
AN ABSTRACT OF THE DISSERTATION OF

Larry A. Pierce II for the degree of Doctor of Philosophy in

Mathematics presented on July 23, 2008.

Title: Computing Entropy for Z
2-actions

Abstract Approved:

Robert M. Burton

Abstract: For a certain class of Z
2-actions, we provide a proof of a

conjecture that the ratio of the Perron eigenvalues of the transfer

matrices of the free boundary restrictions converge to the entropy

of that action. Also, a novel method for computing the entropy of

Z
2-actions is conjectured.

Computing Entropy for Z
2-actions

by

Larry A. Pierce II

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented July 23, 2008

Commencement June 2009

Doctor of Philosophy dissertation of Larry A. Pierce II presented

on July 23, 2008

APPROVED:

Major Professor, representing Mathematics

Chair of the Department of Mathematics

Dean of the Graduate School

I understand that my dissertation will become part of the

permanent collection of Oregon State University libraries. My

signature below authorizes release of my dissertation to any reader

upon request.

Larry A. Pierce II, Author

ACKNOWLEDGEMENTS

I would like to thank my advisor, Bob Burton, for his countless

hours of input and contributions to this work.

I would also like to thank Paul Shields for his guidance and

knowledge in the pursuit of this work.

I dedicate this work to my wife, Mariana Schatte, whose endless

support has made this dissertation possible.

TABLE OF CONTENTS

Contents

0 Outline 1

1 An introduction to shifts of finite type 2

2 An introduction to Z
2-actions 10

2.1 Examples of Z
2-actions . 14

3 Generating the transition matrices for Z
2-actions 18

4 A reflection operator for Z
2-actions 26

5 Computing entropy for Z
2-actions 32

6 Asymptotic Analysis of the Substitution Algorithm and its Re-
lationship to Shifts of Finite Type 45

7 Geometry of the Vn matrices and their eigenvectors 59

8 Algebraic manipulations of the substitution algorithm 70

9 Numerical Estimations for the Entropy of Z
2-actions 79

10 Bibliography 88

A Matlab Code 90

Computing Entropy for Z
2-actions

0 Outline

Discussed in this dissertation are methods for computing the entropy for a

class of Z
2-actions. Chapter 1 gives an introduction to one dimensional shift

systems and the concept of entropy for those systems. The standard method

for computing entropy for such systems is outlined. Chapter 2 is a discussion

of extending shift systems to two dimensional Z
2-actions. In chapter 3, a

general method is introduced for generating the sequence of transfer matrices

for the free boundary restrictions of these Z
2-actions. Chapter 4 defines and

discusses the properties of a reflection operator which is used in the following

chapters. Chapter 5 describes a long-standing conjecture about Z
2-actions,

and proves the conjecture for a specific class of Z
2-actions. Chapters 6, 7, and

8 deal with various types of analysis and manipulations of the algorithm

presented in chapter 3. Chapter 9 proposes a new type of numerical estimation

for entropy with examples of its power and limitations.

2

1 An introduction to shifts of finite type

We begin with a short introduction to shift systems and shifts of finite type. A

full treatment of this material can be found in [15] and [12].

Let Z denote the set of integers and Z
+ denote the set of positive integers. We

consider a set, A, called the alphabet , and the elements of A will be known as

characters, or letters. We will adopt the notation A = {A, B, C, ..., N},

reserving the different fonts for alphabets and letters. An element of An will

be known as a word , or a block of length n. If α ∈ AZ (or if α ∈ AZ
+

), we

will denote by αi the element in A which is the projection of α onto the ith

coordinate. For i < j, by αj
i we mean the word of length j − i + 1 which is the

projection of α onto the coordinates i, . . . , j.

In other words, if α ∈ AZ :

α = . . . α−2α−1α0α1α2 . . .

And:

α2
−1 = α−1α0α1α2 ∈ A

We also adopt the convention A∗ =
⋃∞

n=0 An, the set of all finite words with

letters taken from A.

We consider a set F ⊂ A∗, which we will call the forbidden set .

We define the shift operator σ : AZ → AZ to be the map which“shifts”

points of A one unit“to the left”. That is to say: ∀α ∈ AZ, σ(α)n = αn+1.

3

We call G ⊂ AZ a shift system with forbidden set F if for every α ∈ G,

αj
i /∈ F ∀i, j ∈ Z. Note that if G is a shift system, then α ∈ G ⇒ σ(α) ∈ G.

Note that throughout this paper, G will be used to denote any shift system.

The reader should make note of which system G represents according to

context. (Similarly for F .)

At this point, we examine an example of a shift system which will be often

referred to, and later generalized in higher dimensions.

Example 1.1 The Fibonacci shift is defined as the shift system which has

alphabet A = {0, 1} and forbidden language F = {11}. That is to say, the

system of all bi-infinite binary sequences in which no two 1’s appear

consecutively.

Now, there is an important subtlety to note. In the Fibonacci shift we could

have defined the forbidden set to be F = {11, 111, 1111, . . .}, or

F = {11, 110, 1100, 11000, . . .}, or any other set which achieves the same

result. The fact that we can express the forbidden blocks for this system by a

finite set turns out to be extremely important.

There are shift systems which do not have this property. The following

example is an illustration.

Example 1.2 We define the even shift to have a binary alphabet, A = {0, 1}

in which between any two 1’s, there are an even number of zeros. For example,

4

1001001000010000001001 would be an allowed block in the even shift.

However, 10010001001 would not be an allowed block because an odd number of

zeros appear between consecutive ones. It is easy to see that the even shift

cannot be expressed by any finite forbidden set. However, it is still an

invariant set under the shift operator and is thus still a shift system.

�

This prompts us to make a stipulative distinction between shift systems as the

Fibonacci and Even shifts.

Definition 1.1 We define a shift of finite type to be a shift system that can

be expressed with a finite forbidden set.

With our current examples, we see that the Fibonacci shift is a shift of finite

type, while the even shift is not.

A very important notion in dealing with shift systems is to know how many

possible words of length n are allowed for any given system, as well as the rate

at which that number increases with n. At this point we make another

definition. For a given shift system, G, we will denote by Bn(G) the set of

allowed blocks of length n in G.

For example, if G is the Fibonacci system described above, then

B3(G) = {000, 001, 010, 100, 101}. In fact, it is easy to see that

5

| Bn(G) |= fn+2, where fn is the nth Fibonacci number (where the first six

Fibonacci numbers are 1,1,2,3,5,8 , with f6 = 8).

However, it is easily realized that there are more complicated shift systems in

which counting the number of n-blocks can be difficult for arbitrary n. The

machinery of linear algebra gives us a powerful tool with which to compute

these numbers.

Consider now the full k-shift , which consists of all bi-infinite sequences taken

from an alphabet consisting of k letters. Thus, F = {∅}. Obviously,

| Bn(G) |= kn. In particular, for the full 2-shift, the number of allowed

n-blocks is 2n. Thus, for any shift on a binary alphabet, the number of allowed

n-blocks must be less than or equal to 2n, since the addition of a forbidden set

can only reduce the number of allowable sequences. However, if the forbidden

set is not too restrictive, we still expect the number of n-blocks to grow

exponentially. It is this growth rate which is our focus.

For an arbitrary shift system on a binary alphabet, we expect the number of

n-blocks to grow like | Bn(G) |∼ 2hn, where h is a number between zero and

one. The number h is of particular interest, as it will yield a growth rate for

the system.

Definition 1.2 define the entropy for a shift system G to be:

h (G) := lim
n→∞

1

n
log |Bn (G)|

6

Where the logarithm is base 2. Note now that any logarithm in this

paper will be considered to be base 2. We use the logarithm base 2,

regardless of the size of the alphabet.

First, we need to show that this limit exists. Note that within a given shift

system, we cannot always concatenate an m-block with an n-block to get an

allowed word. This immediately tells us that:

| Bm+n(G) | ≤ | Bm(G) | × | Bn(G) |

=⇒ log | Bm+n(G) | ≤ log | Bm(G) | + log | Bn(G) |

Thus, the sequence {log | Bn(G) |} is a subadditive sequence. It is known that

if {an} is a subadditive sequence, then the sequence an/n converges, and

an/n = supn an/n (See [15]). Thus, the subadditivity of the logarithms of the

number of n-blocks ensures that the entropy limit exists. Computing the

entropy of a shift system is another challenge.

We now look at the graph of a shift system. Consider the following directed

graph:

 c

 a 0 1

 b

Figure 1: This graph represents the Fibonacci shift.

7

If we consider bi-infinite walks on the graph in Figure 1, and record each vertex

visited and the time at which it was visited, we obtain a bi-infinite binary

sequence. Also note that in this sequence, no two 1’s will occur consecutively.

That is to say that this graph perfectly represents the Fibonacci shift system.

It is easily seen that if G is a shift of finite type, then there exists a graph

which can be used to represent G ([15]). However, some shift systems which

are not of finite type do have a graph representation (the even shift has a

graph representation). There are other shifts (not of finite type) which do not

have finite graph representations.

The graph in Figure 1 has adjacency matrix T̂ =

[
a b
c 0

]
.

We see that: T̂ 2 =

[
aa + bc ab

ca bc

]
, T̂ 3 =

[
aaa + abc + bca aab + bcb

caa + cbc cab

]

As is well-known (see [15]), the powers of T̂ spell out the paths generated by

the graph. If we simply express T̂ as T =

[
1 1
1 0

]
, we can then count the

number of paths, without actually knowing what those paths are.

Taking T to higher powers then allows us to know the number of allowed

words of length n. That is to say that the number of allowed n-blocks for the

Fibonacci shift, G, is given by the sum of all entries of the adjacency matrix to

the n − 1 power:

|Bn (G)| =
∑

i,j

[
T n−1

]
i,j

(1)

8

Thus by knowing the growth rate of the entries of adjacency matrix, T , we can

compute the entropy for the system G. The Perron-Frobenius theorem ensures

that if T is irreducible, then it has a positive eigenvalue, λT , which has

multiplicity one and is the largest eigenvalue in absolute value. Furthermore,

there is a corresponding eigenvector which has only non-negative entries. That

is, if γ is any eigenvalue for T , then | γ | ≤ λT . We call λT the Perron

eigenvalue for T , and its corresponding eigenvector with norm 1 and all

positive entries, ~vT , is known as the Perron eigenvector .

Let T be an n × n irreducible matrix, λT and ~v = ~vT be the Perron eigenvalue

and Perron eigenvector for T , a = mini [~v]i and b = maxi [~v]i. Note that

T k~v = λk
T~v.

Thus,

n∑

j=1

[
T k
]
i,j

a ≤
n∑

j=1

[
T k
]
i,j

~vj = λk~vi ≤ λk
T b ∀ i ∈ {1, 2, . . . , n}

which yields

n∑

i=1

n∑

j=1

[
T k
]
i,j

≤
n∑

i=1

(
b

a

)
λk

T =

(
nb

a

)
λk

T .

Also note that

aλk
T ≤ λk

T~vi =

n∑

j=1

[
T k
]
i,j

~vj ≤
n∑

j=1

[
T k
]
i,j

b ≤
n∑

i=1

n∑

j=1

[
T k
]
i,j

b

9

and therefore

(a

b

)
λk

T ≤
n∑

i=1

n∑

j=1

[
T k
]
i,j

.

Thus giving us

(a

b

)
λk

T ≤
n∑

i,j=1

[
T k
]
i,j

≤
(

nb

a

)
λk

T .

Equation 1 tells us that the term in the center is the number of words of

length k + 1. Taking the logarithm and dividing by k yields

h (G) = log λT .

This equation allows us to easily compute the entropy for any shift of finite

type by simply determining the eigenvalue of the transfer matrix for that

system. For shifts of finite type, we are thus guaranteed to easily compute

entropy.

For the Fibonacci shift, λT = 1+
√

5
2 , the ”golden ratio”. Thus, the entropy

for the Fibonacci shift is h (G) = log
(

1+
√

5
2

)
.

10

2 An introduction to Z
2-actions

We now turn our focus to a different type of shift system. In the previous

section, we looked at maps from the set of integers to a finite alphabet. An

element of such a system was realized as an infinite string of characters taken

from the alphabet. In this section, we extend this notion to two dimensions by

looking at maps from the integer lattice, Z
2 to a finite alphabet. Thus, a point

in our space will be an element of AZ
2

.

In this setting, the forbidden language will be a set of labeled rectangles,

rather than one dimensional strings.

