriate dynamic 

range may prove to be provide helpful information when the technology becomes 

available. 

6.2 Potential Future Work 

One area for improving the detection methods would be to incorporate the use of 

a rotational velocity sensor on the chainsaw motor. It was observed that the 

speed of the motor slows substantially when the saw first makes contact with the 

kickback object. If the rotational speed could be measured with an encoder, or 

possible by monitoring the voltage on the ignition coil, it could be incorporated 
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into the analysis. In the time that a kickback occurs(about 40 ms) the motor will 

only rotate ten times, so the motor position may need a fairly high resolution. 

More work should be done to find better quality, low cost accelerometers. As 

technology continues to improve the cost of these sensors should come down. A 

better quality accelerometer could also be added back into the analysis.  

  



86 
 

7 Conclusion 

Kickback is generally regarded as the greatest danger of chainsaw use. Thousands 

of people are still injured each year by chainsaws. The existing body of research 

has focused on understanding the causes and quantifying the dangers of kickback. 

There has not been any published research that examines the methods for 

detecting kickback, nor have there been any significant advances in the 

development of chainsaw braking mechanisms for the past twenty years. 

Developing a detection mechanism that is more reliable, easily controllable and 

can detect the occurrence of kickback early stands to significantly improve the 

safety of chainsaws. An empirical approach has been used to analyze over 250 

kickback events and several hours of normal chainsaw use.  

A mechanism for reliably detecting the occurrence of kickback in a small 36-Volt 

battery-powered chainsaw was first shown to be effective with the use of a 

gyroscope. This method will more reliably and controllably detect kickback than 

current methods. However, this method does not offer a substantial performance 

improvement over current braking methods, as kickback is not detected and 

therefore is not slowed before the log loses contact with the object causing 

kickback.  

To improve the performance of a kickback safety system, the kickback event 

needed to be detected early enough that a brake mechanism could slow the chain 
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quickly enough that it reduced the amount of energy transferred into saw motion. 

Three methods were pursued to try to detect kickback early than a simple 

threshold method. Differentiating the signal from the motion sensors proved to 

move the detection point forward in time,but introduced a higher level of noise. 

The Bag of Words method was unsuccessful at detecting kickback any earlier than 

the simple threshold used in the optimization scheme.  

Using a Support Vector Machine, with a stack of classifier vectors and selective 

undersampling resulted in kickback detection an average of 19.2 ms before the 

kickback identification point. This method has the capability to help prevent or 

reduce the risks of many accidents that occur every year, if combined with a fast-

acting brake.  
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9 Appendices 

9.1 Appendix A.1 

%Code used during exploratory data analysis 

close all 

clear 

clc 

 

load testpa0.lvm 

load testpaosu.lvm 

 

osu=testpaosu(10000:length(testpaosu),3); 

blnt=testpa0(10000:length(testpa0),3); 

Fsosu = 10000;                    % Sampling frequency 

Tosu = 1/Fsosu; 

% Sample time 

Losu = length(osu);                     % Length of signal 

tosu = (0:Losu-1)*Tosu;                % Time vector 

% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid 

xosu = 0.7*sin(2*pi*50*tosu) + sin(2*pi*120*tosu);  

yosu = xosu + 2*randn(size(tosu));     % Sinusoids plus noise 

NFFTosu = 2^nextpow2(Losu); % Next power of 2 from length of y 

Yosu = fft(osu,NFFTosu)/Losu; 

fosu = Fsosu/2*linspace(0,1,NFFTosu/2+1); 

 

Fsblnt = 10000;                    % Sampling frequency 

Tblnt = 1/Fsblnt; 

% Sample time 

Lblnt = length(osu);                     % Length of signal 

tblnt = (0:Lblnt-1)*Tblnt;                % Time vector 

% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid 

xblnt = 0.7*sin(2*pi*50*tblnt) + sin(2*pi*120*tblnt);  

yblnt = xblnt;     % Sinusoids plus noise 

NFFTblnt = 2^nextpow2(Lblnt); % Next power of 2 from length of y 

Yblnt = fft(blnt,NFFTblnt)/Lblnt; 

fblnt = Fsblnt/2*linspace(0,1,NFFTblnt/2+1); 

 

% Plot single-sided amplitude spectrum. 

