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entrances, 6) suspended sediment concentration at the entrance,

7) entrance boundary velocity, and 8) strength of transverse

dispersion. The results are presented in graphical form to

facilitate the estimation of basin-averaged velocities and sedimen-

tation rates for a variety of simple marina configurations. It is

suggested that Nobel's (1976) basin-flushing guidelines be used

jointly with these results to warn of undesireable flushing

characteristics.

The shear-driven vortex circulation may be enhanced by

increasing the relative entrance width, or decreasing either the

basin width or length. Sedimentation varies directly with 'the

entrance width, the concentration of suspended sediment at the

entrance boundary and the strength of transverse dispersion. It

varies inversely with the entrance boundary velocity, basin length

and basin width.



A square planform with a single entrance, centrally-located

in the breakwater produces both maximum basin-averaged circulation
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stream entrance; an upstream entrance is preferable for basins with
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tion without significantly increasing the basin-averaged sedimentation

rates.
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NUMERICAL SIMULATION OF SEDIMENTATION AND
CIRCULATION IN RECTANGULAR MARINA BASINS

I. INTRODUCTION

1.1 Problem Statement

Man, in pursuit of commerce and diversion in the sea, has for

centuries appreciated the protection offered by bays and estuaries.

Within such areas, harbors and marinas have been built which, by

design, have traditionally emphasized protection from the environ-

ment rather than marina basin water quality. As a consequence,

such facilities have frequently suffered from a minimum of exchange

between basin and external waters and have acted as traps for sus-

pended and dissolved substances.

Current legal and public pressure to maintain and improve

water quality has motivated investigation of the relationship

between basin configuration, recirculation, and sedimentation.

Most engineering investigations are site specific. In the case of

existing marinas, many of which are rectangular in plan form, these

investigations consist of field and, possibly, physical model studies

of the hydraulics of the marina basin. For new marinas, either

physical or mathematical models are often employed to determine

circulation characteristics (Tang, 1976). However, due to the

difficulties involved in properly scaling both fluid forces and

sediment particle properties in physical models, the designer fre-

quently relies on numerical models for prediction of sedimentation.

Such models require both substantial computer facilities and a

familiarity with mathematical techniques not traditionally in the

design engineer's repertoire.

The intent of this study is to investigate, through computer

simulation, the functional dependence of basin circulation and sedi-

mentation on various environmental and basin parameters and to

provide the design engineer with some first-order predictions of
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circulation and sedimentation characteristics for rectangular small-

boat basins. The circulation and sedimentation fields are determined

numerically, as described briefly in Section 1.3 and in detail in

Chapters II, III, and IV, using finite-difference and finite-element

programs developed by Araithurai (1974). Non-dimensional plots of

velocities and sedimentation 'rates are presented in Chapter V.

1.2 Generalized Aspects of Shear-Generated Circulation and Sedi-

mentation in Marina Basins

As described by Nece, et al. (1976) and Vollmers (1976), the

circulation in a basin adjacent to a tidal channel is driven by

density, tidal, and current effects (Figure 1.1). Differences in

marina and exterior water temperatures, salinities, or suspended

sediment concentrations cause an exchange of water and suspended or

dissolved solids between the two water bodies. Since marinas are

generally warmer than exterior waters and have equal or lower

dissolved and suspended-solids concentrations, the exchange generally

occurs through an inflow of external water through the entrance and

along the bottom with a compensating outflow of basin water near the

surface. Tidal currents periodically flood into or out of the basin,

acting over the entire depth of the entrance. Such "flushing" flows

are important in determining the over-all water quality of the basin.

Equally important are the circulation cells or "vortices" generated

within the basin as a consequence of velocity shear between basin

and external waters. This present study centers on this last process-

shear- generated circulation or current effects--and the sedimentation

field that results from the process.

The end of the upstream breakwater or entrance constriction

defines a flow-separation point downstream of which develops an

interface region (Westrich, 1975) between channel and basin waters

(Figure 1.2). This interface region grows laterally in the
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......40." Flood

a. Current b. Tide c. Density

Effect Effect Effect

Figure 1.1. Fundamental components of Marina circulation.

From Vollmers (1976).



Mixing Zone
Co

Dividing Streamline

L

Streamline

Figure 1.2. Schematic of circulation and mixing between a waterway and an adjacent marina

basin. C
o

is the suspended sediment concentration in the waterway and C is

the concentration within the basin. Modified from Westrich (1975).
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downstream direction and is characterized by strong velocity shear

and mixing between basin and external waters. The downstream end

of the entrance defines a flow stagnation point at which part of the

interface flow is diverted into the basin interior. This flow, the

shear exerted in the interface zone, and the requirement of mass

continuity for the basin as a whole are responsible for the genera-

tion of the primary circulation gyre or vortex in the basin. This

rotary current may induce secondary circulation cells within a

sufficiently-large basin but the circulation of the secondary cells

will be relatively weak. On an ebbing flow, channel flows exert

less influence upon basin waters due to the outward flow of water

from the basin. The outward flux of momentum and reduced interface

shear serve to weaken and, possibly, destroy the flood-induced

circulation gyre. Chapter II provides a detailed discussion of

recent analytical, numerical, and laboratory investigations of this

current-generated circulation.

Sedimentation in marina basins occurs as a complex function of

basin configuration, entrance velocity and suspended sediment concen-

tration. Sediments enter the basin with inward-flowing density and

tidal flood currents and with the inward-diverted arm of the primary

vortex. Coarser sediments deposit near the entrance and downstream

along the flow path of the diverted current (Zone a, Figure 1.3).

Turbulenct flows disperse the sediment laterally. Deposition occurs

as increasingly tranquil conditions are encountered, the low velocity

core of the primary circulation cell being especially favorable for

sedimentation (Zone b, Figure 1.3). Sediments leave the basin with

the emptying flow on ebb tide or may be reinjected into the channel

when the sediment again encounters the interface zone. Chapter III

provides a detailed discussion of recent numerical, laboratory, and

field investigations of basin sedimentation characteristics.

Chapter IV details the finite-element solution of the sedimentation

problem for marina basins.
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tmnmow=re=.01P.

Figure 1.3. Schematic of the sedimentation pattern in a basin connected

to a waterway. Cross-hatched areas indicate regions of

higher sedimentation rates. From Vollmers (1976).
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1.3 Cases Studied

Marina basins have traditionally been rectangular in plan form

with relatively steep walls and a dredged, uniform depth. The

longest dimension of the basin is frequently oriented parallel to

the main channel and a breakwater with one or more entrances provides

protection from external waves and currents. Figure 1.4 defines

the basic parameters used in this study. Basin length, entrance

width, and the x-axis were oriented parallel to the main channel and

basin width and the y-axis were oriented towards the interior of the

basin.

In marina-design problems, the basin plan area, minimum water

depth, and minimum entrance width are generally predetermined by the

nature and number of vessels that will use the marina. The design

engineer has control over the basin configuration and the orientation,

number and width of the entrances. The cases tabulated in Table 1-1

and diagrammed in Figure 1.5 illustrate the effects of varying these

parameters as well as the effects of varying entrance boundary

velocity and dispersion rates. A rectangular planform was adopted

and the velocity and sedimentation rates were computed at specified

points--nodes--within the basin. Constant water depths and entrance

boundary velocities were also maintained to facilitate the comparison

of results and minimize computational expense. Hence, the results

of this study are more directly related to the temporal-mean channel

velocity than to peak or short-term average velocities. The mean

channel velocity for tidal flows is determined by averaging velocity

observations over a number of tidal periods and is generally equal to

or greater than the velocity that would result purely from river

discharge. This velocity is either provided to the design engineer

or can be estimated from published river flow data.
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X Uo

CHANNEL

Figure 1.4. Schematic defining terms.
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TABLE 1-1. Simulated Cases

Basin

Case
1

Re
2

Length Width
Special Conditions

02X2 20 200 200

U2X2 20 200 200

C2X2 20 200 200

D2X2 20 200 200

C2X3 20 200 300

02X2 20 200 400

U2X4 20 200 400

C2X4 20 200 400

D2X4 20 200 400

C2X6 20 200 600

04X2 41 400 200

U4X2 41 400 200

C4X2 41 400 200

C4X2V50 45 400 200 u
o
= 0.50 m/s

C4X2V100 47 400 200 u 0= 1.00 m/s

D4X2 41 400 200

CE4X2 41 400 200 W
e
= 132 m

UD4X2 41 400 200 Two entrances

C4X2D100 41 400 200 Dt= (23diuz+v2)/22

C4X2D1000 41 400 200 Dt * (230642 F-v2)/22

C6X2 61 600 200

lEntrance location is indicated as 0 (open or unconstricted),

U (upstream), C (center), or D (downstream) end of breakwater.
CE denotes a central entrance of doubled width.

2
Eddy basin Reynolds number; Re = uoL/Ah, Ah = 60 u*d.

3
Unless otherwise noted: DL = (60h2+v2)/22, D = (0.236/u2+v2)/22,

d = 4.5 m, co = 5x10-5kg/I, We = 66 m, U0 = Q.15 m/s



C2X6

D2X4

U2X4

C2 X4

02X4

C2X3

D2X2

[12 X2]

02X2

UD4X2

D4X2

U4X2

C4X2

04X2

10

C6X2

Figure 1.5. Marina-study case geometry. Entrance location is indicated as open (unconstricted),

upstream, central or downstream by 0, U, C, or D, respectively. Basin length and

width are given in hundreds of meters by the first and second numbers, respectively,

of the code identifying each case.
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The range of parameters was characteristic of Oregon's coastal

marains (Nobel, 1976). The unit basin dimension chosen was 200 m

and aspect ratios--the ratio of basin length to width--of 3:1, 2:1,

1:1, 1:2, and 1:3 were considered. A respresentative average depth

of 4.5 m was chosen and held constant throughout this study. Since

many marinas have aspect ratios greater than unity, basins with

aspect ratios of two were used to investigate the effects of entrance

velocity (15, 50, 100 cm/s), entrance concentration (50, 100,

1000mg/1 ), entrance width (66, 132 m), and transverse dispersion

(100 and 1000 times standard level). Except for cases CE4X2 and

UD4X2, a single 66 m wide entrance was situated at either the up-

stream or downstream end of the breakwater or at its center. For

case CE4X2 the central entrance was 132 m wide and in case UD4X2

two 66 m entrances were placed one entrance length away from the

land ends of the breakwater.

In all cases, the entrance boundary velocity acted only tan-

gent to the entrance boundary and no fluid was advected into the

basin. Since the symmetry of the problem made the downstream

entrance solutions equivalent to the solution for the upstream

entrance under reversed flow conditions and vice versa, the super-

position of both solutions permits the first order estimation

of average sedimentation rates under "oscillating" flow conditions.

1.4 Solution Technique

The solution for each case was achieved in two phases. First,

the circulation field was determined. Secondly, the associated

sedimentation field was computed. This section considers the general

formulation and solution of each problem. Detailed descriptions of

the solution techniques may be found in Chapters II, III, or IV.
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The circulation problem for a basin connected to a passing

waterway was posed by the two-dimensional, horizontal, vorticity-

transport equation (momentum transport), the Poisson equation

(vorticity), and by no-slip, impermeable boundary conditions at

solid boundaries and strictly tangential uniform velocity conditions

at the entrance boundary. Equations 2.2.11 and 2.2.12 and the

boundary conditions equations explicitly formulate the problem.

The principal assumptions implicit in these formulations include:

1) incompressible, steady or slowly-varying flow;

2) velocities, dispersion coefficients, etc., were taken as

vertical averages;

3) turbulent perturbations of density and pressure were

neglected;

4) the Reynolds shear stress analogy was applicable to terms

involving products of turbulent velocity fluctuations,

permitting each term to be replaced by the customary

Fickian analog employing turbulent diffusion coefficients;

5) vorticity dispersion coefficients were locally constant;

6) vertical velocities and accelerations were neglected;

7) the flow within the basin was strictly recirculating and

there was no velocity component perpendicular to the

entrance boundary;

8) vertical gradients in the horizontal velocity vanished near

the water-air interface;

9) the stream function was identically zero at solid boundaries

but had a value at the entrance of 4, = uo Ay, whereby

is the finite difference grid length parallel to the y-axis

at the entrance;

and that

10) first order spacial derivatives of the stream function must

be continuous and finite.
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The governing differential equations were approximated using

truncated, three-point Lagrangian polynomials (Figure 1.6). The

vorticity transport equation was solved for the vorticity field at

each new time level using the alternating direction method and

Thomas algorithm. The Poisson equation was then solved iteratively

for the corresponding stream function field via the successive over-

relaxation technique. Time was incremented and the above procedure

repeated until a given time period had elapsed or other convergence

criteria were satisfied. Initial conditions specified zero velocity

in the interior of the basin. A non-dimensional time increment,

Atu
o
/L, of 0.02 was adopted and a total elapsed time of 5.00 was

considered sufficient for convergence to steady-state conditions.

Subsequent to convergence, numerical differentiation of the stream

function yielded the velocity field.

The sedimentation/transport problem for a marina basin was

specified by the sediment advection-dispersion equation (Equation

3.1.1) and the requirement that the entrance boundary concentration

be continuous and remain constant. The problem was formulated using

the Galerkin weighted residuals technique and solved via the finite

element method following the flow chart of Figure 1.7. The principal

assumptions involved include the following:

1) the velocity field was stationary;

2) suspended sediment floc size was in equilibrium with fluid

shear effects;

3) concentrations, velocities, etc., were taken as vertical

averages;

4) sediment dispersion coefficients were considered to have

distinct components parallel and perpendicular to the local

velocity vector;



ADIM

SOR

Initialize / IP/ U.,

Compute u*, Ah, and Re from
Eq. 2.6.4, 2.6.3, and 2.2.13

Solve vorticity transport equation for

Solve vorticity transport equation for
n+1

Solve Poisson equation for *
n+1

Differentiate ip
n+1

to yield u
n+1

, v
n+1

Is

Number of
Iteration Cycles
or Convergence

Criterion
Satisfied

Yes

Print velocity field
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Figure 1.6. Flow chart for the finite-difference solution of

the circulation problem.



15

(Read or generate geometry, velocities and other properties

Compute sediment dispersion coefficient using
Eq s. 3.5.2, 3.5.3, 3.5.9, 3.5.10, 3.5.11

'Determine avers e veloci y, Avvel

Is
Bed Shear Stress

> Critical Shear

Stress

Yes 1 Erosion

Compute average suspended sediment concentration, Avcon

[Compute time to traverse element altitude, TT = depth/Avvel I

Is

TT < DT, the
Computation Time Step

Interval

Yes

yes

Settling Velocity
Computed from

Eq. 3.3.4

I

no

Settling Velocity
is Constant

at 6.6x10-6 m/s

yes no

Settling Velocity
Computed Using
Eq. 3.4.12 and

3.4.11

Compute mass deposited in DT

Settling Velocity
Computed Using
Eq. 3.4.10 and

3.4.11

Increment time

Is

time = total time
yes no

Print sedimentation rates,

Figure 1.7. Flow chart for the finite-element solution of the sedimentation

problem. Modified from Araithurai (1974).
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the dispersion coefficients may be adjusted to partially

account for the effects of secondary currents; and

6) the settling velocity was linearly proportional to sus-

pended sediment concentrations below 0.3 gm/1..

Initial conditions specified a uniform concentration over the

entire domain. A time increment of one-half hour was found to ensure

computational stability and smooth convergence. Computation proceeded

until the sedimentation rate for a specified interior element changed

less than 0.5% over one time increment. The coarseness of this cri-

terion was necessitated by the slowness of convergence for basins

having interiors which were far removed from the entrance. Except

for case D4X2 and cases with aspect ratios of 0.5 or less, the upstream

interior corner element was used since it characteristically exhibited

the slowest rate of convergence. For the remaining cases, the isola-

tion of the interior resulted in very low concentrations (less than

10
-6

kg /1) and unavoidable numerical instabilities. Consequently,

the computation was allowed to proceed until the concentration in

the upstream interior element dropped to 10
-6

kg/l.
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Since an estuary may be defined as the zone of transition

from unidirectional, time-varying freshwater flows to the tidally-

varying ocean, one may expect to find a gradation in salinity,

suspended sediment load, and current velocity along the estuary.

The marina location will then necessarily have a substantial effect

on marina circulation, water quality, and sedimentation characteris-

tics. If the marina is located close to the estuary head, basin

salinity will be low, stream flows relatively steady and basically

unidirectional, and sedimentation processes will occur with a mini-

mum of particle interaction. If the marina is located close to the

mouth, circulation will be tidal in nature, i.e., varying periodi-

cally in direction and strength, and the salinity will be high and

relatively constant. Since fine clays and silts tend to flocculate

in the presence of salts, sedimentation rates along the estuary will

depend not only upon the advection of bed load and suspended load,

but also upon the local salinity and character of the suspended load.

Hence, a given location of the marina in the estuary will result in

correspondingly unique characteristics of sedimentation, water circu-

lation, and water quality.

Once potential marina or harbor sites have been selected or

designated, the design engineer is often faced with predicting the

marina basin circulation and flushing characteristics. Such pre-

dictions require a relatively detailed knowledge of local flow

conditions for various seasons. Frequently, only the general

character of the flow can be determined from published data and

either physical or numerical models are necessary for more detailed
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analysis. Fluid flow in estuaries and river channels is generally

turbulent. The flow within marinas will generally also be turbulent,

though at a greatly reduced level; thus, such fluid flows should be

described by the equation of turbulent motion. Analytical solutions

for these nonlinear equations have been obtained only for highly-

simplified conditions. Various solution techniques have been

applied, including: 1) reduction to ordinary differential equations

which permit numerical integration; 2) linearization techniques

applied to reduce the equations where analytical solutions may be

obtained; 3) finite-difference and 4) finite element methods to

reduce the equations to a set of algebraic equations which can be

solved simultaneously.

The first two techniques (reduction of order and lineariza-

tion) are limited in application because they are restrictive and

involve much analytical work. A stringent restriction placed on

fluid problems by these techniques is that of steady flow, i.e.,

time derivatives of variables must vanish. This is clearly an

unrealistic restriction for oscillatory flow problems. The latter

two methods, however, are applicable to most flow conditions

including those with unsteady flow. The following sections consider

the formulation of a finite-difference circulation model limited to

rectangular basins of constant depth having a constant velocity past

the entrance. Previous attempts by other investigators to solve

similar circulation problems are then reviewed. Finally, the

finite-difference problem-solution technique used in this present

study is discussed in detail.

2.2 The Vorticity Transport Equation

The two-dimensional, vertically-averaged equations of turbulent

motion are
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2.2.1a)

av av av
-

1 ap.
by + A 2!11+ (2.2.1b)

at ax ay p ay p(h+n) y ax 2 ay

P = P9(h+n)

where all terms represent vertical averages,

n = water surface elevation relative to some datum,

and h = water depth relative to that datum.

Here the internal and bottom shear stresses have been combined in

an equivalent quadratic function of the velocity

(2.2.1c)

T
b '
(x y) = K(u,v) v2 (2.2.2)

where K is a friction coefficient usually between 0.002 and 0.005

in estuaries (Dyer, 1973). A value of 0.003 was adopted in this

study, corresponding to a Chezy coefficient, C, of 146 and a

Manning's n of 0.019 cm1/6 since

K
pgn2

2-g-

(h+n
)1/3 C2

When shear stresses are expressed as in Eq. 2.2.2, Eqs. 2.2.1

contain two unknowns, pressure and velocity. Pressure may be

eliminated from the problem by forming the vorticity transport

equation. By cross differentiating the first and second equations

(Eq. 2.2.1) with respect to y and x and subsequently subtracting

the resulting equations, one obtains the vorticity transport

equation

a 1 bx arby

+

a2 P2
8t= u - vax ay ax

Ah ayz

Here C is the vorticity

au a Vr = _
ay ax

(2.2.3)

(2.2.4)
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If it is assumed that the eddy coefficients are locally uniform, and

introducing the stream function, p , such that

ax v
-u (2.2.5)

then Eq. 2.2.4 is expressed as the elliptic Poisson equation

v211,
(2.2.6)

The vorticity transport equation is parabolic in time, hence

posing a "marching" or initial-value problem wherein the solution

is stepped out from some initial condition. The Poisson equation,

being elliptic, poses a boundary value problem which may be solved

by iterative means. These equations, when combined with selected

boundary conditions, define the circulation problem. The boundary

conditions include the following:

1) no-slip physical boundaries, i.e., the velocity parallel

to the boundary is zero at the boundary

(2.2.7)

2) physical boundaries are impermeable, i.e., the velocity

perpendicular to the boundary is zero at the boundary

-48 ='121 (2.2.8)

3) constant stream function along physical boundaries, a

consequence of boundary conditions 1) and 2)

(2.2.9)

4) a "moving, no-slip" wall boundary (Roach, 1972, p. 150)

at the basin entrance

uo

viz = 0

r u06,y (2.2.10)
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and 5) zero velocity at the tips of the breakwaters.

