Economic management and thresholds in ecosystems

Aart de Zeeuw
Tilburg University, the Netherlands
Beijer Institute Stockholm, Sweden
The material in this keynote presentation has been published in the following journal articles:

Textbook fishery models

- Logistic growth
- Maximal sustainable yield
- Economics, Gordon-Schaefer
- Optimal management, open access, game
- Dynamic models
- Spatial aspects
- Links with the ecological system?
Acknowledgement

• The Beijer Institute research agenda on complex systems (non-convexities)
• Karl-Goran Maler, Anastasios Xepapadeas, William Brock (economists)
• Steve Carpenter, Marten Scheffer, Terry Hughes (ecologists)
• Anne-Sophie Crepin, Therese Lindahl
The Shallow Lake (ERE 2003)

- Phosphorus loadings from agriculture
- Hysteresis, irreversibility
- Oligotrophic states: high level of ecosystem services
- Eutrophic states: low level
- Bifurcations, domains of attraction
- Resilience
Basic model

- System of non-linear differential equations
- Essential dynamics
 - P: phosphorus in algae; L: input of phosphorus
 - s: rate of loss; r, m: other parameters

\[
\dot{P}(t) = L(t) - sP(t) + r \frac{P^2(t)}{P^2(t) + m^2}
\]
Mathematical structure

- Substitute $x = P/m$, $a = L/r$, $b = sm/r$
- Change time scale to rt/m
- Parameters a (control) and b (type of lake)

\[
\dot{x}(t) = a(t) - bx(t) + \frac{x^2(t)}{x^2(t) + 1}
\]
Concepts

- Shallow lake equilibria: steady-states for the stock of phosphorus x, given a certain level of loading a and a type of lake b
- Fast process: adjustment to this steady state
- Slow process: changes in the parameter b ("mud equation")
- Parameter b affects the thresholds
Economics

• Trade-off, conflicting services
 – release of phosphorus stems from agricultural activities: value as a waste sink ($ln\ a$)
 – clean lake means benefits for fishermen, drinking water companies, vacationers, etc.: decrease in value of ecological services ($-cx^2$)

• Common property (game approach)
 – N communities sharing the lake
Optimal Management

- Loading a is a function of time
- Pontryagin’s maximum principle
- Phase diagram with stable manifold $a(x)$
- $b=0.6, c=1, \rho=0.03$

$$\max \int_{0}^{\infty} e^{-\rho t} [\ln a(t) - cx^2(t)] dt$$
Common property

- N communities loading a_i, in total a
- Pontryagin’s maximum principle
- Phase diagram with stable manifold $a(x)$
- “Open-loop” Nash equilibrium ($N=2$)

$$\max_{0}^{\infty} e^{-\rho t} \left[\ln a_i(t) - cx^2(t) \right] dt, i = 1,2,.., N$$
Other game models

• “Feedback” Nash equilibrium: loadings a_i depend explicitly on the state of the lake x
• Bad steady state does not occur anymore
• However, welfare is still low

$$\rho V(x) = \max[\ln a_i - cx^2 + V_x(x)\dot{x}]$$
Coral reefs (ERE 2007)

• Three major threats:
 – nutrient loadings
 – changes in the food web (overfishing)
 – bleaching (climate change)

• Thresholds

• Coral dominated state

• Algae dominated state
Model

- Fast processes: herbivores and algae
- Slow process: adjustments in coral
- Herbivores:
 - typical fish model
 - carrying capacity depends on algae
 - non-linear predation term ("Holling type III") that depends on coral (shelter)
Model

• Algae:
 – depends positively on nutrients
 – depends negatively on herbivores

• Coral:
 – depends negatively on algae

• Human actions: fishing and pollution
 – possible flips to an algae dominated state
Results

• Fishing and pollution may induce large costs because of hysteresis/ irreversibility
• Fishing enlarges algae dominated domain of attraction, and coral deteriorates (slowly): lower resilience
• Optimal fishing w.r.t. fishery model may be far from optimal because of the thresholds
Policy

- Understanding of complex systems
- Combination of instruments affecting fishing, pollution and climate change: balancing resilience w.r.t. all threats
- Adaptive management
 - only if experimentation is possible
- Precautionary principle?
Other applications

• Grasslands
 – grass dominated state or woody vegetation dominated state (or even dry desert)
 – via animal stock that depends on grass and that is controlled by human action
 – common property issue

• Climate change?, financial crisis?
Conclusions

• Thresholds and flips between states with very different levels of ecosystem services occur in many ecological systems
• This is very important for studying optimal management and common property issues
• Knowledge in this area is growing but it is still insufficient