plot(fosu,2*abs(Yosu(1:NFFTosu/2+1)),'r',fblnt,2*abs(Yblnt(1:NFFTblnt/2+1)),'b')  

title('Spectral Measurement of Chainsaw Running') 

xlabel('Frequency (Hz)') 

ylabel('Power') 

legend('freerunning saw','saw cutting') 

load testpa0.lvm; load testpa1.lvm; load testpa2.lvm; load testpa3.lvm; 

load testpa4.lvm; load testpa5.lvm; load testpa6.lvm; load testpa7.lvm; 

load testpa8.lvm; load testpa9.lvm; load testpa10.lvm; load testpa11.lvm; 

load testpa12.lvm; load testpa13.lvm; load testpa14.lvm; load testpa15.lvm; 

 

Xnormal=[(testpa0(:,2)); (testpa1(:,2)); (testpa3(:,2));(testpa4(:,2)); (testpa7(:,2));(testpa8(:,2)); (testpa9(:,2)); 

(testpa10(:,2));(testpa12(:,2))]; 

Ynormal=[(testpa0(:,3)); (testpa1(:,3)); (testpa3(:,3));(testpa4(:,3)); (testpa7(:,3));(testpa8(:,3)); (testpa9(:,3)); 

(testpa10(:,3));(testpa12(:,3))]; 

Xknot=testpa5(:,2); 

Yknot=testpa5(:,2); 
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Xkick=testpa15(:,2); 

Ykick=testpa15(:,3); 

 

aaa=.01:.01:2; 

bbb=.01:.01:2; 

 

dt=.0001; 

lowpassP=[50,100,150,200]; 

 

 

tnormal=dt:dt:(length(Xnormal)*dt) 

tknot=dt:dt:(length(Xknot)*dt) 

tkick=dt:dt:(length(Xkick)*dt) 

 

T0=dt:dt:length(Y0)*dt; 

    fNorp0 = lowpassP/(10000/2);                

    [b,a] = butter(10, fNorp0, 'low'); 

        xlp0=filtfilt(b,a,x0); 

        ylp0=filtfilt(b,a,Y0); 

        zlp0=filtfilt(b,a,Z0); 

for L=1:length(lowpass)         

for i=1:length(aaa) 

    for j=1:length(bbb) 

        xnorm=Xnormal*aaa(i); 

        ynorm=Ynormal*bbb(j); 

        NORM=xnorm-ynorm; 

        xknot=Xknot*aaa(i); 

        yknot=Yknot*bbb(j); 

        KNOT=xknot-yknot; 

        xkick=Xkick*aaa(i); 

        ykick=Ykick*bbb(j); 

        KICK=xkick-ykick; 

         

        NormKick(i,j)=max(KICK)-max(NORM) 

        Normknot(i,j)=max(KNOT)-max(NORM)       

    end 

end 

end 

    figure 

    subplot(2,1,1) 

    plot(T0,Y0,T0,Z0) 

    title('Piezo-3 Axis Accelerometer Full Waveform Signal') 

    legend('y-axis','z-axis') 

    xlabel('time (s)') 

    ylabel('acceleration(g)') 

 

    subplot(2,1,2) 

    plot(T0,ylp0,T0,zlp0) 

    legend('y-axis','z-axis') 

    title('Standard Cut:Piezo-3 Axis Accelerometer Full Waveform Signal Filtered at 100HZ') 

    xlabel('time (s)') 

    ylabel('acceleration(g)') 

 

    figure 

    plot(T0,d0) 

    title('Standard Cut: Difference between Y and Z Axes') 

    xlabel('time (s)') 

    ylabel('Z-Y acceleration(g)') 
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9.2 Appendix A.2 

%Code used during Phase 1 optimization data analysis 

clear  

clc 

close all 

 

 

% Optimization of Individual Kickback Events 

% TTnormal uses only cutting events when the saw is running and there 

% aren't large motions being detected by the saw. 

    load('TKnBuNormal.mat','TKnBuNormal') 

    TTnormal=TKnBuNormal; 

    NY1=TTnormal(:,2); 

    NX1=TTnormal(:,3); 

    NG1=TTnormal(:,5); 

     

    load('TKnBuNormal.mat','TKnBuNormal') 

    TTnormal=TKnBuNormal; 

    NY2=TTnormal(:,2); 

    NX2=TTnormal(:,3); 

    NG2=TTnormal(:,5); 

     

%Scaling Factor Values 

    a=.05:.05:3; 

    b=.05:.05:3; 

    c=.005:.005:.3; 

for k=1:112 

    close all 

    DifXYZ1=sparse(length(a),length(b)); 