The fourth boundary condition (Eq. 2.2.10) requires that the value

of the stream function at the entrance be different from that at

adjacent solid boundaries by upAy; Ay being the distance between

the entrance and the first interior node of the finite difference

spacial grid (Figure 2.6).

Equations 2.2.1 and 2.2.3 to 2.2.6 are recast in dimensionless

form using the boundary velocity 110 and basin length measured parallel

to the entrance as the characteristic velocity and length measures,

e.g., u E u/uo, hence

a(u/u0) a(v/u0)
t E , etc.

a(y/L) a(x/L)

Then the complete non-dimensionalized boundary value problem becomes

DE:

a& as, - a& 1 [ aT
x 1 S2 4. a2§

at ax ay ay ax Re axe ay (2.2.11)(2.2.11)

2 E

BC: vi I = 0

B = 0

11,B= 0

VI1 =

VI5 = 0

VIE=
uoAY

(2.2.12)

(2.2.13)
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where Re = u
o
L/A

h
is the basin "eddy" Reynolds number,

L = basin length,

A
h
= the horizontal eddy coefficient,

d = (h+n)/L,

t = tu
o
/L

and T = T
b
/pu

o .

The following section reviews the results of previous investi-

gations of recirculating flows. Following that, the solution technique

for the above-posed circulation problem is discussed in detail.

2.3 Review of Flow Models for Rectangular Basins

A review of published literature regarding shear-induced

circulation in basins adjacent to a waterway revealed that while

analytical solutions for viscous flow conditions are available

(Weiss and Florsheim, 1965; Burggraf, 1966), corresponding solutions

for turbulent flow conditions are not presently available. Most

investigators rely upon physical or numerical models to study

turbulent flow conditions but only a limited number of laboratory

or field investigations have been conducted. The following pages

review some of the more pertinent contributions.

Forlow viscosity fluids, Prandtl (1904) and Batchelor (1956)

showed analytically that steady, high-Reynolds-number flows within

closed streamlines generally consist of an inviscid core having

uniform vorticity with viscous effects confined to infinitesimally

thin shear layers along the boundary.

Weiss and Florsheim (1965) analytically and experimentally

investigated steady, viscous flow characteristics in rectangular

cavities for low Reynolds numbers. Neglecting the advective terms

in the steady vorticity transport equation and applying variational
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techniques, the stream function was determined to be

u
o

sine ,rx /L

* sinh bW cos aW a
cosh by sin ay - sinh by cos ay

+ aW
1 - bk/a]

sinh by sin ayi

where

(2.3.1)

u
o
= boundary velocity at opening,

x,y = point coordinates measured from innermost upstream corner

(Figure 2.1),

(1/ = (1 + 2b2'-/d ) tan aW + (1 - b2k2/a 2) (1/tan aW), (2.3.2)

7r

a =
2

sin (arctan /),
34L

7r

b =
2
r-- cos (arctan 1/2),

341.

L = basin length parallel (in 3t) to the opening,

W = basin width perpendicular (in 3%) to the opening,

k = tan aW/tanh bW.

Assuming a linear change in velocity across the entrance boundary

layer and that the boundary layer thickness did not change across

the opening uo was estimated as

uo = u./(1 + N6*/L) (2.3.3)

where

1.6 = free-stream velocity,

S* = upstream boundary layer thickness,

34 abL2
N ( )[cos aW sinh bW + k sin aW cosh bW]

in which,

G = sin(2 arctan I ) cosh bW cos aW + cos (1 arctan /21 sinh

sin aW -
tan

bW
an aW

[cos (-

1 arctan V) cosh bW cos aW -
t 2

sin (y arctan VT) sinh bW sin aW]
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Also determined was the location of the zero-velocity point of

the recirculating gyre (Fig. 2.1). Since the opening extended com-

pletely across the cavity, the x location of this center is L/2.

The y location, yc, is determined from

tan
1

ayc tanh
b/byca [bbz/a2/a2 + 1]

tan aW (2.3.4)
- 1

This equation predicts the existence of multiple recirculation cells.

A single cell exists up to a L/W ratio of about 0.59 and a third

cell forms when L/W is about 0.25. Successive interior cells neces-

sarily decrease in strength. Table 2-1 gives the relative locations

of cell centers for four different basin aspect ratios.

For a "stagnation" Reynolds number defined as

u.(W - yc)
Re

s
= (2.3.5)

with a magnitude of about 150, Weiss and Florsheim (1965) found that

model tests indeed produced multiple cells. The positions of the

theoretical and actual stagnation points agreed to within 19%, from

which the investigators concluded that the omission of the advective

terms from the problem was acceptable.

TABLE 2-1

L/W

Location of Cell Centers

Yc" Yolw

2.00 0.70 0.30

1.00 0.79 0.21

0.50 0.20, 0.90 0.80, 0.10

0.33 0.44, 0.93 0.56, 0.07

0.25 0.23, 0.59, 0.95 0.77, 0.41, 0.05

Weiss and Florsheim (1965) also suggested that the complete

nondimensionalized vorticity diffusion equation

Otp - Re. v(v2p) = 0 (2.3.6)

could be solved using a series expansion in the Reynolds number, Re

being defined by the characteristic parameters, v, L, and uc.
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Figure 2.1. Parameters used to describe vortex flow in a rectangular

basin. The vortex center is located at (x
o
,y
o
). The

terms r
x

and r measure the distance from the vortex center

to the maximum velocity components um and vm that act

across transects paralleling the coordinate axes and

passing through the vortex center.
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The series

* = *0 + Re *1 + Re2*2 + . . . + Ren00 (2.3.7)

should be expected to be convergent for Re < Remax where Remax is

given by the requirement that the second term in Eq. 2.3.7 is less

than the first, i.e.

Re = (Uo /V1 )

for the whole domain. Such an expansion would result in a set of

linear equations in q), allowing p to be determined to any desired

accuracy. The first two members of that set are

v4410 = 0

oipl= ; v(v210

Burggraf (1966) investigated the behavior of circular uncon-

fined eddies and eddies within a square cavity. Linearization and

perturbation of the Navier-Stokes equations permitted a first-order

analytical solution to be determined for a circular boundary. In

the limit as the Reynolds number approached infinity, viscous shear

effects were confined to a thin shear layer near the boundary and

the inviscid core exhibited constant vorticity. As predicted analyt-

ically by Batchelor (1956) for such inviscid flows, the vorticity was

proportional to the root-mean-square velocity past the boundary.

Burggraf (1966) also used relaxation techniques to solve the

vorticity transport equation for a square cavity with one moving

wall. Flows having Reynolds numbers from zero to 400 were used,

characteristic scales being the basin length, the moving wall

velocity, and molecular kinematic viscosity, v. As Re was slowly

increased, the vortex center was observed to shift first in the

downstream direction as a consequence of viscous and inertial

effects and then towards the center of the cavity as the inviscid

core developed. The inviscid case was approached asymptotically

as the non-linear convective terms increased in importance over

the viscous diffusion terms. Figure 2.2 shows the velocity profile

along the centerline, perpendicular to the entrance. As the Reynolds
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Figure 2.2. Viscous flow velocity profiles as a function

of the Reynolds number. From Burggraf (1966).
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number and/or velocity was increased, convective effects smoothed

the velocity profile until at the inviscid limit, a state of con-

stant vorticity, and hence, constant velocity gradients, was

achieved. Secondary eddies were also observed in the inner corners

of the square cavity. The downstream corner eddy grew with increas-

ing Re whereas the upstream corner eddy remained stable. Burggraf

concluded that the growth of these corner eddies would prevent the

primary vortex from approaching the geometric center of the cavity.

Pan and Acrivos (1967) found that for creeping flow, the

stagnation point predictor of Weiss and Florsheim was in reasonable

agreement with laboratory observations under different entrance

boundary conditions. They also considered the dependence of corner

vortices on Reynolds number. They noted that previous applications

of the variational technique (Weiss and Florsheim, 1965) and

Galerkin's method (Snyder, Spriggs, and Stewart; 1964) had not been

applied on a grid scale fine enough to accurately describe this

phenomenon. Defining vortex size as the fraction of wall width, W,

covered by the upstream vortex, the size was observed to increase

from 0.1 W under creeping flow conditions to a maximum of 0.35 W

around Re = 500 for a basin aspect ratio of 0.62. Further increases

of the Reynolds number caused the vortex to shrink.

Concoomittant with such behavior of the corner vortices was

an initial shrinkage of the primary vortex to a Reynolds number of

approximately 800. For higher Reynolds numbers, the eddy grew in

size, becoming linear with Rell in the range 1500 < Re < 4000.

In summary, the recirculating flow within a rectangular cavity

will consist of a main vortex and, for relatively low Reynolds flows

in which viscous effects are important, secondary cells will develop

in the interior of the basin. As the Reynolds number increases, the

principal vortex center will migrate first downstream and then

towards the interior of the basin. Expansion of the principal vortex

will occur at the expense of any secondary cells present, but may

be opposed in a cavity of finite width by the growth of corner

vortices. As the inviscid limit is approached, circulation will
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consist essentially of the primary vortex in which vorticity is

constant. Viscous effects will be confined to the thin boundary

layer along the walls.

Westrich (1975) conducted laboratory models of turbulent

exchange between a river and a rectangular backwater area. The

flows were turbulent and the entrance was unconstricted. A channel
6

Reynolds number, uod/v was given as 10 , d being the depth. For

basin length/width ratios between 0.3 and 6, the mean circulation

consisted of a single gyre, but for ratios smaller than 0.3, a

second gyre developed with lower velocities and rotation opposite

to that of the main gyre. Such observations conform with those of

the previously discussed papers which addressed non-turbulent flow

conditions. This suggests that the turbulent flow problem may be

approached in a manner similar to the preceeding analyses.

Nece, et al. (1976) used physical models to investigate

tidal flushing of rectangular harbors with a single entrance located

at one end of the breakwater. The authors concluded that the

strength and uniformity of basin flushing depends upon the angular

momentum established within the basin by flooding flow and that

optimum flushing conditions correspond to a relatively narrow

entrance placed at one end of the breakwater of a square basin.

In model tests, a single circulation cell was observed for basin

aspect rations (L/W) between 0.6 and 3.0. The gyre developed

during the flooding stage and continued to expand under high slack

conditions, filling much of the basin. For aspect ratios larger

than 3, multiple circulation cells formed.

Nece, et al. (1976) defined basin flushing efficiency as the

ratio of the average per-cycle exchange coefficient, E, to the ideal

tidal prism ratio. The exchange coefficient is the fraction of the

water in the basin at high water slack which is removed from the

basin and replaced by ambient water during the following flood cycle.

The tidal prism ratio is the ratio of the difference of the water

volume in the basin at high and low tides to the volume at high tide.
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Figure 2.3 presents the conclusions of Nece's study. Best overall

flushing occurred for a given tide range for basin aspect ratios

between 0.6 and 3.0 in which a single circulation cell fills most

of the basin. The secondary minimum in the exchange coefficient

using an aspect ratio (L/W) of 0.8 was considered to be the result

of the approximate equality of the gyre circulation period and

half the tidal period. Water injected into the basin during flood

stage circulates around the basin with a relative minimum of mixing.

Should it arrive back at the entrance at high slack, part of this

water will be deflected out of the basin and will not effectively

contribute to the mixing process, thereby reducing the measured

exchange coefficient. Narrower entrances were also considered to

increase jet entrance velocities, internal circulation and mixing

processes. Nece, et al. (1976) also considered the effect of

rounding the interior basin corners to minimize the momentum and

energy drain associated with corner eddy development. They concluded

that although rounded corners did improve local exchange processes,

it had little effect on the flushing process of the basin as a whole.

Noble (1976) attempted to relate the water quality of Oregon's

coastal marinas to basin geometry via sediment chemistry. He

concluded that basin configuration for optimum flushing was one in

which the non-dimensional parameters AREA and ENTR were kept below

400 and 100, respectively. These parameters as defined as:

AREA = A/a (2.3.8)

ENTR = A/Ii We (2.3.9)

where

A = basin horizontal area (MLLW),

a = entrance vertical cross-sectional area (MLLW),

and W
e
= entrance width (MLLW).

Combining both criteria requires that

a >0.0625 Wee. (2.3.10)

Vollmers (1976) considered basin circulation to be the conse-

quence of three dynamic factors which account for boundary shear,

tidal effects and internal density gradients. Boundary shear effects
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Figure 2.3. The average per-cycle exchange coefficient, E, versus

the basin aspect ratio for three tidal ranges. From

Nece, et al. (1976).
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induce the vortex circulation described by Weiss and Florsheim (1965),

Burggraf (1966), and others and is superimposed upon the tidal flow

into and out of the basin, depending upon the stage of the tide.

During the flood tide the "filling current" adds to the flood-

generated vortex to produce enhanced current velocities along the

downstream boundary (Figure 1.1). During the ebb stage, however,

the outward flux of momentum from the basin and the opposition of

flood-generated vortex and "emptying current" serve to reduce the

strength of the vortex. Volimers (1976) suggested that the vortex

flow may even vanish during this stage.

Volimers (1976) conducted physical model studies to improve

circulation in the Delfzijl harbor, Netherlands. The harbor is

extremely elongated and although two entrances were provided, one

near each end of the basin, the vortex action only occurred near

the entrances and the basin interior suffered from poor circulation.

By modifying the breakwaters, a through-flowing current was gener-

ated during flood tide which was strong enough to destroy the vortex

formation at the entrances, thereby improving basin circulation.

The use of multiple entrances to generate such through-flowing

currents is advantageous for many marinas which are elongated paral-

lel to the river or estuary channel.

Abbott (1977) numerically simulated the flow interaction

between a channel and a rectangular basin (Fig. 2.4). Unlike most

previous investigations, the basin entrance was restricted to one-

half of the basin length and positioned at upstream, central, and

downstream locations. Entrance effects were also included since

the model incorporated part of the river channel both upstream as

well as downstream. Flow conditions were defined at the upstream

and downstream ends of the channels and both steady and non-steady,

oscillatory flow conditions were considered. It was found that

proper simulation of entrance effects required that the dispersion

coefficients at nodes near the entrance be somewhat higher than in



TEST 1 CONVECTION.
....,

...

--+

++111

4-1111/./

"'"

- +
+

4.

4.

+14l/

4-

+
4-

4-+ +
+

. .. .
& -.. ,.............N N K

d . .' e. v - ..... \ " '. a a

, ._ '',. \ \ N 'l It
_ . . . N \ \ \ 'lli

`s/ e --
-- c.,,'''.N.\

\ 1

N \ \ 1 1 I//.-- \ .\\ \ \ 1 1
1 1 1 l l /,---N.\ \ \ \ \,,
1 1 1 1 1.1v.---\ % 1 i
1 1 I i 1 //:\ t 1,1
1 1 lf I III1111 1 1 j 4 / i1 1 \ \ , --\ \ _...,.... z"/t 1, \ ... \\-.,

----........

4
4 +
f 4.

14.
I

+
+

++-, +-
+

1 4_

7 + _
J. 4, ...._

+ + + + +1 ". -4-4.4- + .`"

+ 4 I +-VELOIC Ili 11E
± + 4 4 4 II If

1 CM EQUALS 0.0600 M/S
FLOW FtELO AT 3 hrs 20 min

(A)

5

2 4
3

u I

to 0
2

3

ct) 2

0

3
w 2

2
0

WATER LEVEL

FILLING VELOCITY

...
3

AVERAGE SPEED

I
6 9 12

AVERAGE SPEED FILLING VELOCITY

3 6 9 12

SIMPLIFIED CIRCULATION INTENSITY

TIME (HOURS)

(B)
Figure 2.4. Example of Abbott's (1977) method of estimating the circulation intensity or

flushing of a rectangular basin connected to a waterway. (A). Basic geometry
and finite difference schemetization. (B). Example of data analysis for a
non-steady flow problem.



34

the interior. The dispersion coefficients frequently appear in the

equations of motion and derived equations as inflated diffusion

coefficients, e.g. the Austauch coefficients Ax and Ay in Eq. 2.2.1.

Such coefficients are used in numerical and analytical models to

account for effects not directly accounted for by the advective

terms, i.e., terms involving the velocity. In the above breakwater

entrance case, the enhanced dispersion accounted for effects due to

a particular vertical distribution of velocity, secondary current

development or some other process. Abbott cautioned that the defini-

tion of entrance conditions can greatly influence the solution for

flow inside the marina. In order to obtain reliable results, it may

be necessary to define the entrance geometry and dispersion charac-

teristics using a finer computation grid near the entrance than in

the interior.

Abbott (1977) investigated the separate effects of dispersion

and advection of momentum between the channel and basin under steady-

flow conditions. Advective tests used velocities sufficiently high

to mask out any secondary dispersive effects. Dispersion tests

showed that the center of the circulation eddy was not located at

the center of the basin. This is to be expected since continuity

requires that the flows between this center and any wall be equal.

Given the difference in velocity gradients over the basin, the center

would be expected to be closer to the channel entrance.

Abbott separated basin-filling effects from the computed flow

field by defining the "filling velocity"

d W
off t 2d

where

d = the water depth as a function of time

t = time

W = width of basin

of = filling velocity

(2.3.11)
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The difference between the short-term average velocity for the basin

and the filling velocity was assumed by Abbott to be a measure of

the circulation intensity, and thereby of the flushing obtained from

the river flow. Under early flood conditions, the circulation

increased parabolically with time (Fig. 2.4). Due to inertial effects,

the maximum flushing appeared to occur after both maximum filling

and maximum average basin velocities were realized. Such a condition

occurred prior to the weakening of the circulation gyre during ebb

conditions described by Vollmers (1976). During the ebb cycle, the

outward flux of momentum from the basin and the opposition of entrance

shear to the flood-induced circulation produced an exponential type

of decay in the circulation intensity.

Abbott's calculations showed that the effect of entrance loca-

tion was only important in the convective case; dispersive effects

for central and non-central entrance cases being similar. For

entrances located in the downstream sector, the filling velocity

became oriented in the same direction as the interior circulation,

thereby intensifying circulation. For entrances located in the

upstream sector, these two processes were in opposition, which

produced a weaker internal velocity field. These characteristics

were earlier described by Vollmers (1976).

Abbott (1977) also considered a circular basin with an offset

entrance (Fig. 2.5). Unexpectedly, this configuration resulted in

a body of stagnant water in the interior and downstream portion of

the marina that, during the falling stage, made the circulation break

into two smaller circulations. A lower circulation speed was also

realized than for the square, central-entrance case. This was pre-

sumably due to damping effects at the entrance and to the increased

effects of friction in the more uniform flow field within the marina.

2.4 Numerical Solution Techniques

The circulation problem may be specified in one of two ways.

In one, the differential equations governing the behavior of a
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typical, infinitesimal, region are given, i.e. as illustrated in the

boundary value problem outlined above. In the other, a variational

(extremum) principle, valid over the whole region, is postulated and

solved by some quantity, f, which is defined by suitable integration

of the unknown quantities--velocity and pressure for the problem of

flows into, around and out of marina entrances.

Both approaches are equivalent; differences arise in the

approximate solution procedures. Finite difference techniques

approach the solution of differential equations directly by approxi-

mating the equations in a discrete manner. The variational approach,

on the other hand, deals directly with an approximate minimization

of the functional, (1). The circulation problem in this study is

solved using the finite difference approach. Chapters III and IV

consider the solution of the sedimentation problem via the vari-

ational, finite-element technique.

2.5 The Finite Difference Approximation

Finite difference methods are by far the most widely used

numerical method for solving fluid flow problems, although the

finite element method is rapidly increasing in popularity. The

finite difference approach involves a minimum of analytical work

as compared to any other method. The continuous fluid domain is

replaced by a discrete grid of points at which governing differen-

tial equations are evaluated (Fig. 2.6). Spatial derivatives are

approximated using truncated three-point Lagrangian polynomials.

The result is a set of approximated differential equations.

