
STEPHEN ANTHONY DUM
(Name)

in Computer Science
(Major Department)

AN ABSTRACT OF THE THESIS OF

for the degree DOCTOR OF PHILOSOPHY
(Degree)

presented on March 21, 1975

Title: A FAST DIVISION ALGORITHM

(Date)

Redacted for privacy
Abstract approved:

Professor ry E. Goheen

A radix 2n non-restoring division algorithm is described. The

algorithm is designed to be compatible with hardware multiprecision

multiplication methods currectly used in high speed digital computers.

This enables the use of the same hardware, with only changes in

control logic, to be used to implement both multiplication and

division. This paper proves that in order to obtain n bits of the

quotient at each iteration in a non-restoring algorithm it is only

necessary to consider the first n + 3 bits (including the sign as

one bit) of the divisor and the dividend to obtain a quotient

estimator.

A section is devoted to implementation of the algorithm in

software as a way to extend the precision of the existing hardware

division instruction on a digital computer.

A Fast Division Algorithm

by.

Stephen Anthony Dum

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

March 21, 1975

Commencement June 1975

APPROVED:

Redacted for privacy

Professor of Coquter Science

Redacted for privacy

Chairman of Department of Computer Science

Redacted for privacy
Dean of Graduate School

Date thesis is presented krch 21. 1975

Typed by Linda Dum for Stephen Anthony hum

TABLE OF CONTENTS

I. Background 1

II. Higher Radix Division 9

III. Definition of the Algorithm 16

IV. An Analysis of the Algorithm 22

V. Hardware Implementation 43

VI. Implementation of the Division Procedure in Software 56

VII. Summary 61

Bibliography 64

Appendix A: Index to Defined Symbols 67

Appendix B: Definition of Abbreviations 69

LIST OF ILLUSTRATIONS

Figure Page

1 Adding six numbers with a carry save adder tree. 50

2 A six bit division example. 52

LIST OF TABLES

Table Page

1 Maximum number of bits developed for p and m. 35

2 Values of n, given p and m fixed with a negative 42
dividend.

A Fast Division Algorithm

Background

The mechanization of arithmetic operations on a binary digital

computer has gone through many stages, trying to minimize both the

cost of implementation and the execution time. Our concern here is

with the division, but much of the work on multiplication is anal-

ogous, just as addition is to subtraction, since they are inverse

operations. The first implementations of these operations [32]

were implementations of the methods used in similar hand calculations.

These algorithms are of the shift and subtract type, proceeding one

digit at a time, calculating the quotient.

For the sake of clarity, let us assume that both the divisor

and the dividend are positive. We will describe the more general

case, that of generating a quotient digit in an arbitrary but

specified radix, b.

One subtracts the divisor from the dividend (at later stages,

an adjusted form of the partial remainders) until the result is less

than the divisor. This will occur after i subtractions, 0 < i < b-1.

The quotient digit generated by this process is i and the partial

remainder is multiplied by b to become the new dividend. This

multiplication is trivial if the numbers are represented in radix b

(or if b is a power of the radix the numbers are represented in),

as it is simply a shift operation. A comparison is required for all

values of i except for the last, i = b - 1. If we reach the

2

situation that i = b - 1 in a well-conducted division no comparison

is necessary, since each quotient digit must be less than b.

The complexity of a comparison is equivalent to that of an

addition or a subtraction. Thus the above process requires the

equivalent of two subtractions of each value of i. Two methods

which reduce the number of operations required are the restoring

and non-restoring methods of division.

In the restoring method of division one repeatedly subtracts

the divisor from the dividend until the results becomes negative

(remembering our assumption that both the divisor and the dividend

are initially positive), counting the number of subtractions as

before. When the result becomes negative we add the divisor to the

result, and decrement our counter, i. The correct quotient digit

is i. The partial remainder multiplied by b, becomes the dividend

for the next iteration and we repeat this process.

The restoring method eliminates all the comparisons, introducing

one correcting operation at the end of each cycle. The non-restoring

method is an attempt to eliminate the one correction, still remaining

in the restoring method. This is important for small radices,

especially two. In radix two, if we assume a random distribution of

quotient digits, half of the time the quotient digit is zero, neces-

sitating a correction. This means that, for radix two, the re-

storing method is no improvement over the subtract and compare

method.

In the non-restoring method, the addition at the end of each

cycle is eliminated. Again we assume initially that both the

divisor and the dividend are positive. We proceed as follows: use

i to count the number of iterations in each cycle. If the dividend

is positive, we subtract the divisor from the dividend. When the

dividend changes sign the cycle is complete and i is the quotient

digit. If the dividend is negative we add the divisor to the

dividend. When the dividend changes signs the cycle is complete and

-i is the quotient digit. In other words, the quotient digit is -i

times the sign of the dividend. Thus the quotient digits take on

values of +1, +2,...+(b-1), +b, or for a binary computer + 1, +2.

Most computers do not allow for the redundant representation

obtained here. This would require 2b digits instead of the usual b

digits [3], [4], [5], [14], and [28].

More analysis of the matter shows there is an obvious and simple

relation among the digits of the quotient. The first digit of the

quotient is always positive and the sign of each quotient digit

alternate thereafter. Also zero is not one of the valid digits.

This relationship is best illustrated by an example. If two digits

were 5 and -3 the conversion required would be to borrow one from

the 5 and add b to -3, obtaining 4 and b-3. In general, we can

incorporate this processing into the non-restoring algorithm. One

way to do this is: If the dividend is positive, start counting with

i = 0 rather than one. When the dividend changes signs i is the

quotient digit. If the dividend is negative, start counting with

i = b 1. Here we decrement i at each iteration. When the

4

dividend changes sign i is the correct quotient digit. After the

Ca- iteration i will have the value of b n. This process or a

similar one avoids the redundant representation of the quotient

but uses the non-restoring algorithm.

If we reduce the non-restoring algorithm to radix two the

process simplifies greatly. The only possible quotient digits are

zero and one, thus the counter i is not needed. We perform one

subtraction or addition and the sign of the dividend along with the

knowledge of whether we added or subtracted determine the quotient

digit. Further information on these methods as related to binary

computers can be found in Flores [12] or Chu [8].

If we restrict the values of the divisor, we can increase the

speed of the previous discussed methods. If we assume the first

digit of the divisor is non-zero, when the dividend is positive, a

string of zeros at the start of the dividend would indicate that

the next quotient digit is zero. Thus, in some cases we can

determine the next quotient digit without any additions or subtrac-

tions. Mac Sorley [21] gives a complete discussion of this in the

binary case. He shows that for very sophisticated algorithms, an

addition or subtraction is needed only one out of every 3.8 cycles

An the average.

The development of multiplication followed that of division as

we have described it. However, the process of multiplication was

further speeded up by performing more than one digit at a time [29];

forming the product of the multiplicand and several digits of the

5

multiplier (rather than just one digit of the multiplier) at each

iteration. There has been no parallel development for division.

In division, each successive digit depends on the results of the

calculations determining the last quotient digit. Thus, the

development of division has tended to use multiplication as the

basic iterative tool, taking advantage of the high speed algorithms

for multiplication [T], [6], [11], and [13].

The first class of algorithms for division using multiplication

as the basic tool were formulated around a method proposed by

Newton, to approximate a zero of an arbitrary function, viz.,

f(x
n

)

x n+1 = Xn f'(x
n

)

In applying this to the division problem, Q = A/B one first calcu-

lates 1/B and then multiplies this result by A. Using. Newton's

formula with f(x) =
1

B we obtain

= 2x
n

- Bx
n

2
x
n+1

. (1)

This method converges quadratically to 1/B. In other words, if

xn = 1/B + 6 then x
n+1

= 1/B - B2. To use this method effectively

one must provide as accurate an estimate of 1/B as possible. This

assures that the algorithm converges rapidly to 1/B.

The assumption that the divisor is normalized is almost

essential using this method. If we know that the divisor is in

the range 1 > B > 1/2 then 2 > 1/B > 1, otherwise the range of 1/B

can become unmanageable.

A very simple approach is to approximate 1/B with 1. That is,

use x0 = 1 as the starting value to find 1/B. If this is done the

relative error is lel < 1/2. Gill suggested in 1955, [15] using

x
0

= 4(v -1) - 2B for the starting value. Since the first term is

a constant the calculation involves one subtraction and one shift.

Using this the relative error is lel < 2-
3.75

. In 1968, Dean [10]

suggested what appears to be a much simplier equation, viz.,

x0 = 3 - 2B, which gives 161 < 2-3. This equation requires just

as much computing as the method of Gill as both 3 and 4(v -1) are

constants. Another approach is to examine the first k bits of the

dividend and use these in determining the first approximation of

the reciprocal of the quotient. Wallace [33] examined the first

six bits and obtained the relative error lel < 2
-5

.

