Anne Marie Matherne for the degree of Master of Science in Oceanography presented on December 18, 1981.

Title: Paleoceanography of the Gulf of California: A 350Year Diatom Record Redacted for privacy Abstract approved:

> Hans Schrader

Downcore diatom assemblage variations as preserved in varved sediments from the central Gulf of California are used to detect changes in the overlying water masses over the last 300-350 years. Four laminated Kasten cores from the slopes of the Guaymas Basin were examined, B-29 and B-28 from the Baja side and E-9 and E-10 from the mainland side of the Gulf. Average sedimentation rates during the last 800-900 years, based on varve chronology, are: $B-29$, $.26 \mathrm{~cm} / \mathrm{Yr} ; \mathrm{B}-28, .24 \mathrm{~cm} / \mathrm{Yr} ; \mathrm{E}-9, .24 \mathrm{~cm} / \mathrm{Yr}$; and $\mathrm{E}-10, .23$ cm/yr. Varve counts were combined with silicoflagellate biostratigraphic horizons to establish a time scale for the upper 90 cm of sediment in the four cores. Variation in sediment diatom assemblages were analysed over the same interval.

Factor analysis resolved two factors accounting for 84\% of the variance in the diatom assemblage. Factor 1 , accounting for 56% of the data variance, is interpreted to reflect changes in productivity levels in the Gulf. High levels of this factor correspond to intervals of increased productivity, low levels are indicative of periods of increased oceanic influence. Factor $2(28 \%$ of the data vari-
ance) is interpreted as reflecting the persistent high primary productivity conditions characteristic of the central Gulf. Six ecological groups were defined for the minor species based on available literature data. Two of these groups were used to further characterize trends delineated by factor analysis.

Conditions in the Gulf of California over about the last 350 years can be divided into three stages based on major trends in productivity levels. Stage III(ca. 16001750) was a period of predominantly high productivity levels, alternating with intervals of increased oceanic influence. These fluctuating conditions may be the result of widely fluctuating climatic extremes associated with the Little Ice Age. Stage II(ca. 1750-1870) corresponds roughly to the maximum extent of the Little Ice Age in western North America. Oceanic influence in the Gulf was enhanced and productivity levels declined. Intensification of Pacific equatorial circulation associated with the Little Ice Age may have stabalized during the maximum, resulting in a stronger and more northward reaching Equatorial Current, with a greater influence in the Gulf than at present. Gulf productivity levels rose with the climatic amelioration following the end of the Iittle Ice Age (Stage I-ca. 1870-present), and colder waters were present in the central Gulf. This may be tied to an increase in California Current influence with the deintensification of equatorial circulation. It may also reflect increased upwelling
due to a more stable zonal wind system, as opposed to the wide fluctuations in climatic conditions characteristic of the Little Ice Age during Stage III.

Paleoceanography of the Gulf of California:

 A 350-Year Diatom Recordby

Anne Marie Matherne

A THESIS
submitted to
Oregon State University

in partial fulfillment of
the requirements for the
degree of
Master of Science
Completed December 18, 1981

Commencement June 1982

Redacted fố privacy
Professor of Oceanography in charge of major

Rẻdācted fôr privačy,

Head of school of Oceanography

Date thesis is presented December 18, 1981

Typed by Joan Matherne for Anne Matherne

This work was supported by the National Science Foundation under grant ATM -7919458. Hans Schrader served as my advisor and offered critical advise on my work. Nick Pisias, Art Boucot and Harold Holbo also served on my committee. Material for this study was collected with the assistance of the officers and crew of the Mexican research vessel $\mathrm{H}-1$ Mariano Matamoros. ${ }^{14} \mathrm{C}$ analyses were provided by Minze Stuiver, University of Washington, and Steve Robinson, USGS, Menlo Park, California. Hans Schrader established the biostratigraphic correlation among the cores used in this study and compiled, with Gretchen Schuette, the atlas of siliceous microfossils of the Gulf of California on which diatom taxonomy for this analysis was based, Hollis Fishelson-Holstein assisted with the statistical analyses and shared in many discussions concerning statistics, science, and dance. Her friendship was greatly valued. Lynn Dickson typed the first draft of this paper in time to meet the graduate school deadline. Becky Simpkins typed some of the tables and has on many occasions gone out of her way to offer help and encouragement to myself and many other students. My sister Joan typed the final draft of the thesis and my mother provided tea and sympathy for both of us. Dave Reinert photographed and printed the figures.Bill Gilbert did much of the drafting. To all of these people I extend my thanks and appreciation.

I would also like to acknowledge Mac Cantrell and Joyce Eberhart for helping to make a "home" to come home to and for countless adventures and field trips. I couldn't have asked for better roommates. And Joyce, my favorite dancing partner, for the nights at the Lamplighter that kept me sane;
the students in marine geology, with whom I have shared much - especially Dave Donegan, with whom I started this all, and Todd Thornburg;

Barney Watson, for the use of his concertina;
And in particular,
Paul Loubere, for discussions and advise which helped me to retain sight of the value of my work in the early days, and for more help than he probably ever wanted to give in my struggles with the computer;

Tom DeVries, who provided support, encouragement, and excitement about science at a very critical period;
and Dave Murray - on the occasion of my finishing, in anticipation of your finishing and for what we will have shared doing it.

To all of you, I give my thanks.
And Jim, I think it's the middle of May.

Look! He said, and hunkered in solemn attire to lift his son, like any God or farmer, and pointed. Over the capitol dome, to the west, a wing of one-and-many geese went sliding.
honking south like old Model T's redeemed, gone glorious. Oh, not for the lesson in it, not for the high-falutin falling mind organizing itself to swim of fly
with ease searching out the dire vacuity: not for that: for "thisness": twenty-four geese enroute from swamp to swamp, encountering a dome at twilight, passing and touching an unseen mark;
they freeze, fall out of time and into thought; an ideograph in the blood of man and son. No image. The pure idea of holiness. His mother said when they told their vision, "Ah!"

TABLE OF CONTENTS

Introduction
Page
Background 4
Methods 10
Results and Discussion 33
Diatom Preservation and Abundances 33
Sedimentation Rates 33
Dating of sediments 42
Intercore Correlations 46
Analyses of Diatom Assemblage Data 51
Gulf Oceanographic Conditions for the Last 350 Years 65
Summary and Conclusions 74
Bibliography 77
Plates 85
Appendices 89

Page

1. Central Gulf of California, showing the 3location of cores used in this study
2. Surface circulation in the Gulf of Cali- fornia and adjacent areas of the Pacific.
3. Core lithologies and location of sampling 13for Kasten cores $\mathrm{B}-29$, $\mathrm{B}-28, \mathrm{E}-9, \mathrm{E}-10$.
4. Number of species present with respect to 21 total number of diatoms counted.
5. Variation in sedimentation rates with 41 depth for cores $B-29, B-28, E-9$, and $E-10$.
6.7. Intercore correlations among Kasten47cores $\mathrm{B}-29, \mathrm{~B}-28, \mathrm{E}-9$, and $\mathrm{E}-10$.
6. Schematic diagram illustrating variability 49 in peaks of abundance depending upon positioning of the sample interval.
7. Variation with depth of factor loadings 58 and ecological group abundances for Kasten cores $\mathrm{B}-29, \mathrm{~B}-28, \mathrm{E}-9$, and $\mathrm{E}-10$.
8. Composite cores for areas B and E 67 summarizing changes in distribution with respect to time.

LIST OF TABLES

Table Page

1. Depth and location in the Gulf of 11 California of the four Kasten coresused in this study.
2. 50 most abundant diatom species and 24species groups of the 96 identifiedwithin the total data set.
3. Literature sources for ecological 30 groupings of diatom species.
4. Diatom groupings based on a summary 31 of available ecological information.
5. within Kasten cores E-9, E-10, B-29, and6.9.B-28.6. Sedimentation rates for cores $\mathrm{B}-29, \mathrm{~B}-28$,35$E-9$, and $E-10$ based on number of varvesper 5 cm interval over the entire corelength.
6. ${ }^{14} \mathrm{C}$ age determinations and calculated 37 sedimentation rates for cores $B-29$ and E-9.
7.

Comparison of sedimentation rates 39determined by ${ }^{14} \mathrm{C},{ }^{210} \mathrm{~Pb}$, and varvethickness methods on laminated coresfrom the Gulf of California.
Factor structure matrix for Factors 53 1 and 2 .

A 350 - YEAR DIATOM RECORD

INTRODUCTION

This study will document the composition and variability of the diatom assemblage preserved in varved sediments from the central Gulf of California over the last 300-350 years. Key diatom species or species groups within the total assemblage will be identified for interpreting paleoecologic and paleoclimatic changes. A record of changing water mass conditions in the central Gulf over approximately the last 350 years will be established based on the diatom flora, and the interaction between these conditions and general climatic trends affecting the central Gulf will be modeled.

A number of phytoplankton surveys have been made in the Gulf of California, and the distribution of phytoplankton in Gulf waters has been described (Allen, 1934,1937, 1938; Cupp and Allen, 1938; Gilbert and Allen, 1943; Tafall, 1943; Round, 1967). However, no long-term systematic phytoplankton studies have been undertaken to date. The distribution of microfossils in Gulf sediments, based on coarse fraction analysis, has been documented by Bandy (1961). Radiolaria distribution in near-surface sediments has been recorded by Benson (1966) and Molina-Cruz (in press). Surface and down-core silicoflagellate assemblages will be described by Murray and Schrader(in prep.).

Schrader (in prep.) has established stratigraphic horizons in a suite of cores throughout the Gulf based on peaks in abundance of certain silicoflagellate species. Schrader, Murray et al. (1980) and Donegan and Schrader (in press) have proposed mechanisms for laminae formation within the Gulf, based on the diatom flora within a series of laminae in sediments from the Baja and mainland sides of the Guaymas Basin slope.

Round (1968) described the distribution of diatom assemblages in a suite of Gulf cores, for both surface and downcore sediments. His samples included what were termed a slightly laminated ($\mathrm{R}-132$) and a well laminated ($\mathrm{R}-151$) core from the Guaymas Basin slopes (Figure l). Round's results differ substantially from the present work, mainly with respect to diatom abundances downcore. It was not possible, based on his papers, to determine the reason for this discrepancy. Round $(1967,1968)$ is therefore acknowledged as previous work in this area, but results of the two studies will not be compared in this paper.

Figure 1. Central Gulf of California, showing the location on the Guaymas Basin slopes of Kasten cores $\mathrm{B}-29, \mathrm{~B}-28, \mathrm{E}-9$, and $\mathrm{E}-10$, used in this study. Other cores discussed in the text are BAM-80 E-17(OSU) ; L-173, L-178, and L-181 (Calvert, 1966b) ; 87 and 89 (DeMaster, 1979); R-132 and R-151(Round,1969).

BACKGROUND

The Gulf of California is a large evaporative basin. It is approximately 1000 km long and 150 km wide and in open communication with the Pacific Ocean at its southern end (Roden, 1964). It is divided into a series of basins and trenches separated from each other by transverse ridges which deepens towards the mouth of the Gulf (Shepard, 1950).

The Guaymas Basin slopes, in the central Gulf of California, are areas of high primary productivity (Zeitzschel, 1969) and well-laminated diatom-rich sediments (Calvert, 1966a; Schrader, Kelts et al., 1980). The laminated sediments, found between $400-800 \mathrm{~m}$ depth where the oxygen minimum zone intersects the sediment water interface (Calvert, 1964, and data from BAV79 and BAM80 cruises) show no bioturbation and undisturbed sediment accumulation.

Surface circulation in the Gulf is strongly linked to regional winds which blow from the northwest during winter and early spring, then change to southeasterly in direction during the summer months (Roden, 1964)(Figure 2). Roden and Groves (1959) have documented significant upwelling along both coasts of the Gulf associated with these wind systems. Upwelling was found to occur along the mainland coast from about November to April associated with northwesterly winds, and along the Baja coast primarily from August to October during times of southeasterly

Figure 2. Surface circulation in the Gulf of California and adjacent areas of the Pacific. Gulf circulation data from CALCOFI 5-23 June, 1957 (A) and 6-26 February, 1957 (B) (Wille, 1966). Arrow shows prevailing wind direction. Areas of upwelling are shaded. Pacific circulation after Namias (1971) and Wyrtki (1965).

Figure 2:

winds.
The details of Gulf circulation have not been well established. Roden (1958) concluded on the basis of drift data that winter surface circulation is characterized by southward currents north of Cape Corrientes, and that summer surface circulation is characterized by northward currents along the Mexican coast and into the Gulf, with southward flow outward near Baja California. Granados and Schwartzlose (in press) and Rosas-Cota (1976) support a general pattern of southward flow throughout the entire Gulf in the winter and northward flow in the summer, with more complex reversing conditions in spring and fall. Three distinct water masses may be distinguished above 200 m depth in the Gulf (Griffiths, 1968; Stevenson, 1970; Warsh and Warsh, 1971; Roden, 1972; Warsh et al., 1973; Alvarez-Sanchez, 1974). California Current Water ($\left\langle 22^{\circ} \mathrm{C},\langle 34.6 \%\right.$) flows southward along the west coast of Baja California (Figure 2b) and has been observed turning east around the tip of Baja California and penetrating into the Gulf. The extent of this incursion varies on a seasonal and annual basis (Stevenson, 1970; AlvarezSanchez, 1974). Equatorial Water (often $>25^{\circ} \mathrm{C}$, 34.6$34.8 \%$) has been observed reaching above the tip of Baja California during the summer (Figure 2a), apparently limiting the southern influence of the California Current (Wyrtki, 1967; Stevenson, 1970). Gulf water (220-250 C , > 34.9%) is formed within the Gulf by evaporation of

Equatorial Pacific Water, probably north of $25^{\circ} \mathrm{N}$ latitude (Stevenson, 1970). An additional subsurface water mass (13-20 ${ }^{\circ} \mathrm{C}$, $34.6-34.9 \%$) is composed of a mixture of California Current and Pacific subtropical subsurface water (Warsh et al.,1973).

Precipitation is minimal over the eastern margin of the Baja peninsula, and no major rivers discharge into the Gulf. Rainfall occurs primarily on the mainland side, in the form of a summer "monsoon" during July and Auqust. River discharge on the mainland side increases towards the south (Hastings and Turner,1965). These precipitation patterns result in variable runoff into the central Gulf and a seasonal input of terrigenous material to Gulf waters. Prior to its damming in 1935, the Colorado River was the primary source of sediment discharge into the Gulf (Byrne, 1957). However, its impact as a source of nutrient supply at this time was not documented, nor was it ascertained whether the influence of its sediment supply extended as far south as the central Gulf.

Besides being affected by local climatic conditions, communication of the Gulf with the Pacific leaves it open to factors influencing circulation in the eastern Equatorial Pacific such as the Southern Oscillation and occurrence of El Niño events. Meteorological and oceanographic conditions associated with these phenomena have been described by Quinn (1971), Miller and Laurs (1975), Wyrtki (1975, 1977), and Quinn et al. (1978) among others. Al-
though the main emphasis of much of this work concerns the effect of $E l$ Niño events on South American waters and Peruvian fisheries, Wyrtki $(1973,1975)$ reported an increase in sea surface temperatures off Central America and abnormally high sea level at Manzanillo associated with the 1972/1973 El Niño event. Sea surface temperature anomalies (Miller and Laurs, 1975) show the extension of warm waters north to the mouth of the Gulf at this time. These facts imply that intrusion of Equatorial Water into the Gulf was associated with this El Niño event. Roden (1964) reported positive sea level anomalies along the coast of Mexico and into the Gulf as far north as Guaymas during 1957-1958. This also coincides with a strong El Niño event (Quinn et al, 1978), suggesting that the anomalies were again indicative of Equatorial water intrusion into the Gulf, with effects as far north as the Guaymas Basin. These two strong El Niño events show that the Southern Oscillation does under certain conditions influence circulation and water mass characteristics in the Gulf of California.

This work is based on an analysis of the diatom fraction of samples from four Kasten cores obtained during the BAV79 cruise of the $\mathrm{H}-1$ Mariano Matamoros within the Gulf of California in September 1979. Cores B-29 and B-28 were taken from the Baja side, and E-9 and E-10 from the mainland side of the Gulf, from laminated sediments of the Guaymas Basin slopes (Figure 1 and Table 1). Because of the apparently seasonal nature of laminae deposition (Calvert, 1966b; Bruland, 1974; DeMaster, 1979) and high sedimentation rates (averaging $.24 \mathrm{~cm} / \mathrm{yr}-$ see Results and Discussion), time correlations between cores can be made with much finer resolution than is possible in downcore studies elsewhere.

The cores in Area B are located 1.3 km apart; those in Area E are separated by 2.7 km . Cores were sampled from the same area to examine local variability in contemporaneous diatom floras, and to provide an "average" record for each side of the Gulf, correcting for "patchiness" of diatom distributions due to localized blooms in surface waters. Cores from opposite sides of the Gulf but at similar distances from its mouth were chosen to show the effects of water mass changes or mixing effects across the central Gulf. The cores were subsampled to a depth of 92.5 cm . Based on varve chronostratigraphy, this provides a record of approximately the last 300-350 years, including changes associated with the "Little Ice Age" (17th

Table 1. Locations and depth within the Gulf of California of the four Kasten cores used in this study. The cores were recovered during the September, 1979, cruise of the Mexican Research vessel H-1 Mariano Matamoros and are stored at the core repository of the OSU School of Oceanography.

