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ASYMPTOTICALLY COMPACT OPERATOR APPROXIMATION
THEORY

I. INTRODUCTION AND SUMMARY

Asymptotically compact sequences of operators

arise from the approximate solution of differential

and integral equations. Motivated by such problems,

we study linear operator equations

(1.1) (I-K)x = y , (I-Kn)xn = y , n = 1,2,3,...

in a Banach space X , where Kn K pointwise and

{Knl is asymptotically compact, i.e., if the sequence

of points {xn} is bounded, then each subsequence of

{Knxn} has a convergent subsequence. If each Kn
is

compact this reduces to the more fully studied case

with {KnI collectively compact. The collectively com-

pact case is typified by numerical integration approxi-

mations of integral equations with continuous kernels.

Weakly singular kernels lead to asymptotically compact

operator approximations. We extend much of the theory

for the collectively compact case to the asymptotically

compact case. In particular, I-Kn satisfies the Fred-

holm alternative for all n large enough, and

(I-Kn)-1 (I-K)-1 on X

with practical error bounds, whenever (I-K)-1 exists.

There are implications for spectral properties of K



and
Kn. The analysis is based on the use of converg-

ence and compactness concepts for sequences of sets as

well as a convenient measure of noncompactness defined

for bounded sets. Definitions of these concepts along

with their associated consequences and mutual relation-

ships are presented in Chapter II.

To begin Chapter III we review some basic facts

about contracting, compact, and semi-Fredholm operators.

The majority of the chapter is devoted toward discussing

bounded, linear operators on X which diminish some

measure of noncompactness, the so-called condensing op-

erators. Special cases include contracting and compact

operators. It is shown that if T is condensing then

I-T satisfies the Fredholm alternative. The chapter

concludes with some spectral properties of T which

depend on the measure of noncompactness of T . These

results are generalizations of the classical situation

- when T is compact, that is, the measure of noncompact-

ness of T is zero.

In Chapter IV we turn to the study of operator

approximations. Coupled with a Fredholm alternative

for condensing operators, the set convergence and com-

pactness concepts of Chapter II provide efficient proofs

of results concerning the mutual (unique) solvability

of the equations (1.1) as well as the convergence
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-1
(I-Kn)

+ (I-K)-1 (with practical error bounds) when

the latter inverse exists. Finally, an example involv-

ing the approximate solution of a weakly singular

integral equation is given.

It is very tempting, even on the basis of the ter-

minology alone, to want to view asymptotically compact

sequences as sequences of "almost" compact operators.

The fact that the collectively and asymptotically com-

pact approximation theories are virtually identical,

along with the known examples (cf. Chapter IV), serve

to strengthen this view. Thus, we have the conjecture:

{Kn
asymptotically compact

Kn=Ln+Tn , {Lil} collectively compact , ilTn114-0 .

The principal result of this thesis proves this con-

jecture for a large class of spaces, which includes

those of practical interest.

3



II. PRELIMINARIES

1. Sequences of Sets

In this section we capuslize the set theoretic

concepts and results needed in later chapters. The

main emphasis revolves around the characterization of

discretely compact sequences in two ways, in terms of

set convergence and in terms of asymptotic total bound-

edness. Applications to linear subspaces will be

particularly important.

Let (X 0) be a metric space. Elements and sub-

sets are
xn
,xEX, Sn

,ScX where

n E N = . Denote infinite subsets of

N by N' , N" , etc. Our first definition generalizes

point convergence.

Definition 2.1.

For ScX, e> 0 , an E-neighborhood ofS is

defined by

QE(S)
= U {x EX: p(x,x1) < E} if S 0

x'ES

and S26(0) = 0 The sequence {Sn: n E 1\1} is said

to converge to S if V > 0 =]n(E) E N such that

Sn
C

Qc(S)
whenever n > n(E) , in which case we

write
Sn

S .

These limits are not unique.

4



(2.1) Sn + S C S'
Sn

S

Other immediate consequences of the definition are:

(2.2)
Sn
+5, S' c

Sn
S' + S ,nn

(2.3)
Sn

+ 0 Sn = 0 \in large,

(2.4) Denote the closure of S by S. Then

Qc
(S) = Q (g) VE > 0 ,

E

-(2.5) Sn + S Sn +g gn+S Sn + g .

The union of a fixed set and a convergent sequence is

easily handled:

(2.6) S' c x, Sn +S Sn u S' S u S'

The above is a consequence of

(S U S') D (S) u S' Ve > 0 .

Assertion (2.6) does not hold with union replaced

1by intersection. For if S = [-1-, 2 + 171-- ] , S = (0,2)

are real intervals, and St = {0,2} then Sn + S but

Sn
n S = S' -7'-> s n s' = 0 . However, note that

Sn
n s' S' . In fact, one can show Sn S

S' compact imply Sn n s' S n S' by using only the

notion of set convergence. Though the proof is not

difficult, we shall obtain the desired result as a con-

sequence of the related idea of discretely compact

sequences, which we define next.

5



Definition 2.2.

Define the cluster point sets:

Ixn
= fx e X: xn x, n E N/1

ISn
= Ix E X: xn x,

xn
E Sn, n E N/1 .

The sequence Ixn)- = Ixn: n E N1 is d-compact (dis-

cretely compact) if each subsequence has a convergent

subsequence, i.e., Ixn: n E N/1 0 0 C N .

Analogously,
{Sn1

is d-compact if

{Sn: n E N/} 0 0 VWC: N such that
Sn 0 0

n e N'

It follows that the cluster point sets {xil} and

ISn
are closed. Moreover,

(2.7)
_ *

ISn = ISn

{s} ISn1
d-compact,

* _
(2.8) Sn 4- S {Sn}C S,

*
(2.9) {Sn

S} c {Sn}
n S.

The notions of d-compactness and the aforementioned set

convergence are related:

Theorem 2.3.

{S} Sn-+ {S} ISn1
compact.

proof: N) Suppose Sn {Sn
. Then

6



-Ae > 0 , N' c N , x
Sn such that

0

dist(x ,{S } ) > > 0 , nENT . Now
n n = 0

{S} d-compact 3 N"C N' , XE X such that

xn
4-x,neN" . Necessarily,xe{Sn} , which is a

contradiction. To show {Sn} is compact choose

{xm: m E N} c
{Sn}

. Then for each m there is an in-

teger nm > nm-1 (take no = 0) and an element

xnmE Sn such that

(2.10)
p(xnm,xm)

0 , m E N .

The d-compactness of {Sil} produces a convergent sub-

sequence of {xn } , say {xn : m E N" C N} . It

follows from (2.10) that fxm: m E N"} must have the

same limit as {xn
: m E N" } Therefore,

{Sn}
is

compact.

(=) Choose any subsequent {xn E Sn: n E Nil .

Then
Sn {Sn}

implies dist(xn,{Sn} ) 0

n E N' . Since
{Sn}

is compact, there are elements

xn E {Sn}* so that p(xn,xn) = dist(xn'{Sn}*) 0

n E N' and there exists a convergent subsequence of

fxn: n E NI} . Hence, {xn: n E Nil has a convergent

subsequence as well and the theorem is proved.

Corollary 2.4.

7
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closed set S such that
Sn

S.

proof: Sn {Sn
by Theorem 2.3. By (2.8),

{Sn
c S for any closed set S such that

Sn
S .

Corollary 2.5.

Let
Sn

S and S' be compact. Then

-S n S' S n S' .

proof: Since S is compact the sequence {Sn n S'}

is d-compact. By Theorem 2.3, (2.8), and (2.9) we

obtain

S n S'
{Sn

n S'}* c {Sn}* n s' c n S'

as desired.

Remark: The closure of S is needed. Refer to example

on page 5.

The next theorem characterizes a sequence of sets

which is, in some sense, a uniformly relatively compact

sequence as a d-compact sequence of relatively compact

sets.

Theorem 2.6.

uS =ug u {S n}* and uS compact {Sn} d-Nn Nn N n

compact,
Sn

compact

proof: The containment uSn D U
{Sn}

is obvious.

Since closed subsets of a compact set are compact, We

have Sn compact \fn when
uSn is compact. Moreover,

8



{Sn1
is d-compact whenever uSn

is compact since each

subsequence {xn e Sn: n E NI} is contained in uSn .

To show both the other containment and implication, let

{xm: m E N} be any sequence out of uSn
and suppose

xm x . If
{xm}

is contained in a finite union of

the sets Sn then x E USn . If not, then x e {Sn}

and the desired inclusion follows. Now suppose that

Sn is compact 'sin and
{Sn}

is d -compact. If
{xm}

is contained in a finite union of the setsn then the

compactness of such a union produces a convergent sub-

sequence. If not, then -AN' such that xm e Sm

M E N' . Then the d-compactness of {Sn} produces a

convergent subsequence.

For our purposes it will be more useful to char-

acterize d-compactness by an asymptotic version of

total boundedness when X is complete.

Definition 2.7.

{Sn}
is asymptotically totally bounded if > 0

n E N such that U S has a finite E-net (in X) .

n>n nE

Theorem 2.8.

{S} d-compact {s } asymptotically totally

bounded. The converse holds if X is complete.

proof: ( ) We have Sn {Sn} and {sn}compact
by Theorem 2.3. Then {Sri} is totally bounded, i.e.,

Ve > 0 3finite set S C X such that {S} C 0 (S )

n
.