Using 'Newton's iterative approximation for the reciprocal of

the dividend requires two dependent multiplications at each itera-

tion. A method used by Anderson [2], known as the HarVard itera-

tion scheme [25] speeds up this process. In this method, there are

still two multiplications required at each iteration but they are

independent of each other. At each iteration both the divisor and

the dividend tend toward one. In calculating A/B we would have

A*G
0
*G

1

**G
n

% A*G
0
*G

1

*****G = Q
B*G

0
*G *G

1
*n

since B*G
0
*G

1
*****G

n
% 1.

7

Anderson [2] determined Go by table lookup using the first

seven bits of the dividend, claiming an error

lel < 2-7.

Determination of Gk can be found as follows. We consider

B*G
0
**"*G

k-1
to be of the form 1-6 and let Gk be 1+6. Then

B*G
0
**G

k 0
= 1=6

2
. Thus the dividend, BG *G

1
**G

k
is converging

quadratically to one, while the divisor is converging to the

quotient.

The calculations of G is then simply,

G
k

2 B*G
0
*G

1
**G

k-1'

For the fractional numbers this operation is simply the two's

complement of the number.

In the methods described using multiplication as the iterative

tool,-we have the obvious restriction that the speed of the division

is slower than that of a multiplication. The method proposed in

this paper does not use multiplication in the iterative process

but rather uses the same methods as used in the fast multiplication

scheme. This enables one to obtain equivalent execution times for

both multiplication and division.

The fastest and probably the most expensive method of division

is to perform the entire operation in parallel. This can be done by

a table lookup or a network of logic that obtains the results

directly [7]. In cases where the operands are reasonably large

(perhaps more than eight bits by today's technology) these methods

are simply cost prohibitive.

Multiplication speed has been increased from the single bit

at a time iterative procedures by using higher radix or multipre-

cision methods. In these methods n bits of the multiplier are

multiplied by the multiplicand at each iteration. Ideally we

would like to have an algorithm for multiplication and one for

division which involve essentially the same operations at each

iteration, so that the same hardware could be used for both with

only some changes in control logic. So far, methods proposed

have failed to do this. Rather they have used high speed multi-

plication as the basic iterative tool.

While there have been some higher radix division methods

proposed, they do not provide the ease of implementation that the

methods of multiplication do, because of constraints and peculiar-

ities involved in their implementation. The method proposed here,

on the contrary avoids these problems and can be implemented in

the same hardware as for multiplication,changing only some control.

logic.

9

Higher Radix Division

In the restoring and non-restoring methods, the approach is

to subtract (or in some cases add) the divisor to the dividend

until the sign changes, thus determining the number of times the

divisor goes into the dividend. Most implementations on binary

computers have used radix two. This simplifies the calculations

as the quotient bit is either one or zero.

In order to obtain speed comparable to multiplication we need

to obtain more than one bit of the quotient at each iteration. This

can be done by using radix 2n, and rather than using the repetitive

subtraction approach, to obtain an estimate of the correct quotient

digit and use that. The problem is that if our estimate of the

quotient digit is not correct we still have to make some corrections.

Stein and Pope [31] proposed a method of estimating the quotient

which required up to four tries to get the correct quotient. This

was improved by Stein [30] to three tries. Mifsud [22] used the

first two digits of the dividend and one digit of the divisor (in

radix b). He was able to obtain the correct quotient in two tries

in most cases, but required some sophisticated checks and possible

adjustments to precondition the divisor before starting. Flores [12]

mentions the concepts of a radix 2n division algorithm. He describes

the development of two bits of the quotient looking at 3, 4 and 6

bits of both the dividend and the divisor. He mentions the develop-

ment of three bits of the quotient but suggests that the efficiency

10

of this is so low as to warrant no further consideration, much

less consider development of more than three bits at a time.

The method proposed here eliminates the pre-operative condi-

tioning of the divisor, requiring only that it be in normalized

form. That is, the divisor is in the interval [1/2, 1). Since

the implementation is directed toward a binary computer,, only 2n

is considered as a radix for the operations. We assume that the

divisor and the dividend are initially positive. The dividend is

replaced by the partial remainder during the process and the

partial remainder may be negative.

The method obtains an estimate c, of the quotient digit C, in

such a manner that the correct quotient digit is either c or c-1.

Using c as the trial quotient digit, if when subtracting c times

the divisor from the dividend, the result is negative then the

actual quotient digit is c-1, otherwise it is c. We have the same

decisions as to the method of implementation as before, that is,

either restoring or non-restoring. The non-restoring method turns

out to be as simple as the restoring method, and it is faster. The

restoring method requires the addition of the divisor back into the

dividend whenever the dividend becomes negative after subtracting

c times the divisor from it. This correction will be sufficient,

because c was either correct or equal to C+1.

In the non-restoring case we must modify our estimate c of C

when the dividend is negative to compensate for the incorrect

11

estimate of the preceding step of the iteration.

In the following discussion we will assume that the dividend

A is less than the divisor B and that the binary points of both

the divisor and the dividend are located after the sign digit. In

other words initially we can represent A and B as follows:

A = 0.xx

B = 0.xx

where x represents an arbitrary bit (zero or one). We assume the

quotient digit C and its estimate c, are positive integers in the

range 0, 1, ..., 2
n-1

. These assumptions do not affect the gen-

erality of the method but do aid in the clarification of some of

the numerical calculations.

Let us first consider the case when the dividend is positive.

The partial remainder A', is calculated by

A' = A c*B*2-n. (2)

The dividend for the next iteration is

A = A'*2n (3)

where n is the number of bits of the quotient obtained at each

iteration.

The actual quotient digit C is determined by

C
.[A 2ni

GI

(4)

In order to obtain an estimate c of C which is either C or

C+1, we use estimates of the divisor and the dividend. These

12

estimates will be formed by looking at truncated forms of A and B.

It is convenient if these truncated forms are integral. They will

be multiplied by appropriate powers of two to obtain this. In

the case of A, our estimate a, will be formed by looking at the

first p bits of A. The actual value of p will be determined later

and should be as small as possible and still have our estimate of

c lie between C and C+1. Thus a is calculated by:

a = [A*213-1]Gi.

We can write a as follows:

a = xx.

p

(5)

where the first bit, the sign bit is initially zero, but if the

dividend becomes negative, it becomes a one. Since we must ex-

amine at least the sign of the dividend at each iteration, p

must be greater than zero.

The divisor is represented similarly. We know that the

divisor is always positive and it is normalized. Thus B = 0.1xx.

Our estimate b of B is determined by looking at the first m bits

of B. This includes the sign and the next bit of B, which are

always zero and one, respectively. The value of m, just as the

value of p, will be determined later. In fact, the problem of

determining p and m are interrelated. The accuracy of the estimate

c of C is dependent on both p and m. The larger we choose p and m

the more accurate our estimate c.

The estimate b is calculated by:

b = [B*2
m-1

]
GI

.

Thus we can represent b in binary as

b=

(6)

13

Since the first two bits of the divisor are always zero and one

we have m > 2.

With this groundwork we can return to the estimate C when the

dividend is positive. From the definition of a and b (equations 5

and 6) we can write

A*213-1 s [a,a+1),

B*2m-1 E [b,b

(7)

(8)

Equation 4 expressed the value of C in terms of A and B, viz.,

C= B2n .

GI

From 7 and 8 we see that

a 1+

b+1
t < C <

ab
t,

where t = 211+111-13. By looking at our estimate a and b of A and B

we can assert that C (an integer) is in the closed interval

CE[
a r +1

-b+1 ij GI
' b 1-j

GIL]
(9)

Since we have a well formed division problem we can make the

14

interval smaller than the interval specified in 9. We know that

C is less than 2n. Thus, C is in the closed interval

C , min[ti , 2n -1)1. (10)
J GI GIL

Since our estimate c of C must be such that either c = C or c = C+1

we choose for our estimate of C the largest value of C in the

interval, viz.,

c = mint j , 2n-1) .

JJ GIL

Our later determination of p and m will be such that if the

quotient digit were actually C =
[;a4-1

, then the difference

between c and C must not be more than one.

Let us consider the case of a negative dividend A. We must

consider how this came about, since initially the dividend is

positive. In order for the dividend to be negative the estimate

c of C in the last iteration must have been wrong. In other words,

since c is either C or C+1, it must have been that c was C+1.

Looking at equation 2 we see that this results in B*2-n being

subtracted one extra time from the dividend. Equation 3 then

multiplies this by 2n. At this point we have the dividend A, in

error by -2
n
*(B*2

-n
). This can be corrected by modifying equation

2. We add this amount back in, obtaining

A' = c*B*2-n 2n*B*2-n

15

thus

A' = A (c 2n)*B*2-n (12)

In order to calculate the estimate c of the quotient digit, we

must take these changes into account. The actual quotient digit is

C
-ABB 2rll 2n ni-A

GI GI

Using our estimates a and b we have

2n

b

[a +

+1

1 tj

GI GIL
(13)

Since C is non-negative, the actual value of the quotient lies in

the closed interval

[max [0, 2n + [lat.]), 2n [31-1t]
(14)

b+1
GIL]GI

As in the positive case, we choose for our estimate c of C

the largest value that C can attain in the interval 14,

c= 9 ra+1
(15)

With the derivation of the quotient estimate we can proceed

with the definition of the algorithm.