Like the previous section, for α ∈ AZ
2

, we will define α(i,j) ∈ A to be the

projection of α onto its (i, j) coordinate. Also, for r ≥ i and s ≥ j, we will

define α
(r,s)
(i,j) to be the “rectangle” which consists of vertices labeled by letters

in A and agrees with those coordinates of α. For example, a typical α will look

like:

...

. . .

α(−2,2) α(−1,2) α(0,2) α(1,2) α(2,2)

α(−2,1) α(−1,1) α(0,1) α(1,1) α(2,1)

α(−2,0) α(−1,0) α(0,0) α(1,0) α(2,0)

α(−2,−1) α(−1,−1) α(0,−1) α(1,−1) α(2,−1)

α(−2,−2) α(−1,−2) α(0,−2) α(1,−2) α(2,−2)

. . .

...

Which represents a “shift of finite type” of the integer lattice with each

vertex assuming a letter from A. Then α
(1,1)
(−2,−1) will be the 3 × 4 rectangle:

11

α(−2,1) α(−1,1) α(0,1) α(1,1)

α(−2,0) α(−1,0) α(0,0) α(1,0)

α(−2,−1) α(−1,−1) α(0,−1) α(1,−1)

Note that we are using tiled boxes to represent vertices on the integer lattice.

Similar to section 1, we also define

A∗ := ∅ ∪




⋃

i,j

A(i,j)
(0,0)





where i, j range over the non-negative integers.

This is the union of all rectangular restrictions of Z
2 with corners (0, 0) and

(i, j), and with each coordinate of that rectangle being assigned a letter from

A. As in section 1, we include the empty word, ∅.

This symbolic system is now indexed by the 2-lattice group, Z
2. We can define

two shift operators, the vertical shift σv, and the horizontal shift σh, with the

properties ∀i, j ∈ Z, [σv(α)](i,j) = α(i,j+1), and

∀i, j ∈ Z, [σh(α)](i,j) = α(i+1,j). We can think of σh as shifting α one unit to

the left, and σv as shifting α one unit down.

As in section 1, we can define a forbidden set F ⊂ A∗.

Definition 2.1 For a finite alphabet set, A, we call G ⊂ AZ
2

a

two-dimensional shift system or Z
2-action with forbidden set F ⊂ A∗ if

∀ α ∈ G and ∀(i, j), (r, s) ∈ Z
2, we have that α

(r,s)
(i,j) /∈ F .

12

Definition 2.2 We say that a Z
2-action, G, is of finite type if G can be

expressed by using a finite forbidden set, F , composed of blocks of finite size.

We immediately see that if α ∈ G, then σv(α) and σh(α) are both in G, hence,

G is shift-invariant under Z
2, the free abelian group on the two generators

{σv, σh}.

We define Bm,n(G) to be the set of all allowed m × n blocks in G, similar to

section 1.

Example 2.1 (Hard Squares) We will use as our main example the

Fibonacci Z
2-action (also known as the Hard Square system), in which

each vertex of Z
2 is labeled with a letter from the alphabet A = {0, 1} and with

forbidden set:

F = { 1 1 ,
1

1
}

Note again that vertices on the integer lattice are represented by squares.

Then we have that all allowed 2 × 2 blocks are given by:

B2,2(G) = { 0 0

0 0
,

0 0

0 1
,

0 0

1 0
,

0 1

0 0
,

0 1
1 0

,
1 0

0 0
,

1 0

0 1
}

Simply described, no two 1’s can share an edge, but they can share a vertex

diagonally.

13

�

Again, we are interested in how many allowed n × n blocks are allowed for a

given Z
2-action, G, and the growth rate of that sequence. However, we expect

now that | Bn,n(G) |∼ 2hn2

.

Definition 2.3 We define the entropy of a Z
2-action to be

h(G) := lim
n→∞

1

n2
log |Bn,n(G)| .

This limit exists by a subadditivity argument analogous and equivalent to the

one given earlier for the one dimensional case.

For the one-dimensional case, we had an easy way to compute entropy for

shifts of finite type. It turns out that in the two dimensional case no such

machinery currently exists. Entropy has been computed exactly for only a few

Z
2-actions, and most of those solutions have either been trivial or used very

clever ideas which cannot be adapted to compute entropy for other systems.

(See [14] and [5].)

It is the goal of the remainder of this paper to introduce methods which can

be easily generalized to compute entropy for any Z
2-action. There is currently

no general method to compute the exact entropy for any Z
2-action. However,

we will explore numerical approximations for entropy, and we will examine

those which give the greatest accuracy with the least of computing time.

14

2.1 Examples of Z
2-actions

We now pause to define and make some observations about several other

examples of Z
2-actions which are used throughout this paper.

Example 2.2 (Vertically Independent Fibonacci Strips) We will define

the Vertically Independent Fibonacci Z
2-action, Sh, to be the Z

2-action

which consists of stacks of horizontal one-dimensional Fibonacci shifts with no

vertical correlations, a property which we will refer to as vertical

independence. More precisely, a vertically independent system is one in

which the forbidden set consists of only 1 × n blocks.

We see that Sh is the Z
2-action with alphabet

A =
{

0 , 1
}

and forbidden set

F = { 1 1 } .

�

Example 2.3 (Horizontally Independent Fibonacci Strips) We will

also make use of the system which consists of infinite vertical strips of

Fibonacci shifts, with no horizontal correlations. We define a Z
2-action to be

horizontally independent if the forbidden set consists of only n × 1 blocks.

15

We define the Horizontally Independent Fibonacci Z
2-action, Sv, to be

the system with alphabet

A =
{

0 , 1
}

and forbidden set

F = { 1

1
} .

�

Example 2.4 (The Domino System) Another example that will arise

often is the Domino Z
2-action which has alphabet

A =
{

0 , 1 , 2 , 3
}

and forbidden set

F =





0

0
,

1

1
,

1

2
,

1

3
,

2

0
,

3

0
,

0 3 , 1 3 , 2 0 , 2 1 , 2 2 , 3 3





.

Note that the forbidden set forces the open sides of the alphabet letters to match

up. This is like filling space by placing dominos on a table, thus the name.

�

16

Figure 2: The six possible vertex configuration for the Square Ice Model. This
is the alphabet set for this model.

Example 2.5 (Square Ice) The Square Ice Model (also known as the Six

Vertex Model) is a Z
2-action defined by assigning a configuration of arrows

to each vertex of the Z
2 lattice. For each point of the lattice, there are four

“edges” that connect it to its four neighboring vertices. We convert these edges

into arrows so that at each vertex, exactly two arrows point away from that

vertex, and exactly two arrows point toward that vertex. The six possible

vertex-arrow configurations can be seen in figure 2. Figure 3 shows a sample

configuration for the 6-Vertex Model. A full treatment of the 6-vertex model

can be found in [14] and [13].

Figure 3: A sample configuration for the Square Ice Model.

17

�

Example 2.6 (The 3-coloring Model) The square ice model is known to

be equivalent to the 3-coloring Z
2-action, that is to say that there is a one

to one map between the two systems. The 3-coloring model has an alphabet

size of 3, with the condition that no tile can share an edge with a tile of the

same name. Thus, we see that the 3-coloring system has as its alphabet and

forbidden set

A =
{

0 , 1 , 2
}

F =





0

0
,

1

1
,

2

2
,

0 0 , 1 1 , 2 2





.

�

18

3 Generating the transition matrices for

Z
2-actions

Described in this chapter is a substitution algorithm which generates the

transition (transfer) matrices for a Z
2-action of finite type with alphabet A,

and forbidden set F .

For the purposes of this algorithm, it is assumed that the forbidden set, F , can

be expressed in terms of only 2 × 2 blocks of tiles.

If the Z
2-action is described with a set of forbidden blocks that are bigger than

2 × 2, then it must be recoded to a larger alphabet which satisfies that

condition. (See “higher block shift” in [15].)

We will look at the transition matrices for vertical n-wide strips of tiles

(transferring downward) in the system. This is often referred to as the “free

boundary condition”. Each transition matrix is assumed to have rows and

columns which have labels taken from An, and are ordered lexicographically.

The transition matrix for an n-wide vertical strip will be named Vn.

Note that Vn will have | A |n rows and columns, labeled by the ordered

elements of An. This is because we will include the α row of Vn even if α is a

forbidden block. In that case, every entry of the row α will be zero.

Let α = α1α2 . . . αn, where αi ∈ A be the label for a row of Vn and

β = β1β1 . . . βn be the label for a column (α, β ∈ An), and let Vn(α,β)
denote

the entry of Vn in the α row and the β column.

19

Note that for any n, Vn is completely determined by listing the number of

2 × n blocks of tiles:

α1 α2 . . . αn

β1 β2 . . . βn
=

α
β

i.e. Vn(α,β)
= 0 if

α
β

is forbidden, and Vn(α,β)
= 1 if

α
β

is an allowed block.

For a general Z
2-action, G, with alphabet A = {A, B, ..., N}, we see that the

binary matrix, V2, has the form:

AA AB . . . AN BA BB . . . BN NA NB . . . NN

AA

AB

: AA AB . . . AN

:
AN

BA

BB

: BA BB . . . BN

:
BN

...
. . .

...
. . .

...
. . .

NA

NB

: NA NB . . . NN

:
NN

Given X, Y ∈ A, let XY denote the submatrix of V2 which has rows X∗ and

columns Y∗, as above. Then XY describes the 2 × 2 blocks of the form:

X ∗
Y ∗

20

The goal is to create an algorithm which will compute Vn+1 given Vn.

For α ∈ An and X ∈ A, let αX ∈ An+1 denote the (horizontal) concatenation

of α and X.

If Vn(α,β)
= 0, then

α
β

is a forbidden block in G. This implies that
α X

β Y

will also be forbidden for any X, Y ∈ A.

In this case, the | A | × | A | submatrix [Vn+1(αX,βY)
]X,Y∈A will have only zero

entries.

In the case that Vn(α,β)
= 1, then

α
β

is an allowed 2 × n block.

We want to know how many ways we can concatenate blocks X, Y ∈ A in the

manner:

α X

β Y
=

α1 α2 . . . αn X

β1 β2 . . . βn Y

The condition that the forbidden blocks be no larger than 2 × 2 implies that X

and Y depend only on αn and βn. The corresponding submatrix,

[Vn+1(αX,βY)
]X,Y∈A, then need only describe blocks of the form

αn X

βn Y
.

Thus, the appropriate submatrix of Vn+1 is given by:

[Vn+1(αX,βY)
]X,Y∈A = αnβn

Where αnβn is the previously defined submatrix of V2.

21

We have now created Vn+1 from Vn and V2. The Vn+1 that we have generated

also has rows and columns that are lexicographically ordered. Since

lexicographic order has been preserved in the new matrix, Vn+1, we may again

use the same substitutions that we made for Vn. Because of this, we need only

find the appropriate substitutions for V2, and iterate those substitutions n

times to generate the matrix Vn+2.

Note that for any system, we must actually count the allowed 2 × 2 blocks in

order to create the matrix V2.

Example 3.1 We will again look at The Hard square model from example

2.1, which had alphabet A = {0, 1}, and the forbidden language

F = { 1 1 ,
1
1

}.

V1 will be the transition matrix for a 1-wide vertical strip in this system.

Thus,

V1 =
0
1

[
1 1
1 0

]
.

The rows and columns of V1 are labeled 0,1 ∈ A. Note that this is also the

transition matrix for the 1-dimensional Fibonacci shift system, as expected.

22

An inspection of the allowed 2 × 2 blocks reveals that:

V2 =

00
01
10
11




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 =




00 01

00 01




With the rows and columns being lexicographically ordered elements of A2.

Now:

V2(00,00)
= 1 ⇒ V3(00X,00Y)

= 00

V2(00,01)
= 1 ⇒ V3(00X,01Y)

= 01

V2(00,10)
= 1 ⇒ V3(00X,10Y)

= 00

V2(00,11)
= 0 ⇒ V3(00X,11Y)

=

[
0 0
0 0

]
= 11

At this point, we can exploit the fact that 11 is a zero matrix. If no such

submatrix of V2 exists, then we must create one.

Continuing with the substitutions, we get:

23

V3 =

000
001
010
011
100
101
110
111




1 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




=




00 01 00 11
10 11 10 11
00 10 11 11
11 11 11 11




Now note that since the matrix V3 is lexicographically ordered, we can again

make the same type of substitutions to obtain V4.

�

It is of special note that in example 3.1, it is not necessary now to refer back

to the submatrices of V2.

Recall that:

V2 =

[
00 01
10 11

]

And we have, in essence, created the substitution rule:

00 −→
[
00 01
01 11

]

01 −→
[
00 11
10 11

]

10 −→
[
00 01
11 11

]

24

11 −→
[
11 11
11 11

]

Starting with the matrix V2, and iterating this substitution n times, we obtain

Vn+2, the transition matrix for an (n + 2)-wide vertical strip (moving

downward).

