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Evolution of Optical Polarization in Single Mode Fibers

1. Introduction

1.1 Optical Fibers

Since its invention about 20 years ago, the silica glass fiber has

become an important long distance waveguide which is used mainly as an

optical communication transmission medium. This success is due to the

reduction of optical losses by elimination of absorbing impurities and

improvements in the material composition. The development of fiber-

drawing techniques allowed better control over the forming process,

which gave rise to a whole variety of different fiber designs. Besides

long distance transmission lines for optical communications, new fields

of applications have been opened to fiber optics technology.

Particularly, the development of single-mode and polarization-

maintaining fibers has been a great advance, giving the possibility of

building fiber optic devices which rely on the polariztion state of the

light. Polarimetric sensors for electromagnetic fields, pressure,

strain and temperature have been realized, and the powerful technique

of interferometric sensing has allowed construction of highly sensitive

devices such as fiber-optic gyroscopes. The major advance, however, is

that the use of single-mode fibers has improved optical communication

due to the reduction of signal distortion and mode coupling.

In general an optical fiber consists of a central light-carrying

core, surrounded by a cylindrical region called the cladding. The

cladding then is covered with a protective plastic jacket, called the
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buffer coating. Due to the difference in the index of refraction

between core and cladding, the light is guided inside the core. In the

ray picture, the concept of total internal reflection makes the

interface look like a perfect mirror. The cladding, having an index of

refraction smaller than the core, provides a definite fractional

refractive index difference everywhere along the fiber of 1

A
(nco-not)

nco
(1.1.1).

This makes the guiding properties insensitive to external contact

media. In order to limit the number of modes carried by the fiber,

there is only a small difference in the index of refraction and the

critical angle for total internal reflection using Snell's law 4

sin(8crit)
nco

(1.1.2)

is very large. The numerical aperture, NA, is the measure of the

maximum angle of the incident light collected by an optical system. For

an optical fiber this is given by 1

NA (nL- n!1)4 no sin Bmax (1.1.3)

where no is the index of refraction of air and Oicox is the maximum

angle of incidence. Due to the large critical angle the NA is small,

requiring the light incident from air into the end of the fiber to be

nearly parallel to the fiber axis. Fibers with a small fractional

refractive index, A<<1, are classified as weakly guiding waveguides.3
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The two main groups of fibers are the step-index and the graded-

index fibers, which differ in the refractive index profile of core and

cladding. The radial variation in the refractive index is achieved by

appropriately doping the core with higher index germania and the

cladding with fluorosilicates. Fig. 1.1.a shows the basic fiber

geometries and guided waves in the ray picture.''`'

The ray picture, however, is only an approximation which is valid

when the system dimensions are much bigger than the wavelength of the

light. In an optical fiber a better description is given by the

waveguide theory, which is introduced in chapter 1.2.

The overall properties of a fiber are determined mainly by the

shape and dimension of the core. Typical core diameters in fibers used

for communications range from 4-8pm for single mode fibers to 50-100pm

for multimode fibers. Even larger core fibers, having diameters in the

range 200-1000pm, are used in power transmission applications. For

multimode fibers the cladding diameter will be between 125-140pm

whereas single mode fibers are as small as 80pm. The core diameter

determines the number of modes carried by the fiber and the power

transmission capability. In order to gain control of the polarization

in single mode fibers, the shape of the core has been modified in

various ways to produce various kinds of polarization-maintaining

fibers. Fig.1.l.b shows this variety.3°

In the present study the research has been done with round core

low birefringence single mode fiber.



4

jacked

cladding

Ste p index

graded index

fig,_1_,LA Fiber geometry, index profiles and the ray picture



5

SP
Sid* Pit

GESide Tunnel

Bow-Tie
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PANDA
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Side Pit
Side Tunnel

Elliptical Cladding

PM- Elliptical Jacket
SE Bow-Tie

Flat Cladding
PANDA

GE
RoundCore1...;
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Fig. 1.1.b Kinds of polarization maintaining fibers
classified from the linear polarization mainenance viewpoint.
PM: Polarization Maintaining, HB: High Birefringent, LB: Low
Birefringent, SP: Single Polarization mode, TP: Two

Polarization modes, GE: Geometrical Effect, SE: Stress Effect
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1.2 Waveguide Theory

Although the ray picture of light propagation through a fiber

explains some of the observed properties, it is only an approximation

for dimensions large compared to the wavelength of the light.

Particularly for single mode fibers, where the core size is on the

order of the wavelength, it is necessary to use wave optics to get a

better description of the light propagation.

The laws governing the propagation of light in optical fibers are

Maxwell's equations. They can be combined to produce the wave

equation6

822
022(r) Aoe. 8t r)

(1.2.1)

for the electric field or the magnetic field H respectively. The

electromagnetic field distributions that will propagate are obtained by

application of the boundary conditions of the fiber in question. These

allowed distributions of the electromagentic field are called the modes

of a fiber.

For a cylindrical dielectric waveguide there is no exact

analytical solution for the wave equation. For weakly guiding fibers,

however, the electric field for cylindrical symmetry and propagation in

z-direction can be written as

.exp[i(w.t-fi.z)]
E(r,w,z,t) E(r,w)

(1.2.2)

where fi is the longitudinal propagation constant of the wave inside the

waveguide. The scalar wave approximation can be applied to transform
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Maxwell's equations in cylindrical coordinates into the scalar wave

equation 1

a2 1 a
1 2

8r2 1-7-61- + T2' + (k2111-132)]Ez 0 (1.2.3)

where n3 is equal to n1 in the core and n2 in the cladding. The

equation for the magnetic field H. is equivalent.

From (1.2.3) it follows that the field variations along r will

always exhibit sinusoidal behavior when (k2n32-fl2)>O, and exponential

behavior when (k2n1-#2)<0. For a mode to be confined and guided by the

fiber, however, the field has to be oscillatory in the core and

exponentially falling off in the cladding. Thus the propagation

constant is restricted to the interval

kn2:5 5kn1 (1.2.4)

where k is the wave number in free space and n1 and n2 are the indices

of refraction of core and cladding, respectively (n1 >n2). Defining the

parameters 1

a.(k2u!o_p2)4

[transverse propagation constant]

a.(132_k2nL)A1

[transverse decay constant]

(1.2.5a)

(1.2.5b)

with a being the core diameter, the mode field E(r,99) obtained by

plugging (1.2.2) into (1.2.3) can be expressed in terms of Bessel



8

functions J(ur/a) inside the core and modified Hankel functions

K(vr/a) outside the core. The quadratic summation leads to a third

parameter

u2+,72 a20.(n!o_n!I ) (kaNA)2 (1.2.6)

where NA is the numerical aperture as defined before. This is called

the normalized frequency which depends only upon the wavelength of the

incoming light and the fiber characteristics. The boundary conditions

are that E., H. and their normal radial derivatives must be continuous

at the core-cladding interface. Incorporating these conditions in

(1.2.3) leads to a relation wf(u); and, together with (1.2.6), u and v

can be determined graphically. This in turn defines the propagation

constant fi of the excited mode as a function of the frequency of the

incoming light.