    DifXYZ2=sparse(length(a),length(b),length(c)); 

  %Load Kickback (k) data 

    load(sprintf('TKB%d.mat',k),'Ttemp3') 

    t=Ttemp3(:,1); 

    Y1=Ttemp3(:,2); 

    X1=Ttemp3(:,3); 

    G1=Ttemp3(:,5); 

  %Run kickback(k) and Normal cutting through algortihm 

 

            XaYaZg=(Y1.*a(i)-X1.*b(j))+G1.*.1; 

            NXYZ1=(NY1.*a(i)-NX1.*b(j))+NG1.*.1; 

            DifXYZ1(i,j)=(max(XaYaZg)-max(NXYZ1))/max(NXYZ1); 

 

            XaYaZg=(Y1.*a(i)-X1.*b(j))+G1.*.1; 

            NXYZ2=(NY2.*a(i)-NX2.*b(j))+NG2; 

            DifXYZ2(i,j)=(max(XaYaZg)-max(NXYZ1))/max(NXYZ1); 

             

 

    % Save Contour Plot Values 

     save(sprintf('Opt4Acc%d',k),'DifXYZ1') 

     save(sprintf('Opt4Acc%d',k),'DifXYZ2') 

      

  % Contour Plots 

 

 

MaxA=max(max(DifXYZ1)); 

    indA=find(DifXYZ1==MaxA); 
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    [Ya,Xb] = ind2sub(size(DifXYZ1),indA); 

    YA1=a(Ya(1)); 

    XB1=b(Xb(1)); 

    Astatxyz1(k,1)=MaxA;  

    Astatxyz1(k,2)=YA1; 

    Astatxyz1(k,3)=XB1;    

    Astatxyz1(k,4)=k; 

  

MaxB=max(max(DifXYZ2)); 

    indB=find(DifXYZ2==MaxB); 

    [Ya,Xb] = ind2sub(size(DifXYZ2),indB); 

    YA2=a(Ya(1)); 

    XB2=b(Xb(1)); 

    Astatxyz2(k,1)=MaxB;  

    Astatxyz2(k,2)=YA2; 

    Astatxyz2(k,3)=XB2;   

    Astatxyz2(k,4)=k; 

end 

 

save('Astatxyz1','Astatxyz1') 

save('Astatxyz2','Astatxyz2') 

 

%% Histogram of Accelerometers 

close all  

% clc 

figure %1 

 

  subplot(3,1,1) 

  plot(A5statxy(:,4),A5statxy(:,1),A5statxy(:,4),A5statxy(:,2),A5statxy(:,4),A5statxy(:,3)) 

  legend('max value','a','b') 

    subplot(3,1,1) 

  plot(A5statxy(:,4),A5statxy(:,1),A5statxy(:,4),A5statxy(:,2),A5statxy(:,4),A5statxy(:,3)) 

  legend('max value','a','b') 

    subplot(3,1,1) 

  plot(A5statxy(:,4),A5statxy(:,1),A5statxy(:,4),A5statxy(:,2),A5statxy(:,4),A5statxy(:,3)) 

  legend('max value','a','b') 

    subplot(3,1,1) 

  plot(A5statxy(:,4),A5statxy(:,1),A5statxy(:,4),A5statxy(:,2),A5statxy(:,4),A5statxy(:,3)) 

  legend('max value','a','b') 

   

   

 figure %2 

  subplot(3,1,2) 

    hist(A5statabs(:,2),40); 

     xlim([.05 2]) 

     xlabel('a values') 

  subplot(3,1,1) 

    hist(A5statabs(:,3),40); 

     xlim([.05 2]) 

     xlabel('b values') 

     subplot(3,1,3) 

    plot(A5statabs(:,4),A5statabs(:,1),A5statabs(:,4),A5statabs(:,2),A5statabs(:,4),A5statabs(:,3)) 

    legend('max value','a','c') 

      

 figure %3 

  subplot(3,1,2) 

    hist(G5statYY(:,2),40); 

     xlim([.05 2]) 

     xlabel('a values') 
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  subplot(3,1,1) 

    hist(G5statYY(:,3),40); 

     xlim([.05 .2]) 

     xlabel('c values') 

    subplot(3,1,3) 

    plot(G5statYY(:,4),(G5statYY(:,1).*.1),G5statYY(:,4),G5statYY(:,2),G5statYY(:,4),G5statYY(:,3)) 

    legend('max value','a','c') 