In the basin interior the centered forms of the three-point

formuli are used (Abramowitz and Stegun, 1965). Conforming to the

notation of .Figure 2.6, these formuli when applied to the vorticity

property are:

(x-xl)(x-x2) (x-x0)(x-x2)

(x) +

(xo-x1)(xo-x2) (xl-xo)()C1-x2)

r (x_xo) (.0

1(x2 -x0) (x2-xl)
(2.5.1)
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(I+ I,J) 0 DYT

(B)

Figure 2.6. Spacial discretization of a rectangular planform. (A). General schemetization using variably-spaced

nodal points identified by (I,J). (B). Notation for non-uniform nodal spacing. (C). Schemetization

using constant (but not necessarily equal) intervals DHx and DHy.
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with:

xi-x2a
ax

(I,J)
Ax = [(x -x

1
)(x

o
-x

2
) "I-l'j)

xl -xo

MT:( (x2-x0)(x2-xl)
E(I+1,J) (2.5.2)

3-0)(xl-x2)
(I,J) +

and
2

IA (x) = 2:5 (X) = [(x (x E(I-1,J) +

o l) 2

[(xl-xo)(xl-x2/1 E(I,j) [(x2-x(x2-x1)E(I+1'j)
(2.5.3)

For the special case in which the grid is evenly spaced with DH the

distance between nodes (Fig. 2.6), Eq. 2.5.1 to 2.5.3 become:

1-(x-x0(x-x2) (x-x x-x2)]

(x) 2DEK
E(I-1,J) + [ gxhz

and

-LC'
ax

a2r
`2-3)

[(x-x0)(x-xl)
' I E(I+1,J)

+

+ [a

(2.5.4)

(2.5.5)(I J)

(x) =

2DH2

(I -1,J){-1
2DH

' E(I-1,J)

2DHJ"I+1°3)

E(I,J) + [Tirld E(I+1,J)

(2.5.6)

with corresponding equations developed for the y-direction.

Boundary conditions are imposed upon the solution due to the

involvement of boundary node values in the approximation of deriva-

tives at the first interior nodal points. Applying the non-slip

moving wall boundary condition, then for nodes lying in the fluid

portion of the boundary

*E = uoay (2.5.7)

The approximated Poisson equation then defines the vorticity for the

entrance nodes

2[*E4.1 u0Ay1

EE = Ayz
(2.5.8)
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and for nodes just interior of the land or breakwater boundaries

EB
2ft+1 (2.5.9)

The solution of Equations 2.2.3 and 2.2.6 is determined

according to the following procedure (Figure 1.5):

1) the vorticity transport equation is solved for one time

step via the alternating direction method to yield a new

vorti city field;

2) the Poisson equation, v211) = -E, is solved iteratively for

a new stream function field via the successive over-

relaxation technique;

3) numerical differentiation of the new stream function yields

a corresponding velocity field;

4) boundary vorticity and stream function values are inter-

polated by Eqs. 2.5.7 to 2.5.9; and

5) steps 1-4 are repeated until the vorticity field is

stationary, representing convergence to the specified

boundary conditions.

The finite difference solution of the vorticity transport/stream

function problem is considered next.

2.6 The Alternating Direction Solution of the Vorticity Transport

Equation

The alternating direction (ADI) method splits each time step

to obtain a multi-dimensional, implicit form which requires only

the inversion of simple tridiagonal matrices. The split-level ADI

formulation of the vorticity transport equation is:

e1/2-E
At/2 Ax

u aE v,Ac
KA 01/2 K K AT AT

1 X

Ay if Ay Ax

1 [A2E "1/2 A2e<

Re I x2-
(2.6.1)
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E
k+1

-
k+1/2

E -
k+k

u
k
AE

k k+1
v 1

CI

AT
x

AT
y

At/2 AX Ay Ay AX

1
rA2,1,1/2 A2,k+1

Re 6x2 AY4
(2.6.2)

A2E
where g-- and are point approximations of their corresponding

AX AX

partial derivatives and superscripts identify the time level.

Equation 2.6.1 is solved for Ek-1-1/2 at each node using the

Thomas algorithm (Roach, 1972, p. 345). These ,E values are then

entered into Eq. 2.6.2 and E
k+1

similarly determined. The stream

function problem, Eq. 2.2.12, is solved next; the velocity components

and boundary vorticity and stream function values are calculated and

substituted into Eq. 2.6.1. This sequence is repeated until some

criterion is met, usually the achievement of steady state conditions

or the passage of a prescribed period of time.

Ideally, the "eddy" Reynolds numbers should vary with both

space and time in the ADI solution of the vorticity transport equation.

However, to minimize computer storage, it is often assumed that the

eddy coefficients, A
hy'

Ahx, could be considered quasi-constant and

computed using the shear velocity, 4, at the entrance. Assuming that

Ah 60 u*d (2.6.3)

J being the water depth in cm, u* is determined from the Newton-

Rhapson solution of the logarithmic velocity profile equation at the

entrance:

uo = u*(16.0 + 5.75 logio d u*) (2.6.4)

The use of a constant coefficient, Ah, would result in enhanced

dispersion of momentum and hence, in somewhat higher velocities

than would result for non-uniform coefficients. The difference would

not be expected to be significant considering the uncertainties

involved in any attempt to apply a spacially-varying coefficient.
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2.7 The Successive Over-Relaxation Solution for Stream Function

The stream function problem, Eq. 2.2.12, is solved via the

successive over-relaxation (SOR) technique as per Frankel, 1950

(Roache, 1976). The Poisson equation is expanded in terms of the

point formuli and solved for 11)(I,J). Following the Richardson

method (Roache, 1976), the left hand side of the equation is evalu-

ated at iteration level K+1 and the right hand side is evaluated at

level K; the vorticity values are constants. The Richardson

algorithm is then

,,,K+1/T

"
3) 1 (2 [IpK(I-1,J) *K(I+1,J) *

K
(I,J-1)

v ' 2Y DXLDXT DXRDXT DYLDYT

*
K
(I,J+1)]

DYUDYT

where spacial parameters are defined in Figure 2.6 and

1 1

Y DXLDXR DYLDYU

(2.7.1)

(2.7.2)

To speed convergence, it is useful to involve newly-computed

(K+1)-level values in the continuing computations at the same level

but for neighboring points whose parameters are still at the Kth

level. For example, the computations proceed nodal row by nodal row

towards the basin interior and node by node in the positive x-direction.

Having completed the (01)-level computation for the first row, the

second and third row values are at the Kth level but the first row

is at the (K+1) level. Point approximations of derivatives in the

y-direction involve both levels, hence accelerating the convergence

of the solution. Similar remarks apply to derivatives in the x-

direction.

The successive over-relaxation technique further accelerates

convergence through the use of a relaxation factor, w, whose value

is a function of the grid spacing, the shape of the domain, and the

boundary conditions. By adding .4)K(I,J)-1((I,J) . 0 to the Richardson

equation (Eq. 2.7.1) and rearranging, the SOR solution algorithm is
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=
K
(I,J) + (2L)i( 2[1p

:K+1 (I-1,J) ipK(I+1,J)

DXL DXT DXR DXT

4,01(I,j_i) *K(I,J4.1)

Y
,,,K(I J)] - E(I,J)

DYT DYU DYT '

(2.7.3)

for a rectangular domain of size (I-1)Ax by (J-1)Ay with constant

AX and Ay, Frankel (1950) determined that

= 2
1

2

(2.7.4)

(2.7.5)

w

rcos

ss

+ 02cos (32-0

I-1ss
1+a2

0 = Ax/Ay, the mesh aspect ratio

I,J = the number of nodes in the andand -3/ directions.

No analytical expressions exist for w with varying grid shape or

basin geometry. The optimum value for w is then generally determined

experimentally using the computer. As the geometries considered in

this study are rectangular and constant grid spacings AX and Ay were

employed, Frankel's formulation was adopted.

2.8 Stability and Convergence of the Flow Solution

In any numerical solution effort two processes are of concern,

stability and convergence. Convergence means that the computation

approaches limiting values which nearly represent an exact answer.

The difference between the exact and limiting values is then the

error of the method. Computational stability simply means that the

convergence process occurs relatively smoothly and that errors due to

round-off, truncation of series or in the specification of initial

conditions do not grow in an unbounded manner. Two methods exist

for determining the degree of stability of any model. Firstly, in

simple models, a perturbation analysis (Roache, 1972) of the govern-

ing equations will demonstrate whether or not arbitrary perturbations

in any parameter will result in instability. Secondly, and more

frequently, stability requirements are determined empirically by
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varying the magnitude of parameters and observing the effects.

Generally, decreasing the grid spacing decreases truncation errors

and improves stability (Fig. 2.7). Roundoff errors increase,

however, and depending upon the problem, may adversely affect compu-

tational stability.

From perturbation analyses, the von Neuman stability require-

ments (Roache, 1972) for the steady-state two-dimensional vorticity

transport equation are that:

At 1AASX

Ay 2 (2.8.1)

and

uAt vet

Ax A.Y

where

(2.8.2)

1 D

a Re vL ,

= velocity,

L = basin length,

D = a viscosity or diffusion coefficient, depending on the

problem,

Re = local basin Reynolds number based on local velocity, basin

length and D,

uAt v At
and -&x and rs-y are Courant numbers.

For the special case in which AX = Ay = A, Eq. 2.8.1 reduced to

aAt < 4
(2.8.3)

Alternatively, if unt/Ax = vet/Ay, then Eq. 2.8.2 reduced to

uAt vet (2.8.4)

Equations 2.8.3 and 2.8.4 are in fact twice as restrictive as would

be indicated by a similar one-dimensional analysis of the vorticity

transport equation. For a uniform grid, Eq. 2.8.4 will normally be
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Grid Size Increases ,-

Figure 2.7. Illustration of the variation of round-off and truncation

errors as a function of the size of grid employed.
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more restrictive than Eq. 2.8.3. For a normalized velocity, -,/u0,

of unity and the grid length, A, of 1/12 used in this study, the

computation At must be less than 0.04.

The ADI method is unconditionally stable and is formally second

order accurate in space and time, i.e., the truncation error origina-

ting in the approximation of the spacial derivatives is 0 (Ax2, Ay2,

At2). Some computational instabilities associated with high Reynolds

numbers have been noted, but are attributed to insufficient conver-

gence in the iterative solution for boundary vorticity at the K+1

level or to the equation used to evaluate boundary vorticity values

from internal point values of the stream function (Roach, 1972). The

ADI method is actually less accurate than second order in time due to

the use of Kth level bed shear and velocity terms in the split-level

Equations 2.6.1 and 2.6.2 where formally (K+1/2)th level terms should

be used. Boundary conditions also pose a limit to accuracy. Equa-

tions 2.6.1 and 2.6.2 require that E
K+1/2

andtE
K+1,

respectively, be

specified on the boundary. Since for no-slip boundaries these values

depend on values of E
K+1

, an implicit solution of the form v4K+1 =

E
K+1

would be required. This is not practically tenable. As an approxi-

mation, values from the preceeding time level are used. An exact

determination of the errors resulting from these substitutions is only

possible when an analytic solution to the problem exists. If, however,

the time step At is chosen sufficiently short, the flow may be

considered to be slowly varying and the roundoff and truncation

errors may approach their theoretical limits. In this study, prelim-

inary runs demonstrated that little change occurred in the vorticity

field if the time step was less than 0.92. Since the computations

were also stable, a normalized At of 0.02 was used throughout this

study.

2.9 Summary

A literature review indicated that an analytic solution is lacking

for the problem of shear-generated, turbulent flow within a
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rectangular basin adjacent to a waterway. Most investigators have

adopted numerical or physical modeling techniques to study this

phenomenon. Little substantiating field work has been previously

conducted.

A finite-difference solution to the vorticity-transport/stream

function boundary value problem of shear-driven circulation was

also presented in this chapter. The results of this solution are

reviewed in light of previous investigations in Chapter V.
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III. THE SEDIMENT TRANSPORT PROBLEM

3.1 Introduction

This chapter reviews previous efforts to model sediment trans-

port phenomena in tidal water. A brief review is given of the

salient aspects of the two-dimensional, horizontal, sediment-

transport model developed by Araithurai (1974).

The problem of defining the sediment dispersion coefficients

which greatly influence the dispersal of suspended sediments, is

also considered at length. Araithurai's finite element model

formulation is described in detail in Chapter IV and the model

was used to generate the data discussed in Chapter V.

3.2 Review of Transport Models

Several comprehensive reviews of hydrodynamic and transport

models have been published in recent years (e.g. TRACOR, 1970;

Callaway, 1971; Hinwood and Wallis, 1975a and b). The last authors

noted that two-dimensional plan-view models are restricted to verti-

cally well-mixed estuaries or embayments, and that the effects of

vertical density gradients are not represented satisfactorily.

Westrich (1977) has also suggested that such models may not accur-

ately reproduce the transportive effects of strong, vertical,

secondary currents which result from flow curvature.

The two-dimensional plan-view transport models are based on

the vertically-integrated mass conservation equation

ac (uc) a(vc)
+ a + =

a
(D

)
+ (D '9-L) + S (3.2.1)

at ax 3 y ax x ax ay y ay

(1) (2) (3) (4) (5) (6)

where

c = pcd = the vertically-integrated concentration (mass per

unit projected area),

p = carrier fluid density,
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d = depth,

D
x'

D
y
= directional turbulent dispersion coefficients,

and S = source/sink term accounting for erosion and deposition.

Attempts to solve the sediment transport analytically have

generally been unsuccessful. Only in certain simplified cases- -

e.g. reduction in the degrees of freedom of movement; conservative,

neutrally-buoyant material; etc.--has any measure of success been

achieved (O'Connor, 1960; Okubo, 1967; Fisher, 1970). More success

has been realized through numerical modeling efforts and O'Connor

and Zein (1974), Araithurai (1975), O'Connor (1975) Westrich (1975),

Nece (1976), Vollmers (1976), and Abbott (1977) have investigated

sediment transport and deposition processes in a basin connected to

a passing waterway. These works are reviewed below with other

works dealing with salt, mass or energy transport, but which utilize

the same basic equation (Eq. 3.2.1) and serve to illustrate the

variety of solution techniques employed.

TRACOR (1970) developed a steady state model with terms (2),

(3), (4), and (5) of Eq. 3.2.1. The magnitudes of the dispersion

coefficients were assumed and tidally-averaged velocities were used.

The concentration field was determined using the relaxation technique.

Odd and Owen (1972) developed a two-layer, two-dimensional

(vertical and longitudinal) model of circulation and mud transport

of well-mixed estuaries. Distinct sediment concentration gradients

were assumed in each layer, thereby better approximating reality

than do single layer models. Sediment transport was determined from

the solution by the method of characteristics of the mass balance

equations for mud transport in two layers.

Masch, et al. (1971), Leendertse (1971), Beoricke and Hall (1974),

Taylor and Davis (1975), Araithurai (1974), and Leimkuhler, et al.

(1975) have solved the complete Eq. 3.2.1. Masch, et al. (1971)

used an implicit finite difference formulation. Leendertse (1971)

employed an alternating direction implicit-explicit formulation to

obtain time-centered derivatives. Unlike most other models,
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Leendertse's dispersion coefficients were calculated from the instan-

taneous velocities and depths. Boericke and Hall (1974) used an

explicit predictor-corrector numerical scheme to model thermal

dispersion from several heat sources and sinks. An irregular grid

was obtained using coordinate transformation.

O'Connor and Zein (1974) applied a two-dimensional, (vertical

and longitudinal), suspended-sediment model to problems having

analytical solutions as well as to laboratory and field situations.

Horizontal eddy diffusion was neglected in comparison with verti-

cal diffusion and vertical water motion was assumed negligible com-

pared with the sediment fall velocity. Although the model was

intended for quasi-steady depth and flow conditions, the currents

and the vertical sediment-diffusion coefficient were varied

sinusoidally in time. O'Connor (1975) subsequently modified this

model to include tidally-varying depths and showed that the error

in neglecting such variation was generally less than 10%. O'Connor

and Zein also incorporated time-variable longitudinal grid spacing

to minimize pseudo-dispersion, i.e., interpolative errors arising

from the convective term under low-flow conditions. Since this

model assumes a constant depth while permitting time varying

velocities, dispersion coefficients, etc., it is a useful tool for

first-order engineering applications.

O'Connor (1975) also considered siltation rates in channels

dredged at right angles to the main direction of flow. The rate

of deposition per unit area was expressed as:

S = vs C
bed

where vs is the sediment's settling velocity and Cbed is the sediment

concentration at the bed. The term C
bed

was computed from the two-

dimensional (horizontal and vertical) sediment transport equation

using physical model velocity data as input. Substantial difficulties

were encountered in matching computer and physical model results.

Reentrainment was considered to be the cause of the disparity.
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Westrich (1975) presented a one-dimensional model describing

the exchange process between a channel and an adjacent basin of

rectangular shape. The model allowed for unsteady exchange and

varying water depth as associated with floods and tidal flows.

Westrich stated that the mean residence time of a tracer particle

would be a characteristic measure for judging the rate of deposition

within the basin. From physical model tests using neutrally-

buoyant tracers, Westrich determined that the residence time for

basins with large aspect ratios (length/width) was constant and

independent of length. As the aspect ratio approached zero,

however, the exchange processes and residence time are controlled

by secondary eddies generated on the interior of the basin. In

all cases, the basins were completely open to exchange flows with

the channel.

Vollmers (1976) briefly described the sedimentation patterns

resulting from such conditions. He divided the sedimentation

regime into two parts, one for the coarser fraction that deposits

in the downstream portion of the main vortex (a, Fig. 1.3) and a

second area for the finer material that deposits in the low-velocity

core of the main vortex (b, Fig. 1.3).

Guymon, et al. (1970) solved the two-dimensional advection-

diffusion equation by the Rayleigh-Ritz finite element method.

This method requires the specification and minimization of a vari-

ational functional derived from the advection-diffusion equation.

In contrast, Taylor and Davis (1975) Liemkuhler, et al. (1975),

and Araithurai and Krone (1976) employed the Galerkin finite

element method to solve the transport problem. This method directly

solves a set of weighted advection-diffusion equations without the

need to specify a functional.

The finite element method is replacing the finite difference

approach in many problems since it permits maximum flexibility in

expressing boundary conditions, geometry and input parameters.

Prakash (1977) has reaffirmed the existence of variational
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functionals for the general linear second-order differential equa-

tion with variable coefficients and has presented the functional

appropriate for the two-dimensional advection-diffusion sediment

transport problem.

Either the Rayleigh-Ritz or Galerkin method may be adopted. The

former method involves the replacement of the problem-defining

differential equation (Eq. 2.2.11) by an equivalent variational

functional which is subsequently minimized for the prescribed

boundary conditions. The Galerkin method avoids the direct use of

the variational functional by minimizing the residual between the

exact and approximate solutions. Direct use is made of the problem-

defining differential equation and special "shape functions" or

interpolating ploynomials which are functions of the geometry of

the problem. According to Araithurai (1974),-severe roundoff errors

may result when applying the Rayleigh-Ritz technique to problems

dominated by advective effects. Prakash (1977) has suggested that

the roundoff error, which results from exponents involving overly-

large Peclet numbers, uL/D, will not be a problem in estuarine flows

due to the low velocities and large dispersion coefficients involved.

However, Prakash (1977) acknowledges that the Galerkin technique

does not suffer from such a limitation and is, therefore, more

stable and versatile. The Galerkin technique, however, generally

does not produce symmetrical matrices, as does the Ritz method,

thereby increasing computer storage requirements. The work presented

in this study predates Prakash's (1977) publication and is based upon

the Galerkin method of Araithurai and Krone (1976). Substantial

reductions in computer memory requirements and in computation time

could result from using the Rayleigh-Ritz variational technique,

should it be proven to have acceptable roundoff error characteristics.

Chapter IV considers the details of the Galerkin method and of the

alternative variational technique.

Although the Araithurai-Krone (1976) model worked well for

channel flows, Westrich (1977) has suggested that any two-dimensional

(horizontal) model may be incapable of accurately reproducing material
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transport by secondary currents. The data to be presented herein

should be cautiously reviewed in light of this observation. For

cases where secondary currents are of importance, a complete three-

dimensional solution would then be required, necessitating increased

computer storage requirements and subsequently higher computation

costs which might rise to unacceptable levels.

3.3 Deposition

Since erosion is not expected to occur in the protected areas

considered in this study, the source/sink term of Eq. 3.2.1 may be

simply stated as

S = -
dc (3.3.1)
dt

Metha and Parthenaides (1974) and Araithurai (1974) discuss the

processes governing deposition and suspension of sediments in the

estuarine environment. The rate of sedimentation of cohesive sedi-

ments depends upon

1) the chemical composition of the sediment, i.e., its

tendency to cohere,

2) the salinity and chemical composition of the transporting

fluid

and 3) the degree of internal and bed shear.

Given the proper clay chemistry and fluid salinity, the indi-

vidual particles may flocculate and tend to settle out. The

ultimate floc size and settling velocity depend upon the degree of

internal shear. The net balance between downward settling and

upward dispersion of flocs then determines the local sedimentation

rate.

Krone (1962) observed in flume studies that the rate of depo-

sition for cohesive sediments varied with suspension concentration.