Once Vn is known, the sum of all nonzero entries in the matrix V n−1
n is exactly

the number of allowed n × n blocks for the system G

Since the matrix Vn+1 generated by this substitution still has lexicographical

ordering of rows and columns, and is the same substitution at every level, we

can improve our notation by partitioning the matrix Vn by writing

Vn =




00n 01n

10n 11n




.

And defining our substitutions as

00n+1 =

(
00n 01n

10n 0

)
; 01n+1 =

(
00n 0

10n 0

)
;

10n+1 =

(
00n 01n

0 0

)
.

We will find that this new notation will be convenient for later calculations.

However throughout this paper, we will continue to use both notations, using

that which best suits our needs at the time.

25

We also note that after we substitute a few times, we expect to have a lot of

zero entries in the matrix Vn. In particular, there will be many rows and

columns which contain only zero entries.

We can, at any time, eliminate rows and columns of zeros, without

compromise to the spectral radius or any relevant calculations, but at the cost

of homogeneity in the substitution process. This method was used in [17] for

the Hard Square system.

To do this, we define a new matrix, V̆n which is the matrix Vn stripped of any

zero rows or columns.

Thus, for the Hard Square system,

V̆2 =




1 1 1
1 0 1
1 1 0




and,

V̆3 =




1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0




.

At this point, keeping the zero rows and columns is a matter of having an

easily-defined substitution. We could define a (more complicated) substitution

algorithm which eliminates zero rows and columns altogether, however, as we

will see later, keeping the zero rows and columns will allow us to perform a

few computations that we could not do otherwise.

26

4 A reflection operator for Z
2-actions

We define a Z
2-action, G with alphabet A and finite forbidden set F to be

empty action if G is empty. Otherwise, we say that G is a valid Z
2-action.

Until now, we have only considered the binary matrices, Vn, which describe

n−wide vertical strips (traveling downward) for Z
2-actions. There is no reason

that we could not use n-tall infinite (right-traveling) horizontal strips.

At this point, we will introduce the notation Hn for the binary transfer matrix

which describes the n-tall horizontal strips, moving to the right. In other

words, for a given Z
2-action, G, if Hn(α,β)

= 1, then the n × 2 block:

α β =

α1 β1

α2 β2

...
...

αn βn

is an allowed block in G. If this block is forbidden then it must be the case

that Hn(α,β)
= 0.

Let G be a non-empty Z
2-action, with alphabet A. Let n = |A|. Let B(m)

denote the set of m × m binary matrices.

Definition 4.1 Let A = [ai,j] ∈ B(n2). For 1 ≤ k ≤ n2, define functions

Φk : B(n2) −→ B(n) by

27

Φk(A) =




ak,1 ak,2 . . . ak,n

ak,n+1 ak,n+2 . . . ak,2n

. . .

ak,n2−n+1 . . . ak,n2


 .

Then each map Φk is a re-arrangement of the kth row of A into a square

matrix. (Cut the kth row into n vectors, then stack those vectors to make a

n × n matrix.)

Definition 4.2 Define the reflection operator, Ψ : B(n2) −→ B(n2) by

Ψ(A) =




Φ1(A) Φ2(A) . . . Φn(A)
Φn+1(A) Φn+2(A) . . . Φ2n(A)

. . .

Φn2−n+1 . . . Φn2(A)


 .

We then have that:

Theorem 4.1 Let G be a Z
2-action with alphabet A, Ψ : B(n2) −→ B(n2) be

the reflection operator defined above, and let n = |A|. If V2 and H2 are the

vertical and horizontal transfer matrices of G which describe the 2−wide and

2−tall infinite strips, then:

(1) Ψ is 1:1 and onto.

(2) Ψ = Ψ−1.

(3) Ψ(V2) = H2.

(Note that (2) and (3) are the reason that we refer to this as the reflection

operator)

28

Proof: Examination of the nature of Ψ reveals that the row V2(AB,∗∗) is mapped

to the submatrix AB = [Ψ(V2)](A∗,B∗) as follows:

For an ordered alphabet, A = {A, B, ..., N}, we will denote by ̺(X) the

(integer) position of X in A. For example, if A is the ordered set

{H, F, W, Q, D}, then ̺(Q) = 4 .

Let a = ̺(A), b = ̺(B), c = ̺(C), and d = ̺(D) . The element V2(AB,CD)
is then

in the a(n − 1) + b row and c(n − 1) + d column of V2.

If x = a(n − 1) + b and y = c(n− 1) + d, we see that [Φx(V2)](i,d) = [A](x,y) for

1 ≤ i ≤ n .

Also, the Φx(V2) are ordered inside of Ψ(V2) such that

[Ψ(V2)](a(n−1)+c,b(n−1)+d) = [V2](x,y) .

This is then expressed as the equation

[V2](AB,CD) = [Ψ(V2)](AC,BD) .

(1) and (2) immediately follow.

For (3), we note that V2(AB,CD)
= H2(AC,BD)

since both determine whether the

2 × 2 block,

A B

C D

is allowed or not.

29

The proof is then completed.

�

We will now give an illustration of the proof.

Let G be a Z
2-action with alphabet A = {A, B}. Then V2 has the form:

V2 =

AA AB BA BB

AA a1,1 a1,2 a1,3 a1,4

AB a2,1 a2,2 a2,3 a2,4

BA a3,1 a3,2 a3,3 a3,4

BB a4,1 a4,2 a4,3 a4,4

Then:

Ψ(V2) = H2 =

AA AB BA BB

AA a1,1 a1,2 a2,1 a2,2

AB a1,3 a1,4 a2,3 a2,4

BA a3,1 a3,2 a4,1 a4,2

BB a3,3 a3,4 a4,3 a4,4

We see that the row AB of V2 is transformed into the submatrix AB of

Ψ(V2) = H2 .

Theorem 4.2 If V2 describes a non-empty shift system, then the following are

equivalent:

(1) The row XY of V2 has only zero entries.

(2) The column XY of V2 has only zero entries.

Proof: Let V2 describe a valid shift system. Let XY be a row of V2 which has

only zero entries. Then there is no vertical transition from XY to AB for any

AB ∈ A2 . In other words, there cannot be a block of the form:

30

X Y

A B

Now suppose that the column XY has a nonzero entry. This would imply that

there exist CD ∈ A2 such that V2(CD,XY)
= 1 . That is to say that the block:

C D

X Y

is allowed. But such a block forbids any further vertical transition. Thus, V2

does not describe a valid Z
2-action. The reverse implication is similar.

�

Corollary 4.1 If H2 describes a non-empty shift system, then the following

are equivalent:

(1) The row XY of H2 has only zero entries.

(2) The column XY of H2 has only zero entries.

The proof is the same as that of the theorem, interchanging up and down for

left and right transitions.

Corollary 4.2 V2 describes a non-empty Z
2-action ⇔ Ψ(V2) describes a

non-empty Z
2-action.

Corollary 4.3 If V2 describes a non-empty Z
2-action and Ψ(V2) = H2, then

the following are equivalent:

31

(1) The row XY of H2 is all zeros.

(2) The column XY of H2 is all zeros.

(3) The submatrix XY of V2 is all zeros.

(4) V2(AX,BY)
= 0 ∀ A, B ∈ A

Proof: This is a direct result of the previous corollary combined with the

properties of the map Ψ.

�

32

5 Computing entropy for Z
2-actions

If κ is the entropy for a Z
2-action, G, then we expect the number of n × n

square blocks to grow asymptotically according to | Bn,n(G) |∼ 2κn2

in the

sense that 0 ≤ limn→∞
1

n2 log | Bn,n(G) |= κ < ∞.

However, in the previously described construction, each Vn was the transition

matrix for a 1-dimensional shift system. If hn is the entropy for the

1-dimensional vertical strip described by Vn, then as m becomes large,

| Bm,n(G) |∼ 2hnm.

Since we know that hn ∼ κn, it is natural to ask under what circumstances is

it true that hn+1 − hn ∼ κ . We know that hn is given by log(λVn
), where λVn

is the Perron eigenvalue of Vn. Thus we are asking when it is true that

lim
n→∞

log(
λVn+1

λVn

) = κ.

The seeming convergence of the sequence of ratios of eigenvalues was first

discovered by the author in 2000. In a private conversation, Boris Solomyak at

the University of Washington relayed that a former student of his, D. Petry,

had taken note of this sequence in the late 1980’s. In 1994, Dr. Solomyak

included this problem in a grant proposal to the National Science Foundation.

Further conversations with Robert Burton (Oregon State University), Paul

Shields (University of Toledo), Chris Hoffman (University of Washington),

33

Doug Lind (University of Washington), and others have led the author to

believe that this question has existed in the folklore of the subject as early as

the late 1970’s or early 1980’s. (Private conversations: [20] , [19], [16], [11].)

In practice, we see that
λVn+1

λVn
converges much faster than counting the

Bn,n(G) blocks found in the entries of the matrix V n−1
n . In this section, we

give a proof that λn+1

n converges to the correct entropy for a certain class of

Z
d-actions. The result is then stated in Theorem 5.4.

If the sequence
λVn+1

λVn
does indeed converge, then it is trivial that it converges

to the correct entropy. This is due to the following theorem from [18].

Theorem 5.1 For any sequence of complex numbers, an,

lim inf

∣∣∣∣
an+1

an

∣∣∣∣ ≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup

∣∣∣∣
an+1

an

∣∣∣∣ .

Thus, if we get convergence for the ratios, it is then true that

lim
n→∞

log
λn+1

λn
= lim

n→∞
log λ1/n

n = κ

where κ is the correct entropy.

To see why the convergence of ratios of successive λn is of such interest, here is

an example:

The genalg.m MATLAB program (see appendix A) was used to compute the

Vn matrices for the Hard Square system. Then |Bn,n| was computed by taking

34

Vn to the n − 1 power and summing over the entries. The number of allowable

n-squares was then computed as |Bn,n|1/n. It was found that

|B11,11|1/11
= 1.52229012974517.

In a different computation, the Vn were generated using the genalg.m

program as before. However, the Perron eigenvalue was found for Vn by

issuing an eigs command in MATLAB and finding the maximum eigenvalue

for each Vn. It was found that

λ9

λ8
= 1.50304808228931.

The correct entropy as computed by Baxter in [1] to forty-four decimal places

is 1.5030480824753322643220663294755536893857810.

We see that the first approximation to the entropy is only good to two decimal

places, but the ratio of eigenvalues algorithm gives ten decimal places of

accuracy even while using fewer iterations. As extra incentive, the first

computation took nearly twenty minutes to get such a poor approximation,

while the second ran in less than one minute on the same computer!

Comparison of these two algorithms used on various other Z
2-actions (Square

Ice, Dominos, etc.) give similar results. Truly the ratio of eigenvalues is the

clear choice for the numerical calculation of entropy (for now).

However, as mentioned previously, there are Z
2-actions for which the ratios of

eigenvalues do not converge. The following is an example of such a system.

35

Example 5.1 Consider the Z
2-action, G, with alphabet A = {0, 1, 2} and the

following construction:

(1) Every other row (i.e. even or odd rows) is a sequence in {0, 1}Z.

(2) The rows in between those described in (1) are {2}Z.

This system can be described by the forbidden block set:

F = { 0 2 , 1 2 , 2 0 , 2 1 ,
0
0

,
0
1

,
1
0

,
1
1

,
2
2

}

This system is better understood by looking at an actual block. A typical block

may look like:

0 0 1 1 0 1 0
2 2 2 2 2 2 2
1 0 1 1 0 0 1
2 2 2 2 2 2 2
0 0 0 1 1 0 1
2 2 2 2 2 2 2
1 1 0 0 1 0 1

Let Vn denote the (down-traveling) vertical transfer matrix for an n-wide strip

in G, and Hn denote the (right-traveling) horizontal transfer matrix for an

n-tall strip. We see that:

36

V2 =




0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0




A simple count of (m × n)-blocks shows that if m (the number of horizontal

rows) is even, then:

| Bm,n(G) | = 2
mn
2 +1

And if m is odd:

| Bm,n(G) | = 2
(m+1)n

2 + 2
(m−1)n

2

Thus, we have for the entropy of G:

h(G) = lim
m,n→∞

1

mn
log | Bm,n(G) | =

1

2

Now, if we call hVn
the entropy for an n-wide vertical strips, we get:

hVn
(G) = lim

m→∞
1

m
log | Bm,n(G) | =

n

2

Thus, the Perron eigenvalue for Vn must be λVn
= 2

n
2 .