£

9



The set convergence Sn implies that E]ri e N

such that n > n6 Sn c 06({Sil} ) . Hence,

u s C2c(S) . Therefore,
{Sn}

is asymptoticallyn>n n

totally bounded.

(4--) Assume X is complete and {Sn} is asympto-

tically totally bounded. Then for each mE N a

finite set sm C X and an integer nm
so that

n>nm n 2-m
uScst (Sm) . Choose any subsequence

{xn
E

Sn:
n e N'} . Then there is an infinite set

N1 C N' and an element 171 E S1 such that

xn
E Q -(y )Vri. E

N1.
Furthermore, -AN2 c

N121 1

y2
E S2 such that xn EQ-2(y2) Vn E N2 In this

2

way, we recursively obtain for each mE N infinite

sets Nmc Nm-1 (take N0 = N) and elements ymE SM

such that xnE 0 (y ) Vn E N . For m E N choose-m m m
2

n e Nm so that nm > nm-1 (take n = 0) . By con-m 0

struction, k < m
nk

, nm E Nk , and consequently,

p(xx ) < p(x ,ky ) + p(yk,xn
m)nk nm nk

< 2-k + 2-k = 21-k

Therefore, {xn } is Cauchy and must converge since

X is complete.

We now impose a linear structure on X and indi-

cate how d-compactness and the associated set converg-

ence combine via Theorem 2.3 to establish results

_
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comparing the dimensions of various subspaces of X.

To this end, let En ,E,FcX be linear subspaces

of the normed linear space (X
' )

Denote the unit

sphere in X by U = {x E X: 11x11= 1} . Note that

{En} is a closed subspace of X.

Theorem 2.9.

{En
n U} = {En} n U .

{En
n U} d-compact dim {En}* <

proof: (a) (C) This follows from {En
fl U} C

{En}

and the fact that the norm 1111 is continuous.

(D) Let x e {En}* n U. Then ]1\11

xnEEn such that
xn

. We may choose
xxn n

each x * 0 . Then --. EE nU and x
xn

n e N' . Thus, x E {En n U} .

(b) Recall that if E is a linear subspace

of X then dim E < 4==> E n U is compact (see e.g.

Schechter [34] pp. 84-860). By Theorem 2.3 and (a) we

have {En} n U compact when {E} d-compact. This

proves the assertion.

Lemma 2.10.

Let {En}
C E and suppose that either dim F <

or {En n U} d-compact , F closed . Then

E n F = {0} En fl F = {0}Vn large.

proof: Either assumption gives {En n F n U} d-compact .

11



By Theorems 2.3 and 2.9 , and (2.9) , we have

En
n F n U {EnnFn U} cn} nFnU .

Thus, EnnFnU-+EnFnU. But EnFnU= 0
and so (2.3) implies that En n F n U = 0 \in large .

Therefore, En n F = {0} Vn large .

The last few results culminate in a theorem which com-

pares the dimensions of subspaces.

Theorem 2.11.

Let {EnnU} be d-compact, {En} c E . Then

dim En < dim E \in large . In particular,

dim E < dim {E} < \in large .n= n

proof: There is nothing to prove if dim E = .

Assume dim E < co It can be shown that X can be

written as the direct sum E F, F a closed subspace

(see e.g. Taylor and Lay [39] p. 247). By Lemma 2.10,

Enfl F = 0 Vn large . Consequently,

dim E dim E Vn large . The last assertion follows
n

from Theorem 2.9(b).

The above theorem allows us to compare, in the con-

text of operator approximations (:cf. Chapter IV), num-

bers of linearly independent solutions between the lin-

ear operator equations Ax = 0 and Anxn = 0 by setting

E = nullspace of A , and En= nullspace of A.

Discretely compact sequences and the associated

12



set convergence have been used in conjunction with non-

linear operator theory by Anselone and Ansorge [3].

2. Measures of Noncompactness

Let (X p) be a complete metric space.

Definition 2.12.

For S c X bounded, define

a(S) = inf {e > 0: S C U
Uk

with diam Uk < .

finite

a is the Kuratowski measure of noncompactness.

Then

(2.11) 0 a(S) = a(g)

(2.12) a(S) = 0 g compact

(2.13) S C U a(S) < a(U)

(2.14) a(S u U) = max{a(S) , a(U)1

(2.15) a(S n U) < min{a(S) , a(U)1 .

Kuratowski [25] uses a to show that if {Sil} is a

decreasing sequence of nonempty, closed and bounded sub-
CO

sets with a(S) + 0 then0OnSn1 is compact.
= n

Now suppose (X,P1) is a Banach space. Then

(2.16) a(S + U) < a(S) + a(U) , any S , U c X

(2.17) a(XS) = Ala(s) , A complex .

13



If convS is the closed convex hull of S, Darbo

114 has shown that a(conv S) = a(S) . We shall not

need this result.

Definition 2.13.

For S C X bounded define the Hausdorff measure of

noncompactness of S by

X(S) = inf {e > 0: S has a finite c-net in X} .

It follows that x enjoys properties (2.11)-(2.17) along

with a.
The above definition was given by Goldenstein, Goh-

berg, and Markus [16]. The terminology is motivated by

the following observations. For xEX,r> 0 , set

B(x,r) = {x' E X: ilx-Xlil < r} . Define d(S,U) = inf

{r > 0: S cU + B(0,r)} , and set

D(S,U) = max fd(S,U) , d(U,S)} , the Hausdorff metric.

If F = {U X: U 0 , 5 compact} then for

S c X bounded

X(S) = inf D(S,U)
UEF

See llama's and Goebel [9] for details and further

properties.

The measures a & x are related. It is an easy

exercise to show

(2.18) X(S) < a(S) < 2 x (S) .

14
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In a linear setting X is often easier to use. For ex-

ample, if B = B(0,1) and dim X = co , then it re-

quires substantial work to show a(B) = 2 (see Funi

and Vignoli [19) while the proof of X(B) = 1 , given

below, is easy.

Theorem 2.14.

X(B) = 1 whenever dim X = co .

proof: Clearly X(B) < 1 . Assume X(B) < 1 . Then

]] E (0,1) and U = x1,... ,x} c X such that

B C
LJ1 B(xk

= U + eB.k=

Hence, X(B) < X(U) + EX(B) = Ex(B) and therefore

X(B) = 0 , a contradiction to dim X = co

Remark: Goldenstein, Gohberg, and Markus [16] have ob-

tained formulas for X in various Banach spaces. For

example, if X has a basis {eklZ=1 , i.e. for each

X E X there is a unique sequence of scalars 1k-k=1

such that x = lim E
k=1 k ek

then for bounded

S c X

linf suplQx1 X(S) < inf sup 1Qx 1
a n xES n n xes

where Qn are the bounded linear projections given by
n-1

lim
Qnx =x- kE1 k aek ' anda= n+. en"

. Though in=

general the above bounds are sharp, if a = 1 then

X (S) = lim sup II Qn xil .

n+co xES



In particular, if ek = (Ski) and

X =
c0,

t (1 < p < then, respectively,p

X(S) = lim sup max I kl
xES k>n

and

)1/p
X(S) = lim sup Eklp

n+,2. xES k=n

Also shown is that for X = C[0,11 thenI1max
f(t1)-f(t2)

1 lim sup
-)

X(S) = 2 n fES Itl-t41 6:
[(),1)

6.4,

t t
1' 2

Contained in Banas and Goebel is a generalization to

C(U,p) where (U,p) is a compact metric space.

The next result is a direct application of the

definitions.

Theorem 2.15.

{Sn} asymptotically totally bounded

x (.0

S >0 as n .

3>n 3

Corollary 2.16.

iSn1
d-compact x (Us .) , 0

3 3>n

conversely if X is complete.

proof: Use above theorem and Theorem 2.8.

16



It immediately follows that X(S) + 0 when {Sn} is

d-compact. That X(S) + 0 is not enough to guarantee

{Sn}
is d-compact. Simply take

Sn = (2n, 2n+1] c R = 1,2,... Then X(S) = 0

but
{Sn

is not d-compact.

Theorem 2.15 forges the vital link relating asym-

ptotically compact (or collectively compact) sequences

of operators of Chapter IV to the theory of condensing

operators which are defined in the next chapter.

The literature regarding measures of noncompact-

ness is extensive. An axiomatic treatment, along with

detailed bibliography, is given by Bar-16s and Goebel

[9].

17
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III. OPERATOR THEORY

1. Operator Fundamentals

The definitions and results given in this section

set the stage for the remainder of this thesis. Ideas

which will be used later are presented. In most cases

proofs are not given. The reader is encouraged to

consult any of a number of standard texts (e.g.,

Schechter [34], Taylor and Lay [39], and Yosida [48]).

Let (X,0-.I) be a real or complex normed linear

space with B = {x E X: IxI < 1} , the closed unit ball.