For suspended sediment concentrations less than 3x10-4kg/1, the

sediment concentration decreased exponentially with time, the

particles settling more or less independently. For concentrations
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between 3.10-4 and 102kg/1, the settling rate would increase due to

the increasing frequency of particle collisions and faster growth

of larger flocs. At higher concentrations, hindered settling would

be found to occur due to the restriction of escaping interfloc water.

Consequently, the rate of deposition was lower in this range than in

the 3x10-4 to 102 kg/1 range.

Krone (1962, 1963) postulated a growth model for floc formation

in suspended cohesive sediments which was adopted by Araithurai

(1974) in the preparation of the program used in this present study.

Krone's model assumed that flocs were composed of basic "primary

particle aggregates" of uniform porosity. The porosity, strength,

etc., of a floc depended, however, upon the arrangement or order of

these primary aggregates which itself depends on environmental

parameters, especially fluid shear. Viscosimeter tests of a number

of cohesive sediment samples and observation of floc growth rates

permitted Krone (1963) to determine representative sediment shear

strengths and densities for various levels of sediment aggregation.

Aggregate shear strength was observed to decrease with increasing

aggregation as a result of an increasing void ratio.

In the absence of continuing aggregation, i.e., when either

particle concentration is low or equilibrium has been reached be-

tween floc size and turbulence level, the rate of deposition is

given by Krone (1962) as

dc
P v

sc (3.3.2)

dt I

d d

where

P = 1 - T
b
/T

cd
is the probability of deposition (Krone, 1962;

Partheniades, 1962).

T
b
. the actual bed shear,

T
cd

= the critical shear stress at which deposition begins,

v
s
= settling velocity,

c = suspended sediment concentration,

and Cr= average depth through which the particles settle.
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That the settling velocity also depends on concentration has

been long known. For particle concentrations less than 3x104kg/1,

the settling velocity may be adequately determined from Stoke's law

for the terminal settling velocity of individual particles as

v
s

=
18v

(S.G.-1) (3.3.3)

where

d = equivalent grain diameter,

v = kinematic viscosity of the fluid,

and S.G.= specific gravity of dry sediment.

Hence, clay particles ranging in "diameter" from 2.4x10-7 to

4x10-6 m, with a specific gravity of 2.64, will have a settling

velocity

4x10-7 < v
s
< 10-4 m/s

in 8° C water. A value of 6.6x10-6 m/s was used for cases of indepen-

dent settling in this study, as would be considered representative

for sediments accumulating in Oregon estuaries.

Above the 3x10-4kgil level, aggregation proceeds even in tran-

quil flows. However, once equilibrium is achieved between floc size

and internal shear, Krone (1962) has shown that the terminal settling

velocity may be expressed as:

vs= K C
4/3 (3.3.4)

where K is an empirical constant depending on the type of sediment,

and C is the suspended sediment concentration in the inflowing waters.

A suspended sediment concentration of 5x105kg/1 is representa-

tive of average conditions for the Sacramento River at Rio Vista

just upstream of San Francisco Bay (Klingeman and Kaufman, 1965).

St. Louis Bay (Hoskins, 1971), the lower Columbia estuary (Hubbell

and Glen, 1971), and the Savanna estuary (Krone, 1972) also exhibited

average concentrations of a few tens of milligrams per liter. Peak

concentrations associated with river floods or peak tidal velocities

may exceed 103 kg/1 for a period of hours, but on an annual basis

have a relative short-term effect. Since this study is directed
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towards understanding the general sedimentation problem, such an

extreme concentration case will not be considered farther, and a

moderate suspended sediment concentration of 5x105 kg/1 was

adopted in most cases.

3.4 Concentration and Sedimentation Rates

When continuing aggregation occurs, there is a decrease in the

number of individual particles and an increase in the apparent

diameter of the suspended flocs. Kruyt (1952) expresses the number

of particles, n, as a function of time by

n

(1 + t/t
c

)

(3.4.1)

where

n
o
= initial number of particles,

and t
c
= time of coagulation or flocculation to the equilibrium

size. Krone (1962) derived an expression for the concentration of

suspended sediment in terms of the accumulated time, t, since the

sediment was introduced to the flow. Taking the average mass of

the flocs at any time to be

= m
o
(n

o
/n)

with

m
o
= initial mass of individual particles,

n
o
= the initial number of particles per unit volume,

and n = the number of flocs at any time, t, per unit volume,

then substutition of the Kruyt function gives

1
mn = m n PnI) (3.4.2)

o [1 + t/t c
c

1

where mn is the concentration of suspended sediment. Substituting

Eq. 3.4.1 into 3.3.1 and integrating over time yields
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v t n
s c 1_21

n '

Tb
in 1 + (3.4.3)

c d
o

' T
cd

t
c

where c is the initial concentration of the inflowing waters.

The term (n
o
/n) will approach a limiting value because floc

size will be limited by shear effects associated with the flow

velocities. When aggregation proceeds slowly, t < tc and the time

dependence can be expanded as

t I t
(t/t

c
)2 (t/t

c
)3

ln 1+
t t 2 3
c c

which permits the first order form of Eq. 4.4.3

ln

'

- Kot (3.4.4)

0

where

K
0

= [ 1 Tb I (3.4.5)
(3 Tcd

For t » tc, a fully-aggregated floc size is achieved and Eq. 3.4.3

becomes approximately

in C = -K
1

ln t + const. (3.4.6)

where K
1

is an empirical constant.

Computations in this study assumed that a fully-aggregated

condition exists. Equation 3.4.3 was used to describe the variation

of the suspended sediment concentration during each time step of the

finite element computation.

The sink term from Eq. 3.1.1 and 3.3.2 is

dc
P vsc

S (3.4.7)
dt

For concentrations below 3x101' kg/1, Eq. 3.4.7 becomes

S = - vs [1
Ti

c (3.4.8)
T
cd

where v
s
is the Stoke's settling velocity, Eq. 3.3.2. For concen-

trations greater than 3x10-4 kg/1, Eq. 3.3.2, 3.3.3, and 3.3.4 yield

S = - [1 Tb c7/3
a Ted

(3.4.9)
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For the higher concentration case, the S term becomes non-linear in

the advection-dispersion equation. Araithurai (1974) claims that

except under almost stagnant conditions, the sink term will be at

least an order of magnitude smaller than the dispersion or advec-

tive terms and thus should not unduly effect the stability or

convergence of the solution. The proper choice of limits of lengths

and velocities for spatial and temporal descritizations in approxi-

mate solutions will further mitigate the non-linear effects (see

Section 4.5).

Sedimentation is assumed in this analysis to occur at a

constant rate over a given time interval, At, e.g. following

Eq. 3.4.8 or 3.4.9. Since this rate is concentration dependent,

the value of c at the beginning of the time interval is used

throughout the interval. For a sufficiently short time increment,

the computed solution approaches the exact solution for the sedi-

mentation problem.

Where the velocity is so small that in the At interval the

fluid does not cross the element, the assumption of deposition from

constant concentration is invalid. Araithurai (1974) defined a

time TT as the ratio of the element mean depth to the element average

velocity. If this TT exceeds At, then deposition is assumed to occur

from a stagnant fluid, the concentration within the element decreasing

with time according to Eq. 3.3.3. The rate of deposition can then

be computed from the difference between the initial and final con-

centrations.

For TT > At and the initial concentration, co, less than

3x104 kg/1, the settling velocity is treated as constant. Inte-

grating Eq. 3.4.8 over the time increment gives

2 v,

cf co exp 3 [1 - I
b
iT

at
I At (3.4.10)

CI

where c
f
is the final concentration and c

o
the initial concentration.
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(3.4.11)

For concentrations in excess of 3x104 kg/1, the integration of

Eq. 3.4.9 yields

c

-3/4

f
[ 8 IC [

1
Tb

T
cd

At c / I
4 3

with the sedimentation rate as defined in Eq. 3.4.11.

3.5 Dispersion

(3.4.12)

The sediment transport equation (Eq. 3.2.1) includes terms

proportional to turbulent sediment-dispersion coefficients which

account for the movement of sediments by processes other than can

be accounted for by the velocity terms on the left-hand side of

Eq. 3.2.1. Effects of secondary currents and of the vertical

distribution of velocity and diffusion are some of the processes

accounted for by the dispersion terms in Eq. 3.2.1. This section

reviews currently-available estimates of the sediment dispersion

coefficient.

It is often assumed that the mass dispersion coefficient for

entrained particles, Ds, can be related to that of the fluid, Df,

by

Ds = K Df (3,5,1)

where K is a constant (Johnson, 1974), Most investigators have

assumed that Ds < Df because particles do not respond fully to

turbulent velocity fluctuations. Singamsetti (1966), in studies

of the diffusion of sediment diffusion in a submerged water jets,

has concluded the opposite. He reasoned that in turbulence com-

posed of vortices, the centrifugal force acting on the sediment

particles would be greater than that acting on the fluid particles.

Due to the greater centrifugal force, the solid particles move

towards the outside of the eddies, resulting in an increased rate
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of dispersion. Results from numerical modeling of sediment trans-

port by O'Connor and Zein (1974) also indicate that the dispersion

of suspended sediments is more rapid than for fluid "particles"

alone. Most investigators nonetheless prefer to use fluid disper-

sion coefficient obtained from field or flume studies of dye disper-

sion which is understandable considering the limited amount of

field and laboratory data available regarding particle dispersion.

Most modelers attempt to approximate the dispersive effects

through the use of kinetic energy or momentum correction factors and

"adjusted" diffusion coefficients, also known as dispersion coeffici-

ents. These coefficients were originally described by Talyor (1954).

Proceeding in direct analogy to the derivation of the Reynolds

stress terms, the parameters of interest were espressed as the sum

of the temporal, profile, or cross-sectional mean values and

corresponding perturbations. The relevant equations were then

integrated over either time or space, leaving only mean values and

terms involving the products of perturbations. Applying the Prandtl

mixing length hypothesis, these products were equated to the pro-

duct of a dispersion coefficient and the gradient of the mean parame-

ter. Hence, for substance s, and perturbations s' and u'.

-as -
D

ax
u's' (3.5.2)

is the flux per unit area due to either spatial or temporal non-

homogeneities in the field of s(s,y,z,t), relative to its temporal

or spatial average value.

The magnitude of dispersion coefficients is generally considered

case-specific but numerous attempts have been made to express the

dispersion coefficient in terms of measurable quantities. Appendix

B lists many of the expressions derived for open-channel, estuarine,

and coastal flow conditions (Choi, 1975). Taylor's (1959) analysis

has been applied to open-channel flows by Elder (1959) and Fisher

(1967) and to coastal waters by Bowden (1965). Araithurai (1974),

Westrich (1975), O'Connor (1975), and Abbott (1977) have applied

these and other estimators developed for open channel flows to

studies of circulation and sedimentation in basins and backwater
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areas along river margins. As no work has been examined which

deals directly with dispersive conditions in large, recirculating,

turbulent flows, the Taylor-Elder-Fischer relationships were

adopted for this study.

A direct comparison of the magnitudes of reported dispersion

coefficients is not strictly valid since such coefficients are

strongly dependent upon local flow conditions which vary from

estuary to estuary and over time in a given estuary. If one

assumes, however, that such conditions average out if a sufficiently

large number of estuaries are considered, then a "representative"

magnitude can be estimated. Longitudinal dispersion coefficients

reported for 16 estuaries in the United States and Europe had a

mean of approximately 3x102 m2/s with a standard deviation of

similar magnitude (Haag and Bedford, 1971; Thomann, 1972; Nihoul

and Adam, 1975; Choi, 1975; Ward, 1976). Choi (1975) and other

authors have noted that reported coefficients are generally one or

more orders of magnitude larger than that predicted from the often-

used Elder (1959) equation

D
L

= 5.9 u
*
d (3.5.3)

Consequently, this study used the modified Elder estimator for the

longitudinal dispersion coefficient:

D
L

= 60 u
*
d (3.5.4)

This formulation was also used to compute the eddy viscosity coeffi-

cients for the ADI solution of the vorticity transport equation (see

Section 2.6).

Transverse dispersion in steady, open-channel flows is generally

estimated using Elder's (1959) relationship

D
t

= 0.23 u
*
d (3.5.5)

as determined from flume studies. Glover (1964) has observed that

in open channel flows

D
L

300 D
t

where the subscripts L and t identify the longitudinal or transverse

dispersion coefficient. This supports the use of the amplified ex-

pression (Eq. 3.5.4) for the longitudinal dispersion coefficients.
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Such a magnitude, however, does not account for any secondary flow

effects.

Similarly, little information is available regarding the verti-

cal dispersion coefficient. Holley, et al. (1970), O'Connor (1975),

and others have used Glover's (1964) expression

D
v

0.067 u d (3.5.6)

Engelund (1974) described the effects of secondary flows on

horizontal momentum transfer at river bends Abbott (1977) extended

parts of Engelund's work to define two dispersive processes:

advective and rolling dispersion. Advective dispersion specifically

accounts for deviations from the assumed velocity profile and is

given as

D
a
42=1 V

*
Vd (3.5.7)

where
u3dz

a = v3d
, a kinetic energy correction coefficient,

....kou2dz

v2d
, a momentum correction coefficient,

V* = V/u*, a non-dimensional Chezy number or shear velocity.

V = depth averaged velocity,

u* .= friction velocity,

and d = water depth.

Abbott observed that this formulation yields values similar to

those derived from Elder's (1959) Eq. 3.5.1. Rolling dispersion

accounts for the secondary flow field effects such as occur at

river bends or, possibly in confined recirculating flows. In

such cases

v 3
'It A 2

Dr Vd
r 18 r

(3.5.8)

where r is the radius of curvature of the main flow.

The magnitude of the advective and rolling dispersion processes

obviously depends on local flow conditions and will in some cases

need to be included in the formulation of the transport model.. For
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example, for recirculating flow in a 4.5 m deep marina with a basin-

mean velocity of 0.05 m/s, a friction velocity of 1.9x103, and a

radius of curvature of 50 m, one obtains D
a
= 2.96x10-2 m2/s and

D
r

= 1.85 m2/s.

For vertically-averaged velocities, advective dispersion may

be expected to act in the vertical plane containing the local velocity

vector. The rolling dispersion on the other hand, may contribute

to both downstream and transverse dispersion. Most simply, however,

one may assume that the rolling dispersion acts only in the transverse

direction.

Dispersion in oscillating flows has been investigated by

Bowden (1965) and Holley, et al. (1970). Bowden has shown that

dispersion in oscillatory flows occurs at only half the rate in

steady flows. Holley, et al. suggested expressions for transverse

dispersion under oscillatory flow which unfortunately require

detailed prior knowledge of the velocity field. Bowden's formula-

tions hence are more frequently used.

The definition of dispersion in terms of spatial or temporal

perturbations of parameters as in Eq. 3.5.4 admits the possibility

of directionally-varying dispersion coefficients since the pertur-

bations of velocity, concentration, etc. can be broken into com-

ponents parallel to the principle coordinate axes or parallel to

and perpendicular to the local velocity vector, for example. The

latter condition would permit the modeler of recirculating flows

in rectangular basins, for example, to enhance dispersion perpen-

dicular to the local velocity vector and hopefully, more correctly

simulate the effects of secondary currents which are generated by

flow curvature and flow towards the basin center.

Pollock (1973) applied a random-walk technique in an attempt

to retain the "directionality" of the dispersive process. Particles

representing parcels of waste were assumed to move with an advec-

tive step and a dispersive step in each time increment. The

dispersive step was determined by the random selection of a point

on the dispersion ellipse whose principal axes are the magnitudes

of the longitudinal and transverse dispersion coefficients.
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Leimkuhler, et al. (1975) formulated dispersion coefficients as

functions of temporal mean velocities and terms equivalent to the

Reynolds stresses in the perturbed equations of motion. These coef-

ficients were then decomposed into axial components as

D
xx

= D
L

cos2e + D
t

singe

D
yy

= D
L

singe + D
t

cos2e

D
xy

= (D
L

- D
t
) sin e cos e

(3.5.9)

(3.5.10)

(3.5.11)

where

D
L,t

= longitudinal and transverse dispersion coefficients as

functipns of local velocity,

and e = angle between local velocity vector and the x-axis.

The directional dispersion coefficients for this present study

were computed using the vector components (Fig. 3.1) of the

previously-derived estimates, Eqs.

D
L
= 60 u*d

and

D
t
= 0.23 u*d

as:

Dx = DL cose + D
t

sin e =

and

Dy = DL sin e + D
t

cos e =

3.5.4 and 3.5.5,

D u + Dt v

(3.5.4)

(3.5.5)

(3.5.12)

(3.5.13)

2+v2

DL v + Dt u

42+ VI
Here D

L
and Dt, respectively, indicate dispersion acting parallel

and perpendicular to the local velocity vector whereas D
x

or D

indicate dispersion acting parallel to the x or y axes.

Strictly, u* should be computed iteratively from Eq. 3.6.4 for

each nodal point. To reduce computer computation requirements in

this present study, a representative u* was computed for each node

using the expression

4j2.4.v2

U* = 22
(3.5.14)
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Ov

DX

Figure 3.1. Vector representation of sediment dispersion. DT

and D
L
are the transverse and longitudinal dispersion coefficients,

respectively. The double-headed arrows indicate the directions

in which the transverse and longitudinal dispersion processes act

relative to the local velocity vector. D
x

and D similarly

indicate dispersion processes acting parallel to the coordinate

axes.
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The factor 1/22 was determined as follows. The average basin velocity,

was determined for a number of cases and the corresponding u* values

determined from Eq. 2.6.3. For these pairs of values, the relation

u* A K v (3.5.15)

was determined where K was approximately 22. Since local velocities

for the majority of cases did not differ from the mean by more than a

factor of 5, the approximation of u* in Eq. 3.5.14 was considered

acceptable.

3.6 Summary

In this chapter, the two-dimensional, horizontal, sediment-

transport boundary-value problem was posed for a rectangular basin

connected to a waterway. A review of the literature dealing with

the general transport equation illustrated various methods for solution

of this problem. As the finite-element model developed by Araithurai

(1974) was adopted for use in this study, a brief review was presented

of the conceptual framework of that model relating concentration,

settling velocity, and sedimentation rate. Finally, a synopsis was

given of alternative ways of computing the dispersion coefficients

which, in part, determine the distribution of suspended sediments.
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IV. THE FINITE ELEMENT METHOD

Most problems in engineering physics can be specified in one of

two ways. In the first, differential equations describing the process

within the domain of interest are given. In the second, a variational

principle is determined for the whole region. Both approaches then

require the minimization of some quantity such that the resulting set

of differential equations will yield the best approximation of the

unknown, desired function after standard matrix solution techniques

are applied.

The finite element method simply provides the spatial and tem-

poral framework for either method of analysis. In this chapter, each

of the above-mentioned techniques is investigated. The first case

is represented by the Galerkin method of weighted residuals and the

second by the variation principle.

4.1 Sequence of Analysis

The finite element method has been described in detail by

Zienkiewicz (1971) for structural engineering applications and more

recently by Pinder and Gray (1975) for fluid problems. The basic

sequence of analysis is as follows

a) identify the parameter of interest and the governing

differential equations, i.e. Eq. 3.2.1, and boundary

conditions;

b) replace the continuous domain of solution by discrete points

or nodes at which the function is to be determined;

c) group these points into subdomains or finite elements with

the nodal points located on the interelement boundaries;

d) approximate the dependent variables on the interior of each

element in terms of their unknown nodal point values,

insuring continuity of dependent variable values between

elements;
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e) minimize an appropriate measure of error so that a set of

simultaneous equations results; and

f) solve the resulting set of equations for the node point

unknowns.

The net result is that a continuous function is approximated and

solved for over some domain using functions defined over subdomains,

without regard to the specific location of any subdomain.

4.2 Global and Element Coordinate Systems

Figure 4.1 displays a hypothetical domain which has been par-

titioned into a number of triangular quadratic elements. The global

coordinate system, x-y, applies continuously over the entire domain,

but is distinct from the element or local coordinate system, al, a2,

a3, which applies only within a given element.

The element coordinates may also be defined as area coordinates

which are more easily used in the computational process (Zienkiewicz,

1971). The area of the element shown in Figure 4.1 is divided into

sub-areas about the arbitrary point, P. The area coordinates of point

P, with respect to the corner nodes are:

1

_ Area P23 (4.2.1)

Area P31
L
2

(4.2.2)
A

3

Area
A

P12 (4.2.3)

where A is the total area of the triangular element and Area PNM is

the area contained within the triangle defined by points P, N and M.