This gives us that

lim
n→∞

log

(
λVn+1

λVn

)
= lim

n→∞
log

(
2

n+1
2

2
n
2

)
=

1

2

37

We have then in this case that the ratio of eigenvalues is converging to the

correct entropy.

Now if we let hHm
(G) denote the entropy for an m-tall horizontal strip, for

even m we get:

hHm
(G) = lim

n→∞
1

n
log
(
2

mn
2 +1

)
=

m

2

And for m odd we get:

hHm
(G) = lim

n→∞
1

n
log
(
2

(m+1)n
2 + 2

(m−1)n
2

)
=

m + 1

2

This gives us that for even m, λHm
= 2

m
2 , and for m odd, λHm

= 2
m+1

2 .

We then see that for even m,

λHm+1

λHm

=
2

m+2
2

2
m
2

= 2

And for m odd:

λHm+1

λHm

=
2

m+1
2

2
m+1

2

= 1

This yields the sequence:

[
λHm+1

λHm

]

m∈N

= 1, 2, 1, 2, 1, 2, . . .

=⇒
[
log

(
λHm+1

λHm

)]

m∈N

= 0, 1, 0, 1, . . .

38

This shows us that the ratio of Perron eigenvalues does not converge. Also,

neither the lim supm nor the lim infm of the sequence yields the correct entropy.

�

Remark: We note that none of the Hn matrices are irreducible, and all of the

Vn are periodic. By the construction of this system, we see that we are, in

fact, making many “discrete jumps” in the entropy of the horizontal strips.

That is to say that by increasing the height of an infinite horizontal strip from

n to n + 1, the entropy increases only when n is even. If we start with an odd

height, and increase to the next even height, the entropy remains the same.

It is notable, however, that the average of the lim sup and the lim inf of this

sequence is the correct entropy. This leads us to believe that the Cesaro limit

of such a sequence will give the correct entropy the system.

Theorem 5.2 If G is a Z
2-action, and hn = log (λn) is the entropy of an

n-wide (vertical) restriction of G, then:

lim
n→∞

1

n

n∑

i=1

log

[
λi

λi−1

]
= h

Where h is the entropy of the system, G

Proof:

39

lim
n→∞

1

n

n∑

i=1

log

[
λi

λi−1

]

= lim
n→∞

1

n

n∑

i=1

[log (λi) − log (λi−1)]

= lim
n→∞

1

n
[log (λn) − log (λ1)]

= lim
n→∞

1

n
log λn = h

�

Note that for the Hard Square system given earlier, each of the matrices Vn

was irreducible and aperiodic over its non-zero rows and columns. That is to

say that if V̆n is the matrix obtained by deleting from Vn any row or column

which consists of entirely zeros, then V̆n is irreducible and aperiodic. The

presence of the “free square”, 0 , guarantees that the system is both

irreducible and aperiodic.

These are precisely the conditions that we need in order to prove that the

ratio of eigenvalues method will yield the correct entropy.

We start with a statement of a theorem from [15] (Page 130) (with a

convenient adaptation of indices and terminology):

40

Theorem 5.3 Let A be a non-negative (and non-zero), irreducible, aperiodic

matrix with Perron eigenvalue λ. Let ~v and ~w be the right and left Perron

eigenvectors for A: A~v = λ~v and ~wA = λ~w and normalized so that the dot

product ~w · ~v = 1. Then for each i, j,

[An]i,j = [(~vi · ~wj) + ρn(i, j)] λn

where ρn(i, j) → 0 as n → ∞ ∀i, j, and ~vi · ~wj denotes the regular

multiplication of the ith index of ~v with the jth index of ~w.

Given a Z
2-action (Hard Squares, Square Ice, etc.), which has irreducible,

aperiodic transfer matrices, we let Vn denote the vertical transfer matrix for

an n-wide strip, and Hk will denote the horizontal transfer matrix for a k-tall

strip.

As usual, we will let λn be the Perron eigenvalue of Vn. As in the terminology

of the above theorem, we will let ~vV
n and ~wV

n denote (respectively) the right

and left Perron eigenvectors of Vn and ~vH
n , ~wH

n denote (respectively) the right

and left Perron eigenvectors of Hn.

For the following, we will only consider 2-D systems which have

irreducible and aperiodic Vn and Hn for each n.

We now write the above theorem in the current context,

[
V k

n

]
i,j

=
[
(~wV

n,i · ~vV
n,j) + ρV

n,k(i, j)
]
λk

n

41

where ρV
n,k(i, j) → 0 as k → ∞.

Now,

λn = lim
k→∞

|Bk,n|
1
k

where Bk,n denotes the set of allowed k×n blocks in our system. We then have

λn = lim
k→∞




∑

i,j

[
Hn−1

k

]
i,j





1
k

= lim
k→∞




∑

i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]
λn−1

k





1
k

= lim
k→∞

{
λ

1
k

k

}n−1

·




∑

i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]




1
k

.

Both terms in the curly braces above converge, and thus we have that for

every n,

λn = Hn−1 · lim
k→∞




∑

i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]




1
k

(2)

where H = 2h and h is the entropy for the system in question.

(H = limn→∞ (λn)
1
n .) We then divide Hn−1 to get

λn

Hn−1
= lim

k→∞




∑

i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]




1
k

. (3)

42

We know that the sequence λ
1
n
n is a monotonically decreasing sequence that

converges to H (see [15] and [10]). Thus, we will use the convention that

λ
1
n
n = H + εn where εn ↓ 0 as n → ∞. The left hand side of the above becomes

λn

Hn−1
= H · λn

Hn
= H ·

(
λ

1
n
n

H

)n

= H ·
(H + εn

H

)n

= H ·
(
1 +

εn

H
)n

which is true for every n. Taking limits with n,

lim
n→∞

λn

Hn−1
= H · lim

n→∞

(
1 +

εn

H
)n

Since εn ↓ 0 , the right hand side above converges with n. Therefore, the left

hand side also converges with n. Using this in equation (3), we get that

lim
n→∞

λn

Hn−1
= lim

n→∞
lim

k→∞




∑

i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]




1
k

. (4)

Of particular importance is the fact that the right hand side of the above (4)

converges with n.

From equation (2), we have that

43

λn

λn−1
=
Hn−1 · limk→∞

{∑
i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]} 1

k

Hn−2 · limk→∞
{∑

i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−2(i, j)
]} 1

k

=H · lim
k→∞

{∑
i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]} 1

k

{∑
i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−2(i, j)
]} 1

k

.

(Note that we now have a convergence bound on the error for λn

λn−1
)

Now, taking limits with n, we get

lim
n→∞

(
λn

λn−1

)
= lim

n→∞


H · lim

k→∞

{∑
i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]} 1

k

{∑
i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−2(i, j)
]} 1

k




=H · lim
n→∞

lim
k→∞




{∑
i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−1(i, j)
]} 1

k

{∑
i,j

[(
~wH

k,i · ~vH
k,j

)
+ ρH

k,n−2(i, j)
]} 1

k


 (5)

From equation (4), we know that the numerator and denominator on the right

hand side of equation (5) converge to a number with n, and thus we have that

lim
n→∞

(
λn

λn−1

)
= H · 1 = H.

We have just proved the following theorem.

44

Theorem 5.4 If G is a Z
d-action with the property that its restricted transfer

matrices, V̆n and H̆n are irreducible and aperiodic for each n, and if λn

denotes the Perron eigenvalue of the vertical restriction, Vn, then

lim
n→∞

ln

(
λn

λn−1

)
= h

where h is the entropy of G.

Corollary 5.1 For the Hard Square Z
2-action, the limit of the sequence of

ratios of Perron eigenvaluesis equal to the entropy, limn→∞
λn+1

λn
= h.

Proof:

The existence of the free square, 0 , guarantees that each Vn for the Hard

Square system is both irreducible and aperiodic, and thus our theorem applies

to the Hard Square system.

�

45

6 Asymptotic Analysis of the Substitution

Algorithm and its Relationship to Shifts of

Finite Type

In this section, we examine the restricted vertical transfer matrices, Vn, for a

Z
2-action (as defined in Chapter 3), and their Perron eigenvectors, in order to

better understand the asymptotic behavior of the substitution algorithm.

For illustrative purposes, we will regularly refer to two Z
2-actions which are

closely related to the Hard Square Z
2-action and the one-dimensional

Fibonacci shift of finite type.

We will define Sh to be the Z
2-action which consists of stacks of horizontal

one-dimensional Fibonacci shifts with no vertical correlations, a property

which we will refer to as vertical independence. More precisely, a

vertically independent system is one in which the forbidden set consists of

only 1 × n blocks.

Define Sh to be the Z
2-action with alphabet:

A =
{

0 , 1
}

And forbidden set:

F = { 1 1 }

The corresponding transfer matrix for this system is given by:

46

V2 =




1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0


 =

[
A2 B2

C2 D2

]

We will also make use of the system which consists of infinite vertical strips of

Fibonacci shifts, with no horizontal correlations. We define a Z
2-action to be

horizontally independent if the forbidden set consists of only n × 1 blocks.

We define the Z
2-action Sv to be the system with alphabet:

A =
{

0 , 1
}

And forbidden set:

F = { 1

1
}

The corresponding matrix for this system is given by:

V2 =




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0


 =

[
A2 B2

C2 0

]

We now start our analysis with an examination of the property that the

substitution algorithm not only generates the transition matrices for k-wide

vertical strips of a Z
2-action, but it also keeps track of the actual allowed

k-words in a one-dimensional shift of finite type.

We illustrate this property with the following example, which describes the

2-tall horizontal restriction of the Hard Square system:

47

Let G be the (one-dimensional) shift of finite type with alphabet:

A =

{
0

0
;

0

1
;

1

0

}

and forbidden set:

F =

{
0 0
1 1

;
1 1
0 0

}

A typical point in G might look like:

. . . 0 0 1 0 1 . . .

. . . 1 0 0 1 0 . . .

Note now that G is identical to the 2-tall horizontal restriction of the Hard

Square Z
2-action.

The transition matrix for G is:

TG =




1 1 1
1 0 1
1 1 0




In order to make the substitution algorithm work, we need the ”full” alphabet.

Thus, we add the forbidden letter ,
1

1
to the end of the alphabet.

Thus, our new transfer matrix is:

TG =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0




48

Which we recognize as V2 for the Hard Square system.

If we define the usual substitutions for the hard square, we get:

V3 =




1 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




Note that the [3, 2] entry of V3 (which is equivalent to the [010, 001] entry for

V3 in the 2-dimensional setting) is one, and thus the 3-word:

. . . 0 1 0 . . .

. . . 0 0 1 . . .

Is an allowable word for the 1-dimensional shift G.

We also see that the [2, 6] entry of V3 (which is equivalent to the [001, 101]

entry for V3 in the 2-dimensional setting) is zero, and thus the 3-word:

. . . 0 0 1 . . .

. . . 1 0 1 . . .

Is not an allowed word for G.

Continuing the substitution, we see that every non-zero entry in Vk

corresponds to an allowed k-word in the one-dimensional shift, G, and that

every zero entry corresponds to a forbidden word of length k.

49

Thus we can think of the substitution algorithm as generating transition

matrices for a Z
2-action, but it can also be thought of as keeping track of the

names of allowed blocks in a one-dimensional shift of finite type.

From this, we can see that for any Z
2-action and any k ≥ 1:

∑

α,β∈Ak−1

(Vk)[Xα,Yβ] =

|A|∑

i=1

(
Hk−1

2

)
[XY,i]

(6)

Another important observation is that the substitution algorithm will yield the

correct entropy regardless of whether the initial ”seed matrix”, V2, is binary.

It only matters where the zero entries are placed and that the initial matrix is

non-negative.

Let M be an n2 ×n2 (not necessarily binary) matrix with non-negative entries.

Define an n2×n2 binary matrix, called the indicator matrix of M , I(M) by:

I(M)[A,B] =

{
0 M[A,B] = 0

1 M[A,B] > 0

Lemma 6.1 Let M be a non-negative matrix and let V2 = I(M). Suppose that

V2 defines a valid Z
2-action, then we can define substitutions on V2 according

to chapter 3.

If we apply the same substitutions to M , and call Mk the matrix obtained by

applying this substitution k − 2 times to M , then:

lim
k→∞

1

k
log [ρ (Mk)] = lim

k→∞

1

k
log [ρ (Vk)] = h

50

Where ρ (Vk) denotes the spectral radius of the matrix Vk, and h is the entropy

of the Z
2-action defined by V2.