Core Iocation Depth (m)

BAV79-B28	$26^{\circ} 42.5^{\prime} \mathrm{N}, 111^{\circ} 24.5^{\prime} \mathrm{W}$	712
BAV79-B29	$26^{\circ} 42.0^{\prime} \mathrm{N}, 111^{\circ} 25.0^{\prime} \mathrm{W}$	635
BAV79-E9	$27^{\circ} 53.2^{\prime} \mathrm{N}, 111^{\circ} 37.2^{\prime} \mathrm{W}$	660
BAV79-E10	$27^{\circ} 52.2^{\prime} \mathrm{N}, 111^{\circ} 39.7^{\prime} \mathrm{W}$	644

-19th centuries, Bjerknes, 1965).
The Kasten cores were subsampled on board ship shortly after core recovery using $27.5 \times 15 \times 7 \mathrm{~cm}$ plastic boxes. The core barrels were opened, and the two exposed sides scraped clean to remove the material around the outer edges contaminated by the coring process. The plastic boxes were pressed into the sediment continuously from top to bottom. Nylon filament was run along the edge beneath each box to cut through the sediment and separate the boxed material from the remainder of the core. The boxes containing the core material were removed and covered with plastic lids, and were sealed with electrical tape to prevent drying of the sediment. Using this subsampling method, a continuous record of each core was obtained, disturbed only at the junction between adjacent boxes.

Detailed descriptions were made of all cores before further subsampling took place. The cores were described in terms of color, using a Munsell color chart (Figure 3, column 3), structure (finely laminated, faintly laminated, and homogenous), and disturbances of the sediment structures (Figure 3, column 4). Textural and compositional characteristics of B-29 and E-9 are documented by Donegan and Schrader (in press) for those intervals indicated in Figure 3 column 8. Downcore variations in laminae thickness and in sedimentation rates were determined by a continuous count of the number of laminae per 5 cm increment

Figure 3a-d. Core lithologies and sample locations for Kasten cores $\mathrm{B}-29, \mathrm{~B}-28, \mathrm{E}-9$, and $\mathrm{E}-10$. $1=\operatorname{depth}(\mathrm{cm}) . \quad 2=$ subsample boxes. $3=$ color; white = lighter and shaded = darker intervals. $4=$ lithology; $\square=$ homogenous,医匋 = faintly laminated, = finely laminated, $\approx=$ disturbed; $\Longrightarrow=$ laminated, broken lines $=$ wedging of laminae, dark bands $=$ thick light laminae. $5-8=$ sample locations; $5=$ diatom assemblage composition, $6=$ silicoflagellate assemblage composition (Schrader, in prep.), $7=$ absolute abundance of diatoms, $8=$ textural and compositional analysis(Donegan and Schrader, in press).

Figure 3a.

BAV79 B-29 KASTEN CORE

Figure 3b.

BAV79 B-28 KASTEN CORE

Figure 3c.

BAV79 E-9 KASTEN CORE

Figure 3d.

BAV79 E-10
 KASTEN CORE

as detailed below.
The boxed cores were subsampled for floral analysis from the top of the recovered surface to 92.5 cm depth, using continuous 2.5 cm composite samples (Figure 2, column 5). Because of surface disturbance in boxing cores $\mathrm{B}-28$ and $\mathrm{E}-10$, sampling began at 2.5 cm below the recovered core surface. Core $B-28$ was slightly overpenetrated, and some surface material was lost from the top of all four Kasten cores in siphoning off the overstanding water after recovery.

The boxed core samples were first scraped clean to remove any contaminated material. Samples were taken by scraping about $1 \mathrm{~cm}^{3}$ wet sample from across the width of the core using the end of a standard size ($2.5 \times 7.6 \mathrm{~cm}$) glass microscopical slide. Each sample was transferred to a plastic vial for drying. Where the sample interval spanned two adjacent boxes, the approximately 0.5 cm of sediment lost in boxing the cores is not included in the sample. All sample scrapings were taken straight across the core width, which in most cases parallels the bedding. In core $\mathrm{E}-9$, beginning at 65 cm , the laminae dip at an angle of 16° at their maximum slope. This constitutes an offset, between one side of the core and the other, of about 2.5 cm or one sample interval. Each sample in $\mathrm{E}-9$, between interval 65-92.5 cm, therefore contains material from its stated depth and from the sample interval directly above it. The effect on floral abundance curves is
the same as calculating a two-point running average on an unbiased data set. Curves for E-9 below 65 cm will be somewhat smoothed as compared to the portion of the curves above this point (see Figure 9c).

The samples were dried overnight in an oven at $60^{\circ} \mathrm{C}$. A representative sample split was obtained by pulverizing the dried sample with a spatula to homogenize it. About 0.5 g dry sample was then weighed on a Sartorius 1106 top load balance and transferred to a 400 ml beaker. Fifteen $\mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ and 15 ml of a solution of about 300 ml distilled water to about 15 g Calgon (a dispersant) were added to the beakers. The solution was boiled until foaming stopped to disperse and remove all acid soluble and organic material, then transferred to a 50 ml plastic bottle. The clay component of the samples was removed by repeated settling and decantation, in which the vials were filled to 50 ml with distilled water (a 5.5 cm high column of water), allowed to stand for 90 minutes, and then siphoned to remove about 25 ml of overstanding water. Slides were prepared using 25 Ml or 50 Nl sample splits with Aroclor 4465 mounting medium (index of refraction $=1.67$) after the methods of Schrader (1974) and Schrader and Gersonde (1978).

Analysis of samples was carried out on a LeitzOrthoplan Orthomat microscope using plan-apochromatic oil immersion objectives. Counts were made using l000x magnification (Objective: Pl Apo/Oil 100x/1.32; Ocular:

Periplan GW lox m) with counting procedures after Schrader and Gersonde (1978). Random counts were made by beginning at the center of the slide and counting in successive traverses until approximately 500 valves were counted.

In determing the number of valves to be counted per sample, a sufficient number of diatoms must be counted to detect species present in minor amounts which may be important signals of environmental change, but also to allow completion of a count in a reasonable amount of time per sample. Counts of approximately $100,250,500$, and 750 diatoms and Chaetoceros spores were made on a set of five slides. It was found that when 500 and 750 valves were counted, fewer than $10-12 \%$ new specimens of each species were encountered(Figure 4). On this basis, it was decided that 500 valves per slide, including Chaetoceros spores, would give a representative sample of the assemblage present.

Absolute abundance of the total diatom fraction was estimated at four depths downcore for each of the four cores (Figure 2, column 7). All diatoms present in one complete traverse across the middle of the slide (l000X power) were counted, Absolute abundance was calculated as:
\qquad
\% area of slide counted X g spl per slide abundance
diatoms
g. dry sediment

Figure 4. Decrease in new species encountered with increasing number of diatoms counted. $x=$ total number of diatom valves counted. $y=$ number of different species identified. $y=-31.2+$ $11.2 \ln X . \quad r^{2}=0.78$.

Sedimentation rates were determined for all four cores based on a continuous count of the number of laminae present within the entire core length labout 2 m of sediment). Laminae counts were made by marking 5 cm intervals on a cleaned core surface and counting the number of laminae within successive increments downcore. Where sediments were disturbed or faintly laminated to homogenous, counts were extrapolated based on the width of the surrounding laminae. The entire core was counted in order to compare sedimentation rates obtained by this method to those based on ${ }^{14} \mathrm{C}$ dating for the same depth interval. Laminae counts were converted to sedimentation rates by assuming that two laminae (1 varve) represents one year of deposition (Calvert, 1964; Baumgartner et al., 1981), such that $\#$ varves/cm $=$ \# years/cm. Baumgartner et al. (1981) found that varve counts agree well with sedimentation rates based on ${ }^{210} \mathrm{~Pb}$ dating in several cores from the central Gulf.

Time correlative levels between cores were determined using biostratigraphic horizons of the silicoflagellate species Dictyocha epiodon, D. messanensis, D. species $A+B+2$, and Octactis pulchra. These horizons were established as part of a Gulf-wide biostratigraphic study by Schrader (in prep.).

Diatom taxonomy was based on an opal phytoplankton atlas compiled by Schrader and Schuette for the Gulf sediments. Ninety-six diatom species and species groups were
identified in this study. Before subjecting the data to statistical analysis, the fifty species out of ninety-six recorded having the highest percent total abundance in all 146 samples were selected. This was done to reduce errors associated with estimating the abundance of species present in trace amounts. Species eliminated by this method had a percent total abundance of less than 1% of all diatoms counted within the 146 sample data set, and generally occurred in fewer than 20%, and usually less than 10% of the samples counted. The fifty species used for analysis, with the percent abundance and percent of occurrence of each, are listed in Table 2.

A variety of statistical techniques were used to analyze the data, including cluster analysis, polar ordination, factor analysis, and grouping of species according to ecological criteria based on available literature. Since no single standard technique exists for analyzing diatom data, several methods were tested to see how the data set would respond to each type of manipulation. Results of the factor analysis and of the ecological groupings were used in the data interpretation. Principal components and factors for the factor analysis were determined using methods described in Cooley and Lohnes (1971), and the varimax rotation was as described in Kaiser (1958). All factor analysis programs were written by P. Loubere, O.S.U. School of Oceanography, using the IMSL (1979) subroutine library. For the factor anal-

Table 2. The fifty most abundant diatom species and species groups of the nintey-six identified within the total data set, with percent total abundance for all counts together and percent occurrence over the 146 sample suite. This list was further reduced to thirty-seven species by grouping within the fifty species before factor analysis, as described in the text. Species involved in this reduction are designed by *.

Species ab	\% total abundance	\% occurrence
Chaetoceros spores	21	99
$\frac{\text { Pseudoeunotia doliolus (Wallich) }}{\text { Grunow }}$	17	100
"needles"	15	100
*Thalassiothrix pseudonitzschioides	13	100
*Cyclotella striata (Kützing) Grunow	W 4	99
*Thalassionema intergrade v. parva (T. pseudonitzschioides)	3	100
*Actinoptychus senarius (Ehrenberg) Ehrenberg	3	99
$\frac{\text { Thalassiosira }}{\text { Proshkina }} \frac{\text { oestrupii }}{- \text { Lavrenko }} \text { (Ostenfeld) }$) 3	99
Coscinodiscus nodulifer A. Schmidt	2	97
Roperia tesselata (Roper) Grunow	2	97
*Actinoptychus splendens (Shadbolt)	1	97
*Cyclotella stylorum Brightwell	1	98
Coscinodiscus radiatus Ehrenberg	1	97
Thalassiosira lineata Jousé	1	93
*Actinocyclus curvatulus Janisch	1	96
*Thalassiosira eccentrica (Ehrenberg) Cleve	g)	91

Table 2 (continued)

Table 2 (continued)

ysis, some species within the fifty most abundant ones were combined into a single group. The groupings, and the reasons for them follow:

Actinocyclus curvatulus and Coscinodiscus curvatulus - a number of individuals were encountered in which the pseudonodulus of A. curvatulus was present but difficult to distinguish, and it was felt that all occurrences of A. curvatulus were not detected in counting. These two species were therefore combined into a single category for factor analysis.

Small Thalassiosira - the groups Thalassiosira sp. 4 and Thalassiosira sp. 6 (Plate II) came to be used during counting as general categories for small centrics which were obviously not Thalassiosira oestrupii, and were subsequently combined into one category. Cluster analysis and ordination techniques on the diatom abundance data indicate that this group is behaving in some distinctive fashion within the cores. It is felt that its occurrence may be related to that of the other small Thalassiosira species, T. oestrupii v. parva and small frustrules of T. oestrupii. Combining these four groups into a single category in subsequent studies might establish a defineable trend within the data set for this group.

Thalassiosira eccentrica group - this group includes the species Thalassiosira eccentrica, T. symmetrica, T. punctifera, T. sp. (pacifica? Hasle), and Plank-
toniella sol. Again, this represents a case where, although distinctions were made during the course of counting, it is not felt that consistently correct identifications were made. These species were grouped together.
Thalassiosira lineata, Thalassiosira leptopus, and Thalassiosira simonsenii - these were maintained as separate catagories since it was felt that they were consistently distinguished in counting. However, Thalassiosira sp. 5 (Plate I) was included in the T. simonsenii category, since it was sometimes difficult to distinguish these two species.
Cyclotella striata/stylorum and Actinoptychus senarius/ splendens - these groups were distinguishable during counting, but are felt to represent similar ecological responses, and were therefore grouped for factor analysis.
"needles" - a study subsequent to this work by Schuette and Schrader (in press) has resulted in a redefinition of the Thalassionema intergrade and Thalassionema intergrade parva categories as the single newly described species Thalassiothrix pseudonitzschioides. T. nitzschioides and T. pseudonitzschioides appear to have a similar ecological distribution, so these categories, plus the category of unidentified Thalassionema and Thalassiothrix end fragments, were combined. Thalassionema nitizschioides
var. parva, Thalassiothrix longissima, and Thalassiothrix mediterranea were retained as separate categories.

The literature references used in determining the ecological groupings are given in Table 3, and the resultant ecological groups are listed in Table 4. Appendix II summarizes the ecological data from all sources for each diatom species.

The distributions of the three most abundant diatom species or groups, Chaetoceros spores, Pseudoeunotia doliolus, and the "needles" group, are represented by Factors 1 and 2 of the factor analysis (see Results and Discussion). The ecological groups were derived in an attempt to further characterize changes in Gulf conditions delineated by the three major species or groups as defined by these two factors. The ecological groups combine the abundances of some of the minor species in order to emphasize the effect of those species defined as indicative of similar environmental conditions. The abundance of each ecological group is the summation of the relative percent abundances of its component species with respect to the total diatom count for each sample, and its occurrence is expressed as the percent abundance of that group within each sample downcore.

Table 3. Literature sources for ecological groupings of diatom species.

Belyaeva (1970, 1971, 1972)
Cupp (1943)
Desrosieres (1969)
DeVries and Schrader (1981)
Fryxell and Hasle (1972, 1980)
Gersonde (1980)
Guillard and Kilham (1977)
Hasle (1959)
Hasle and Fryxell (1977)
Jousé et al. (1971)
Kanaya and Koizumi (1966)
Kolbe (1954)
Kozlova and Muhina (1967)
Muhina (1971)
Pavillard (1935)
Rampi (1952)
Russian studies (Semina, 1958; Jousé, 1962, 1963; Jousé et al., 1962) as summarized in Kanaya and Koizumi (1966)

Sancetta (1979)
Schuette and Schrader (1979, 1981)
Smayda (1963, 1966)
Venrick (1971)

Table 4. Diatom groupings based on a summary of available ecological information. Analysis was performed omitting the highly abundant Chaetoceros spores, "needles" group, and Pseudoeunotia doliolus (indicated by *) from their groups before calculating abundances.

COLD
 Actinocyclus curvatulus

Coscinodiscus curvatulus

C. marginatus
C. tabularis

Thalassiothrix longissima

WARM
Asteromphalus flabellatus
Biddulphia dubia
B. longicruris

Coscinodiscus nodulifer
Nitzschia interruptestriata
N. marina

Planktoniella sol
Rhizosolenia bergonii
Roperia tesselata
Thalassionema nitzschioides var. parva

Thalassiosira lineata
"UPWELLING"
Skeletonema costatum
*Chaetoceros spores

OCEANIC
Actinocyclus curvatulus
Asteromphalus arachne
A. heptactis

Coscinodiscus nodulifer
C. marginatus
C. tabularis

Hemidiscus cuneiformis
Nitzschia marina
Rhizosolenia bergonii
R. calcar-avis
R. styliformis

Thalassionema nitzschioides var. parva

Thalassiosira oestrupii
*Pseudoeunotia doliolus

MEROPLANKTIC/NERITIC
Actinocyclus octonarius
Actinoptychus splendens
A. senarius

Biddulphia dubia
B. longicruris
B. rhombus

Table 4 (continued)

MEROPLANKTIC/NERITIC
Coscinodiscus curvatulus
C. granii
C. perforatus

Cyclotella striata
C. stylorum

Hemiaulus longicornis
Lithodesmium undulatum
Paralia sulcata
Thalassiosira eccentrica group

* Thalassionema nitzschioides

TEMPERATE
Biddulphia rhombus
Coscinodiscus stellaris
C. symbolophorus

Thalassiothrix mediterranea

BENTHICS
Biddulphia regia
Diploneis smithii
Trachyneis aspera

Diatom Preservation and Abundances

Diatom assemblages in the upper 92.5 cm of all four cores are well preserved. Delicate and weakly silicified species are present in the sediments, such as Nitzschia sicula, Synedra indica, Chaetoceros vegetative cells, and Rhizosolenia spp. valves. These forms are similar in morphological characteristics or degree of silicification to Skeletonema costatum, Hemiaulus hauckii, Hemiaulis sinensis, a.o. species also found in the Gulf which have been previously defined as indicative of well-preserved assemblages (Schrader, 1971; Schrader and Matherne, 1981; Schuette and Schrader, 1981). Semi-quantitative estimates of total diatom abundance (valves plus spores) at four levels in each core show little fluctuation in diatom abundances downcore. Valves range from $10^{7}-10^{8}$ diatoms/g dry sediment (Table 5) with Area E averaging slightly higher values than Area B.

