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 When vessel walls within the vasculature are damaged, exposed extracellular 

matrix (ECM) proteins trigger a series of events that lead to the formation of a 

hemostatic plug (Andrews et al. 2004, Furie et al. 2008, Watson 2009). Thrombus 

formation requires an orchestrated series of receptor-mediated events facilitating platelet 

recruitment, platelet activation, and initiation of coagulation. This process ultimately 

leads to thrombin generation and thrombus formation. In diseased vessels, this process 

leads to the propagation of intravascular thrombus formation and vessel occlusion, 

which is the underlying cause of cardiovascular disease.  

 We have developed a model of occlusive thrombus formation that relies on 

gravity to drive blood flow through a capillary tube under a constant pressure gradient. 

We have used this model to identify a role for laminin in the formation of occlusive 

thrombi in a FXII-dependent manner. We have also used this model to characterize the 

procoagulant phenotype of breast cancer epithelial cell lines in the presence of 

physiologically relevant, pressure-driven blood flow. The use of this model may be 

expanded to characterize the mechanisms of thrombosis and to determine the efficacy 

of pharmacological agents designed to prevent occlusive thrombus formation. 
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CHAPTER ONE:  

INTRODUCTION AND BACKGROUND 
 

1.1 BLOOD: AN OVERVIEW 
 
 Blood is a highly specialized fluid tissue that performs many intricate functions in 

the human body. One of the key functions blood plays is the transport of nutrients, such 

as oxygen, to the cells of the body as well as transport of appropriate wastes for 

disposal. The composition of blood is also complex - to match the intricacy of function 

that it performs. Blood cells are fluidized in blood plasma. Plasma is composed of 92% 

water by volume and also contains dissolved ions, proteins, hormones, dissolved 

oxygen, and carbon dioxide . Blood is a mixture of cells and plasma - 55% of blood is 

plasma, while the remaining approximate 45% are red blood cells (RBC), leukocytes (or 

white blood cells, WBC), or platelets (termed thrombocytes in non-mammalian 

vertebrates). These have the functions of nutrient transport, immunity, and hemostasis, 

respectively. The most abundant of these cells are the RBC's - which includes an iron-

containing protein called hemoglobin designed specifically for the transport of oxygen to 

the site of metabolic cells. The next most abundant cells are the platelets whose 

responsibilities include blood clotting (coagulation). Finally, the third most abundant type 

of cells are the leukocytes which scour the vascular piping of the body to identify and 

destroy old cells as well as attacking pathogens and other foreign substances. (Aarts et 

al. 1988, Woldhuis et al. 1992) 

1.2 PLATELETS  
 
 Platelets average between 2-3 µm in diameter and are anucleate- by the far the 

smallest of blood cell constituents. In normal, healthy adults, platelets circulate in 
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numbers between 150,000 - 400,000 per µL of whole blood. The main function of 

platelets is to rapidly respond to sites of vascular injury and initiate coagulative 

processes. They have a critical role in thrombosis and haemostasis. (Najean et al. 1969, 

Italiano et al. 1999) 

1.2.1 Platelet Production 
 
 Platelets are derived from precursor cells in the bone marrow called 

megakaryocytes. Large megakaryocytes localize near the sinusoidal walls of the lumen-

bone marrow interface which facilitate the protrusion of large segments of 

megakaryocytic cytoplasm to circulation. Megakaryocytes develop systems of many 

organelles representing budding platelets. The shear force exerted on the invaginated 

plasma membrane of the megakaroycyte leads to fragmentation and the formation of 

immature platelets, or pro-platelets. Maturation of these pro-platelets leads to mature 

thrombocytes through the blood circulation. The dominant hormone regulating the 

production and development of megakaryoctyes is thrombopoietin. (George 2000) 

1.2.2 Platelet Circulation 
 
 Platelets have an average lifespan of about 10 days in circulation. Older platelets 

have reduced functionality compared to younger ones. The spleen is a transient storage 

of platelets - reserving about one-third of platelets in circulation. Splenic contractions 

during an activated, coagulative state may increase platelet numbers in the blood. 

(Najean et al. 1969, George 2000) 

1.2.3 Platelet Structure and Function 
 
 Platelets most importantly contain granules that are secreted during platelet 

activation, classified as either dense granules or α-granules. The secretions from the 

granules contribute to platelet activation and cohesion. Dense granules contain 
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adenosine diphosphate (ADP), serotonin, zinc, and calcium which potentiate activation 

and sustain blood coagulation. α-granules house cohesion proteins, chemokines, and 

components essential for coagulation as well as negative  regulators to blood 

coagulation. (Andrews et al. 1997) 

 Platelets also express several integrins formed by non-covalent associations of 

two integral membrane subunits. One of the most important integrins found on the 

surface of platelets is the GPIIb/IIIa platelet-specific integrin (also known as αIIbβ3). 

GPIIb/IIIa specifically binds plasma proteins such as fibrinogen (FG) and von Willebrand 

Factor (vWF) and is also important for platelet-to-platelet interactions. (Vicente et al. 