Proof: Define α = max{M[A,B] > 0} and β = min{M[A,B] > 0}. Then:

βρ (Vk) ≤ ρ (Mk) ≤ αρ (Vk)

=⇒ [βρ (Vk)]1/k ≤ [ρ (Mk)]1/k ≤ [αρ (Vk)]1/k

=⇒ [β]
1/k

[ρ (Vk)]
1/k ≤ [ρ (Mk)]

1/k ≤ [α]
1/k

[ρ (Vk)]
1/k

=⇒ lim
k→∞

[β]
1/k

[ρ (Vk)]
1/k ≤ lim

k→∞
[ρ (Mk)]

1/k ≤ lim
k→∞

[α]
1/k

[ρ (Vk)]
1/k

=⇒ lim
k→∞

[ρ (Vk)]1/k ≤ lim
k→∞

[ρ (Mk)]1/k ≤ lim
k→∞

[ρ (Vk)]1/k

=⇒ lim
k→∞

[ρ (Mk)]
1/k

= lim
k→∞

[ρ (Vk)]
1/k

lim
k→∞

1

k
log [ρ (Mk)] = lim

k→∞

1

k
log [ρ (Vk)]

�

This lemma is better illustrated with an example. For the case of the Hard

Square system:

51

V2 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 =

(
A2 B2

C2 0

)

Which defines substitutions:

An+1 =

(
An Bn

Cn 0

)
; Bn+1 =

(
An 0

Cn 0

)

Cn+1 =

(
An Bn

0 0

)

The lemma tells us that we could have started with the non-binary,

non-negative matrix:

M2 =




1 2 3 0
4 0 5 0
6 7 0 0
0 0 0 0


 =

(
Â2 B̂2

Ĉ2 0

)

Where we are using ”hats” (Â2, etc.) to distinguish between the two sets of

submatrices.

The indicator matrix of M2 is the matrix V2 given above for the Hard Square

system.

Applying the V2 substitution to M2 gives us:

M3 =




1 2 3 0 1 2 0 0
4 0 5 0 4 0 0 0
6 7 0 0 6 7 0 0
0 0 0 0 0 0 0 0
1 2 3 0 0 0 0 0
4 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




=




Â2 B̂2 Â2 0

Ĉ2 0 Ĉ2 0

Â2 B̂2 0 0

0 0 0 0


 =

(
Â3 B̂3

Ĉ3 0

)

52

The lemma tells us that

lim
k→∞

1

k
log [ρ (Mk)] = lim

k→∞

1

k
log [ρ (Vk)]

And thus, we can use the non-binary matrices, Mn, to compute the entropy of

the Hard Square system. In other words, we can ”re-weight” the V2 matrix

any way we like, as long as we preserve the position of the zero entries.

Our goal will be to re-weight the V2 matrix in a way which will allow us to

better approximate the entropy for the system.

Our initial search for a helpful re-weighting of V2 begins by noting that the

matrix substitutions themselves have an associated substitution matrix. Since

each sub-matrix, An, is replaced by an An, a Bn and a Cn, each Bn is replaced

by an An and a Cn, and each Cn is replaced by an An and a Bn, we see that

the substitution matrix, S, is given by:

S =

An Bn Cn

An 1 1 1
Bn 1 0 1
Cn 1 1 0

=




1 1 1
1 0 1
1 1 0




If we rename the partition scheme of V2 as:

V2 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 =

(
A2 B2

C2 D2

)

Then we know that the matrix Dk is replaced by only zeros at each stage of the

substitution. We would then have the (familiar-looking) substitution matrix:

53

S =

An Bn Cn Dn

An 1 1 1 0
Bn 1 0 1 0
Cn 1 1 0 0
Dn 0 0 0 0

In fact, it is easy to see that:

Lemma 6.2 If V2 is the 2-wide vertical transition matrix and H2 is the 2-tall

horizontal transition matrix for a Z
2-action, G, and if the matrix S is the

substitution matrix which is defined by V2, then:

Ψ (V2) = H2 = S

Where Ψ is the reflection operator defined in chapter 4.

Proof: This is a direct result of Lemma 1.

�

We know that the limiting behavior of the substitution algorithm can be

understood by finding the Perron eigenvector of S, in the sense that the

relative frequencies of the of the substitution blocks are given by the

L1-normalized entries of the Perron eigenvector.

Let’s examine the Z
2-action Sh which we defined earlier.

This system has alphabet:

54

A =
{

0 , 1
}

And forbidden set:

F = { 1 1 }

The corresponding matrices for this system are given by:

V2 =




1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0


 =

[
A2 B2

C2 D2

]

And:

S = H2 = Ψ [V2] =




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0




It is interesting to note that the matrix H2 is created by taking the Kronecker

product of the standard fibonacci matrix with itself. Using the appropriate

substitutions on H2 is the equivalent of taking further Kronecker products.

This will always be the case when the Z
2-action is created from vertically

independent strips of a one-dimensional shift.

Continuing, we can see that the substitutions to create Vn are given by:

An+1 =

(
An Bn

Cn Dn

)
; Bn+1 =

(
An 0

Cn 0

)

55

Cn+1 =

(
An Bn

0 0

)
; Dn+1 =

(
An 0

0 0

)

The L1 normalized Perron eigenvector of H2 is found to be:

~vH2 =
1

φ2 + φ + φ + 1




φ2

φ
φ
1


 =

1

φ4




φ2

φ
φ
1


 =




φ−2

φ−3

φ−3

φ−4




Where φ represents the golden ratio, φ = 1
2 (1 +

√
5).

This vector represents the relative frequencies of the substitution blocks as:

An

Bn

Cn

Dn




φ−2

φ−3

φ−3

φ−4




We define the quadrant weights to be:

X̃Yk =


 ∑

α,β∈Ak−1

(Vk)[Xα,Yβ]




We define the normalized quadrant weights to be:

X̂Yk =


 ∑

α,β∈Ak−1

(Vk)[Xα,Yβ]




 ∑

α,β∈Ak

(Vk)[α,β]




−1

And define the limiting normalized quadrant weights to be:

X̂Y = lim
k→∞

= X̂Yk

56

From lemma 2, we know this limit exists, is finite, and is equal to the XY entry

of the L1-normalized Perron eigenvector of H2. And thus, we can see that the

limiting normalized quadrant weights of the Vk will be:

[
0̂0 0̂1

1̂0 1̂1

]
=

[
φ−2 φ−3

φ−3 φ−4

]

We can in fact stabilize the substitution process by weighting our original V2

matrix according to the Perron eigenvector of H2. By re-weighting V2 in this

way, the quadrant masses will grow exactly according to the Perron eigenvalue

of H2.

In this example, An should have a weight of φ−2, similarly for Bn, etc.

This leads us to define the stabilized initial matrix , Ṽ2:

Ṽ2 =




φ−2 φ−3 φ−2 0
φ−3 φ−4 φ−3 0
φ−2 φ−3 φ−2 0
0 0 0 0




Which has quadrant masses:

[
0̂02 0̂12

1̂02 1̂12

]
=

[
1 φ−1

φ−1 φ−2

]
= φ2

[
φ−2 φ−3

φ−3 φ−4

]

Exactly as in the limiting case. If we substitute, we obtain the matrix:

57

Ṽ3 =




φ−2 φ−3 φ−2 0 φ−2 φ−3 0 0
φ−3 φ−4 φ−3 0 φ−3 φ−4 0 0
φ−2 φ−3 φ−2 0 φ−2 φ−3 0 0
0 0 0 0 0 0 0 0

φ−2 φ−3 φ−2 0 φ−2 φ−3 0 0
φ−3 φ−4 φ−3 0 φ−3 φ−4 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




Which has quadrant masses:

[
0̂03 0̂13

1̂03 1̂13

]
=

[
φ2 φ
φ 1

]
= φ4

[
φ−2 φ−3

φ−3 φ−4

]

Which is as we expect, given that the Perron eigenvalue of H2 is φ2. Further

substitutions will have the same quadrant weights, each time multiplied by φ2,

and thus they will all have the same normalized quadrant weights.

We can make the same type of stabilization for any Z
2-action.

Of particular interest to us is the Hard Square model, which has:

V2 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 ; ~vH2 =

An

Bn

Cn

Dn




√
2

1
1
0




1

2 +
√

2
; ρ (H2) = 1 +

√
2

Re-weighting V2, we obtain the matrix:

Ṽ2 =




√
2 1

√
2 0

1 0 1 0√
2 1 0 0

0 0 0 0




And we see that the quadrant masses for Ṽk will be:

58

[
0̂0k 0̂1k

1̂0k 1̂1k

]
=
(
1 +

√
2
)k−2

[
2 +

√
2 1 +

√
2

1 +
√

2 0

]

Lemma 1 tells us that re-weighting the matrices in this manner and computing

the Perron eigenvalues for the Ṽk will still yield the correct entropy for the

system in the sense that:

h = lim
n→∞

1

n
log ρ (Vn) = lim

n→∞
1

n
log ρ

(
Ṽn

)

Estimating the entropy by the ρ
(
Ṽn

)
in the equation above does give a

slightly better approximation than by using the ρ (Vn), but the improvement is

very small, and the rate of convergence to the true entropy remains the same.

59

7 Geometry of the Vn matrices and their

eigenvectors

Now, we will change our focus to the substitutions themselves. With

two-dimensional iterated substitutions like those defined in chapter 3, we

expect to get some fractal geometry.

We begin by defining a map, M, which takes n × n non-negative matrices to

subsets of the unit square. Let T be an n × n non-negative matrix, and define

the set P as follows:

P =
{
(i, j) : T[i,j] > 0

}

Then define M(T) by:

M(T) =
⋃

(i,j)∈P

{
x ∈ [0, 1) :

i − 1

n
≤ x <

i

n

}
×
{

y ∈ [0, 1) :
j − 1

n
≤ x <

j

n

}

For example:

M
(

1 1
1 0

)
=

And:

M




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 =

60

In each set, we are designating the top-left corner the origin (0,0) for the unit

square, and the bottom right is the point (1,1). This will allow us to ”see” the

matrix better as a set.

Now, we can partition the unit square exactly as our matrices are partitioned

for the substitution algorithm. For the Hard Square system:

M (V2) = M




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 = M

(
A2 B2

C2 0

)
=

A
2 B

2

C
2

0

We can see that substitution on matrices is equivalent to a union of

contraction maps on the unit square. Thus, for any V2 matrix, there will be a

limiting fractal , which we call M∞(V2), defined as:

M∞(V2) = lim
k→∞

M (Vk)

For the Hard Square system, the limiting fractal looks like:

M∞ (V2) = M∞




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 =

Note that the Hausdorff dimension of the limiting fractal will not be explored

in this paper, but its uses are being explored.

For the two systems given by horizontally or vertically independent Fibonacci

shifts described earlier:

61

M∞




1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0


 =

M∞




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0


 =

It is interesting to note that the limiting fractal for the horizontally

independent system of Fibonacci shifts, Sv, is the familiar Sierpinski Gasket

fractal.

Now we will define a map, D which takes a non-negative, non-zero, L1

normalized vector to a function on the unit interval. Let ~v be an n × 1 vector

with non-negative entries which sum to one. Define the distribution function

D~v(x) on the unit interval (0,1] by:

D~v(x) =

j∑

i=1

~v[i,1] when
j − 1

n
≤ x <

j

n
for j = 1 . . . n

We can see that since ~v is non-negative and non-zero, D~v(x) is monotone

increasing on the unit interval, and that D~v(1) = 1. That is, we are creating

the cumulative distribution function for the vector in the usual manner [3],

from which we state a theorem, and add several corollaries to the current

context.

Theorem 7.1 Let V2 be given by a non-empty Z
2-action and create Vn by

62

applying the corresponding substitutions. Let ~vn denote the Perron eigenvector

of Vn.

Then the functions D~vn
(x) converge uniformly to a function D∞

V2
(x) on the

unit interval.

Corollary 7.1 If we eliminate the zero rows and columns of the Vn (which we

called V̆n in chapter 3), then the corresponding D~vn
(x) will converge to a

strictly monotone increasing function D∞
V̆2

(x) on the unit interval.

Corollary 7.2 Let M be an n2 × n2 non-negative matrix and V2 = I(M).

Suppose V2 defines a valid Z
2-action. Let Mk+2 be the matrix obtained by

applying the V2 substitutions k times to the matrix M . Let ~vk and ~mk denote

the L1 normalized Perron eigenvectors of Vk and Mk respectively. Then:

lim
k→∞

D~vk
(x) = lim

k→∞
D~mk

(x) ∀x ∈ [0, 1]

Corollary 7.3 If a Z
2-action, G, exhibits horizontal or vertical independence,

and ~vn are the Perron eigenvectors of the associated transfer matrices, Vn,

then the distributions D~vn
(x) form a Martingale with respect to the σ-fields

generated by the intervals
{[

i
|A|n , i+1

|A|n
]

: i = 0 · · · | A |n −1
}
.