16

Definition of the Algorithm

The algorithm to be proposed is a non-restoring division

algorithm with each quotient digit calculated as indicated pre-

viously. Before formally stating the algorithm, we will consider

the assumptions made.

ASSUMPTIONS:

1. We assume the dividend and the divisor are positive..

This assumption is reasonable as it requires at most negating

the divisor or dividend if they are negative before the divi-

sion and negating the quotient if necessary afterwards.

2. We assume the divisor is normalized. This assumption is

usually met in floating point arithmetic operations and if it

is not met it is accomplished simply by shifting the divisor

before the division operation (and shifting the quotient

appropriately after the operation).

3. We assume that the first bit of each number (most sign-

ificant or left most bit) is the sign bit; that it is a zero,

indicating the numbers are positive; that the binary point is

immediately following the sign bit; and that the normal binary

place values apply. The three commonly used number systems,

one's complement, two's complement and sign-magnitude all

satisfy these requirements.

4. We assume that the divisor, quotient and remainder are

17

represented in r bit numbers (sign and r-1 bits), and that

the dividend is of length 2r-1 (the dividend is stored in two

r bit words with the sign bit of the second word unused).

5. We assume that the divisor and the dividend satisfy the

inequality: dividend < divisor. Failure of this requirement

results in the standard "Divide Fault" condition. That is,

the quotient is too large to represent. If the inequality

were to fail the situation could arise that the quotient is

greater than or equal to one. The quotient cannot be repre-

sented according to our convention (assumption 3). This is

because the divisor is in the half-open interval [1/2,1) and

the dividend is in the half-open interval [0,1).

6. We assume the existence of two integers p and m whose

value is a function of n, the number of bits of the quotient

developed at each stage. These numbers are used in the calcu-

lation of approximations of the divisor and the dividend,

which in turn are used to calculate the quotient. (Methods

for determination of p and m will be described later, in the

analysis of the algorithm).

From this list of assumptions we see the only real restriction

required by the proposed method is in assumptions 1 and 2. Both

of these assumptions can be met by simple and quick operations

available on most digital computers.

ALGORITHM A. Radix 2n, non-restoring division. Given the assump-

18

tions listed above calculate Q = A/B, where A is the dividend,

B is the divisor, and Q is the quotient.

Al.

A2.

A3.

[Initialization]

R

Q f

[CalcUlate

[Calculate

or else

*2f:

0, i

set

Set

GI
*2-r-n+1

0, A

a] a

c] If

c 2n

f

(A*2f

[R*213-

R is

+

<- 2r-n

t

1 1
-

positive,

2
m+n-p

[A*2f]GI)

GI'

GIL

-1: 2,
[n GIL

, [B*2

set c min

.

[

G '

,2n-1)

GI

[-a+1

EIT-T

A4. [Calculate partial remainder] Set R f R - c*B*2-n +

PO I; 1R °01*B'

A5. [Adjust c if underflow] If R is negative, set c c-1.

A6. [Shift next digit into quotient] Set Q f Q*2n + c*2
r-1

GI

A7. [Increment loop counter] Set i
[..fl]

i + 1. If i 1

then A9, otherwise A8.

A8. [Shift next n bits of dividend into R]

R f R*2n + [A *2n]GI * 2
-n-r+1

A f A*2n - [A*2n]GI' Go to A2.

fBA9. [Finished. Adjust remainder] Set R
10 if R >

00

}J*
2n

Stop (R = remainder q = quotient).

19

To help clarify this algorithm an example will be given, but

first a more intuitive clarification. Most of the operations in

the algorithm are shifts of the bit patterns of the numbers. R

is an accumulator where the actual division operations occur.

In step Al f bits of the dividend are shifted into R, thereafter

at each iteration the next n bits of the dividend are shifted into

R. After each iteration the n derived bits of the quotient are

shifted into the low.order bits of the quotient Q (step A6).

Finally when the operation is complete, the remainder is corrected

(A9). It is clear that this algorithm stops. The variable i is

used as an iterative counter. After -Ill iterations the algorithmni
GI

stops, going to step A9.

In the following example all numbers will be represented in

two's complement form. The first column lists the step of the

algorithm being performed. The following columns list the values

of each variable. The example will be for n = 2, m = 3, p = 4,

and r = 7. The dividend and the divisor will be A = 0.010100001001

and B = 0.111100.

20

Example of Division Problem

f t i b c R A

Al 6 2 0000 011 0.00010100 0.001001 0.000000

A2 6 2 0000 0000 011 0.00010100 0.001001 0.000000

A3 6 2 0000 0000 011 000 0.00010100 0.001001 0.000000

A4 6 2 0000 0000 011 000 0.00010100 0.001001 0.000000

A5 6 2 0000 0000 011 000 0.00010100 0.001001 0.000000

A6 6 2 0000 0000 011 000 0.00010100 0.001001 0.000000

A7 6 2 0001 0000 011 000 0.00010100 0.001001 0.000000

A8 6 2 0001 0000 011 000 0.01010000 0.100100 0.000000

A2 6 2 0001 0010 011 000 0.01010000 0.100100 0.000000

A3 6 2 0001 0010 011 010 0.01010000 0.100100 0.000000

A4 6 2 0001 0010 011 010 1.11011000 0.100100 0.000000

A5 6 2 0001 0010 011 001 1.11011000 0.100100 0.000000

A6 6 2 0001 0010 011 001 1.11011000 0.100100 0.000001

A7 6 2 0010 0010 011 001 1.11011000 0.100100 0.000001

A8 6 2 0010 0010 011 001 1.01100010 0.010000 0.000001

A2 6 2 0010 1.011 011 001 1.01100010 0.010000 0.000001

A3 6 2 0010 1.011 011 001 1.01100010 0.010000 0.000001

A4 6 2 0010 1.011 011 001 0.00010110 0.010000 0.000001

A5 6 2 0010 1.011 011 001 0.00010110 0.010000 0.000001

A6 6 2 0010 1.011 011 001 0.00010110 0.010000 0.000101

A7 6 2 0011 1.011 011 001 0.00010110 0.010000 0.000101

A8 6 2 0011 1.011 011 001 0.01011001 0.000000 0.000101

21

Example of Division Problem
Continued

ftia b c R A

A2 6 2 0011 0.010 011 001 0.01011001 0.000000 0.000101

A3 6 2 0011 0.010 011 010 0.01011001 0.000000 0.000101

A4 6 2 0011 0.010 011 010 1.11100001 0.000000 0.000101

A5 6 2 0011 0.010 011 001 1.11100001 0.000000 0.000101

A6 6 2 0011 0.010 011 001 1.11100001 0.000000 0.010101

A7 6 2 0100 0.010 011 001 0.01110100 0.000000 0.010101

A9 6 2 0100 0.010 011 001 0.01110100 0.000000 0.010101

22

An Analysis of the Algorithm

Algorithm A relies on the existance of two numbers p and m,

which are a function of n., the number of bits of the quotient

developed at each iteration. Our estimate c of C must be such that

c = C or c = C+1. The error of our estimate is the difference

between c and C. Our choice of p and m must be such that this

error (C-c) is always less than or equal to one. The determination

of p and m follows.

Let us consider the case A > O. From (10) we know C is in the

interval

C E [[b
+1

, min {rbl
GI GIL

Our estimate c of C is the largest value C might be in this interval,

viz.,

c = min [rit] , 2n - 1]

GIL

Let C
min

be the smallest value that C can attain in this interval.

The maximum error of our estimate is

E = c C
min

"
Ta+1+1 2n

-
1) [a

+1

+1

b
GIGIL

(16)

We will approximate E by r. E will be derived from E as follows:

E = c - C .

min

_
-a= min T+1t] , 2n

b b+1 tGIL GI

N1HIGIL GI

a+1 a

b t [1)+1 t.J GI.

Since [x]
GI

> x 1 we have

1a+b a
E < t

b+1
t + 1.

Define E as follows:

E a+1+ a a +b +l

b b+1 b(b+1)'

23

(17)

then we have

E < E 1.

If we impose the restriction' E < 1, then we will have E < 2 (which

is equivalent to E < 1, since E is an integer).

The maximum value of E can be found by considering equation 17.

Since this function is increasing in a and decreasing in b, the

maximum value of the function will be on the left boundary, namely

on the line = 2n. In fact, the maximum will be at a = 2p -2 and

b = 2
m-2

. Evaluating E we find

p-2' m-2
2 + 2 + 1

E =

2P-2 (2m-2 + 1)

24

Applying the constraint E < 1 and solving for n we can obtain a

lower bound for n, the number of bits of the quotient obtainable

as a function of the number of bits of the dividend and the divisor,

p and m respectively, that we look at to estimate the quotient.