The linear space of bounded (linear) operators T: X X

is denoted by [X] . It is equipped with the usual

operator norm, 11Th = sup {11IxI : x E B} . When

X is complete than so is [X] . Let

N(T) = nullspace of T = {x E X: Tx = 0}

R(T) = range of T = TX . If N(T) = (01 then T is

one-to-one and onto its range. In this case there is

an operator T-1 R(T) X so that

T-1Tx = x Vx E X , TT-ly = y E R(T) . We shall

call T-1 the inverse of T. Note that T-1 may not

be defined on all of X.

Recall that U = {X G X: b0 = 1} . Then

(3.1) dim R(T) < TU compact

(3.2) ]]T-1 N(T) = {0} 0 TU

(3.3) 3T-1 bounded 0 V TU



(3.4) TU closed, ]T-1 ' T-1 bounded.

7 -1
(3.5) Let :3T . Then T-1 bounded <=>

R(T) closed.

If E is a linear subspace of X , then a linear oper-

ator P: X -4- X is a projection of X onto E if
2

P = P and R(P) = E . Then X = E N(P)

Px =x\ixEE, Q=I-P isaprojection of X

onto N(P) , and E = N(Q) . If P is bounded, then

E and N(P) are closed.

Lemma 3.1.

dim E < co ' abounded projection of X onto E .

proof: See Taylor and Lay [39] p. 247.

Thus, if dim E < co there exists a closed subspace F

so that X = E F . The next theorem incorporates most

of the preceding results.

Thebrem 3.2.

Let dim N(T) < co . Then there exists a closed

subspace F of X such that X = N(T) S F . Let

TF:
F R(T) denote the restriction of T to F .

-1 -1
ThenF R(T) = R(T ) , and

R(T) closed T-1 bounded .

Let P be the projection of X onto N(T) . If

Q = I - P , then R(P) = N(T) , R(Q) = F , TP = 0

and T = TQ = TFQ .

19
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Now let X' be the conjugate space of X , i.e.,

the (Banach) space of bounded linear functionals on X .

Then T E [X] gives rise to T' e [X'] , called the

conjugate of T , defined by (T'f)x = f(Tx) , f E X'

x E X . Let X" = (X')' and T" = (T')' . Then X

can be isometrically embedded into X" by J: X -4- X"

defined by (Jx)f = f(x) , xEX, fEX' , and

JT = T"J .

Define a(T) = dim N(T) and

f3(T) = dim (X/R(T)) = codim R(T) .

Remark: When R(T) is closed and T) < , it can

be shown that f3(T) = dim N(T') .

Then

(3.7) a (T) = 0 ] T-1
(3.8) f3 (T) = 0 <=. R(T) = X .

Clearly, T is bijective if and only if a(T) = 0
(3(T) = 0 . The next definition essentially gives a

measure of how far a given operator is from being bi-

jective.

Definition 3.3.

The index of T is defined by

ind(T) = a(T) - f3(T)



when the right side is well-defined.

We state an important property of the index.

Theorem 3.4.

Let T, L E [X] have finite index. Then so does

TL , and

ind(TL) = ind(T) + ind(L) .

proof: See Schechter [34] pp. 111-113 or Taylor and

Lay [39] pp. 253-254. II

2. Contractive and Compact Operators

In this section we primarily review the highlights

of the Riesz-Schauder theory for compact operators.

Contractive operators are mentioned for two reasons.

-1First, the fact that (I-T) G [X] if T is con-

tracting is needed to prove the stability of the index

under small perturbations. Second, contracting oper-

ators provide, in some sense, one edge of a spectrum of

operators, with the compact operators at the opposite

edge and the condensing operators somewhere in between.

No proofs are given. In almost every case generalizations'

will be presented in the more general situation when

the operators are condensing.

21

Definition 3.5.

T E [X] is contractive if M < 1 .



If T is contractive, it is well known that

E [X] given by the Neumann expansion

(I-T)-1 = k0! Tk=

Definition 3.6.

K e [X] is compact if S C X bounded implies

--
KS compact. Equivalently,

K compact {Kxn}d-compact V{xn} bounded

X(KS) = 0 VS bounded .

It suffices if S = B .

Examples.

dim R(K) < co K compact .

Let X = C[0,1] = continuous scalar-valued

functions on [0,1] with norm Lx1 = max lx(t)1 . Let
0<t<1

k(s,t) E C([0,1] X (0,1]) . Then the integral operator

on C[0,1] defined by

1
(Kx)(s) = fo k(s,t) x(t) dt , 0 < s < 1

is compact. Using numerical intergration implies that

the approximate operators

(Kx)(s)=.Ew.k(s,tix(t , n G N
3=1 n3 nj n3

are each compact (being finite dimensional). Here,
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e

the (real or complex) weights. For example, using the

rectangular integration rule gives tnj = j/n wnj = l/n .

In Section 11.1 it was stated that if F is a sub-

space of X then dim F < F n U compact. The

next lemma, due to Riesz, provides a contrapositive

argument that F n U compact dim F <

(dimF< FnUcompact follows from the Heine-Bor-

el Theorem).

Lemma 3.7. (F. Riesz)

Let F 5 X be a closed linear subspace. Then

V 6 E (0,1)3x e U such that ilx - Y > 1 - eey E F .

If dim F < co we may take E = 0 .

proof: See Schechter [34] p. 86 or Taylor and Lay: [39]

p. 64.

It immediately follows that

(3.9) I compact dim X <

Since N(I-K) = (x E X: Kx = xl , we obtain

(3.10) K compact a(I-K) < CO

We shall obtain another proof of (3.10), as well as the

fact that R(I-K) is closed when regular operators are

considered in Section 4.

To conclude this section we list some standard



results, all of which will be extended to the case when

the operators are condensing instead of compact (cf.

Section 5).

Theorem 3.8. (Schauder)

K compact '= K' compact.

Corollary 3.9. (Fredholm alternative)

K compact ind(I-K) = 0 .

Thus,

-1
3(I-K) R(I-K) = X (I-K) E [X]

dim N(I-K) = codim R(I-K) = dim NNI-K) < cc,

Moreover, all of the above assertions hold with I re-

placed by XI , X00ascalar.

Remark: The eigenvalue x = 0 is exceptional since

-AK-1 E [X] dim X < 0. by (3.9).

Theorem 3.10.

If K e [x] is compact, then the set of eigenvalues

form either a finite set or an infinite sequence which

converges to zero.

3. Fredholm and Semi-Fredholm Operators

Fredholm operators are generalizations of the pro-

24

totype I-K , K E [X] compact. Fredholm operators have
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a finite index. Thus, they are important from the stand-

point of solving operator equations. In this section

Fredholm operators are characterized and a stability

theorem on the index is proven.

Definition 3.11.

T E [X] is called a Fredholm operator (Fredholm

for short) if a(T) < co, < = . If T has closed

range and either a(T) or T) is finite, then T

is a semi-Fredholm operator.

Motivated by the solution of operator equations, we

shall be particularly interested in Fredholm operators

of index zero. For if T is Fredholm and ind(T) = 0 ,

then T satisfies the Fredholm alternative (cf. Corol-

lary 3.9).

Remark: Any bijective operator is Fredholm of index

zero.

Next, we prove a few facts about Fredholm operators.

References include Caradus, Pfaffenberger, and Yood

[10]; Kato [24], Pietsch [32], Schechter [34]; Taylor

and Lay [39].

Theorem 3.12.

T E [X] is Fredholm iff

T0 E [X] such that dim
R(I-TT0 '

) dim R(I-ToT) < CO



proof: ( ) There exist linear subspaces E , F with

E closed and dim F < co such that

X = N(T) SE=FSR(T) . Let P1 , Ql = I-P1 be the

complimentary projections of X onto N(T) , E .

Let
P2 ' Q2 = I-P2 be projections of X onto

F , R(T) . Note that 111T-1 bounded (cf. Theorem

3.2). Let T0 = T-1Q2
Then

E

-
TTo = TTE1Q2 = 'R(T)2

Q, = Q2 , I-TT0 = P2

ToT = TilQ2T = = Qi , I-ToT = P1 .

(4,--) Let P1 = I-ToT , P2 = I-TT
0

where dim R(P.) < i = 1,2 . Then

N(T) c N(I-P1)
, R(I-P2) c R(T) .

By Corollary 3.9, a(I-P1) < and
f3(I-P2)

<

Hence, we have a(T) < co , < co as desired.

Remarks:

The operator To is sometimes referred to as

a pseudoinverse or (left and right) compact regulizer

of T .

The symmetry of Theorem 3.12 shows that T is

Fredholm. Furthermore, since

ind(I-P1) = ind(T) + ind(To) = 0 we obtain

(3.11) ind(To) = -ind(T) .
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3. If T1 ' T2 E [X] are such that T1
T - I

and TT2 - I are finite dimensional then T is

Fredholm.

The next theorem will be used to prove that the

index is stable under small perturbations. It also

shows that the set of Fredholm operators is an open

set in [X] .

Theorem 3.13.

