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ABSTRACT

Previously unaddressed aspects of how equatorial currents affect long Rossby wave phase speeds are in-

vestigated using solutions of the shallow-water equations linearized about quasi-realistic currents. Modifi-

cation of the background potential vorticity (PV) gradient by curvature in the narrow equatorial currents is

shown to play a role comparable to the Doppler shift emphasized by previous authors. The important vari-

ables are the meridional projections of mean-current features onto relevant aspects of the wave field. As

previously shown, Doppler shifting of long Rossby waves is determined by the projection of the mean currents

onto the wave’s squared zonal-velocity and pressure fields. PV-gradient modification matters only to the

extent that it projects onto the wave field’s squared meridional velocity.

Because the zeros of an equatorial wave’s meridional velocity are staggered relative to those of the zonal

velocity and pressure, and because the meridional scales of the equatorial currents are similar to those of the

low-mode Rossby waves, different parts of the current system dominate the advective and PV-gradient

modification effects on a single mode. Since the equatorial symmetry of classical equatorial waves alternates

between symmetric and antisymmetric with increasing meridional mode number, the currents produce op-

posite effects on adjacent modes. Meridional mode 1 is slowed primarily by a combination of eastward ad-

vection by the Equatorial Undercurrent (EUC) and the PV-gradient decrease at the peaks of the South

Equatorial Current (SEC). The mode-2 phase speed, in contrast, is increased primarily by a combination of

westward advection by the SEC and the PV-gradient increase at the core of the EUC.

Perturbation solutions are carried to second order in �, the Rossby number of the mean current, and it is

shown that this is necessary to capture the full effect of quasi-realistic current systems, which are asymmetric

about the equator. Equatorially symmetric components of the current system affect the phase speed at O(�),

but antisymmetric components of the currents and distortions of the wave structures by the currents do not

influence the phase speed until O(�2).

1. Introduction

The classical theory of equatorial waves in a rest-state

ocean is well developed (Matsuno 1966; Moore and

Philander 1977), but the strong zonal currents typical of

the equatorial oceans are known to affect both the me-

ridional structures and the dispersion relations of these

waves. A number of studies have sought to characterize

and explain these effects and they are summarized nicely

by McPhaden and Ripa (1990). Three theoretical works in

particular have illuminated the influence of mean equa-

torial currents on stable long Rossby waves, our primary

concern in this paper. Philander (1979) analyzed the effect

of an equatorially symmetric eastward jet [mimicking the

Equatorial Undercurrent (EUC)] on the lowest merid-

ional mode in a 1½-layer model. While noting the limi-

tations of this model due to the mismatch between the

vertical scales of baroclinic modes and that of the Equa-

torial Undercurrent, he demonstrated that valuable in-

formation about the real ocean could nevertheless be

deduced from this approach. Philander showed that the

westward phase speed of the meridional-mode-1 Rossby

wave was slowed and the peaks in the pressure eigen-

function were shifted poleward by the presence of his

idealized undercurrent.

Ripa and Marinone (1983) solved a perturbation

problem for 1½-layer linearized waves in the presence of

an equatorially symmetric zonal jet with either eastward

or westward velocity. They showed the modified ei-

genfunctions for the meridional-mode-2 long Rossby

wave and the modified dispersion relations for the low-

est four meridional-mode Rossby waves. The westward

phase speeds of meridional modes 1, 3, and 4 were shown
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to be faster in the presence of the westward jet than in

the presence of the eastward jet, in accordance with the

expected Doppler effect. It was less clear whether either

jet had any effect on the mode-2 phase speed in the long

Rossby wave range. Besides the Doppler shift, Ripa and

Marinone demonstrated the effect of the background

layer thickness deviations on the speed of inertia–gravity

waves. They did not, however, address any additional

phase-speed-altering mechanisms in the case of long

Rossby waves. An important point that their analysis

brought out was that the Doppler shift and the effect of

varying background layer thickness depend not just on

the magnitude of the background fields but on how these

project onto the appropriate eigenfunctions—a point that

will play a prominent role in our analysis. The peaks of

the mode-2 Rossby wave eigenfunctions in the solutions

of Ripa and Marinone (1983) were shifted equatorward

in the presence of the westward jet and poleward in the

presence of the eastward jet, in agreement with the mode-1

distortion found by Philander (1979).

Proehl (1990) included both the meridional and ver-

tical structure of equatorial currents in his study of their

influence on meridional-mode-1 long Rossby waves via

WKB solutions, a perturbation expansion, and direct nu-

merical integrations. Using an equatorially symmetric, but

otherwise realistic, profile of the Equatorial Undercurrent

and overlying South Equatorial Current (SEC), he solved

the linearized equations to determine the effects on the

lowest few vertical modes. Although distortions of the

higher vertical modes were significant, the near-surface

changes to the first baroclinic mode were quite similar to

those produced by the 1½-layer calculations of Philander

(1979). The main effect on the pressure eigenfunction was

the poleward migration of the peaks above the under-

current and a decrease in the wave amplitude below the

undercurrent.

In his perturbation solution, Proehl (1990) noted that

the Doppler shift is determined by the projection of the

mean current onto the squared eigenfunction of zonal ve-

locity or pressure. He also described an additional phase-

speed-altering mechanism as ‘‘the projection of the

advection of background momentum and density fields

by the meridional circulation of the O(�) wave field (y0,

w0), upon the wave structures.’’ We will show that this

is a reasonable qualitative description of the solution’s

mathematical form but it does not provide useful physical

insight into the phase-speed modification.

Surprisingly, none of the aforementioned papers (in-

cluding the review by McPhaden and Ripa 1990) ad-

dressed the impact of the mean current on the ambient

potential vorticity (PV) gradient, although this effect is

known to be important in the phase-speed modification

of midlatitude Rossby waves (e.g., Pedlosky 1987, section

3.18). Chang and Philander (1989) used a semigeostrophic,

1½-layer model to analyze midlatitude Rossby wave rays

propagating toward the equatorial zone. They noted that

their formulation was not valid in the immediate vicinity of

the equator (within 28–38 of latitude), but their analysis

showed the local importance at low latitudes of an ‘‘ef-

fective beta’’ and an ‘‘effective radius of deformation,’’

each of which is modified from the rest-state equivalent

by shear in the background current and changes in the

background layer thickness. Zheng et al. (1994) included

the mean-current curvature (i.e., the relative vorticity gra-

dient of the mean current) in a quasigeostrophic model, in

an attempt to predict the phase speeds of near-equatorial

Rossby waves. Although neither of the above formula-

tions can be used directly to infer the changes in normal

modes that span the equator, they provide an impetus for

revisiting the analyses of Ripa and Marinone (1983) and

Proehl (1990) with an eye toward extracting more physical

insight into phase-speed-modifying mechanisms of the

equatorial current system.

Chelton et al. (2003, hereafter C03) numerically

solved the 1½-layer equations linearized about zonally

and temporally uniform equatorial currents with quasi-

realistic meridional profiles to determine the mean-flow-

modified eigenfunctions and dispersion relation for the

first-meridional-mode, annual long Rossby wave: equiv-

alent to the approach of Philander (1979) but with more

realistic current profiles. This was done at numerous lon-

gitudinal locations across the Pacific using upper-layer

currents obtained by averaging the mean-zonal-current

ADCP transects of Johnson et al. (2002) over the upper

250 m. The vertically averaged current systems contain

recognizable representations of the eastward-flowing EUC

and North Equatorial Countercurrent (NECC) and of

the southern (SECS) and northern (SECN) branches of

the westward-flowing SEC.

While acknowledging the shortcomings of the 1½-

layer approach and the assumption of zonal uniformity,

C03 showed that the theoretical pressure eigenfunctions

thus derived bear a strong resemblance to the corre-

sponding first empirical orthogonal functions (EOFs) of

the altimetrically observed quasi-annual sea surface height

(SSH) anomalies between 1558 and 1108W in the east-

central equatorial Pacific. In their solutions, the mean-

current modifications at 1408W include a slowing of the

phase speed by ;15% and a distortion of the classical,

twin-peaked pressure eigenfunction (symmetric about the

equator) such that the amplitude of the distorted wave’s

northern extremum is roughly twice that of the southern

extremum. The mean currents, EOFs and theoretical

wave modifications at 1408W were found to be typical

of the equatorial Pacific between 1558 and 1108W. Far-

ther west, where the current system weakens, the match
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between theoretical eigenfunctions and EOFs was not

as good. C03 thus highlight both the advantages and the

limitations of comparing eigenmode calculations based

on the uniform-current assumption with observations in

a current system that can change on scales smaller than

a wavelength.

The goal of this paper is to illuminate the physical

mechanisms by which the equatorial current system al-

ters the phase speeds of long Rossby waves. We will focus

on the effects of quasi-realistic, equatorial Pacific cur-

rents on the lowest two meridional modes in a 1½-layer

format. Higher modes are stable in the 1½-layer model,

but their slower phase speeds are probably exceeded by

parts of the SEC in its full vertical profile: critical sur-

faces and wave absorption are likely in the real ocean.