1 > E =
2P-2 + 2m-2 + 1

2n..

2
p-2

(2
m-2

+ 1)

Solving this inequality for n we obtain

<
2
p-2

+ 2
m-2

+ 1

2p -2 (2m-2
+ 1)

n < log2
p-2 m-2

2 + 2 + 1

2rn

2
-- (2-m

2
-- + 1)

(18)

For any value of n satisfying inequality 18, we are assured

that E < 1. However, since inequality 18 is derived from an upper

bound for the error (equation 17) rather than the error equation

itself, it is possible that larger values of n will result in E < 1.

The value of n!

n= 1
2P-2 (2m-2 + 1)

2P-2 + 2m-2 + 1
GI

(19)

is a lower bound for the number of bits of the quotient we can

obtain for a given p and m.

28

no pp. 25-27

The variables p and m represent the number of bits of the

divisor and the dividend that we need to look at to obtain the quo-

tient digit estimate. Since two bits of the divisor are fixed (the

sign and the first bit) we need to look at m+p-2 bits of information,

m+p-
or 2

2
possibilities. We will show that for any n > 3, in order

to obtain E < 1 and the sum of m+p-2 minimum, we must choose

p = n + 3

and

m = n + 3.

First, if we let p and m assume these values, then equation 19

is satisfied. The remainder of the proof is by contradiction. If

we assume that either p or m is less than n + 3, say by (5 or X

respectively, and that the sum m+p-2 does not increase, then we

will show that the error E (from equation 16) is greater than two.

Let 6 and X be non-negative integers defined as follows:

6 = + 3 - p 0 < 6 < n + 2

29

X = n + 3 m 0 < X < n + 1.

The range of 6 and X is derived from the fact that p > 1 and m > 2.

Equation 16 is

where

E = minl
b

, 2n 1) -

GIL

t = 2
m+n-p

a E [0, 2b-1)

b s [2
m-2

, 2
m-1

)

1.13A-1`j
GI

and since the dividend is less than the divisor we know that

a < (b + 1) 2p-m.

The proof is done by considering cases. First the range of 6

will be narrowed by considering the case a = 0 and b = 2
m-2

. If we

assume 6 > 1 equation 16 becomes

[tb]
2m+n-p

2n -p +2
6- 1

= 2 - 1 = 2 - 1.
m-2

GIL 2
GIL

The only time E < 1 is when 6 < 3. In order to eliminate the

other values of 6 and X we will choose as a the smallest value which

nstill makes ra.+1;,] > 2n 1. This will be a = [(.2 1)b =

GIL LIG

-*(2n 1)c
t

GI

, since when a = (2n 1)b - 1 we have
t

b

30

(2n 1)b t
2
n

1. The first term of equation 16 has the value

2n 1 for this choice of a. It is only necessary to evaluate the

second term of equation 16 to determine E. If 13:1t < 2n 2 then

E > 1. If we let b = 2
n+1-X

, we can narrow down the range of X.

Evaluating a we obtain

a = [211+1-6 - 21-6
3GI'

If 6 > 1 we calculate

n+1-6
a 2 - 1

2
n+6-X 2

n
- 2

6-1

< 2
n

- 2.

+ 1
b
+lt

2
n+1-x

1 + 2
X-n-1

If 6 < 1, we calculate

a 2
n+1-6

2
1-6

2
n+6-X 2

n
1

+ 1
b
+lt

2
n+1-x

1 + 2
x-n-1

/-X-1 2x-n-1)
= 2

n
(z-

2X-n-2
-

22a -2n -2)
)

< 2n - 2 whenever A > 2.

This shows the error E in equation 16 will be greater than one in

all cases where n > 3 except when 6 < 1 and x < 1. When A = 1 and

< 1 let b = 2n + 1. Then a will be

a = [2"1-6 -
21 -6 -n]

GI

2n+1-6
-

31

We can calculate

a 2
n+1-6

- 1 n+6-1 2
n

- 2
6-1

+1 2n

2

2
n
+ 2

1-n
1 + 2

= 2
n

- 2
6-1

- (2 -
(22-n 26+1-2n)

-

< 2n - 2.

Finally, when A = 0 and 6 = 1 let b = 211+1 + 2. Then a will be

a [2n 2-11]GI 2n 1.

We calculate

a n- 1 n+1 2
n

- 1

b+1
t 2

2
n+1

+ 3 1 + 3.2
-1-n

< 2
n

2.

Thus, the only case where E < 1 is for (3 = 0 and A = 0. We have

proved the following theorem.

Theorem 1.

Given n > 3, the number of bits of the divisor and the dividend

we must use to obtain n bits of the quotient at each iteration of

Algorithm A, subject to the constraint that the sum of the number

of bits looked at be minimum, is given by:

p = n + 3

and

32

m = n + 3,

where p is the number of bits of the dividend used and m is the

number of bits of the divisor used.

If we wish to use values of p and m other than those in Theorem

1, the largest value of n acceptable can be calculated numerically.

For an exact calculation, given values of p and m, we must examine

equation 16.

We rewrite equation 16 as follows:

E = S -T,

where

and

S min [rt] , 2n 1)

GIL

[-4

I

t]
GI'.

Both S and T are step functions, monotone increasing in a and

monotone decreasing in b. Let us examine S.

Assume that b is fixed and vary a The values of S range

from 0 to 2n 1. Further, S will change value at some value of a,

say x. For a < x, S will be one value and for a > x, S will be one

greater. If y is the next value of a at which S changes values

we can represent this arbitrary interval I, as follows:

I = (x,y].

On this interval, S is constant. T, however, may not be constant.

33

T is monotone increasing on this interval. Since E = S T, E

will assume the largest value, fora value of a approaching a

from above. In fact, since a is an integer, this will be at a

point a = [x]
LIG'

(if such an integer exists in the interval I).

kb
The values of x where S changes value are x =

t
1, and k

is a positive integer. This can be seen by evaluating S at a = x.

t

b
-GIL

b
= k

GIL

The values of a we need consider are a = [x]
LIG

= Tx 1]
GI

GI

. We need not consider values of k > - 1, since S is never

greater than 2n 1. Further, since x > 0, we need not consider

values of k less than one.

The error E, of our quotient estimates, can now be evaluated

using equation 16. We must check all values of b c [
2m-2

, 2
m-1

) and

[kb.]
values of a = where k E [1, 2

n
1]. An algorithm to deter

l. GI

mine the largest value of n acceptable for given values of p and m

follows.

ALGORITHM B. Given values of p and m, and assuming the dividend

and the divisor are positive, find the largest value of n such

that the error E < 1 and equation 16 holds.

(

Bl. [Initialize] Set n ÷ max 0, log2 2P-2(2m-2 1)

2p -2
+ 2m-2 + 1

(this

34

value is a lower bound and thus a good starting point).

B2. [Try a larger n] Set n ÷n + 1. (Try this value of n. If it

fails give E < 1 for all cases when the last value of n is the

solution).

B3. [Divide into cases] If 2" < 2P go to B7.

B4. [Check] Set t 2m+n-P For all integral values of b in the

range b E [2
m-2

, 2
m-1

) and for all integral values of k in

range k e [1, 2n 1] perform B5. When finished go to B2.

B5. [Check E] Set a LI. If min Tall
GIL

,

-kb

Latil
> 1 go to B6.

GI

B6. [Finished] n n - 1. The result is n. Stop.

B7. [Check] Set u 2P-m-n. For all integral values of b in the

range b e [2
m-2

, 2
m-1

) and for all integral values of k in the

range k e [1, 2n - 1] perform B8. When finished go to B2.

B8. [Calculate E] Set a t [kbu]GI. If min ([1bu 1 , 2
n

GIL

a -1

b+1)uj
1, go to B6.

This algorithm is divided into two parts because equation 16

takes on values of 2j where j can be either positive or negative.

If j is negative u = lit is substituted in equation 16 so that the

operations involve only integer arithmetic. Clearly this algorithm

Table 1

Maximum number bits developed for D and m.

2 2 3 4 5 5 6 7 7 7

1.56 2.29 3.12 3.99 4.87 5.70 6.42 7.00 7.42 7.68

2 2 3 4 4 5 6 6 6 6

1.55 2.27 3.07 3.91 4.71 5.43 6.00 6.42 6.67 6.83

2 2 3 4 4 5 5 5 5 5

1.51 2.21 2.98 3.75 4.44 5.01 5.42 5.68 5.83 5.91

2 2 3 3 4 4 4 4 4 5

1.46 2.11 2.81 3.47 4.02 4.42 4.68 4.68 4.91 4.96

2 2 3 3 3 3 3 4 4 4

1.34 1.93 2.53 3.04 3.43 3.68 3.83 3.91 3.96 3.98

2 2 2 2 3 3 3 3 3 3

1.13 1.62 2.08 2.44 2.69 2.83 2.91 2.96 2.98 2.99

2 2 2 2 2 2 2 2 2 2

0.78 1.15 1.47 1.70 1.83 1.91 1.96 1.98 1.99 1.99

1 1 1 1 1 1 1 1 1 1

+0.26 +0.51 +0.71 +0.84 +0.91 +0.95 +0.97 +0.99 +0.99 +0.997

1 1 1 1 1 1 1 1 1 1

-0.42 -0.26 -0.15 -0.08 -0.04 -0.02 -0.01 -0.01 -0.00 -0.00

1 1 1 1 1 1 1 1 1 1

-0.22 -1.14 -1.08 -1.04 -1.02 -1.01 -1.00 -1.00 -1..00 -1.00

3 4 5 6 7 8
m

9 10

Explanation of entries in table.

Top entry is maximum allowable value of n.
Bottom entry is value of n from inequality 18.

11 12

36

will stop because for each value of n a finite number of checks are

made.

The results of this algorithm for small values of p and m are

listed in Table 1. For comparison purpose the lower bound for n

calculating using the left-hand expression in inequality 18 is

also given.

This concludes the analysis of the division algorithm for

cases when A > O. We now proceed to the case,A < O. The general

procedure here is similar to the case A > 0 but there are a few

differences.

From equation 14 we know that C is in the closed interval

[max (0, 2n +)'
[a

GI

[a+1
t]

b+1

Our estimate c of C is the largest value C might be in this interval,

viz.,

n La.+1
c = 2 +

b+1
GIL

As in the positive case, the worst error is obtained when C is the

minimum value in the interval, which will be,called C
min'

The

error in this case, is

Em = c C
min

[4.1t] max (0, 2n +). (25)
b+1

GIL GI

We approximate Em by Em as follows:

Em = 2 +
b+1

t_
n [3+1

2n
a +1

b +lt

max
GIL

2n +r abtl

L

F 1
+ min {

GIL 1-b

ti

+1

a+1+ bt + min [0, -2n
GI

n a+1
< + b+lt

Since [x]GI > x 1, we have

E < a ..11t + 1Em
b+l+1 t b

or

a
E
m b(b + 1

< t + 1.b(b

If we let Em
b(b + '

at

L GI

37

(26)

thei we have E < E + 1. Applying the restriction E 1, then we
m m m

hav(

E
m

< E
m

+ 1 < 2

which is equivalent to Em < 1 since E
m

is an integer.

The maximum value of E
m

can be found by considering equation 26.

Since this function is decreasing in both a and b the maximum value

of the function will be on the right boundary, namely on the line

t = -2
n

In fact, the maximum will be at a = -2P-2 and b = 2m-2.

38

Evaluating E we find

2111-111-13 2n

2
m-2

+ 1

applying the constraint Em < 1 and solving for n we have

2m+n-P + 2n
1 >_

2m-2 + 1

<

n < log

Letting n be the

n=

2P-2(2m-2 + 1)

value,

(27)

we have

(28)

2m-2

2

largest

log2

+
2p -2

2p-2(2m-2

2m-2 2p-2

possible

2P-2(2m-2 + 1)

2p -2

- 'GI

Comparing this value of n with the value calculated by equation 19

which is the value of n calculated in the case A > 0, we see that

the value of n given by equation 19 is less than or equal to the

value calculated by equation 28. Since we want a lower bound for n,

equation 19 should be used. The proof of Theorem 1 is correct,

even in the negative case, since equation 28 holds true for

p = n + 3 and m = n + 3.

For an exact calculation of n when a < 0 we must use equation 25.

+ t] - max[0, 2n +) .

GIL L GI

We can rewrite equation 25 as follows:

+1E m b[!+1]
max (-2n,)

GIL GI

Further, define S and T as follows:

and

then

b+1
GIL

T = max [-.2n, pt_t]

GI

E
m

= S - T.

39

Both S and T are step functions, monotone increasing in a and

monotone decreasing in b. Let us exam S.

Assume b is fixed and vary a. The values of S range from

-2n 1 to zero. Further S will change value at some value of a,

say x. For a < x, S will be one value and for a > x, S will be one

greater. If y is the next value of a at which S changes values we

can represent this interval I, as follows:

I = (x, y].

On this interval S is constant, however T may vary, T is monotone

increasing on this interval. Since -Em= S-T, Em will assume the

largest value, for a value of a approaching x from above. In fact,

since a is an integer this will be at a point a = Ex1LIG
[x4-1]GI'

k(b+1)
The values of x where S changes value are x = 1, where

40

k = -1, -2, -2, ..., 1. This can be seen by evaluating S at

a = x.

S=
[3.41 t] = [k] = k 1.
b+

GIL GIL

We need not consider values of k < -2n + 1, since S is never less

than -2n.

The values of a we need to consider are at a = [x +l]GI =

7k (b+1) 1(b+1
. Since a < 0, we see that k is

- GI GI

always less than zero. The error Em, of our quotient estimates, can

now be evaluated using equation 25. We must check all values of

m-2 m-1 jk(b+-).1
nb E [2 , 2) and values of a , where k E [-2+1, - 1].

GI

An algorithm to determine the largest value of n acceptable for

given values of p and m follows:

ALGORITHM C. Given values of p and m, and assuming the divisor is

Cl.

C2.

C3.

C4.

positive and the dividend is

iteration of the division algorithm),

n such that E
m

< 1 and equation

[Initialize] Set n f max

[Try a larger n] Set n ±

[Divide into cases] If 2n4-111

[Check] Set t f 2m+n-P.

negative

25 holds.

, log2

n +

< 2P,

For all integral

(as a result of

find the largest

2P-2(2m-2 1)

the

b

last

value of

in the

2p -2
2m-2 +

1

go to C7.

values of

41

range b C E2
m-2

, 2
m-1

) and for all integral values of k in

the range k e [1, 2n-1) perform C5. When finished go to C2.

C5. [Calculate Set a f
F

-1

If

L- 7 GI'
b41

GIL

max {2n
b

> 1, go to C6.
GI

C6. [Finished] Set n t n 1. The result is n. Stop.

C7. [Check] Set u 213-m-n.. For all integral values of n in the

range b C [2m-2, 2m-1) and for all integral values of k in the

range k C [1, 2n-1] perform C8. When finished go to C2.

C8. [Calculating Em] Set a [-kbu]Gi. If [a + 1
(b 1)uIGIL

max [-2n, [a-1 >1, go to C6.
bu

GI

The results of the application of algorithm C for small values

of p and m are displayed in Table 2. The lower bound for n as

calculated by the expression on the right side of equation 27 is

also displayed for comparison.

Our final choice for n must be a value which is less than or

equal to the values calculated by both algorithms B and C. Compari-

son of Tables 1 and 2 indicated the values specified by Table 1

satisfy this. This observation is only valid for the range of p and

m calculated. In the general case both algorithm B and C must be

applied to find the largest acceptable value of n for a given p and m.

Table 2

Values of n, given p and m fixed with negative dividend.

2 2 3 4 5 5 1 6 7 7 7

1.57 2.30 3.13 4.00 4.87 5.70 6.43 7.01 7.42 7.68

2 2 3 4 4 5 6 6 6 6

1.56 2.28 3.08 3.92 4.72 5.44 6.01 6.42 6.68 6.83

2 2 3 4 4 5 5 5 5 5

1.54 2.23 3.00 3.77 4.46 5.02 5.43 5.68 5.83 5.91

2 2 3 3 4 4 4 4 4 5

1.50 2.15 2.85 3.50 4.04 4.44 4.69 4.84 4.92 4.96

2 2 3 3 3 3 3 4 4 4

1.42 2.00 2.58 3.09 3.46 3.70 3.84 3.92 3.96 3.98

2 2 2 3 3 3 3 3 3 3

1.26 1.74 2.17 2.50 2.72 2.85 2.92 2.96 2.98 2.99

2 2 2 2 2 2 2 2 2 2

1.00 1.32 1.58 1.77 1.87 1.93 1.97 1.98 1.99 2.00

2 2 2 2 2 2 2 2 2 2

0.58 0.74 0.85 0.92 0.96 0.98 0.99 0.99 1.00 1.00

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

-0.74 -0.85 -0.92 -0.96 -0.98 -0.99 -0.00 -1.00 -1.00 -1.00

4 5 6 7 8
m

Explanation of entries in table.

1. Top entry is maximum allowable value of n.

2. Bottom entry is value of n from inequality 26.

9 10 11 12

43

Hardware Implementation

Before discussing a hardware implementation of the division

scheme we must first consider the carry propagate adder in order

to obtain the information on the time delay involved in adding two

n bit numbers. To be general, considerations will be in terms of

gate delay time, rather than specifying absolute times for some

particular type of logic.