We can see (with numerical experiments) that by stabilizing the V2 matrix (as

before), the corresponding distributions converge slightly faster to the limiting

distribution, however the improvement is small.

63

For the Hard Square Z
2-action we can visualize the limiting distribution:

0 0.5 1
0

0.5

1

Figure 4: D∞
V2

(x) for the Hard Square system

At first glance, one may think that this distribution exhibits self-similarity

between the intervals [0, 1/2] and [1/2, 1]. However, it is not self-similar.

If we eliminate the zero rows and columns for the Hard Square system, We see:

0 0.5 1
0

0.5

1

Figure 5: D∞
V̆2

(x) for the Hard Square system

It is visually informative (and aesthetically pleasing) to view the limiting

fractal and the limiting distribution function together. To get a better visual

interpretation of their relationship, however, we maintain that the origin be at

the top left for the limiting fractal, but at the bottom left for the limiting

distribution. That is, we are simply super-imposing the two images.

64

For the Hard Square system, we can see (within the bounds of resolution):

Figure 6: D∞
V2

(x) and D∞
V̆2

(x) for the Hard Square system, together with their

limiting fractals

Note that by eliminating the zero rows and columns of our matrices, Lebesgue

measure no longer applies in the sense that our (now infinite) alphabet, AZ
+

,

covers the entire unit interval and thus has measure 1. This is part of our

initial motivation for keeping forbidden letters in our initial matrices.

When we look at the vertically independent Fibonacci strips, Sh, we get:

Figure 7: D∞
V2

(x) for Sh, together with its limiting fractal

Note that for the system Sh, if we eliminate the zero rows and columns, the

65

limiting fractal has the entire unit square, [0, 1) × [0, 1) for support and

D∞
V̆2

(x) = x (again, we can no longer apply Lebesgue measure).

It is easy to see that this must always be the case when a system consists of

vertically independent shift systems.

We also note that this distribution exhibits a self-similar structure between the

intervals [0, 1/2] and [1/2, 1]. We can then conclude that this is the measure of

a Bernoulli process [3]. This will always be the case when a Z
d-action exhibits

vertical independence.

When we look at the horizontally independent Fibonacci strips, Sv, we see:

Figure 8: D∞
V2

(x) for Sv, together with its limiting fractal

In this case, we note that there are no non-zero rows or columns. Thus,

D∞
V2

(x) = D∞
V̆2

(x) . This will always be true when a system consists of

horizontally independent shift systems.

Furthermore, this distribution is self-similar between the intervals [0, 1/2] and

66

[1/2, 1], and thus this is the measure of a Bernoulli process [3]. This will

always be the case when a Z
d-action exhibits horizontal independence.

Also note that for each system, Sh and Sv, the exact entropy is the golden

ratio, 1
2 (1 +

√
5). Thus, in the case of Sv, there is a link between the golden

ratio and the Sierpinski Gasket. (At this time, the author does not know of

any other correlation between the two, and is truly amazed.)

Some other interesting examples to note are the domino Z
2-action which has

alphabet:

A =
{

0 , 1 , 2 , 3
}

And forbidden set:

F =





0

0
,

1

1
,

1

2
,

1

3
,

2

0
,

3

0
,

0 3 , 1 3 , 2 0 , 2 1 , 2 2 , 3 3





Note that the forbidden set forces the open sides of the alphabet letters to

match up.

The domino system has initial transfer matrix:

67

V2 =

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33




0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




Figure 9: D∞
V2

(x) and D∞
V̆2

(x) for the Domino system, together with their limiting

fractals

One can see that this system describes the arrangements for dominos on a

grid. The entropy for the domino system was computed in [5] and is known to

be the Catalan constant.

Another important example is the famous Square Ice or Six Vertex model.

The entropy for this system was solved exactly in [14], and is known to be

68

(4/3) log(3/2) . The alphabet size is 6, and thus the forbidden set and initial

transfer matrix are quite large. Without explicitly stating them, we see:

Figure 10: D∞
V2

(x) and D∞
V̆2

(x) for the Six Vertex Model, together with their

limiting fractals

The square ice model is known to be equivalent to the 3-coloring model ,

that is to say that there is a one to one map between the two systems. The

3-coloring model has an alphabet size of 3, with the condition that no tile can

share an edge with a tile of the same name. That is:

A =
{

0 , 1 , 2
}

F =





0

0
,

1

1
,

2

2
,

0 0 , 1 1 , 2 2





The 3-coloring system has initial 2-wide transfer matrix:

69

V2 =

00

01

02

10

11

12

20

21

22




0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 1 1 0
0 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0
0 1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0




V̆2 =

01

02

10

12

20

21




0 0 1 1 1 0
0 0 1 0 1 1
1 1 0 0 0 1
1 0 0 0 1 1
1 1 0 1 0 0
0 1 1 1 0 0




It is interesting to note that the row sums of initial transfer matrix, V2 and its

substitutions, Vn, have strong (yet unknown) connection to the Farey fractions.

For the 3-coloring system, we see:

Figure 11: D∞
V2

(x) and D∞
V̆2

(x) for the 3-coloring model, together with their

limiting fractals

70

8 Algebraic manipulations of the substitution

algorithm

In this section, we will attempt to use the eigenvectors of the matrices, Vn

(generated by the substitution algorithm in section 3), to approximate the

entropy for a Z
2-action. We do this by exploiting the self-similar aspects of the

matrices, Vn.

We will begin by examining a simple Z
2-action, and then trying to mimic

what we find and try to apply those discoveries to more general actions.

The system that we will begin with is the Z
2-action, Sh (introduced in section

6), which consists of an infinite stack of horizontal 1-dimensional

Fibonacci-shifts, with no vertical correlations.

This system has alphabet:

A =
{

0 , 1
}

And forbidden set:

F = { 1 1 }

This system has its initial substitution matrix (as in chapter 6) as:

V2 =




1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0


 =

[
A2 B2

C2 D2

]

71

And we can see that the substitutions to create Vn are given by:

An+1 =

(
An Bn

Cn Dn

)
; Bn+1 =

(
An 0

Cn 0

)

Cn+1 =

(
An Bn

0 0

)
; Dn+1 =

(
An 0

0 0

)

We will denote by λn the Perron eigenvalue of Vn, and we will use ~vn to

denote the corresponding Perron eigenvector, the sum of whose entries is one.

(That is, the L1-unit Perron eigenvector).

We will partition the Perron eigenvector, ~vn, according to the alphabet, A, as

follows:

~vn =

(
Xn

Yn

)

At this point, we will make an educated assumption about the nature of ~vn.

We’ll suggest that:

~vn =

(
Xn

Yn

)
=




‖Xn‖
(

Xn−1

Yn−1

)

‖Yn‖
‖Xn−1‖

(
Xn−1

0

)




That is to say, that we are suggesting a possible substitution algorithm for the

Perron eigenvector itself. The norms are included in the eigenvector

substitution to ensure that the L1-norm remains unchanged. We will now test

to see if our eigenvector substitution works.

72

To test this, we begin with the standard eigenvector equation, which we will

then expand using the substitution algorithm and the partitioned ~vn.

Vn~vn = λn~vn

=⇒
[
An Bn

Cn Dn

](
Xn

Yn

)
= λn

(
Xn

Yn

)

From the first row of this equation:

AnXn + BnYn = λnXn

Using the matrix and eigenvector substitutions, we get:

(
An−1 Bn−1

Cn−1 Dn−1

)(
Xn−1

Yn−1

)
‖Xn‖+

(
An−1 0

Cn−1 0

)(
Xn−1

0

) ‖Yn‖
‖Xn−1‖

= λn‖Xn‖
(

Xn−1

Yn−1

)

We now see that the first term in this expression is Vn−1~vn−1‖Xn‖. Thus we

have:

λn−1

(
Xn−1

Yn−1

)
‖Xn‖ +

(
An−1Xn−1

Cn−1Xn−1

) ‖Yn‖
‖Xn−1‖

= λn‖Xn‖
(

Xn−1

Yn−1

)

The first row of this equation gives us:

λn−1‖Xn‖Xn−1 + An−1Xn−1
‖Yn‖

‖Xn−1‖
= λn‖Xn‖Xn−1

Substituting again gives us:

73

λn−1‖Xn‖ · ‖Xn−1‖
(

Xn−2

Yn−2

)
+

(
An−2 Bn−2

Cn−2 Dn−2

)
‖Xn−1‖

(
Xn−2

Yn−2

) ‖Yn‖
‖Xn−1‖

= λn‖Xn‖ · ‖Xn−1‖
(

Xn−2

Yn−2

)

The second term of this equation now satisfies an eigenvector equation. Thus,

by cancelling the ‖Xn‖ in the second term, the first row of this equation yields:

λn−1‖Xn‖ · ‖Xn−1‖Xn−2 + ‖Yn‖λn−2Xn−2 = λn‖Xn‖ · ‖Xn−1‖Xn−2

At this point, we do not need to substitute any further, since every term has is

now expressed only in terms of eigenvalues and eigenvectors. We have at this

point:

λn−1‖Xn‖ · ‖Xn−1‖ + ‖Yn‖λn−2 = λn‖Xn‖ · ‖Xn−1‖

Which we write as:

λn = λn−1 +
‖Yn‖

‖Xn‖ · ‖Xn−1‖
λn−2 (7)

We have successfully written the eigenvalue, λn as a recursion of previous

eigenvalues!

If the coefficient of λn−2 in the above equation converges with n, then we can

use the limiting recursion to obtain the true entropy for the system.

74

With this particular system, we can cheat a bit since it is easy to see that the

eigenvectors are generated by the Fibonacci sequence. That is:

(
‖X2‖
‖Y2‖

)
=

1

3

(
2
1

)
;

(
‖X3‖
‖Y3‖

)
=

1

5

(
3
2

)
;

(
‖X4‖
‖Y4‖

)
=

1

8

(
5
3

)
; . . .

From this it is easy to show that for every n, we have:

‖Yn‖
‖Xn‖ · ‖Xn−1‖

= 1

And thus our equation becomes the familiar Fibonacci recursion:

λn = λn−1 + λn−2

From which we can deduce that:

lim
n→∞

(λn)
1/n

=
1 +

√
5

2

Which is indeed the correct entropy for this system.

At this point is is important to note that at several steps in the above

calculation, we chose a certain row of a matrix equation as our focus.

It turns out that in this calculation, the choice of row at each step does not

affect the end result.

75

We now attempt the same style of manipulation on the hard square model,

which has:

A =
{

0 , 1
}

; F = { 1 1 ;
1

1
}

This system has the initial substitution matrix :

V2 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 =

[
A2 B2

C2 0

]

With substitutions given by:

An+1 =

(
An Bn

Cn 0

)
; Bn+1 =

(
An 0

Cn 0

)

Cn+1 =

(
An Bn

0 0

)

Again, we partition the Perron eigenvector, ~vn, as:

~vn =

(
Xn

Yn

)

We’ll now make the unsupported assumption that the hard square

eigenvectors behave like the system described earlier:

Xn = ‖Xn‖
(

Xn−1

Yn−1

)

76

And:

Yn =
‖Yn‖

‖Xn−1‖

(
Xn−1

0

)

We note now that this assumption is not true. However, it is not terribly

wrong. If we look at the distribution functions of the Hard Square and Sh

eigenvectors, we see:

Figure 12: D∞
V2

(x) for the Hard Square and Sh systems, together with their
limiting fractals

The distributions look similiar and are ”close enough” in the sense that they

share the same support and have only small differences in their function

values. It turns out that this is enough to yield a surprisingly accurate

estimate for the hard square entropy.

As before, we start with the eigenvector equation:

Vn~vn =

(
An Bn

Cn 0

)(
Xn

Yn

)
=

(
AnXn + BnYn

CnXn

)
= λn

(
Xn

Yn

)

The second row of this equation gives us:

77

CnXn =

(
An−1 Bn−1

0 0

)(
Xn−1

Yn−1

)
‖Xn‖ = λnYn

The first row gives us:

(
An−1Xn−1 + Bn−1Yn−1

0

)
‖Xn‖ = λn−1

(
Xn−1

0

)
‖Xn‖ = λn

‖Yn‖
‖Xn−1‖

(
Xn−1

0

)

Which yields:

λn−1‖Xn‖ = λn
‖Yn‖

‖Xn−1‖

Using the fact that ‖Yn‖ = 1 − ‖Xn‖:

λn

λn−1
=

‖Xn‖ · ‖Xn−1‖
1 − ‖Xn‖

It is widely believed that the left side of this equation converges to the correct

entropy. But the right side still depends on our naive assumption about the

eigenvectors. However, the right side must converge to some number, since we

know that the ‖Xn‖ converge.