Let T e [X] be Fredholm. Then --Ae > 0 such

that L E [X] with 114 < E implies that T + L is
Fredholm and ind(T+L) = ind(T) .

proof: Refer to Theorem 3.12. Since To
+ P , P E [X]

dim R(P) < co , is also a compact regulizer we may assume

-1
IT0 I 0 0 . Set E = I

Toll
Then TL I < 1 and

LToil
< 1 whenever IL l< E . Hence the operators

I + TL and I + LTo are bijective with bounded in-

verses. Therefore,

-1(I + T0 L)o(T+L) = (I + ToL) (I-P1 +T0L)

= I - (I+ToL) 1P1

and

(T+L)T0(I+LT0)-1 = (I-P2+LT0)(I+LT0)-1

-1= I - P2(I+LT0) .
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This representation, along with the previous remark

and Theorem 3.4, implies that T + L is Fredholm and

-1
ind(T+L) =

-ind(T0
) - ind[(I+LT0 )

= ind(T) .

This proves the theorem.

Generalizations of Theorem 3.13 are well known.

They extend the results to semi-Fredholm operators and/

or weaken the bound on the perturbing operator. See

Gohberg and Krein [17], and Kato [24]. While we shall

not need such extentions, we shall indicate some par-

ticular generalizations based on measures of noncom-

pactness in Section 5.

Next, we present a useful Stability result for

the index.

Corollary 3.14.

Suppose T + XL is Fredholm for each 0 X < 1.

Then ind(T) = ind(L).

proof: Define f:[0,1] R by f(X) = ind(T+XL) . Then

f is continuous by Theorem 3.13. But f is integer-

valued and therefore must be constant.

28

4. Regular Operators

In this section we characterize those semi-Fredholm



(3.15)
7-1Whenever JA,

A regular 4=4. A lbdd 4==> R(A) closed .

29

operators A with R(A) closed and a(A) < CO

Definition 3.15.

A E [X] is regular if S is compact whenever

S c X is bounded and AS is compact.

Examples:

K compact I - K regular .

=3A-1 bounded A regular .

It follows from the definition that restrictions

and products of regular operators are regular. Equiva-

lent definitions are: A regular

(3.12)
fxnI

bounded , {Ax} d-compact

{xn}
d-compact

*
(3.13)

{xn}
bounded , Axn y {xn}cl) .

If A is regular and Axn y , where
{xn}

is

bounded, then (3.13) gives Ax =y xefxn1 . Also,

(3.14) A regular, S closed and bdd AS closed.

Consequently, A regular AU closed. Hence, by

(3.4), (3.5),



For more on regular operators see Anselone and Ansorge

[3], Gigorieff [19,20], Wolf [44]. Alternatively, in

terms of the Hausdorff measure of noncompactness,

(3.16) A regular

S bdd , X(AS) = 0 implies X(S) = 0 .

A continuous mapping f between topological spaces

is called proper if f-1(S) is compact whenever S is

compact. Thus, A is regular iff A restricted to

closed, bounded sets is proper. Yood [47] first showed

that such proper operators have closed ranges and finite

dimensional nullspaces. This result comprises the

next theorem.

Theorem 3.16. (Wolf [44])

A regular R(A) closed, dim N(A) <

proof: Since A is regular,

A(U n N(A)) = 0 U n N(A) compact dim N(A) < CO

Now assume dim N(A) < . Form the decomposition

X = N(A)9F with corresponding bounded projections

I =P+Q, Q=I-P. Refer to Theorem 3.2. Since

P is compact, Q is regular. Also, A = AFQ gives

A regular AF regular because restrictions and

products of regular operators are regular. But AF
-1

exists and so by (3.5)

30

-1

AF regular <==>
AF

bdd <=.> R(AF) = R(A) closed .
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The theorem follows.

Remark: Lebow and Schechter [26] have extended (3.16)

to:

A regular 4=>

constant C E X (S) < Cx (AS) Vbdd S c X .

5. Condensing Operators

In this section we extend previous results for con-

tracting and compact operators to the more general case

when the operators are condensing with respect to some

measure of noncompactness. The Hausdorff measure of

noncompactness plays a key role. In particular, if

K E [X] is condensing, i.e., X(KB) < 1 , then

ind(I-K) = 0 .

First, some definitions and observations.

Let K be the set of all compact K C [X] .

Definition 3.17.

For T E [X] define kIIK = inf{11T+10: K E K} .

Then 1111K = 0 T compact . Thus, one can think

of 1111K
as measuring the noncompactness of T .

Gohberg and Krein [17] used this measure to (among

other things) extend Theorem 3.13 to include more gen-

eral perturbing operators. That is, if T is Fredholm,



ind(T + L) = ind(T) when ILL is sufficiently small.

They also considered closed, unbounded operators. Next

we define other measures of noncompactness based on

the set measures of noncompactness a and x

Definition 3.18.

For T E [X] define the Hausdorff measure of non-

compactness of T by

I T
Ix

= inf{b:x (TS; <b x(S) Vbdd S c .

Define the Kuratowski measure of noncompactness of T

by

IITL = inf{b:a (TS)<,ba (S) Vbdd SC X} .

Straightforward consequences of the definitions are:

(3.17) 1-11( I-Ix are seminorms on [X]

and ITIK = 0 11Th! 0 4== riTila = 0 T compact

(3.18) IT + KIK = ITIK T +110, = II T

11T K = T Ilx VK E K

(3.19) TL IIK II T L ilK II TL T !la II L

TL TII IILII

(3.20) ITII T T

Remark: In general the inequalities in (3.20) are sharp.

Goldenstein and Markus [18] give an example for which

32



11T < 1 = 11T .

It it well known that when X is complete, K is

a closed (two-sided) ideal. Consequently, each of the

above seminorms defines a norm on the quotient space

[X]/K , e.g., IT + Kil =IT is the standard quotient

norm. By (3.19), [X]/K becomes a normed algebra with

respect to any of the three norms. In particular,

([X]/K
,

E C(X) (called the Calkin algebra;

see [101) is a Banach algebra. Apparently, [X]/K is

not generally complete with respect to these other norms.

More on this in Chapter V.

One of the first to investigate 1111 was Dar-
a

bo [14, who used the terminology k-set contraction to

mean any operator T such that a(TS) < k a(S)

Vbounded S C X . Independently, Goldenstein, Gohberg,

and Markus [16] studied the seminorm in con-

junction with bounded linear operators. Regarding the

constancy of the index, Goldenstein and Markus [18] have

extended Theorem 3.13 to:

T Semi-Fredholm ,x sufficiently small

T + L semi-Fredholm , ind(T+L) = ind(T) .

Another result concerning the constancy of the index

is given by:
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T Fredholm

X(LS) < kX(TS) Vbounded S C X , k < 1

T + L Fredholm , ind(T+L) = ind(T) .

See Sadovskii [33],Petryshyn and Fitzpatrick [31] for

more details. The special case when T = I is worth

mentioning.

Other relevant contributions were made by Nuss-

baum [28], and Sedaev [35]. For Hilbert space results,

see Stuart [36] and Webb [43].

Remark: Much of the work in recent years has been de-

voted to nonlinear operator theory. Vainikko and Sad-

ovskii [41], and Nussbaum [29] formulated degree theories

based on the above measures of noncompactness. For re-

lated results, including fixed point theorems, see Appell

and Pera [8], Nussbaum [30], Petryshyn and Fitzpatrick

[31], Sadovskii [33], Webb [42], and Wolf [46].

Two of the above seminorms are equivalent.

Theorem 3.19.

IITL ITIx < T .

proof: Let S C X be bounded. Then by (2.18) we have

a (TS) < 2x (TS) < 211T lc X (S)

< 21 T
11x

a (S)
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and

X (TS) a (TS) T a (S) 211 T X (S) .

When working with linear operators,
11

X
is

very convenient to deal with, as the next result demon-

strates.

Lemma 3.20.

IT = X(TB) .

proof: Since X(B) < 1 we have

X (TB)1_ T (B) T ilx

To show the reverse inequality, let S eX be bounded

and let E > X(S) . Then

finite E-net {x1"." xn} c X of S , i.e.,

TS e kul TB(xk,e) . For any 1 < k < n

xk
TB(xk'e) = c TB( ,1) = E TB + -- gives

6

X(TS) I max1n {X[TB(xk,e)] = E x(TB) .
<k

Since E > X(S) was arbitrary we are done.

The next theorem extends the result of Schauder

on the compactness of the conjugate (cf. Theorem 3.8).

We shall use the same symbol, X , to denote the measure

of noncompactness of sets in the conjugate spaces X'

and X" , as well as in X .
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Theorem 3.21. (Goldenstein and Markus [18])

1
-5 Tx T 'II 21T .

proof: -Set B' = {f E X': 1 fil < 11 . Let c > 0 .

Then 2ifinite (OTH + - net of TB , say
3

{yi: 1 < i < ml . Set A = {Xed,: IX' < max II Yi I 1}

and partition A into disjoint sets A , 1 < j < n=

with diamAi < . Then f E B' , 1 < i < M

f(" k(i)Yi'
1 < k(i) < n . Divide B' into

equivalence classes Ck , 1 < k < p , as follows:

f,g e ck

\/ < -f (Yi) g(Yi) E °kW 1 m

We claim that diam T'Ck < 2Til + E . For if
X

f,g E ck and if x E B then -Al < i < in such that

If(Tx)-g(Tx)I <
If(Tx)-f(y1) I lf(Yi)-g(Yi)I

+ Ig(yi) - g(Tx)I

< 2 IITx - Yill

< 2 (II T 1I+ + = 2 lITIlx + .

Since c > 0 was arbitrary, it follows that

IIT' II 2 IIT .