The basic logic equations involved in addition for the kth

bit of two numbers are:

Sk = A
k

B
k

C
k-1

and

Ck = AkBk + (A
k

+ B k) C
k-1

where Ak and B
k
are the k

th
bits of the two numbers A and B, to be

added, C
k-1

is the carry out of the k-1
st

stage, Ili designates the

exclusive or function, + the logical or operation and juxtaposition

the logical and operation.

Connection of n stages of logic like this would result in a

conventional n bit adder. If we assume the propagation delay of

an exclusive or gate is two gate times, and that logical and and

logical or require one gate delay we can calculate the time needed

to add two n bit numbers. It takes two gate delays to calculate

C
k

from Ak
'

Bk and C
k-1

and given C
k-1

it takes two gate delays to

44

calculate Sk. Thus for two N bit numbers it takes 2N + 2 gate

delays to calculate the sum.

Use of the carry propagate adder is a method to reduce the time

required to add two numbers. While this method is a standard

approach, I will derive it here, in order to obtain equations for

the propagation delay as a function of the number of bits to be

added. If we define two terms, the carry propagate, Pk, and the

carry genrate Gk for each stage of the adder as follows:

Pk = Ak + B
k'

Gk = AkBk,

and define G
0

= CO, then

Ck = Gk + PkC
k-1

=G+PG +PP
Gk k k-1 k k-1

C
k-2'

By induction we have

k k

C
k+1

=
.

E P.G. .

i =0 j=i+1 J 1

(29)

This allows calculation of C
N+1

in three gate delays, one to generate

the P's and G's and two to generate CN+1 from the P's and G's. The

sum can be generated in two gate delays. The net time, then is

five gate delays. The only problem is that for large values of N,

the number of inputs required on a gate becomes excessive. While the

use of equation 29 to generate carries is impractical, we can use

this, with some modification as the basic building block to form the

45

carry propagate adder. The process will be to use equation 29 to

generate the carries for a four bit adder and then to use the four

bit adder as a basic building block to generate larger adders. The

carry propagation between each four bit block is done by additional

circuitry to speed the carry propagation. To do this we define some

more terms. First we define the level one carry propagate term P

4k

P = H P.

k i=4k-3
1

and the level one carry generate term G
I

4k 4k

G
I

= H P.G. .

k
i=4k-3 j=i+1 J 1

Using these terms we can derive an expression for C4m as

4k 4k
C
4m

= E II P.G.

i=0 j=i+1

4 4

z P
I I
.G

i=0 j =i +l i

(30)

Each P can be generated in two delays and the G is three

gate delays. Each. C4m can be generated in two gate delays from the

Pi's and the G
I

's. Thus, C
4

is generated in five gate delays from

any input to the adder. These carries (C4m's) represent the carry

in to the four bit adder blocks. Any carry in the block can be

generated in two gate delays from the carry in gate delays.

The same problems can appear here as did with the use of

46

equation 29. We must limit the size of the adder to avoid an

excessive number of inputs to any one gate. We used equation 29

to generate carries for a four bit adder, likewise it is practical

to limit the use of equation 30 to generating carries for four four

bit blocks, or for a 16 bit adder.

To increase the size of the adder further and still limit the

number of inputs to any one gate we add another level of lookahead.

Similar to what was done in building the 16 bit adder out of the four

four bit adders we define some more terms, first a level two carry

propagate term P
k'

PII
4k

= P
1 'k

i=3k+1

and second, a level two carry generate term G
II

II
4k 4k

G = E
k

i=3k+1 j=i+1

With these terms we generate C16m,

16m 16m

C
16m = E n P.G.

.

1=0 j=i+1 J

4m 4m
= E I I

H P .G

i=0 j=i+1 J i

4 4

= E it P
II

j
G
II

.

i=0 j =i +l

We can see that C
16m

is generated in two gate delays from the P
II

Is

47

and G
II

's, which are generated in two gate delays from the P s and

GI's, which were generated in three gate delays from any input to

the adder. Thus, C
16m

is generated from the inputs to the adder in

seven gate delays. In the same fashion, addition of the k
th

level

of lookahead,enables C to be generated in two gate delays longer
m4

than the generations of C
4mk-1

or in the 2k+3 gate delays. If we

consider the time from generating
C16m

to any output (sum) the worst

case would be for a bit in the position 16m 1. In this case, the

carry in from the level two lookahead must go through both a level

zero and a level one lookahead carry generator, and then through an

exclusive or gate to generate the sum, in other words six gate delays.

In general, with the addition of the k
th

level of lookahead,

the longest delay in obtaining the sum will be for a carry in the

position m4
k

1, in which case we must propagate a carry through

levels k-1, k-2, 0 of the carry lookahead logic as well as

through an exclusive or gate to get the sum. This amounts to

2k + 3 gate delays.

In summary with the addition of the k
th

level of the lookahead

the longest delay is 2k + 2, the time to propagate the carry; plus

2k + 3, the time to generate a carry, for a total of 4k.+ 5 gate

delays.

With level one lookahead carry logic we could have an adder of up

to 16 bits. Without increasing the number of inputs to any gate,

48

using the level two lookahead carry logic we can generate an adder of

four blocks of 16 bits or 64 bits. If we use level k lookahead

logic, we can have up to 4
k+1

bits in our adder. Rephrasing this,

if we wish to have an N bit adder, it will take

log
4 4

111 = [log () - 1]
LIG

= [log (N)]Gi levels of lookahead
LIG

to form a complete carry propagate adder. The delay for an N bit

adder will then be 4[log4 (N)]GI + 5 gate delays.

It should be noted that the equations for the carry propagate

term P
k
and the carry generate term G

k
and the equation for the

carries C are funtionally equivalent to those of the k-1
st

m4

level, thus the adder is made out of a number of functionally

equivalent blocks.

These calculations have been made, using the assumption that

both the logical and and the logical or require one gate delay.

For some types of logic currently available this is not true. For

instance ECL (emitter coupled logic), enables the logical or to be

calculated without any additional logic used. Thus the calculations

are dependent on the type of logic used. The use of ECL results in

a smaller number of gate delays to complete an addition. It is

conceivable, in fact reasonable to expect advances in circuitry to

enable execution of portions of the addition even faster.

We now consider the carry save adder (CSA). The carry save

49

adder is an adder which does not try to propagate the carry. In-

stead at the output of each stage we have both a sum term and a

carry. Also we have three inputs, which can be considered to be

two inputs and a carry in, or just three inputs. The rationale for

a carry save adder is to permit adding more than two numbers to-

gether. As a simple example, if we wanted to add three binary

numbers together, at each stage we would feed to a CSA the appro-

priate bit of each number. The result, the sum and a carry for

each bit position could then be fed to a CPA (carry propagate adder)

to add the sum and the carries together. By use of as many levels

of CSA's as necessary we can add an arbitrary number of numbers

together, and only have to propagate the carry once in the final CPA.

Schematically, then to add six numbers we could proceed as shown in

Figure I.

We next consider the logic for each bit of .a carry save adder

with three inputs. If we consider the three inputs to be Ik, Jk

and Lk and the outputs to be Sk and Ck then we have

= Ik Jk $ Lk

Ck =IL +J + I J
k

IkLk kk kk

so both S
k
and C

k
can be generated in two gate delays. With this

information on the timing of the CSA and the CPA we can compare the

results of the procedure for division described here with the other

procedures.

Number

Figure 1

Adding six numbers with a carry save adder tree.

Number Number 3

CSA

Number 4 INumber 5

50

Number 6

CSA

CSA

CSA

CSA

SUM

51

An important consideration in a hardware implementation of the

procedure is to choose the number of bits of the quotient n, obtained

at each iteration to be as large as possible, without being so large

as to be cost-prohibitive. By today's standards, as indicated by

implementations of parallel multiplication by very similar logic,

one would assume that n = 6 would be that magic number. Obviously

this number is highly dependent on the state of the art, as well as

being dependent on the cost vs. speed trade offs in any particular

application.

Once the cost vs. speed trade offs are decided upon, Tables I

and 2, or an extention of them can be used to choose a value of n

in designing a dividing circuit. Or more reasonably, they can be

used to choose a few values of n to investigate further. Tables I

and 2 give values for p and m which will be necessary to obtain n

bits of the dividend.

The n bits of the quotient would then be derived by table

lookup or by logical derivation. If a table lookup is used 2m+P-2

entries are needed in the table, or n2m+P-2 bits of information.

Two methods currently available to implement this are the program-

able logic array (PLA) or a read only memory (ROM).

As an example of implementation, consider the case when n = 6.

Once six bits of the quotient have been obtained the actual division

procedure is simple. Figure 2 illustrates the general purpose.

The divisor and the dividend are stored in registers, the

Six bit division example.