These local coordinates are related to the global coordinates of the

corner nodes by:

x = Llxl L2x2 + L3x3,

y = Liyi + L2y2 + L3y3,

1= L
1
+ L

2
4. L3,

(4.2.4)

(4.2.5)

(4.2.6)
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Figure 4.1. The finite element in space. (A). A domain discretized

using quadratic, triangular, finite-element triangules.

(B). Element notation. The position of point P is

expresses in terms of area coordinates, e.g. L1. Vertex

and mid-side nodes are identified by numbers as shown.



Substitution for the local corrdinates gives:

Li = (al + blx + cly)/2A,

L2 = (a2 + b2x + c2y)/2A,

L3 = (a3 + b3x + c3y)/2A,

where

A = 2
1 det

and

al = x2y3 - x3y2

b
1
= y

2
- y

3

Cl x3 - x2

1 x
1

y
1

1 x
2

y
2

1 x
3

y
3

Succinctly, the area coordinates may be written as:

c.y)/2A

4.3. Shape Functions

70

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)

A function's value within any element is determined by interpola-

tion using its values at points lying on the elements boundaries. It

is natural to expect the accuracy of such an interpolation to increase

with the number of nodes per element (Pinder and Gray, 1975). The

number of nodes along any element edge determines the order of the

shape function or basis set which is then used for interpolation.

Figure 4.2. shows the basic triangular element used in this study,

having three nodes per edge, which requires a quadratic interpolating

polynomial or so-called "shape function". Zienkiewicz (1971) has

shown that the proper shape function for quadratic element is:

Ni = L. (2 L. - 1] for corner nodes (4.3.1)

and

=4 L.L
J

for mid-section nodesNib (4.3.2)



71

where
J

L.
1

gives the area coordinates of a point relative to corner

nodes adjacent to a mid-section point.

These shape functions may then be used in conjunction with the

nodal concentrations to approximate the concentration at a point within

the element. The concentration is given by:

C =
.1

L
i

2L
i

1] C
i
+ 4L

Ji
L
Ki

Ci (4.3.3)

where

i denotes the ith corner node of an element,

J,K denote the remaining corner elements,

and C. is the concentration of the mid-section node opposite the ith

corner node.

4.4. The Galerkin Method of Weighted Residuals

4.4.1. Concept

Assuming that a function C exists which satisfies the given boun-

dary value problem over the domain of interest, let the governing

function be:

L {C} = 0 (4.4.1)

with boundary conditions:

B f(1)1 = 0. (4.4.2)

If a trial solution which satisfies the boundary conditions is assumed

of the form

{C} = [N] fC/, (4.4.3)

[N] being the matrix of nodal shape functions, and {C} is the set of

approximately-known values, then in general:

L {C} = L { [N] {C}} = R 0. (4.4.4)

The best solution is one which minimizes the residual R over the com-

plete domain. Although the point collocation and subdomain collocation

minimization methods are applicable under certain conditions, the

Galerkin method of weighted residuals has the greatest utility.

The Galerkin method is formulated by requiring the summation of

weighted residuals over the entire domain to vanish when the nodal
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weighting factors are the nodal shape factors, as discussed in the

preceeding section, i .e. ,

ji
V

Ni {R} dV
V

N. L([N] {C} ) dV = 0 (4.4.5)

1

4.5.2. Formulation

The terms involving second derivatives in the advection-

dispersion equation (Eq. 3.2.1) would require continuity of the first

derivatives at all element interfaces. To avoid being required to

solve for the unknown first derivatives, integration by parts may be

applied, resulting in a reduction of the order of differentiation.

Assuming that at least locally the dispersion coefficients do not

vary significantly in time or space, the modified Galerkin statement

of this problem at any node becomes

aN aN
( [ ac ac iz} [D ac D

ay ay
a

a.
Ni ac as.

S dV - N D dydz - N. D axaz
az az at ax ay

Jr N.D axay = 0
az

or

(4.4.6)

Ni (vvc) + vNi (Dvc) + Ni - S) dV -jr Ni (Dvc) 11 dS = 0

where n is the normal to the surface of domain V.

Integrating over depth and assuming that terms involving vertical

gradients may be neglected gives, for locally constant dispersion coef-

ficients, Eq. 4.4.6 becomes:

Ni [ u aa)c( + v aa; +

A

aN.
ac

r D

aNi

+ D 1 ac 1 + N r _ sl)dxdy
I x .3)( 3x y ay ay j t

Ni
[ D

x ax
. n

x
+

y ay
n
y

dL = 0, (4.4.7

where L is the horizontal length of the domain boundary and nx, ny are

the direction cosines of the normal boundary surface.
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Observing that, for the finite element method, the suspended sedi-

ment concentration may be expressed as:

6

c =E N
a

c
a

, a = 1, 2, ... ,6
a =1

then for each node the above Galerkin equation becomes

[

6 aN aN aN . aN aN. aN

A
!., [ Ni (u Ti-a + v -5-3,2) +

Ox -57(1-3x

a +
y aye 3y

a

aC DN

41N.N I a N.S 1 dxdy -ir
Ni

p ----d .n +D aNa.n 1

1 a Dt 1
I_

1 xax xy-3y y

dL c -
a

(4.4.8)

Or more succinctly,

where

ac(k. )c + (t. ) a
la a la (fi) + (bia)ca = 0, i=1, 2 ... 6

a=1, 2 ... 6 (4.4.9)

aN aN N. N DN. aN

ia Ni
u

a
a

dxdy,
1 a

+ v
a

+ D D
y

A '

x Dx Dx
a

Y Y

(4.4.10)

(t. ) =ji N .N
a
dxdy, (4.4.11)

la

(f1) =-1
1

N.S dxdy, (4.4.12)

A

aN aN

and (b.
la

)
Ni
N. [

Ox ax

a .n
x
+D

y ay
a.n

y
ldL. (4.4.13)

i.

The complete matrices or vectors are commonly referred to as

[k) = element coefficient, steady-state coefficient or "stiffness"

matrix

[t] = temporal or "mass" matrix

{f} = element source or sink vector

[b] = boundary or element load matrix
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4.4.3. Procedure

Equation 4.4.9 is evaluated over the area of each element with

the boundary integral term [b] {c} being included only for elements

on the domain boundary. The coefficients of the nodal unknowns are

arranged to form the 6x6 element coefficient matrix (the derivation

of which is given in Appendix A). If one or more of the nodal unknowns

are stipulated as boundary conditions, the row and column corresponding

to that unknown are removed and the element load matrix is modified

appropriately.

The element coefficient matrices and element load matrices are

next assembled to form the system coefficient matrix and system load

matrix. These matrices will be square and banded, but will not in

general be symmetric, thereby increasing computer storage requirements

over those of the alternative Rayleigh-Ritz method. If there are n nodes

and boundary conditions are imposed at m of these nodes, then (n-m)

equations will result, forming the system equation

[K] {c} + alcl + {F} + [B] {c} = 0 (4.4.14)
at

Gaussian elimination is used to solve the set of equations for the

node point concentrations.

4.4.4. The Finite Element In Time

Under steady-state conditions, the temporal terms in Eq. 4.4.14

vanish and the system equation 4.4.14 becomes

[11 {c} + {F} + [B1{c} = 0 (4.4.15)

which, upon evaluation of the system matrices, may be solved using

standard matrix solution techniques. For transient problems, time is

descritized into units At and Eq. 4.4.14 is solved stepwise.

The time-varying equation 4.4.14 may be solved using either a

finite difference or finite element marching scheme. Pinder and Grey

(1975) state that neither approach appears to have any significant
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advantage. Conforming to Araithurai's (1974) development, the finite

element scheme as used here is equivalent to a two-point finite dif-

ference approach.

The finite element in time may be throught of as a vertical prism

extending upwards in time from the triangular spacial element forming

its base as in Figure 4.2. The following development is according to

Araithurai (1974). The temporal shape functions nt are defined as

At - t

no o At '
(4.4.16)

and n-
I

=
At.'

(4.4.17)

where t = time in the interval At. Hence, by analogy to the spatial

descritization technique, we have for the first time element

{c} = [no, nil
{c

1
}}'

where {co} and fc
1
I indicate the system concentration vectors at time

levels zero and one, respectively. Now,

(4.4.18)

a {c} _ [ano and] {co} 1 f
at at ' at

{c 1
} At L-

0

1'

11i

J fc }

{{.c }

1

Applying the Galerkin weighted-residual method to the governing system

equation, after substituting the above quantities gives

At

o
At ( [d[no' nl I {c 1 III Lat- ' at

{co}

1

r 1 r ano and ] {co}

fc 1}

w 4.

{F} 1 dt = 0 (4.4.20)

where overbars indicate average values for the time increment. Inte-

gration yields the two-point recurrence relation

3
?_.1r,---0 +

At
[T] i {c}n+, [[-r) Hi {c}n

{F} (4.4.21)
tt. 1 1 l At 3 .1

(4.4.19)

This is a set of simultaneous equations which may be solved for

the new nodal concentrations. Array r) is constructed from the element

geometry, node point velocities and diffusion coefficients as given in

Appendix A.
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Figure 4.2. The finite element in time.
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The temporal matrix [T] and source-sink vector {F} are determined

as follows. Consider the integration of Eq. 4.4.11 and 4.4.12 for

each element. Since, as pointed out by Zienkiewicz (1971)

IA
La

b c a! b! c!
Li L2 L3 dxdy 2A,

the above integrals yield for each element

0

1

0

1

0

1

{f} = -
AS

and

6 -1 -1 -4 0 0

-1 6 -1 0 -4 0

-1 -1 6 0 0 -4

-4 0 0 32 16 16
[t] 180

0 -4 0 16 32 16

0 0 -4 16 16 32

(4.4.22)

(4.4.23)

(4.4.24)

where the rows are ordered by corner nodes 1, 2, 3 and then by mid-

side nodes, 4, 5, 6.

Equation 4.4.23 uses time-averaged values for source or sink

effects, S. For the transient problem, the right-hand side of Eq.

4.4.21 contains the temporal element coefficient matrix and the right

hand side contains the temporal element load vector.

4.5. Convergence and Stability of the Sedimentation Solution

Araithurai and Krone (1976) have demonstrated that the present

model formulation will converge rapidly to the exact solutions for the

one-dimensional, transient, heat conduction problem and for the steady-

state one-dimensional advection-diffusion problem. For exact agreement

in the steady-state case, a minimum of four quadratic spatial elements

was necessary. These authors expressed concern that instabilities might

result when Peclet numbers, uL/D, become either too large (improbable

for the current study) or too small. For recirculating flows, the

latter case may be of import as velocity decreases towards the basin
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interior. Roundoff errors resulting from the subtractions of small

numbers and their subsequent manipulation in iteratively solving the

advection-dispersion equation may produce instabilities or, more

likely, simply cause convergence to an answer having a greater absolute

error than might otherwise be achieved. Since the advection-dispersion

equation does not have a closed form solution, Araithurai and Krone

(1976) compared computed and observed sediment accumulations in flume

flows. Good agreement was noted and it was concluded that the model

reasonably predicts sedimentation characteristics in steady, straight

open-channel flows. It was suggested that the model would be similarly

effective in two-dimensional, recirculating flows.

Leimkuhler, et al. (1975) in a finite element solution of the

advection-dispersion problem for a point source in Massachusetts Bay

found that instabilities may be generated if the minimum element grid

size, 2, is not small enough for a given dispersion coefficient, D,

and velocity, u. Their requirement for stability is

/u 2 (4.5.1)

For cases which violated this requirement, the solution converged but

unreal results, such as negative sediment concentration were realized.

These authors noted that solution stability required:

12

lOD
min [At f , At f

lOu'
(4.5.2)

To determine the stability of the Araithurai-Krone (1976) model

as applied to recirculating flow conditions, the time step, At, was

reduced until the convergence at each node occurred smoothly and any

further decrease would not result in a significant improvement in con-

vergence. A time step of one-half hour was optimal for a minimum

element length of about 17 m and proved to be satisfactory for all

other cases which had equal or longer elements. It was interesting

to note that any attempt to change At during the computations resulted

in oscillations in the solution which would slowly damp out. Such

behavior required that a constant At be adopted.
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4.6. The Rayleigh-Ritz Variational Method

The sediment advection-diffusion equation with any associated

boundary conditions define the transport problem. When applied to a

grid of nodes, a set of simultaneous equations results which may be

solved by a number of techniques. An alternative way of posing this

problem utilizes the calculus of variations (Zienkiewicz, 1971). The

Euler theorem states that if the integral:

X(u)
fff f(x, y, z, (1), , ; ) dxdydz, (4.6.1)

V

is to be minimized over a rounded region V, then the necessary and

sufficient condition for this minimum to be achieved is that the

unknown function gx,y,z) satisfy the following differential equation

a f af a af af af

la(a(p/ax)1a`x
a(4/ay)} + {a(4/az)1 - a-47 = 0 (4.6.2)

The advection-diffusion equation is nonself-adjoint and hence,

does not have a corresponding variational functional. It may however,

be transformed to a symmetric form through the use of the reducing

factor, es, where

(ux lb (4.6.3)
'D
x

D

The variational functional may then be formulated as the integral over

all element subdomains of (Prakash, 1977):

D 2

exp (r3)[-2--( (-1)2 - c(S - I dxdy (4.6.4)

D
ne

y (ax)2 y ay

Introducing the shape functions, Eq. 4.3.1 and 4.3.2, and minimizing

the functional, (1), with respect to nodal concentrations, c1, over the

element subdomain gives

aN

aN. aN4 aN.

[it.] D (ax
c j

c
) --j- D c

Dne
x ax i ax ax y Dy

aN

c

aN. aci ac

.) . 1

ax J
+ ..

ay
" Ni es dxdy

(4.6.5)



Or:

{21-}111 = [T] { + [K] {c }m + {F }m 0
ac at

where

Tij
N N dxdyJ.

ne

aN. aN, aN. aN,

IJ (D
x

+ D e dxdy ,
K. =11

D
ne

ax ax y ay ay

F. = N.IS1 es dxdy ,

D
ne
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(4.6.6)

(4.6.7)

(4.6.8)

(4.6.9)

where

= element nodal numbers,

and m = element number.

Evaluating the above integrals and assembling all of the elemental

matrices yields the system equation:

[111 + [KL]fc/ + [F] = O. (4.6.10)

With this formulation the matrices [T] , [K], [TL], and [KL] are sym-

metric. On the other hand, Eq. 4.4.7 when assembled in the system

equation does not yield symmetric matrices.

The use of the variational approach could greatly reduce computer

storage requirements and computation time in comparison to adopting

the Galerkin method. One limitation of the variational approach to

nonseif- adjoint problems is that significant computer round-off errors

may occur for high Peclet number flows. The Peclet number, uL/D,

indicates the relative importance of advection and dispersion, but

also occurs in the reducing factor, Eq. 4.6.3. Remotely-located nodes

may have a Peclet number of sufficient magnitude to cause computer

overflow due to the es factor in Eq. 4.6.4, and 4.6.7 to 4.6.9. If

local velocity and the dispersion coefficient are related, as for

example in Eq. 3.5.4, 3.5.5, etc., then velocity changes in the numera-

tor should be partially compensated for by changes in the denominator.

Thus, only nodes at extreme distances from the origin could experience



exponential round-off errors. Hence, the Rayleigh-Ritz formulation

would appear to be an attractive alternative to the Galerkin method

used in this study.

4.7 Summary

In this chapter, the finite-element method for the solution of

boundary-value problems was introduced and one variant, the Galerkin

method of weighted residuals, was discussed in detail. The Galerkin

formulation and solution of the two-dimensional, horizontal, sediment-

transport equation was presented in detail following Araithurai (1974).

An alternative and potentially more efficient formulation employing

the Rayleigh-Ritz method was also presented for future reference.
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V. RESULTS AND RECOMMENDATIONS

Chapter I introduced the fundamental considerations regarding

circulation and sedimentation in a rectangular basin joined to a

waterway and a number of case studies were designated to illustrate

the functional dependence of those processes on basin geometry and

environmental parameters. Chapters II, III, and IV discussed in

detail the numerical solution techniques employed in this study.

This chapter presents the computational results and gives some

recommendations regarding their use in the marina design process.

Finally, suggestions are made regarding the extension of the work

presented herein.

5.1 Velocity Field

Streamer plots of the velocity field for each case of Section 1.3

(see Table 1-1 and Figure 1.5) are displayed in Figures 5.1 to 5.21

with streamlines of relative velocity, /u4v2/u0. The proportion of

basin area contained within each streamline is presented in Figures

5.22 and 5.25. Horizontal velocity profiles on transects parallel

to the coordinate axes and passing approximately through the center

of the primary circulation gyre are shown in Figures 5.26 to 5.29.

In some of Figures 5.26 to 5.29, curves for the upstream entrance

cases have been omitted since the velocity fields for corresponding

upstream and downstream entrance cases are essentially negative mirror

images which differ in magnitude by less than one percent, downstream

entrance cases having the higher values. As in Abbott (1977), this

difference is attributed to the opposition of basin velocity and mo-

mentum dispersion processes acting across the upstream entrance

boundary in contrast to their superposition for downstream entrances.

Interior velocities are functions of entrance velocity and basin

configuration. For a given basin configuration, experience has shown

that the normalized velocity fields, u/u
o

, v/v
o

, and 1/u4v2/u
o

, are

independent of uo for the range of velocities considered. Hence,

Figures 5.1 to 5.30 apply not only to cases with equal basin Reynolds



(A) (B)

Figure 5.1. Case 02X4. (A). Velocity field. Isopleths indicate the local velocity in percent of

the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the non-

dimensional sedimentation rate (S/u0C0)x107.

10

15

(A) (B)

Figure 5.2. Case U2X2. (A). Velocity field. Isopleths indicate the local velocity in percent of

the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/uoyx107.
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( A )

.7

1.8

(B)

(I 9 \

Figure 5.3. Case C2X2. (A). Velocity field. Isopleths indicate the local velocity in percent of

the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/uoyx107.

(A) (B)

Figure 5.4. Case D2X2. (A). Velocity field. Isopleths indicate the local velocity in percent of

the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0C0)x107.
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(A) (B)

Figure 5.5. Case C2X3. (A). Velocity field. Isopleths indicate the local velocity in percent of

the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0C0)x107.



(A)
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(B)

Figure 5.6. Case 02X4. (A). Velocity field. Isopleths indicate the local velocity in percent cc

the entrance velocity,u0. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0Co)x107.



87

(A) (B)

Figure 5.7. Case U2X4. (A). Velocity field. Isopleths indicate the local velocity in percent of

the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0C0)x107.
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5

/ //

(A)
(B)

Figure 5.8. Case C2X4. (A). Velocity field. Isopleths indicate the local velocity in percent of

the entrance velocity, u
o

. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0C0)x10
7

.
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(A)
(B)

Figure 5.9. Case D2X4. (A). Velocity field. Isopleths indicate the local velocity in percent of

the entrance velocity, u
o

. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0C0)x10
7

.
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0.1

Figure 5.10. Case C2X6. (A). Velocity field. Isoplethe indicate the local velocity in percent of

the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0C0)x107.
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25

(A)

Figure 5.11. Case 04X2. (A). Velocity field. Isopleths give the local velocity in percent of

the entrance velocity, uo. (6). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0C0)x107.
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(A)

(B)

Figure 5.12. Case U4X2. (A). Velocity field. Isopleths give the local velocity in percent of
the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u
o

C
o

)x107.



(A)
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(B)

Figure 5.13. Case C4X2. (A). Velocity field. Isopleths give the local velocity in percent of
the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the
non-dimensional sedimentation rate (S/u

o
C

o
)x107.
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(A)

94

<0.5

>0.5

05

7V;--<0.4

(B)

Figure 5.14. Case C4X2V50. (A). Velocity field. Isopleths give the local velocity in percent of

the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rate (S/u0C0)x107.
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1

5 5

10 >
5

5

2
15

25-,

(A)

1

<0.2

0.2IF0 0.1

(B)

Figure 5.15. Case C4X2V100. (A). Velocity field. Isopleths give the local velocity in percent

of the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rates (S/u0C0)x107.
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(A)

(B)

Figure 5.16. Case D4X2. (A). Velocity field. Isopleths give the local velocity in percent of
the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rates (S/u
o

C
o
)x107.
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(A)

t-

w

(B)

Figure 5.17. Case CE4X2. (A). Velocity field. Isopleths give the local velocity in percent

of the entrance velocity, u
o

. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rates (S/u
o

C
o

)x10
7

.
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e5) z-10
-/15-)

5-2=7-2°')

(A)

.6

1.8

(B)

/1.8

Figure 5.18. Case UD4X2. (A). Velocity field. Isopleths give the local velocity in percent

of the entrance velocity, uo. (B). Sedimentation rate field. Isopleths give the

non-dimensional sedimentation rates (S/u0C0)x107.