The modified phase speeds of modes 1 and 2, however,

appear fast enough that these modes can exist as stable

waves. Two meridional profiles of zonal currents will be

utilized, based on C03’s upper-layer currents at 1408 and

1708W. The former represent the most robust mean

currents found in the equatorial oceans, and the latter

represent a transition zone between the central Pacific

currents and the weaker currents of the western Pacific.

As noted by C03, the effect of the latter currents on the

long Rossby waves is qualitatively different than the ef-

fect of the former.

The first interesting result of our investigation is that

the second meridional mode can be modified in a way

that appears to be exactly opposite to the modifications

of mode 1. In contrast to the effects on mode 1, de-

scribed above (and in C03), we show here that the 1408W

currents increase the phase speed of mode 2 and distort

its SSH structure (antisymmetric in the classical solu-

tion) so that the southern extremum is roughly twice as

large as the northern one. At 1708W, the mean currents do

not produce a significant asymmetry in the eigenfunctions

of mode 2 (as with the C03 results for mode 1), but the

effect on the dispersion relations of the two modes is still

quite different. Although mode 1 is slowed significantly

at 1708W, the phase speed of mode 2 changes very little.

Clearly, the effect of the currents on the Rossby waves

cannot be encapsulated in a single, catch-all description,

and the bulk of this paper is dedicated to developing

a formalism by which we can analyze the effects of the

current-system components on long Rossby waves. We

then use the analysis to explain the reasons for the above-

noted differences in the effects of different current sys-

tems on a single mode and of a single current system on

different modes.

Our approach is a perturbation-expansion formula-

tion similar to those of McPhaden and Knox (1979),

Ripa and Marinone (1983), and Proehl (1990) but most

closely following the formalism of the second of these

studies. The wave currents are small compared to the

mean currents, and the Rossby number of the mean

currents is also small. The solutions are thus perturba-

tions on the classical Hermite function solutions for an

equatorial b-plane basin with no mean flow. The differ-

ences between our approach and that of Ripa and

Marinone (1983) are several. First, they examined the

effect of a single Gaussian jet, whereas we use the quasi-

realistic current systems of C03. Second, we extend our

linearized analysis to second order in the perturbation

parameter, which provides important insights that are

not available with only the lower order solution. Finally,

we recast the mathematical expressions for the perturba-

tion corrections to reflect the expected physical mecha-

nisms by which the mean currents affect Rossby wave

speeds: advection, modification of the background PV

gradient, and modification of the local deformation radius.

The various expressions are then evaluated numerically

and analyzed graphically for an enhanced understand-

ing of the dynamics that contribute to the wave speed

modifications.

Most of our solutions are calculated at the annual

period but are representative of the entire long Rossby

wave domain for both meridional modes, that is, all wave

periods intraseasonal (;60 days) or longer. The only

noticeable change throughout this range is the ratio be-

tween the meridional-wave-velocity amplitude and that

of the zonal wave velocity, a ratio that decreases with

increasing period.

We do not consider zonal and temporal variability in

the background currents, and the 1½-layer approach of

course ignores the effects of vertical shear on the waves.

Care must therefore be taken in applying our results to the

real equatorial ocean where zonal currents have strong

vertical shears, annual and interannual variability, and

zonal scales shorter than the wavelengths of long Rossby

waves at all but perhaps the intraseasonal period (Johnson

et al. 2002).

There is, nevertheless, ample justification for our ap-

proach. Our knowledge of oceanic dynamics has often

been built on idealized analytical models that do not

fully represent the real ocean but can identify basic

physical mechanisms in ways that observations or com-

plex numerical models cannot. Fortunately, the insights

gained often have proven useful well outside the strict

validity range of the models. As previously noted, for

instance, the 1½-layer model can capture the essence of

changes to the near-surface pressure field of the first-

baroclinic-mode, first-meridional-mode long Rossby wave

found in the calculations of Proehl (1990) involving quasi-

realistic vertical as well as meridional shear. We are mo-

tivated by the fact that the effect of strong meridional

shear on oceanic, equatorial Rossby modes has yet to be
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described in terms of modifications to the ambient PV

field. In this paper, we begin to fill this gap with physical

understanding at the most basic level.

Section 2 presents the nondimensional equations with

which we will work and the background current profiles at

1408 and 1708W, which will be used in our analysis. In

addition, numerical eigenvalue solutions for modes 1 and

2 in the two different current systems will be shown to set

up the specific questions that we wish to answer with the

perturbation analysis. The perturbation problem is devel-

oped in section 3, and we present the solutions in section 4.

Section 5 contains an analysis of how the various aspects of

the mean current system contribute to dispersion-relation

modifications, and section 6 summarizes our results.

2. Equations and numerical solutions

a. Equations

Our mathematical framework is the nondimensional

shallow-water equations on the equatorial b plane,

›
t
~u 1 ~u � $~u 1 yk 3 ~u 1 $~h 5 0 (1)

and

›
t
~h 1 $ � [(1 1 ~h)~u] 5 0, (2)

which represent the dynamics of a 1½-layer model with

mean layer thickness H0 and reduced gravity g. The layer

thickness deviation ~h was normalized by H0 while the

vector velocity ~u (with zonal and meridional components

~u and ~y) was normalized by the Kelvin wave speed,

c 5
ffiffiffiffiffiffiffiffiffi
gH

0

p
. Zonal and meridional distances x and y

were normalized by the equatorial deformation radius

Le 5
ffiffiffiffiffiffiffi
c/b
p

, and time t was normalized by the equatorial

time scale Te 5 1/
ffiffiffiffiffiffi
bc
p

, where b is the meridional de-

rivative of the Coriolis parameter at the equator. We will

assume an equatorial deformation radius of 340 km (3.18

latitude), which corresponds to a Kelvin wave speed of

2.7 m s21, typical of the first baroclinic mode in the cen-

tral equatorial Pacific (Chelton et al. 1998). The corre-

sponding time scale is 1.5 days.

Consider a small-amplitude wave field superimposed

on a zonal current system that is independent of x and t,

~u

~y

~h

0@ 1A5 �

bU(y)

0cdH(y)

0B@
1CA1 m

û(x, y, t)

ŷ(x, y, t)

ĥ(x, y, t)

0@ 1A
264

375, (3)

where the variable terms on the right-hand side (rhs) are

O(1). The parameter � 5 max(jU
*
j)/c is the equatorial

Rossby number of the mean current (the asterisk sub-

script indicates a dimensional variable). The scale sep-

aration between the wave field and the mean-current

field is m, and we assume that m� � , 1.

The mean current is geostrophic:

y bU 1 cdH9 5 0, (4)

where the prime indicates a derivative with respect to y.

With this constraint, the equations are

›
t
�y ›

x
y ›

t
›

y
›

x
›

y
›

t

0@ 1A1 �

bU›
x

bU9 0

0 bU›
x

0cdH›
x

(cdH9 1 cdH›
y
) bU›

x

0B@
1CA1 O(�m)

264
375 û

ŷ

ĥ

0@ 1A5 0, (5)

where the O(�m) terms are the nonlinear wave–wave in-

teractions. Neglecting these small terms gives us a linear

system that we Fourier transform in x and t using the

convention

(û ŷ ĥ) 5

ð ð
[u(y) y(y) h(y)]ei(kx�st) dk ds. (6)

The zonal wavenumber k and frequency s have been

nondimensionalized by Le
21 and Te

21, respectively.

For a specific value of k, (5) becomes the linear ei-

genvalue problem:

(Lk � is 1 �N k)[u(y)y(y)h(y)]T
5 0, (7)

with boundedness conditions on 2‘ , y , ‘. The op-

erator (Lk 2 is) is the linear shallow-water operator,

and N k represents the linearized effects of the mean

current,

(Lk � is) 5

�is �y ik

y �is d
dy

ik d
dy

�is

0BBBB@
1CCCCA,

N k 5

ik bU bU9 0

0 ik bU 0

ikcdH cdH9 1 cdH d
dy

� �
ik bU

0BBB@
1CCCA. (8)
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Defining U 5 � bU and dH 5 �cdH, (7) is written in the

familiar form for the shallow-water equations linearized

about a mean zonal current,

�isu 1 ikUu� (y�U9)y 1 ikh 5 0, (9)

�isy 1 ikUy 1 yu 1 h9 5 0, (10)

and

�ish 1 ikUh 1 (1 1 dH)iku 1 [(1 1 dH)y]9 5 0. (11)

Equations (9)–(11) are discretized on a staggered grid

with a dimensional grid spacing of Le/10; all dependent

variables are constrained to vanish at 6208 latitude. The

matrix eigenvalue problem is then solved numerically

with k fixed and s being the eigenvalue.

b. Background currents

The mean upper-layer current structures that we will

use, along with the corresponding mean layer thickness

deviations, are displayed in Fig. 1. They are smoothed

and tapered versions of the currents used by C03 for 1408

(top panel) and 1708W (bottom panel). The structure at

1408W is typical of the equatorial Pacific mean currents

from 1558 to 1108W, and it is in this span where distor-

tions of the rest-state eigensolutions by the mean-flow

effects are maximal (C03). We include consideration of the

1708W currents because the distortions of the eigensolu-

tions are quite different at this longitude in spite of the

SECS, EUC, and NECC magnitudes being of the same

order as at 1408W. As noted by C03, the biggest differ-

ence between the two profiles is the absence of a SECN

at 1708W. Other differences that appear to have less of

an effect on the waves are the slight displacement of the

EUC core south of the equator at 1408W (in contrast to

the more equatorially symmetric EUC at 1708W) and

the more equatorward location of the NECC peak at

1708W relative to 1408W.