Sedimentation Rates
Varve counts per 5 cm intervals for the four Kasten cores and associated sedimentation rates are given in Table 6. Table 7 gives ${ }^{14} \mathrm{C}$ age determinations and calculated sedimentation rates for cores $B-29$ and $E-9$. Based on varve chronology, $B-29$ has an average sedimentation rate of $.26 \mathrm{~cm} / \mathrm{yr}$ and ranges $.17-.36 \mathrm{~cm} / \mathrm{yr} . \mathrm{B}-28$ averages $.24 \mathrm{~cm} / \mathrm{yr}$ and ranges $.15-.33 \mathrm{~cm} / \mathrm{yr}$. In Area E, E-9 aver-

Table 5. Total diatom abundance, including Chaetoceros spores, at four depths within Kasten cores E-9,E-10, B-29, and B-28. Semi-quantitative estimates of abundance are based on a count of total diatoms (valves plus spores) within one complete traverse across the middle of the slide at 1000 x power. The abundance was calculated as: (\#diatoms/traverse)/((g spl/slide) x (.024 percent of slide covered per traverse)).

Cores	Depth (cm)	Diatoms/Traverse	g spl/traverse (dry weight)	abundance (diatoms/g dry sediment)
E-9	0-2.5	512	1.1×10^{-5}	$4.6 \times 10{ }^{7}$
	25.0-27.5	500	1.4×10^{-5}	3.6×107
	60.0-62.5	562	7.2×10^{-6}	7.8×107
	90.0-92.5	555	6.1×10^{-6}	9.1×10^{7}
E-10	2.5-5.0	350	8.2×10^{-7}	4.3×10^{7}
	30.0-32.5	364	5.3×10^{-7}	$6.9 \times 10_{8}^{8}$
	62.5-65.0	250	5.3×10^{-7}	1.3×10^{8}
	90.0-92.5	195	4.3×10^{-7}	4.5×10^{8}
B-29	0.0-2.5	227	1.1×10^{-5}	2.1×10^{7}
	30.0-32.5	307	1.9×10^{-5}	1.6 $\times 107$
	60.0-62.5	362	5.3×10^{-7}	6.8×10^{8}
	90.0-92.5	562	1.3×10^{-5}	4.3×10^{7}
B-28	2.5-5.0	150	1.0×10^{-5}	1.5×10^{7}
	30.0-32.5	217	1.0×10^{-5}	2.2×107
	$60.0-62.5$ $90.0-92.5$	415 336	1.0×10^{-5}	4.2×107
	90.0-92.5	336	1.0×10^{-5}	3.4×10^{7}

Table 6. Sedimentation rates for cores $\mathrm{B}-29, \mathrm{~B}-28, \mathrm{E}-9$, and $\mathrm{E}-10$. Rates, in terms of $\mathrm{cm} / \mathrm{yr}$, are calculated based on number of varves per 5 cm interval over the entire core length. Sedimentation rates were smoothed using a 3 -point running average to eliminate small scale variability.

$\begin{gathered} \text { Depth } \\ \text { (cm) } \end{gathered}$	B-29		B-28			E-9		E-10	
	\# varves	$\begin{array}{r} \text { sed.rate } \\ (\mathrm{cm} / \mathrm{yr}) \end{array}$	\#	varves	$\begin{gathered} \text { sed.rate } \\ (\mathrm{cm} / \mathrm{yr}) \end{gathered}$	\#varves	$\begin{gathered} \text { sed.rate } \\ \text { (cm/yr) } \end{gathered}$	\# varves	$\begin{aligned} & \text { sed.rate } \\ & (\mathrm{cm} / \mathrm{yr}) \end{aligned}$
0- 5	14							16	
5-10	18	. 33		18		16		19	. 27
10-15	13.5	. 35		15.5	. 29	15	. 33	19	. 28
15-20	11	. 38		17.5	. 29	14.5	. 34	15	. 31
20-25	15	. 36		18	. 27	14	. 36	15	. 30
25-30	15.5	. 33		19.5	. 27	13.5	. 32	20	. 27
30-35	15	. 31		18	. 29	20	. 28	20	. 24
35-40	18.5	. 29		14	. 29	20	. 26	23,5	. 25
40-45	18.5	. 30		19.5	. 32	17	. 29	16	. 27
45-50	13.5	. 32		13.5	. 30	15.5	. 28	16.5	. 29
50-55	15	. 33		17	. 31	20.5	. 27	19.5	. 25
55-60	16.5	. 33		18	. 29	20.5	. 27	25	. 23
60-65	14.5	. 34		16	. 29	15.5	. 31	22	. 22
65-70	13.5	. 30		18	. 32	12.5	. 38	21.5	. 25
70-75	22	. 24		13	. 33	11.5	. 35	17.5	. 24
75-80	27	. 22		15	. 25	19	. 31	24	. 23
80-85	19.5	. 21		33	. 18	18	. 24	25	. 21
85-90	24	. 23		37.5	. 15	26.5	. 23	23	. 22
90-95	20.5	. 26		32.5	. 14	20.5	. 20	21.5	. 21
95-100	12.5	. 25		34	. 15	27	. 21	27	. 20
100-105	27	. 25		31.5	. 16	24	. 18	25.5	. 18
105-110	21	. 21		26.5	. 19	32	. 20	29	. 19
110-115	24	. 21		21.5	. 22	18	. 28	25	. 20
115-120	25.5	. 19		20.5	. 25	34.5	. 18	21.5	. 23

Table 6. (continued)

$\begin{gathered} \text { Depth } \\ \text { (cm) } \end{gathered}$	B-29		B-28			E-9		E-10	
	\# varves	$\begin{gathered} \text { sed.rate } \\ \text { (cm/yr) } \end{gathered}$	\#	varves	$\begin{gathered} \text { sed.rate } \\ (\mathrm{cm} / \mathrm{yr}) \end{gathered}$	\#varves	$\begin{gathered} \text { sed.rate } \\ \text { (cm/yr) } \end{gathered}$	\#varves	$\begin{aligned} & \text { sed.rate } \\ & (\mathrm{cm} / \mathrm{yr}) \end{aligned}$
120-125	30	. 19		17	. 29	31	. 17	17.5	. 25
125-130	25.5	. 19		15	. 26	20.5	. 24	20	. 23
130-135	25	. 18		26.5	. 24	10.5	. 28	27.5	. 21
135-140	33	. 17		20.5	. 21	23.5	. 26	24.5	. 20
140-145	28.5	. 17		25	. 23	23	. 21	23	. 19
145-150	29	. 20		19	. 23	25	. 21	31	. 19
150-155	16	. 24		22.5	. 21	23	. 21	26.5	. 18
155-160	16.5	. 30		30.5	. 20	25	. 22	24.5	. 20
160-165	17.5	. 29		22.5	. 20	21	. 23	24	. 20
165-170	17.5	. 27		23.5	. 22	20	. 24	27	. 21
170-175	21.5	. 25		23.5	. 21	22	. 23	21.5	. 19
175-180	20.5	. 26		25	. 19	22	. 20	31	. 21
180-185	16.5	. 30		30.5		32	. 19	20.5	. 20
185-190	12.5					23.5	. 19	24.5	. 21
190-195						25.5		26.5	
Average rate									
Range (cm/yr) . $17-.36$			$.15-.33$. $17-.38$. $18-.33$	

Table 7. ${ }^{14} \mathrm{C}$ age determinations and calculated sedimentation rates for cores B-29 and E-9. Age determinations by M. Stuiver.

CoreDepths (cm)	age (years)	14 c sedimen- tation rate $(\mathrm{cm} / \mathrm{yr})$
B-29		
	$20-30$	1800 ± 80
E-9		
	$185-197$	950 ± 70

ages $.24 \mathrm{~cm} / \mathrm{yr}$, with a $.17-.38 \mathrm{~cm} / \mathrm{yr}$ range, and $\mathrm{E}-10$ averages $.23 \mathrm{~cm} / \mathrm{yr}$, with a $.18-.33 \mathrm{~cm} / \mathrm{yr}$ range. The ${ }^{14} \mathrm{C}$ based sedimentation rate is comparable to that derived from varve chronology in $\mathrm{B}-29$ (. $20 \mathrm{~cm} / \mathrm{yr}$), but yielded a much lower rate for core E-9 (. $14 \mathrm{~cm} / \mathrm{yr}$).

Table 8 compares sedimentation rates based on ${ }^{14} \mathrm{C}$, ${ }^{210} \mathrm{~Pb}$, and varve thickness by several investigators in the Gulf of California. Location of these cores is shown in Figure 1. Much variation exists in determination by different methods, although agreement between two methods for the same core exists in some cases.

Errors in the varve chronology arise from the over or underestimation of varves represented by faintly laminated or homogenous intervals, the interpretation of subseasonal laminae as varves in finely laminated intervals or loss of portions of the sediment column due to episodes of erosion. Recounts of laminae for purposes of testing the repeatability of this method over various intervals showed differences of $0-20 \%$ in number of laminae counted, depending on the clarity of laminae definition in that area. However, independent counts of E-10 by two investigators differed by less than 2% when averaged over the entire 195 cm of core length.

Differences between ${ }^{14} \mathrm{C}$ derived sedimentation rates and those based on varve thickness are due to several factors. In ${ }^{14} \mathrm{C}$ dating, the experimental error for individual sample ages is on the order of ± 80 years and each sam-

Table 8. Comparison of sedimentation rates determined by ${ }^{14} \mathrm{C},{ }^{210} \mathrm{~Pb}$, and varve thickness methods on laminated cores from the Gulf of California. Location of cores in the Gulf is shown in Figure 1. ${ }^{14} \mathrm{C}$ dating for $\mathrm{B}-29$ and $\mathrm{E}-9 \mathrm{by}$ M. Stuiver, University of Washington, and for E-17 by S. Robinson, USGS, Menlo Park, California.

Core	Location	latitude	longitude	depth (m)	$\frac{\text { sed }}{14 \mathrm{c}}$	mentati $210 \mathrm{~Pb}$	$\begin{gathered} \text { n rate }(\mathrm{cm} / \\ \text { varve } \\ \text { thickness } \end{gathered}$	yr) source
B-29	Guaymas Basin	$26^{\circ} 42^{\prime} \mathrm{N}$	$111^{\circ} 25.0^{\prime} \mathrm{W}$	635	. 20		. 26	BAV-79
E-9	Guaymas Basin	$27^{\circ} 53.2^{\prime} \mathrm{N}$	$111^{\circ} 37.2^{\prime} \mathrm{W}$	660	. 14		. 24	BAV-79
E-17	Guaymas Basin	$27^{\circ} 55.2^{\prime} \mathrm{N}$	$111^{\circ} 36.6^{\prime} \mathrm{W}$	670	. 13		. 24	$\begin{aligned} & \text { BAM-80 } \\ & \text { (Murray, } \\ & \text { 1982) } \end{aligned}$
87	Carmen Basin	$26^{\circ} 28.3^{\prime N}$	$110^{\circ} 0.0^{\prime} \mathrm{W}$	527	. 07	. 20	. 20	$\begin{gathered} \text { DeMaster } \\ (1979) \end{gathered}$
83	San Pedro Martir Basin	$28^{\circ} 14.7{ }^{\prime} \mathrm{N}$	$112^{\circ} 21.0^{\prime} \mathrm{W}$	975	1.0	1.1	1.1	$\begin{gathered} \text { DeMaster } \\ (1979) \end{gathered}$
L-173	San Pedro Martir Basin	$28^{\circ} 16.0{ }^{\prime} \mathrm{N}$	$112^{\circ} 26.7^{\prime} \mathrm{W}$	906	. 54		. 56	Calvert (1966b)
L-178	Guaymas Basin	$28^{\circ} 12.0^{\prime} \mathrm{N}$	$112^{\circ} 19.0^{\prime} \mathrm{W}$	849	. 42		. 34	$\begin{gathered} \text { Calvert } \\ (1966 b) \end{gathered}$
L-181	Guaymas Basin	$28^{\circ} 6.0^{\prime} \mathrm{N}$	112° : $8.0^{\prime} \mathrm{W}$	787	.47		. 25	Calvert (1966b)

ple is a 10-15 cm composite, giving a range of possible ages over a depth interval. Water loss and sediment compaction cause an apparent decrease in the average sedimentation rate with depth downcore. For example, over the upper 95 cm of sediment, the interval used for diatom assemblage analysis, average sedimentation rates based on varve thickness are $.30 \mathrm{~cm} / \mathrm{yr}$ for $\mathrm{B}-29, .27 \mathrm{~cm} / \mathrm{yr}$ for $\mathrm{B}-28$, $.30 \mathrm{~cm} / \mathrm{yr}$ for $\mathrm{E}-9$, and $.25 \mathrm{~cm} / \mathrm{yr}$ for $\mathrm{E}-10$, somewhat higher values than are obtained by averaging values over the entire core length. In addition, ${ }^{14} \mathrm{C}$ derived sedimentation rates are based on the assumption of constant sedimentation rates over the time interval in question. Based on varve chronologies (Figure 5), these rates have varied by up to a factor of two within the last $700-800$ years and have fluctuated within this range over time. In the San Pedro Martir Basin, ${ }^{14} \mathrm{C}$ and varve thickness methods gave comparable sedimentation rates for cores 83 (Demaster, 1979) and L-173 (Calvert, 1966b) (Figure 1). The San Pedro Martir Basin is an area of continual turbulence due to tidal mixing. As a result, sedimentation rates may be more constant here than elsewhere in the Gulf where seasonal wind patterns exert a stronger control on mixing, eliminating some of the variability between sedimentation rates calculated using ${ }^{14} \mathrm{C}$ and varve thickness methods. Sedimentation rates based on ${ }^{210} \mathrm{~Pb}$ dates agree with rates based on varve thickness in cores from the Carmen and San Pedro Martir Basins (DeMaster, 1979) and the

Figure 5. Variation in sedimentation rates with depth for cores B-29, B-28, E-9, and E-10. Rates (cm/yr) were calculated based on number of varves per 5 cm interval. Curves were smoothed using a 3 -point running average to reduce small scale variability.

Guaymas Basin (Baumgartner et al., 1981). Because of its shorter half life, ${ }^{210} \mathrm{~Pb}$ is a more accurate method of isotopic dating than ${ }^{14} \mathrm{C}$ (Faure, 1977). Varve thickness for these box cores was measured over approximately the upper 100 cm of sediment, where less compaction would be present than in the longer sediment intervals measured using ${ }^{14} \mathrm{C}$. For these reasons, ${ }^{210} \mathrm{~Pb}$ and varve chronology methods give equivalent sedimentation rates for these cores.

Dating of Sediments

Precise dating of a given downcore depth using ${ }^{14} \mathrm{C}$ is problematic in the Gulf of California for several reasons. In addition to the experimental error inherent in this method and the composite sample necessary for each age determination, error is attributed to the presence of upwelling in the waters of the Gulf. Surface sediment ${ }^{14} \mathrm{C}$ anomalies under upwelling areas have been reported for a number of locations (Berger et al., 1966; Taylor and Berger, 1967). Oceanic deep waters, which have been isolated from the atmosphere for up to 1000 years, have low ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios relative to atmospheric levels. When these waters are upwelled to the surface, they begin to equilibrate with atmospheric CO_{2}. The ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio of the resulting surface water varies between the initial low value of the upwelled deep water and the relatively high atmospheric levels depending upon the intensity of upwelling
and the rate of equilibration with atmospheric CO_{2}. This surface water ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ is incorporated by the plankton, and their organic or calcareous remains imprint this ratio on the sediments below. Surface age anomalies in Gulf sediments are, therefore, a direct function of upwelling intensity and air-sea equilibration times relative to the rate of incorporation by the associated plankton (DeMaster, 1979). However, to establish absolute age with depth based on ${ }^{14}$ c derived sedimentation rates, it must be assumed that the surface ${ }^{14} \mathrm{C}$ anomaly remained constant, and that the apparent surface age did not fluctuate over time. DeMaster (1979) suggests that this may not be a valid assumption for the Carmen Basin, and postulates that variations in surface age anomalies may account for the difference between ${ }^{14} \mathrm{C}$ derived sedimentation rates and those based on ${ }^{210} \mathrm{~Pb}$ and varve thickness in core 87 from that area. In the Guaymas Basin, downcore variation in levels of primary productivity, as reflected by fluctuations in abundance of the upwelling indicative Chaetoceros group (Figure 9 - Productivity Factor), indicate that upwelling intensity in this area has not remained constant over time. Surface age anomalies must also have varied, causing ${ }^{14} \mathrm{C}$ derived sedimentation rates and those based on varve thickness to differ.

The relationships of absolute age to depth based on cumulative varve counts and on ${ }^{14} \mathrm{C}$ ages are compared in Figure 6. Varve chronologies assume that sediment surface

Figure 6. Absolute age with depth based on cumulative varve counts and on ${ }^{14} \mathrm{C}$ dating. Varve chronologies, represented by triangles and circles, assume that the core surface represents zero years BP. The chronology for $E-17$ is from data by Murray(1982). Solid lines represent ${ }^{14} \mathrm{C}$ age versus depth. Error bars are given for each data point. The youngest age for each line is the sediment surface anomaly for that core. Data for cores B-29 and E-9 is by M. Stuiver and for core $\mathrm{E}-17$ is by S . Robinson. Upper scale (YBP) refers to varve chronologies; lower scale refers to ${ }^{14}$ C derived chronologies.