Load Dividend

Load Divisor

Divisor n Bits

Shift 1
Left

52

-

Control Gating

1,

Dividend 2n Bits

S-
O

S-

(f)
r- r-
>
r-
77 0

AO

0
4-)

CPA
Negate

0
Data

vy Selector 1

-0

0
Data

Selector
1

Figure 2

O

Data

Selector 3

CSA

1.0

CSA

Programmable
Logic Array
or ROM

Quotient

:six bits of
quotient

4,

Dyrementer

Selector

CSA

CPA

sign of

result

53

dividend fed into a carry propagate adder to form three times the

divisor. Since two times the divisor is merely a shift we now have

available 0, 1, 2, and 3 times the divisor. The six bits of the

quotient are used to control three data selectors, two bits going to

each selector. The output of each selector will be either 0, 1, 2

or 3 times the divisor depending on the value of the control bits.

The outputs of these data selectors are added together in a multiple

input adder. By shifting the outputs of the data selectors before

inserting the outputs into the adder, multiplication by a power of

two can be obtained. Here we apply data selector one directly,

representing 0, 1, 2, and 3 times the divisor. Data selector two

is shifted left two binary places, thus representing 0, 4, 8, and 12

times the divisor. Data selector three is shifted four binary

places left, representing 0, 16, 32, and 48 times the divisor. The

net result is to obtain any multiple of the divisor from zero to

63 from the data selectors.

The multiple input adder consists of three carry save adder

stages and one carry propagate adder stage. The output of the CPA

is gated back into the dividend register and shifted left six places.

The six quotient bits are fed into an adder which subtracts one

from the quotient. Either the six bits of the quotient generated by

the programmable logic array (or ROM) or that value minus one is

then gated to the quotient register using the sign of the number

output from the CPA to select the appropriate value.

54

Part of the control logic counts the number of iterations and

stops the process at the appropriate time. If the number in the

dividend register is positive when the operation is finished, it

is the remainder. If it is negative, we can obtain the remainder

by adding the divisor to the number in the dividend register.

In order to compare the speed of this method with other

existing methods we must first calculate the execution time for

this method. We will consider the six bit implementation shown in

Figure 2. We can calculate the execution time for a division of a

2N - 1 bit quotient by a N bit divisor. Let k = [log4N]m. Assuming

we have the divisor and the dividend loaded into the appropriate

registers we can itemize and add up the delay times for each step

of the operation. In order to initialize the process we must perform

one add which is necessary to form the multiplies of the divisor

needed. Once this initialization has been 'performed the rest of

the calculations are in a loop, which generates six bits of the

quotient at each iteration. Thus we need only calculate the time

needed for one iteration and multiply by 6, the number of times we

go through the loop.

The time delay for developing the next six bits of the quotient

depends upon the method used. State of the art programmable logic

arrays would take the equivalent of seven gate delays. Read only

memories could take almost any amount of time from three gate delays

to thousands of gate delays depending on the technology involved.

55

Since the application here requires speed, a logical choice would

be one of the faster ROM's requiring three to seven gate delays

to read the information. Direct logic derivation could be done in

three levels of logic. In general, three gate delays is a minimum

and seven is a reasonable upper bound for this time delay.

The delays in the loop are as follows: seven gate delays

maximum for the table lookup of the quotient digit; three gate

delays for the data selectors, which choose the correct multiples

of the divisor to feed to the adders; six gate delays to go through

the CSA'a and 4k + 5 gate delays in the CPA, the final stage of the

adder. The total gate delays in the loop is then 4k + 21, resulting

in a total execution time of

4k + 5 +
6

(4k + 21).

We see that here, even with the added delay of the carry save

adder tree the major portion of the time involved in the division

process is due to the delay of the carry propagate adder. In fact a

reasonable approximation is to say that the division time is .6- times

the time needed to add two numbers in the carry propagate adder, or

N
simply 6 times the add, time.

56

Implementation of the Division Procedure in Software

While the method described in this paper is primarily for

hardware implementation it can also be used in software to do

multi-precision division operations. In this discussion the

following assumptions are made: The divisor is assumed to be in

normalized form, and the numbers are stored in k bit words, the

most significant bit (sign bit) of the first word is used as the

sign of the number, and the sign bit of each additional word of the

number is set to zero. The digits of the number are stored in the

lower k 1 bits of each number. Further, we assume the computer

has a divide instruction which divides a, one word divisor into a two

word signed dividend giving as results a one word signed quotient

and a one word signed remainder.

The approach here is to use the hardware divide operation to

obtain the next k 1 bits of the quotient. We want k - 1 bits at

each iteration since this is the number of bits stored in each word.

If we obtain more or fewer than k - 1 bits, we necessitate shift

operations on the numbers. If we can obtain exactly k - 1 bits at

each iteration, we can eliminate the need to do shifts of the multi-

precision numbers during the process.

We can use equation 19 to obtain an estimate of how many bits

we can obtain at each iteration. We use equations 11 and 15 to

obtain estimates of the quotient. Let b be in the first word of the

57

divisor, then m, the number of bits in b including the sign and the

first bit of the number, will be k. Likewise, if we form a from

the first two words of the dividend, then p, the number of bits of

a, will be 2k 1, since the sign bit of the second word of the

dividend contains no information. With this information about the

estimates of the divisor and the dividend we can evaluate n, the

number of bits of the quotient obtainble at each iteration using

equation 19 with p = 2k 1 and m = k as follows:

n= log2

On.

-log2

2
2k-3

(2
k-2

+ 1)

GI

GI

22k -3

1

+ 2k-2

1

1

2
2k-3

2
k-2

+ 1

For k > 3 this becomes

n = k - 2.

Since we would like to obtain k 1 bits of the quotient at each

iteration this result is not desirable. In order to obtain k - 1

bits of the quotient we must have m = k + 1, thus b, the divisor in

the calculation of the next quotient digit, must be k + 1 bits long.

Since we assume a hardware divide instruction, which used a k

bit number of the divisor, it appears that we cannot obtain a k - 1

bit quotient in this manner. However, a minor adjustment will obtain

the desired results.

Considering the problem of the dividing a k + 1 bit divisor B,

58

into a 2k 1 bit dividend A. We consider the binary point of the

divisor to. be located after the k
th

bit (from the left). Thus, B

can be broken up into an integer, B' and a fraction 6 e {0, 1/2}.

Using the hardware divide instruction we can divide B' into A

obtaining a quotient Q', and a remainder R'.

or A = Q'B' + R'.

First consider the case A > 0, and B > 0. Form Q' =
B'

GI

and R' = A Q'81, 0 < R' < B' using the hardware divide instruction.

We calculate R

R = A-Q'B = A-Q'(B'+,5) = A-WV-WS = R'-Q'6.

If 6 = 0, then R = R'. Since B = > R' = R, we have B > R > 0.

Thus Q' is the correct quotient.

Assume 6 = 1/2. We have R = R' 1/2 Q' If R > 0, then Q'

is the correct quotient. However, if R < 0, then Q' is not correct.

We must try Q' - 1 as the quotient. We calculate

R = A (Q' 1)B = A (Q' 1)(B' + 1/2)

= A Q'B' 1/2 Q' + B' + 1/2

= R' 1/2 Q' + B' + 1/2

> R'.

The last two inequalities are valid because

k-1
2k2 < B' < 2 1

and

0 < Q'
<2k -1

This gives the results 2B' > Q'. Since

and that Q = Q' 1 is the quotient.

59

', we know that R > 0

A
In summary, to perform the division B = B' + 6, where B'

is an integer and 6 is a fraction, 6 £ fO, 1/2} as described above.

We estimate the quotient q of Q' =. and obtain the remainder
GI

R' = A Q'R' using the hardware divide instruction of the computer.

If 6 = 0 we are done, Q' is the quotient and R' is the remainder.

Otherwise 6 = 1/2 and we calculate

R = R' Q'/2.

Note, this is only a shift and an addition. If R is positive the Q'

is the quotient and R is the remainder. If R is negative, the

quotient is Q' - 1 and the remainder is R B' + 6. We have found

FA

LP.J

-1

GI

These operations are simple adjustments to make to the results of

the hardware division instruction to obtain the added precision

dividend.

The case, A < 0, is similar and can be made, but it is equivalent

to changing the sign of A and using the same procedure as used for

the positive case.

With this extended precision divide, the multi-precision divide

can be easily implemented on any binary computer.

The quotient estimate of the next k-1 bits of the quotient are

60

obtained with one divide and in the worst case a shift, two sub-

tractions and an addition. Each iteration of the division can be

completed with one multi-precision multiply and one multi-precision

add of this product to the dividend.

61

Summary

I have defined an algorithm for doing division on a digital

computer. The method is such that it can use the circuitry that

is used to perform multiplication with very little modification.

The speed of the division operation is insignificantly longer

than that of multiplication. The timing was derived for a division

operation which developed six bits of the quotient at each iteration,

the results were

4k + 5 + 6 (4k + 21),

where N was the word size and k = [log4(N)]G . The units of time

were logic gate delays. The time to add two numbers of this length

(N) using ,a carry save adder tree was

4k + 5.