The second part of the theorem follows from the

first. From the above arguments we have

T" < 2 IIT . If J is the isometric embedding
X = X

of X into X" then X(J(S)) = X(S) for all bounded
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S c X . Moreover, as JT = T"J , we have

X(TS) = X(J(TS)) = X(T"(J(S)))

2'T'!'
x

X(Js)

21IT'll x X(S)

Remark: The above proof showed that B' , which has a

diameter of 2 , can be covered by finitely many sets

each with a diameter of at most
Ii T II 2 + 6 I e > 0 .

Nussbaum [28] has suitably modified the proof to show

that if S' c X' has diameter of at most d , then

T'S' can be covered by finitely many sets whose di-

ameters are at mostT d E E > 0 arbitrary.ilx

This yields

Corollary 3.22.

T 'ii Ilx Ii T II II `1" ji.

We are now in a position to derive the main results

of this section.

Definition 3.23.

T E [X] is called K-condensing if illIqK < 1 .

It can be shown, by using purely classical tech-

niques, that T K-condensing I - T Fredholm of

index zero (see Pietsch (32], Taylor and Lay [39]).

We shall obtain the above assertion as a consequence

of a more general result.
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Definition 3.24.

T E [X] is called x-condensing (a- condensing),

if ii T < 1 (llr (la < 1) .

Remark: By condensing, we shall mean X- condensing.

Theorem 3.25. (Nussbaum [28], Goldenstein, Gohberg and
Markus [16])

n .

If T E [X] and T is condensing for some

n > 1 then I - T is Fredholm of index zero.

proof: Let S C X be bounded, (I-T)S compact . The
-1
E

mk(I-T) givesidentity I = Tn
k=0n-1r kS C TnS +

k=0
T (I-T)S . Consequently,

n-1

X(S) < HTnOxX(S) +kollTkIxX[(I-T)S]

= liTnlixX(S) .

nH
Since IT < 1 , it follows that X(S) = 0 . Hence,

X

I-T is regular, i.e., dim N(I-T) < .0 and R(I-T)

is closed (cf. Theorem 3.16.). By Corollary 3.22,

(Tn)ll = II (T') ilct < 1

The previous arguments with X replaced by a and

S replaced by S' C X' show that (I-T)' is also

regular. Therefore, since R(I-T) is closed,

dim N[(I-T)'] = codim R(I-T) < . Consequently,

I-T is Fredholm. The same arguments show that I - tT

is Fredholm Vt E [0,1] . By the stability of the
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index, ind(I-T) = ind(I) = 0

In light of (3.20) we have the

Corollary 3.26.

T K-condensing ind(I-T) = 0 .

Various authors have obtained Theorem 3.25 using

different, but equivalent, seminorms, e.g. H .
a

The next theorem shows the equivalence of the different

approaches.

Theorem 3.27.
ul/n

If T e [X] then lim kTrill exists and equals
X

infilTnill/n
r(T) . Moreover, if 1X1 > r(T) then

X

XI T is Fredholm of index zero.
1/n

proof: We first show that r(T) = lim hTn 11
n-i-... X

It suffices to show that lim sup ITIYin < r(T) .

n X -
Given any E > 0 choose m so that Tmllim< r(T) + e .

For each positive integer n we have n = pm+q where

0 q _5_ m-1 , p,q integers . Then by (3.19),

Tnilx1 in Tm lip/m
lITII <(r(T) ) mq/n 11 ri/n

X X = X

Since -p0 and ET 1 as n co we obtain

II
11/n

lim sup HT r(T) + . Since c was arbitrary,
X -

the desired inequality holds.

.Now choose IXI > r(T) and n large enough so

that IXI > Then
IF

(X-1T)nl < 1 . From the
X X
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Consequently,

r(T) = lim (miTnil
)1/n

TiII
1/n

n+.0 X

lim(mATn 1121/n
r(T) .

n+co

One such seminorm which has been investigated is defined

by

II TI = codiMfF<0.ITIFII.

Sedaev [35] showed that

111111 III = III rjiand x IT iix

Since JB C B" we have

mitT Iix III Till I MITIlx VT E [X] .
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previous theorem I - X-1T is Fredholm of index zero.

As a result, XI - T = (XI)(I - X-1T) is Fredholm with

ind(XI-T) = ind(XI) + ind(I-X-1T) = 0 .

Corollary 3.28.

Let be any seminorm equivalent to
II II

x
on

[X] . If Tn, T e [X] , is condensing with respect to

It , i.e. IITnM < 1 , for some n > 1 then I - T is

Fredholm of index zero.

proof: By the equivalence of seminorms, lam , M > 0

such that
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IITilx = X(TB) = X(J(TB))

= X(T"(JB))

X(T"B") = 1 Tiqx .

Thus, 111111 = OT"11 . By Theorem 3.21 it follows that

IT'X

X

I ilx = T 1 2 11'11 x

and so we obtain the equivalence

III T
I <llTIIx 211 T

A direct proof, along with other properties, is given

by Lebow and Schechter [26].

That r(T) resembles a kind of spectral radius is

no accident.

Note that r(T + K) = r(T) VK e K . Since this radius

is unchanged under compact perturbations it is reasonable

to believe that r(T) may be related to the spectral

radius of T + K as an element in the Calkin algebra

C(X) . This is indeed the case. Let X be a complex

Banach space and recall that the resolvent set and

spectrum of T + K E C(X) are defined by

p(T+K) = {AEC: (AI-T) + K is invertible in C(X)}

a (T+K) = (C\ p (T+K) .

A standard result of Banach algebras is that a is com-

pact and the spectral radius ra(T+K)
max Ix!

AEa(T+K)I
is given by



Thus,

(3.21)

(3.22)

n
ra(T+K) = lim II(T+K)111/n

n4-°3

= lim ITII1 .

n÷0.

Since II T
=<

11 TIIK
we have

X

r(T) < ra(T+K) .

We show the reverse inequality. First of all, note

that by Theorem 3.12

p(T+K) = {XEC: XI-T is Fredholm} E (DT ,

the Fredholm resolvent set of T .

ra(T+K) = max Ix! .
XPT

If I XI > r(T) we have by the previous theorem that

X ET . Then IX! > ra(T+K) and therefore,

r(T) = ra(T+K) .

Alternatively written,

lim 11T1" = lim Tnlin
X

The above result can be found in Nussbaum [28]

and Lebow and Schechter [26]. They also go on to show

that r(T) is equal to the spectral radius of the

essential spectrum no matter which of the known defin-

itions of the essential spectrum is used.
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In some sense, equation (3.22) can be thought of

as a partial converse to: T K-condensing T X-con-

densing. For if
1111'11x

< 1 then ilTnIK < 1 \in large .

In general, however, n > 1 . In particular, the two

notions of condensing are equivalent in any Hilbert

space.

Theorem 3.29.

Let H be a (real or complex) Hilbert space. Then

II T Iix = IT IIK VT E [H] .

proof : By (3.20) , I T < T . Let 6 > 0 . Then

3 a finite di Tlx + 6)-net {y1,. yn 1 of TB by

Lemma 3.20. Set F = span y1,. andand let P be

the orthogonal projection of H onto F . Then PT is

compact and
hi
Tx - PTx1 = inf ilTx - yil Vx E B . Since

YE E'
for each x E B E C F such that

II Tx Yk II 1 II T Ilx e we see that

II T PT II = pE Tx - PTx II II TH + e .

Since 6 was arbitrary the theorem follows.

Remark: The above result is found in Webb [43] though

our proof is much more elementary. His goal was to de-

termine conditions on T (e.g., T self-adjoint or T

normal) to guarantee equality between II T Ila T Ilx

and the essential spectral radius.



Remark: Thus, in a Hilbert space, T x- condensing

implies that -Acompact K e [H] such that

T = K + (T-K) , with IIT-Kil < 1 (i.e. T-K is con-

tractive). If X is a complex Banach space then con-

tained in Istratescu [22], Sadovskii [33], and Sedaev

[35], is: illq < 1 T = K+T where K is finite-

dimensional and
ra(T1)

< 1 . This is extended to X

real via a complexification argument (cf. Sadovskii

[33], Sedaev [35]).

Since r(K) = 0 \iK E K we see that Theorem 3.27

directly extends Corollary 3.9, i.e., HI > r(T)

-1
either (XI-T) E [X] or A is an eigenvalue of

finite multiplicity. Correspondingly, we extend Theorem

3.10.

Theorem 3.30.

Let T E [X] . Then for each E > 0

{X EC: A is an eigenvalue of T with !XI > r(T) + El

is finite.

proof: Suppose T has infinitely many distinct eigen-

values {A lc°
k k=1 withIAk > r(T) + 6 . Then we may=

choose corresponding eigenvectors xk so that {xkci

is linearly independent. Let xk = span {x11...,xk} .

For k > 1 there exist, by Riesz's lemma, yk E Xk n U

so that 1Yk-x11 1 Vx E Xk_, Since Tn yk E Xk

and (Arlic I-Tn)yk eXk_i for each k > 1 and any

n > 1 we see that
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Tny - Tnyk = Anm (y - v) , 1 < k < m , n > 1
m = I

-n n
where v =Am [(Am I - Tn)y + T yk] E X . It follows

m-i

that

ilTnym - Tny0 > I Xmln n> (r(T) + c) .