Figure 5.19. Case C4X2D100. Sedimentation rate field. Isopleths

give the non-dimensional sedimentaiton rates (S/u
o
C
o
)x107.



Figure 5.20. CAse C4X2D1000. Sedimentation rate field. Isopleths

give the non-dimensional sedimentation rates (S/u0C0)x107.
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5GS)

(A)

(B)

Figure 5.21. Case C6X2. (A). Velocity field. Isopleths give the local velocity in percent

of the entrance velocity, uo. (13). Sedimentation rate field. Isopleths

give the non-dimensional sedimentation rates (S/u
o
C
o
)x107.
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Figure 5.23. Effects of varying basin length on the

percent of basin area with (A) relative velocities or

(B and C) non-dimensionalized sedimentation rates

greater than the value indicated on the abscissa.

(For basins with constricted entrances).
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Figure 5.24. Effects of varying basin width on the percent

of basin area with (A) relative velocities or (B and C)

non-dimensionalica sedimentation rates greater than

indicated on the abscissa. (For basins with constricted

entrances.)
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Figure 5.26. Effects of varying basin length and width on the relative velocity components

(A) u/uo and (B) v/uo. (For unconstricted entrance cases.)
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Figure 5.27. Effects of varying basin length on the relative velocity

components (A) u/uo and (B) v/uo. (For constricted entrance cases.)
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Figure 5.28. Effects of varying basin width on the relative velocity components (A) u/uo
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numbers, uoL/D, but also for any reasonable velocity for which the

flow is turbulent.

Each velocity field may be divided into entrance and interior

zones. The former lies between the entrance and the center of the

primary gyre and is characterized by strong velocity gradients and

fluid shear (Figures 5.1 to 5.21 and 5.24 to 5.29). This zone

occupies from 5 to 10% of the basin plan area, the larger percentage

being associated with basins without entrance constrictions (Figures

5.22 to 5.25). The interior zone occupies the remainder of the basin

and contains the basin's response to entrance zone velocity and

shear fields.

For cases with length-to-width (L/W) ratios between approximately

0.5 and 2.0, the flow pattern consists of a single gyre as observed

for turbulent flow conditions in laboratory experiments by Westrich

(1975) and Nece, et al. (1976) and in computer simulations by

Abbott (1977). For 0.5 > L/W > 2.0, a secondary gyre develops in

the interior with opposite rotation, but with greatly reduced veloci-

ties. If the basin is further elongated, the secondary eddy grows,

but the size of the primary eddy and the position of the centers of

rotation do not change greatly. Such behavior is similar to that

described by Weiss and Florsheim (1965) for solutions to the Navier-

Stokes-equations with low Reynolds number. It also conforms to

Westrich's (1975) laboratory observations of secondary gyre formation

in turbulent flows where basin L/W is 0.3 or less. As pointed out

by Westrich (1975) and others, such secondary cells are sluggish-

velocities in the cases herein considered are on the order of 0.01%

of the entrance velocity--and greatly increase the residence time

for a given water mass. In so doing, the probability of sedimentation

increases for suspended particles. To avoid such semi-stagnant bodies

of water and the associated nearly-complete deposition of suspended

sediments entering the basin, a basin aspect (L/W) ratio between

approximately 0.3 and 2.0 is to be preferred. Improved circulation

due to tidal flushing and currents flowing through the entrance (en-

trance jet effects) may extend these limits somewhat.
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Table 5-1 lists the cases according to decreasing average basin

velocity, Ti/uo, from Figures 5.22 to 5.25, which acts perpendicular to

transects paralleling the coordinate axes and passing approximately

through the center of the primary gyre. Table 5-2 lists velocity

data for basins with aspect ratios of 0.5, 1.0, and 2.0 as fractions

of the values in the corresponding unconstricted entrance cases.

For a given basin aspect ratio (L/W) and entrance boundary velocity,

highest mean or peak velocities are naturally associated with basins

with open (unconstricted) entrances and, for such entrances, increase

as either basin length increases or width decreases (cases 04X2, 02X2,

02X4; Figures 5.22, 5.26, 5.29). Since case 02X4 has much lower

velocities than several cases with constricted entrances--e.g. C2X3,

C2X2, CE4X2--suggests the undesirability of basins with small L/W

ratios, e.g. less than say 0.5 to 0.3.

For constricted entrances, velocities increase as either basin

length or width decreases (Figures 5.23, 24, 27, 28, 29) and are

highest for centralized entrances. Thus, the basin length has the

opposite effect for constricted entrance cases that it has for

unconstricted entrance cases. Figure 5.30 illustrates the dependence

of mean and interior peak velocities on basin width and length. Case

C2X2 is taken as a standard for comparison since it has the highest

mean velocity for all cases with similar entrance width. Mean basin

velocity is more sensitive to changes in basin aspect (L/W) than

either peak interior velocity and is more sensitive to basin width

than to length. Entrance location plays an especially important role

in determining the mean, vertically-averaged velocity, v, as seen in

Figure 5.30. For both upstream and downstream entrances, the mean

velocity is some 77% lower than for a central entrance and decreases

about 83% as either basin width or length doubles (Table 5-1 and

Figure 5.25). For centralized entrances, i decreases some 67% as

basin length doubles and 83% as basin width doubles (Figures 5.23 and

5.24). For an optimum basin-averaged recirculating velocity, then,

it is preferable to use a central entrance and a basin aspect

approaching unity, basin length perhaps exceeding width.
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TABLE 5-1. Magnitudes of the relative mean basin velocities,
Wu°, and peak interior velocities um/vo and
vm(uo ordered according to decreasing Wu°.

Case
1v7u01 ludo, lvm/u01*

04X2
02X2
UD4X2

CE4X2
C2X2
C2X3
02X4
C4X2
D2X2
U2X2
C2X4
C6X2
D2X4
U2X4
D4X2
U4X2
C2X6

.230 .317 0.271

.153 .196 0.300

.087 .081(U) 0.120

.178(D) 0.255

.078 .187 0.199

.070 .098 0.170

.035 .084 0.148

.023 .143 0.239

.023 .079 0.110

.016 .097 0.128

.016 .092 0.115

.013 .074 0.122

.010 .068 0.065

.003 .045 0.050

.003 .040 0.045

.003 .060 0.086

.003 .055 0.082

.002 .060 0.084

* From Figures 5.22 to 5.25. For central entrance cases,
the average of the upstream and downstream maxima is
taken. For eccentric entrance cases, the value of the
maximum farthest from the entrance is taken.
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TABLE 5-2. Interior mean and peak velocities expressed as
fractions of the values for the unconstricted
entrance cases.

Case \/7i( o )
u
m
/
m
(o) vm/vm(o)*

02X2 1.00 1.00 1.00

C2X2 0.46 0.50 0.57

U2X2 0.10 0.47 0.35

D2X2 0.10 0.50 0.47

02X4 1.00 1.00 1.00

C2X4 0.57 0.52 0.50

U2X4 0.13 0.28 0.17

D2X4 0.13 0.32 0.24

04X2 1.00 1.00 1.00

UD4X2(U) 0.38 0.26 0.53

(D)

CE4X2

0.38
0.34

0.56
0.59

0.80
0.76

C4X2 0.10 0.25 0.42

U4X2 0.01 0.17 0.26

D4X2 0.01 0.19 0.28

* From Figures 5.22 to 5.25. For central entrance cases, the

average of the upstream and downstream maxima is taken. For

eccentric entrance cases, the value of the maximum farthest

from the entrance is taken.
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Maximum interior velocities likewise decrease as either basin

width or length increase; increases in width were observed to have

the greater effect (Figure 5.30). The parameters um and vm are less

sensitive to basin aspect ratio than is the mean velocity. Doubling

basin length for centralized entrances produces a 19% and 28% decrease

respectively, in um and vm relative to case C2X2, but a 67% decrease

in V. Doubling the basin width causes decreases of 25, 37, and 83%

respectively, in um, vm, and V.

Changes in basin aspect (L/W) more strongly affect um and vm for

basins with eccentric entrances. Compared to either case U2X2 or D2X2,

doubling the basin length in cases U4X2 and D4X2 reduced um 40% and

v
m
30%,approximately, substantially more than for centralized entrances.

Doubling the basin width in cases U2X4 and D2X4 produces a 56 and 61%

decrease in u
m

and v
m

. Compared to the corresponding central entrance

cases, the elongated basins (aspect ratio of 2.0) with eccentric en-

trances have 27 and 23% lower u
m
and V. Wide basins (aspect ratio of

0.5) have 42 and 61% lower values, respectively. The lower contrasts

in u
m

and v
m

between central and eccentric entrance cases occurs for

a square basin, 5 and 29%, respectively. Thus, as for the mean basin

velocity, interior velocities are maximized through the use of a

centralized entrance and a square planform. Should design criteria

require other than a square planform or central entrance, an elon-

gated basin (L/W > 1) is preferable to a wide basin since interior

velocities will be least affected. Whether the entrance location is

upstream or downstream of the center of the breakwater appears to have

little effect on u
m

and v
m

.

Considering Table 5-2, it is apparent that internal velocities

are directly proportional to the relative entrance width, We/L, and

vary with the basin aspect ratio, L/W. Compared to open-entrance

values, reducing We/L to 0.3 reduces V/V(o) 43, 54, and 66%, respec-

tively, for central-entrance cases C2X4, C2X2, and CE4X2 but 87% for

upstream and downstream entrance cases. Here the parenthetic (o)

denotes the unconstricted entrance value. Further constricting We/L

to 0.15 in cases C4X2, D4X2, and U4X2 reduces V/V(o) an additional
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27 and 12% for central and eccentric entrances for a total reduction

of 90 and 99%, respectively. Momentum transfer across the entrance

is thus inhibited by entrance constriction with damping effects being

five to ten times stronger for eccentric entrances than for central

entrances. The closure effect varies non-linearly with entrance width

and for a given We/L ratio the efficiency of momentum transfer in-

creases with increasing L/W for both central and eccentric entrances.

Such tendencies again suggest that central entrances are to be pre-

ferred in the marina design process and that the widest possible

entrance width be used. Although the mean velocity for wide basins

(L/W < 1) is lease affected by entrance closure, it must be remembered

that the effects considered in this paragraph are computed relative

to the respective open entrance cases. Whereas the relative effect of

entrance closure increases as the basin aspect ratio (L/W) increases,

the actual basin-averaged velocities increase with increasing L/W for

a given relative entrance width (We/L).

The behavior of the relative peak interior velocities, um/um(o)

and vm/vm(o), with varying We/L and L/W is more complex than that of

the mean velocity. Decreasing We/L to 0.3 reduces vm/vm(o) as much

as 53, 47, and 35%, respectively, for cases C2X4, C2X2, and CE4X2.

Further narrowing the entrance to We/L of 0.14 in case C4X2 reduces

vm /vm(o) a total of 65%. Hence, for a central entrance and a given

entrance-width/basin length ratio, vm/vm(o) increases with increasing

L/W, a trend similar to that observed for Ti67(o). Such behavior

reflects the increasingly effective transfer of momentum across the

entrance as the absolute entrance width increases with increasing

basin length or, alternatively,,the confinement of the recirculating

flow as the basin width decreases. For eccentric entrance cases with

equal We/L ratio vm/vm(o) increases as L/W approaches unity. The

magnitude of um/um(o) for central entrances is only slightly affected

by varying basin aspect ratio. For eccentric entrances, however, it

increases markedly as L/W increases; the reasons for this behavior are

the same as discussed above for vm /vm(o).
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Interestingly, increasing the entrance width in the same propor-

tion as basin length produces a mean basin velocity in case CE4X2

similar to that of a shorter basin (e.g. case C2X2) but with signifi-

cantly improved circulation over much of the basin (Figure 5.25).

Increasing entrance width (cases C2X2, C2X4, 02X4) cannot, however,

compensate for the effects of increased basin width and would result

in increasingly less efficient basin flushing. Thus, a square or

elongated basin planform with a maximized relative entrance width

(W
e
/L) should be preferred over wider planforms in the design process.

Basins with extensive areas isolated from entrance influences

have an exponentially decreasing u/uo-versus-y/W curve in the interior

(e.g. C2X4, D4X2, Figures 5.27, 5.28). Basins with smaller aspect

ratios have a quasi-parabolic curve of u/uo versus y/W (C2X2, C4X2).

The parabolic curves of u/uo versus y/W may be interpreted as indi-

cating the confinement of the circulation gyre by finite boundaries.

As the boundaries recede from the entrance (C2X2, C2X4, D2X2) the

gyre expands until a balance is achieved between the centrifugal

force and internal pressure gradients. As illustrated in Figure 5.28,

the inland extension of the basin produces a change in the form of

the velocity-versus-distance curve from parabolic to exponential.

Local and basin-averaged velocities simultaneously decrease. For

optimum local and basin-averaged circulation then, a "confined"

vortex flow with a parabolic velocity profile such as in Figure 5.28

is to be preferred.

The parabolic curves are similar to those of Burggraf (1966)

for low Reynolds number flows (see Figure 2.2). Whereas Burggraf

observed the development of an inviscid core as the Reynolds number

(u
o
L/v) increased, no such phenomenon was observed in this present

study. This difference is due to Burggraf's use of the Navier-Stokes

equations versus the use herein of the Reynolds equations of motion.

In the Navier-Stokes equation, the terms involving molecular viscosity

become insignificant compared to terms involving the velocity as

velocity gradients increase, resulting in the development of the

inviscid core. In contrast, the definition of the dispersion
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coefficients used here (Eqs. 3.5.4 and 3.5.5) in the Reynolds equations

involve the local velocity which prevents the "viscous-like" effects

from being overshadowed by the convective terms as velocity increases.

With such a velocity-dependent definition of the dispersion coefficient,

the inviscid state will not be reached and the inviscid core will not

form. Physically, the core development is prevented by the increasingly

effective and non-uniform flux of momentum throughout the water body.

For the cases considered in this study, the center of the pri-

mary gyre moves inward and downstream as momentum exchange improves

between basin and exterior waters (e.g. cases C4X2, CE4X2, 04X2 in

Table 5-3). For constricted entrances sufficiently far removed from

the walls, the x coordinates of the center, xo,is near that of the

entrance midpoint, but increases slightly (less than 10%) as the

entrance width increases and the gyre center moves slightly downstream

(C4X2, CE4X2, 04X2). For upstream and downstream entrances, xo corre-

sponds to about 70% of the entrance width away from the nearest

boundary, slightly higher values possibly occurring as basin width

increases or lower values as length increases. The relative y coordi-

nate, yo/y0(0), increases nonlinearly with We/L and yo increases as

either basin width or length increases (Figure 5.31). Higher values

occur for central entrances than for noncentral ones, but yo responds

similarly for either entrance type as basin width or length changes.

For unconstricted entrance cases, yo is more sensitive to changes

in basin length than to changes in width. Interestingly, the reverse

is true for basins with constricted entrances. As either basin or

entrance width increases, yo approaches a limiting value, 52 m approxi-

mately--(C2X2, C2X3, C2X4, C2X6, CE2X4, 02X4) which is about 25%

greater than that predicted by Weiss and Florsheim (1965) for low

Reynolds number solutions to the Navier-Stokes equations. The effect

of varying levels of flow turbulence, i.e. varying eddy viscosity

coefficient or eddy Reynolds numbers (u0L/Ah), was not investigated

in this study. It seems reasonable to conclude, however, that increasing

turbulence would shift the center of rotation inward, the exact amount
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TABLE 5-3

Location of Center of Circulation Gyre

Case
(x0-x )/We* xo(m) Yo(m)

04X2 .60 240 67

02X2 .54 108 48

02X4 .54 108 52

C6X2 .50 300 50

CE4X2 .52 208 55

C4X2 .50 200 40

C2X2 .50 100 38

C2X3 .50 100 44

C2X4 .50 100 52

C2X6 .50 100 52

U,D4X2 .60, .40 40, 360 32

U,D2X2 .69, .40 46, 160 30

U,D2X4 .75, .25 50, 150 44

UD4X2 .56, .50 104, 176, 300 40, 52

*x
eu

= x-coordinate of upstream end of entrance

W
e

= entrance width
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Figure 5.31. The y coordinate of the primary vortex center. (A) Effects of varying
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o
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length or width on yo.
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being determined by basin width and the entrance width/basin length

ratio that in part determines the rate of influx of momentum to the

basin.

Since for the range of velocities considered the curves and

plots of relative velocities are identical for a given basin, the

location of the gyre center is independent of entrance velocity.

This conclusion conflicts with Burggraf's (1966) observation for un-

constricted entrance cases of first downstream and then inward migra-

tion of the center as the boundary velocity increases. Evidently,

either the limited closure of the entrance prohibits such migration or,

more likely, the coarse finite-difference grid and limited variation

of the parameters prevented the detection of such movement. Indeed,

the discussion of the previous paragraphs assumes that the relatively

small differences in yo and xo measured from Figures 5.26 to 5.29

are real, although in many cases they are only slightly greater than

the uncertainty due to grid size.

The relative and absolute distances between the center of the

primary gyre and the maximum interior velocities acting across tran-

sects passing approximately through the gyre center and parallel to

the coordinate axes are shown diagramatically in Figure 2.1 and listed

for various cases in Table 5.4. The distances r
x

and r
x
/L are indi-

cators of the efficiency of the momentum transfer process from external

to basin waters and r /W appears to be a function of the interaction

between the inner shore boundary and circulating fluid. The distance

r
x

is a measure of the momentum transfer efficiency since it is inde-

pendent of changes in basin length for a given entrance width, but

increases markedly as the relative entrance width, We/L, increases for

constricted entrance cases or as basin length increases for uncon-

stricted entrance cases. As basin width is increased and the inward-

directed momentum is distributed within a larger body of water, both

r
x

and r
x
/L increase to a maximum for case C2X4 and decrease as the

basin is widened further. The maximum in r
x
/L coincides with the

incipient development of the secondary gyre in the basin interior.

Thus, rx/L appears to be an easily-measured parameter for laboratory
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TABLE 5-4. Relative and absolute distances from center of rotation
to maximum velocities acting perpendicular to transects
parallel to the coordinate axes and passing through the
center of rotation.

L/W
Increases

Case
r /L
x

ry/ W

r
x

(m)

ry

(m)

C6X2
04X2
CE4X2
C4X2
02X2
C2X2
C2X3
02X4
C2X4
C2X6

.05

.34

.15

.08

.36

.15

.16

.32

.19

.12

.35

.33

.33

.33

.23

.24

.15

.12

.11

.05

33

136
60

32

75

30

32

64

38

29

69

66

66

66

46

48
45
48
44

31
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and field studies that grossly characterizes both the efficiency of

momentum exchange across the entrance and circulation efficiency

within the basin. Design configurations that maximize rx/L should

have optimal momentum exchange characteristics and a minimum of

circulation cells.

The distances r or r /W are insensitive to changes in relative

entrance width and so are not indicators of the entrance momentum-

exchange efficiency. However, both parameters increase strongly as

basin width decreases or basin length increases which suggests a

strong interaction between basin boundaries and gyre characteristics.

As basin width decreases for a given length, the conservation of

angular momentum within the basin requires either higher velocities

at a given point or an increased radius of gyration or curvature for

the maximum velocity, e.g. v
m

and u
m'

hence the increase in r /L as

basin width decreases. That r /W increases as basin length increases

expresses the relaxation of the confining pressure of upstream and

downstream shore boundaries. This parameter does not appear to be

affected by the development of secondary circulation cells and there-

fore is not as useful as r
x
/L for design purposes.

The parameters r
x

and r may, however, prove most useful in

estimating the "rolling dispersion" of Engelund (1974) and Abbott

(1977):

C3 d
Dr = (-r-)

2
vd

where

C = the non-dimensional Chezy number v/u*,

v = vertically-averaged horizontal velocity,

d = depth,

r = radius of flow curvature.

For example, using the following values from case C2X2,

_2
0.2 uo = 3x10 m/s

r = 0.36 L = 72 m

d= 4.5 m

C = 3x10-2/0.12x102 = 25

(3.5.8)
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yields D
r

= 0.46 m2/s. In this present study, the momentum dispersion

coefficient was assumed to be constant,

D = 60 u*d

where u* is the value corresponding to the entrance velocity, uo. For

most cases, the momentum dispersion coefficient used was 1.47 m2/s

which enhanced momentum dispersal and increased local velocities in

the basin interior relative to those that would have been obtained

using a spacially-varying dispersion coefficient. The magnitude of

the effect is not expected to be great since trial computations showed

the vertically-averaged velocity field to be relatively insensitive

to changes in the dispersion coefficient. Further investigation into

the properties and effects of spacially-varying dispersion in recircu-

lating flows could prove valuable to both the scientific and industrial

communities.