Figure 6.

age equals zero. The earliest age for each ${ }^{14} \mathrm{C}$ chronology is the sediment surface age for that core. Berger et al. (1966) reported anomalies of 615 and 620 years, uncorrected for ${ }^{13}$ C, for two Gulf locations based on analysis of a clam and a snail shell. DeMaster (1979) sampled both the surface of a laminated box core from the Carmen Basin and phytoplankton from the overlying water column, and reported a ${ }^{14} \mathrm{C}$ surface anomaly of 800 years for both samples. The extrapolated surface anomaly for $\mathrm{B}-29$ is 830 years and for $E-9$ is 780 years. Although ${ }^{14} \mathrm{C}$ rates and ages are a reasonable estimate for areas with much lower sedimentation rates than the Gulf of California and for cores covering thousands of years, the error inherent in this method becomes significant over the geologically short time spans considered here. The varve chronologies are felt to give a better estimate of age with depth for laminated sediments from the Gulf of California than can be obtained using ${ }^{14} \mathrm{C}$.

Intercore Correlations

Correlations among the four Kasten cores are shown in Figure 7. Core depths are adjusted so that horizontal lines represent time equivalent horizons between cores. All data were generated and made available by Schrader. The silicoflagellates Dictyocha epiodon, D. messanensis, and the group D. species $A+B+2$ (Plate I, Figures 1-3) were used for this purpose. A Gulf-wide biostratigraphic

Figure 7. Intercore correlations among Kasten cores B-29, $\mathrm{B}-28, \mathrm{E}-9$, and $\mathrm{E}-10$ based on biostratigraphic horizons of the silicoflagellates Dictyocha epiodon, Dictyocha messanensis, and the group Dictyocha species $A+B+2$. (based on data from a paper by Schrader, in preparation).

B-29

study by Schrader (in preparation) has shown these horizons to be time correlative throughout the Gulf.

Based on an expansion of the D. epiodon horizon in the top of $\mathrm{B}-29$, it appears that the upper portion of this core was "smeared out" during the subsampling process, so that the upper soupy sediments extend beyond their original length. The surface of core $B-28$ was lost due to overpenetration during coring. The tops of these cores do not, therefore, represent time equivalent horizons, and correlations are drawn as in Figure 7, The downcore lithologies of the two cores support such an adjustment. In E-9 and E-10, equivalent horizons occur at equal depths downcore.

In establishing biostratigraphic horizons and in discussing variation in abundance of diatom groups based on an analysis of composite samples, it should be noted that variability exists in the apparent downcore position of peaks of abundance. This is due both to inaccuracy in the sampling methods and to the fact that events occurring at any level within the 2.5 cm composite sample are represented by a single point at the midpoint of the sample interval (Figure 8A). An event occurring within a single season (one lamina) could have occurred at any point within an approximately 5-19 year time interval, based on sedimentation rates of $2-7.5$ varves per cm (see Sedimentation Rates). By extention, a difference of one sample interval in depth of occurrence of an event could be due

Figure 8. Schematic diagram illustrating variability in peaks of abundance depending upon positioning of the sample interval. Five laminae represent a 2.5 cm interval. Dark and light bars denote positioning of sample intervals with respect to laminae group. Resulting curve is drawn by plotting points at center of each 2.5 cm interval.

A

B

C

D

E

G

H
merely to sampling error (Figure 8B-C) or could represent a difference in lamina position of up to 5 cm , a 10-38 year time difference (Figure $8 \mathrm{D}-\mathrm{E}$). If the lamina or laminae responsible for a peak occurred at the boundary between two sample intervals, the peak could occur in either or both of the associated samples (compare Figure $8 \mathrm{~B}-\mathrm{C}$ and Figure 8 F). If present in both samples, the resulting peak would be broader, as if occurring over a longer time interval instead of as an instantaneous event. The ability to resolve individual events is also dependent on sample spacing. Two separate lamina spaced slightly closer together would be combined into a single peak of occurrence, instead of appearing as two peaks if the lamina were more than 2.5 cm apart (Figure 8G-H).

The preceding discussion illustrates the limits on the accuracy with which an event within a single core can be dated using the sampling strategy of this study combined with varve chronology. It also illustrates the offset possible between the level of occurrence of peaks in two cores which correspond to laminae determined by biostratigraphic methods to be at time correlative depths. For example, compare Figure 8 and Figure 9, E-9 and E-10, at the following levels: Figure 8 B and 8 C , and E-9 (5557.5 cm) and E-10 ($57.5-60 \mathrm{~cm}$) - warm group; Figure 8 B and 8 F , and E-9 (55-60 cm) and E-10 (55-57.5 cm) - productivity factor; Figure $8 \mathrm{~F}-\mathrm{G}$ and $\mathrm{E}-9(17.5-20 \mathrm{~cm})$ and $\mathrm{E}-10$ (15-17.5 cm and $20-22.5 \mathrm{~cm}$) - cold group. In general,
correlations based on this sampling method have a time accuracy of $\pm 5-19$ years (one sample interval), depending on laminae thickness over the interval in question.

Analyses of Diatom Assemblage Data

Counts of diatom species for the 146 sample data set, in terms of absolute numbers counted, are included as Appendix I.

Of the techniques used to analyze the data, factor analysis and ecological groupings derived from literature sources provided the best means for data interpretation. In order to examine changes in a set of variables over time, it is most useful to have a statistical technique which gives some measure of the degree to which a variable changes or is represented with depth downcore. While polar ordination and cluster analysis define endmember sets for the data base, with factor analysis one can define the degree to which a given factor is represented in the assemblage over time. The ecological groupings are similarly plotted as fluctuations in abundance with depth downcore. The usefulness of the later method is constrained in that the establishment of the limiting ranges of species is influenced by sampling bias, i.e. areas where collections have been made, as well as by the species' actual distributions. Undoubtedly, the ranges of some species will be expanded as more work is done. However, these groups are based on a large enough series of studies so that the
groupings are felt to be representative of the ranges indicated.

The thirty-seven most abundant species or species groups, as defined previously, were analyzed using R -mode factor analysis, which defines interrelations in a matrix of correlations between variables. Use of the variancecovariance matrix, which emphasizes the effect of the more abundant species, resolved two factors accounting for 84% of the variance in the data set. While indicating several well-defined trends, each factor was highly correlated with only one or two species. This indicates that diatom species within the samples are not grouping together into well-defined associations, but are varying in a primarily independent fashion.

The factor structure matrix for Factors 1 and 2 is shown in Table 9. Factor 1, which accounts for 56% of the data variance, is highly positively correlated to Chaetoceros spores (.9858) and negatively correlated to Pseudoeunotia doliolus (-.7387), indicating that the two species are varying in an inverse fashion. Curves of Factor 1 factor loadings with depth are virtually identical to plots of relative percent abundance of Chaetoceros spores with depth. P. doliolus relative percent abundances vary inversely to those of Chaetoceros spores in almost all cases.

Chaetoceros is reported as a neritic species associated with high productivity, primarily upwelling areas (Smayda, 1963, 1966; Desrosieres, 1969; Sancetta, 1979;

Table 9. Factor structure matrix for the first four factors. The analysis was run using the variancecovariance matrix. Factors 1-2 account for 84% of the data variance.

Species	Factor	
	1	2
Actinocyclus curvatulus/ Coscinodiscus curvatulus group	-. 1411	-. 0632
Chaetoceros spores	. 9858	-. 0975
Thalassiosira eccentrica group	-. 2918	-. 1737
T. oestrupii	-. 0369	. 1389
T. lineata	. 0152	-. 0250
T. leptopus	-. 0158	-. 3284
Coscinodiscus nodulifer	. 4564	. 3121
C. marginatus	. 0019	. 0817
C. radiatus	-. 1133	-. 2078
Roperia tesselata	-. 1462	-. 0846
Bacteriastrum spp.	. 0131	. 2078
Skeletonema costatum	. 3967	-. 0430
Nitzschia bicapitata	. 2100	. 1128
Actinoptychus senarius/splendens	-. 0790	$-.1890$
Rhizosolenia alata	. 2115	. 1152
R. bergonii	. 0768	. 0910
R. stylorum	-. 0080	. 0905
R. calcar-avis	. 2680	. 0043
Cyclotella striata/stylorum	-. 4270	-. 00070
Thalassiothrix longissima	. 1182	. 2379
T. mediterranea	.1742	. 2470
Pseudoeunotia doliolus	-. 7387	$-.6037$
"needles" group	-. 3082	. 9284
$\frac{\text { Thalassionema nitzschioides }}{\text { parva }}$ var.	. 0621	. 1231
Actinocyclus octonarius	-. 0754	-. 0146
Asteromphalus arachne	. 0529	-. 2059
A. flabellatus	. 0919	-. 0128
A. heptactis	-. 1497	-. 1769

Table 9. (continued)

Species	Factor	
Coscinodiscus asteromphalus	1	2
C. perforatus	.1052	-.0159
Hemidiscus cuneiformis	.0169	-.0651
Lithodesmium spp.	-.0560	-.1154
Paralia sulcata	-.1215	-.0212
Stephanopyxis turris	-.0247	-.1056
Thalassiosira simonsenii	.0877	-.1980
T. spinosa	-.0277	.0148
T. "small" group	-.0170	-.0389

Schuette and Schrader, 1979, 1981). Sancetta (1979) found Chaetoceros spores to be indicative of cold, high primary productivity waters. Schuette and Schrader (1981) reported highest concentrations of Chaetoceros spores associated with nutrient depleted conditions on the outer edges of an area characterized by cold, newly upwelled water. Pseudoeunotia doliolus, on the other hand, is an oceanic species with occurrences reported in equatorial to subarctic waters (Kolbe, 1954; Hasle, 1959; Venrick, 1971; Jousé et al., 1971; Sancetta, 1979; among others). Positive loadings of Factor 1 are interpreted as indicating pulses of productivity, perhaps associated with especially high levels of surface nutrients due to more favorable upwelling or mixing conditions, or to a higher input of nutrients to these waters. Negative loadings of Factor 1 represent more oceanic influenced conditions, and may be associated with the intrusion of Equatorial Pacific or California Current waters into the central Gulf of California.

Factor 2, which accounts for 28% of the data variance, closely corresponds to the distribution of the single species group Thalassionema/Thalassiothrix "needles", which has a correlation to Factor 2 of .9284. Thalassionema nitzschioides, one of the components of this group, is cosmopolitan in distribution but present in highest abundances in neritic environments (Kolbe, 1954; Smayda, 1963, 1966; Venrick, 1971). Schuette and Schrader (1981) report T. nitzschioides as characterizing sediments beneath
areas of recurrent upwelling. Pseudoeunotia doliolus is negatively correlated to this factor, though to a lesser degree than to the Productivity Factor (-.6037). Assuming that the components of the "needles" group reflect similar ecological conditions to those reported for Thalassionema nitzschioides, Factor 2 is interpreted as reflecting the persistent high primary productivity conditions characteristic of the Gulf.

In determining intervals of positive and negative influence of Factors 1 and 2 for each core, 25\% of the variance in the distribution of the factor about the mean is considered to be due to counting error. Replicate counts of a group of slides showed this range of error in counts of the three abundant species or species groups represented by the factors. Schrader and Gersonde (1978) suggest a similar range of counting error for the samples in their study.

For the ecological groupings, the rance of percent abundance for a given group is similar among all four cores. Abundances for the groups are low, but all except the benthic group occurs in abundances as high as 4% of the total diatom assemblage in at least one of the cores. The benthic group represents less than 1% of the assemblage in all samples and is omitted from further discussion.

Because individual ecological groups represent a small percentage of the total diatom assemblage, the
counting error is greater than for the three major groups. Therefore, peaks of abundance were considered significant only if they exceeded \pm one standard deviation about the population mean for that group. Using this criteria, generally one or two peaks of abundance were resolved for each group in at least one core, variation being within the counting error at other depths. The oceanic and neritic groups showed a greater degree of fluctuation than the other groups. Intervals of somewhat higher or lower influence occurred, but no well-defined peaks or declines in abundance were resolved.

Variations with depth of the Factors and the ecological groups are presented in Figure 9. The Factors are presented in terms of relative factor loadings. The ecological groupings are expressed as relative percent abundance of occurrence. Depth in centimeters is plotted from the middle of each 2.5 cm composite sample. For purposes of discussion, peaks in abundance are expressed as occurring from the top of the upper sample to the base of the lower sample in which the peak occurs. A peak occurring in one sample is expressed as present within a 2.5 cm interval e.g. at 30-32.5 cm depth.

In $B-29$, positive influence of the Productivity Factor occurs at $10-22.5 \mathrm{~cm}$ and $80-87.5 \mathrm{~cm}$; negative influence occurs at 5-7.5 cm and in general over the interval 40-75 cm. Positive influence of the "Needles" Factor occurs at 52.5-57.5 cm. This factor shows negative values at $0-15$

Figure 9a-d. Variation with depth of factor loadings and ecological group abundances for Kasten cores $\mathrm{B}-29, \mathrm{~B}-28, \mathrm{E}-9$, and $\mathrm{E}-10$. The Productivity Factor and "Needles" Factor are presented in terms of relative factor loadings. The ecological groups warm, cold, temperate (temp), "upwelling" (upw), oceanic (ocn), and neritic (nrtc) are expressed as percent abundance of the total diatom assemblage (valves plus spores). Vertical lines delineate 25% of the data variance about the mean for the factors and + one standard deviation about the mean for the ecological groups, reflecting variability in the data distribution attributed to counting error.

Figure 9a,

BAV79 B-29

Figure 9b,

BAV79 B-28

Figure 9c.

BAV79 E-9

Figure 9d.

$\mathrm{cm}, 60-62.5 \mathrm{~cm}, 72.5-75 \mathrm{~cm}$, and $90-92.5 \mathrm{~cm}$, with minor negative peaks at $32.5-35 \mathrm{~cm}$ and $42.5-45 \mathrm{~cm}$. No significant peaks occur in the warm or "upwelling" groups. The cold group is relatively high over the interval $22.5-32.5 \mathrm{~cm}$ and at $60-62.5 \mathrm{~cm}, 67.5-70 \mathrm{~cm}$, and $72.5-75 \mathrm{~cm}$. The temperate group peaks at $20-25 \mathrm{~cm}, 52.5-55 \mathrm{~cm}$, and 62.5-65 cm. The oceanic group was slightly lower in abundance at 57.5-62.5 cm and $72.5-77.5 \mathrm{~cm}$ and slightly higher in abundance at 30-32.5 cm and 67.5-70 cm. The neritic group was slightly lower at $12.5-17.5 \mathrm{~cm}$ and $35-40 \mathrm{~cm}$, and had one peak at 75-77.5 cm.

In B-28, high positive levels of the Productivity Factor occur generally over the intervals $2.5-12.5 \mathrm{~cm}$ and $55-82.5 \mathrm{~cm}$ and high negative levels occur generally at $20-32.5 \mathrm{~cm}$ and $42.5-55 \mathrm{~cm}$. Positive levels of the "Needles" Factor occur at 5-7.5 cm, 17.5-20 cm, and a higher peak at $30-37.5 \mathrm{~cm}$; negative levels are at 50-52.5 $\mathrm{cm}, 55-57.5 \mathrm{~cm}$, and an extreme negative peak at $75-80 \mathrm{~cm}$. There is one warm peak at $52.5-55 \mathrm{~cm}$ and no peaks in the "upwelling" or temperate groups. The cold group is higher at 2.5-5 cm. The oceanic group is somewhat lower at 52.562.5 cm . The neritic group peaks at 42.5-47.5 cm and 7577.5 cm and is low at $55-60 \mathrm{~cm}$.

E-9 shows high positive influence of the Productivity Factor at $0-17.5 \mathrm{~cm}$ and $60-65 \mathrm{~cm}$. Influence of this factor is generally negative over the interval $27.5-60 \mathrm{~cm}$ except for a positive peak at $30-32.5 \mathrm{~cm}$. The "Needles"

Factor has a minor positive peak at $17.5-20 \mathrm{~cm}$, and positive intervals at $40-52.5 \mathrm{~cm}, 75-77.5 \mathrm{~cm}$, and $90-92.5 \mathrm{~cm}$. There is a peak of the warm group at $52.5-57.5 \mathrm{~cm}$ and of the "upwelling" group at $5-12.5 \mathrm{~cm}$ and generally from 6075 cm . The cold group peaks at $17.5-20 \mathrm{~cm}$. No peak of the temperate group occurs. There are no distictive fluctuations in the oceanic group except for a somewhat lower interval at $52.5-62.5 \mathrm{~cm}$. The neritic group also shows no distinctive fluctuations, although values are generally somewhat lower at $12.5-47.5 \mathrm{~cm}$.

The Productivety Factor in E-10 is generally positive at $2.5-25 \mathrm{~cm}$ and negative at $27.5-60 \mathrm{~cm}$. Values fluctuate below this point, being positive at $62.5-67.5 \mathrm{~cm}, 72.5-77.5$ cm , and $80-82.5 \mathrm{~cm}$ and negative at $67.5-70 \mathrm{~cm}, 77.5-80 \mathrm{~cm}$, and $85-92.5 \mathrm{~cm}$. The "Needles" Factor shows a positive influence at $12.5-30 \mathrm{~cm}, 37.5-52.5 \mathrm{~cm}, 60-62.5 \mathrm{~cm}$, and 8587.5 cm . Negative influence of this factor occurs at 2.5$7.5 \mathrm{~cm}, 32.5-37.5 \mathrm{~cm}, 55-57.5 \mathrm{~cm}$. and generally at $70-80$ cm . Peaks of the warm group occur at $30-32.5 \mathrm{~cm}$ and 57.560 cm . The "upwelling' group shows a slight increase at $7.5-10 \mathrm{~cm}$ and $15-17.5 \mathrm{~cm}$. Cold group peaks occur at $12.5-$ 22.5 cm and $72.5-77.5 \mathrm{~cm}$. The temperate group has a single peak at $72.5-77.5 \mathrm{~cm}$. The oceanic group is slightly higher at $20-22.5 \mathrm{~cm}$ and $72.5-82.5 \mathrm{~cm}$. The neritic group averages a somewhat higher abundance than in the other cores, particularly at $22.5-57.5 \mathrm{~cm}$ and $70-72.5 \mathrm{~cm}$.