This contradicts the fact that for n sufficiently

large,

HTn = X(TB) < (r(T)+E)n .

Remark: This is a direct adaptation of the proof given

in the compact case (cf. Anselone [1]).



IV. OPERATOR APPROXIMATIONS

1. Stable Approximations

n this section we begin the comparison of equa-

tions Ax = y and Axn = y , where An,A e [X] and

n
satisfies certain hypotheses. These hypotheses

will gradually be strengthened in the following two

sections in order to obtain for all n large:

R(A) = X R (An) =x
(4.1)

]A-1 Ex} ]A-1 E [X] uniformly bounded

A;1
A-4-

-1
on X with practical error bounds .

Let An , A E [X] . Denote pointwise convergence

by An -> A . In terms of the cluster point sets given

in Chapter II,

(4.2) An -> A {N(A)} c N(A) , {R(A)} D R(A) .

The special cases N(A) = 0)1 , R(A) = X are worth

mentioning.

Definition 4.1.

73 -1
{An1 is stable if

_JAn bounded uniformly en large .

We say {An} converges stably to A , and write

An , if
An

A ,
{An

is stable, and

R(A)= X \tn large .

-
Remark: In general,

A1n is only defined on
R(An)

.
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-1However, if
An A then

An
E [X] \in large .

By analogy with (3.3)

(4.3)
{An

stable 0 {AU} .

Similar reasoning as in (4.2) yields AU C {AU} .

Consequently,

-1(4.4)
An A _JA bounded .

-
The identity

An1 - A-1 =
An-1

(A - An)A-1 gives

- -
(4.5) A1 , A1 E [X] ,

An
-4. A , R(A) = X

-1 -1
An

.4- A on X .

In this case we obtain convergence of approximate solu-

tions xn to the true solution x , i.e.,

(4.6) hcn - x AIVA Ax - An>0

Remark: This convergence depends on the pointwise con-

vergence An A . However, to be of practical value

we would want a uniform estimate for the norms 11A-31 .

Another shortcoming is the need to assume R(An) = X

and R(A) = X . Armed with a Fredholm alternative (i.e.

ind(A) = ind(An) = 0) we shall overcome these diffi-

culties in Section 3.

47



2. Regular Approximations

In this section we continue the program begun in

Section 1, namely, to determine hypotheses on {An}

so that (4.1) is satisfied. Though regular approxi-

mations do not necessarily satisfy a Fredholm alterna-

tive, we do obtain stable approximations and so Section

1 applies.

Regular approximations occur in the numerical

solution of (linear or nonlinear) differential and in-

tegral equations. References include Anselone and

Ansorge [3,4], Chatelin [II], Grigorieff [19,20], Stum-

mel [37], Vainikko [40], and Wolf [44].

Let
An

, A e [X] .

Definition 4.2.

{An} is asymptotically regular if
{Sn}

uniformly

bounded, {AnSn} d-compact d-compact .

Equivalent definitions are:

(4.7) {xn} bounded , {Anxn} d-compact

1xn}d-compact

(4.8) {x } bounded ,

Anxn
y

{xn1* (I)

Define regular convergence by

An -> A:
An

A ,
{An} asymptotically regular .

Examples of regular convergence will be given in
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Sections 3 and 4.

In view of (4.8) we obtain

(4.9)
An

A , {xn} bounded , Anxn
y

y E R(A) , Ax = y \fx E .
fl

Also, it is clear that any subsequence of an asymptoti-

cally regular sequence is asymptotically regular. Now

suppose An 4. A and Anxn y with
{xn}

bounded.

Then we may choose positive integers k(n) > k(n-1)

such that
Ak(n)xn

y . Since
{Ak(n)}

is asympto-

tically regular, we have {xn} 0 . Therefore, by

(3.13)

(4.10) A 4. A A regular .

Next, we indicate connections between regular and

stable approximations.

Lemma 4.3.

Let
An .4- A . Then

ScX closed , bounded {AS} = AS

._77] A-1 {A} .

proof: (a) Similar reasoning as in (4.2) yields

{AnS} D AS . Let y E [AS} . Then -AN' c N

and {xn: n E NI} C S so that
Anxn y . By

analogy with (4.9), y E AS .

(b) In view of (a), {AU} = AU .

The result now follows from (4.3).
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Theorem 4.4. (Vainikko [40])

An 5). A ,]3A-1 , R(An) = X \in large

-1
An -4- A , R(A) = X , and

An -4- A-1 .

proof: According to Lemma 4.3, An A .

To show R(A) = X , let y E X . Then lixn such

that
xn

= A-ly \tn large . Since
{An}

is stable,

{xn}
is bounded. Now apply (4.9). The pointwise

-1 -1convergence
An A follows directly from (4.5).

Aided by a Fredholm alternative we shall allevi-

ate the assumption R(An) = X in Theorem 4.4 when

collectively or asymptotically compact sequences of

operators are involved in the next section. Furthermore,

-1practical error bounds for the convergence
An A-1

are given.

It should be pointed out that even if A-1 does

not exist, we have dim N(A) < . Are the approximate

operators as well behaved? The next theorem gives an

answer.

Theorem 4.5.

Let An .4. A . Then

N(An)n U {N(An)n Ul = N(A) n U

dim N(An) < dim{N(An)} < dim N(A) < .0,\VIIn large .

proof: (a) Since {N(An) n U} is uniformly bounded

and
{An(N(An)

Cl U)} = {0} is d-compact, we obtain

{N(An) n U} d-compact. The rest follows by Theorems
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2.3 and 2.9.

(b) This is an immediate consequence of (a) and

Theorem 2.11.

Remark: If An .4. A then R(A) is closed as well. The

same can be said for R(An) Vn large (cf. Anselone

and Treuden [7]). Therefore, by Theorem 3.16,

An A
An regular \in large .

3. Collectively and Asymptotically
Compact Approximations

In this section we extend some of the collectively

compact compact approximation theory to the asymptoti-

cally compact case. In particular, both a Fredholm

alternative and practical error bounds are given.

Definition 4.6.

{K} collectively compact if

S bounded UK S compact .

n n

Definition 4.7.

{Kn}
is asymptotically compact if

S bounded {KS} d-compact .

are

It suffices if S = B . Equivalent sequential forms
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(4.11)

(4.12)

{Kn} is collectively compact iff

{xn}
bounded

{Kmnxn
111} d-compact {n} ,

{Kn}
is asymptotically compact iff

{xn}
bounded

fKnxn1
d-compact .

Define collectively compact convergence by

Cc
Kn K: Kn

K , {Kn}collectively compact , and

asymptotically compact convergence by

ac
Kn K:

Kn
K ,

{Kn}
asymptotically compact .

Note that
{Kn}

collectively compact implies each Kn

is compact. This need not be the case when asymptoti-

cally compact sequences are considered. It is an easy

exercise to show that
1Kn11

4- 0
{Kn}

asymptoti-

cally compact.

1
but -171- I is never compact when dim X = = . Anselone

and Ansorge [3] have shown that the lack of compactness

of the individual operators is the only difference be-

tween collectively and asymptotically compact sequences.

Theorem 4.8. (Anselone and Ansorge [3])

Let K , Kn E [X] . Then

fKil} collectively compact

K} asymptotically compact and
Kn compact Vn

K K K compact .

Hence {T1 Il is asymptotically compact
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proof: (a) From the definitions and Theorem 2.6 we

have

fK } collectively compact UK B compactnn

{KB} d-compact and KB compact \in

{Kn} asymptotically compact, Kn compact \in .

(b) In view of (a) it suffices to shown that

ac
Kn

K K compact . By (4.2) we have KB C
{Kn13}

.

By Theorem 2.3 ,{KnB} is compact. The theorem fol-

lows.

We stated that K is an ideal in [X] . In order

to give an analogous result for asymptotically compact

sequences it is convenient to define continuous converg-

ence by

An A: xn x Anxn Ax .

Continuous convergence replaces pointwise convergence

in Definitions 4.6, 4.7 when nonlinear operators are

considered (see Anselone and Ansorge [31). Continuous

convergence implies pointwise convergence (simply set

xn = x). The converse holds when the operators are lin-

ear by the uniform boundedness theorem.

Theorem 4.9.

acLet K, L, Kn ' Ln E [X] with Kn
K,
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ac
Ln

L . Suppose we have the scalar convergence

a a ,n a. Then
anK

ac
n

aK ,

acnn
a ,

ac ac
anKn +nLn aK + (iL , and

KnLn
KL . Moreover,

a
LnKc LK and KL

acn
KL .

proof: In all cases the continuous convergence is easy

and is omitted. To show that each is an asymptotically

compact sequence let {xn} be bounded and N'c N .

Then {Kxn1 and {13nxn} are also bounded. The

asymptotic compactnessof {Kn} and {Lil} produce

N"cN' and elements u, v, wEX such that

Knxn
u ,

Lnxn -4- v ,

LnKxn w for n E N" . By

the continuous convergence
Kn

K ,

Ln L , and

by the continuity of K , it follows that

anKnxn au ,nLnxn f3,17 ,
anKnxn

+
3nLnxn

au + 13v ,

KnLnxn
Kv ,

LnKxn
w , and

KLnxn
Kv . Hence

the sequences
{anKn} , {f3nn}

, {ann +nLn}

{KnLn} ,nK} , and
fKLnI

are asymptotically com-

pact.