The low order modes propagating in a fiber and their propagation

constants as a function of the normalized frequency are shown in

Fig.1.2.a.4 Due to the restrictions of fi mentioned earlier, all except

the fundamental mode HE11 have a cut off frequency below which they are

not supported anymore. In order to get single mode characteristics

therefore it is necessary to choose fiber geometry and wavelength such

that V<2.405.

In the weakly guiding approximation,3 the exact solutions of the

waveguide theory, HE.., can be replaced by a set of modes which are

linearly polarized, called LP.. modes. The subscripts m and n give the

number of azimuthal and radial nodes, respectively. This allows

identification of the intensity pattern of the outcoming beam in a
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multimode fiber. The fundamental mode, LP", has no azimuthal nodes,

and consequently the outcoming beam has the shape of circular spot.

From the exact solution, it is found that the radial field distribution

of the fundamental mode is approximately Gaussian. The Gaussian width

parameter is 1

wo a[0.65 + 1.619V-1-5 + 2.879V-6] (1.2.7)

where wo is the radius of the 1/e2 intensity in the radial

distribution. This is also the beam characteristics of a single mode

fiber and will be used later in this study.
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Fig. 1.2.a Low order modes of an optical single mode fiber
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2. Mathematical Treatment of Optical Systems

2.1 Birefringence Effects: General Theory

In its broadest sense, the term birefringence refers to the

anisotropy of dispersion in a medium. The birefringence is caused by

the asymmetric internal arrangement and strength of the molecular

binding forces Birefringence can also be induced externally via

asymmetric pressure, strain or applied electromagnetic fields. These

stimulii cause a difference in the dispersion and therefore different

refractive indices, n(w), for two orthogonal states of polarization.

The dependence of the refractive index upon frequency for two

orthogonal polarization states in an anisotropic medium is shown in

Fig.2.l.a.4 It is seen that at a given frequency those two states have

different indices of refraction. Regions where dn/dw <0 correspond to

absorption bands. This gives rise to the selective absorption of one

of the two orthogonally polarized eigenstates of an incident beam.

This effect is called dichroism and is used in polaroids to produce

linearly polarized light.

The two basic birefringence effects are linear and circular

birefringence, the latter is also called optical activity. The

simplest linearly birefringent medium is a uniaxial crystal which has a

preferred direction called the optic axis.

A linearly birefringent medium has different indices of refraction

along two axis causing the polarized incoming light to be resolved into

two orthogonal linearly polarized eigenstates, called the 6 states.
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Fig. 2.1.a Refractive index versus frequency for two
orthogonal states of polarization
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Due to the different dispersion this introduces a phaseshift or

retardation among the eigenstates which can be observed as a change in

the state of polarization (SOP). A circularly birefringent medium,

however, provides different indices of refraction for circularly

polarized light, causing a resolution of the incoming polarized light

into left- and right-handed circularly polarized eigenstates, called

the . and 13, states. Introducing a retardation between those, however,

doesn't change the SOP but rather rotates the entire state in its

reference frame.

The most general case of birefringence, finally, is elliptical

birefringence which can be thought of as being a superposition of

linear and circular birefringence. Thus the polarized light gets

resolved into two orthogonally elliptical SOP's which superpose to a

changed and rotated SOP. The evolution of polarization in birefringent

media can be described by Jones 2x2 matrix calculus which is the

subject of the following sections of this chapter.

The most important electro-optical effects are the Kerr and

Pockels effects, where the index of refraction along the direction of

an applied dc electric field depends upon its magnitude quadratically

or linearly, respectively. The magnetooptic-optic effect of interest

in the present study is the induced circular birefringence or optical

activity due to an external magnetic field.

For circular birefringence to occur, the medium must provide

different indices of refraction for X and 11, states. This can be caused

by some kind of circular molecular structure, for example left- and

right-hand wound helices formed by long organic molecules. The Faraday
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effect, however, depends upon the atomic and molecular energy levels

rather then the form of the molecules. The following describes a

classical picture which gives a good understanding of the Faraday

effect.4

Suppose the incident light to be linearly polarized. In a

circularly birefringent medium this will be resolved into X and 13,

states. The circular states force the atomic bound electrons of the

material to rotate in the opposite direction as the light does. An

external magnetic field applied in the same direction as the light

propagates, on the other hand, causes a Lorentz force acting radially

on the rotating electron. Dependent upon the direction of the rotation

and the magnetic field, the Lorentz force will tend to expand or

compress the orbit of the electron, which gives rise to an induced

polarization for the X state that is different than that for the

state. For a given magnetic field, therefore, there will be two

different indices of refraction, causing the Faraday effect.

In the case of no other birefringence effects, the rotation F of

the SOP depends upon the magnetic flux density H and the propagation

distance L in the medium

F = Vf Hd1 (2.1.1)

where V is a constant of the medium, called the Verdet constant. The

Verdet constant for a particular medium varies with frequency and

temperature and is of the order of 10-5 rad/gauss/cm for gases and
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10-2 rad/gauss/cm for solids and liquids. For the study of the Faraday

effect in a fiber the Verdet constant of fused silica, V-1.6x10-2

rad/gauss/cm, will be used.

As mentioned before, equation (2.1.1) only holds in the absence of

other birefringence effects. These can be included by using the matrix

description developed by R.C.Jones, where the Faraday effect is treated

as an additional circular birefringence which can be obtained from the

Faraday rotation by 5

a 2F (2.1.2).
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2.2 Jones Matrix Description

Jones calculus is a matrix notation used to obtain a relation

between the incoming and outgoing SOP as a function of the linear and

circular retardation.7 For polarized light the electric field can be

written as

E e [iE0.exp(iv.) + lEoy-exp(ivy)]exp[i(kz-wt)]

Eoexp[i(kz-wt)] (2.2.1)

where Lo is the complex amplitude which defines the SOP. The effect of

birefringence is to change the complex amplitude which can be expressed

as 7

or

Eo ME0 (2.2.2)

M1 M4

1113 M2 Ey

(2.2.3)

The light propagation properties of a medium can be described by

three fundamental types of optical elements, the linear polarizer, the

partial polarizer and the rotator. Each of these elements can be

represented by a 2x2 matrix acting as operators on the SOP. The linear

retarder can be written in the form 7

exp[i7] 0

G= -exp[icp]

0 exp[-i7]
(2.2.4)
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where 7-1/2(k.-ky)z. Usually only the phase difference is of interest so

that the phase factor cph(kx+ky)z may be omitted. The treatment of

the partial polarizer is very similar. The corresponding matrix is

given by

05 piP1 C)

P s -exp(icp) (2.2.6)

0 p2 O5 p2 :51

For a perfect polarizer, therefore one of the p's will be zero. Both

of these elements will be used to describe any kind of linear

birefringence and since an optical fiber doesn't have significant

absorption in either direction, the partial polarizer won't be of great

importance in this study. The third fundamental element, the rotator,

can be written as

cos w -sin w
S(w)

sin w cos w
(2.2.7)

which simply represents a rotation of the coordinate system, describing

any kind of circular birefringence.

For multi-element systems the corresponding matrix can be found by

multiplication of the individual element matrices

En mnmn M2M1Eo 11(n)E0

with M(n) being the system matrix.