The deviation dH(y) can only be determined from (4)

to within an arbitrary constant, dependent on the lati-

tude where we assume the background layer thickness to

be equal to the rest-state thickness H0. We have chosen

for H0 the average layer thickness over the span of the

low-mode waves: jyj, 3 (’698 latitude). This is roughly

equivalent to determining the equatorial deformation

radius and time scale from the average hydrography over

the equatorial waveguide. An inspection of Fig. 1 shows

that choosing H0 at any specific latitude within about 28

of the equator would change its value by less than 6%,

corresponding to a difference of less than 3% in the value

of c and less than 2% in the value of Le. These differences

would be insignificant on the scale of the comparisons

that we will make between rest-state and mean-current-

modified waves.

c. Dispersion relations

The dispersion curves for both the classical rest-state

solutions and those modified by the two current systems

can be seen in Fig. 2. As noted in the introduction,

mode-1 long waves are slowed by both current systems,

whereas mode-2 long-wave speeds are increased at 1408W

and barely affected at 1708W. In addition to highlighting

the specific physical mechanisms involved, our perturba-

tion analysis will address the obvious questions posed by

this figure: why does a single current system affect the

two adjacent modes so differently and why do the two

mostly similar current systems affect a single mode so

differently?

d. Eigenfunctions

Although our primary focus in this paper is not the

eigenfunction distortions, we will see that they play a role

in the dispersion-relation modifications, and it is worth-

while to understand the qualitative nature of the distor-

tions. The numerical eigenfunction solutions also provide

a benchmark against which we can judge the adequacy of

the perturbation solutions.

The rest-state and 1408W distorted eigenfunctions at

the annual period appear in Fig. 3. Note that y is an order

FIG. 1. Equatorial zonal-current systems at (top) 1408 and (bot-

tom) 1708W from C03 (based on average ADCP transects of

Johnson et al. 2002).
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of magnitude smaller than u and h. Although the ratio of

jujmax to jyjmax increases with increasing wave period,

the relative structures seen in Fig. 3 remain virtually

unchanged for all periods intraseasonal and longer. The

previously discussed asymmetry in the h structure of

mode 1 at 1408W is clearly seen (cf. Fig. 20 of C03), with

the northern peak having roughly twice the amplitude of

the southern peak. The asymmetry introduced in the h

eigenfunction of mode 2 is complementary to that of

mode 1: the southern peak has roughly twice the am-

plitude of the northern peak. The peaks in the h struc-

ture of mode 1 at 1408W are shifted poleward from the

classical solutions by 18–28 of latitude, as noted by C03.

This is also true of the northern peak of mode 2, but the

southern peak is shifted slightly equatorward.

Figure 4 shows the rest-state and mean-current-modified

eigenfunctions at 1708W in the same format as Fig. 3. The

striking asymmetries seen at 1408W are not present at

1708W, with the most noticeable changes in the h ei-

genfunctions being the poleward shifts of the peaks and

the widening of the northern peak of mode 1.

3. Perturbation expansion

We seek to understand the current-modified solutions

as perturbations on the familiar rest-state solutions, so we

consider a weak mean current system, �� 1. Inspection

of Fig. 1 suggests that, in our full-strength current sce-

narios, we will be dealing with a value of � that is O(1021).

In (7) both s and the wave vector are expanded in

powers of the Rossby number,

s 5 �
p50

‘

s
p
�p, (u y h) 5 �

p50

‘

(u
p

y
p

h
p
)�p. (12)

At O(1) we have the rest-state equation:

(Lk � is
0
)(u

0
y

0
h

0
)T

5 0; (13)

at the higher orders:

Lk

u
p

y
p

h
p

0B@
1CA1N k

u
p�1

y
p�1

h
p�1

0B@
1CA� i �

q50

p

s
q

u
p�q

y
p�q

h
p�q

0B@
1CA5 0, p . 0.

(14)

The subscripts on the operators Lk and N k remind us

that the formulation is for a specific value of the zonal

wavenumber k.

We will expand (up yp hp) in the eigenvectors of the

O(1) rest-state problem, (13). While the separate orders of

the perturbation-expansion solutions are identified with

single subscripts, the eigenvalues and eigenfunctions of

(13) will be labeled with double subscripts,

s
mn

, (u
mn

y
mn

h
mn

), m 5�1, 0, 1, 2, � � � ; n 5 1, 2, 3,

(15)

to identify the three wave types and the infinite number

of meridional modes that are solutions to (13). These are

the classical equatorial b-plane solutions on the rest

state, which are based on Hermite functions (Moore and

Philander 1977). The first subscript, m, indicates the me-

ridional mode number. For m $ 1, a single zonal wave-

number is associated with three solutions to the frequency

equation, representing the inertia–gravity wave with east-

ward phase propagation (n 5 1), the Rossby wave (n 5 2)

and the inertia–gravity wave with westward phase prop-

agation (n 5 3). For m 5 0, the unbounded plane admits

only the Yanai (or mixed Rossby–gravity) wave solution

with eastward (n 5 1) or westward (n 5 3) phase prop-

agation. The eastward propagating Kelvin wave is iden-

tified by m 5 21, n 5 1 and is the only wave type associated

with this value of m. The m 5 21, n 5 2, 3 vectors and the

m 5 0, n 5 2 vector are identically zero. The combination

of all the above meridional modes and wave types forms

FIG. 2. Rossby wave dispersion curves for the lowest two me-

ridional modes at (top) 1408 and (bottom) 1708W. Solid curves

represent numerical solutions of shallow-water equations linear-

ized about the mean currents. Dashed curves are the classical

Hermite solutions for no mean flow. In each panel the top two

curves are mode-1 solutions, whereas the bottom two curves are

mode-2 solutions. Note the opposite effects of the current systems

on the phase speeds of the two adjacent meridional modes.
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a complete orthogonal basis (Ripa 1982) in which we can

expand the higher-order perturbation wave vectors. The

nonzero eigenvectors are normalized so thatð‘

�‘

dy u
mn

�� ��2 1 y
mn

�� ��2 1 h
mn

�� ��2 5 1. (16)

We emphasize some important properties of the Hermite

solution wave vectors. First, the zonal velocity and pres-

sure, umn and hmn, are 908 out of phase with the meridional

velocity ymn. We follow the usual convention and consider

ymn to be real, while umn and hmn are imaginary. Second,

for m $ 0, ymn is either symmetric or antisymmetric about

the equator, and both umn and hmn have the opposite

symmetry to ymn (note that y21,1 [ 0). Thus, the wave

vector (umn ymn hmn) can be assigned a single symmetry,

with the relative symmetries of the individual components

implied. We will use the symmetry of hmn to label the

symmetry of the wave vector. Third, the symmetry of

these classical wave vectors alternates with increasing

meridional-mode number: hmn is symmetric about the

equator when m is odd and antisymmetric about the

equator when m is even.

The O(1) solution is equated to a single Hermite

mode of unit amplitude:

s
0

5 s
MN

, (u
0

y
0

h
0
) 5 (u

MN
y

MN
h

MN
), (17)

FIG. 3. Long Rossby wave (top) h, (middle) u, and (bottom) y eigenfunctions at the annual

period: meridional (left) mode 1 and (right) mode 2. Solid curves represent numerical solutions

of shallow-water equations linearized about the currents at 1408W. Dashed curves are classical

solutions for no mean flow.
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where M and N are specific values of m and n identifying

the particular wave under consideration. The O(�p) wave

vector corrections are then expanded in the Hermite ei-

genvectors of (13),

(u
p

y
p

h
p
) 5 �

m,n
A( p)

mn (u
mn

y
mn

h
mn

). (18)

By changing the orders of the perturbation (12) and ei-

genvector (18) summations, we can show that

A
( p)
MN 5 0, p 6¼ 0; (19)

that is, the Hermite mode MN enters the solution only at

O(1). For a consistent formalism, (18) can also be ap-

plied at O(1), with

A(0)
mn 5

1, m 5 M and n 5 N

0, otherwise.