      

figure %4 

  subplot(3,1,2) 

    hist(G5statXX(:,2),40); 

     xlim([.05 2]) 

     xlabel('a values') 

  subplot(3,1,1) 

    hist(G5statXX(:,3),40); 

     xlim([.05 .2]) 

     xlabel('c values') 

    subplot(3,1,3) 

    plot(G5statXX(:,4),(G5statXX(:,1).*.1),G5statXX(:,4),G5statXX(:,2),G5statXX(:,4),G5statXX(:,3)) 

    legend('max value','a','c') 
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9.3 Appendix A.3.1 

% Code used during Phase 2 differential analysis 

clear  

clc 

close all 

 

for k=1:112 

  %Load Kickback (k) data 

    load(sprintf('TKB%d.mat',k),'Ttemp3');     

    t=Ttemp3(:,1); 

    Y1=Ttemp3(:,2); 

    X1=Ttemp3(:,3); 

    G1=Ttemp3(:,5); 

    yi=Y1(1); 

    xi=X1(1); 

    gi=G1(1); 

    ti=t(1); 

 

%     Xdif=sparse(length(X1)-1,1); 

%     Ydif=sparse(length(Y1)-1,1); 

%     Gdif=sparse(length(G1)-1,1); 

    for i=2:(length(t)-1) 

        clc 

        k 

        i 

        Ydif(i)=(Y1(i)-yi)/(t(i)-ti); 

        Xdif(i)=(X1(i)-xi)/(t(i)-ti); 

        Gdif(i)=(G1(i)-gi)/(t(i)-ti); 

        T(i)=t(i); 

        xi=X1(i); 

        yi=Y1(i); 

        gi=G1(i);         

    end 

   % Dif=sparse(4,(length(T)-1)); 

    Dif=[T', Xdif', Ydif', Gdif']; 

    save(sprintf('DIF%d',k),'Dif'); 

end 

 

% %This program optimizes the kickback detection algorithm for a differential 

% %of the kickback signals for X and Y accelerometers and Z Gyroscope. The 

% %Normal cutting signal had to be spliced together again, taking the 

% %differential before combining the signals as a large magnitude jump 

% %occurred where two signals met. 

% %**********************************************% 

clear 

close all 

clc 

a=-1.5:.05:1.5; 

b=-1.5:.05:1.5; 

%dNorm is the differentiated signal of normal cutting, and dKnB is the 

%differentiated signal of Knot Bumping. dKnB was divided by the time step 

%but dNorm was not, so dKnB is multiplied by the time step to bring it back 

%into a similar range. 

load('dNorm','dNorm') 

load('dKnB','dKnB') 

dKnB=dKnB/20000; 
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%OptNxyz15 and OptKNxyz15 are the optimized values of a and b wit rating. 

OptNxyz15=zeros(112,4); 

OptKNxyz15=zeros(112,4); 

for k=1:112 

    twe=20000; 

     

    load(sprintf('DIF%d.mat',k),'Dif') 

    Dif=Dif/20000; 

    DKy=Dif(:,2); DKx=Dif(:,3); DKz=Dif(:,4); 

    dXYZnorm=zeros(length(a),length(b)); 

    dXYZKnB=zeros(length(a),length(b)); 

    for i=1:length(a) 

        for j=1:length(b) 

            clc 

            k 

            i 

            j 

            KB=a(i).*DKy+b(j).*DKx+DKz; 

            dN=a(i).*dNorm(:,2)+b(j).*dNorm(:,3)+dNorm(:,4); 

            dKn=a(i).*dKnB(:,2)+b(j).*dKnB(:,3)+dKnB(:,4); 

            dXYZnorm(i,j)=(max(KB)-max(dN))/(max(KB)); 

            dXYZKnB(i,j)=(max(KB)-max(dKn))/(max(KB)) ;         

            clearvars KB dN dKn 

        end 

    end 

     

        MxN=max(max(dXYZnorm)); 

        indA=find(dXYZnorm==MxN); 

        [Ya,Xb] = ind2sub(size(dXYZnorm),indA); 

        YA=a(Ya(1)); 

        XB=b(Xb(1)); 

    OptNxyz15(k,1)=MxN;  

    OptNxyz15(k,2)=YA; 

    OptNxyz15(k,3)=XB;    

    OptNxyz15(k,4)=k;  

        clearvars Ya Xb YA XB MxN 

     

        MxKn=max(max(dXYZKnB)); 

        indA=find(dXYZKnB==MxKn); 