Area E shows a higher level of primary productivity than Area B, based on absolute abundances of Chaetoceros spores, the major component of the Productivity Factor. This factor shows greater fluctuation in Area E than in Area B, while the "Needles" Factor is more variable in Area B, with a strong positive and a strong negative peak in that area. In Area E, the "Needles" Factor is generally characterized by alternating intervals of high and low influence. The distribution of peaks of the ecological groups differs between the two areas. Area E shows a greater influence of the warm and upwelling groups and Area B shows more influence of the temperate group.

Gulf Oceanographic Conditions for the Last 350 Years

In examining variations in the diatom sediment assemblage for the central Gulf, it is assumed that closely spaced cores from the same side of the Gulf were influenced by the same oceanographic conditions. Differences in the diatom record of the two cores not attributable to counting error is due to the "patchy" response of the diatom population to environmental conditions. A response present in either core would, by this assumption, represent an event which occurred in that area. A composite record for each side of the Gulf can therefore be established by combining the records of the two cores from each area. Using the biostratigraphic markers to establish time-equivalent horizons and the varve counts for each core to determine number
of years between horizons, an approximate time scale can be established for the composite record.

Figure 10 shows the composite record for Area B and Area E with respect to the factors and the cold and warm groups, which were felt to give well-defined responses for both areas. The upper datum for the time scale is tentatively established based on silicoflagellate biostratigraphy (Schrader, in preparation).

Conditions in the Gulf over about the last 350 years can be divided into three stages based on the distribution of the Productivity Factor. Stage III (ca. 1600-1750) was a period of moderate to high productivity levels in the Gulf, fluctuating in Area E between intervals of high productivity and high oceanic influence. Stage II (ca. 17501870) was a period of increased oceanic influence. During Stage I (ca. 1870-present), oceanic influence decreased and productivity levels were high.

At the present time, periodic short-term increases in oceanic influence in the Gulf can be associated with the occurrence of El Niño-type events. Although no single set of atmospheric and oceanic conditions accounts for all strong El Niño events (Quinn et al., 1978), several studies (Miller and Laurs, 1975; Wyrtki, 1977; Bretschneider, 1980) have detected an increase in sea level or sea surface temperatures around the mouth of the Gulf and as far north as San Francisco associated with the events of $1957 / 58$ and

1971/72. A study by Roden (1964) reported positive sea

Figure 10. Composite record for Areas B and E summarizing variation with respect to time in the distribution of the Productivity Factor, "Needles" Factor, warm group and cold group. For the factors, areas shaded in black indicate intervals of high positive(t) and high negative $(-)$ influence. Dark intervals for the warm and cold groups reflect periods of increased abundance of these groups.

Figure 10.
AREA 3
AREA E

level anomalies in the Gulf as far north as the Guaymas Basin during 1957/58. Both 1957/58 and 1971/72 marked strong two-phased El Niño events, in which the initial rise in sea level along the coast of South America was followed by intensification of the North Equatorial Countercurrent and a rise in sea level off Central America (Wyrtki, 1977). Under these circumstances it appears that oceanic influence in the Gulf is increased due to the northward incursion of Equatorial Pacific waters, resulting in conditions analogous to Figure 2A although stronger in the extent and duration of intrusion. The expected effect would be an increase in warm oceanic surface waters in the Gulf.

The anti-El Niño, a period of buildup of high sea level in the western Pacific prior to an El Niño event, is characterized by a strong South Equatorial Current and a weak North Equatorial Current and countercurrent (Wyrtki, 1977). This may result in conditions analogous to Figure 2B. Equatorial waters no longer exclude California Current waters from the Gulf. Under strong anti-El Niño-type conditions, this water mass can intrude further into the Gulf than at other times, leading to an increased influence of cold oceanic surface waters.

The coincidence of cold indicators with increased oceanic influence in Area B at about 1750-1760, 1768-1775, and 1790-1800 may reflect such events. The period $1750-$ 1760, in which a strong increase in oceanic influence coincides with peaks of both the cold and warm groups, may
represent the effect of anti-El Niño followed by El Niño type conditions associated with the strong El Niño event Quinn et al., 1978) of 1763. The occurrence of warm indicators with a productivity high at 1845-1855 may be due to sampling bias. A period of high oceanic influence at 1835-1845 correlates to a strong two-phase El Niño event at 1844/45. The warm peak may indicate an increase in abundance of species introduced by this El Niño event, whose peak of occurrence was picked up in the subsequent sample interval during which an increase in productivity also occurred. Changes in the southern extent of the California Current can occur over periods longer than a single El Niño event (decadal variations - Huang, 1974). Cold indicators in the Gulf indicative of California Current intrusion may reflect such longer term changes as well as being tied to specific anti-El Niño events.

The time period covered by this study includes the Little Ice Age (seventeenth to nineteenth centuries, Bjerknes, 1965). This was a climatic anomaly accompanied by increased glaciation in western Europe, Iceland, and western North America. Average conditions were more severe than at the present. The period was also characterized by widely fluctuating climatic extremes and an equatorward shift of Northern Hemisphere atmospheric circulation (Gribbin and Lamb, 1978). A shift of atmospheric circulation and steepening of the latitudinal temperature gradient resulted in an intensification of Pacific equatorial cir-
culation during the Pleistocene glaciations (Arrhenius, 1952; CLIMAP, 1976). The Little Ice Age may have also intensified Pacific equatorial circulation, although to a much lesser degree than the Pleistocene glacial periods. The result would be to somewhat stabilize the Southern Oscillation (Quinn, personal communication, 1981), leading to conditions similar to 1915-1918, under which an extensive equatorial dry zone developed westward from South America (Quinn, 1971). It is postulated that, under intensified equatorial circulation associated with the Little Ice Age, conditions such as those described for El Niño type events in the Gulf were enhanced, Equatorial Water more regularly penetrated into the central Gulf, leading to periods of increased oceanic influence.

Gulf Stage III reflects the oscillating conditions characteristic of the Little Ice Age. Productivity levels were moderate to high during this time, intervals of moderate influence in Area B generally accompanied by increased oceanic influence in Area E. The "Needles" Factor was generally low throughout this period, but also shows a greater degree of fluctuation than during later times. Alternating intensification and relaxation of atmospheric circulation would lead to a similar intensification
and relaxation of upwelling in the Gulf. Pulses of productivity such as occurred near the end of Stage III may be tied to an increase in upwelling intensity due to an intensified zonal wind system. Intervals of increased oceanic influence may reflect periods of intensified equatorial circulation.

The peak of the Little Ice Age in western North America was marked by two glacial maxima in British Columbia, at 1725-1760 and at 1860 (Bjerknes, 1965). Glacial extent decreased only slightly during the intervening period. This period of maximum intensity roughly coincides with an interval of increased oceanic influence in the Gulf. Intensification of Pacific equatorial circulation may have stabalized during the Little Ice Age maximum. This would result in a stronger and more northward reaching Equatorial Current, with a greater influence in the Gulf than at the present time.

This period of increased oceanic activity in the Gulf ended shortly after the second glacial maximum in 1860. Climatic amelioration after 1860 was accompanied by increased productivity in the Gulf and by colder waters during the beginning of Stage I. Relaxation of equatorial circulation after the Little Ice Age may have resulted in increased California Current influence in the Gulf. High productivity levels along with colder waters may also reflect stronger upwelling due to a more stable zonal wind system, as opposed to the wide fluctuation in conditions
characteristic of the Little Ice Age during Stage III.

SUMMARY AND CONCLUSIONS

1) R-mode factor analysis of the diatom taphocoenoces in four Kasten cores from the central Gulf of California, two from the mainland side and two from the Baja side, shows that 56% of the data variance can be accounted for by a single factor. This factor is dominated by two of the most abundant species, Chaetoceros spores and Pseudoeunotia doliolus, which are inversely related. Positive factor loadings represent periods of high productivity; negative factor loadings indicate increased oceanic influence in the Gulf. Factor 2 (28% of the data variance) is dominated by the "needles" group, and is interpreted as indicative of the persistent high primary productivity conditions characteristic of the central Gulf. Changes in these factors downcore are felt to reflect general trends in climatic and oceanographic conditions in the central Gulf over the approximately 350 year period covered by the study. Individual ecological groups as calculated in this study represent small percentages of the total diatom sediment assemblage. However, this method can be used in the interpretation of Gulf oceanographic conditions to further characterize trends delineated by the results of the factor analysis. The effect of these groups could be better defined by use of a counting scheme which takes a larger sample of the minor species, more accurately defining the distribution of these groups.
2) Conditions in the Gulf over about the last 350 years can be divided into three stages based on major trends in the Productivity Factor.

Stage III (ca. 1600-1750) was a period of moderate to high productivity levels alternating with intervals of increased oceanic influence. These fluctuating conditions may be the result of widely fluctuating climatic extremes associated with the Little Ice Age. Pulses in productivity such as occurred near the end of Stage III may be tied to increased upwelling intensity due to an intensified zonal wind system. Periods of increased oceanic influence may reflect periods of intensified equatorial circulation and subsequent intrusion of Equatorial Water into the Gulf. Stage II (ca. 1750-1870) roughly corresponds to the maximum extent of the Little Ice Age in western North America. The influence of oceanic waters in the Gulf was enhanced during this period as compared to present conditions. Intensification of Pacific equatorial circulation may have stabilized during the Little Ice Age maximum resulting in a stronger and more northward reaching Equatorial Current, with a greater influence in the Gulf than at present time. Climatic amelioration after the Little Ice Age peak was accompanied by increased productivity in the Gulf of California (Stage I - ca. 1870-present), and by colder waters in the central Gulf. This may be tied to an increase in California Current influence with the
de-intensification of equatorial circulation. It may also reflect stronger upwelling due to a more stable zonal wind system, as opposed to the wide fluctuations in climatic conditions characteristic of the Little Ice Age during Stage III.

BIBLIOGRAPHY

Allen, W. E., 1934. The importance of continuity in marine plankton investigations. Fifth Pacific Science Congress California, 1933. Proceedings, 3:2051-2055.
Allen, W. E., 1937. Plankton diatoms of the Gulf of California obtained by the G. Allen Hancock Expedition of 1936. The Hancock Pacific Expeditions, University of Southern California Publications, 3:47-59.
Allen, W. E., 1938. The Templeton Crocker Expedition to the Gulf of California in 1935: The phytoplankton. Transactions of the American Microscopical Society, 67:328-335.
Alvarez-Sanchez, L. G., 1974. Currents and water masses at the entrance to the Gulf of California, Spring 1970. MS Thesis, Oregon State University, 75 pp .

Arrhenius, G., 1952. Sediment cores from the east Pacific. Reports of the Swedish Deep-Sea Expedition (19471948) , 5, 89 pp .

Bandy, O. L., 1961. Distribution of Foraminifera, Radiolaria, and diatoms in sediments of the Gulf of california. Micropaleontology, 7(1):1-20.

Baumgartner, T. R., Soutar, A., Cowen, J., Morena, P., Michaelson, J. and Bruland, K. W., 1981. Detailed chronologies in the laminated sediments of the Guaymas slope. In: Abstracts with Programs, Geological Society of America Cordilleran Section Meeting, Hermosillo, Sonora, Mexico, pp. 44.
Belyaeva, T. V., 1970. Taxonomy and distribution patterns of planktonic diatoms in the Equatorial Pacific. Oceanology, 10:101-107.
Belyaeva, T. V., 1971. Quantitative distribution of planktonic diatoms in the western part of the tropical Pacific. Oceanology, 11:578-585.
Belyaeva, T. V., 1972. Distribution of large diatoms in the southeastern Pacific. Oceanology, 12:400-408.
Benson, R. N., 1966. Recent Radiolaria from the Gulf of California. Ph.D. Thesis, University of Minnesota, 577 pp.
Berger, R., Taylor, R. E. and Libby, W. F., 1966 , Radiocarbon content of marine shells from the California and Mexican west coast. Science, 153:864-866.
Bjerknes, J., 1965. Atmosphere-ocean interaction during the "Little Ice Age" (seventeenth to nineteenth centuries A.D.). WMO Technical Report, 66:77-88.

Bretschneider, D. E., 1980. Sea Level Variations at Monterey, California. MS Thesis, Naval Postgraduate School, Monterey, California, 105 pp.
Bruland, K. W., 1974. ${ }^{210} \mathrm{~Pb}$ Geochronology in the Coastal Marine Environment. Ph.D. Thesis, University of California, San Diego, 106 pp.
Byrne, J. V., 1957. The Marine Geology of the Gulf of California. Ph.D. Thesis, University of Southern California, 289 pp.
Calvert, S. E., 1964. Factors affecting distribution of laminated diatomaceous sediments in the Gulf of California. In: Tj. H. van Andel and G. G. Shor, Jr. (Editors), Marine Geology of the Gulf of California: A symposium. American Association of Petroleum Geologists Memoir, 3:311-330.
Calvert, S. E., 1966a. Accumulation of diatomaceous silica in the sediments of the Gulf of California. Geological Society of America Bulletin, 77:569-596.
Calvert, S. E., 1966b. Orgin of diatom-rich varved sediments from the Gulf of California. Journal of Geology, 76:546-565.
CLIMAP Project Members, 1976. The surface of the ice-age earth. Science, 191:1131-1137.
Cooley, W. W. and Lohnes, P. R., 1971. Multivariate Data Analysis. John Wiley and Sons, Inc., New York, 364 pp.
Cupp, E. E., 1943. Marine plankton diatoms of the west coast of North America. Bulletin of the Scripps Institute of Oceanography, 5:1-238.
Cupp, E. E. and Allen, W. E., 1938. Plankton diatoms of the Gulf of California obtained by Allen Hancock Pacific Expedition of 1937. The Hancock Pacific Expeditions, University of Southern California Publications, 3:61-74.
DeMaster, D. J., 1979. The Marine Budgets of Silica and ${ }^{32}$ Si. Ph.D. Thesis, Yale University, 308 pp.
Desrosieres, R., 1969. Surface macrophytoplankton of the Pacific Ocean along the equator. Limnology and Oceanography, 14(4):626-631.
DeVries, T. J. and Schrader, H., 1981. Variation of upwelling/oceanic conditions during the latest Pleistocene through Holocene off the central Peruvian coast: A diatom record. Marine Micropaleontology, 6:157167.

Donegan, D. and Schrader, H., in press. Biogenic and abiogenic components of laminated sediments in the central Gulf of California. Marine Geology.

Faure, G., 1977. Principles of Isotope Geology. John Wiley and Sons, New York, 464 pp.
Fryxell, G. A. and Hasle, G. R., 1972. Thalassiosira eccentrica (Ehrenb.) Cleve, T. symmetrica $s p$. nov., and some related centric diatoms. Journal of Phycology, 8(4):297-317.
Fryxell, G. A. and Hasle, G. R., 1980. The marine diatom Thalassiosira oestrupii: Structure, taxonomy, and distribution. American Journal of Botany, 67(5): 804-814.
Gersonde, R., 1980. Paläoökologische und biostratigraphische Auswertung von Diatomeenassoziationen aus dem Messinium des Caltanissetta Beckens (Sizilien) und einiger Vergleichsprofile in S-Spanien, NW-Algerien und auf Kreta. Ph.D. Thesis, Christian-AlbrechtsUniversität zu Kiel, Germany, 455 pp .
Gilbert, J. V. and Allen, W. E., 1943. The phytoplankton of the Gulf of California obtained by the "E. W. Scripps" in 1939 and 1940. Journal of Marine Research, 5(2):89-110.
Granados-Gallegos, J. L. and Schwartzlose, R. A., in press. Corrientes superficiales en el Golfo de California. Memorias del V Congreso Nacional de Oceanografia, Escuela de Ciencias Maritimas del Instituto Tecnologico de Monterey, Guaymas, Sonora.
Gribbin, J. and Lamb, H. H., 1978. Climate change in historical time. In: J. Gribbin (Editor), Climate Change. Cambridge University Press, London, pp. 6882.

Griffiths, R. C., 1968. Physical, chemical, and biological oceanography of the entrance to the Gulf of California, Spring 1960. U.S. Fish and Wildlife Service Soecial Scientific Report, Fisheries, 573, 47 pp.
Guillard, R. R. L. and Kilham, P., 1977. The ecology of marine planktonic diatoms. In: D. Werner (Editor), The Biology of Diatoms. Botanical Monographs, University of California Press, Berkeley and Los Angeles, 13: 372-469.
Hasle, G. R., 1959. A quantitative study of phytoplankton from the equatorial Pacific. Deep-Sea Research, 6: 38-59.
Hasle, G. R. and Fryxell, G. A., 1977. The genus Thalassiosira: Some species with a linear aereola array. In: R. Simonsen (Editor), Proceedings of the Fourth

Symposium on Recent and Fossil Marine Diatoms, 15-66. Hastings, J. R. and Turner, R. M., 1965. Seasonal precipitation regimes in Baja California, Mexico. Geografiska Annaler, 47:204-223.
Huang, J. C. K., 1972. Recent decadal variation in the California Current system. Journal of Physical Oceanography, 2:382-390.
IMSL, 1979. The IMSL Library: Fortran Subroutines in the Areas of Mathematics and Statistics, Volume l. International Mathematical and Statistical Libraries, Inc., Houston.