�
(20)

Employing the expansion (18) in (14), multiplying on

the left by the complex conjugate of a Hermite wave

vector (ust yst hst)*, and integrating over the domain, we

have for p . 0

s
p

5�i�
m,n

A( p�1)
mn

ð‘

�‘

(u
MN

y
MN

h
MN

)*N k

u
mn

y
mn

h
mn

0B@
1CAdy,

st 5 MN (21)

and

FIG. 4. As in Fig. 3 but for mean currents at 1708W.
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A
( p)
st 5

1

s
st
� s

MN

�
q51

p

s
q
A

( p�q)
st 1 i�

m,n
A( p�1)

mn

ð‘

�‘

(u
st

y
st

h
st

)*N k

u
mn

y
mn

h
mn

0@ 1Ady

24 35, st 6¼MN. (22)

We carry the expansion to O(�4) at 1408W to check on

the convergence of the perturbation series, but we at-

tempt to draw physical meaning only from O(�) and

O(�2), for which the expressions are

s
1

5�i

ð‘

�‘

(u
MN

y
MN

h
MN

)*N k

u
MN

y
MN

h
MN

0B@
1CAdy, (23)

A
(1)
st 5

i

s
st
� s

MN

ð‘

�‘

(u
st

y
st

h
st

)*N k

u
MN

y
MN

h
MN

0B@
1CAdy,

st 6¼MN, (24)

s
2

5�i�
m,n

A(1)
mn

ð‘

�‘

(u
MN

y
MN

h
MN

)*N k

u
mn

y
mn

h
mn

0B@
1CAdy,

(25)

and

A
(2)
st 5

1

s
st
� s

MN

s
1
A

(1)
st 1 i�

m,n
A(1)

mn

264

3

ð‘

�‘

(u
st

y
st

h
st

)*N k

u
mn

y
mn

h
mn

0B@
1CAdy

375, st 6¼MN.

(26)

The above expressions are general for all equatorial

waves. In principle, all wave types can contribute to the

modification of a particular eigenmode; indeed, all are

required for completeness of the basis. Nevertheless, the

inverse frequency difference that leads the expressions

for the expansion coefficients appears to limit the con-

tributions to modes of a similar wave type (a point also

made by Proehl 1990). In our long-Rossby-wave calcula-

tions, we find that the contributions to (18) of the inertia–

gravity modes (n 5 1, 3) are negligible.

Symmetry considerations

If bU (and consequently cdH) is symmetric about the

equator, then multiplying a Hermite basis vector of

a particular y symmetry byN k will produce a new vector

with the same symmetry. This is most easily seen by

considering the symmetric part of the background field,bUS 5 [ bU(y) 1 bU(2y)]/2 and cdHS 5 [cdH(y) 1 cdH(�y)]/2,

with the corresponding operator N kS 5 N k( bUS, cdHS)

and defining the product

a

b

c

0B@
1CA5N

kS

u
1

y�

h
1

0B@
1CA

5 ik bU
S

u
1

y�

h
1

0B@
1CA1

( bU
S
)9y�

0

ikcdH
S
u

1
1 (cdH

S
y�)9

0BB@
1CCA. (27)

In (27), (u1, y2, h1)T represents a basis vector of a par-

ticular symmetry, where the subscript 1 can represent

either a y-symmetric or a y-antisymmetric field, while the

subscript 2 represents the opposite symmetry. Multipli-

cation of the basis vector by bUS (first term on the rhs)

clearly leaves the symmetry of the vector unchanged. In

the second term on the rhs, ( bUS)9 is antisymmetric, so

( bUS)9y2 has the same symmetry as u1. Likewise, bothcdHSu
1

and (cdHSy�)9 have the same symmetry as h1, so

the product vector (a b c)T has the same symmetry as the

basis vector (u1 y2 h1)T.

A similar analysis shows that, if bU is antisymmetric

in y ( bU 5 bUA and N k 5 N
kA

), then multiplication of an

eigenvector by N k changes the symmetry. Consequently,

the operator N k can be thought of as having the same

y symmetry as bU (note that we refer to the operational

effect of N k on the basis vectors and not to the matrix

symmetry of N k).

IfN k( bU) is symmetric and (ust yst hst) has the opposite

symmetry to our O(1) solution, (uMN yMN hMN), then the

integrand in (24) will be antisymmetric and A
(1)
st will

vanish. At O(�), therefore, the symmetric part of bU pro-

duces only eigenfunction corrections that have the same

symmetry as the O(1) solution, a point that was made

by Ripa and Marinone (1983). Conversely, the anti-

symmetric part of bU will result in O(�) contributions

that have the opposite symmetry to the O(1) solution.

Asymmetries in the eigenfunctions can thus be pro-

duced at O(�) only by the antisymmetric part of bU. By

the same logic, we see in (23) that only the symmetric

part of bU can contribute to changes in the dispersion

relation at O(�).

At O(�2), both symmetric and antisymmetric parts ofbU can contribute to the frequency correction. Suppose

thatN k has an antisymmetric part that generates an O(�)
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eigenfunction correction A(1)
mn(u

mn
y

mn
h

mn
) that has the

opposite symmetry of the O(1) solution (uMN yMN hMN).

In (25), the antisymmetric part of N k operating on (umn

ymn hmn) will produce a vector with the same symmetry as

(uMN yMN hMN), resulting in a symmetric integrand.

There will be a nonzero contribution to the frequency

modification at O(�2) due to the interaction of the anti-

symmetric part of the mean current with the asymme-

trizing mode mn.

We can think of the situation heuristically as an in-

teraction in which a local contribution to the phase-

speed change depends on both the local strength of the

phase-speed-changing mechanism of the mean current

and the local relative magnitude of the wave vector. At

O(1), the magnitudes of all Hermite eigenvectors are

symmetric about the equator, and phase-speed-altering

aspects of the mean flow that are antisymmetric about

the equator cancel themselves in the integral, producing

no net effect. Once an asymmetry is introduced in the

wave vector, however, the effect of the antisymmetric

part of bU will no longer balance between the two hemi-

spheres, and a net change in phase speed will result. The

asymmetry introduced in the wave vector at O(�) allows

both the antisymmetric and the symmetric part of bU to

affect the phase speed at O(�2).

More generally, the O(�) solution gives us only the

effect on phase speed of the interaction between the

background currents and the unmodified wave vectors.

As the wave vectors themselves are changed, we must

consider the interaction between the background cur-

rents and the distorted wave vectors, whether or not the

distortions involve asymmetries. This effect enters into

the perturbation solution only at O(�2).

4. Perturbation solutions

In the following discussion, the O(�p) correction to

frequency, for instance, refers to either sp or sp�
p, with

the context making the choice clear. The O(�p) frequency

solution, on the other hand, refers to s 5 �p

q50sq�
q. The

O(1), O(�), and O(�2) perturbation solutions with � bU 5

U(1408W, y) and � bU 5 U(1708W, y) are displayed in

Figs. 5–7. The numerical solutions from section 2 are

also displayed as ‘‘ground truths.’’ The eigenfunctions

have been normalized so that the maximum amplitude

of h is unity for both the numerical and O(�2) pertur-

bation solutions. The eigenfunctions of the lower-order

perturbation solutions are normalized by the same

constant as those of the O(�2) solution.

We can see in Fig. 5 that the small change in mode-2

phase speed for long Rossby waves at 1708W is repro-

duced quite well by the O(�) solution. In the other sce-

narios there is a larger change in phase speed and the

O(�) solution overestimates the change. At O(�2), the

match is quite good between the perturbation and nu-

merical solutions for long Rossby waves in all cases.

Inspection of (7) and (8) shows that the size of much of

the mean-current effect is �k, and Fig. 5 confirms that

the accuracy of the O(�2) solution degrades as jkj ex-

ceeds 1.

Figure 6 shows the 1408W h, u, and y eigenfunctions,

with (18) summed up to m 5 20 for both O(�) and the

O(�2) corrections. The O(�) solution anticipates the sense

in which the eigenfunctions are distorted but un-

derestimates the magnitude in each case. The O(�2) so-

lution provides a reasonable match with the numerical

solutions, although it does not quite capture the extent of

the asymmetry in the mode-1 h eigenfunction and some of

the smaller-scale distortions of the u eigenfunction. Most

of the h and y distortion is captured by summing (18) up

to only m 5 5 (not shown), with higher-mode contri-

butions necessary only for a reasonable match of the u

eigenfunction.

The eigenfunction solutions for U(1708W, y) are dis-

played in Fig. 7, with 30 Rossby modes contributing to

the perturbation solutions. The small asymmetry and

poleward shift of the h peaks are produced by a few low-

mode contributions, but the broadening of the northern h

peaks and the small-scale structure in u require the con-

tributions of modes between 10 and 30. Summing (18) up

to m 5 300 does not visibly improve the eigenfunction

approximations at either 1408 or 1708W.

At 1708W the O(�2) corrections are appropriately an

order of magnitude smaller than the O(�) corrections, but

at 1408W the two corrections are the same order of mag-

nitude. This raises questions about the convergence of the

perturbation solution, and in Fig. 8 we display solutions up

to O(�4) for the h eigenfunctions and the dispersion re-

lations of modes 1 and 2 at 1408W. The perturbation-

solution eigenfunctions have been normalized so that

the maximum amplitude of the O(�4) solution matches

that of the numerical solution. To better show small dis-

crepancies, the perturbation-solution dispersion curves

have been normalized by the numerical solutions. The

eigenfunction solutions and the frequencies in the long

Rossby wave range appear to be converging well. The

5%–10% underestimate of the mode-1 asymmetry in h at

O(�2), noted in connection with Fig. 6, is more clearly

seen at this scale. Throughout the long Rossby wave

range, however, the O(�2) frequency solutions are within

1%–2% of the O(�4) solutions. The perturbation-solution

frequencies appear to be converging to a limit 1%–2%

higher than the numerical-solution frequencies, probably

owing to resolution in the required numerical integra-

tions. Both the numerical eigenvalue problem and the

numerical integrations of (23)–(26) were discretized on
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a grid spacing of 0.1Le (’0.38 latitude). Halving this

spacing decreases the discrepancy between the numerical

and O(�4) frequencies to less than 1%.