By using MATLAB to numerically estimate the values of the ‖Xn‖, and

assuming that for ”large” n, ‖Xn‖ ≈ ‖Xn−1‖, we obtain the following

computations:

78

n ‖Xn‖2

1−‖Xn‖ − hB

3 −0.0754409415805952
4 0.0194488210548154
5 −0.0182087948581906
6 −0.00320522050757299
7 −0.00940138070106267
8 −0.00681222368996282
9 −0.00791045720681782
10 −0.00744015843836565
11 −0.00764337288239991
12 −0.00755493525670037
13 −0.00759366757134727

Where hB is the hard square entropy estimate given by Baxter in [1].

We note that the best estimate is for n = 6, and that the estimates are

converging to an incorrect number which is still remarkably close to the

correct entropy, given that we made such loose assumptions about the

behavior of the eigenvectors.

One hope is that we might combine this technique with the re-weighting

methods of chapter 6 in order to get better approximations to the correct

entropy.

79

9 Numerical Estimations for the Entropy of

Z
2-actions

In this chapter, we will construct and explore a new numerical method for

computing the entropy of a Z
2-action. We construct this method by making

analogies with one-dimensional shifts of finite type, which we analyze first.

At the time of submission for this thesis, a proof of convergence for

this numerical estimator has not been found.

Let G be a one-dimensional shift of finite type with alphabet A and finite

forbidden set F . Then there is an associated graph and transfer matrix, TG ,

that generates G. The number of allowed n-blocks in G can be found by

finding ‖T n−1
G ~1‖1 where ~1 is an |A| × 1 vector with a 1 in every entry. (Recall

that ‖~v‖1 denotes the sum of the entries of the vector ~v, and we don’t need to

worry about absolute values here, since every number is positive in our current

setting.)

If we know the entire sequence of numbers { |Bn(G)| }∞n=1, then we can

approximate the entropy by computing 1
n log |Bn(G)| for large n. For an

arbitrary system, we don’t expect that 1
n log |Bn(G)| = h for any n. As stated

previously, we expect that the sequence 1
n log |Bn(G)| will converge very slowly

to the correct entropy. Thus, in order to get a good approximation of the

entropy, we need a very large n, which is not always computationally practical.

However, we can use our knowledge of the beginning of the sequence

80

{ |Bn(G)| }∞n=1 to construct a series of matrices, An, which estimates the

growth rate of |Bn(G)|.

For the sake of brevity, we will now adopt the notation bk = |Bk(G)|, and ~1k is

a k × 1 vector with a 1 in every entry. We will also call H = 2h, as this will be

used frequently in this section.

We know that bk = ‖T k−1
G ~1|A|‖1 and thus, we can think of the sequence

{bk}∞k=1 as a sequence of norms of the orbit of the vector ~1|A| under the

operator TG . Furthermore, since TG is a non-negative matrix, we know that

the orbit of ~1|A| lies entirely in the positive (first) quadrant of R
|A|.

In general, there are many matrices, T , that could produce orbits such that

‖T n−1~1|A|‖1 = bk.

To help with this, we exploit the fact that topology does not distinguish

between norms on R
n. If an orbit has an asymptotic growth rate (determined

by the spectral radius of the operator) in L1, then it has the same growth rate

in L∞.

For every n, construct a sequence of n + 1 vectors as follows:

~v1,n =




b1

b2

...
bn


 ~v2,n =




b2

b3

...
bn+1


 . . . ~vn,n =




bn

bn+1

...
b2n−1


 ~vn+1,n =




bn+1

bn+2

...
b2n




The first index indicates the index of the first entry of the vector, the second

indicates the length of the vector.

81

We first note that since the bk are a monotone sequence, the sup norm of each

vector is equal to its last entry. That is to say ‖vk,n‖∞ = bn+k−1, and we see

that this sequence of vectors has the same growth rate in the sup norm.

We wish to find a sequence of matrices, An, with the property that

An~vk,n = ~vk+1,n for every 1 ≤ k ≤ n, so that An will approximate the actual

growth rate of the bn in the sense that the orbit of ~1|A| will have the correct

growth rate.

If the set of vectors, {~v1,n, ~v2,n, . . . , ~vn,n}, is linearly independent, then they

form a basis for R
n, and ~vn+1,n can be uniquely written as a linear

combination of this set. Thus, there will be a unique solution to the system:

α0,nb1 + α1,nb2 + α2,nb3 + · · · + αn−1,nbn = bn+1

α0,nb2 + α1,nb3 + α2,nb4 + · · · + αn−1,nbn+1 = bn+2

...

α0,nbn + α1,nbn+1 + α2,nbn+2 + · · · + αn−1,nb2n−1 = b2n

(8)

If {~v1,n, ~v2,n, . . . , ~vn,n} is not a linearly independent set of vectors, basic linear

algebra states that there could be infinitely many solutions or no solution. We

first make the assumption that the system has at least one solution.

We also wish to make the further assumption that If {~v1,n, ~v2,n, . . . , ~vn,n} is

linearly dependent, then the set of vectors {~v1,n+1, ~v2,n+1, . . . , ~vn+1,n+1} is also

linearly dependent. This is the assumption which tells us that once we have

found a linearly dependent set, we have fully characterized the system.

82

Finding the αk is as easy as row-reducing the augmented Hankel matrix:


 ~v1,n ~v2,n . . . ~vn,n ~vn+1,n


 =




b1 b2 b3 . . . bn bn+1

b2 b3 b4 . . . bn+1 bn+2

b3 b4 b5 . . . bn+2 bn+3

...
...

...
. . .

...
...

bn bn+1 bn+2 . . . b2n−1 b2n




If the set of vectors, {~v1,n, ~v2,n, . . . , ~vn,n} is a linearly dependent set, then

some of the αk,n will be free variables. In this case, we want to set αk,n = 0

for the lowest possible values of k. Thus, we set α0,n = α1,n = · · · = αj,n = 0,

for the largest value of j possible.

Once we have found the αk, we create the companion matrix:

An =




0 1 0 0 . . . 0
0 0 1 0 0
0 0 0 1 0
...

. . .
...

0 0 0 0 . . . 1
α0,n α1,n α2,n α3,n . . . αn−1,n




Note that we need to know b2n in order to create the matrix An.

We see that the matrix An has the property that An~vk = ~vk+1 for 1 ≤ k ≤ n,

and thus has the correct growth rate of G for the first 2n terms of {bk}.

The companion matrix, An, has characteristic polynomial:

pAn
(x) = xn − αn−1x

n−1 − αn−2x
n−2 − . . . − α1x − α0

From (8), we know that the αk satisfy:

83

α0bk + α1bk+1 + α2bk+2 + · · · + αk−1b2k−1 = b2k 1 ≤ k ≤ n

Alternatively, we write:

b2k−αk−1b2k−1−αk−2b2k−2−· · ·−α2bk+2−α1bk+1−α0bk = 0 1 ≤ k ≤ n

Which we then write as:

(
b

1
2k

2k

)2k

− αk−1

(
b

1
2k−1

2k−1

)2k−1

− · · · − α1

(
b

1
k+1

k+1

)k+1

− α0

(
b

1
k

k

)k

= 0 (9)

We know that for large values of k, b
1/k
k is close to the correct entropy. Thus,

each value in parentheses above is near the correct entropy for large enough k.

That is to say that the entropy, 2h, is nearly a solution of the characteristic

polynomial of An when n is large.

We state this formally as:

Theorem 9.1 Let G be a one-dimensional shift of finite type, with alphabet A

and entropy h. Construct matrices An as above. Then there exists an N such

that for n ≥ N , ρ(An) = 2h, where ρ(An) denotes the spectral radius of An.

Proof: Since G is a shift of finite type, it has an associated transition matrix,

TG . For purposes of this proof, we can let N = |A|.

Let pTG
(x) = xN + aN−1x

N−1 + · · · + a1x + a0 denote the characteristic

polynomial of TG .

84

Since TG satisfies it’s characteristic polynomial, we know that:

pTG
(T)~1N =

[
T N + aN−1T

N−1 + · · · + a1T + a0I
]
~1N = ~0 (10)

=⇒ ‖
[
T N + aN−1T

N−1 + · · · + a1T + a0I
]
~1N‖1 = 0

Since we are only dealing with positive numbers, the 1-norm is linear:

=⇒ ‖T N~1N‖1 + aN−1‖T N−1~1N‖1 + · · · + a1‖T~1N‖1 + ‖a0I~1N‖1 = 0

=⇒ bN+1 + aN−1bN + · · · + a1b2 + a0b1 = 0

Thus, by setting αi,N = −ai, we satisfy the first equation in (8).

Furthermore, by multiplying equation (10) by T k for k ≥ 0 , and following the

same course, we satisfy every equation in (8) for n = |A|. Note that we have

actually solved infinitely many such equations, and that A|A| will generate the

entire sequence {bn} correctly.

The matrix A|A| also has the same characteristic polynomial as TG , and thus

ρ
(
A|A|

)
= 2h.

�

Underlying all of this is the fact that 1
n log |Bn (G)| is finite, and converges to

2h. For a Z
2-action, we know that 1

n log λn also converges to 2h, where the λn

are the entropies of the n-wide restrictions of the Z
2-action.

85

The natural question now is: ”to what extent can the λn be expressed as a

recursion?”

In the 2-dimensional setting, using the λn, we no longer have a finite alphabet,

nor do we have a transfer matrix to exploit. However, we do know that the

sequence of λn behave as if they were generated by an iterated linear operator

in the sense that 1
n log λn → h .

In the 2-dimensional setting, we do not expect that ρ (An) will equal 2h for

any n. That is to say that we don’t expect to have a finite-dimensional

recursion which describes the sequence λn perfectly. However, the theorem

tells us that the sequence is (in a sense) nearly a recursive sequence.

Having a numerical estimate for the entropy of a Z
2-action is nothing new.

However, this algorithm is of particular interest because of the rate at which

ρ (An) converges to the correct entropy for the system.

We include MATLAB programs that use the substitution algorithm described

in chapter 3 (genalg nz.m), and the numerical approximation (ρ (An))

algorithm described here (num approx.m) in appendix [A]. Entropy

approximations were generated using these programs, and their errors were

determined by using the hard square entropy approximation given by Baxter

in [1], 2h = 1.5030480824753322643220663294755536893857810 . . . , which is

known to be accurate to 43 decimal places. The MATLAB programs

generated the following data, for the sequence {λi}n
i=1

86

n ρ (An) Baxter’s value − ρ (An)
2 1.49206603764754 1.09820448277955× 10−2

4 1.50304256195751 5.52051782665153× 10−6

6 1.50304806840618 1.40691476246957× 10−8

8 1.50304808251233 −3.69941854927447× 10−11

10 1.50304808247359 1.74327219326642× 10−12

12 1.50304808247533 5.99520433297585× 10−15

Since MATLAB is accurate to only 15 decimal places, the round-off error

actually claims that when n = 12 that there is a recursion, and that the

entropy estimate is equal to the correct entropy for the system. This is, of

course, not true, and is due to the limitations of the computer used and in the

MATLAB programs used to compute the eigenvalues of the Vn matrices and

to row-reduce the Hankel matrices.

Also, we have strong reasons to believe that the ρ (An) approximations should

converge monotonically increasing to the correct entropy (that is, we believe

that for each n, ρ (An) ≤ ρ (An+1) ≤ H). That being said, we believe that the

ρ (An) entropy estimate for n = 8 to be in error, as it represents an estimate

that is actually above Baxter’s entropy estimate.

However, it is worth noting that due to the triviality of this computation,

these estimates were generated very quickly (under one half of a second).

For the 3-coloring model (which is known to be equivalent to the six-vertex or

square ice model), we know the exact entropy to be H = (4/3)3/2 (as

computed for the six-vertex model in [14]). The same MATLAB programs

generated the following estimates:

87

n ρ (An) (4/3)
3/2 − ρ (An)

2 1.5 3.96007178390021× 10−2

4 1.53319383707296 6.40688076604068× 10−3

6 1.53773728723612 1.86343060288174× 10−3

8 1.53887120431789 7.29513521113612× 10−4

10 1.53925826509907 3.42452739934718× 10−4

We know that the square ice model has long-term, non-trivial dependencies

given certain n × n configurations. Thus, we see the ρ (An) approximations

converging more slowly than the Hard Square model (whose long term,

non-trivial dependencies are very small, due to the ”free square” , 0).