(2.2.8)
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2.3 The Coupling of Linear and Circular Birefringence

The previous description of birefringence is applicable only if

the system-elements behave either like a linear retarder or a rotator.

If both local linear and circular birefringence are present the

superposition gives rise to a local elliptical birefringence which is a

function of position in the medium. This local coupling can be

described by either of the following representations:

The Poincare Sphere representation 19

The differential Jones calculus 9

The Poincare Sphere is shown in Fig 2.3.a.11 Poincare expresses the

ratio of the two complex components of the light in the form 7

Ey/E. C+iti (2.3.1)

where C and n define the shape and orientation of the polarization

ellipse. The Poincare Sphere is the stereographic projection of the

plane onto a sphere of unit radius to which the plane is tangent at

the origin of coordinates. Therefore each point on the sphere

represents a SOP. The equatorial line represents linear SOP's

including the origin of coordinates, the poles are circular .t and 1

states and any other position vector represents elliptical

polarization. In a birefringent medium the SOP undergoes a cycle of

changes which traces out a closed trajectory C(z) on the sphere. For

linear, circular and elliptical birefringence, these trajectories are

circles with the eigenstate as its center. The position vector of the
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Fig. 2.3.a The polarization ellipse and its relation to the

Poincare Sphere
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eigenstate represents the birefringence. Any elliptical birefringence

can be resolved into a linear and a circular component. In the most

general case of local birefringence as a function of position z in the

medium, the resulting elliptical birefringence is found to be 11

and

w(z) 4(z)4(z)
2 A2 4,2'(z) v(z)-(z)

(2.3.2)

(2.3.3)

-
with ij(z) and a(z) being the linear and circular birefringence,

respectively. The z dependence, however, makes the evolution C(Z) very

complicated by the fact that the birefringence vector (7)(z) itself is

moving on the Poincar6 sphere.

In cases without z-dependence the birefringence is called straight

elliptical and the evolution of polarization can be represented by a

rotation of the sphere about a fixed axis.

While the Poincar6 Sphere gives a good illustration of the evolution of

polarization, it takes the differential formulation of Jones calculus g

to evaluate the SOP as a function of z, where the local change of the

SOP is given by

dE/clz - NE. (2.3.4)

where N is the differential system matrix. If there is no absorption

the N-Matrix can be written as

1 13 a
N - -

-a -ifl

(2.3.5)
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where fl, a are the magnitudes of linear and circular birefringence,

respectively. This description is equivalent to the coupled mode

theory, since two coupled mode equations can be obtained by factoring

out equation (2.3.4). The system matrix M finally can be found by the

integration of

which yields 9

dM/dz NM (2.3.6)

M exp(Nz). (2.3.7)

For no z-dependence in a and fi the eigenvalues of N,

± i t 2 2
3.,2 yva 413 ) (2.3.8)

are independent of z as well, and the coupled mode equations can be

written as 19

d2E/dz2 - -r2E (2.3.9)

where r- It(a2i132). The solutions to equation (2.3.9) give the system

matrix M for the coexistence of homogeneous linear and circular

birefringence

E ME0 (2.3.10)



where

M

1. sin(rz) 1 sin(rz)
cos(rz)+

2
ifl

r 7a r

1 sin(rz) 1. sin(rz)
cos(rz)- 243

1-a. r r

(2.3.11)

22

The eigenmodes of this system are represented by the eigenvectors of M

with the eigenvalues as their propagation constants. There are two

special cases for the coupling of linear and circular birefringence:

case 1: homogeneous linear and circular birefringence

case 2: linear birefringence in a homogeneous twisted crystal

For these cases the resulting birefringence is straight elliptical

without z-dependence which allows one to use the system matrix derived

above.

case 1: homogeneous linear and circular birefringence

The M-Matrix derived above is valid with fi and a being the sum of

all linear and circular birefringences, respectively. The trajectories

on the Poincare sphere described are circles around the elliptical

eigenstate. After the beat length 14

L 2r(a2+/32)4

the SOP's are reproduced.

(2.3.12)
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case 2: linear birefringence in a homogeneously twisted crystal:

When the crystal is twisted,12 the azimuthal angle 4) of the linear

birefringence /3 and the induced circular birefringence a are given by

xz
a " X'g

geometrical effect (2.3.13)

elasto-optic effect (2.3.14)

where x is the twist rate and g is a material constant. Therefore the

resultant elliptical birefringence becomes a function of z due to the

z-dependence of 8. However, describing the SOP in a reference frame

which is rotating with the fiber twist removes the z-dependence in 48

and the circular birefringence transforms from

to

a Xg (2.3.15)

a x(2-g) (2.3.16)

which can be substituted into (2.3.11) to get the system matrix.

Again, other birefringence effects are just added and the beat length

is given by equation (2.3.12).
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3. The SM Fiber as an Optical System

3.1 Birefringence Effects in an Optical Fiber

The prerequisite for birefringence is an anisotropy in the medium.

Since silica glass itself is isotropic, birefringence effects in an

optical fiber are due to external stress, electromagnetic fields or the

fiber geometry. The effects discussed in this section are the core

shape, external pressure, bending, twist and the Faraday effect.

a) The shape of the core

Due to imperfections in the fiber drawing process, the cross

section of the core is not perfectly circular. This gives rise to the

so called intrinsic linear birefringence. Methods to calculate the

intrinsic birefringence using an elliptical core approximation are

discussed in the literature.1 As the manufacturing imperfections are

random, there are no specifications for this effect available and the

intrinsic birefringence must be determined for each fiber piece

individually.

In chapter 5 a method is described to measure the intrinsic

birefringence since its magnitude is of importance for the theoretical

evaluation of a current sensor.

b) External pressure

The basic principle of a single-mode fiber optic pressure sensor

is to measure the change of the SOP due to the pressure-induced stress.
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For the present study it was important to be aware of this effect to

avoid external pressure in the experimental setups.

c) Bend induced birefringence 16,17

Stress induced birefringence due to bending is of great importance

since many setups and devices involve fiber optic coils or helices.

This birefringence results from the fiber core being deformed. In

reference 17 it was found that the bend induced birefringence can be

calculated by

flb const..x2.r2 (3.1.1)

where is the fiber curvature and r the cladding radius. For a

circular path the curvature is 1/R, R being the radius of the circle.

The constant involved depends upon several material properties and the

wavelength of the light. For fused silica at A-633 nm this constant

was found theoretically and by experiment to be -7.7x107 deg/m. This

value should hold universally for weakly guiding silica fibers,

regardless of their core diameters and index profiles.

d) Twist induced birefringence

In the twisted fiber, the strain-induced optical activity is

proportional to the twist. According to reference 14 it is given by

a g-x (3.1.2)

where x is the twist rate and g is a material constant. This constant

was calculated and measured to be g=0.13-0.16 which should hold
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universally for weakly doped single-mode fibers of arbitrary index

profile.

d) The Faraday effect 15

The basic theory for the Faraday effect is given in chapter 2.1.

The Verdet constant V depends upon the material and the wavelength of

the light and for silica glass it is typically 4.68x10-6rad/A at

A=633nm. It should be mentioned, however, that this constant depends

upon the doping of the fiber and the value given above is valid only

for weakly doped fibers.