The O(�2) solutions, particularly for frequency, are

sufficiently close to convergence for our purposes. We are

less likely to succeed at extracting physical insights from

the higher order solutions, and through the remainder of

the paper we will discuss solutions no higher than O(�2).

We speculate that the large magnitude of the O(�2) cor-

rection and the subsequent rapid convergence is related

to the matter discussed in the symmetry considerations

subsection of section 3, as well as to the eigenvalue–ei-

genfunction connection. We have shown that O(�2) is the

lowest order at which asymmetries in the current can

affect the frequency calculation, and it is also the lowest

order at which changes in the eigenfunctions affect

changes in the frequency and vice versa. As such, the

O(�2) correction is a fundamental addition to the dy-

namics at the lowest order in which it can appear.

5. Physical mechanisms for phase speed
modification

With some confidence that the perturbation solution

reproduces the important modifications of long Rossby

waves by mean currents typical of the equatorial Pacific,

we turn now to extracting physical insight from the

equations for the frequency correction.

a. Interpretation of the O(�) correction

Carrying out the multiplications in (23), we have

s
1

k
5

ð‘

�‘

bU(ju
0
j2 1 jy

0
j2 1 jh

0
j2) dy

� i

k

ð‘

�‘

( bU9u
0
*y

0
1 (cdHy

0
)9h

0
*) dy

1

ð‘

�‘

cdHh
0
*u

0
dy. (28)

This relation was derived by Ripa and Marinone

(1983) and a similar one by Proehl (1990) in his model

with both meridional and vertical structure. The first in-

tegral on the rhs is clearly the effect of advection by the

mean current. Were the current uniform in y, this term

would just be the Doppler shift bU [remembering thatÐ
(ju0j2 1 jy0j2 1 jh0j2) dy 5 1]. The form of this term

points to an important principle: it is not just the strength

of the mean current that matters but how it projects onto

the square of the total wave field, (ju0j2 1 jy0j2 1 jh0j2).

FIG. 5. Rossby wave dispersion curves for meridional (left) mode 1 and (right) mode 2: (top)

U 5 U(1408W, y) and (bottom) U 5 U(1708W, y). Dashed black curves: O(1) (Hermite) so-

lutions; dashed blue curves: O(�) solutions; and dashed red curves: O(�2) solutions. Numerical

solutions are represented by black solid curves. The light dashed–dotted horizontal lines mark

our nominal short-period limit (60 days) to the long Rossby wave range. The dashed–dotted

vertical lines (upper two panels) mark the wavenumbers at which the numerical dispersion

curves cross the 60-day limit (for use in Fig. 8).
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In the case of short Rossby waves (as demonstrated by

Ripa and Marinone 1983), the net advection is determined

by the projection of the mean current onto the squared

meridional velocity structure since this component domi-

nates the wave vector. For long Rossby waves, however,

jy0j � ju0j and the net advection is determined by the

projection of bU onto (ju0j2 1 jh0j2). Proehl (1990) ap-

pears to have concluded similarly, but it is easy to misread

his results as emphasizing the projection of bU onto jy0j2
(a misinterpretation made by McPhaden and Ripa 1990).

The difference is significant because the symmetry of

y0 is opposite to that of both u0 and h0. For even merid-

ional mode numbers, jy0j2 will have an extremum at

the equator coinciding with the strong but narrow EUC,

while ju0j2 1 jh0j2 will be negligible there. For odd me-

ridional mode numbers the opposite is true. Consequently,

the EUC will advect odd modes quite differently than

even modes, and a long Rossby wave of a given mode

number quite differently than the short Rossby wave of

the same mode number.

FIG. 6. Long Rossby wave (top) h, (middle) u, and (bottom) y eigenfunctions for U 5

U(1408W, y): meridional (left) mode 1 and (right) mode 2 at the annual period. Twenty Her-

mite Rossby modes are included in the correction expansions. Dashed black curves: O(1)

(Hermite) solutions; dashed blue curves: O(�) solutions; and dashed red curves: O(�2) solutions.

Numerical solutions are represented by black solid curves.
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The meaning of the second integral in (28) is less clear,

and our interpretation of it is a major difference between

this and previous work. This is the term consistent with the

mechanism, cited by Proehl (1990), involving the advec-

tion of background momentum and density fields by the

meridional circulation of the wave field. Although Proehl’s

description fits the form of the integrand, it is not obvious

how this mechanism contributes to the wave frequency.

In our efforts to extract more understanding from (28) we

are guided by two assumptions. First, we assume that the

Rossby wave dynamics are modified but not fundamentally

altered by the presence of an O(�) background current

[noting that, for the purpose of understanding (28), we

can make the Rossby number � as small as we like]. In

particular, we expect the ambient PV gradient to play the

same role in the weakly modified Rossby wave dynamics

that it does in the rest-state dynamics. Our second as-

sumption is that, under a rearrangement of the mathe-

matical form, (28) should yield terms that are analogous

to the Doppler shift term but which reflect the modifi-

cations of specific dynamical elements associated with

long Rossby waves.

We first note that Ripa (1994) showed that the modal

solutions on the rest-state equatorial beta plane can be

FIG. 7. As in Fig. 6 but for mean currents at 1708W. Thirty Hermite Rossby modes are included

in the correction expansions.
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reproduced between the turning latitudes by ray-tracing

solutions. In the low-frequency limit, the dispersion

relation is

s* 5
�bk*

k2
* 1 l2

*(y*) 1 L�2
d (y*)

, (29)

where the asterisk subscripts indicate dimensional vari-

ables. In form, (29) is virtually identical to the midlatitude

Rossby wave dispersion relation, except that the merid-

ional wavenumber l
*

and the inverse-square deformation

radius,

L�2
d 5

f 2(y*)

c2
, (30)

are, in this case, functions of latitude ( f 5 by
*

is the

Coriolis parameter).

FIG. 8. Convergence of perturbation solutions: numerical and O(�0)–O(�4) solutions for (top)

the h eigenfunctions and (bottom) relative frequency curves of (left) mode 1 and (right) mode 2

at 1408W. (bottom) Each curve represents the ratio of a perturbation-solution frequency to the

numerical-solution frequency throughout the given wavenumber range. The light, vertical

dashed–dotted lines (bottom panels) mark the 60-day long Rossby wave limits shown in Fig. 5.

Convergence of the frequency solutions is good within the long Rossby wave range, with the

O(�2) solution differing from the O(�4) solution by at most ’2%.
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Equatorial modes are sometimes thought of as hy-

brids between Rossby and gravity waves because of the

relatively small frequency gap between the Rossby-like

and gravity-like solutions and because the Coriolis pa-

rameter vanishes on the equator. In the low-frequency

limit, however, the solutions of Ripa (1994) demonstrate

that locally the dispersion relation depends on b and Ld
22

in the same manner as the more familiar midlatitude re-

lations, a correspondence that is not compromised by the

vanishing of f on the equator. The low-frequency equato-

rial modes remain pure vorticity waves. The frequency

depends on b, which provides the ‘‘restoring force’’ and

does not vanish, and on the effect of the local inverse-

square deformation radius Ld
22 integrated in some sense

between the turning latitudes.

In the presence of a mean current at midlatitudes, the

restoring force is modified by the current-induced changes

to the ambient PV gradient (e.g., Pedlosky 1987, section

3.18), and we expect this to hold for the equatorial modes.

In our nondimensional scheme, the ambient PV is

Q 5 (y�U9)/(1 1 dH) 5 Q
0

1 �cdQ 1 O(�2), (31)

where

Q
0

5 y and cdQ 5�( bU9 1 ycdH). (32)

The O(�) change to the ambient PV gradient due to the

mean currents is then

cdQ9 5� bU9� (ycdH)9. (33)

By analogy with the Doppler shift term, we expect that

O(�) modifications of the phase speed by changes in the

ambient PV gradient will be represented by an integral

involving the product of cdQ9 and a quadratic form of the

O(1) wave field. Because the PV gradient is only impor-

tant to the extent that wave motions parallel it (i.e., cross

the PV contours), the only wave field quadratic that makes

sense in this context is y0
2. The second integral in (28) is

reorganized to produce the desired integral using the

relations between the O(1) wave components,

u
0
*

h
0
*

� �
5

i

k2 � s2
0

s
0

yy
0
� ky9

0

kyy
0
� s

0
y9

0

� �
, (34)

and an integration by parts aided by the vanishing of the

wave field at infinity. The first part of the integral, for

instance, transforms as

�i

ð‘

�‘

bU9u
0
*y

0
dy 5

1

k2 � s2
0

s
0

ð‘

�‘

y bU9y2
0 dy� k

ð‘

�‘

bU9
y2

0

2

� �
9

dy

� �

5
1

2(k2 � s2
0)

s
0

ð‘

�‘

2y bU9y2
0 dy 1 k

ð‘

�‘

bU0y2
0 dy

� �
. (35)

The second part of the integral transforms similarly

[using also the governing equation y00 5 y2y0 2 (s0
2 2

k2 2 k/s0)y0], and we have

s
1

k
5

ð‘

�‘

bU( u
0

�� ��21 y
0

�� ��21 h
0

�� ��2) dy

�
ð‘

�‘

cdQ9
y

0

�� ��2
2(k2�s2

0)
dy�

s
0

k

ð‘

�‘

d
d(Q2)

y
0

�� ��2
2(k2�s2

0)
dy

1

ð‘

�‘

cdH h
0
*u

0
1

s
0

k
y

0

�� ��2	 

dy. (36)

In (36), dd(Q2) is the O(�) modification of the squared,

ambient PV field,

Q2 5 Q2
0 1 � dd(Q2) 1 O(�2) (37)

and

d
d(Q2) 5�2y( bU9 1 ycdH). (38)

Here Q0
2 is the nondimensional equivalent of Ld

22, so,

in addition to the projection of cdQ9 onto jy0j2, the reor-

ganization has also produced an integral that plausibly

represents the effects of changes to the deformation radius.

The last integral in (36), with cdH in the integrand,

apparently represents the projection of the y-dependent

local gravity wave speed onto the features of the wave

structure, an interpretation which is supported by a sim-

ple thought experiment. Imagine a case where bU 5 0 andcdH is a constant. This would represent a no-mean-flow

case for which we have an analytical solution, but where

we have nondimensionalized by the wrong layer thickness

and hence the wrong value of c. In the high-frequency

gravity wave limit, the terms involving jy0j2 are negligi-

ble and jh0 /u0j/ 1. Only
Ð cdHh0*u0 dy remains impor-

tant, and this reduces to cdH/2, which is the proper O(�)

correction to c: [gH0]1/2 ! [gH0(1 1 �cdH)]1/2.

In the low-frequency limit, we contend that the last in-

tegral in (36) should be interpreted as part of the modified

Ld
22 effect, in the same way that c enters into the rest-state

dispersion relation (29) only through its effect on Ld
22. Our

JUNE 2011 D U R L A N D E T A L . 1091



analogy between the d
d(Q2) term and modification of the

local deformation radius is probably meaningful, but we do

not believe that the third integral in (36) represents the

entire deformation radius effect. It is likely, for instance,

that the contribution of vortex-stretching dynamics to

the long Rossby wave speed would make projections of

changes in Ld
22 onto jh0j2 relevant. Without better insight

into the most efficient representation of this effect, we

refrain from further reorganizations. We suggest, however,

that in the long Rossby wave limit, the fourth integral in

(36), which reflects variability in c through variability incdH, should be considered together with the third integral

as representing the net effect of modifications to the local

deformation radius. At any rate, we will see that the first

two integrals in (36) dominate phase speed changes in the

mean-current systems we are considering, with the last two

making only minor contributions.

In the long Rossby wave limit, hjy0j2i/hju0j2i � 1,

hjh0j2i/hju0j2i 5 1, and js0 /kj , 1, so the last term in the

last integral in (36) is negligible compared to the second-

to-last term. Also in this limit,

1

2(k2 � s2
0)

;�
h u

0

�� ��2i
h y

0

�� ��2i s
0

k
(see appendix), (39)

where the angle brackets indicate integration over the do-

main. For long Rossby waves, then, (36) can be written as

s
1

k
5 h bU( u

0

�� ��2 1 y
0

�� ��2 1 h
0

�� ��2)i (A)

1
s

0

k

h u
0

�� ��2ihcdQ9 y
0

�� ��2i
h y

0

�� ��2i (B1 1 B2)

1
s

0

k

	 
2 h u
0

�� ��2ih dd(Q2) y
0

�� ��2i
h y

0

�� ��2i (C)

1 hcdHh
0
*u

0
i (D) (40)

We have labeled the individual integrals A–D for cross-

referencing with Table 1. In our subsequent analysis, and

in Table 1, the cdQ9 term will be split into its two com-

ponents: � bU0 (B1) and�(ycdH)9 (B2).

An inspection of Fig. 1 shows that dH is slightly smaller

than U and that the meridional scales of the various

current features are typically between ½ and 1 equatorial

deformation radius. We can thus expect that jUj# jU9j#
jU0j, but we would not expect the various mean-current

related terms in (40) to differ by more than perhaps one

order of magnitude. Although hjy0j2i � hju0j2i in the long-

wave limit, the coefficient hju0j2i/hjy0j2i, associated with

the integrals involving jy0j2 in (40), makes these integrals

potentially of the same order as the advective integral.

Indeed, this coefficient keeps the ratio between the

PV-related integrals and the advective integral relatively

constant throughout the long-wave frequency range, even

as the ratio hju0j2i/hjy0j2i changes by many orders of

magnitude. For meridional mode m, s0/k 5 21/(2m 1 1),

so for low modes all of the terms in (40) potentially can

play a role in the phase speed modification, depending on

how the mean-current features project onto the wave

functions. We will find that all of the integrals in (40) do

make nonnegligible contributions for the current systems

under consideration but that the Doppler and cdQ9 in-

tegrals tend to be about an order of magnitude larger than

the last two integrals.

b. O(�) solutions at 1408 and 1708W

The O(�) relative frequency corrections (�s1/s0) for

meridional mode-1 and mode-2 long Rossby waves in

the presence of 1408 and 1708W mean currents are listed

in the second column of Table 1. The remaining columns

list the separate contributions to the relative frequency

correction made by the individual integrals in (40). Each

column header cross-references the integral label from

(40) (A–D) and identifies the mean-current feature in

the integrand of the relevant term. As noted, the cdQ9

TABLE 1. The O(�) frequency corrections for meridional modes 1 and 2 by U(1408W, y) and U(1708W, y). The first column is the

meridional-mode number, the second shows the relative frequency change at O(�), and the following columns give the separate contri-

butions to s1 of the individual integrals on the right-hand side of (40). Each column header shows the letter label of the corresponding

integral in (40) and the feature of the mean current that appears in the integrand of the term. Note that the cdQ9 term has been separated

into its two components:� bU0 (B1) and � (ycdH)9 (B2). In general, the frequency changes are dominated by the advection ( bU) and/or the

PV-gradient modification due to the curvature of the mean current ( bU0).

Longitude Mode �s1/s0

Ds/s0

(A) bU (B1) 2 bU0 (B2) �(ycdH)9 (C) d
d(Q2) (D) cdH

1408W 1 20.25 20.07 20.15 20.02 10.01 20.03

2 10.21 10.11 10.11 20.01 10.02 20.01

1708W 1 20.22 20.11 20.09 20.01 20.00 20.01

2 10.044 20.009 10.053 20.004 10.008 20.004
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integral has been separated into two components: the

effect of 2bU0 (B1) and the effect of �(ycdH)9(B2).

All of the terms make noticeable contributions, but in

general the frequency change is dominated by advection

(bU) and the PV-gradient modification due to bU0, with the

latter term accounting for over 40% of the frequency shift

in each case. Interestingly, these terms both contribute to

the decrease in the mode-1 phase speed and also to the

increase in the mode-2 phase speed at 1408W. At 1708W,

both terms also contribute to the marked decrease in

mode-1 phase speed, but they are both rather small and

act counter to each other for mode 2.

Table 1 was compiled for an annual period, but over the

range 60 days , T , 3 yr the values represented in Table

1 change by at most a few percent. These small deviations

from the values in Table 1 are found at the higher fre-

quencies and are likely due to the jy0j2 term becoming

large enough to influence the advective integral.

c. Graphical analysis of the O(�) correction

Figures 9–12 present a graphical breakdown of the

two dominant terms in Table 1, advection (left column)

and modification of the PV gradient by bU0 (right col-

umn), with each figure representing one of the meridi-

onal modes at one longitude. The three panels in each

column are arranged to illustrate the projection of the

mean-current feature onto the important part of the

mode-dependent wave structure. The top panel shows

the meridional structure of the relevant mean-current

feature (U or U0), emphasizing the symmetric part [the

dynamically important part at O(�)]. The middle panel

shows the structure of the relevant O(1) wave component:

(ju0j2 1 jy0j2 1 jh0j2) in the case of advection and jy0j2 in

the case of PV-gradient modification. The bottom panel

shows the appropriately scaled product of the above two

terms, which is the integrand of the relevant term in (40). A

positive integral of the curve in the bottom-left panel in-

dicates net advection in the positive x direction, or a slow-

ing of the long Rossby wave’s westward phase speed. A

positive U0 decreases the strength of the PV gradient and

also slows the Rossby wave, so a net positive (negative)

area under the curve in the bottom-right panel acts on the

phase speed with the same tendency as a net positive

(negative) area under the curve in the bottom-left panel.

The bottom panels of both columns in all figures are

scaled identically to facilitate comparison of the latitude-

dependent dynamical effects between modes and be-

tween current systems.

Physical insight can now be extracted from the form of

the O(�) frequency correction. The narrow, equatorially

centered, eastward EUC dominates the equatorial cur-

rent system at 1408W (Fig. 9, top left), but the symmetric

part of the westward SEC has a maximum amplitude

that is roughly 40% that for the EUC (with peaks near

38S and 38N) and a total meridional span that is more

than twice that of the EUC. Consequently, the net ad-

vection could easily be eastward, westward, or negligi-

ble, depending on how the meridional distribution of the

combined wave-component amplitudes (Fig. 9, middle

left) lines up with the currents. The combined ampli-

tudes of mode 1 have a broad meridional span because

of the off-equatorial peaks in h12 but also a pronounced

equatorial peak because of the equatorial maximum of

u12. As a result of this peak, the eastward advection by

the EUC overpowers the westward advection by the

SEC, and the mode-1 westward phase speed is decreased

by the advective mechanism. The eastward NECC plays

a minor role in changes at the O(�) level because of its

strong asymmetry and particularly at 1408W because of

its high latitude.

The rapid change in meridional shear at the core of the

EUC dominates the U0 profile, with a negative extremum

on the equator (Fig. 9, top right), but the positive curva-

ture associated with the peaks in the SEC (or alternately

the flanks of the EUC) remains significant, with peaks

near 28S and 28N. In fact, because the O(1) meridional

velocity of mode 1 has a zero on the equator (middle-right

panel), the marked increase in the background PV gra-

dient at the center of the EUC has almost no effect on this

mode. Although the increase in the gradient is large, it is

confined to a narrow latitudinal strip where wave motions

do not parallel the gradient. By contrast, the amplitude of

the wave’s meridional velocity is close to its maximum

at the latitudes where the background PV gradient is

decreased near the peaks in the SEC. Consequently, the

dominant PV-gradient modification by the mean-current

system acts to slow down mode 1, in concert with the

advection by the mean current.

In the case of mode 2 (Fig. 10), h22 and u22 have zeros

on the equator, so the strong EUC has very little ad-

vective effect on the mode. The off-equatorial maxima

in h22 and u22 coincide quite well with the maxima in

the westward SEC, so the advective mechanism acts

to increase the westward phase speed of mode 2. The

off-equatorial maxima of the meridional velocity of

mode 2 (middle-right panel) are somewhat poleward

of, and do not overlap well with, the maxima in U 0

near the peaks of the SEC. On the other hand, jy22j has

a local maximum on the equator where the increase

in the background PV gradient associated with the

peak of the EUC is at its maximum. Consequently,

the dominant PV-gradient-modifying mechanism of the

mean currents also acts to increase the phase speed of

mode 2.

At 1708W (Figs. 11 and 12) the EUC is somewhat

weaker and wider than at 1408W. Its integrated advective
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effect is comparable at the two longitudes, but the as-

sociated PV-gradient increase on the equator is signifi-

cantly weaker at 1708W. The lack of a northern branch

to the SEC at 1708W, combined with a more equator-

ward core of the NECC, significantly decreases the net

potential for westward advection compared to 1408W.

The small-scale current structure between the EUC and

the NECC introduces comparable structure to U 0s at

these latitudes, but the southern branch of the SEC still

biases the fluctuations to a net positive U 0s in the region.

Nevertheless, the more equatorward location of the core

of the NECC brings a significant negative U0s peak closer

to the region where it overlaps with the meridional ve-

locity structure of modes 1 and 2.

FIG. 9. Effects of (left) advection and (right) U0 on mode-1 phase speed at 1408W: (top)

meridional profile of mean-current feature (thin curve) and its symmetric part (thick curve);

(middle) squared amplitude of the part of the Hermite wave field affected by the current feature

above it; and (bottom) projection of mean-current feature onto relevant wave-field structure

(product of thick curves in top and middle rows). Here Cm 5�(sm2/k)
Ð ‘

�‘
um2j j2 dy/

Ð ‘

�‘
ym2j j2 dy,

Ds/s0 is the relative change in frequency, and Ds/s1 is the fractional contribution to the total O(�)

frequency correction.
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The net eastward advective effect of the EUC on mode

1 at 1708W appears to be roughly equivalent to that at

1408W, because the smaller amplitude at 1708W is offset

by the increased width. The significantly weaker west-

ward advective effect of the SEC at 1708W, however,

results in a larger net eastward advection of mode 1 at

1708W than at 1408W (cf. bottom panels of Figs. 11 and 9).

The localized increase in the PV gradient due to the

current structure between the EUC and the NECC at

1708W combines with the more equatorward position of

the increased PV-gradient contribution from the NECC

to partially counter the slowing effect of the decrease in

the PV gradient owing to the SEC. Consequently, the net

slowing effect on mode 1 associated with U0s is somewhat

smaller at 1708W than at 1408W. The net effect of the

changes in advective potential and PV-gradient modifi-

cation is that the O(�) phase speed of mode 1 at 1708W is

very similar to that at 1408W, although for slightly dif-

ferent physical reasons.

At 1408W, the narrow EUC had very little overlap with

(jh22j2 1 ju22j2 1 jy22j2) and the advection of mode 2 was

almost all westward due to the SEC. At 1708W, the wider

EUC results in a slightly larger contribution to eastward

advection of mode 2 (cf. bottom-left panels of Figs. 12,

10). As noted, the absence of the northern branch of

the SEC at 1708W decreases the potential for westward

FIG. 10. Effects of (left) advection and (right) U 0 on mode-2 phase speed at 1408W, format

as in Fig. 9.

JUNE 2011 D U R L A N D E T A L . 1095



advection, and the result is a small eastward advection of

mode 2 at 1708W. The PV-gradient modification at 1708W

still speeds up the westward propagation of mode 2, but

the effect is only about half as strong as at 1408W due to

the decreased strength and increased width of the EUC at

1708W. In the net, there is a relatively insignificant in-

crease in the phase speed of mode 2 at 1708W.

d. O(�2) correction

The analysis of the previous section has provided in-

sight into how the mean currents act upon the Hermite

wave vectors to modify the phase speed, and these insights

are all that are necessary for a relatively weak current

system—for instance, one that has the structure of the

1408W currents but with only 1/4 of the full strength. In this

case, the changes to the eigenfunctions are minimal, and

the O(�) correction captures the essence of the modifica-

tion of the dispersion relation (not shown).

When the currents are stronger, however, the wave

vectors being acted on by the mean current are signifi-

cantly different from the Hermite wave vectors, and the

O(�2) frequency correction becomes important. By chang-

ing the order of summation and integration, (25) can be

rewritten as

FIG. 11. As in Fig. 10 but on mode-1 phase speed at 1708W.
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The O(�2) solution can be written as

s 5 s
0

1 �Ds, (42)
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(43)

Equation (43) demonstrates a similarity between the full

frequency correction in the O(�2) solution and the O(�)

correction that was analyzed above [cf. (43) with (23)],

except that both the O(1) and O(�) wave-vector solu-

tions are now important.

In general, the analyses of the individual mechanisms are

more complex than our analyses at O(�), but an approxi-

mation to the Doppler shift takes a gratifyingly simple

form. The form of (43) suggests that we consider a wave

vector that is an average of the O(1) and O(�) solutions:

(uy h) 5 [(u
0
y

0
h

0
) 1 (u

0
y

0
h

0
) 1 �(u

1
y

1
h

1
)]/2. (44)

Then we can rewrite (43) as

FIG. 12. As in Fig. 10 but on mode-2 phase speed at 1708W.
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We now consider only the advective part of N k,

N
kA

5 ik bUI 5N k �

0 Û9 0

0 0 0

ikddH9 ddH9 1 cdH
d

dy

� �
0

0BB@
1CCA,

(46)

where I is the identity matrix. WhenN kA is substituted for

N k in (45), the second integral on the rhs vanishes and

Ds
A

k
5

ð‘

�‘

bU( uj j2 1 yj j2 1 hj j2) dy 1 O(�2). (47)

To within the accuracy of the solution, the analysis of the

full frequency correction due to advection in the O(�2)

solution is identical to the analysis that we performed at

the O(�) level, except what matters is how the mean cur-

rent projects onto the average of the rest-state wave

vector and the deformed wave vector of the O(�) solution.

The O(�2) frequency correction at 1708W is small com-

pared to s0 for both modes (Fig. 5), so in Fig. 13 we il-

lustrate (47) only at 1408W, with the mode-1 (mode-2)

advection illustrated in the left (right) column. The for-

mat is similar but not identical to that of Figs. 9 and 10.

Only U is displayed in the top panel because both sym-

metric and antisymmetric parts are important in this case.

The middle panel displays the important parts of the av-

erage wave vector (44), with a subscript indicating the

meridional mode number. The thick curve in the bottom

panel is again the product of the thick curves in the upper

and middle panels and represents the integrand of (47).

Only the symmetric part of the integrand contributes to

the frequency correction, and this is shown as a thin line

for direct comparisons with the integrands shown in the

bottom-left panels of Figs. 9 and 10.

Comparing the left panels of Figs. 9 and 13, we see that

the important effect on the mode-1 wave vector is the

broadening and northward shift of the zonal velocity

peak. Because the EUC at 1408W is centered slightly

south of the equator, this decreases the eastward ad-

vective effect of the EUC while simultaneously in-

creasing the westward advective effect of the SECN.