The Domino system also exhibits long-term dependencies (the Domino system

is known to be a factor of the six-vertex model). The entropy for the Domino

system is computed in [5] to be approximately 2h = 1.33851515197606 . . . ,

which we believe accurate to 12 decimal places. The MATLAB program

approximations for the Domino system are:

n ρ (An) 2h − ρ (An)
2 1.33141483151058 0.00710032046548248
4 1.36472418661596 −0.0262090346398953
6 1.33745171080222 0.00106344117384238
8 1.51675433232394 −0.178239180347872

In this case, we see the approximations are quite poor, and do not even seem

to be converging to the correct entropy. Furthermore, we also see that some of

the approximations are above the correct entropy. Thus, we believe that these

poor approximations are due to round-off errors.

88

Bibliography

10 Bibliography

References

[1] R. J. Baxter: Planar Lattice Gases with Nearest-Neighbor Exclusion.
Annals of Combinatorics 3 (1999) 191-203.

[2] R. J. Baxter, I. G. Enting, and S. K. Tsang: Hard Square Lattice Gas.
Journal of Statistical Physics 22 (1980) 465-489.

[3] P. Billingsley: Ergodic Theory and Information Wiley (1965)

[4] R. Burton, J. Steif: Non-Uniqueness of Measures of Maximal Entropy for
Subshifts of Finite Type. Ergodic Theory and Dynamical Systems 14
(1994) 213-235

[5] R. Burton, R. Pemantle: Local Characteristics, Entropy and Limit
Theorems for Spanning Trees and Domino Tilings via
Transfer-Impedances. Annals of Prbability 21 (1993) 1329-1371.

[6] R. Burton, K. Dajani, and D. Meester: Entropy for Random Group
Actions. Ergodic Theory and Dynamical Systems 18 (1998) 109-124

[7] R. Burton, J. Steif: New Results on Measures of Maximal Entropy. Israel
Journal of Mathematics 89 (1995) 275-300

[8] N. J. Calkin and H. S. Wilf: The number of independent sets in a grid
graph. SIAM Journal of Discrete Mathematics 11 (1998) 54-60.

[9] K. Engel: On the Fibonacci Number of an M × N Lattice. The Fibonacci
Quarterly 28 (1990) 72-78.

[10] Friedland, Shmuel : Computation of entropy in statistical mechanics and
information theory, Congr. Numer. 168 (2004), 207–213.

89

[11] Hoffman, Chris: Private conversations

[12] J. Kemeny, J.L Snell: Finite Markov Chains. D. Van Nostrand Company,
Inc. (1960)

[13] R. Kindermann, J. L. Snell: Markov Random Fields and their
Applications. Contemporary Mathematics (American Mathematical
Society) (1980).

[14] E.H. Lieb: Residual Entropy of Square Ice. Physical Review Vol. 162, 1
(1967) 162-172

[15] D. Lind, B. Marcus: An Introduction to Symbolics and Coding.
Cambridge University Press (1995).

[16] D. Lind: Private conversations

[17] N.G. Markley and M.E. Paul, Maximal measures and entropy for Z
ν

subshifts of finite type (1979)

[18] W. Rudin: Principles of Mathematical Analysis, Third Edition.
McGraw-Hill (1976)

[19] Paul Shields: Private conversations

[20] Solomyak, Boris: Private conversations

90

A Matlab Code

This appendix shows the Matlab code for 4 of the programs used in this paper:

• genalg.m , which is the substitution algorithm outlines in section 3

• genalg nz.m , which generates the same substitutions without the zero
rows and columns

• genalg2.m , which outputs the Perron eigenvalues of the matrices
generated by the substitution algorithm

• num approx.m , which computes the numerical approximatino algorithm
outlined in section 9

Note that some lines have been wrapped to fit on the page.

%%%%% genalg:

% This is the general matrix substitution algorithm.

% The "seed" or input matrix, V2 (H2), should be (a^2)x(a^2) where

a is the

% alphabet size. k is the desired number of iterations. The output of

genalg.m

% will be the matrix Vk (Hk). (This version uses sparse matrix

notation.)

%

% Usage: genalg(V2,k)

function F=genalg(V2,k)

% A will be the alphabet size:

A=sqrt(max(size(V2)));

% Special function in case k=1, in which we compute the

% V1 matrix.

if k==1

% Seed matrix for V1:

Z=zeros(A);

for r=1:A

for c=1:A

if V2((r-1)*A+1:(r*A) , (c-1)*A+1:(c*A))==zeros(A)

Z(r,c)=0;

else

Z(r,c)=1;

end

91

end

end

F=Z;

break

end

% Special function in case k=2, in which we return the original

matrix:

if k==2

F=V2;

break

end

% The substitution algorithm for k > 1 ; V_n=T ; V_{n+1}=T2 ;

then repeat:

T=V2;

% start the iterations. Iterate by creating a T2 which which all

submatrices

% are T, then putting in the appropriate zeroes:

% First, find all of the zeros in V2 so we know where to put

zero blocks:

[ZR,ZC]=find(V2==0);

NZB=max(size(ZR));

for iter=3:k

T2=zeros(A^iter);

% Make a bunch of copies of T:

for SUBROW=1:A

for SUBCOL=1:A

T2((SUBROW-1)*A^(iter-1)+1:(SUBROW)*

A^(iter-1) , (SUBCOL-1)*A^(iter-1)+1:(SUBCOL)*A^(iter-1)) = T;

end

end

% Put zero blocks in the correct places:

for i=1:NZB

T2((ZR(i)-1)*A^(iter-2)+1:(ZR(i))*A^(iter-2) , (ZC(i)-1)*

A^(iter-2)+1:(ZC(i))*A^(iter-2)) = zeros(A^(iter-2));

end

% T2 (which is V_{n+1}) is now finished.

92

T=T2;

end

F=T;

93

%%%%% genalg_nz:

% This is the general matrix substitution algorithm without

zero rows and columns.

% The "seed" or input matrix, V2 (H2), should be (a^2)x(a^2)

where a is the

% alphabet size. k is the desired number of iterations. The

output of genalg_nz.m

% will be the matrix Vk (Hk). The matrix, V2, must be a binary

matrix.

%

% Usage: genalg_nz(V2,k)

%

function Vk=genalg_nz(V2,k)

% A will be the alphabet size:

A=sqrt(max(size(V2)));

% When we eliminate the zero rows from the start, the

substitution

% matrices are no longer square. We generate a matrix, PM,

which will

% keep track of how to correctly partition the Vn matrices.

% The correct partition will be PM^(n-1)*x , where x is a vector

% with a one in every entry. This partition will be saved as the

% vector, PV. We will also need the partition for the matrix to

% be created, which we will call PV2.

x=ones(A,1);

PM=genalg(vh(V2),1);

% Now we will create two matrices, ROWSUB, and COLSUB

to denumerate the

% substitutions.

% In order to make these matrices, we first need to create an

intermediate

% matrix, E, which enumerates the rows and columns.

E=[];

for m=1:A

E=[E; m*ones(1,A^2)];

end

E=kron(ones(A,1) , E);

ROWSUB=E;

94

COLSUB=E’;

% ROWSUB and COLSUB hold all of the information needed

for the

% substitution algorithm.

% We need to strip the zero rows and columns from V2,

ROWSUB, and COLSUB

VN=V2;

for n=A^2:-1:1

if sum(VN(:,n))==0

VN(:,n)=[];

ROWSUB(:,n)=[];

COLSUB(:,n)=[];

end

end

for n=A^2:-1:1

if sum(VN(n,:))==0

VN(n,:)=[];

ROWSUB(n,:)=[];

COLSUB(n,:)=[];

end

end

VS2=VN;

% VN should be a square matrix, whose size is the "real"

alphabet

% size. We call RA the real alphabet size:

RA=max(size(VN));

PV=PM*x;

PV2=PM*PV;

for r=1:k-2

% We now create an Ax2 block-counting matrix, BC,

which holds the

% values of the places where the partitions take place.

For instance,

% if PV=[3 ; 5 ; 7] , then BC=[1 3 ; 4 8 ; 9 15], which are

95

the

% indices for the substituted rows and columns.

(i.e. 1:3 , 4:8 , 9:15)

% Similarly, we define BC2 for the next matrix.

BC=zeros(A,2);

for n=1:A

BC(n,1)= sum(PV(1:n)) - PV(n) + 1;

BC(n,2)= sum(PV(1:n));

end

BC2=zeros(A,2);

for n=1:A

BC2(n,1)= sum(PV2(1:n)) - PV2(n) + 1;

BC2(n,2)= sum(PV2(1:n));

end

% Now to create the VNP (V_{n+1}) matrix block by

block:

VNP=[];

for RB=1:RA

ROWBLOCK=[];

for CB=1:RA

ROWBLOCK=[ROWBLOCK [VS2(RB,CB)*VN(BC(

ROWSUB(RB,CB),1):BC(ROWSUB(RB,CB),2) , BC(

COLSUB(RB,CB),1):BC(COLSUB(RB,CB),2))]];

end

VNP=[VNP;ROWBLOCK];

end

% Just so we can see of which eigenvalue was just

computed:

sprintf(’%d’,r+2)

%%%

%

% VNP is now created. We set our new values for the

96

next iteration

%

%%%

VN=VNP;

PV=PV2;

PV2=PM*PV;

end

Vk=VNP;

97

%%%%% genalg2

% Use the genalg algorithm to output a column vector

% whose entries are the Perron Eigenvalues of each

% iteration of the substitution algorithm.

function M=genalg2(V2,k)

% Seed the column vector to hold the eigenvalues

E=[max(eigs3(genalg(V2,1))) ; max(eigs3(V2))];

% A will be the alphabet size:

A=sqrt(max(size(V2)));

% The substitution algorithm for k > 1 ; V_n=T ; V_{n+1}=T2 ;

then repeat:

T=V2;

% start the iterations. Iterate by creating a T2 which which all

submatrices

% are T, then putting in the appropriate zeroes:

% First, find all of the zeros in V2 so we know where to put

zero blocks:

[ZR,ZC]=find(V2==0);

NZB=max(size(ZR));

for iter=3:k

T2=zeros(A^iter);

% Make a bunch of copies of T:

for SUBROW=1:A

for SUBCOL=1:A

T2((SUBROW-1)*A^(iter-1)+1:(SUBROW)*

A^(iter-1) , (SUBCOL-1)*A^(iter-1)+1:(SUBCOL)*

A^(iter-1)) = T;

end

end

% Put zero blocks in the correct places:

for i=1:NZB

T2((ZR(i)-1)*A^(iter-2)+1:(ZR(i))*A^(iter-2) , (ZC(i)-1)*

A^(iter-2)+1:(ZC(i))*A^(iter-2)) = zeros(A^(iter-2));

end

% T2 (which is V_{n+1}) is now finished.

T=T2;

98

E=[E ; max(eigs3(T))];

end

M=E;

99

%%%% num_approx

% Numerical aproximation for entropy using the

% companion matrix method.

%

%

% Usage: [P,H]=num_approx(V2,n) where n is an even

integer representing

% largest eigenvalue computed and V2 is the usual input

matrix.

%

% i.e.: num_approx(V2,8) generates 8 eigenvalues, giving the

% Fourth approximation.

%

% P will be a column vector of coefficients of the characteristic

% polynomial of the n/2 partner matrix (Note the first entry will

% always be one, since the polynomial is monic), and H is the

% largest root of this polynomial.

function [P,H]=num_approx(V2,m)

% For convenience in programming:

n=m/2;

% Generate the column vector of eigenvalues

V=genalg2(V2,m);

% Create an empty matrix, R, to hold the eigenvalues

% for the rref to generate the comapnion matrix:

R=zeros(n,n+1);

for c=1:n+1

R(1:n,c)=V(c:c+n-1);

end

A2=rref(R);

% The order of the entries needs to be reversed to

% be able to use matlab’s root function properly.

Y=zeros(n,1);

100

for e=0:n-1

Y(e+1)=-A2(n-e,n+1);

end

% A will be the final column vector generated by row

reduction

% of the matrix R. That is, A2 transpose will be the entries

of the bottom

% row of the companion matrix.

P=[1;Y];

% The coefficients are in the correct order. We need to add

% one to the degree to make a monic polynomial of degree

n+1

% then find the largest root.

% H will be the approximation of the entropy given this

polynomial

H=max(abs(roots([1 ; Y]))) ;