Jousé, A. P., 1962. Stratigraphic and paleogeographic studies in the northwestern part of the Pacific Ocean. Izd Akad Nauk S S S R, Moscow, 258 pp. (Russian, with English abstract).
Jousé, A. P., 1963. Problems in stratigraphy and paleogeography of the northern part of the Pacific Ocean. Okeanologia, Akad Nauk S S S R, 3:1017-1028. (in Russian).
Jousé, A. P., Koroleva, G. S. and Nagaeva, G. A., 1962. Diatoms in the surface layer of sediment in the Indian Ocean sectors of the Antarctic. Tr Inst Okeanol, Akad Nauk S S S R, 61:2-92. (Russian, with English abstract).
Jousé, A. P., Kozlova, O. G. and Muhina, V. V., 1971. Distribution of diatoms in the surface layer of sediment from the Pacific Ocean. In: B. M. Funnel and W. R. Riedel (Editors), Micropaleontology of Oceans, Cambridge University Press, Cambridge, pp. 263-269.
Kaiser, H. F., 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23:187200.

Kanaya, T. and Koizumi, I., 1966. Interpretation of diatom thanatocoenoces from the North Pacific applied to a study of Core V20-130 (Studies of a deep-sea core V20130, Part IV). Science Reports of the Tohoku University, Sendai, Second Series (Geology), 37(2):89-130.
Kolbe, R. W., 1954. Diatoms from equatorial Pacific cores. Reports of the Swedish Deep-Sea Expedition (19471948), 6(1). 59 pp .

Kozlova, O. G. and Muhina, V. V., 1967. Diatoms and silicoflagellates in suspension and floor sediments of the Pacific Ocean. International Geology Review, 9:1322-1342.
Miller, F. R. and Laurs, R. M., 1975. The El Niño of 19721973 in the eastern tropical Pacific Ocean. InterAmerican Tropical Tuna Commission Bulletin, 16 (5) : 403-430.

Molina-Cruz, A., in press. Registro micropaleontologic de las masas de aqua en la region central del Golfo de California. In: A. Ayaya-Castanares et al. (Editors), The Gulf of California: Origin, Evolution, Waters, Marine Life and Resources. Proceedings Gulf of California Symposium, November 1979, C. C. M. L. Univ. Nac. Auton. Mexico, Mazatlan, Sinaloa.
Muhina, V. V., 1971. Problems of diatom and silicoflagellate Quaternary stratigraphy in the equatorial Pacific Ocean. In: B. M. Funnel and W. R. Riedel (Editors), Micropaleontology of Oceans. Cambridge University Press, Cambridge, pp. 423-431.
Murray, D. W., 1982. Paleo-oceanography in the Gulf of California Based on Silicoflagellates from Marine Varved Sediments. MS Thesis, Oregon State University.
Namias, J., 1971. Temporal coherence in North Pacific seasurface temperature patterns. Journal of Geophysical Research, 75(30):5952-5955.
Pavillard, J., 1935. Péridiniens et diatomees pélagiques recueillis par Alain Gerbault entre les Iles Marquises et les Iles Galapagos. Bulletin of the Institute of Oceanography, 669, 8 pp.
Quinn, W. H., 1971. Late Quaternary meteorological and oceanographic developments in the equatorial Pacific. Nature, 229(5283):330-331.
Quinn, W. H., Zopf, D. O., Short, K. S. and Kuo-Yang, R. T. W., 1978. Historical trends and statistics of the southern oscillation, El Niño and Indonesian droughts. Fishery Bulletin, 76:663-678.
Rampi, L., 1952. Ricerche sul microplancton di superficie del Pacifico tropicale. Bulletin of the Institute of Oceanography, $1014,16 \mathrm{pp}$.
Roden, G. I., 1958. Oceanographic and meteorological aspects of the Gulf of California. Pacific Science, 12(1):21-45.
Roden, G. I., 1964. Oceanographic aspects of the Gulf of California. In: Tj. J. van Andel and G. G. Shor, Jr. (Editors), Marine Geology of the Gulf of California: A symposium. American Association of Petroleum Geologists Memoir, 3:30-58.
Roden, G. I. and Groves, G. W., 1959. Recent oceanographic investigations in the Gulf of California. Journal of Marine Research, 18(1):10-35.
Rosas-Cota, J. A., 1976. Corrientes geostroficas en el Golfo de California en la superficie y a 200 metros. BS Thesis, Escuela Superior de Ciencias Marinas, Universidad Autonoma de Baja California, Ensenada, 56 pp .

Round, F. E., 1967. The phytoplankton of the Gulf of California, Part I: It's composition, distribution, and contribution to the sediments. Journal of Experimental Marine Biology and Ecology, 1:76-97.
Round, F. E., 1968. The phytoplankton of the Gulf of California, Part II: The distribution of phytoplanktonic diatoms in cores. Journal of Experimental Marine Biology and Ecology, 2:64-86.
Sancetta, C., 1979. Oceanography of the North Pacific during the last 18,000 years: Evidence from fossil diatoms. Marine Micropaleontology, 4:103-123.
Schrader, H.-J., 1971. Selektive Auflösung planktischer Diatomeen im Seegebiet zwischen 15-430 nördlicher Breite und $8-30^{\circ}$ westlicher Länge. In: A. Farinacci (Editor), Proceedings of the II Planktonic Conference, Roma 1970, pp. 1139-1147.
Schrader, H.-J., 1974. Proposal for a standardized method of cleaning diatom bearing deep-sea and land exposed marine sediments. Nova Hedwigia Beiheft, 45:403-409.
Schrader, H.-J. and Gersonde, R., 1978. Diatoms and silicoflagellates. In: W. J. Zachariasse et al. (Editors), Utrecht Micropaleontological Bulletins no. 17, Micropaleontological counting methods and techniques, pp. 127-176.
Schrader, H., Murray, D., Matherne, A., Donegan, D., Crawford, S. and Schuette, G., 1980. Laminated marine sediments in the central Gulf of California. In: Abstracts with Programs, Geological Society of America Cordilleran Section Meeting, Corvallis, Oregon, pp. 151-152.
Schrader, H., Kelts, K., Curray, J., Moore, D., Aguayo, E., Aubrey, M.-P., Einsele, G., Fornari, D., Gieskes, J., Guerrero, J., Kastner, M., Lyle, M., Matoba, Y., Molina-Cruz, A., Niemitz, J., Rueda, J., Saunders, A., Simoneit, B. and Vaquier, V., 1980. Laminated diatomaceous sediments from the Guaymas Basin slope (central Gulf of California):250,000-year climate record. Science, 207: 1207-1209.
Schrader, H. and Matherne, A., 1981. Sapropel formation in the eastern Mediterranean Sea: Evidence from preserved opal assemblages. Micropaleontology, 27(2) 191-203.
Schuette, G., and Schrader, H., 1979. Diatom taphocoenoces in the coastal upwelling area off western South America. Nova Hedwigia, Beiheft, 64:359-378.
Schuette, G. and Schrader, H., 1981. Diatom taphocoenoces in the coastal upwelling area off southwest Africa. Marine Micropaleontology, 6:131-155.

Schuette, G. and Schrader, H., in press. Thalassiothrix pseudonitzschioides sp. nov.: A common pennate diatom from the Gulf of California. Bacillaria.

Semina, G. J., 1958. Relation between phytogeographic zone in the pelagics of the northwestern part of the Pacific Ocean with the distribution of water masses in the region. Tr Inst Oceanol Akad Nauk S S S R, 27: 66-76. (English translation).
Shepard, F. P., 1950. Submarine topography of the Gulf of California, pt. 2 of the 1940 E. W. Scripp's cruise to the Gulf of California. Geological Society of America Memoir, 43, 32 pp .
Smayda, T. J., 1963. A quantitative analysis of the phytoplankton of the Gulf of Panama, I: Results of the regional phytoplankton surveys during July and November, 1957 and March, 1958. Inter-American Tropical Tuna Commission Bulletin, 7(3):191-253.
Smayda, T. J., 1966. A quantitative analysis of the phytoplankton of the Gulf of Panama, III: General ecological conditions, and the phytoplankton dynamics at $8^{\circ} 45^{\prime} \mathrm{N}, 79^{\circ} 23^{\prime} \mathrm{W}$ from November 1954 to May 1957. Inter-American Tropical Tuna Commission, 11(5):353612.

Stevenson, M. R., 1970. On the physical and biological oceanography near the entrance to the Gulf of California, October 1966 - August 1967. Inter-American Tropical Tuna Commission Bulletin, 4(3):389-504.
Tafall, B. F. O., 1943. El mar de Cortes y la productividad de sus aguas. Ann de la Escuela Nat de Cién Biol, 3:73-118.
Taylor, R. E. and Berger, R., 1967. Radiocarbon content of marine shells from the Pacific coasts of Central and South America. Science, 158:1180-1182.
Venrick, E. L., 1971. Recurrent groups of diatom species in the north Pacific. Ecology, 52:614-625.
Warsh, C. E. and Warsh, K. L., 1971. Water exchange at the mouth of the Gulf of California. Journal of Geophysical Research, 76:8098-8116.
Warsh, C. E., Warsh, K. L. and Staley, R. C., 1973. Nutrients and water masses at the mouth of the Gulf of California. Deep-Sea Reasearch, 20:561-570.

Wille, J. G., 1966. Geostrophic flow of the California Current at the surface and at 200 m . CALCOFI Atlas no. 4, 288 pp .
Wyrtki, K., 1965. Surface currents of the eastern equatorial Pacific Ocean. Inter-American Tropical Tuna Commission Bulletin, 9:270-304.
Wyrtki, K., 1967. Circulation and water masses in the eastern equatorial Pacific Ocean. International Journal of Oceanology and Limnology, 1(2):114-147.
Wyrtki, K., 1973. Teleconnection in the equatorial Pacific Ocean. Science, 180:66-68.

Wyrtki, K., 1975. El Niño - dynamic response of the Equatorial Pacific Ocean to atmospheric forcing. Journal of Physical Oceanography, 5:572-584.
Wyrtki, K., 1977. Sea level during the 1972 El Niño. Journal of Physical Oceanography, 7:779-787.
Zeitzschel, B., 1969. Primary productivity in the Gulf of California. Marine Biology, 3:201-207.

PLATES

PLATE I

Scale B corresponds to Figure 2. All other figures correspond to Scale A. Photos and taxonomic nomenclature are taken from a siliceous microfossil atlas for the Gulf of California compiled by Schrader and Schuette (unpub.).

1. Dictyocha sp. 2
2. Dictyocha sp. 1A
3. Dictyocha sp. 1B
4.-5. Thalassiosira leptopus var. 1
6.-7. Thalassiosira sp. 5

PLATE II

Scale B corresponds to Figure 5. All other figures correspond to Scale A. Photos and taxonomic nomenclature are taken from a siliceous microfossil atlas for the Gulf of California compiled by Schrader and Schuette (unpub.).
1.-4. Thalassiothrix pseudonitzschioides
5. Thalassiosira leptopus var. 1
6.-7. Thalassiosira sp. 6
8.-9. Thalassiosira sp. 4
10. Lithodesmium sp. I
11.-12 Thalassiosira (pacifica? Hasle)

APPENDICES

Appendix I: Data Table
The diatom assemblage for each sample analyzed in cores $\mathrm{B}-29, \mathrm{~B}-28, \mathrm{E}-9$, and $\mathrm{E}-10$ is presented as number of diatoms counted for each species in that sample.

Coscinodiscus curvatulus Actinocyclus curvatulus

Chaetoceros spores

$\begin{array}{rr}6 & 11 \\ 3 & 92\end{array}$
$\begin{array}{ll}1 & 152 \\ 4 & 193\end{array}$
$\begin{array}{ll}3 & 168 \\ 6 & 132 \\ 9 & 12\end{array}$
$10 \quad 90$
$\begin{array}{rr}9 & 6 \\ 3 & 32 \\ 18 & 108\end{array}$
$\begin{array}{rr}18 & 108 \\ 9 & 11\end{array}$
3102
170

$$
40
$$

9
2
149

 - 由

 Thalassiosira leptopus
 -00000000000000000001+000001001000000 Coscinodiscus marginatus
 Roperia tesselata

 ○力 eqele equetosoztuy
> !!uobsəq e!̣ว

sfunof!lא7s e!̣ualosoz!uy Rhizosolenia calcar-avis

Cyclotella striata
300
10
12
7
13
CH
3
$\begin{array}{ll}4 & 14 \\ 1 & 13\end{array}$
$\begin{array}{ll}1 & 1 \\ 5 & 1\end{array}$
$\begin{array}{ll}5 & 12 \\ 3 & 17 \\ 3 & 14\end{array}$
$7+7$
MCl

2	73	2	2	19	0
	3	45	3	6	19
2	61	4	4	22	0
	4	82	4	5	26
	0				
1	51	2	6	15	1
2	33	1	13	13	0
2	62	0	5	13	0
3	79	1	5	21	0
6	124	0	2	7	0
16	16	3	2	5	2
5	60	0	4	19	0
5	90	0	3	22	0
11	73	1	3	23	0
7	30	2	2	12	4
14	30	2	4	10	2
4	5	106	1	3	2
0	1	96	4	2	20
2	0	145	0	2	13
1	0	166	1	7	22
0	2	120	1	2	19
0	3	116	0	5	13
0	2	73	0	7	1.4
	1				

EAU79 E-29
$0.0-2.5$
$0.0-2.5$
$2.5-5.0$
$5.0-7.5$
$7.5-10.0$
$10.0-12.5$
12.5-15.0
$15+0-17.5$
$17.5-20.0$
$20.0-22.5$
$22.5-25.0$
$22.5-25.0$
$25.0-27.5$
$27.5 \cdots 30.0$
$30.0 \cdots 32.5$
$30.0-32.5$
$32.5-35.0$
$35.0-37.5$
$37.5-40.0$
$37.5-40.0$
$40.0-42.5$
$42.5-45.0$
45.0-47.5
$47.5-50.0$
$50.0-52.5$
$52.5-55.0$
$55.0-57.5$
$57.5-60.0$
$60.0-62.5$
62.5-65.0
65.0-67.5
$67.5-70.0$
$70.0-72.5$ $72.5-75.0$ $75.0-77.5$
$77.5-80.0$ 80.0-82. 5 $82 \cdot 5-85.0$ 85.0-87.5 $87.5-90.0$
$90.0-92.5$

 Thalassiothrix pseudonitzschioides
Thalassionema/Thalassiothrix fragments Actinocyclus octonarius Actinocyclus subtilis
Amphora spp. Actinocyclus subtilis
Amphora spp. Asteromphalus arachne
Asteromphalus flabellatus Asteromphalus flabellatus Asteromphalus heptactis Asteromphalus petersonit Biddulphia longicruris Biddulphia regia Biddulphia rhombus Cocconeis spp Cyclotella caspia Chaetoceros spp vegetative cells Coscinodiscus africanus
Coscinodiscus argus
Coscinodiscus asteromphalus

 $H 000 H 00000000000000 H 00000000000000000$ OOOHOOOOHOOOHOHHOOOOHOHOOHOOOOOOHHHWO
 000 0000000000000000000000010000000000000 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}$ $00000000+000000000+000000000000000010$
$00100000000000000+1000000000100001+1000$ $00000000+000000000+0000000000000000010$
$00100000000000000+1000000000100001+1000$ WOHOOOOHHOOOHHOOOOOOOOOOOOOOOHOOHOOOO 00000110000000000000000000000000000000 0000000000000000000000000000000000000 00000 HO 00001200000000000 Hm 000000000000 $0000 \mathrm{Hr} 00000010000000000000+0010000000$

Cyclotella stylorum

Thalassiothrix longissima Thalassiothrix mediterranea Pseudoeunotia doliolus Thalassionema nitzschioides $\begin{array}{ll}12 & 3 \\ 21 & 3 \\ 16 & 3 \\ 12 & 4 \\ 16 & 4 \\ 13 & 3 \\ 14 & 5 \\ 18 & 5 \\ 12 & 7 \\ 10 & 5 \\ 13 & 7 \\ 14 & 7 \\ 14 & 4 \\ 20 & 5 \\ 10 & 8 \\ 27 & 5 \\ 20 & 7 \\ 11 & 6 \\ 17 & 5 \\ 28 & 7 \\ 25 & 7 \\ 15 & 9 \\ 17 & 7 \\ 22 & 6 \\ 13 & 5 \\ 23 & 6 \\ 26 & 6 \\ 12 & 73 \\ 22 & 6 \\ 7 & 6 \\ 14 & 70 \\ 23 & 63 \\ 7 & 7 \\ 16 & 6 \\ 23 & 58 \\ 19 & 75 \\ 15 & 53\end{array}$

	Cyclotella stylorum
	Thalassiothrix longissima
	Tha lassiothrix mediterranea
 	Pseudoeunotia doliolus
HHOMOOHOOOO00000000000000000H0H0H00WH	Thalassionema nitzschioides