1990, Doggett et al. 2002, Liddington et al. 2002, Andrews et al. 2004) 

 Protease-activated receptors (PARs), belonging to the G-protein coupled 

receptor family, can also be found on the surface of platelets. Human platelets express 

two variants: PAR-1 and PAR-4. The main function of the PAR-family of receptor is 

presumed to perform signaling functions that lead to various structural changes, granule 

secretion, and platelet aggregation. (Zucker et al. 1985) 

 Finally, there are about 25,000 copies of normal glycoprotein (GP)IB/IX/V 

receptor complexes on the surface of platelets. This family of receptors has a variety of 

functions, including binding sites for coagulation-specific proteins involved in the injury 

response as well as serves as the transmitter of intercellular signals with interactions 

with other platelet receptors. (Marguerie et al. 1979, Ruggeri et al. 1982, Wagner et al. 

1996) 

 Within platelets, a concert of signaling events is orchestrated to activate platelets 

at the site of a vascular injury. Figure 1.1 shows some of the platelet surface receptors 

and the resulting intercellular signal transduction that drive activation.(Offermanns 2006) 
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Figure 1.1 - Platelet receptors and signaling pathways. Intracellular 
signaling transduction is initiated through receptor-ligand interactions 
resulting in platelet activation and granule secretion.  

 

1.2 THE VESSEL WALL 

1.2.1 Endothelial Cells 
 
 A monolayer of endothelial cells encompasses the lumen of all blood vessels, 

known as the endothelium. This monolayer compartmentalizes the flowing blood and the 

important vasculature of the blood vessel wall. The function of the endothelium is crucial, 

performing a variety of different roles including maintenance of the vasculature, 

hemostasis, and resistance to leukocyte adhesion. Unbroken, healthy endothelial cells 

(Figure 1.2) secrete many substances into the free-flowing bloodstream that 

downregulate platelet activation and coagulation - such as nitric oxide (NO), 

prostaglandin (PGI2), and tissue-type plasminogen activator (tPA). (de Groot et al. 1988, 

Hansen et al. 2011) 
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1.2.2 Extracellular Matrix 
 
 Underneath the endothelium there is a vast meshwork of proteins that behaves 

as both a scaffold and filter, called the extracellular matrix (ECM). The composition of 

the ECM can vary greatly and can also influence many auxiliary cellular processes 

including survival, proliferation, and permeability (Auger et al. 2005). This concept 

becomes especially important during the development of atherosclerotic plaques which 

can cause vessel damage and rupture leading to an adverse occlusive clotting event. 

The two most abundant ECM proteins include collage IV and laminin - both of which are 

known to bind platelet surface receptors leading to signaling events culminating in 

platelet activation (Inoue et al. 2006, White-Adams et al. 2010).  

 1.2.2-1 Collagen 
 
 Collagen IV is a self-polymerizing, heterotrimetic molecule that can assemble into 

dimers or tetramers via their non-collagenous 1 or 7S domains, respectively (Kratzer et 

al. 1985, Vandenberg et al. 1991). An intricate 3-dimensional fibrous network is created 

when these multimers are interwoven with each other (Figure 1.2). One of the most 

important features of the multimeric chains are the Gly-Xaa-Yaa triple repeats - a ~1400 

residue domain that interacts with the Apple 3 domain of plasma von Willebrand Factor 

(Khoshnoodi et al. 2008, White-Adams et al. 2010). This interaction is a critical step in 

the response of platelets to injured blood vessels.  
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Figure 1.2 - Prototypical blood vessel components and structure.  
Blood flow is localized in the lumen of a vessel that is lined with an 
endothelial cell layer supported by a meshwork of extracellular matrix 
proteins including polymerized laminin and a network of collagen 
fibers. The cell membranes of the endothelial cells are bound to the 
matrix by integrin receptors.  

 1.2.2-2 Laminin 

 Another important component of the ECM includes the proteins from the laminin 

family. They can be found as heterotrimers composed of α, β, and γ chains. The 

structure of laminin is cross-shaped - the subunits merge in a coiled-coil formation. The 

short arms are critical for reversible, divalent cation-dependent laminin polymerization 

while the long arm can interact with integrins on cell surfaces. Networks of laminin in the 

ECM have been shown to associate themselves with Type IV collagen both directly and 

through linkage by fellow ECM protein, nidogen. (McKee et al. 2007) 

1.3 HEMOSTASIS 

1.3.1 Platelet Response 
 
 Sub-endothelial ECM contact subsequent to vessel wall injury exposes flowing 

blood to the platelet agonists such as collagen and laminin. Solubilized vWF quickly 

binds to exposed collagen and laminin. A subunit of the GPIB/IX/V platelet receptor then 

interacts with the bound vWF tethering the platelet to the vWF-collagen (or -laminin) 

 

 

 
Endothelial Cells 
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matrix (Figure 1.3). Interaction of various other platelet integrins results in the activation 

of several signaling cascades. Many of these signaling pathways releases intracellular 

Ca2+ and sustained levels of this ion accelerates and intensifies platelet activation 

(Figure 1.1). The cellular contents of the dense and α-granules are released during 

platelet activation, which activate nearby platelets to which are in turn recruited to the 

growing hemostatic plug (Figure 1.3). Finally, the platelets provide a negatively-charged 

surface by exposing phosphatidylserine (PS). This negative-charged backdrop supports 

the assembly of procoagulant complexes (Figure 1.4). (Marcus et al. 1965, Bevers et al. 

1983, Kratzer et al. 1985, Hindriks et al. 1992) 

 
 
Figure 1.3 - Platelet response to injury. