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Abstract

This paper presents a dimensional analysis for determining optimal
flow discharge and optimal penstock diameter when designing impulse
and reaction turbines for hydropower systems. The aim of this anal-
ysis is to provide general insights for minimizing water consumption
when producing hydropower. This analysis is based on the geomet-
ric and hydraulic characteristics of the penstock, the total hydraulic
head and the desired power production. As part of this analysis, var-
ious dimensionless relationships between power production, flow dis-
charge and head losses were derived. These relationships were used to
withdraw general insights on determining optimal flow discharge and
optimal penstock diameter. For instance, it was found that for mini-
mizing water consumption, the ratio of head loss to gross head should
not exceed about 15%. Two examples of application are presented to
illustrate the procedure for determining optimal flow discharge and
optimal penstock diameter for impulse and reaction turbines.

1 Introduction

The world energy consumption will grow by 56% between 2010 and 2040
[6]. As world population continues to grow and the limited amount of fossil
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fuels begins to diminish, there is an increasing demand to exploit renewable
sources of energy.

In the United States, about 9% of all energy consumed in 2012 was from
renewable sources [7]. While this is a relatively small fraction of the U.S.
energy supply in 2012, the United States was the world’s largest consumer of
renewable energy from geothermal, solar, wood, wind, and waste for electric
power generation producing almost 25% of the world’s total [7]. This institute
also reports that in 2012, 30% of the renewable energy in the U.S. was from
hydropower. This means that only about 3% of all energy consumed in the
United States was from hydropower.

Globally, hydropower accounted for 16% of all global electricity produc-
tion in 2007, with other renewable energy sources totalling 3% [5]. Hence,
it is not surprising that when options are evaluated for new energy devel-
opments, there is strong impulse for fossil fuel or nuclear energy as opposed
to renewable sources. However, as hydropower schemes are often part of a
multipurpose water resources development project, they can often help to
finance other important functions of the project [3]. In addition, hydropower
provides benefits that are rarely found in other sources of energy. In fact,
dams built for hydropower schemes, and their associated reservoirs, provide
human well-being benefits, such as securing water supply, flood control and
irrigation for food production, and societal benefits such as increased recre-
ational activities and improved navigation [3].

Furthermore, hydropower due to its associated reservoir storage, can pro-
vide flexibility and reliability for energy production in integrated energy sys-
tems. The storage capability of hydropower systems can be seen as a regulat-
ing mechanism by which other diffuse and variable renewable energy sources
(wind, wave, solar) can play a larger role in providing electric power of com-
mercial quality [5]. While development of all the remaining hydroelectric
potential could not hope to cover total future world demand for electricity,
implementation of the remaining potential can make a vast contribution to
improving living standards in the developing world (South America, Asia
and Africa), where the greatest potential still exists [7].

Minimizing water consumption for producing hydropower is critical given
that overuse of flows for energy production may result in a shortage of flows
for other purposes such as irrigation or navigation. The present work was
motivated when the first author was unable to find in the literature a theoret-
ical framework for determining optimal flow discharge and optimal penstock
diameter for the design of impulse and reaction turbines. Recently, Pelz
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[4] provided a theoretical approach for determining the upper limit for hy-
dropower gained by a water wheel or turbine per unit width in a rectangular
open-channel. This is somewhat different of impulse and reaction turbines,
as in the latter turbines, the flow in the penstock is pressurized.

This paper aims to provide general insights on determining optimal flows
and optimal penstock diameters when designing impulse and reaction tur-
bines for hydropower systems. This paper is divided as follows. First, di-
mensionless relationships between power production, flow discharge and head
losses are derived. Second, these relationships are used to withdraw general
insights on determining optimal flow discharge and optimal penstock diam-
eter. Third, examples of application for determining optimal flows when
designing impulse and reaction turbines are presented. Finally, the key re-
sults are summarized in the conclusion.

2 Dimensional analysis for optimal flow dis-

charge, optimal head losses and optimal

power

The electric power, P , in Watts (W), can be determined by the following
equation:

P = ηγQ(Hg − hL) (1)

where γ (= ρ × g) is specific weight of water in kg/(m2 × s2), Q is flow
discharge in m3/s, Hg is gross head in m, hL is sum of head losses in m, ρ is
water density in kg/m3, g is acceleration of gravity in m/s2, and η is overall
hydroelectric unit efficiency, which in turn is the product of turbine efficiency
(ηt) and generator efficiency(ηg). In all derivations presented in this paper,
it is assumed that η (= ηt × ηg) is constant.

For an impulse turbine (see Fig. 1), the sum of head losses can be written
as

hL =
Q2

2gA2
2

[
f
L

D2

+
∑

k1−2 + kN

( A2

AN

)2]
(2)

where L, D2 and A2 are length, diameter and cross-sectional area of penstock,
respectively. In addition, f is friction factor,

∑
k1−2 is the sum of local losses

in penstock due to entrance, bends, penstock fittings and gates, AN is nozzle
area at its exit (section 3 in Fig. 1) and kN is nozzle head loss coefficient,
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which is given by (e.g., [1]).

kN =
1

C2
V

− 1 (3)

where CV is nozzle velocity coefficient. According to Dixon (2005), CV varies
between 0.98 and 0.99 for a typical Pelton turbine nozzle.

Figure 1. Sketch of an impulse turbine

For a reaction turbine (see Fig. 2), the sum of head losses can be written
as

hL =
Q2

2gA2
2

[
f
L

D2

+
∑

k1−2 +
(A2

Ad

)2]
(4)

where Ad is draft tube cross-sectional area at its outlet (section 3 in Fig. 2).
The expression inside the brackets in Eqs. (2) and (4) is dimensionless

and it is denoted herein as

CL =

{
f L
D2

+
∑
k1−2 + kN( A2

AN
)2 for an impulse turbine

f L
D2

+
∑
k1−2 + (A2

Ad
)2 for a reaction turbine

(5)
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Figure 2. Sketch of a reaction turbine

Hence, the total head losses in Eq. (2) and Eq. (4) is equal to the product
of CL and Q2/(2gA2

2) and thus, Eq. (1) can be written as

P = ηγQ(Hg − CL
Q2

2gA2
2

) (6)

For generalizing the findings in this paper, a dimensionless relationship
between power and flow discharge is sought. To achieve this, Eq. (6) is
divided by a reference power (Pr). Pr is assumed to be the maximum power
that can be generated using a reference discharge (Qr) and a fixed gross head
and penstock geometry (constant CL). For maximum power, the turbine and
generator efficiencies need to be 100% (i.e., ηt = 100% and ηg = 100%). Also,
maximum power for a fixed penstock geometry can be obtained by setting
dP/dQ in Eq. (6) equal to zero, which gives

hL =
Hg

3
(7)

The reference flow discharge Qr can be obtained by using Eq. (7) and
the energy equation between the reservoir and the nozzle exit for an impulse
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turbine or between the reservoir and the tailrace for a reaction turbine, which
gives:

Qr = 2A3

√
1

3
gHg (8)

where A3 is the cross-sectional area at section 3 in Figs. 1 and 2, given by

A3 =

{
AN for an impulse turbine
Ad for a reaction turbine

(9)

Substituting Eq. (7) and Eq. (8) into Eq. (1) gives the following relation
for the reference power (Pr)

Pr =
4

3
γHgA3

√
1

3
gHg (10)

Note that Qr and Pr (Eqs. 8 and 10) are a function of the penstock
properties and the gross head only. Dividing each side of Eq. (6) by Pr
(Eq. 10) and defining P/Pr as P+ and Q/Qr as Q+, and after some alge-
bra, the following dimensionless relationship between power and discharge is
obtained

P+ = η
[3

2
Q+ − CL(

A3

A2

)2Q3
+

]
(11)

Denoting with β the product of CL and (A3/A2)
2, Eq. (11) can be rewrit-

ten as

P+ = η
(3

2
Q+ − βQ3

+

)
(12)

where

β =

 (AN

A2
)2
(
f L
D2

+
∑
k1−2 + kN( A2

AN
)2
)

for an impulse turbine

(Ad

A2
)2
(
f L
D2

+
∑
k1−2 + (A2

Ad
)2
)

for a reaction turbine
(13)

In practice, the ratios AN/A2 and Ad/A2 in Eq. (13) are typically kept
constant, which means that β varies as a function of f , L, D2, and the
coefficients of local head losses (

∑
k). In many applications, friction losses

are more important than local head losses, that is f L
D2
�
∑
k. Also, L is

typically constant as it is restricted by topographic conditions. In addition,
f does not show significant variation as a function of discharge or penstock
diameter. Let’s recall that for a given penstock diameter, f is independent
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of the Reynolds number for fully developed turbulent flows, which is the case
of most penstock flows. Hence, β is more or less inversely proportional to
the penstock diameter, D2 ∝ 1/β.

The variation of P+ with respect to Q+ for a fixed β can be obtained by
differentiating P+ with respect to Q+ in Eq. (12), which gives

dP+

dQ+

= η(
3

2
− 3βQ2

+) (14)

The maximum dimensionless power for a fixed β can be obtained by
setting dP+/dQ+ in Eq. (14) equal to zero. The maximum power occurs
when

(Q+)max =

√
1

2β
(15)

The maximum dimensionless power for a fixed β is obtained by substi-
tuting Q+ from Eq. (15) in Eq. (12), which gives

(P+)max = η

√
1

2β
(16)

In most applications, β should range between 0.01 and 1.0 for impulse
turbines, and between 10 and 1000 for reaction turbines. Likewise, CL should
range between 1 and 100 for both, impulse and reaction turbines. Even
though β is used throughout the entire paper, only CL is needed for design
purposes.

Figures (3) and (4) plot Q+ versus P+ in Eq. (12) for typical ranges of β
for impulse and reaction turbines, respectively. An overall hydroelectric unit
efficiency (η) of 0.8 was used for plotting these figures. As can be observed
in Figs. 3 and 4, the change in power production in relation to change
in flow discharge (∆P+/∆Q+) for each dimensionless curve has a positive
and negative gradient. For optimizing power production, only the positive
gradient is of interest (∆P+/∆Q+ > 0).

To visualize changes in power production in relation to changes in flow
discharge, five ratios of dP+/dQ+ in Eq. (14) are plotted in Figs. 3 and 4.
Note in Figs. 3 and 4 that for a given β, the positive range of dP+/dQ+ varies
from (3/2)η to 0. Note also that dP+/dQ+ changes rapidly near (Q+)max

and, that in the positive range of dP+/dQ+, the maximum relative power P+

occurs for the maximum relative flow discharge Q+.
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Figure 3. Dimensionless discharge (Q+) versus dimensionless power (P+)
for η = 0.8 and a typical range of β for impulse turbines

For minimizing water consumption to produce a given amount of hy-
dropower, it is necessary that dP+/dQ+ in Eq. (14) is close to its maximum
value (3/2)η. Note in Figs. 3 and 4 that for each curve between approx-
imately dP+/dQ+ = (3/2)η and dP+/dQ+ = 0.8η, the increase in dimen-
sionless power (P+) is approximately linear with increase in dimensionless
discharge (Q+). Note also in these Figures that for dP+/dQ+ smaller than
about 0.8η, the increase in P+ is small compared to the increase in Q+.
Herein, to minimize water consumption, the optimal lower limit of dP+/dQ+

is set to 0.8η.
Substituting dP+/dQ+ = 0.8η into Eq. (14) gives the following upper

8



0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.05

0.10

0.15

0.20

0.25

0.30

dP+

dQ+
= 0, ∀-

dP+

dQ+
= 0.8 2, ∀-

dP+

dQ+
= 0.5 2, ∀-

dP+

dQ+
= 2, ∀-

dP+

dQ+
=

3

2
2, ∀-

10

12

15

20

25
30

40
50

70

100

200
300

500
1000

P+ =
P
Po

Q
+

=
Q Q

o

2 = 0.8

-

Figure 4. Dimensionless discharge (Q+) versus dimensionless power (P+)
for η = 0.8 and a typical range of β for reaction turbines

limit for the dimensionless flow discharge,

(Q+)opt upper =

√
7

30β
(17)

The corresponding upper limit for the dimensionless power is

(P+)opt upper = η
19

15

√
7

30β
(18)

Hence, the optimal dimensionless discharge range is Q+ ∈ [0,
√

7/(30β)].

The corresponding optimal dimensionless power range is P+ ∈ [0, η 19
15

√
7

30β
].
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The optimal dimensionless head loss (hL+ = hL/Hg) can be obtained
by assuming that the optimal upper limit for the flow discharge is Q+ =√

7/(30β) (Eq. 17). In Eq. (12), dividing the second term of the right-hand
side (RHS) by the first term of the RHS gives

hL+ ≤
2

3
βQ2

+ (19)

Substituting (Q+)opt upper =
√

7/(30β) into Eq. (19) gives

hL+ ≤
7

45
(20)

Eq. (20) shows that for minimizing water consumption, the ratio of head
loss to gross head (hL+ = hL/Hg) should not exceed 15.6%. The 15.6% ratio
also provides the threshold for the optimal penstock diameter. Losses higher
than 15.6% mean that a small penstock diameter is used. The 15.6% ratio is
about half of that derived for maximum power and maximum flow discharge,
which is 33.3%. This means that the optimal conditions for producing power
do not correspond to those that use maximum flow discharge for a given β.
This can be better understood by observing Figs. 3 and 4, in which dP+/dQ+

decreases rapidly near (P+)max for all β.
So far the analysis assumed that β is constant and hence, the penstock

diameter (D2). Following, the influence of changing the penstock diameter
on power production is assessed. Earlier, it was argued that D2 and β are
more or less inversely proportional. For example, reducing β in half is ap-
proximately equivalent to doubling the penstock diameter. An increase in
penstock diameter in turn results in a decrease in head losses and hence,
an increase in power. For estimating the variation of P+ with respect to β
(∆P+/∆β), Q+ in Eq. (12) is kept constant, which gives

∆P+

∆β
= −ηQ3

+ (21)

By combining Eqs. (12) and (21), and after some algebra, the following
relationship between ∆P+/P+ and ∆β/β is obtained

∆P+

P+

= −∆β

β

( βQ3
+

3
2
Q+ − βQ3

+

)
(22)
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Figure 5. ∆P+/P+ versus ∆β/β for Q+ = 3

Note in Eq. (22) that the maximum relative power increase (∆P+/P+)max incr

will occur when ∆β/β = -1, which would take place in the hypothetical
case that β is reduced to zero. The relationship between β and Q+ when
dP+/dQ+ = 0 can be obtained from Eq. (15), which gives β = 1/(2(Q+)2max).
By substituting this β into Eq. (22), and using ∆β/β = -1, gives (∆P+/P+)max incr =
1/2. Likewise an increase in β will result in a decrease in power. It should
be noted that the maximum relative power decrease (∆P+/P+)max decr is
∆P+/P+ = -1, which would occur in the case that P+ is reduced to zero.

Figs. 5 and 6 plot the variation of ∆P+/P+ versus ∆β/β for two different
values of Q+ (i.e., 0.06 and 3). The larger value of Q+ (i.e., Q+ = 3) is typical
of an impulse turbine, while the smaller value (i.e., Q+ = 0.06) corresponds
to that of a reaction turbine. Note in Figs. 5 and 6 that relative power is
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Figure 6. ∆P+/P+ versus ∆β/β for Q+ = 0.06

increased when β is reduced and viceversa.
For the assumed optimal flow conditions (see Eqs. 17 - 20), the maxi-

mum relative power increase can be obtained by substituting (Q+)opt upper =√
7/(30β) (Eq. 17) and ∆β/β = -1 into Eq. (22), which gives ∆P+/P+ =

18.4%. If β is reduced in half (D2 is approximately doubled), ∆P+/P+ =
9.2%. In other words, for the assumed optimal flow conditions, a gain of
about 9% in power production can be attained by doubling the penstock
diameter.

For practical applications, the derived dimensionless relationships are
made non-dimensionless. For instance, the optimal upper limit of the flow
discharge can be obtained by combining Eqs. (8) and (17), which after some
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algebra gives

Qopt =
2

3
A2

√
7

10

gHg

CL
(23)

Similarly, the optimal upper limit of the power can be obtained by combining
Eqs. (10) and (18), which after some algebra gives

Popt =
76

135
ηγHgA2

√
7

10

gHg

CL
(24)

When designing a turbine, it is necessary to specify either the flow dis-
charge to use or the desired electric power. These cases are presented below:

2.1 P is specified

If P is specified, the optimal upper limit of the flow discharge can be obtained
by combining Eqs. (23) and (24), which gives

Qopt =
45

38

( P

ηγHg

)
(25)

The optimal penstock diameter can be determined from Eq. (23) as
follows

(CL)opt
A2

2

≤ 14

45

gHg

Q2
(26)

where Q in Eq. (26) is the same as that in Eq. (25).

2.2 Q is specified

If Q is specified, the optimal upper limit of the power can be obtained by
combining Eqs. (23) and (24), which gives

Popt =
38

45
ηγHgQ (27)

In this case, the optimal penstock diameter can still be determined using
Eq. (26).

It is pointed out that the proposed methodology for determining the op-
timal flow discharge and optimal penstock diameter does not account for
cavitation. Reaction turbines (not impulse turbines) are subjected to cavita-
tion. In reaction turbines, cavitation may occur at the outlet of the runner
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or at the inlet of the draft tube where the pressure is considerably reduced
(Dixon 2005). In order to determine whether cavitation will occur in any
portion of a reaction turbine, the Thoma’s cavitation factor (σ) is compared
with the critical cavitation factor (σc). If the value of σ is greater than σc
cavitation will not occur in the turbine under analysis, where σc is a function
of the specific speed of the turbine (Ns). Because Ns is not used in the pro-
posed methodology, the occurrence of cavitation cannot be determined using
the utilized parameters. The occurrence of cavitation in reaction turbines
needs be checked after using the proposed methodology.

Following two examples of application for determining optimal flow dis-
charge and optimal penstock diameter for an impulse turbine and a reaction
turbine are presented.

3 Example of application for an impulse tur-

bine

The site, penstock and nozzle characteristics for this example are as follows:

1. Gross head (Hg) = 200 m

2. Penstock length (L) = 500 m

3. Ratio of penstock cross-sectional area to nozzle cross-sectional area at
its outlet (A2/AN) = 16

4. Nozzle velocity coefficient (CV ) = 0.985

5. Sum of local losses in penstock due to entrance, bends, penstock fittings
and gates (

∑
k1−2) = 1.5

6. Roughness height of penstock material (ε) = 0.045 mm (commercial
steel)

7. Kinematic Viscosity (ν) = 10−6 m2/s

8. Turbine efficiency (ηt ) = 82%

9. Generator efficiency (ηg) = 90%
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3.1 Case A1: Q is specified

In this case, let’s assume that the design flow Q is 0.6 m3/s and it is desired
to know the optimal hydropower that can be extracted using this flow. First,
it is necessary to determine the optimal penstock diameter. From Eq. (26),

(CL)opt
A2

2

= 1693.8272 m−4 (28)

where CL = 500f/D2 + 1.5 + kN(162) .
The nozzle coefficient is determined using Eq. (3), which gives kN =

0.0307. The friction factor (f) is determined using the explicit Swamee−Jain
equation which is given by

f =
0.25[

log10

(
ε

3.7D2
+ 5.74

Re0.9

)]2 (29)

where ε is the roughness height and Re is the Reynolds number. The
Reynolds number is defined as V D2/ν, where V is the flow velocity. Note
that when Q is known, f and CL are functions of D2 only. Solving for D2 in
the above relation of (CL)opt/(A

2
2) gives D2 = 0.3968 m. In practice, a pen-

stock with an internal diameter equal or slightly larger than 0.3968 m (397
mm) would be selected. Assuming that a schedule 80 steel pipe is required
due to structural considerations, a 18 in outside diameter pipe would be se-
lected. For this pipe, the wall thickness is 0.938 in, and hence the internal
diameter is 16.124 in (409.5 mm). For this pipe diameter, the value of CL is
25.35. This value can be used to determine the dimensionless head loss as
follows (e.g., second and first terms in Eq. (6), respectively).

hL+ = CL
Q2

2gHgA2
2

= 0.134 or 13.4% (30)

which satisfies the inequality in Eq. (20) [< 15.6%].
The electric power that can be extracted from this system can be deter-

mined using Eq. (6), which gives,

P = 0.82× 0.90× 1000× 9.8× 0.6×
(

200−25.35× 0.62

2× 9.8× 0.13172

)
= 751421 W = 751.4 kW

(31)
To facilitate the calculations, a Matlab hydropower calculator was devel-

oped which Graphical User Interface (GUI) is shown in Fig. 7. As can be
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observed in this Figure, the consumption of flow is optimized in the linear
region because the amount of power is proportional to the amount of flow
used. Right before the the high positive gradient in each curve, both the flow
discharge and the penstock diameter are optimized. The hydropower cal-
culator is available at http://web.engr.oregonstate.edu/~leon/Codes/

Hydropower/.

3.2 Case B1: P is specified

In this case, assume that P is 100 kW and it is desired to determine the
optimal flow discharge and optimal penstock diameter to produce this power.
In this case, first, the optimal discharge is determined using Eq. (25) as
follows:

Qopt =
45

38

( 100, 000

0.82× 0.90× 1000× 9.8× 200

)
= 0.082 m3/s (82 L/s) (32)

The optimal pipe diameter (inside diameter) can de determined in a sim-
ilar way to Case A1, which gives 0.176 m.

4 Example of application for a reaction tur-

bine

The site and penstock characteristics for this example are the same as those
of the impulse turbine example. A new parameter for this example is

1. Ratio of penstock cross-sectional area to draft tube cross-sectional area
at its outlet (A2/Ad) = 1/3

4.1 Case A2: Q is specified

As in the case of an impulse turbine, assume that the design flow Q is 0.6
m3/s and it is desired to determine the optimal penstock diameter, and the
optimal electric power that can be extracted using this flow. First, it is
necessary to determine the optimal penstock diameter. From Eq. (26),

(CL)opt
A2

2

= 1693.8272 m−4 (33)
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Figure 7. Graphical User Interface (GUI) of hydropower calculator

where CL = 500f/D2 + 1.5 + (1/3)2.
In a similar manner to case A1, solving for D2 in the above relation of

(CL)opt/(A
2
2) gives D2 = 0.3696 m. Assuming again that a schedule 80 steel

pipe is required due to structural considerations, a 18 in outside diameter

17



pipe would be selected. For this pipe, the wall thickness is 0.938 in, and
hence the internal diameter is 16.124 in (409.5 mm). For this pipe diameter,
the value of CL is 17.60. Again, this value can be used to determine the
dimensionless head loss, which gives 9.3%. This dimensionless head loss
satisfies the inequality in Eq. (20) (< 15.6%). The electric power that can
be extracted from this system can be determined using Eq. (6), which gives
787.01 kW, which in turn is slightly larger than that determined using an
impulse turbine and the same flow discharge.

4.2 Case B2: P is specified

As in the case of an impulse turbine, assume that P is 100 kW and it is desired
to determine the optimal flow discharge and optimal penstock diameter to
produce this power. In this case, the optimal discharge is determined using
Eq. (25), which gives 82 L/s. After the optimal flow discharge has been
determined, a similar procedure to Case A2 can be followed to determine
the optimal pipe inside diameter. The optimal pipe inside diameter results
in 0.171 m. This diameter is slightly smaller than that found for an impulse
turbine and for the same flow discharge.

5 Conclusions

This paper presents a dimensional analysis for determining optimal flow dis-
charge and optimal penstock diameter when designing impulse and reaction
turbines for hydropower systems. The aim of this analysis is to provide gen-
eral insights for minimizing water consumption when producing hydropower.
The key findings are as follows:

1. The analysis is based on the geometric and hydraulic characteristics of
the penstock, the total hydraulic head, and the desired power produc-
tion.

2. This analysis resulted in various dimensionless relationships between
power production, flow discharge and head losses.

3. The derived relationships were used to withdraw general insights on
determining optimal flow discharge and optimal penstock diameter.
For instance, it was found that for minimizing water consumption, the
ratio of head loss to gross head (hL/Hg) should not exceed about 15%.
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4. To facilitate the calculations, a Matlab hydropower calculator was
developed which is available at http://web.engr.oregonstate.edu/

~leon/Codes/Hydropower/.

5. Overall, the present analysis is general and can be used for determining
optimal design flow and penstock diameter when designing impulse and
reaction turbines.
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Notation

The following symbols are used in this paper:
A2 = penstock cross-sectional area;
Ad = draft tube cross-sectional area at its outlet;
AN = nozzle cross-sectional area;
CV = Nozzle velocity coefficient;
CL = dimensionless parameter that is function of penstock properties only;
D2 = penstock diameter;
g = acceleration due to gravity;

Hg = gross head;
hL = sum of head losses;
kN = nozzle head loss coefficient;
L = Penstock length;
Pr = reference power;
P+ = P/Pr;
Q = flow discharge;
Qr = reference flow discharge;
Q+ = Q/Qr;
β = product of CL and (A3/A2)

2;
ε = roughness height;
η = product of ηt and ηg;
ηg = Generator efficiency;
ηt = Turbine efficiency;
γ = Specific weight of water;
ν = Kinematic Viscosity;∑

k1−2 = Sum of local losses in penstock due to entrance, bends, pipe fittings and gates.
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