        [Ya,Xb] = ind2sub(size(dXYZKnB),indA); 

        YA=a(Ya(1)); 

        XB=b(Xb(1)); 

    OptKNxyz15(k,1)=MxKn;  

    OptKNxyz15(k,2)=YA; 

    OptKNxyz15(k,3)=XB;    

    OptKNxyz15(k,4)=k;  

        clearvars Ya Xb YA XB MxKn dXYZKnB dXYZnorm 

end  

 

save('OptNxyz15','OptNxyz15') 

save('OptKNxyz15','OptKNxyz15') 

figure %1 

 

subplot(2,2,1) 

    title('Normal Cutting') 

    hist(OptNxyz15(:,2),length(a)); 

     xlim([-6 6]) 

    xlabel('a values') 

subplot(2,2,2)     
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    title('Normal Cutting') 

    hist(OptNxyz15(:,3),length(a)); 

    xlim([-6 6]) 

    xlabel('b values') 

subplot(2,2,3) 

   title('KnotBump') 

   hist(OptKNxyz15(:,2),length(a)); 

    xlim([-6 6]) 

    xlabel('a values') 

subplot(2,2,4) 

    title('KnotBump') 

    hist(OptKNxyz15(:,3),length(a)); 

    xlim([-6 6]) 

    xlabel('b values') 
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9.4 Appendix A.3.2 

%Code used during Phase 2, Bag of Words Analysis 

clear 

clc 

load N.mat 

N1=N(:,4); 

thresh1=5:10:305; 

countnorm=zeros(length(thresh1),length(N1)-51); 

for II=1:length(thresh1)     

   clc 

        II 

    for ii=1:length(N1)-51 

         

%         ii 

        temp1=N1(ii:ii+50); 

        for jj=1:length(temp1) 

%             count2(ii,II)=length(temp1(jj)>thresh1(II)); 

%                 count1(ii)=count1(ii)+1; 

%             end 

            if temp1(jj)>thresh1(II) 

                countnorm(II,ii)=countnorm(II,ii)+1; 

                 

 

            end 

        end 

    end 

end 

 

% This program uses a Bayesian Network (bag of words) to count the number 

% of instances that occur above a given threshold. The minimum number of 

% instances that would trigger a KB is 26 and the max is 50 

 

clear 

clc 

load Kb.mat 

threshkb=5:10:305; 

count=zeros(length(threshkb),length(Kb(1,:)),length(Kb(:,1))); 

%num is the number of measurements per sample that are greater than the 

%given threshold. 

num=26; 

for I=1:length(threshkb)-1 

 

    for i=1:length(Kb(1,:)) 

        temp=0; 

        for j=1:length(Kb(:,i)) 

            if Kb(j,i)>threshkb(I) 

                count(I,i,j)=temp+1; 

                temp=temp+1; 

                if temp==2 

                  mark(i,I)=j; 

                end 

            else 

                count(I,i,j)=temp; 

            end 

             

%             if Kb(j,i)>thresh1(I) && Kb(j,i)<thresh1(I)+20 
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%                 mark(i,I)=j; 

%             end 

%              

%             if count(I,i,j)==num 

%                 mark(I,i)=j; 

%             end 

        end 

    end 

end 

figure(3) 

for k=1:length(threshkb) 

    figure(3) 

    subplot(4,8,k) 

    temp=squeeze(count(k,:,:))'; 

    plot(temp) 

    hold on 

    plot([1 200],[26,26],'k') 

    xlabel(sprintf('Threshold=%ddeg/sec',threshkb(k))) 

end 

 

%  

% load NormBag.mat 

% count1=full(count1); 

% threshy=max(count1') 

 

%% plot 

load countnorm.mat 

markmean=mean(mark); 

markmax=max(mark); 

markmin=min(mark); 

figure 

subplot(211) 

bar(threshkb,max(countnorm')) 

xlabel('threshold ^\circ/second') 

ylabel('Max number of threshold counts') 

title('Normal Cutting Bag of Words Results') 

subplot(212) 

plot(threshkb(1:length(threshkb)-1),(markmax-198)/5,'--.',threshkb(1:length(threshkb)-1)... 