EAU79 E-29
0.0-2. 5
2.5-5.0
$5.0-7.5$
7.5-10.0
$10.0-12.5$
$12.5-15.0$ $12.5-15.0$
$15.0-17.5$ 17.5-20.0 20.0-22.5 22.5-25.0 $25.0-27.5$ $27.5-30.0$
$30.0-32.5$ $32.5-35.0$ 35.0-37.5 $37.5-40.0$
$40.0-42.5$ $40.0-42.5$
$42.5-45.0$ $45.0-47.5$
$47.5-50.0$ $47.5-50.0$
$50.0-52.5$ $52.5-55.0$
$55.0-57.5$
$57.5-60.0$ 60.0-62.5 62.5-65.0 $65.0-67.5$ 67.5-70.0 70.0-72.5 $72.5-75.0$
75.0-77.5
77.5-80.0
80.0-82.5
82.5-85.0
85.0-87.5
87.5-90.0
90.0-92.5 Nitzschia interruptestriata Navicula numnularia Lithodesmium undulatum Navicula sp. 1 Navicula sp. 3 Navicula sp. 6 Grammatophora spp
 Hemiaulus sinensis Hemiaulus longicornis Lithodesmium sp. 1

 00000 OOOOHOOHO 000000000000000000000 m 0000000000000000000000000000000000000 0000000000000000000000000000000000010
 $10000000100100000000000000100 r \mu r 00000$ Nitzschiamarina
0000100000001000001000000000000000010 Nitzschia sicula Nitzschia sicula

GAV79 E-29
$0.0-2.5$
$0.0-2.5$
$2.5-5.0$ 5.0.7.5 $7.5-10.0$ 10.0-12.5 $12.5-15.0$ 15.0-17.5 $17.5-20.0$ $20.0-22.5$ $22.5-25.0$ $25.0-27.5$
$27.5-30.0$ 30.0.-32. 5 32.535 .0
$35: 0-37.5$ 37.5-40.0 40.0-42.5 42.5-45.0 $45.0-47.5$
$47.5-50.0$ $47.5-50.0$
$50.0-52.5$ $52.5-55.0$
$55.0-57.5$ $55.0-57.5$
$57.5-80.0$ $60.0-62.5$ $62.5-65.0$ $65.0-67.5$
$57.5-70.0$ $57.5-70.0$
$70.0-72.5$ $72.5-75.0$ 75.0-77.5 77.5-80.0 $80.0-82.5$ 82.5-85.0 $85.0-87.5$
$87.5-90.0$ 90.0-92.5

 $004 H 100000000000000000000000000001.300$ Thalassiosira plicata
 OOONOHOMAHNHODNOHOOOOOHOOOOHOOHADFOOO Thalassiosira spinosa
 OOOOHOOHFHOOOOOOHFWOONOWOHOHO00000000 Thalassiosirasp. 2 0000001 H 00000000000000000000000000000 Thalassiosira sp. 4 0000000000000000000000000000000000000 Thalassiosira sp. 5 -HWNWOOt00000000000000000000000000000 Thalassiosira sp. 6 Thalassiothrix
vanhoeffenij

Trachyneis aspera Triceratum spp

0000000000000000010000000000000000000 Biddulphia dubia

B．A 179 5－ 28
＂5．5．0
$5.0-7.5$
$7.5 \cdots 10.0$
$10.0-12.5$ $12.5 \cdots 15.0$
$15.0-17.5$
$17.5 \cdots 20.0$ 20．0－22．5 $22.5 \cdots 25.0$
$25.0-27.5$ $25.0 \cdots 27.5$
$27.5-30.0$ $30.0-32.5$ $32.5-35.0$ 35：0－37．5 $37.5-40.0$
$40.0-42.5$ $40.0-42.5$
$42.5-45.0$
$45.0-47.5$
47.550 .0
$50.0-52.5$
$52.5-55.0$
$52.5-55.0$
$55.0-57.5$
$57.5 \cdots 60.0$
$60.0 \cdots 62.5$
$60.0 \cdots 62.5$
$62.5 \cdots 55.0$
$65.0 \cdots 7.0$
$67.0 \cdots 70.0$
$70.0-72.0$
72．5－75．0
$75.0 \cdots 77.5$
$77.5-80.0$
$60.0 \cdots 22.5$
82．0－85．0
$85.0-87.5$
87.590 .0
97.590 .0
90.0 ．93．5

 ○юト上卜

HAV79 E:28 2.5 .5 .0
$5.0-7.5$ $5.0-7.5$
$7.5-10.0$
Cyclotella stylorum
Thalassiothrix longissima

$10.0-12.5$
$12.5-15.0$
15. 0-17.5
$17.5-20.0$
20.0-22.
$22.5-25.0$
$25.0-27.5$
27.5-30.0
30.0-32.5
32.5-35.0
$35.0-37.5$
$37.5-40.0$
40.0-42.5
42.5-45.0
45. 0-47.5
47.5-50.
$50.0-52.5$
$52.5-55.0$
SS.
57.5-60.0
60.0-62.5
$62.5-65.0$
$65.0-67.5$
$67.5-70.0$
70.0-72.5
72.5-75.0
75.0-77.5
$77.5-80.0$
$80.0-82.5$
82.5-85.0
85.0-87.5
87.5-90.0
90.0-92.5

Coscinodiscus asteromphalus

EAU79 B-2E
$2.5-5.0$
5.0-7.5
7.5-10.0 10.0-12.5
$12.5-15.0$ $15.0-17.5$
$17.5-20.0$ $17.5-20.0$
$20.0-22.5$ $22.5-25.0$
$25.0-27.5$ $27.5-30.0$
$30.0-32.5$ $32.5-35.0$ $35.0-37.5$
$37.5-40.0$ $37.5-40.0$
$40.0-42.5$ $42 \cdot 5-45.0$ $45.0-47.5$
$47.5-50.0$ $47.5-50.0$
$50.0-52.5$ $52.5-55.0$ $55.0-57.5$
$57.5-60.0$ 60.0-62.5 $62.5-65.0$ $65.0-67.5$ 67.5-70.0 $70.0-72.5$ 72.5-75.0 $75.0 \cdots 77.5$
$77.5-80.0$ $77.5-80.0$
$80.0-82.5$ $82.5-85.0$
$85.0-87.5$ 85.0-87.5 $87.5-90.0$
$90.0-92.5$

0100000000000000000001000000000001000	Coscinodiscus centralis
	Coscinodiscus granii
	Coscinodiscus obscurus
	Coscinodiscus perforatus
	Coscinodiscus stellaris

Navicula nummularia Nitzschia interruptestriata Nitzschia marina

Nitzschia sicula

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
2
bavig B-28 $0.0-2.5$

$$
5.0-7.5
$$

$$
\begin{aligned}
& 5.0-7.5 \\
& 7.5-10.0
\end{aligned}
$$

$$
10.0-12.5
$$

$$
12,5-15,0
$$

$$
15,0-17.5
$$

$$
17.5-20.0
$$

$$
\begin{aligned}
& 20.0-22.5 \\
& 22.5-25.0
\end{aligned}
$$

$$
\begin{aligned}
& 22.5-25.0 \\
& 25.0-27.5
\end{aligned}
$$

$$
\begin{aligned}
& 25.0-27.5 \\
& 27.5-30.0
\end{aligned}
$$

$$
30.0-32.5
$$

$$
32.5-35.0
$$

$$
\begin{aligned}
& 35.0-37.5 \\
& 37.5-40.0
\end{aligned}
$$

$$
\begin{aligned}
& 37.5-40.0 \\
& 40.0-42.0
\end{aligned}
$$

$$
\begin{aligned}
& 40.0-42.5 \\
& 42.5-45.0
\end{aligned}
$$

$$
\begin{aligned}
& 42.5-45.0 \\
& 45.0-47.5
\end{aligned}
$$

$$
47.5-50.0
$$

$$
50.0-52.5
$$

$$
52.5-55.0
$$

$$
\begin{aligned}
& 55.0-57.5 \\
& 57.5-60.0
\end{aligned}
$$

$$
\begin{aligned}
& 57.5-60.0 \\
& 60.0-62.5
\end{aligned}
$$

$$
\begin{aligned}
& 60.0-62.5 \\
& 62.5-65.0
\end{aligned}
$$

$$
\begin{aligned}
& 62.5-65.0 \\
& 65.0-67.5
\end{aligned}
$$

$$
67.5-70.0
$$

$$
70.0-72.5
$$

$$
\begin{aligned}
& 72.5-75.0 \\
& 75
\end{aligned}
$$

$$
\begin{aligned}
& 75.0-77.5 \\
& 77.5-80.0
\end{aligned}
$$

$$
77.5-80.0
$$

$$
80.0-82.5
$$

$$
82.5-85.0
$$

$$
85.0-87.5
$$

$$
87.5-90.0
$$

$$
90.0-92.5
$$

000r00000000000rororo 00000000000000	Odontella aurita
	Paralia sulcata
	Pleurosigma sp. 1
-000roworooopo	Stephanopyxis turris
000000	Surirella fastuosa
\bigcirc	Synedra sp. 1
\bigcirc	Synedra indica
000000000000000000000	Thalassiosira anguste-lineata
00	Thalassiosira gravida
Wroorooraroorooowroswrrroororrroorrr	Thalassiosira pacifica
0r00000000000r0000000r0000	Thalassiosira plicata
	Thalassiosira simensenii
WWOH-O 0°	Thalassiosira spinosa
OOHOOOOHOOOOO0000	Thalassiosira tenera
$00000000000 \vdash 0000$	Thalassiosira sp. 2
トro0r000000000r000000r00000000000000	Thalassiosira sp. 4
-	Thalassiosira sp. 5
	Thalassiosira sp. 6
	Thalassiothrix vanhoeffenii
000000000000000000000000000000	Trachyneis aspera
000000000000000000000000000000000	Triceratum spp
00000001000000000000000000	Biddulphia dubia

TAUV9 E.
0.02 .5
2.5 .5
$5.0 \cdots 7.5$
7.510 .0 $10.0-12.5$ $12.5-15.0$ 15.0-1.7.5 $17.5-20.0$ 20.022 .5 $22.5-25.0$ $25.0-27.5$ $27.5 \cdots 30.0$ 30.0.32.5 32.5 .35 .0 35.0 .37 .5
$7.5 \cdots 20.0$ 37.5-40.0 $40.0-42.5$
$42.5 \cdots 45$ $42.5 \cdots 45.0$
$45.0 \cdots 47.5$ 47.550 .0 50.0 5.5.5 $52.5-55.0$ $55.0-57.5$
57.5
$60.0-62.5$
$62.5 \cdots 65.0$
$65.0-67.5$
$55.0-67.5$
$67.5 \cdots 70.0$ $70.0-72.5$ 72.5-75.0 75.0-77.5 $77.5-80.0$
80.0-82. 5
$82.5 \cdots 85.0$
$85.0 \cdots 87.5$
85.0-87.5
$37.5 \cdots 90.0$
$90.0 \cdots 92.5$

 	Coscinodiscus curvatulus Actinocyclus curvatulus
	Chaetoceros spores
	Thalassiosira eccentrica
	Thalassiosira symetrica
	Thalassiosira oestrupij
HOOOHOHOWHOWHOOWHONOOHOHOOOW+OWOOMHMM	Planktoniella sol
	Thalassiosira lineata
	Thalassiosira leptopus
0000000000000000000000000000000040 OH	Thalassiosira leptopus var. 1
	Coscinodiscus nodulifer
$000000001 N 0000010000+0010000000100000$	Coscinodiscus marginatus
	Coscinodiscus radiatus
	Roperia tesselata
	Bacteriastrum
	Skeletonema costatum
	Nitzschia bicapitata
	Thalassiosira punctifera
	Actinoptychus senarius
	Actinoptychus splendens
	Rhizosolenia alata
	Rhizosolenia bergonii
	Rhizosolenia styliformis
	Rhizosolenia calcar-avis
	Cyclotella striata

BAU79 E-9
$0.0 \cdots 2.5$
$2.5-5.0$
$5.0-7.5$
$7.5-10.0$
10.0-12.5
12.5-15.0
$15.0-17.5$ $17.5-20.0$ $20.0-22$.
$22.5-25.0$
$25.0-27.5$
$27.5 \cdots 30.0$
$30.0-32.5$
32.335 .0
$35.0-37.5$
$37.5-40.0$
$42.5 \cdots 45.0$
45.0-47.5
$47.5-50.0$
$50.0-52.5$
$52.5-55.0$
55.0-57.5
$57.5-60.0$
$60.0 \cdots 62.5$
$62.5-65.0$
$65.0-67.5$
$67.5-70.0$
70.0-72.5
$72.5-75.0$
$75.0-77.5$
$77.5-80.0$
80.0‥82.5
$82.5-85.0$
$85.0-87.5$
$85.0-87.5$
$67.5-90.0$
$70.0-92.5$

HAsarabas avoavoitomururroonn	Cyclotella stylorum
	Thalassiothrix longissima
	Thalassiothrix mediterranea
- 	Pseudoeunotia doliolus
	Thalassionema nitzschioides
	Tha lassionema nitzschioides var. parva
	Thalassionema nitzschioides var. parva 1
	Thalassiothrix pseudonitzschioides
	Thalassionema/Thalassiothrix fragments
OOOOOHOOHOOOOOOHOWOOOHHWHOHOHOOHWOOHO	Actinocyclus octonarius
	Actinocyclus subtilis
00000000000000000000000000000000 Hr	Amphora spp.
	Asteromphalus arachne
NWOHFOOOOOWOHOORHNOWOHOOWHOOOHOOHWHWO	Asteromphalus flabellatus
00000000000000000000000000000000010	Asteromphalus heptactis
000000000000000000000000000000000	Asteromphalus petersonii
00000000100000100010000000000000000	Biddulphia longicruris
	Biddulphia regia
000000000000000000000000000000000	Biddulphia rhombus
0000000000100000000000000000000000	Cocconeis spp
	Cyclotella caspia
0000000000000000000100000000000000100	Chaetoceros spp vegetative cells
Or00000000000000000000000000000-000000	Coscinodiscus africanus
	Coscinodiscus argus
	oscinodiscus asteromphalus

GAU79 E-9
$0.0-2.5$
2.5-5. 0
5.0-7.5
$7.5-10.0$
$10.0-12.5$ $12.5-15.0$ 15. 0-17.5 $17.5-20.0$
$20.0 \cdots 22.5$ $20.0-22.5$
22.525 .0 $25+0-27.5$ 27.5-30.0 $30.0-32.5$
$32.5-35.0$ 32.5 .53 .0
$35.0-37.5$ 37.5 .40 .0 40.0-42.5 $42.5-45.0$
$45.0-47.5$ $45.0-47.5$
$47.5-50.0$ $50.0-52.5$ 52.5-55.0 55.0-57.5 $57.5-60.0$
$60.0-62.5$ $60.0-62.5$
$62.5-65.0$ $65.0-67.5$ 67.5-70.0 70.0-72.5 $72.5-75.0$ $75.0-77.5$ $77.5-80.0$
$80.0-82.5$ $30.0-82.5$
$82.5-85.0$ 85.0 .87 .5
$87.5-90.0$ 87.590 .0
0000000000100000000000000010000000000 Coscinodiscus centralis 0000000000000000000000000000000000000 Coscinodiscus granil

 0000000000000000000000000000000000000 Coscinodiscus symbolophorus
 0000000000000000000000000000000000000 Coscinodiscus thorlil
 0000000000000000000000000000000000000 Glyphodesmis sp. 1 0000000000000000000000000000000000000 Grampatophora spp
 0000000000000000000000000000000000000 Hemiaulus sinensis 0000000000000000000000000000000000000 Hemiaulus longicornis ('ds untusepoytl7 0-10000000000000000000000000000000000000

 0000000000000000000001000000010000000 Navjcula sp. 3 - dS ELIJIARN 0000000000N1000000000000000000000000000 00000000000000000000000000000000 0 000000 Navicula nummlaria

0000000010000000010001 0000000000000000 Nitzschia sicula

$$
\begin{aligned}
& \text { RAU79 E-9 } \\
& 0.0-2.5 \\
& 2.5-5.0 \\
& 5.0-7.5 \\
& 7.5-10.0 \\
& 10.0-12.5 \\
& 12.5-15.0 \\
& 15.0-17.5 \\
& 17.5-20.0 \\
& 20.0-22.5 \\
& 22.5-25.0 \\
& 25.0-27.5 \\
& 27.5-30.0 \\
& 30.0-32.5 \\
& 32.5 .35 .0 \\
& 35.0-37.5 \\
& 37.5-40.0 \\
& 40.0-42.5 \\
& 42.5-45.0 \\
& 45.0-47.5 \\
& 47.5-50.0 \\
& 50.0-52.5 \\
& 52.5-55.0 \\
& 55.0-57.5 \\
& 57.5-60.0 \\
& 60.0-62.5 \\
& 62.5-65.0 \\
& 65.0-67.5 \\
& 67.5-70.0 \\
& 70.0-72.5 \\
& 72.5-75.0 \\
& 75.0-77.5 \\
& 77.5-80.0 \\
& 80.0-82.5 \\
& 82.5-85.0 \\
& 85.0-87.5 \\
& 27.5-90.0 \\
& 90.0-92.5
\end{aligned}
$$

	Odontella aurita
	Paralia sulcata
000000100000000000000000000000000100	Pleurosigma sp. 1
WOOOHOHONOOOOOOHNOOOWHHNH0000000000130	Stephanopyxis turris
000000000000100000000000000000000	Surirella fastuosa
000000000000000000000000000000000000	Synedra sp. 1
00010НOH000000000000000000000000НトO N	Synedra indica
00000000000000000000000000000000000	Thalassiosira anguste-lineata
0000000000000000000000000000000 WONOO	Thalassiosira gravida
	Thalassiosira pacifica
$0000000000 \omega 000 \% 000010000000010000000 \mathrm{H}$	Thalassiosira plicata
OOOMOHOOOOOOOHOHHOOONOHOOOOOOOOHHNOHO	Thalassiosira simonsenii
000000000000000000000000000 H	Thalassiosira spinosa
	Thalassiosira tenera
000000000000010000010000000000000000	Thalassiosira sp. 2
	Thalassiosira sp. 4
000000000000000000000000000000000	Thalassiosira sp. 5
0000000000000000001011000000000000000	Thalassiosira sp. 6
0000000000000000000000000000000	Thalassiothrix vanhoeffenii
0000000000000000000000000000000000	Trachyneis aspera
	Triceratum spp
$000000000000014 N 000010000000000000000$	Biddulphia dubia