As a special case of the previous theorem we note

that

(4.13) K
cc a2 K

n K ,n 0
Kn

+
Ln

We would expect K +
Ln

cc K if each
Ln is compact

by Theorem 4.7. This is not the case in general. Sim-

ply let Ln = cnI , with
cn

0 , and dim X = CO
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This situation occurs when the
Kn are numerical inte-

gration approximations to an integral operator with a

weakly singular kernel. More on this in Section 4.

An extremely useful link between collectively or

asymptotically compact sequences of operators and mea-

sures of noncompactness is given next.

Theorem 4.10.

{Kn} collectively compact X(uK B) = 0n n

{Kil} asymptotically compact lim X( U. K B) = 0 .

k.0, nzjc n

proof: The first is immediate by the definitions. See

Theorem 2.16 for the other.

Corollary 4.11.

If
{Kn}

is asymptotically compact then
Kn

is

X-condensing en large , in which case ind(I-K) = 0 .

Remark: We have applied the standard measure of non-

compactness to sequences. There have been definitions

given particularly to study sequences, the so-called

discrete measures of noncompactness. A characterization

of collectively or asymptotically compact sequences can

be based on these measures, however, we shall not make

use of these ideas. See Wolf [45,46] and Appell and

Pera [8].

We now turn our attention to the study of the lin-

ear equations (I-K)x = y , (I - Kn)xn = y where
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ac
Kn K . The organization for our presentation is es-

sentially that for the collectively compact theory given

by Anselone [1]. By Theorem 4.7, K is compact and

consequently I - K is Fredholm of index zero, i.e.,

I - K satisfies the Fredholm alternative. Thus, if

I - K is invertible the equation (I-K)x = y is

uniquely solvable for each y and the solution depends

continuously on y . What can be said of the approxi-

mate equations (I-Kn)xn = y in this case? The next

lemma helps answer this question.

Lemma 4.12.

ac
Kn K (I-Kn) (I-K) .

proof: The pointwise convergence is clear. To show

{I-K} asymptoticallyregular it suffices to show that

{xn} 0 when
fxn1 is bounded and

(I-Kn)xn
y .

Since
fKn} is asymptotically compact --AN' C N

z e X such that
Knxn

z for n e N' . Hence

xn = Knxn + (I-Kn)xn + z + y for n E N' , which is

what we wanted to prove.

Theorem 4.13.

Let K
acn

.4. K . Then

-3(I-K)- (I-Ku)'-11 ]] uniformly bounded \in large

in which case (I-Ku)' + (I-K)-1 on X .

proof: From Lemmas 4.3 and 4.12 we have

=1(I-K)-1 {I-K} stable . By Corollary 4.11



R(I-Kn) = X when II-Kn)-1 \tn large . Thus, we may

appeal to Theorem 4.4 to obtain the desired results.

The package will be complete once we obtain practi-

cal error bounds, i.e., bounds on the convergence
-

(I-Kn)1 + (I-K)-1 when (I-K)-1 exists. The next

result is a significant step in obtaining such bounds.

It generalizes the fact that pointwise convergence is

uniform on each totally bounded set.

Lemma 4.14.

Let
Tn

, T E [X] , with
Tn

4 T and suppose

fSn} is asymptotically totally bounded. Then

IITnxn - Txn 0 uniformly in the choice of sequences

{xn: xn E
Sn}

.

proof: By the uniform boundedness theorem,

> 0 so that 1 Tn1 < b \in and 11T < b . Let

E > 0 . Now -An E N such that x( U S ) < j=
1 n>n n= 1 3b

(see Theorem 2.15). Let fyl,...,yn } be such an
2

- net . Now T 4 T E]n3 > nl so that n > n 3

implies II Tnyk - Tyk
II < V1 < k < n2 . Hence for

each xn E S and n >n3 we obtain

IlTnxn - Tx1111 < 11Tnxn - TnyO + knyk - Tykll + ITyk - Tx
II

1 (II Tn + II T Ilxn-yk +
1
(Tn-T) yk

E E< 2 b 7E + 7 = C.
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The next theorem summarizes the asymptotically compact

approximation theory.

Theorem 4.15.

Let Kn acK . Then

(Fredholm alternative) Vn large

R(I-Kn) = X 11] (I-Ku) -1 (I-Kn)-1 e [X]

dim N(I-K) = codim R(I-Kn) < co

Ii (Kn-K)K + 0 (Kn-K)Kn1 0 as n

- 1
n)-1 uniformly boundedVn large

in which case there are practical error bounds:

Choose n large enough so that 1(Kn-K)Kn1 < 1 and

set An = 11(1-K) -11 (Kn-K)Kn Then
An

0

An < 1 =3n)-1 e [X]

1(1-K ) -211
1+ 11 (1-K)

11Knil

n 1 -

and for each y e X ,

xn-xl = 11(I-Kn)-117 - (I-K)-1yil

-1
iii 10Kny-KY + An Ilx11

1 - A .4- 0 .

With the exception of choosing n large enough so that

II (K -K)K 1 <1 , all of the error analysis remains valid
n- n

with Kn and K interchanged.
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proof: (a) Immediate from Corollary 4.11.

Use Lemma 4.14 with Sn = KB and

S = KB .

Choose n so that

(Kn-K)Kn
< 1 . Since

K2n KKn + (Kn-K)Kn we have

by (3.17) and (3.20)

11K 21 < 11KK 1 (K-K)Knn Ix = n Ix n

I 11(Kn-K)Knil < 1

Thus, I-Ku is Fredholm of index zero by Theorem 3.27.

The rest of the theorem is a consequence of (b) and is

unchanged from the collectively compact theory presented

by Anselone [1]. We omit the details.

Remark: The convergence kK-K)Kll + 0 plays a dual

role. Not only does it provide criteria for determining

-1
when (I-K)1 exists but it establishes a bound on

n so that
I-Kn satisfies the Fredholm alternative,

which was automatic in the collectively compact case.

This may especially be desirable when 0K
II

may be
n x

difficult to compute.

-1Remark: We briefly mention that even if (I-K)

-1doesn't exist then the "extent" that (I-Ks)'

exist, at least for n large enough, is no worse by

Theorem 4.5, i.e.

dim N(I-K ) < dim N(I-K) Vn large .n

59



Furthermore, if n is also large enough so that

ind(I-Kn) = 0 , we have

codim R(I-Kn) = dim NUI-K)'] < co and

R(I-Kn) = NUI-K)']1 the set of annihilators,

i.e., N(I'-K')1 {x E X: f(x) = 0 f E N[(I-K)]} .

Thus, there is a concrete way of testing whether

(I-K )3c = y has a solution.
n n

Remark: By virtue of Theorem 4.8 (or more generally

Theorem 3.27) we have an immediate extension of the

above theorem to the equations

(XI-K)x = y , (XnI-Kn)xn = y where
Xn

X 0 0 .

Simply replace K by X-1K and Kn by Xn-1Kn .

4. An Example from Integral Equations

The example given involves the approximate solution

of a weakly singular Fredholm integral equation on

C[0,1]

(4.14) x(s) - f1 k(s,t) x(t) dt = y(s)
0

where the kernel k(s,t) is singular along the diagon-

al s=t (e.g. k(s,t) = Is - tl-1/2, lnIs-t1) , based

on the singularity subtraction technique of Kantorovich

and Krylov [23] and the numerical integration of weak-

ly singular functions developed by Anselone and Opfer

[6]. Not only does this example illustrate the
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asymptotically compact theory, but it motivates a char- -

acterization which, at least in most spaces of practical

interest, states that asymptotically compact sequences

of linear operators can be thought of as perturbations

of collectively compact sequences.

Let X = C[0,1] , the space of continuous real-

valued functions defined on [0,1] , with

xl = max lx(-01 . Define the integral operator0<t<1=

(4.15)
1

(Kx)(s) = f k(s,t) x(t) dt , 0 < s < 1 .

0

If ks(.) = k(s,.) and

(4.16) ks e
1
[0,1], Ilkr-ksill 0 as r s , sE [0,1]

then it is shown by Anselone [1] that K E [C[0,11] and

K is compact. Such is the case for a kernel with a

monotone symmetric singular factor:

k(s,t) = g(ls-t1) h(s,t)

h E C([0,1] X [0,1])

g E L1 (0,1) n C(0,1]

and

g > 0 , g nonincreasing on (0,6] , for

some d e (0,1] . Examples include k(s,t) = Is-t1
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lnis-ti . For n=1,2,... define continuous approximate

kernels kn(s,t) = gn(ls-tI) h(s,t) where



More general kernels are considered by Anselone [2].

By means of a convergent guadrature rule define the

approximate operators

(L)0(s)=.2w.k(s,tix(t.).3=1 n3 n n3 n3

Since the
kn are continuous we have

Ln E[C[0,1]] .