Cases C4X2, CE4X2, and UD4X2 illustrate the effects of multiple

entrances. Cases CE4X2 and UD4X2 have twice the entrance width of

case C4X2, but in case UD4X2 there are two equally-wide entrances

(Figure 5.18). The area/velocity distributions and mean basin veloci-

ties for cases UD4X2 and CE4X2 are similar (Figure 5.25). Case UD4X2,

however, significantly reduces the area with very low velocities. In

Figure 5.29, the curve for case UD4X2 is nearly identical to that of

case CE4X2 (Figure 5.27), suggesting that v/uo is more sensitive to

entrance number and location than is u/uo. The center of circulation

for the upstream entrance gyre is displaced downstream slightly com-

pared to that of case C4X2 which has an equally wide entrance. The

relative location of the center for the downstream entrance gyre of

case UD4X2, however, is more similar to that of case CE4X2 which has

twice the entrance width. The decrease in the relative area with low

velocities and the apparent increase in efficiency of the downstream

entrance suggest that multiple small entrances may be used to provide

adequate protection and improve basin circulation where a single large

entrance would be unsatisfactory.

As discussed previously, maximum basin-averaged velocities are

associated with a square basin and central entrance and any deviation
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in basin aspect (L/W) ratio should favor the selection of a longer

basin for increased circulation to maintain water quality and reduced

sedimentation. Nece, et al. (1976) in physical model studies of

tidal circulation in basins of varying aspect ratio concluded that

optimal flushing was achieved using a square planform with a down-

stream entrance. They did not investigate the effects of centrally

located entrances, however, only entrances at the extreme upstream or

downstream ends of the breakwater. Again, the square planform opti-

mizes fluid circulation, but whether this optimization requires dif-

ferent positioning of the entrance for shear-generated and tidally-

induced circulation components remains to be verified.

Cases C2X6 and C6X2 are the only cases found to violate Noble's

(1976) guidelines for acceptable basin-flushing characteristics. In

both cases mentioned, the internal velocities were extremely low and

secondary circulation cells were present (Figures 5.23 and 5.24).

Average sedimentation rates were also low as a consequence of the near-

complete sedimentation of suspended sediments near the entrance and

the vast area of sluggishly-moving water (Figures 5.10 and 5.21).

Noble's guidelines were derived from statistical regression studies

of the sediment chemistry of 13 Oregon marinas. Since this present

study does not consider tidal effect on flushing and circulation,

Noble's guidelines are not directly applicable here. However, as

pointed out by Vollmers (1976), the flushing characteristics of a basin

are strongly related to the strength of the circulation gyre, which

suggests that Noble's criteria can be used jointly with these results

to alert the designer to potential flushing problems.

5.2 Sedimentation Field

Figures 5.1 through 5.21 present the velocity and sedimentation

rate fields for each of the cases considered. Maximum sedimentation

rates occur at the centers of the circulation gyres and along the

breakwater or land boundary downstream of the entrance, as described
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by Vollmers (1976). The higher sedimentation rates at the gyre center

are the consequence of the dispersion of suspended sediments towards

the center of circulation where the velocities are low. In the proto-

type situation, secondary currents generated by curvature of the flow

could also contribute to such accumulation of sediments. High rates

of sedimentation along the downstream boundary are the consequence

of the unique location of the sediment source, the basin entrance.

Currents flowing parallel to the entrance transport sediment dispersed

across the entrance boundary around the basin. Since the velocity

field is depth-averaged, there is no component other than that of

turbulent dispersion capable of transporting the sediment towards the

basin center. Consequently, much of the suspended sediment would

settle out along the downstream boundary.

In most cases, the entrance zone has the lowest sedimentation

rates for the entire basin, which is a consequence of higher bed

shear near the entrance. The low sedimentation rates are most

obvious for basins with unconstricted entrances or high boundary

velocities but tend to increase as either entrance width or entrance

boundary velocity decrease. For the cases that do not exhibit

lower-than-average sedimentation rates near the entrance, it is

reasonable to assume that the coarseness of the finite element grid

and the computation of a single average sedimentation rate for each

element, rather than for each nodal point did not permit the resolu-

tion of the low-sedimentation areas.

For most cases, the isopleths of sedimentation rate are approxi-

mately symmetric about the entrance. For case UD4X2, however, the

isopleths run diagonally across the basin and the maximum sedimentation

rate occurs in the downstream corner (Figure 5.18).

The sedimentation field is relatively sensitive to the transverse

dispersion coefficient which, during this simulation study was varied

by two orders of magnitude to gage its effect on sediment dispersal.

Since there is no flux of water permitted perpendicular to the entrance

boundary, only turbulent diffusion can effect the exchange of suspended

sediment between the basin and exterior waters. This coefficient is a
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direct measure of the effectiveness of the dispersal process. In

Figure 5.32, it is seen that the average basin sedimentation rate

increases approximately 10% for each order of increase in the magni-

tude of the transverse dispersion coefficient relative to case C4X2.

The distribution of the isopleths of sedimentation rates are not

greatly affected by increasing Dt but for case C4X2D1000 in which Dt

is 1000 times greater than used in most other studies, the higher

sedimentation rates occur in an annular semi-circle centered on the

entrance rather than in an area downstream of the entrance (Figure

5.20).

As discussed in the previous section, estimates of the spatially-

constant, transverse, momentum-dispersion coefficient used in this

study are somewhat higher than is indicated using Engelund's (1974)

"rolling dispersion" formula (Eq. 3.5.8). The transverse sediment

dispersion coefficient used in this present study is given as explained

in Section 3.5 by:

D
t
= 0.23 u*d (3.5.5)

where

414V2
U*

22
(3.5.14)

Using Engelund's definition (Eq. 3.5.8) and the data from case C2X2

as in the previous section, Dr is 0.46 m2/s versus 0.0014 m2/s from

Eqs. 3.5.5 and 3.5.14. Eqs. 3.5.5 and 3.5.14 were derived for steady

or quasi-steady, unidirectional and straight flow conditions whereas

Engelund's (1974) formuli attempt to account for the effects of channel

curvature in steady, unidirectional flows. Future investigators as

well as designers who use the material presented in this present paper

are advised to consider the effects of higher transverse dispersion

through the use of Figure 5.32, part D.

As mentioned in Section 3.2, Westrich (1977) has suggested that

two-dimensional, vertically-integrated transport models such as used

in this present study may not accurately reproduce the transportive

effects of secondary currents generated by curved flow. Although this
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present study does not resolve this point, it does demonstrate that the

computed sedimentation field is sensitive to the transverse dispersion

coefficient. It appears reasonable to assume that the effects of

secondary currents can be accounted for (at least in part) through the

manipulation of the magnitudes of both longitudinal and transverse

dispersion coefficients. Future laboratory and field investigations

might be directed towards considering this possibility.

Figures 5.22 to 5.25 and 5.32 and Table 5-5 summarize the effects

of basin length, basin width, entrance width, entrance number or

location, entrance boundary velocity, and transverse dispersion on the

distribution of sedimentation rates. The ordinate of each graph is

the proportion of basin area (in Figures 5.1 to 5.22) having sedimen-

tation rates equal to or greater than the value on the abscissa. Sedi-

mentation rates decrease with decreasing suspended sediment concentra-

tion, decreasing transverse dispersion, and with increasing entrance

boundary velocity, basin length or width. It also decreases with

decreasing entrance width, as the basin aspect ratio deviates from

unity and as the entrance location is farther displaced from the center

of the breakwater.

Figure 5.32 presents the area/sedimentation rate curves for

basins with aspect ratios of 0.5, 1.0, and 2.0 and similar entrance

width, boundary velocities, and suspended sediment concentrations.

Basin-averaged sedimentation rates decrease as the entrance is con-

stricted but maximum rates are approximately the same in most cases.

Interestingly, for basins with aspect ratios (L/W) of one or greater,

an entrance positioned at the extreme downstream end of the breakwater

produces a minimum sedimentation rate for the basin as a whole. For

wider basins, an entrance at the upstream end of the breakwater will

minimize this rate (Figure 5.24). Apparently, the slightly more in-

tense circulation characteristic of downstream entrances transports

the sediment into the basin interior more efficiently for aspect ratios

of unity or greater as basin width increases. For basin aspect ratios

less than unity, more efficient distribution occurs with the upstream

introduction of the sediments and their subsequent dispersal by basin
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TABLE 5-5. Average basin sedimentation rates and percent reductions
in that rate for various cases relative to the respective
unconstricted and central entrance cases.

Case

S/Couo

(x107)

[(S/Cou0)-(S/Cou0)01 [(S/Cou0)-(S/Couo)c]

(S/Couo)c(S/Coudo

%

02X2 1.87 0 +4

U2X2 1.60 -14 -11

C2X2 1.80 -4 0

D2X2 1.53 -17 -15

C2X3 1.63 -- 0

02X4 1.60 .0 +14

U2X4 0.73 -55 -48

C2X4 1.40 -12 0

D2X4 0.90 -44 -36

04X2 1.75 0 +19

U4X2 0.95 -46 -35

C4X2 1.47 -16 '- 0

C4X2V50 0.52 -70 -65

C4X2V100 0.27 -85 -82

D4X2 0.35 -80 -76

CE4X2 1.73 -1 +18

UD4X2 1.75 0 +19

C4X2D100 1.61 -8 +10

C4X2D1000 1.79 +2 +22

C6X2 1.11 0
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currents and dispersive processes. Naturally, in tidal waters the

distinction between upstream and downstream loses meaning. Neverthe-

less, it seems reasonable to recommend that in tidal waters, a single

entrance be oriented with respect to the ebb current since the dis-

charging river water generally contains higher suspended-solids

concentrations (especially during high runoff periods) than do flooding

ocean waters. Hence, elongated (L/W > 1) basins would have an entrance

in the "ocean-ward" half of the breakwater but a wide (L/W < 1) basin

would have an entrance in the inland half of the breakwater. Since it

was pointed out in the previous section that optimum circulation within

the basin occurs for centrally-located entrances, a compromise between

circulation and sedimentation could be rapidly reached by displacing

the entrance position in the "upstream" or "downstream" directions, as

prescribed above.

Increasing the entrance boundary velocity intensifies basin

circulation and turbulent dispersion processes, which results in

lower, more uniform sedimentation rates over the majority of the basin

(Figure 3.32, part D); accordingly, the sedimentation in the entrance

zone decreases (Figures 5.13, 5.14, 5.15). For very low uo, trial

computations indicated that maximum sedimentation rates occur in the

downstream portion of a constricted entrance. As the velocity is

increased, the maximum sedimentation site shifts downstream along the

breakwater and sediments deposit well into the basin. For very small

basins (0.2 m by 0.2 m) and high velocities (2 m/s), Araithurai and

Krone (1976) also have shown that this zone moves into the interior of

the basin. Thus, as the velocity increases, the deposition field

associated with the currents flowing parallel to the entrance is spread

over more of the basin. For sufficiently high velocities, the disper-

sion of sediments towards the center of the gyre and the low velocities

there result in a maximum rate of sedimentation. That the rate of

decrease in the mean basin sedimentation rate is higher for low veloci-

ties suggests that where temporally-varying flows are involved, it is
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best to locate the marina entrance where stream or entrance velocities

are high and the duration of low velocity or slack water is at a

minimum.

Figure 5.22 demonstrates the effect of varying basin aspect ratio

for basins without constricted entrances. Sedimentation rates decrease

as the aspect ratio (L/W) deviates from unity, smallest rates occurring

in the wider, smaller aspect-ratio, basins. The similarity of the

curves 04X2 and 02X2 and their contrast with curve 02X4 suggest that

for a given basin width, the sedimentation curves will be similar for

varying lengths and that width has a more significant effect on basin

sedimentation patterns, other conditions being equal. Doubling basin

length decreases S/Couo some 6% relative to case C2X2 whereas doubling

the width produces a 14% decrease. The range of sedimentation rates

for constricted entrances is similarly more strongly affected by

increasing basin width. The lower sedimentation rates are associated

with increasingly less efficient circulation over the basin as a whole

and the increasing isolation of interior water from entrance effects

as the basin becomes wider.

Variations in either basin width or length more strongly affect

sedimentation in basins with eccentric entrances than in basins with

centralized entrances (Figures 5.23 and 5.24). Doubling basin width

or length decreases S/Couo 20 to 30%, approximately, for central

entrances. For upstream or downstream entrances, respectively, dou-

bling the basin length lowers S/Couo 40 or 78%, as opposed to a

54 or 42% reduction from doubling the width. Obviously, downstream

entrance cases are more strongly affected by changes in basin length

than are upstream entrance cases whereas changes in basin width equally

affect both entrance cases. Increasing or decreasing the aspect ratio

(L/W) from unity also increases the difference between the curves of

S/Couo for upstream and downstream entrances; increasing the aspect

ratio has the greater effect. For the square basin, the difference

between S/C
o
u
o
for upstream and downstream entrances is less than 4%

but for aspect ratios of 0.5 and 2.0 relative sedimentation ratio dif-

ferences of 20 and 60%, respectively, were noted.
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Figure 5.25 illustrates the effect of varying entrance width and

location on sedimentation and/or circulation for basins having constric-

ted entrances. Interestingly, the sedimentation rate/area curves 04X2,

CE4X2, and UD4X2, are very similar although the areal distributions in

Figures 5.11, 5.17, and 5.18 are markedly different. That these

curves are also different from case C4X2 suggests that, at least for

elongated basins, such curves are independent of the relative entrance

length We/L above some value, say between 0.15 and 0.30. In all cases,

reducing We decreases the rate of sedimentation but basins with aspect

ratios less than unity seem to be more sensitive to basin closure.

For a centralized entrance with a width equal to one-third the basin

length, the wide basin (aspect ratio of 0.5) exhibited a 16% reduction

in S/Couo relative to the unconstricted entrance case versus a reduction

of less than 2% for the square or elongated basins. Sedimentation

rates for eccentric entrance cases are up to five times more sensitive

to entrance closure than for central entrances (Table 5-5 and Figure

5.4). Cases D2X4 and U2X4 have S/C
o
u
o

values 80 to 46% lower than

case 02X4 or 30 to 64% lower than for a centralized entrance. Further

constriction of the entrance appears to decrease this contrast in sensi-

tivity since for a We/L ratio of 0.15, case C4X2 has a S/Couo value

which is 16% less than for 04X2 but U4X2 and D4X2 have values 36 and

76% lower than C4X2. Obviously, basin sedimentation rates can be

decreased by narrowing the entrance of the marina. Unfortunately,

circulation would also be inhibited if the marina entrance were narrowed

and it must be recognized that a balance must be struck between mini-

mizing sedimentation and providing adequate circulation and water

quality.

5.3 Summary of Results

In summary, the following aspects may be noted and summarized

schematically in Table 5-6 regarding circulation and sedimentation in

a rectangular basin connected to a waterway:
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TABLE 5-6. Matrix summary of effect that some geometric and environ-

mental parameters have on the quality of circulation and

sedimentation in a rectangular marina connected to a

waterway.*
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study
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entrance position given the basin aspect ratio (L/W) as noted.
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1. The circulation and sedimentation fields can be divided into

entrance and interior zones. The entrance zone is character-

ized by strong horizontal gradients in velocity and/or

sedimentation rates.

2. For a single marina entrance, the velocity field within the

basin consists of a single gyre for basin aspect ratios

between 0.5 and 2.0. For other aspect ratios, multiple circu-

lation cells develop and the basin-averaged velocity will be

low. Although the basin-averaged sedimentation rate would

also be low, Noble's (1976) guidelines suggest that unde-

sireably low basin flushing conditions also would exist.

3. The vortex center migrates slightly downstream and inland as

the basin width increases. Increasing the relative entrance

width or increasing the basin length moves the center inland.

Increasing basin length moves the center upstream.

4. The distance measured parallel to the breakwater between the

vortex center and the maximum velocity vector, vm, appears to

be a measure of the angular momentum of the vortex and increases

as the relative entrance width increases. The distance measured

inland from the vortex center to the maximum velocity, um,

appears to be a function of the inner boundary influence,

increasing as the basin width increases for a given relative

entrance width.

5. The distances r
x
and r measured between the vortex center and

the maximum velocity vectors um and vm acting parallel to the

basin sides can be used as first-order estimates for the radius

of curvature in Engelund's (1974) equation estimating "rolling

dispersion": The use of this equation to predict the trans-

verse momentum dispersion coefficient produces values only one-

third as large as the values used'in this study. The effect

of this difference is not expected to be great since trial

computations showed the velocity field to be relatively

insensitive to the changes in the momentum dispersion coefficient.

The transverse sedimentation dispersion coefficient used in most of

this study is only one-four-hundredth of the Engelund estimate.
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The curves in Figure 5.33D should be used to correct the data

in this study if Engelund's estimates are adopted.

6. The basin-averaged velocity and the shear-driven circulation

are enhanced by increasing the relative entrance width, decrea-

sing basin width or, for basins with constricted entrances, by

decreasing basin length. For unconstricted entrance cases,

increasing basin length enhances the vortex circulation.

Basin aspect ratios (L/W) less than about 0.6 have undesire-

ably poor circulation conditions and should be avoided.

7. Sedimentation rates vary directly with marina entrance width,

the concentration of suspended sediment at the entrance boundary

and the transverse dispersion coefficient. Sedimentation also

varies inversely with the entrance boundary velocity, basin width,

and basin length.

8. Optimum vortex circulation for basins with constricted entrances

is achieved through the selection of a square planform with a

central entrance. The basin aspect ratio of unity, however,

yields the highest basin-averaged sedimentation rates for

given boundary conditions. Clearly, since changes in basin

length or width have opposite effects on these two parameters,

a case-specific compromise is required.

9 Deviations from a square planform decrease both the average

velocity and sedimentation rate. Increasing basin width has a

substantially greater effect on both parameters than that from

increasing basin length. Hence, any necessary deviation from

a square planform should favor aspect ratios (L/W) greater than

one.

10. For basins with aspect ratios greater than, or equal to unity,

a downstream entrance produces the minimum basin-averaged sedi-

mentation rate. For aspect ratios less than one, an upstream

entrance yields the lowest average rate. The basin-averaged

velocities for such aspect ratios are independent of whether

the entrance is upstream or downstream of the basin but eccen-

tric entrances produce a much weaker basin circulation than do

centralized entrances.
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11. Maximum sedimentation rates occur at the center of the pri-

mary circulation gyre or downstream of the marina entrance.

As the entrance boundary velocity is increased, the zone of

higher sedimentation rates is displaced downstream due to

the advective effects. Increasing the transverse dispersion

coefficient causes higher average sedirfientation within the

basin. Very strong transverse dispersion causes the higher

rates to occur in a semi-annual ring centered on the en-

trance. For very high entrance velocity conditions, the

high sedimentation zone corresponds to the center of the

circulation gyre.

12. For a given basin width and entrance width/basin length

ratio, increasing the basin length (and automatically the

entrance width) improves the overall circulation of the

basin without significantly altering the average basin

velocity.

13. Significant decreases in the basin-averaged sedimentation

rate do not occur for centrally-located entrances until the

breakwater constitutes two-thirds or more of the basin length.

Eccentric entrance cases are up to five times more sensitive

to entrance closure, however.

14. Multiple entrances are to be preferred since they provide an

improved velocity distribution within the basin than would

result for a single, equivalently-wide entrance. Because the

basin-averaged velocity is strongly dependent upon the total

entrance width, rather than on its distribution, the use of

multiple entrances does not significantly change the mean

basin velocity over that of the equivalent single entrance.

The average sedimentation rate varies directly with the

total entrance width and is relatively insensitive to the

distribution of that width.
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5.4 Utilization of Study Results

The use of these results requires that some characteristic

channel velocity and suspended sediment concentration be specified

along with the basin plan area, entrance width, basin depth, etc.

Figures 5.22 to 5.29 and 5.32 may then be entered and interpolated

to yield first-order estimates of circulation and sedimentation in

rectangular basins for various aspect ratios. Since the results

represent equilibrium conditions for given boundary conditions,

time-varying channel currents will need to be represented by

average velocities, the averaging time interval being problem-

dependent. For river floods, the velocity and sediment concentra-

tion may be averaged over the entire flood period or over some

shorter period. For tidal flows, natural averaging periods are

those of ebb and flood stages and the superposition and averaging

of the two resulting sedimentation fields may be taken as an

estimate of long-term sedimentation differences within the basin.

An example in Appendix C illustrates this procedure.

5.5 Recommendations

This study has considered the phenomena of shear-driven vortex

circulation and sedimentation in rectangular basins connected to a

waterway. From the consideration of the dependence of these phe-

nomena on basin and environmental parameters, the following design

recommendations are tentatively given:

1. A basin aspect ratio greater than unity should be used

to effect an optimum balance between basin-averaged sedi-

mentation rates and velocities. In no case should the

basin aspect ratio (L/W) be less than about 0.3 or greater

than about 2.0 since undesirable secondary vortices form

in the basin interior which adversely affect basin

circulation.
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2. Where single entrances are used, the entrance should be

centrally positioned in the breakwater if the marina site

lacks significant suspended sediment concentrations.

Such an entrance position maximizes velocities within the

basin.

3. Where sedimentation in the basin is expected to be a prob-

lem and a single entrance is to be used, the entrance

should be displaced either upstream or downstream of

the center of the breakwater, the amount depending on

the concentration of suspended sediments and on the channel

velocity. For basins with aspect ratios (L/W) greater

than or equal to one, the entrance should be in the down-

stream half (for tidal waters, in the "ocean-ward" half)

of the breakwater. For basin aspect ratios less than one

the entrance should be in the upstream half (for tidal

waters, in the inland half) of the breakwater. Such

placement of a single entrance will allow a compromise

to be struck between circulation and sedimentation rates

in the basin.

4. Multiple entrances are desirable since they provide an

opportunity to develop a through-flowing current. More-

over, the multiplicity appears to cause some entrances to

act as if they are effectively wider, thereby improving

basin circulation without significantly increasing basin

sedimentation.

5. Entrance or basin configurations that produce a parabolic

u/uo-versus-y/W curve are preferable to those producing an

exponentially decreasing curve since the former provides

improved circulation over the entire basin.

6. The parameter rx/L, where rx is the distance between the

vortex center and the maximum velocity, vm, acting parallel

to the upstream or downstream boundaries, is a convenient

measure of the momentum transfer efficiency of the entrance

configuration and of the circulation efficiency of the vor-

tex. Maximizing rx/L should minimize the number of
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circulation cells present and maximize the momentum ex-

change between basin and exterior waters. Future labora-

tory and field studies or recirculating flows in rectan-

gular basins should include the rx/L parameter in their

data acquisition and analysis phases.

7. First-order estimates of the gross characteristics of

circulation and sedimentation in rectangular marinas can

follow from the results of this study as illustrated

in Appendix C. Tidal conditions can also be approximated

if the tidal cycle is divided into flood and ebb stages

for which average velocities and suspended sediment con-

centrations at the marina entrance are known. Since the

analysis in this study did not consider tidal or density

circulation effects, Noble's (1976) guidelines regarding

marina flushing should be used jointly to warn of possible

undesirable flushing conditions.

8. Future investigations of basin circulation should include

tidal effects. A simple approach in extending the results

of the studies presented here would be to superimpose the

shear-induced velocity field onto either analytical or

numerical solutions for jet flow directed into or out of

the basin. More desirable would be the continued appli-

cation of numerical or physical models such as those of

Nece, et al. (1976) and Abbott (1977) which directly

consider the effects of entrance configuration and changes

in water depth. Whichever approach is adopted, field data

should be used for calibration purposes. Future investi-

gations of basin sedimentation should be conducted both

in the field and laboratory to improve our understanding of

dispersion in recirculating, shear-and tidally-driven flows.

The effects of secondary currents could also be evaluated.

9. The use of the alternative Rayleigh-Ritz formulation in

solving the sedimentation problem could result in the

more efficient and economical use of computer memory
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capacity. A three-dimensional or multi-layered, two-

dimensional model could then be formulated which more

accurately reproduces the circulation and sedimentation

processes, including the effects of secondary currents.
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APPENDIX A

Derivation of the Element Coefficient Matrix

The derivation of the element coefficient matrix is presented

here. This matrix is also called the steady state coefficient matrix

or the stiffness matrix. From Eqs. 5.4.7 and 5.4.10

[KJ {C)e .j( 1.[N]-1- [u '6 v '6] rt\11.1. D '6 D
ax ay ax x ax aY y ay

'6 ] dA

A

(A.1)
where

6

C .ENC
a a

a=1

and the quantity within the brackets is representative of each line

in the 6x6 matrix. Now

a .

aN

= (4L
I

1) S
Ij

(A.2)
1.I

171I

= 4Ljdvi + 4Leji (A.3)

where (5
Rm

is the Kroenecker delta function such that

if 2 # m

aim =
1, if Q = m

(A.4)

and N
1
is the shape function for the mid-side node opposite to corner

node I. Also

al.
I

b
I

ax 2A (A.5)

al.
I

a
I

ay 2A

where A is the area of the element

a
I
= X

KI
- X

JI

b
I
= Y

JI
- Y

KI

(A.6)

(A.7)

(A.8)
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APPENDIX A. (continued)

and the subscripts JI, KI indicate the J'th or K'th corner node ordered

with respect to node I, i.e., ordered counter clockwise from node 1,

with

aN
I

6 aN
j

E

1

(A.9)

j
ax aL. ax

= J

Then

Now

aN 6 aN
I

9L.

J
ay .

1
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J
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=
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br
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alW 2
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I 2 f,
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Ca ax Ca

,E 3 aN

aE
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aRa

ax

and
,E 3 [ aNa 3171a

3y El 3y Ca + ay Ca

Therefore
3

aC 1 )C ][(4L -1)b C + 4(ljabKa LKa bja+
ax cm a a a

aa

ay ;1 2A [(4La - 1)aaCa + 4(LjaaKa + LKaaja)Ca]

where J and K indicate the complimentary corner nodes to node a.

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
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Alternatively, at any point within the element

3 3

C =
aEl

Na Ca +FCaC
a
=EL(21 - 1)C + 4LL T:

= a=1
a J K JKa
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(A.19)

where

I identifies a corner node

J,K indicate the remaining corner nodes

CJKa is the concentration of the mid-side node between nodes J and

K, opposite node a.

and overbars identify mid-side parameters with overbars.

Eq. A.1 may be rewritten letting I be the matrix row and a the column

location

;NT J
[k _1{C.}e =)( [...(N

I
+ Dx t't+ (N

I
+ Dy ...] dxdy

u a A

for the corner nodes, i.e., for I = 1,2,3;a = 1,2...6 and for the

mid-side nodes, i.e., for I = 4,5,6; a = 1,2...6

[KIa](ca L

(A.20)

aTT
I aC I\ 3C

u + D
+ (N Iv

+ D ...] dxdy
I x Dx ax 1 y ay ay

(A.21)

Substitution for the gradients of C and of NI or NI above and subsequent

manipulation yield

[k ia]
{Ca} e' = -12A r...J C + ...1

L Ia a Ia a J

for corner nodes, I = 1,2,3; a = 1,2...6 and

[.klT ] {C le = 11-Tc I1
a a 2A '...-I-a

for mid-side nodes, I = 4,5,6; a = 1,2...6 where

(A.22)

(A.23)

(4L - 1)

jIa (0-1(2L, 1)(uba + vaa) + I

2A
(bIbaDx + aIaaDy].

A

(4La - 1) I dxdy (A.24)
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APPENDIX A. (continued)

7,a 4 ( LI(2L, - 1)[4u(LjabKa +
1 A

abja) + 4v(Ljaa + LKaaja)] +

4bD
A (L

4a
I
D

(4L1 -1)[
2A JahKa +

LKabja) +
y

2A
(LjaaKa+ LKaaJa)1 dxdy

(A.25)

2a
a
D
Z

Ia
=Jr [[4L

JI
L
KI

(ub
a

+ vaa) + -A- b Di((Ljibu + LKIbJI) +

(Ljou + Luaji)1(4La - 1) dxdy (A.26)

II
f[PLJILKiu + ;7(Lj...bKi L

KI4JI
)D 4LJa L

Ka
+LKa aJa )

A
2Dz

+[4LjILK, + 7.--(Ljou + Lmaji)] 4(LjaLKa + LKaaja)] dxdy

(A.27)

where double subscripts mk indicate that m is the m'th node ordered

relative to the Q'th node as described for the model triangular element.

Integrating eq. A.24 through A.27

-A
(uba + vaa) -

1
-(1DiibaDx a/aaDz), I # a

J (A.28)

16- (uba + vaa) + 12-(biba0 + aoaDz), I = a2A
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2
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a (A.29)
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and
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APPENDIX A. (continued)

T
Ia

where
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APPENDIX B. EMPIRICAL EQUATIONS FOR COMPUTING LONGITUDINAL TRANSVERSE AND VERTICAL DISPERSION
COEFFICIENTS.

Number Investigator Equation

1 Kolomogoroff (1941), 4/3 1/3
DL . cLa E

open channel flow

2 Taylor (1954), DL = 10.11 u*R
pipe flow

3 Aris (1954), D
L

supported Taylor's work constantuR*

4 Thomas (1958), D
L 7 3

u*

open channel flow u*H (T) .(n) + - 'P(n)
u

5 Elder (1959), DL = 5.93 uH
open channel flow

DT = 0.23 u*H

1/2R3/2
6 Parker (1961), DL= 14.28 (2gS)

open channel flow

7 Saffman (1962), DL
constant

supported Aris' work u*H

8 Krenkel (1962), DL = 9.1 u*H

open channel flow

9 Bowden (1963), DL = 0.15 UmaxH

natural streams
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Number Investigator Equation

10 Glover (1964), D
L
= 500 u*H

natural streams D
V
. 0.067 u*H

11 Yotsukura and Fiering
(1964), open channel DL = 13.0 u*H

flow (smooth)

12 Bowden (1965), DI = 5.9 u*H = 0.26 a for steady flows.

estuary and coastal flows Dr(oscilatory flow) = 1/2 DL (steady flow)

flows

13 Holley and Harleman (1965), D
L
= 77 n Amax Rh5/6

natural streams

14 Levenspiel and Smith (1966), l]L'
1/2

flow through tubes
D = ri [8(72 +
L 8

15 Hays (1966), D
L
= 6.39 H

1.24
E
0.3

open channel flow

16 Thackston (1966), ,TL1/4
natural streams

DL = 7.25 u*H c
u*/

17 Cederwall (1967), D = (u'2)1/2

supported Taylor's work

18 Stiger and Siemons (1967), D
L

= 13,000 (1 - f-323

natural streams



APPENDIX B. (continued)

Number

19

20

21

22

Investigator Equation

Fischer (1967),
natural streams

Sooky (1969),
open channel flow

Holley, et al. (1970),
oscilatory channel flow

Bansal (1971),
natural streams

DL = Affil{Or 1
Eyd(d)

brjrd undzdyjdyldA
o o

D
L u

0.30 (112(b)2
R

D
L 1

= K! + K' + K"

in which: K!= 0.222 u* Hm a
k3a

K' = aK"
1

K' = -§- ku*Hm

u" 2
DT = 0.16(T0 u*H

v, DI

log10 (K \-72-
)

= 6.45 - 0.762 log
(r)

ve DI

log10 (K TI2t) 6.467 - 0.714 log10 012A

Du
vH

1°g10
(-;1-) = - 8.1 + 1.558 log (7-)
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Number Investigator Equation

22 Bansal (cont.)

23 Cristodoulou, et al. (1974),
Massachusetts Bay

24 Ouellet and Cerceau (1975),
St. Lawrence Estuary

_25 Vrengdenhil and Voogt (1975),
Estuaries

26 Abbott (1977),
open channel

DV

1"10 (77)
DT

log10=
D

log10 (-40-

A/TDL

DL = 77 n R5/6 i

-8.08 + 1.89 1og10(441)

-3.597 + 1.378 1og10(B /H)

2.698 + 1.498 logio(B/H)

fps system

0.07 Jul H
uL

82] CVH
Dadvective 2

c3 112
=

/

rolling 18 r

\ u
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APPENDIX C

UTILIZATION OF STUDY RESULTS

Figures 5.1 to 5.32 may be used to estimate the gross circulation

and sedimentation characteristics of marina basins that are roughly

rectangular in planform, have aspect ratios (L/W) between 0.3 and 3.0,

an entrance width/basin length ratio (We/L) between 0.11 and 0.33, and

have single entrances approximately 66 m wide. The effects of wider

or multiple entrances can be assessed in some instances. Figures 5.1

to 5.21 may be interpolated for a particular basin aspect ratio (L/W)

to yield an estimate of local non-dimensionalized velocities and sedi-

mentation rates. Dimensionalized quantities are obtained by multiplying

the local non-dimensional speed, 2 v2/u0, by the entrance velocity,

u
o'

and the local non-dimensional sedimentation rate, S/u o
C
o'

by the

entrance velocity and entrance boundary suspended sediment concentra-

tion, C
o'

for cases where C
o

is less than 3x104kg/l. In the event

that C
o

exceeds 3x10-4kg/1, S/u
o
C
o

should be multiplied by Col
/3

rather than C
o

. Figures 5.22 and 5.32 may be interpolated to yield

estimates of the basin-averaged circulation speed and sedimentation

rate as well as the percent of basin area having a particular range of

circulation or sedimentation rates. Figure 5.32D can also be used to

adjust'the sedimentation estimates for entrance boundary velocities in

excess of 0.15 m/s or for increased transverse dispersion effects (see

Section 3.5). The following examples illustrate the use of the results

of this study.

A. Uni-directional steady or slowly-varying channel flow

A 370m by170 m small-boat basin is to be constructed along a river

with the longer dimension parallel to the channel. Stream veloci-

ties and vertically-averaged suspended sediment concentrations are

about 0.5 m/s and 103kg/l. It is desired that circulation within

the basin be optimized and that sedimentation rates be estimated.

Using a single entrance, optimum circulation will result if

the entrance is centrally located in the breakwater. Its width

will be determined by navigation requirements. Figure 5.14 pre-

sents the non-dimensionalized velocity and sedimentation fields in



157

plan view for a single centrally-located entrance and curves C4X2

and C4X2V50 of Figures 5.23A and 5.32D, respectively, indicate the

relative area contained within each isopleth of Figure 5.14.

Dimensionalized velocities are recovered by multiplying 42-1-v2/u0

by u0=0.50 m/s but since the channel suspended sediment concentra-

tion, C
o'

is greater than 3x10-4kg/1, the dimensionalized sedimen-

tation rate is recovered by multiplying S/u
o
C
o

by u
o
C
o
7/3 wherein

the dimensions of Col
/3

remain M/L3. Thus, the basin-averaged

circulation speed will be about 0.02 x 0.05 m/s or 0.01 m/s and

the mean sedimentation rate about 5.5x10 8x 0.5 m/s x (103kg/1 x

1031/m3)7/3 or 2.8 x 103kg m2s1. Assuming a bulk density of

1.2 x 103kg/m3 for the semi-consolidated sediment, then the basin-

averaged shoaling rate would be about 8 x 104m/yr.

If Engelund's (1974) transverse dispersion coefficients are

adopted, the sedimentation rates will be higher than indicated

above. From Figure 5.32D, the average sedimentation rate increases

approximately 10% per order of increase in the transverse disper-

sion coefficient, relative to the values for case C4X2. Assuming

that such behavior is independent of the magnitude of the velocity,

the sedimentation rates of Figure 5.146 may be increased about 14%.
_8

Thus, the basin-averaged sedimentation rate will be about 3.2x10

kg m2s-1 and the shoaling rate will be about 9x104m/yr.

For comparison, if a single entrance is located at the down-

stream end of the breakwater, the sedimentation rate will be mini-

mized but the circulation will be weaker than for a centralized

entrance. The velocity field is given by Figure 5.16A and dimen-

sionalized velocities are obtained by multiplying the values shown

by 0.50 m/s. Curve D4X2 of Figure 5.25A indicates that the basin-

averaged velocity will be very low, about 0.002 x 0.50 m/s or

0.001 m/s, an order of magnitude lower than for a centralized

entrance. Assuming that increases in the entrance velocity or

transverse dispersion have similar effects for eccentric entrances

as for centralized entrances, Figure 5.32D indicates that the basin-

averaged sedimentation rate should be decreased about 65%. Thus,
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the value of 0.35 from curve D4X2 of Figure 5.32B is reduced to

1.2x109or about 6x101° kg m2s1 which is approximately two

orders lower than for the centralized entrance. An intermediately

positioned entrance will presumably produce correspondingly inter-

mediate circulation and sedimentation characteristics. The exact

position of the entrance will generally be determined by the dis-

position of docking and berthing facilities and navigation

requirements.

B. Tidal Flow

An 800 m by 400 m basin is to be situated on a tidal channel

where the maximum flood and ebb currents are respectively about

- 0.50m/s and 0.70 m/s, positive values indicating flow towards

the ocean. The longer basin dimension is to be oriented parallel

to the channel, suspended sediment concentrations average 10-4kg/l.

Estimates of the mean circulation and sedimentation characteristics

for various entrance configurations are desired. Two alternative

configurations are considered, first, a single centrally-located

120 m-side entrance and second, two 60-m entrances symmetrically

disposed about the center of the breakwater.

The flood and ebb stages are considered separately, the

analysis proceeding similar to that of the preceeding example.

Estimates of circulation and sedimentation are thus obtained for

each tidal stage. Finally, these values are averaged to provide

estimates for the complete tidal period. It must be remembered,

however, that the results of this study do not take into consider-

ation the effects of tidal filling and emptying of the basin and

hence only provide order-of-magnitude estimates.

Assuming a simple sinusoidal tide curve over each tidal stage,

the stage-averaged entrance boundary velocity, uo, will be one-

half the stage maximum. For the case under consideration, the

stage averages are -0.25m/s and 0.35m/s. For a single, centrally-

located 120m-wide, entrance Figures 5.17 and 5.25A (curve CE4X2)

describe the circulation characteristics under steady flow con-

ditions. If Figure 5.14 with channel flow from left to right
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represents flood conditions, the values shown are multiplied by

the mean flood velocity, in this case -0.25 m/s. The mirror

image of Figure 5.15 then represents the ebb condition and

the values shown should be multiplied by the mean ebb velocity,

0.35 m/s. The summation and averaging of the magnitudes of the

dimensionalized ebb and flood velocities at each point yields an

estimate of the velocity averaged over the tidal cycle. Such

a procedure ignores the effects of filling and emptying of the

basin and thus does not take into account the partial isolation

of basin waters from entrance shear effects during the basin-

emptying stage. Average ebb-stage circulation may be weaker

or stronger than predicted by the methods employed here,

depending on the strength of the flood-induced circulation.

Curves CE4X2 in Figures 5.25A and 5.25B are treated in a

similar fashion. The basin-averaged non-dimensionalized circu-

lation speed is about 0.07 which gives average flood and ebb

speeds of 0.018 m/s and 0.025 m/s, respectively, which when

averaged give a tidal-mean circulation speed of about 0.021 m/s.

The basin-averaged non-dimensionalized sedimentation rate for

steady flows with Li() equal to 0.15 m/s is about 1.75x107: This

mean sedimentation rate must be adjusted for the effects of

entrance boundary velocities different from that used in this

study, i.e. 0.15 m/s in most cases. Interpolating between

curves C4X2 and C4X2V50 of Figure 5.32D indicates that the basin-

averaged sedimentation rates should be lowered about 18% and 36%,

respectively, for the flood and ebb stages. The dimensionalized

sedimentation rates for each tidal stage are then obtained by

multiplying by the product of the entrance boundary velocity and

the suspended sediment concentration. (If the suspended sedi-

ment concentration had been greater than 3x104 kg/1,Co
7/3

would

have been used rather than C
o
.) The respective flood and ebb

values are then about 1.43x107 kg M2S1 and 1.12x107kg m2s1.

Averaging these rates gives a tidal-mean sedimentation rate of

1.28x10-7kg m-2s-1 or, using the semi-consolidated sediment
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density of 1.2x103kg/m3, the average shoaling rate will be about

3.4x103m/yr.

An alternate basin design is shown in Figure 5.18 with two

66 m symmetrically-disposed entrances. The analysis proceeds

as described above, the values in Figure 5.18A and its mirror

image being multiplied by the mean ebb and flood channel velo-

cities. Summing and averaging these values at corresponding

points provides an estimate of the tidal-mean circulation field.

Figure 5.25A, curve UD4X2, indicates a basin-mean velocity of

about 0.085 that is 21% greater than for the single, centrally-

located entrance. Uncorrected mean flood and ebb velocities

are then about 0.022 and 0.029 m/s and the tidal-mean velocity

is about 0.026 m/s.

Basin-averaged sedimentation rates for this configuration

are essentially identical to those of the single entrance

cases (Figure 5.25B) but their spatial distribution is of

course different. If the values in Figure 5.188 and its mirror

(ebb) image are decreased 18% and 36%, respectively, to adjust

for the differences in modeled and prototype entrance velocities,

the average of the values in the two figures will yield an

estimate of the spatial distribution of sedimentation rates.

Again, ebb conditions in the prototype may differ from that

assumed here.