Consequently, the relative slowing of the mode due to

advection is reduced from a 7% estimate at O(�) to 2%

at O(�2), owing to the distortions in the wave structure.

The northward shift of the u and h amplitudes also en-

hances the advective influence of the NECC but not

enough to compensate for the loss of advection by the

EUC.

A comparison of the right panels of Fig. 13 with the

left panels of Fig. 10 shows that the enhancement and

slight equatorward shift of the southern peak of the

mode-2 zonal velocity enhances the advective effect of

the EUC on this mode. The net advection by the SEC

changes little. In total, the relative increase in the

westward phase speed of mode 2 due to advection is re-

duced from an 11% estimate at O(�) to 7% at O(�2).

6. Summary

With numerical solutions of a 1½-layer model of the

equatorial Pacific current system, we showed that the

effects of mean zonal currents on long equatorial Rossby

waves can be somewhat counterintuitive. The effect of

the strongest currents (at 1408W) on baroclinic mode 1 is

to slow down meridional mode 1 but speed up meridional

mode 2. The SSH signal of meridional mode 1 is weak-

ened in the Southern Hemisphere and enhanced in the

Northern Hemisphere, but the exact opposite is true for

meridional mode 2.

An analysis of a perturbation expansion in the Rossby

number � of the mean currents showed that the dominant

physical mechanisms affecting the Rossby wave phase

speeds in the two current systems considered (1408 and

1708W) are advection by the mean currents and modifi-

cation of the background PV gradient by the curvature in

the mean currents, bU0. As previously shown by Ripa and

Marinone (1983) and Proehl (1990), the extent of the

advective effect is determined by how well the mean

current projects onto the meridional profile of the squared

magnitude of the wave vector, juj2 1 jyj2 1 jhj2, which is

dominated by juj2 1 jhj2 in the long Rossby wave limit.

The PV-gradient effect depends on how well bU0 projects

onto the wave’s squared meridional velocity jyj2. The

dominance of bU0 over the interface slope in the PV-

gradient modification is no doubt due to the proximity to

the equator and the relatively small meridional scale of

the currents.

The O(�) phase-speed solution can be understood in

terms of interactions between the mean currents and the

structures of the rest-state Hermite wave vectors. This

solution is accurate for currents up to about 1/4 amplitude

of the 1408W currents, and it reproduces the tendency

of the phase-speed change even when stronger currents

require a higher order solution for accuracy. Opposite
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effects on the phase speeds of modes 1 and 2 are due

largely to a coincidence between the meridional scales of

the currents and waves and two characteristics of classi-

cal equatorial waves: 1) the meridional phases of modes 1

and 2 differ by 908 at the equator and 2) within a single

mode the zeros of y are staggered relative to those of u

and h. Because mode 1 has a zonal-velocity maximum on

the equator, eastward advection by the EUC dominates

a weaker westward contribution by the SEC, resulting in

net eastward advection of the mode. By contrast, the

zonal velocity and pressure of mode 2 have zeros on the

equator, whereas the zonal velocity has local extrema

near the peaks in the SECS and SECN, thus subjecting

this mode to strong westward advection.

FIG. 13. Advective effects on (left) mode 1 and (right) mode 2 in the O(�2) frequency so-

lutions. The format is as in left columns of Figs. 9–12 but (top) the thick curve represents the full

U profile (not just the symmetric part), (middle) the important parts of the average wave

vectors, defined by (44), are shown with subscripts indicating the meridional-mode number M,

and(bottom) the thick curve is the integrand of (47) and DsAM/s0 is the relative change in phase

speed by advection in the O(�2) solution of mode M.
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The meridional velocity of the Hermite mode 1 has a

zero on the equator, so this mode is relatively unaffected

by the large increase in the background PV gradient at the

core of the EUC. The local extrema of the meridional

velocity of mode 1 overlap well with the regions of de-

creased PV gradient at the peaks of the SECS and SECN,

however, contributing to a decreased phase speed. The

meridional velocity of mode 2, on the other hand, has a

local extremum on the equator where the PV gradient is

enhanced and zeros near the peaks of the SECS and SECN

where the PV gradient is weakened. The PV-gradient

modification thus acts in concert with advection to speed

up mode 2.

At 1708W, the general picture for mode 1 is similar to

the 1408W scenario (see section 5c for details). For mode

2, however, the weaker PV-gradient enhancement due to

a more diffuse EUC combined with weaker advection by

a weaker SEC leads to very little change in the dispersion

relation.

The above observations depend on the coincidence of

wave and current structures, and the results would be

quite different for a higher baroclinic mode with a smaller

deformation radius. In that case, for instance, the off-

equatorial extrema of meridional velocity of mode 1

could conceivably overlap with the region of enhanced

PV gradient near the equator so that the advective and

PV-gradient effects on mode 1 might act counter to each

other. Each mode clearly must be considered separately.

The preceding descriptions are good both qualitatively

and quantitatively for a current system up to ;25% of the

amplitude of U(1408W) in which wave vectors are changed

only moderately from the classical Hermite function wave

vectors. At mean-current magnitudes typical of the east-

central Pacific, however, distortions of the wave vectors

can be significant and can influence the interaction with

the mean currents. We have shown that eigenvector dis-

tortion (symmetric or antisymmetric) does not affect the

phase speed until O(�2) and that an antisymmetric part of

the current system also cannot affect the phase speed

until O(�2), which it does through eigenvector distortion

at O(�). Thus, perturbation expansions carried only to

O(�) can miss important parts of the solution. The ad-

vective (Doppler shift) effect of the stronger currents on

phase speed is qualitatively the same as the O(�) effect

described above, except that we must consider the pro-

jection of the mean current onto an average of the Her-

mite wave vectors and the distorted wave vectors of the

O(�) solution. The interactions of the distorted wave

vectors with the changes in the PV field are more com-

plicated, and, although the solutions are given, the details

of the PV mechanism at O(�2) are not analyzed here.

With the phase speed modification by the stronger

currents so dependent on the nature of the wave-vector

distortions, a better understanding of the controlling me-

chanics behind these distortions clearly is needed at this

point. Boyd (1978) found that an eastward equatorial jet

produced an expansion of the meridional span of the wave

vectors while a westward jet produced a contraction (as

did Ripa and Marinone 1983), and he attributed these

effects to changes in the deformation radius due to U9.

To our knowledge, the striking wave-vector asymme-

tries that appear to be typical of the east-central Pacific

have not yet been satisfactorily explained. It is interesting

to note that, in the cases we have studied, the wave-vector

distortions appear to lessen the impact on the dispersion

relations. The O(�2) solutions represent an increase in the

wave-vector distortions over the O(�) solutions, but they

represent a decrease in the magnitude of the phase-speed

shift.

The significant effect that O(�) changes to the ei-

genfunctions can have on the phase-speed modification

at O(�2) raises the possibility that previous perturbation

analyses of equatorial waves in mean currents could

beneficially be revisited at the higher order. McPhaden

and Knox (1979), for instance, analyzed an O(�) pertur-

bation solution for the Kelvin wave in the presence of an

equatorial jet. They showed that short-period (;3 day)

Kelvin waves in a 1½-layer model can experience signif-

icant eigenfunction distortion at O(�) by an equatorial jet

of similar width and amplitude to our EUC. The distortions

included a 10%–20% decrease in the u and h amplitudes

on the equator, a broadening of the u and h meridional

profiles, and the inclusion of a meridional velocity com-

ponent with maximum amplitude almost 20% that of the

zonal velocity. It is conceivable that these distortions could

have a significant effect on the phase speed that was not

captured by the O(�) solution.

Although we have made inroads into a more complete

understanding of how zonal currents affect equatorial

Rossby modes through modification of the ambient PV

field, it is clear that important questions remain even

with respect to the dynamics of the 1½-layer model.

Extending the insights gained here to a model contain-

ing both meridional and vertical shear typical of the

equatorial oceans, as well as realistic temporal and zonal

variability, is of course the ultimate goal.
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APPENDIX

Long-wave approximation of (k2 2 s2
m2)�1

In nondimensional variables, the classical expressions

for the y dependence of the meridional and zonal veloc-

ities of rest-state equatorial Rossby and inertia–gravity

waves are (Moore and Philander 1977)

y
mn

5 C
mn
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m

(y) (A1)
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mn

5 C
mn

iffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffi
m11
p

s
mn
� k

c
m 1 1

(y) 1

ffiffiffiffiffi
m
p

s
mn

1 k
c

m�1
(y)

 !
,

(A2)

where m is the meridional mode number and n denotes

one of the three roots of the frequency equation. The

Hermite functions cm form an orthonormal basis, so

h u
mn

�� ��2i
h y

mn

�� ��2i 5
1

2

m 1 1

(k� s
mn

)2
1

m

(k 1 s
mn

)2

" #
. (A3)

In the long Rossby wave limit, sm2 ;2k/(2m 1 1), and

(A3) becomes
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(A4)

Rearranging (A4) we have

1

2(k2 2 s2
m2)
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s
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