Indeed,
Ln is compact since dim R(L) < . With

further restrictions on the quadrature rule it can be

shown that L ccn K (see Anselone and Krabs [5],

Anselone and Opfer [6]). Hence the collectively com-

pact theory applies. However, the convergence x x

(when (I-K)-1 exists) is usually slow due to the singu-

lar kernel. To obtain more rapid convergence, re-

write (4.14) as

1 1
(4.17) x(s)-[f k(s,t)[x(t)-x(s)]dt + I k(s,t)x(s)dt]=y(s)

0 0

and define operators

1gn E C[0,1] , gn = g on [K,1]

1
0 gn g , gn nonincreasing on [0,171.]

g(0) > gm(0) for n > m .

For example, if k(s,t) = Is-t1-1/2 then we may use

truncation to define

.
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kn(s,t)
ViT

s-ti
1

--
2,

0

1

1 1
< 1s-ti <= n

< is-t1 < 1
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1(Kx)(s)=E'uTA As,t.)[x(t.)-x(s)] + x(s)fok(s,t)dtri .j=1 n3 n nj n3

Then Kn = Ln + (Ku -
Lnu)I where u E 1 . Hence,

ac cc
Kn K but K + K only if Ku-Lou E 0 . Thus,

the asymptotically compact theory applies. Further-

more, due to the singularity subtraction we would ex-

- -1pect (I-Kn)1 + (I-K) to be faster than

-1 -
(I-Ln)

+ (I-K)1 when the latter inverses exist.

Numerical examples substantiate this claim (see Anse-

lone [2]).

It is worthwhile to note that

Kn - Ln = Ku - Lnul + 0 . That is, Kn
=L

n
+

Tn

where {L} collectively compact and
IITn

0

The question of whether this decomposition is always

valid for
iKn1

asymptotically compact is addressed

in the next chapter.



V. CHARACTERIZATION OF ASYMPTOTICALLY COMPACT
SEQUENCES OF LINEAR OPERATORS

We have seen results involving the equation

(AI-K)x = y , X 0 , when K is compact extended

to the case when K has a sufficiently small measure

of noncompactness (e.g.X < IX!) It is reason-

able to ask how far operators with a small measure of

noncompactness differ from compact operators. This

question is easily answered when the measure 111K
is considered. For if E > 0 , 1<ilt( < E there

exists compact L and bounded T such that

K = L + T with 1<--LI = < E Note that we need

only consider E = 1 . Now consider the measure of

noncompactness . Can we replace11-I with
X 11K

!IX
and still obtain the same results? We can if the

operators are defined on a Hilbert space, for then

= (cf. Theorem 3.29). Unfortunately, we can't

in general. Goldenstein and Markus [18] give an example

of an operator defined on a product of sequence spaces

which is x-condensing but not K-condensing.

Recall that

(5.1)
{Kn}

asymptotically compact Kn + 0 as n

(5.2) {Kn} collectively compact 4==>

{Kn} asymptotically compact, Kn compact \in .

Thus, we are led to an analagous question relating
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asymptotically and collectively compact sequences, i.e.,

it is true that

(5.3) {Kn} asymptotically compact

3(Ln} collectively compact such that

Kn-LnD + 0 as n + = ?

Sufficiency follows from Theorem 4.8 since

n1 , {K-L} asymptotically compact imply

{Kn-Ln+Ln} asymptotically compact. To prove necessity

it would suffice to find a constant C > 0 so that

IHIK C DH
x

. For if such a constant exists,

{Kn} asymptotically compact

OK II + 0 1 K 0
n x nK

-A{Ln} c K such that
Kn-Lnil

Since {I,n = Kn + (La-K)} is asymptotically compact

and each
Ln is compact we actually have {I,n} col-

lectively compact by Theorem 4.7. Note that by (3.20),

II II x II 1K . Hence, such a constant exists of the

seminorms H and
II.1(

are equivalent if [XI 1K .

The equivalence of these seminorms will be shown for

a large class of spaces, which is the subject of the

next definition.

Definition 5.1. (cf. Lindenstrauss and Tzafriri (271)

A Banach space X is said to have the



compact approximation property (abbr. C.A.P. ) if for

each e > o and finite set of points E X

there exists K e K such that hck-Kxkil

1 < k < n . If 1 < < 00 , then x has the A-com-

pact approximation property (abbr. X-C.A.P. ) if

X has the C.A.P. with IIK < A .

Lemma 5.2. (Lebow and Schechter [261)

Let x have the X-C.A.P. Then

111111K (X+1) ITllx VT E [X] .

proof: Let E > 0 . Then there is a finite

(ITlx +c ) - net {171,...,yri} of TB . Because X

has the A-C.A.P. , there exists K K with

<X+ 1 and Dyk-Ky0 <6, 1 <k<n. If

x B there is an element yk so that

1 (I-K)Tx II 1(1-K) (Tx-yk) 1 +
1

(1-K) yk

(A+1) (1'11x + c) + E .

Since c and x were arbitrary, we obtain

II
T - KT

II
< ( A+1) ItT.

But KT e K , and so the proof is complete.
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Theorem 5.3.

Let X have the A-C.A.P. Then

{Kn}c [X] asymptotically compact

K = L +
Tn

, {Ln1 C [X] collectively com-n n

pact,

IT II
+ 0 .

proof: (.*) By Lemma 3.20 and Theorem 4.10,nx 0

as n +00. By Corollary 5.2, K
K

+ 0 as n + .

n

It follows that :1{Ln} c K such that 1K11-Ln + 0

as n + 00 . Set T = K -L . Then + 0 and
n n

{T} is asymptotically compact. In light of Theorem

4.9, fLn = Kn-TrO is asymptotically compact. But since

each L is compact we have {I, collectively compact

by Theorem 4.8.

( ) This assertion follows directly from

Theorems 4.8 and 4.9.

If A= 1 and K is finite dimensional in Defin-

ition 5.1 we obtain the metric approximation property

(abbr. M.A.P. ) of Grothendieck [21]. The question

of whether any Banach space possessed the M.A.P. was

settled in the negative by Enflo [14] (see also Davie

[13], Pietsch [32]) with an involved (!) counter exam-

le. Though the C.A.P. is apparently weaker, there

are conditions for which X fails to have the C.A.P.

and hence the A-C.A.P. , that are based on Enflo's
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example (see Lindenstrauss and Tzafriri [27]). Also

included therein is a result, due to Szankowski [38],

that t has a subspace without the C.A.P.

1 < p < 2 . Roughly speaking, a Banach space which is

not isomorphically close to being a Hilbert space will

always have a subspace which fails to have the C.A.P.

It would be beyond the scope of this thesis to delve

more deeply into the structure theory of Banach spaces.

Suffice it to say that from the standpoint of applica-

tions, we have all the generality needed. For example,

all Hilbert spaces, L (Q,u) ((S-2,11) any measure space,

1 < p < , and C(0) (S2 any compact Hausdorff space)

endowed with their standard norms have the M.A.P. (see

e.g. Pietsch [32]).

We conclude this chapter with two special cases of

Lemma 5.2 (and hence Theorem 5.3), both of which are

general enough to include most classical Banach spaces.

Theorem 5.4. (Goldenstein and Markus [18])

Suppose Pne [X] are finite dimensional projections

with
Pn I . Then there exists 0 < C < co such that

T tK CT lc VT G. [X] .

proof: It suffices to show that X has the X-C.A.P.

for some X . Since
Pn I , E [1,-) such that

ship Ill < x . Let > 0 and {xl,...xm} c X . Then



e (t) =

2n+k

2k-2 2k
for t

1-
2n+1

'

2n+1

2k-1
for t =

2n+1

linear in
2k-2 2k-1

2n+1
'

2n+1

where k = 1,21...,2n ; n = 0,1,2,...

and 2k-1 2k

2n+1
'

2n+1
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there exists rim E N so that n > n(I-P )xk 1 < 6,mn =-
1 < k < m . Since

Pn
is compact, X has the= =

X-C.A.P.

Theorem 5.5

If X has a basis then there exists 0 < C <

such that

DTIIK C117111)( VT E [X] .

proof: Let {ek}Tc_i be a basis for X . For x E X

there exists a unique sequence of scalars {k} such
CO

that x = kE1 kek . Define Pn E [X] by

px= E en= 1,2,... . Now appeal to Theorem
n k=1 k k '

5.4. m

The space C[0,1] of Section IV.4 has a (normal-

ized) basis given by

e0
(t) = 1 ,

e1
(t) = t
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We may define corresponding finite dimensional projections

P ,n = 0,1,2,... , by linear interpolation at the

2k-1pointsk = 1,2,...,2 . Worth noting is that
2n+1

'

lip
Vn

= 1 , n = 0,1,2,... Thus, by Lemma 5.2,

(5.4) II T II VT V. 211T ilx VT E [C[0,1]]

Indeed, the bounded linear operators on any space with

the M.A.P. satisfy (5.4).

Under the hypotheses of Theorems 5.4 and 5.5 we

may assume that the approximating collectively compact

sequence {Ln} in (5.3) consists of finite dimensional

operators. For if {Pn} is a sequence of finite di-

mensional projections, Pn .÷ I , and
{Kn}

is asympto-

tically compact, then by Theorem 4.14

D(I-Pn)Kn
+ 0 as n

The above convergence implies that fPnKn-K} is

also asymptotically compact. But since each PnKn

is compact we have {PnKill collectively compact by

Theorem 4.7.
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