BA以プ E－10
2．5．5．0
$5.0 \cdots 7.5$
$7.5-10.0$
$10.0 \cdots 12.5$
12.515 .0 $12.5 \cdots 15.0$
$15.0-17.5$ 17.520 .0 $20.0-22.5$ $22.5-25.0$
$25.0-27.5$ 27.530 .0 $30.0 \cdots 32.5$
$32.5-35.0$ $32.5-35.0$
$35.0-37.5$
$37.5-40.0$
$40.0-42.5$
$40.0-42.5$
$42.5-45.0$
$45.0-47.5$
$47.5 \cdots 50.0$
$50.5 \cdots 5.0$
$52.5-55.0$
$55.0-57.5$
$57.5-60.0$
$60.0-62.5$
$62.5-65.0$
$65.0-67.5$ $67.5 \cdots 70.0$ $70.0-72.5$ $72.5-75.0$
75．0－77．5
$77.5 \cdots 0.0$
80.0 .02 .5
22．5－85．0
$85.0-57.5$
37．5－90．0
70．0－92．5

 Rhizosolenia alata Rhizosolenia bergonii Rhizosolenia styliformis
以

BAV79 E-10

Thalassiothrix longissima

JOHOWANMHWOHOAVWHOONOMOHNHOOHFOHOOHO Thalassionema nitzschioides var. parva

 OOOHMOOOOOHWHOHMHOOHHMOOOOHOOHOOOOMH Actinocyclus octonarius $00000000000000000000000000000 \mathrm{HH} \mathrm{H}=000$ Actinocyclus subtilis 000000000000000000000000000000000000 Amphora spp. OHOONOOH-OOOOHOOOONOHOOHOOHOOOOOOFMH Asteromphalus arachne Asteromphalus flabellatus Asteromphalus heptactis f!uossəzzed snleyduoizasy Biddulphia longicruris Biddulphia regia 0000000000000 HOOOHOOH HH 00000000000 H O Biddulphia rhombus Cocconeis spp Cyclotella caspia
Chaetoceros spp vegetative cells Coscinodiscus africanus
Coscinodiscus argus
Coscinodiscus asteromphalus

EAUT9 E-10 2.5-5.0 - 0 - 7.0 $5.0-7.5$
7.510 .0 10.0-12.5 12.5-15.0 15.0-17.5 $17.5-20.0$ 20.0-22.5 $22.5-25.0$ $25.0-27.5$
27.5
30.0 $27.5-30.0$
$30.0-32.5$ $32.5-35.0$
$35.0-37.5$ $35.0-37.5$
$37.5-40.0$ 40.0-42.5 $42.5-45.0$ $45.0-47.5$
$47.5-50.0$ $47.5-50.0$
$50.0 \cdots 52.5$ $52.0-55.0$ $55.0-57.5$
$57.5-60.0$ $60.0-62.5$ 62.5-65.0 65.0-67.5 67.5-70.0 70.0-72.5 $72.5-75.0$ 75.0-77.5 $77.5-180.0$ 80.0-82.5 82.5-85.0 $85.0-87.5$
$87.5-90.0$ $87.5-90.0$
$90.0-92.5$

 0000000000000000000000000000000000000 Glyphodesmis sp. 1

 $00000000000000001 \sim \mapsto 0000000000 \sim 100 \sim \mapsto 0$ Hemiaulus sinensis

 01000000000000000000000000000000 Nitzschia interrupt

○юю○○юN0000000000000ゥ00100000000000r Nitzschia sicula
BAV79 E-10
$2.5-5.0$

Appendix II: Ecological Data
The following table represents a list of those diatom species identified in the sediments of the Gulf of California for the purposes of this study for which ecological data could be derived from the literature. The ecological data is based primarily on studies from the Pacific Ocean. Numbers in parentheses refer to the list of source references following the table. The designations are those terms used by the original authors. Because of the variety of classification schemes used, an attempt to present a standard nomenclature would give a false sense of consistency to the various studies. It should be noted that in some cases (e.g. Kozlova and Muhina (1967), and Jousé et al. (1971)) the same terms are used in classifying assemblages where the corresponding geographic boundaries are similar, but not precisely the same. Also, due to the numerous revisions in diatom taxonomy, particularly since the advent of SEM techniques, some caution should be used in applying taxonomy as used in older works to present day studies. Guillard and Kilham (1977) summarize the ecological results of a number of Pacific phytoplankton studies cited here. The ecological information of Gersonde (1980) represents a summary of the available literature on those species, and includes many studies in non-Pacific waters. Actinocyclus curvatulus - oceanic; N. boreal (1); transitional (S. of Subartic Front) (4); cold water (3)
A. Octonarius - meroplanktic, cosmopolitan in mid and low
latitudes and in turbulent near-shore waters (11,22); polyhalobous; mesoeuryhaline (22)
A. subtilis - Equatorial Pacific (2,7) - mainly upwelling enriched (7); warm (3); Gulf of Panama - especially during strong upwelling (9); transitional - south of Subarctic Front (10); N. Pacific and S. Equatorial Current (14); temperate; not common off southern California (23)
Actinoptychus senarius - meroplanktic, cosmopolitan in mid and low latitudes in near-shore turbulent waters (11); neritic (l2, 22, 23); polyhalobus, meioeuryhaline, cosmopolitan (22); not common off southern California (23)

Actinoptychus splendens - neritic (12); benthic, polyhalobous, cosmopolitan (22)
Asteromphalus arachne - Equatorial Pacific - eutrophic (8); central Pacific (10)
A. flabellatus - Equatorial Pacific - eutrophic (8); Gulf
A. heptactis - Equatorial Pacific (8, 17) - eutrophic (8); subarctic (10); oceanic; temperate; occasionally found in large numbers off California but usually not numerous (23)
A. petersonii - Equatorial Pacific - eutrophic (8)

Biddulphia dubia - neritic; warm waters; subtropical to tropical; reported only occasionally off southern California (23)
B. longicruris - coastal (10); neritic; temperate to subtropical - more abundant in warmer waters (23)
B. regia - benthic; polyhalobous; (?) cosmopolitan (22)
B. rhombus - neritic; north temperate; rare off California

Chaetoceros spp. - Equatorial Pacific - eutrophic indicator (8); Gulf of Panama (9); continental margin (11); neritic (12)
Chaetoceros spores - cold, high productivity water (4); seaward edge of nutrient - replete upwelled waters (11); nutrient-replete successional stage in euphotic zone (5)
Coscinodiscus africanus - Equatorial Pacific (2, 15,16); warm water (3)
C. argus - planktic (?meroplanktic; neritic); polyhalobous; euryhaline; cosmopolitan (22)
C. asteromphalus - inner shelf (12); south Boreal (16); planktic; polyhalobous; meioeuryhaline; cosmopolitan (22)
C. centralis - planktic; polyhalobous; cosmopolitan (22); temperate or north temperate (23)
C. Curvatulus - subArctic Front (4); north Boreal (15); (?) meroplanktic (22); neritic (22,23); polyhalobous (22); cosmopolitan (24)-but more abundant in colder water (22); low abundance in Pacific to California (23)
C. granii - planktic; (?)meroplanktic, neritic (22, 23), polyhalobous; meio-to mesoeuryhaline, cosmopolitan (22); Gulf of Panama - upwelling (9); not uncommon off California (23); north temperate or boreal (23)
C. marginatus - planktic; polyhalobous (22); oceanic; north Boreal (1, 15); cold (3, 22); SubArctic (4, 10, 22); Gulf of Panama - low during all seasons (9); not common off California (23)
C. nodulifer - planktic; polyhalobous (22); Equatorial Pacific ($2,16,17$) - mainly upwelling enriched (7); tropical (1, 15, 22); warm $(3,22)$; central Pacific (10); subtropical (10); oceanic (11, 12)
C. obscurus - planktic, polyhalobous; cosmopolitan (22)
C. perforatus - planktic; polyhalobous (22); south Boreal (1); warm (3, 22); inner shelf, meroplanktic (12); mainly coastal (7); Gulf of Panama - upwelling (9)
C. radiatus - planktic (?meroplanktic, neritic); polyhalobous; euryhaline; cosmopolitan $(22,23)$; equatorial $(2,17)$; subtropical $(1,15)$; south Boreal $(1,5,16)$; tropical oceanic (11)
C. stellaris - planktic, polyhalobous, cosmopolitan; mainly temperate $(22,23)$; Sea of Okhotsk - extremely cold winters, incomplete summer mixing (4); transitional (south of Subarctic Front) (10); rare off California (23)
C. $\frac{\text { symbolophorus }}{(22)}$ - planktic; polyhalobous; mainly temperate C. tabularis - oceanic; south Boreal (1); subarctic (10)

Cyclotella caspia - Gulf of Panama - strong to mild upwelling (9)
Cyclotella striata - planktic (2), mesohalobous (22); sublittoral; north Boreal (1); meroplanktic, cosmopolitan in mid to low latitudes and in turbulent nearshore waters (11)
Cyclotella stylorum - planktic; (?)mesohalobous (22); meroplanktic; cosmopolitan in mid to low latitudes and in turbulent near-shore waters (11)
Diploneis smithii - benthic; polyhalobous, pleioeuryhaline, cosmopolitan (22)

Hemidiscus cuneiformis - planktic; polyhalobous (22); warm water $(3,22) ;$ oceanic (1, 12, 15, 23); Equatorial Pacific (2, 16, 17) - eutrophic indicator (8); tropical (1, 15); central Pacific (10); transitional south of Subarctic Front (10); subtropical; reported rarely off southern California (23)

Hemiaulus longicornis - planktic; polyhalobous (22); neritic; south temperate or subtropical; fairly common but never abundant off southern California and southward (23)
Hemiaulus sinensis - planktic; polyhalobous (22)
Lithodesmium undulatum - (?)meroplanktic; polyhalobous; oligo - to meioeuryhaline, cosmopolitan (22); neritic; south temperate; not uncommon off southern California (23)

Navicula nummularia - benthic (2, 22); polyhalobous (22)
Nitzschia bicapitata - planktic; polyhalobous; cosmopolitan; (?) warm water (22); Equatorial Pacific - mainly upwelling enriched (7); subtropical (15, 16); central Pacific (10); N. Pacific and south Equatorial Current (14); subarctic (10)
N. interruptestriata - planktic; polyhalobous; warm water (tropical (22)/subtropical (5, 22))
N. marina - planktonic; polyhalobous (22); warm water (3, 22); Equatorial Pacific (2, 16) - mainly upwelling enriched (7); tropical (1, 15); oceanic (11)
N. sicula - Equatorial Pacific - mainly upwelling enriched (7); subtropical (15, 16); central Pacific (10); north Pacific and south Equatorial Current (14)
Paralia sulcata - coastal (11); neritic (1, 22); north Boreal (1); meroplanktic; polyhalobous; mesoeuryhaline; cosmopolitan (22)

Planktoniella sol - Equatorial Pacific (7, 16, 17, 18) eutrophic indicator (7, 8); south Equatorial Current (14); tropical (1, 15, 23); warm (3); Gulf of Panamamild upwelling (9); subtropical; not uncommon off southern California (23)

Pseudoeunotia doliolus - Equatorial Pacific (2, 17) eutrophic indicator (7, 8) ; warm water (3, 23); tropical, oceanic (1, 11); south Equatorial Current (14); subtropical (1, 15, 16); subtropical/ California Current; Subarctic Front (4); subarctic; transitional (10)

Rhizosolenia alata - planktic; polyhalobous; meio-to mesoeuryhaline, cosmopolitan (22); Equatorial Pacific - mainly oligotrophic (7); south Equatorial Current and north Pacific (14); subarctic (10); Gulf of Panama - especially during strong upwelling (9); oceanic; often coastal; temperate; common off California and north to Alaska (23)
R. bergonii - planktic; polyhalobous (22); Equatorial Pacific (2, 7, 16, 17) - eutrophic indicator (8); warm water (3, 22,23), tropical oceanic (1, 11, 15, 22); south Equatorial Current (14); central Pacific (10); subtropical (22); Gulf of Panama - mild upwelling (9)
R. calcar-avis - planktic; polyhalobous; euryhaline; warm water; tropical/temperate (22); Equatorial Pacific mainly oligotrophic (7); central Pacific (10); Gulf of Panama - mild upwelling (9)
R. styliformis - planktic; polyhalobous; meioeuryhaline (22); cosmopolitan (7, 10, 22); Equatorial Pacific mainly oligotrophic (7); south Equatorial Current (14); central Pacific (10); south Boreal (16); Gulf of Panama - mild upwelling (9); oceanic; north temperate; common off California - sometimes fairly numerous (23)

Roperia tessalata - Equatorial Pacific (2, 7); warm water (3) ; tropical oceanic (1, 11, l2); subtropical (15, 16) ; central Pacific (10); transitional (south of Subarctic Front) (10); south Boreal (l)

Skeletonema costatum - Gulf of Panama (9); coastal (10); Peru upper slope - upwelling (11, 19); neritic; cosmopolitan (23)

Stephanopyxis turris - meroplanktic; (neritic); polyhalobous, oligoeuryhaline; cosmopolitan - mainly subtropical to temperate (22); Gulf of Panama - mild to
strong upwelling (9)
Surirella fastuosa - occasional in plankton off southern and Lower California (23)

Synedra indica - planktic, polyhalobous (22)
Thalassionema nitzschioides - planktic (?meroplanktic), polyhalobous, ?pleio to meioeuryhaline (22), cosmopolitan (10) - but more often in cold water (22); neritic (1, 10, 23); continental margin (11); Equatorial Pacific - mainly upwelling enriched (7); Gulf of Panama - mild to strong upwelling (9); subtropical (15, 16); Boreal (1); subtropical/California Current (4); North Pacific and south Equatorial Current (14); Subarctic Front (4, 10); off California and from Alaska to the Gulf of California (23)
T. nitzschioides var. parva - planktic, polyhalobous, ?euryhaline, warm water (22); tropical oceanic (11); Equatorial Pacific - mainly upwelling enriched (7)
T. eccentrica - planktic; polyhalobous; ?euryhaline (22); continental margin (11); neritic (12); Equatorial (17); south Equatorial Current (14); central Pacific; transitional; subarctic (10); north Boreal (1, 15); cold (3); cosmopolitan (2) - mainly coastal (20); common by never abundant off California (23)
T. gravida - neritic (1, 15, 23); arcto-boreal (1, 15); cold water (3); northern; never common off California (23); spores = cold, high productivity water (4)
T. leptopus - planktic; polyhalobous; ?euryhaline; warm water (22); cosmopolitan (2); warm to temperate $\left(0^{\circ}-\right.$ $40^{\circ} \mathrm{C}$ at least, in culture) (21); chiefly oceanic but frequently neritic; reported occasionally off California (23)
T. lineata - planktic; polyhalobous (22); Equatorial (2) mainly upwelling enriched (7); warm water (3, 22); tropical to subtropical (1, 15, 16, 21, 22); Gulf of Panama - especially mild to strong upwelling (9)
T. oestrupii - planktic; polyhalobous; tropical (11, 15); subtropical (1, 16); subtropical/California Current (4); Subarctic Front (4); cosmopolitan (13, 22); oceanic (11, 13); occasionally coastal (13)
T. $\frac{\text { symmetrica }}{\text { culture })}$ (20) cosmopolitan $\left(6.5^{\circ}-28.5^{\circ} \mathrm{C}\right.$ at least, in
T. tenera - cosmopolitan, preferably coastal (21)

Thalassiothrix longissima - north Boreal (5); subarctic (10); planktic; polyhalobous (22); arctic-boreal to north temperate; present in low abundance - Gulf of California to Alaska (23)
T. mediterranea - Gulf of Panama - mild to no upwelling (9); temperate to south temperate; present - sometimes in moderately large numbers, off southern California and in Gulf of California (23)

Trachyneis aspera - benthic; polyhalobous; meioeuryhaline; cosmopolitan (22)

Triceratum - mostly benthic genus (1)
(1) Russian studies (Semina, 1958; Jousé, 1962, 1963; Jousé et al., 1962) as summarized in Kanaya and Koizumi (1966)
(2) Kolbe (1954)
(3) Kanaya and Koizumi (1966)
(4) Sancetta (1979)
(5) Guillard and Kilham (1977)
(6) Kozlova and Muhina (1967)
(7) Belyaeva $(1970,1971,1972)$
(8) Desrosieres (1969)
(9) Smayda (1963, 1966)
(10) Venrick (1971)
(11) Schuette and Schrader (1979)
(12) Schuette and Schrader (1981)
(13) Fryxell and Hasle (1980)
(14) Hasle (1959)
(15) Jousé et al. (1971)
(16) Muhina (1971)
(17) Pavillard (1935)
(18) Rampi (1952)
(19) DeVries and Schrader (1981)
(20) Fryxell and Hasle (1972)
(21) Hasle and Fryxell (1977)
(22) Gersonde (1980)
(23) Cupp (1943)