The Faraday effect can be included in the system matrix M for the

coupling of linear and circular birefringence given in chapter 2.3 by

treating it as an additional circular birefringence

a = 2VJ (3.1.3)

Since the distance traveled by the light in the fiber can be very long,

a considerable rotation can be expected. This effect would allow fiber

optics to be utilized as magnetic field sensors.
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3.2 The Geometric Rotation

It has been discovered recently, 19-22 that there is another

induced circular birefringence due to the spatial path of the fiber.

This effect, the so called geometric rotation, is independent of the

wavelength of the light and the fiber boundary conditions. The

following theory has been developed by J.N. Ross in 1984 and uses

classical electrodynamics and differential geometry to describe the

effect.

There are two constraints on the lightwave as it travels through a

single mode fiber:

a) The mode has to be preserved

b) The principle of constant azimuthal angle must be obeyed

a) The preservation of the mode

The modes, which are supported by the fiber, are determined by the

boundary conditions inside the fiber. These do not depend upon the

spatial path of the fiber and therefore the mode remains the same.

This, on the other hand, means that the tangential component of the

electric field is independent of z. We express this constraint by

requiring a constant angle between the electric field and the tangent

vector i of the fiber path.

b) The constant azimuthal angle

When the fiber is bent with a curvature K at point P1, there is a

plane of curvature which passes through the center of curvature and is
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tangential to the curve at P1. The normal vector to this plane is

called the binormal S.

As recently discovered,19 the angle between the binormal S and the

electric field vector doesn't change as the light propagates along the

fiber unless the curvature is very large, i.e. R< lmm. This results

from the validity of the parallel transport law3 of the electro-

magnetic field vectors which can be derived classically by using

Maxwell's equations in the weak guidance approximation. The experiment

described in chapter 4 supports this theory and is taken as a

manifestation of its validity.

The constraints a) and b) force the vectors 7t., -2, and S to move as

a vector-trihedral along the fiber. Using Gram-Schmidt orthonormali-

zation to replace E by the normal vector to the fiber n, which points

towards the center of curvature, an orthonormal trihedral of vectors

can be defined everywhere in the fiber. Fig.3.2.a shows the evolution

of the vector-trihedral along the fiber.

The evolution of n, E, and S as a function of the curvature K and the

torsion r is given by Frenet's Formulas, derived in differential

geometry:23

t di./ds rc.n

n dn/ds -x.t + rS

S dS/ds

(3.2.1a)

(3.2.1b)

(3.2.1c)

If the polarization is measured with respect to the binormal S, a

geometric rotaion can be observed if S changes, i.e if the fiber path
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leaves its original plane of curvature. The orientation of the

polarization Op at a point P with respect to the local binormal vector

is related to the polarization orientation 00 at Po by 19

Bp -. 00- rds. (3.2.2)

COK

Fig. 3.2.a Evolution of the vector-trihedral along the fiber
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When the fiber path is described by a position vector 1, which is a

function of a general parameter t, we obtain the following expressions

for the curvature and torsion:

IC

2 I r'xr"I /kr -r ) 3

r i (P7"7")/F'XI"12

where i'sd7i/dt and

(r'i"in)
ri ' r2 ' r3

rl" r2" r3"
ri" r2" r3"

(3.2.5)

From a quantum mechanical treatment of the geometric rotation there is

another way to calculate the orientation of the polarization which is

equivalent to the one above.20 It is derived from the statement, that

the angle of rotation is equal to the solid angle on the unit sphere

subtended by the K vector of the photon as it changes its direction

adiabatically due to the guidance of the fiber. The normalized K vector

of the photon on the other hand is the same as the normalized tangent

vector of the fiber curve, which is given by

T(t) - i'/Ii'l (3.2.6).

As it is shown in Fig. 3.2.b, T(cp(t)) traces out a path C(ko(t)) on the

unit sphere and the solid angle n(c) is the enclosed area which can be

found by the integration in spherical coordinates of



(C)

where

2m

sined8*4 f (1-cos8(0))4
0 0

= (l-cos0(0)) ---dt 52 (l-cos8(t))4qt)dt
dt

(3.2.7)

(t)

°(t)

arctan

T'T -T'T

[0(t) ;-:

v

(3.2.8)

(3.2.9)
'4g 4-Tgf,

arccos

[

T
-yr. (3.2.10)
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In the following paragraph these calculations are performed for the

geometry of a straight and toroidal helix which will be needed in

chapter 4 and 5.
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Fig. 3.2,b Path C(t) traced out by the tangent vector of the
curved fiber and the solid angle as the enclosed area A
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3.3 Special Geometries

The previous theory is applied to find the geometric rotations

for the following geometries

a) The uniform helix including one harmonic deformation

b) The helix wrapped on a toroid

as shown in Fig.3.3.a. Geometry a) will be used in chapter 4 to verify

the geometric rotation, geometry b) represents the magneto optic

current sensor investigeted in chapter 5.2. In both cases it turned

out to be easier to evaluate the geometric rotation through the solid

angle subtended by the tangent vector of the curve on the unit sphere.

a) The uniform helix and one harmonic deformation

Fig.3.3.b shows an example for the curve of a uniform helix and

one harmonic deformation of amplitude A. The vertical axis represents

r0, where r is the cylinder radius and 0 the azimuthal angle of the

point on the cylinder, the horizontal axis is the z axis. For the

uniform helix the local pitch angle 0(0) is constant and

cos0(0) p/s (3.3.1)

where p is the pitch and s the length of the fiber

s [p2 + (2nr)214 (3.3.2).

Since for the uniform helix p does not depend upon 0, 0 is constant as

well and the path traced out by the tangent vector on the sphere is
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simply a circle, as shown in Fig. 3.3.b. The solid angle subtended by

the closed path C with respect to the center of the sphere

(C) [l-cos0(0)]dyi
0

therefore reduces to

(3.3.3)

0(c) 2A-(1-p/s). (3.3.4)

This predicts a circular rotation of

7(c) -"(c) -271'[1-P/s] (3.3.5)

where the helicity c--1. Since equation (2.3.3) is only valid for C

being closed, the input and output lead of the fiber helix have to be

parallel. This is the case in all the geometries under consideration.

For one harmonic deformation, however, the calculations are somewhat

more complicated. One harmonic deformation is defined to be the path

given by the equation

z/r (1/2pwr)0 + Asin0 (3.3.6)

where A is the degree of deformation. This can be used to find the

curve on the paper wrapped around the cylinder. Since 9(0) now depends

upon 4, the integral (3.3.3) becomes

(C) (1-cos[tan-1 (3.3.7)
xp + Arcos011) d

0



which must be solved numerically to determine 7(c).

presented in chapter 4.2.
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The results are

Fig. 3.3.b Top: Curve of a uniform helix (dashed line) and
one harmonic deformation of amplitude A-1.2 (solid line).
The lines represent the path of the fiber on an unwrapped
cylinder surface; Bottom: Path traced out by the tangent
vector on the unit sphere for a uniform helix.
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b) Helix wrapped on a toroid