    ,(markmean-198)/5,threshkb(1:length(threshkb)-1),(markmin-198)/5,'--*') 

legend('latest threshold cross','mean threshold cross','earliest threshold cross') 

xlabel('Threshold (^\circ/second)')  

ylabel('time before KB of first threshold cross (ms)') 

title('Kickback Bag of Words Results') 

ylim([-40 02]) 
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9.5 Appendix A.3.3 

%Code used for the Phase 2 Support Vector Machine Analysis, including the selective oversampling and 

%classifier stakcing. 

clear 

clc 

close all 

 

%% load data 

load N.mat  %Normal Cutting Data 

% load Ka.mat 

load Kb.mat 

kb=Kb; 

N=round(N*1000)/1000; %This gives 3 decimal places which helps to find vectors later 

%n is the number of KB instances we want to look at. There are only 24 sets 

%of KB data. 

L=49;%This depends on the number of samples examined in each kb file(50 for now) 

l=L+1;%(used because there ends up being 50 data points) 

n=86; %This is the number of data vectors in each permutation 

runs=10000; 

% NormSVbszg=zeros(runs,30); 

% NormSVbmagzg=zeros(runs,30); 

dist=[61 71 81 91 101 111 121 131 141 151];%Distance from peak=200-dist 

lo=dist; hi=dist+L; 

 

% Setup SVM 

% The support vector machine has to be "reinstalled" for ever use. The 

% folder labeled matlab has to be mapped using the CD command. Once this is 

% done, the command "make" will generate the SVM code to be used. If the 

% data is cleared, so is the SVM. 

%Windows:  use this path on the on a school windows machin 

% cd C:\Users\pdda73388\Desktop\GyroImbalance\libsvm-3.11\libsvm-3.11\matlab 

%linux: Use this command on my linux workstation 

% cd /nfs/mohr/parmigiani/arnolddr/Blount/Data/GyroImbalance/libsvm-3.11/libsvm-3.11/matlab/ 

% mac: Use this command on my laptop 

cd /Users/drewarnold/Desktop/GyroImbalance/libsvm-3.11/libsvm-3.11/matlab/ 

make 

 

for  I=1:runs 

 

 

 

%% n1-n2  

    %n2-n4 are random numbers from the vector that is the data taken from normal cutting 

    %each time the program runs, a new set of random values from the k2-k4 data 

    %is taken. 

        n1(:,I)=randsample(length(N)-l,n*3); 

       

%% Training 

%This loop builds the "Instance Matrix" (X) which is full of feature 

%vectors (X_i) and the Associated labels vector (y). The KB feature vectors 

%have corresponding labels of 1, the rest are 0. 

% X=sparse(n,4*l); 

for D=1:length(dist) 

    clc 

    I 

    D 
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for i=1:n 

 

    Xb(i,:)=kb(lo(D):hi(D),i); 

    Xb(n+i,:)=N(n1(i,I):n1(i,I)+L,4); 

    Xb(n*2+i,:)=N(n1(i+n,I):n1(i+n,I)+L,4); 

    Xb(n*3+i,:)=N(n1(i+2*n,I):n1(i+2*n,I)+L,4); 

    yb(i,1)=1; yb(i+n,1)=-1; yb(i+2*n,1)=-1; yb(i+3*n,1)=-1; 

    

end 

 

Xb=full(Xb); % Matrices were sparse bust must be made full 

modelb=svmtrain(yb,Xb,'-s 0 -t 0 -b 1'); 

I 

D 

 

    pcountxb=0; 

    for pxb=1:length(modelb.sv_coef) 

        if modelb.sv_coef(pxb)<0 

            pcountxb=pcountxb+1; 

            NormSVbb(I,D,pcountxb)=findsubmat(N(:,4),(round(full(modelb.SVs(pxb,:))*1000)/1000)'); 

            NormSVbmagb(I,D,pcountxb)=modelb.sv_coef(pxb); 

        end  

    end 

 

clearvars dec_values accuracy X Xt y yt wXsort 

end 

end 

 

save(workspace) 

%  

clear 

clc 

load ImbalWkSpc.mat 

NormSVb=NormSVbb; 

 

 

close all 

clc 

bins=5000; 

num=200; 

clearvars bin1 bin2 bin3 bin4 bin5 bin6 bin7 bin8 bin9 bin10 bin11... 

    bin12 bin13 bin14 bin15 bin16  

% Collect Data After 

temp1=squeeze(NormSVb(:,1,:)); 

temp1=reshape(temp1.',[],1); 

temp1(temp1==0)=[]; 

[bin1(:,1),bin1(:,2)]=hist(temp1,bins); 

bsort1=sortrows(bin1,1); 