For large values of N these results can be approximated by saying the

N
division times is approximately -6- times the time required to add two

numbers of equivalent length.

The calculations were made only for a process developing six

bits of the quotient at a time. If n bits were developed at each

iteration the results would have been

4k + 5 + (4k + 21 +8)

where 6 is zero for n = 6, and will increase slightly as n increases.

The addition of 6 is necessary because of a longer propagation delay

62

in the carry save adder tree as the number of inputs increase. Thus,

for large N, the division time is approximately 1,-i times the time to

add two numbers of equivalent length.

Mac Sorley [21] quotes execution times in his paper for division

algorithm which uses the shift and add techniques. The times he

quotes are the number of additions required, based on the premise

that the addition is the significant part of the division process,

and the other operations tend to be almost insignificant compared to

it. The best results were to obtain, on the average 3.8 bits of the

quotient per addition. The method described here performs the

division in approximately N/n additions, obtaining roughly n bits

of the quotient per addition.

Methods which use multiplication and Newton's iterative

approximation of the reciprocal require one full precision multi-

plication of the reciprocal of the divisor by the dividend. These

methods require more than the time required to do two multiplications

compared to the method proposed here which requires only slightly

more than the time to do one multiplication.

The Harvard iterative scheme is faster than the scheme using

Newton's approximation. It allows two operations to be performed

in parallel. Times quoted by Anderson [2] indicate division times

equivalent to two full precision multiplications. This is about

twice as long as the method proposed herein.

The key factor is that the method proposed here is inherently

63

faster than those using multiply as the iterative operations. It is

also faster than those methods obtaining one or two bits at a time.

Add to this the fact that the hardware to perform the division

operation (Figure 2) is essentially the same as the hardware for

multiplidation, the difference being mostly the control logic and

you have a reasonably fast and cost effective method to perform

multiplication and division on a digital computer.

Finally,it was proven that in a non-restoring iterative division

algorithm it is only necessary to consider n + 3 bits (n > 3) of

the dividend and divisor to obtain a quotient estimator.

64

Bibliography

1. Ahmad, M., "Iterative Schemes for High Speed Division",
Computer Journal, Vol. 15, No. 4, pp. 333-336, November 1972.

2. Anderson, S.F., Earle, J.G., Goldschmidt, R.E., and Powers, D.M.,
"The IBM System/360 Model 91 Floating-Point Execution Unit",
IBM Journal of Research and Development, Vol. 2, pp. 34-53,
January 1967.

3. Atkins, D.E., "Higher Radix Division Using Estimates of the
Divisor and Partial Remainders", IEEE Trans. Comput., Vol. C-17,
pp. 925-934, October 1968.

4. Atkins, D.E., "A Study of Methods for Selection of Quotient
Digits During Digital Division", University of Illinois, Urbana,
Illinoise, p. 128, Thesis 1970.

5. Atkins, D.E., "The Analysis and Design of a Class of Quotient
Digit Selectors", 5th IEEE Int. Comp. Soc. Conf. on Hardware,
Software and Firmware and Tradeoffs, pp. 201-202. September
1971

6. Bennett, W.S., "Quotient Generation With Conventional Binary
Multiplication", Proc. IEEE, Vol. 61, No. 5, pp. 664-665,
May 1973.

7. Cappa, M., and Hamacher, V.C., "An Augmented Iterative Array
for High Speed Binary Division", IEEE Trans. Comput., Vol. C-22,
No. 2, pp. 172-175, February 1973.

8. Chu, Y., "Digital Computer Design Fundamentals", McGraw Hill,
pp. 35-42, 1962.

9. Dean, K.J., "Cellular Arrays for Binary Division", IEE Proc.,
Vol. 117, pp. 917-920, May 1970.

10. Dean, K.J., "A Precision Code Convertor for Reciprocals of
Binary Numbers", The Computer Bulletin, Vol. 12, No. 2, pp.
55-58, 1968.

11. Ferrari, D., "A Division Method Using a Parallel Multiplier",
IEEE Trans. Comput., Vol. Ec-16, No. 2, pp. 224-226, February
1967.

12. Flores, Ivan, "The Logic of Computer Arithmetic", Prentice
Hall, pp. 246-347, 1963.

65

13. Flynn, M.J., "On Division by Functional Iteration", IEEE
Trans. Comput., Vol. C-19, No. 8, pp. 702-706, August 1970.

14. Freiman, C.V., "Statistical Analysis of Certain Binary
Division Algorithms", Proc. IRE, Vol. 49, pp. 91-103,
January 1961.

15. Gill, S.(1955), Internal Communications quoted from 1. Ahmad,
M., "Iterative Schemes for High Speed Division", Computer
Journal, Vol. 15, No. 4, pp. 333-336, November 1972.

16. Knuth, D.E., "The Art of Computer Programming", Vol. 2,
Seminumerical AlgorithMs, Addison-Wesley, Reading Mass.,
pp. 229-245, 1969.

17. KriShnamurthy, E.V., "On a Divide-and-Correct Method for
Variable Precision Division", CACM, Vol. 8, No. 3, pp. 179
181, March 1965.

18. Krishnamurthy, E.V., "On Optimal Iterative Schemes for High-
Speed Division", IEEE Trans. Comput., Vol. C-19, No. 3,
pp. 227-231, March 1970.

19. Krishnamurthy, E.V., "Economic Iterative and Range-Transfor-
mation Schemes for Division", IEEE Trans. Comput., Vol. C-20,
No. 4, pp. 470-472, April 1971.

20. Krishnamurthy, E.V., and Nandi, S.K., "On the Normalization
Requirement of Divisor in Divide-and-Correct Methods", CACM,
Vol. 10, No. 12, pp. 809-813, December 1967.

21. Mac Sorley, 0.L., "High-Speed Arithmetic in Binary Computers",
Proc. IRE, VOL. 49, pp. 67-91, January 1961.

22. Mifsud, C.J., "A Multiple-Precision Division Algorithm",
CACM, Vol. 13, No. 11, pp. 666-668, November 1970.

23. Mifsud, C.J., and Bohlen, M.J., "Addendum to A Multiple-
Precision Division Algorithm", CACM, Vol. 16, No. 10, p. 628,
October 1973.

24. Nandi, S.K., and Krishnamurthy, E.V., "A Simple Technique for
Digital Division", CACM, Vol. 10, No. 5, pp. 299-301, May
1967.

25. Richards, R.K., "Arithmetic Operations in Digital Computers",
London: Van Nostrand, pp. 279-281, 1955.

66

26. Riesel, Z., and Shahan, Z., "A Note on Division Algorithms
Based on Multiplication", IEEE Trans. Comput., Vol. C-21,
No. 5, pp. 513-514, March 1972.

27. Roberton, J.E., "The Correspondence Between Methods of
Digital Division and Multiplier Recording Procedures", IEEE
Trans. Comput., Vol. C-19, No. 8, pp. 692-701, August 1970.

28. Robertson, J.E., "A New Class of Digital Division Methods",
IRE Trans., Vol. EC-7, pp. 218-222, 1958.

29. Stefanelli, R., "A Suggestion for a High-Speed Parallel Binary
Divider", IEEE Trans. Comput., Vol. C-21, No. 1, pp. 42-55,
January 1972.

30. Stein, M.C., "Divide-and-Correct Methods for Multiple Precision
Division", CACM, Vol. 7, No. 8, pp. 472-474, August 1964.

31. Stein, M.C., and Pope, D.A., "Multiple Precision Arithmetic",
CACM, Vol. 3, No. 12, p. 652, December 1960.

32. Von Neumann, J., Goldstine, H.H., and Burk, A.W., "Logic
Designing of Electronic Computing Instruments", (1947) from
"Collected Works, John Von Neumann", Vol. 5, pp. 35-79,
MacMillan Company, New York, 1963.

33. Wallace, C.S., "A Suggestion for a Fast Multiplier", IEEE
Trans. Comput., Vol. Ec-13, No. 1, pp. 14-17, February 1964.

APPENDICES

67

Appendix A

Index to Defined Symbols

The following is a list of the more important symbols used in

this paper. It does not include symbols which are significant

within only a small portion of the paper. Where possible a short

description is given, not as a definition but rather as an indica-

tion of the symbols usage.

Symbol Page Defined Usage

A 11 Dividend

a 12 Estimate of Dividend

B 11 Divisor

b 12 Estimate of Divisor

C 10 Quotient Digit

Cmin 22

c 10 Estimate of C

22 Error

22 Approximate Error

36 Error

E

E
m

37 Approximate Erro

m 12 Size of b

n 9 Number of Bits Developed at Each Iteration

N 48 Word Length

68

Symbol Page Defined Usage

p 12 Size of a

Q 5 Quotient

t 13 2
n+m-p

69

Appendix B

Definition of Abbreviations

[x]GI = The greatest integer less than or equal to x.

[x]
GIL

= The greatest integer less than and not equal to x.

[x]
LIG

= The least integer greater than.and not equal to x.