The curve of a helix on a toroid is given as a function of the

parameter t

with

(t) [X(t),Y(t),Z(t)] i(t) (3.3.8)

x(t) (R + rcos(Nt))cos(Nt) (3.3.9a)

y(t) (R + rcos(Nt))sin(Nt) (3.3.9b)

z (t) = rsin(Nt) (3.3.9c)

where N is the number of turns on the toroid and R, r, and t are

defined as shown in Fig. 3.3.c. Using equation (3.2.6) the tangent

vector is given by

T

where

[dx/dt,dy/dt,dz/dt] [x',y',z']
T N[R2-1-r2+2rRcos(Nt)+r4cos4(Nt)]

% (3.3.10)

-Rsin(Nt)-2rcos(Nt)sin(Nt)
y' N. Rcos(Nt)-rsin2(Nt)+rcos2(Nt)
z' rcos(Nt)

Using equation (3.2.9) we obtain

N
R2+2r2+3Rrcos(Nt)

Ok.) ' Ril-r+2Rrcos(Nt)

(3.2.11)

(3.3.12)

and the substitution of (3.2.10) and (3.3.12) into (3.2.7) yields

j
.2ff

R2+2r2+3Rrcos(Nt) rcos(Nt)0(,) dt.N.
124-1-1.44-2Rrcos(Nt)

1
[Rz+r4+2rRcos(Nt)+r4cos2(Nt)]

0

(3 3.13)
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This integral has been evaluated numerically using Simpson's rule. The

results of interest for this study are presented in chapter 5. The

length of the fiber for one cycle around the toroid is given by

s ds 1dti1i
Jo

1 dt - dt
i

(3.3.14)

With equation (3.2.3) the curvature of the path as a function of t is

given by

where

and

K2 Flxi12/(if.1,)3

- ((r2sin3 (Nt)+3r2cos2(Nt)sin(Nt))2 +

+ (Rr +2r2cos3 (Nt))2 + (R2+2r2+3Rrcos(Nt))2)3

((Rsin(Nt) +2rsin(Nt)cos(Nt))2 +

+ (Rcos(Nt)+rcos2(Nt))2 + r2cos2(Nt))3

(3.2.3)

(3.3.15)

(3.3.16)

These equations for the curvature will be used in chapter 5 to find the

bend induced birefringence in an optical fiber having this geometry.

In order to find the path C(0) traced out by t on the unit sphere

analytically it is necessary to combine equations (3.2.8) and (3.2.10)

to obtain the function OW. For the tangent vector given in (3.3.10)

this seems to be impossible and a numerical method was used to find the

path shown in Fig.3.3.c., calculated for the parameters R-0.08m and

r-0.018m.
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Fia.3.3.c Top: Parameters used to evaluate the geometric

rotation of the helix on a toroid, Bottom: Path traced out by
the tangent vector on the unit sphere for N-1. The y-axis
represents cos 0(0), the x-axis represents 0 in degrees,

where 0 and 0 are spherical coordinates.
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4. Experimental Manifestation of the Geometrical Effect

4.1 The Experiment

The objective of this experiment was to measure the rotation of

linearly polarized light due to the spacial geometry of the guiding

fiber path. Uniform helices of different pitch and radius were

investigated as well as single harmonic deformations. Detailed

description of the geometries and theoretical calculations were given

in chapter 3.3. The results of the theoretical calculations for the

helix parameters used in this experiment appear in table 4.1.

The experimental setup is shown in Fig.4.1.a.2°

A 5mW laser with linear input polarizer and analyzer were used to

measure the rotation of the plane of polarization. With the direction

of the polarization along the y-axis, the light was launched into the

fiber by a focusing lens and x-y holder. The output was analyzed by

the second polarizer which was rotated by the data acquisition system.

A collimating lens was used to cover the active area of the sensing

photodiode entirely. The digitized output of the amplified

photocurrent was collected by an IBM-PC. A plot of the intensity

versus angle of rotation of the analyzer was made. The position of the

maximum and minimum intensities and therefore the rotation could be

found graphically. Signal averaging was used to eliminate random noise

A sample plot of the intensity curve is shown in Fig.4.1.b.



0IleNe
LASER

10

Fig.4,1.a The experimental setup
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Specifications of the components:

Laser: 5 mW He-Ne laser, wavelength 633nm

Coupler: focusing lens with 30mm focal length and x-y fiber holder

Fiber: Newport single-mode fiber F-SV with silica core and cladding

core, cladding, coating diameter: 4pm, 125pm, 300pm

numerical aperture: NA 0.11

V-number: V 2.19 at 633nm

optimum wavelength 633nm, stepped index profile

The most delicate part of the experimental setup was the laser-fiber

coupling. Prerequisite for efficient coupling was a careful

preparation of the fiber ends. To remove the plastic coating the fiber

end was soaked in methylene chloride for 3 minutes. Upon removal, the

coating was easily wiped off. The crucial step in the preparation was

cleaving the end. A flat end face without defects and perpendicular to

the fiber axis is necessary for good coupling. This was achieved by

scribing the cladding with a razor blade perpendicular to the fiber and

then bending the fiber until it breaks. The small nick from the razor

blade propagates through the fiber without introducing defects on the

surface. A strong dependence of the coupling upon the cleave was

observed and usually several tries were necessary to achieve a

satisfactory result. Of similar importance is the proper alignment of

the fiber to the focused incoming beam. First, the angle of the

incoming beam has to be within the aperture. In addition, the incident

electromagnetic field distribution has to match the profile of the mode

propagated by the fiber, given by equation (1.2.6) for the HE11 mode
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profile. The radius of the 1/e2 intensity point of the beam, w, can be

calculated to be 2.35Am. This is the ideal size of the focused spot.

The spot size of a focusing lens is given by 4

W f
4A.f
Wr (4.1.1)

where A is the wavelength, f the focal length of the lens and r the

incoming beam radius. For the lens used in this experiment the

smallest spot size achievable can be calculated to be 3pm. This,

unfortunately, is too large and therefore the coupling efficiency was

not optimal. However, an estimated coupling of 30% was achieved which

turned out to be sufficient to perform the experiment.

To ensure that the measured rotation was of topological nature

only it was of great importance to avoid any other birefringence

effects. These are in general due to external stress on the fiber. A

quantitative analysis of these effects is given in section 4.2. For

the experiment, however, it was important to avoid stress due to

pressure, bending or twisting. Possible pressure points were mainly

the fiber holders on both ends. The fiber was clamped between soft

rubber plates with a guiding notch of the size of the fiber. In order

to keep the twist rate small the fiber was insterted into a rubber tube

large enough to guide the fiber losely. Since the bend induced

birefringence depends upon 1/R2, where R is the radius of the

curvature, the only way to avoid this is to work with large enough

radii. A radius greater than 5cm was calculated to be reasonable.
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Detection and Data Collection:

A negative biased photodiode measured the light intensity. The 8

bit A/D converter digitized the amplified signal to numbers between 0

and 255. Random fluctuations, mainly due to vibrations affecting the

laser-fiber coupling, were removed through signal averaging. The

software drove a steppermotor rotating the polarizer with 720 steps per

rotation. 100 readings per step were found to be sufficient to yield a

smooth sinusoidal curve. A sample plot is shown in Fig.4.l.b. The

data points connected by the curve are one half of a degree apart due

to the limited resolution of the graphics program used to draw the

graph. The minimum or maximum positions on the 360° scale were used to

find the angle of rotation. An uncertainty of ±30 in the measurement

was considered in the data analysis in chapter 4.2.