 

temp2=squeeze(NormSVb(:,2,:)); 

temp2=reshape(temp2.',[],1); 

temp2(temp2==0)=[]; 

[bin2(:,1),bin2(:,2)]=hist(temp2,bins); 

bsort2=sortrows(bin2,1); 

 

temp3=squeeze(NormSVb(:,3,:)); 

temp3=reshape(temp3.',[],1); 

temp3(temp3==0)=[]; 

[bin3(:,1),bin3(:,2)]=hist(temp3,bins); 
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bsort3=sortrows(bin3,1); 

 

temp4=squeeze(NormSVb(:,4,:)); 

temp4=reshape(temp4.',[],1); 

temp4(temp4==0)=[]; 

[bin4(:,1),bin4(:,2)]=hist(temp4,bins); 

bsort4=sortrows(bin4,1); 

 

 

temp5=squeeze(NormSVb(:,5,:)); 

temp5=reshape(temp5.',[],1); 

temp5(temp5==0)=[]; 

[bin5(:,1),bin5(:,2)]=hist(temp5,bins); 

bsort5=sortrows(bin5,1); 

 

temp6=squeeze(NormSVb(:,6,:)); 

temp6=reshape(temp6.',[],1); 

temp6(temp6==0)=[]; 

[bin6(:,1),bin6(:,2)]=hist(temp6,bins); 

bsort6=sortrows(bin6,1); 

 

temp7=squeeze(NormSVb(:,7,:)); 

temp7=reshape(temp7.',[],1); 

temp7(temp7==0)=[]; 

[bin7(:,1),bin7(:,2)]=hist(temp7,bins); 

bsort7=sortrows(bin7,1); 

 

temp8=squeeze(NormSVb(:,8,:)); 

temp8=reshape(temp8.',[],1); 

temp8(temp8==0)=[]; 

[bin8(:,1),bin8(:,2)]=hist(temp8,bins); 

bsort8=sortrows(bin8,1); 

 

temp9=squeeze(NormSVb(:,9,:)); 

temp9=reshape(temp9.',[],1); 

temp9(temp9==0)=[]; 

[bin9(:,1),bin9(:,2)]=hist(temp9,bins); 

bsort9=sortrows(bin9,1); 

 

temp10=squeeze(NormSVb(:,10,:)); 

temp10=reshape(temp10.',[],1); 

temp10(temp10==0)=[]; 

[bin10(:,1),bin10(:,2)]=hist(temp10,bins); 

bsort10=sortrows(bin10,1); 

 

figure 

 

subplot(5,2,1) 

plot(bsort1(bins-num:bins,2),bsort1(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('1') 

 

subplot(5,2,2) 

plot(bsort2(bins-num:bins,2),bsort2(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('2') 
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subplot(5,2,3) 

plot(bsort3(bins-num:bins,2),bsort3(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('3') 

 

subplot(5,2,4) 

plot(bsort4(bins-num:bins,2),bsort4(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('4') 

 

subplot(5,2,5) 

plot(bsort5(bins-num:bins,2),bsort5(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('5') 

 

subplot(5,2,6) 

plot(bsort6(bins-num:bins,2),bsort6(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('6') 

 

subplot(5,2,7) 

plot(bsort7(bins-num:bins,2),bsort7(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('7') 

 

subplot(5,2,8) 

plot(bsort8(bins-num:bins,2),bsort8(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('8') 

 

subplot(5,2,9) 

plot(bsort9(bins-num:bins,2),bsort9(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('9') 

 

subplot(5,2,10) 

plot(bsort10(bins-num:bins,2),bsort10(bins-num:bins,1),'*') 

hold on 

plot(N(:,4)) 

title('10') 

 

Nimb(1,:)=bsort1(bins-num:bins,2); 

Nimb(2,:)=bsort2(bins-num:bins,2); 

Nimb(3,:)=bsort3(bins-num:bins,2); 

Nimb(4,:)=bsort4(bins-num:bins,2); 

Nimb(5,:)=bsort5(bins-num:bins,2); 

Nimb(6,:)=bsort6(bins-num:bins,2); 

Nimb(7,:)=bsort7(bins-num:bins,2); 

Nimb(8,:)=bsort8(bins-num:bins,2); 

Nimb(9,:)=bsort9(bins-num:bins,2); 

Nimb(10,:)=bsort10(bins-num:bins,2); 
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figure 

plot(N(:,4),':') 

hold on 

plot(bsort9(bins-num:bins,2),bsort9(bins-num:bins,1),'r*') 

 

 

figure 

plot(N(:,4)) 

figure 

plot(N(:,2)) 

 

% 

 

% Having 5000 bins makes it so there are about 50 data points for each bin. 

% having 500 leaves about a 5000 wide chunk of data that could be 

 

clear 

clc 

 

load Nimb.mat 

load Kb.mat 

load N.mat 

N=N(:,4); 

chunk=[61 71 81 91 101 111 121 131 141 151]; 

 

% Setup SVM 

% The support vector machine has to be "reinstalled" for every use. The 

% folder labeled matlab has to be mapped using the CD command. Once this is 

% done, the command "make" will generate the SVM code to be used. If the 

% data is cleared, so is the SVM. 

%Windows:  use this path on the on a school windows machin 

% cd C:\Users\pdda73388\Dropbox\THESIS\Plots\SVMgyro\libsvm-3.11\libsvm-3.11\matlab 

%linux: Use this command on my linux workstation 

% cd /nfs/mohr/parmigiani/arnolddr/Blount/Data/GyroImbalance/libsvm-3.11/libsvm-3.11/matlab/ 

% mac: Use this command on my laptop 

cd /Users/drewarnold/Desktop/GyroImbalance/libsvm-3.11/libsvm-3.11/matlab/ 

make 

 

for i=1:length(chunk) %i sets the specific distance from the ID point 

   clc 

   i 

    %Build KB vectors of only specific time ranges 

    X=Kb(chunk(i):chunk(i)+49,:); 

    y=ones(1,length(X(1,:))); 

    %Build Balance compensated Normal Cutting Matrix 

    for j=1:length(Nimb(i,:)) %j is the numbe of normal selected points 

        Nx(:,j)=N(Nimb(i,j):Nimb(i,j)+49); 

%         Ny(j)=-1; 

    end 

    Ny=ones(1,length(Nx(1,:)))*-1; 

    %Build feature set with class vector 

    X=[X Nx]; 

    y=[y Ny]; 

     

    model=svmtrain(y',X','-s 0 -t 0 -b 1'); 

    w(:,i)=full(model.SVs)'*model.sv_coef; 

%     clearvars Nx Ny X y 

End 
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load w1.mat 

load Kb.mat 

load N.mat 

N=N(:,4)'; 

% Find the thresholds for w 

We are going to determine the thresholds such that the highest kickback 

% event does not set it off.  

cnt=1; 

for i=1:length(N)-50 

    if cnt==1000 

        clc 

        i 

        cnt=0; 

    else 

        cnt=cnt+1; 

    end 

         

         

        n1=N(i:i+49)'; 

        normclass(i,:)=n1*w1; 

end 

 

% next run 

thresh=max(normclass).*1.1; 

chunk=[61 71 81 91 101 111 121 131 141 151]; 

for l=1:length(chunk) 

    kb=Kb(chunk(l):(chunk(l)+49),:)'*w1; 

    kbmin(:,l)=min(kb); 

end 

class=zeros(length(Kb(:,1)-50),length(Kb(1,:))); 

class2=zeros(length(Kb(:,1)-50),length(Kb(1,:))); 

class3=zeros(length(Kb(1,:)),1); 

for m=1:length(Kb(:,1))-50 %m is position in kickback 

    for n=1:length(Kb(m,:)) %n is the given kickback event 

        input=Kb(m:m+49,n)'; %this is the 50 sample window (m,n) 

        check=input*w1; %Apply the stack of 10 classifiers 

        for p=1:length(thresh) %look at each classifier in the stack 

            if check(p)>thresh(p) %If greater than the threshold, kickback occurs 

                class(m,n)=class(m,n)+10^p; %Stores which classifiers are marked  

                                            %because more than one can trigger for a given input 

                class2(m,n)=class2(m,n)+1;  %Simply stores how many classifiers have triggered  

            end 

%             if p==1 

%                 if class(m,n)>0 

%                     class3(n)=m; 

%                 end 

%             else 

%                 if class(m,n)>0 && class3(n)==0 

%                     class3(n)=m; 

%                 end 

%             end                  

        end 

    end 

end 

%Find where kickback is detected earliest 

for q=1:length(class2(1,:)) 

    for r=1:length(class2(:,1)) 

        if class(r,q)>0 && class5(q)==0 
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            class5(q)=r; 

        end 

    end 

end 

 

         

class3=sort(class3); 

class4=sort(class3); 

class5=sort(class(class~=0)); 
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