4.2 Data Analysis

To verify the topological phase experimentally the measured values

were compared to the theoretical prediction of the circular rotation.

Simple paths of uniform helices were investigated as well as helices

with one harmonic deformation. The paths on the cylinder were found by

wrapping a paper with the calculated curve onto the cylinder as shown

in Fig 3.3.b. Measurements were taken on three sheet metal cylinders

of different radius and pitch. The following dimensions were

investigated:

r1-6.8cm, p1-130cm; r2-10cm, p2-80cm; r2-14cm, p3-43cm.
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In each case measurents were taken for A-0, 0.3, 0.6, 0.9, 1.2.

Errors due to external stress were discussed quantitatively.

Table 4.2.1 shows the experimental and calculated expected values for

the angle of rotation for each cylinder and different degrees of

deformation A.

Table 4.2.1

Measured and Calculated Values of the Rotation in Radians

for Different Cylinders and Deformations

r1-6.8cm;p1-130cm r2-10cm;p2-80cm r3-14cm;p3-43cm

A theory experiment theory experiment theory experiment

0 0.27 0.31 1.27 1.37 3.45 3.51

0.3 0.25 0.35 1.42 1.54 3.90 3.95

0.6 0.40 0.38 1.83 1.87 4.40 4.38

0.9 0.45 0.43 2.15 2.22 4.45 4.50

1.2 0.62 0.50 3.15 3.10 5.22 5.10

Fig.4.1.c shows a plot of the theoretically calculated values for

the rotation versus the measured results in radians. The data points

+, *, are the measurements taken on cylinder 1, 2, and 3,

respectively. As can be seen, the theoretical and experimental values

agreed very well in almost all cases.
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Fig.4.1.c Theoretical calculated values for the roatation
versus the measured results in radians.
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Error Bars:

In order to insure that the measured rotation is due to Berry's

phase only it is necessary to get a quantitative estimation of the

other birefringence effects present. This could have been intrinsic,

pressure and bend induced linear birefringence as well as twist induced

circular birefringence.

By measuring the influence of a straight fiber on linearly

polarized light it was found that the intrinsic birefringence is

negligible compared to the topological effect expected. This agreed

with the classification of the fiber as being low birefringent by the

producer. The other birefringence effects, however, can become

significant if external stress is applied to the fiber. Pressure

induced birefringence was kept small by careful preparation of the

fiber holders. It was found that intentional introduced pressure at

these points didn't effect the polarization at the end which led to the

conclusion that this effect was negligible. Bend and twist induced

birefringence on the other hand is not negligible. In chapter 3.1 the

bend and twist induced birefringence are given with equations (3.1.1)

and (3.1.2). Equation (3.2.3) in chapter 3.2 can be used to find the

curvature of the fiber for a uniform helix of radius a and pitch 2rb

to be 23

a

4 (fir (4.2.2)

The evaluation of the bend induced birefringence using eqs. (3.1.1) and

(4.2.2) is shown in table 4.2.11. The contribution of the calculated
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linear retardation to the rotation of the linear polarized light

depends upon the angle of the incident light with respect to the major

axes of the fiber. It is well known that these are parallel and

perpendicular to the z-axes of the helix. For the polarization of the

incoming light being parallel to one of these axes, its state of

polarization will be the least affected by the linear birefringence.

Due to the coupling between linear retardation and circular

birefringence it would be necessary to use Jones calculation to get an

exact value for the bend induced rotation. A good estimation however

can be obtained by comparing the beat length of the linear

birefringence with the length of the fiber. The beat length is given

by

Lb m., 2x/8 (4.2.3).

Table 4.2.11 shows the different beat lengths of the bend induced

birefringence on the cylinders used.

Table 4.2.11

Bend Induced Birefringence on the Different Cylinders

cyl 1 cyl 2 cyl 3

Pb [rad/m] -.01 -.07 -.17

Lb [m] 628 90 37

2711/Lb [rad] 0.01 0.06 0.16

Relative error 54% 55% 55%
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The ratio of the fiber length over the beat length gives the change of

the state of polarization due to bend induced birefringence and

multiplied by 2,r it yields an upper limit for the rotation of the

polarization ellipse. The values in table 4.2.11 were obtained for the

anharmonic deformation A-0. Since the topological rotation is

increasing for higher A values, the errors can be assumed to be even

smaller.

The other important stress effect present is the twist induced

birefringence since due to equation (3.1.2) with g-0.13 even small

twist rates contribute significantly to the rotation of the

polarization. However, twist can be avoided by guiding the fiber

loosely such that it can detwist. This was done by inserting the fiber

into a rubber tube.

Looking at the ease of moving the fiber in the tube even after wrapping

the helix and the equally good agreement of the measured values with

the theory for different pitch lengths it can be concluded that the

tubing reduced this effect sufficiently.

To get the final error bars the uncertainty in the readings had to be

taken into account as well. As mentioned before, these were estimated

to be ±3° or ±0.05 rad. Adding the absolute uncertainties gives the

error bars shown in fig.4.l.c. Since the bend induced birefringence

was calculated for A-0, only the error bars for the corresponding data

points were drawn in the graph.

It can be seen that it is possible to draw the expected straight line

through the data points including uncertainties.
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Conclusion:

The theory of the quantitative explanation of Berry's topological

phase has been verified. The errors and uncertainties involved were

found to be reasonably small. This demonstrates good agreement of

theoretical and experimental values for different solid angles on the

Poincare sphere in momentum space given by uniform and harmonic

deformed helically wound fiber.
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5. Magnetooptic Sensing Utilizing the Geometric Rotation

5.1 Measurements of the Fiber Characteristics

The objective of this chapter is to determine the following fiber

characteristics experimentally:

a) Elastooptic coefficient

b) Intrinsic birefringence

These parameters are important for the theoretical calculation of the

evolution of polarized light as described in chapters 2 and 3. In

particular many fiber optic applications utilizing the state of

polarization depend strongly upon the characteristics mentioned above.

In this study the measurements are needed to construct a magneto-optic

currents sensor as it is performed in chapter 5.2.

The single mode fibers investigated were donated by Corning Glass Works

and had the following specifications:

1. Hepcor-850 Fiber # unknown

coating: 500pm cladding: 125pm core: 4-5pm

numerical aperture NA... 0.14 (specifications)

V-number V= 2.33 at 850nm (calculated)

optimum wavelength 850nm, stepped index profile
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2. Hepcor-633 Fiber # 6663.02 Sample # 0318

coating: 200pm cladding: 80pm core: 3-4pm

numerical aperture NA 0.12± 0.02 (measured)

V-number V 2.08± 0.3 at 633nm (calculated)

optimum wavelength 633nm, stepped index profile

The numerical aperture was determined by measuring the spot size of the

emerging beam as a function of the distance from the fiber end. Using

equations (1.1.3) and (1.2.5) the numerical aperture and the V-number

can be found.

The experimental setup to measure the fiber characteristics mentioned

above is shown in Fig.5.l.a. A He-Ne laser with linear polarized

output at 633nm and a quarter wave plate were used to produce linear

and circular polarized light for measurements a) and b), respectively.

The light was launched into the fiber with a microrcopic lens, an x-y-z

positioner was used to hold the fiber. The other end went through the

center of a rotational stage where it was held by paraffin wax.

Therefore variable twist rates could be introduced to the fiber. An

analyzer and a power meter as the intensity detector were used to

determine the SOP of the emerging light which was measured as a

function of the twist rate.

The same precautions were taken for the cleaving and mounting of the

fiber as in the experiment in chapter 4 to get a good coupling and to

avoid stress on the fiber. A coupling efficiency of 50% to 70% could

be achieved which was sufficient to get stable intensity measurements

behind the analyzer.
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Fig.5.l.a The experimental setup
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a) ElastooDtic coefficient

The elastooptic coefficient g determines the twist induced

birefringence in equation (2.3.13). It can be found by measuring the

rotation 0 of the linear input polarization as a function of the twist

rate which gives the twist induced birefringence

a 2.0 gx (5.1.1)

and the g-factor can be deduced. Figures 5.1.b and 5.1.c show the

plots of the rotation 0 of the SOP versus twist rate x for fibers 1)

and 2), respectively. The uncertainty in the maximum intensity

position of the analyzer was estimated to be ±100 which was drawn as

error bars in the graphics. The results are

1) Hepcor-850 g 0.18 ± 0.02

2) Hepcor-633 g 0.16 ± 0.01

The theoretically calculated value for g is given with r, 0.13-0.16.

The discrepancy may be the result of the calculations being based upon

the doping dependent strain-optic coefficients of the fiber. Other

measurements of the elastooptic coefficient agree with a slightly

higher value.

The knowledge of the g-factors is necessary to find the intrinsic

birefringence in part b).
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b) The intrinsic birefringence

Many methods have been developed to measure the intrinsic

birefringence:

(i) direct visualisation of the beat length by Rayleigh scattering.

Applicable for lmm< Lb < 10CM.18

(ii) measurement of the SOP with linearly polarized input for various

lengths of the straight fiber in the range lcm < Lb < 10M.

(iii) electro- and magnetooptical modulation of the SOP on a small test

section of the fiber (0.1-1cm) yielding the local intrinsic

birefringence.

(iv) the POTDR method which allows measurements of lm < Lb < 100m.

The method used in this study was proposed by M. Monerie and P.

Lamouler in 1981.24 It measures the ellipticity of the SOP of the

outcoming light as a function of the twist rate introduced to the

fiber. Using the system matrix (2.3.11) derived in chapter 2 for the

coupling of homogeneous linear and circular birefringence the intrinsic

birefringence can be deduced by comparison of theory and experiment if

the elastooptic coefficient is known. The advantages to the other

methods mentioned above are

- the simplicity of the experimental setup

- the method is nondestructive

- the same experimental setup can be used to measure the elastooptic

coefficient as performed in part a)
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In addition, as a result of this study, this method seems to provide

information about the uniformity of the fiber.

Theory:

A homogeneously twisted fiber with homogeneous intrinsic

birefringence can be described by the system matrix (2.3.11). The

eigenmodes of this system are straight elliptical and they exhibit a

phase difference Al as the light propagates through the fiber which is

such that:24, 12

where

cos(A1)
1 + n2cos(20)

1+ql

fiz

IX1*(2-g)

10 7-1x2.(2-g)2 + (fiz)214

(5.1.2a)

(5.1.2d)

(5.1.2c)

with 8 11cm-kyl for the straight, untwisted fiber. The SOP is

characterized by the polarization ellipticity e, defined as

with the uncertainty

E
( Im -1m)
(Im+Im)

6e 2e .6I
(12+12)4

5 T
(1m-1m)

(5.1.3)

(5.1.4)

where 44, Im are the maximum and minimum intensities passing through

the analyser whose direction is varied and 61 is the estimated

uncertainty in the intensity measurement. If the input SOP is circular
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(6-0), then the ellipticity of the SOP at the output is related to the

phase difference Al by e Isin(A1)1 and with equations (5.1.2a-c) we

obtain:

C
2n

(1 + n2.cos2(0))4.1sinool (5.1.5)

Measuring the ellipticity as a function of the twist rate, the

intrinsic birefringence can be deduced by comparison of theory and

experiment if the elastooptic coefficient is known.

Fig.5.l.d shows the function (5.1.5) for two different values of fl. It

can be seen, that the major changes in the behaviour of the function

happen around the detwist point, whereas the maxima and minima

positions on the x-axis hardly depend upon fi. Therefore the method

used to deduce fl was to vary it until the least standard deviation

between theory and experiment was achieved were there was more weight

on the data around the detwist point.
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Data Analysis:

1. Hepcor-850

Fig.5.l.e shows the experimental and theoretically fitted curve of

the ellipticity versus twist. The offset in the twist can be

determined by the required symmetry of the curve. A better accuracy

can be achieved, however, by the computational variation of twist

offset and intrinsic birefringence to find the minimum standard

deviation a(e) in the ellipticity. For this fiber the minimum in a(e)

was found to be 0.047 with an intrinsic birefringence of )9=105deg/m and

a twist offset of 80deg/m. The result for a(e) agrees with the error

bars calculated using equation (5.1.4) and Fig.5.l.e shows, that the

theoretical curve using the parameters above fits pretty well into the

error bars. To exclude ambiguities in 8, the standard deviation was

calculated as a function of )9 for a twist offset of 80deg/m which is

shown in Fig.5.1.f. It is seen, that there is no other local minimum,

and as it has been verified that this also holds for a larger range of

p. This also has been used to find an estimation of the uncertainty in

P. Table 5.1.1 shows a summary of the results.

g-factor

0.18 ± 0.02

Table 5.1.1

Specifications of fiber type 1.Hepcor-850

intrinsic birefringence p intrinsic twist

105deg/m ± 20deg/m 80deg/m ± 20deg/m
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2. Hepcor-633

In this case the results didn't come out as well as those for

fiber 1. In fact, it turned out to be impossible to find a set of

parameters such that the theoretical curve fits all the data. However,

a fitting curve could be found for a twist range either from 0° to 150°

or from 150° to 380°. As shown in Fig.5.l.d, the most significant

changes in the curve happen around the origin which suggests taking

those data into consideration. Unfortunately, this still leaves some

ambiguities in the result. Fig.5.l.g shows the standard deviation as a

function of 8 for a twist offset of 70deg/m, which could be determined

out of symmetry. There are several local minima which are all possible.

solutions. The first minimum at 48-80deg/m, however, can be excluded

since the overall behavior of the curve is different from the

experiment as it is the case for all the minima above fi-360deg/m. The

other two solutions at 8-240deg/m and f8-330deg/m seem to be almost

equally likely. For clarity, Fig.5.l.h shows the experimental and

theoretically fitted curve only for fl-240deg/m, but as a result both

solutions may be considered as being possible. Table 5.1.11 summarizes

the results.

g-factor

0.16 ± 0.01

Table 5.1.11

Specifications of fiber type 2.Hepcor-633

intrinsic birefringence intrinsic twist

240/330deg/m ± 30deg/m 70deg/m ± 20deg/m
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Conclusion:

The theory described the evolution of polarization only for fiber type

1. Reasons for the disagreement in case of fiber 2 may be

i) uncertainty in the g-factor which is a parameter in the theory

ii) inhomogenities in the intrinsic birefringence or the induced

twist.

i) the g-factor

The g-factor has been determined in part a) of this chapter. It has

been verified, that varying the g-factor within the uncertainty range

does not change the results of part b) significantly.

ii) inhomogenities in the intrinsic birefringence or the induced twist

This seems to be the only explanation for the discrepancy between

theory and experiment. The theory is derived from the system matrix

(2.3.11) for the coupling of homogeneous linear and circular

birefringence. For inhomogeneous coupling the birefringence becomes z-

dependent and the evolution of polarization cannot be calculated

anymore as described in chapter 2. Thus the disagreement in the case

of fiber type 2.Hepcor-633 leads to the conclusion, that either the

intrinsic birefringence or the induced twist are inhomogeneous. This

is an important result since for many applications it is necessary to

apply the system matrix (2.3.11) in order to evaluate the evolution of

polarization.
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5.2 The Magnetooptic Current Sensor Design

Many efforts have been made in the past 8 years to use the Faraday

effect in an optical fiber for magnetooptic sensing.25-29 The

advantages over conventional induction coil sensors are

(i) the fiber is a dielectric component which allows high voltage

applications and measurements without interference with the

magnetic field.

(ii) The response time is in the order of O.lns, which is mainly

determined by the length of the fiber and the speed of light.

(iii) The fiber acts as transmission line and sensing element.

(iv) DC and high bandwidth AC current measurements are possible.

Using the Verdet constant for silica the minimum detectable magnetic

field ranges approximately from 1 to 10 Gauss, depending upon the

detection system. For the measurement of a current passing through a

fiber coil this means that the sensitivity range is rather high,

usually above 1000A. With these properties the magnetooptic sensing

has been used already for high and short pulse current measurements in

a high voltage environment." However, there are other problems

introduced using optical fibers. As described in chapter 3.1, there is

also intrinsic and bend induced linear birefringence in addition to the

Faraday induced circular birefringence. Due to the presence of linear

birefringence the circular SOP's aren't eigenstates anymore. This

suppresses the rotation of the SOP which can be expressed in smaller

effective Verdet constant and equation (3.1.3) becomes 28
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a 2Veff-f (5.2.1).

For the application of sensoring currents with fiber optics, the

bend induced birefringnce usually becomes large by wrapping the fiber

as a coil around the current. On the other hand, since the magnetic

field due to a current is rather weak, a high Verdet constant is

desired . This can be achieved by introducing a high bias circular

birefringence a >> p which makes the linear birefringence negligible

and the system matrix reduces to

M
cos(rz) sin(rz)

-sin(rz) cos(rz)
(5.2.2)

where r-1/2a. Matrix (5.2.2) is a simple rotator and the effective

Verdet constant is equal to the one for fused silica mentioned above.27

In the past the bias cicular birefringence has been achieved by

twisting the fiber with rather high twist rates in the order of 10 to

20 turns/m to overcome the linear birefringence.27 However, the

problem is to keep the fiber from detwisting which requires an extra

jacket to lock the twist. In this study, the possibility of

introducing the bias circular birefringence utilizing the geometric

rotation is investigated. The advantages would be that no twist is

necessary. The theory for the geometric rotation is given in chapter

3.2. It was shown, that the path of the fiber has to leave its plane

of curvature to introduce a circular birefringence. The uniform helix

is the simplest geometry where this is fulfilled. As a current sensor,
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however, the geometry of a toroidal helix shown in Fig.5.2.a is much

more appropriate since it is of a smaller size while the geometric

rotation can still be calculated. The equations are derived in chapter

3.3. The geometric rotation (3.3.13) has been evaluated numerically

using the Simpson rule and normalized with (3.3.14).

In order to predict the applicability of this sensor design, the

geometric rotation (3.3.13) has been compared with the bend induced

birefringence given by (3.1.1) and the intrinsic birefringence

determined experimentally in chapter 5.1. The calculations were done

for various values of the toroid thickness r while the inner radius of

the toroid, R-r, was kept constant. Fig.5.2.b shows the geometric

rotation as a function of the toroid thickness for two different values

of the inner radius. It is seen, that the behaviour is qualitatively

similar where there is a maximum at approximately r-2.4(R-r) or

r/R-0.7. This result was found to be a general characteristics in the

range of interest for the inner radius and can therefore be used to

find the toroid dimensions for the maximum geometric rotation.

Evaluating the curvature for this geometry using (3.2.3) yields that it

varies within one cycle. Thus there are points of maximum and minimum

curvature which have been determined.

Table 5.2.1 presents the results of interest for the inner toroid

radius R-r between 0.02m and 0.2m where r/R-0.7.
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Fiz.5.2.a Geometry of the toroidal fiber optic current sensor
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Table 5.2.1

The maximum geometric rotation in deg/m for
one turn on a toroid compared to the maximum

and minimum bend induced birefringence

Fiber type 1.Hepcor-850:
intrinsic birefringence: #- 105 ± 20deg/m

cladding diameter: 125pm

inner radius
R-r in [m]

geometric rotation
[deg/m]

bend induced birefringence
maximum [deg/m] minimum

0.02 86.0 140.6 32.3

0.04 43.0 35.2 8.1

0.06 28.7 15.7 3.6

0.08 21.5 8.8 2.1

0.10 17.2 5.7 1.3

0.12 14.3 4.0 0.9

0.14 12.3 2.9 0.7

0.16 10.7 2.2 0.6

0.18 9.6 1.8 0.4

Fiber type 2.Hepcor-633:
intrinsic birefringence: 13- 240/330 ± 30deg/m

cladding diameter: 80pm

inner radius
R-r in [m]

geometric rotation
[deg/m]

bend induced birefringence
maximum [deg/m] minimum

0.02 86.0 57.6 13.3

0.04 43.0 14.4 5.9

0.06 28.7 6.4 1.5

0.08 21.5 3.6 0.9

0.10 17.2 2.4 0.6

0.12 14.3 1.6 0.4

0.14 12.3 1.2 0.3

0.16 10.7 0.9 0.3

0.18 9.6 0.8 0.2
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Due to the pitch angle of the helix, the component of the magnetic

field parallel to the fiber Beff is approximately

Beff= B.N.(Rz+.1.2)4 (5.2.3)

where N is the number of turns on the toroid. Using r 0.7.R this comes

out to be

Beff 0.82.; (5.2.4).

Discussion of the results:

In order to obtain a high Verdet constant for weak magnetic

fields, the sum of intrinsic and bend induced birefringence has to be

much smaller than the bias circular birefringence. Using the results

in table 5.2.1, this is not the case for the geometry and fiber types

suggested. However, using single-mode fiber with very low intrinsic

birefringence, which may be available soon, the method becomes very

interesting. Also, as the cladding diameter of the core can be made

smaller, the bend induced birefringence will be reduced and may be

negligible compared to the geometric rotation. The desired

specifications for the fiber therefore would be /51 10deg/m and a 40pm

cladding diameter.

Another possibility finally is to leave the path of a uniform helix and

find the path of the smallest curvature on the toroid. This, however,

would make the calculation of the geometric rotation impossible.
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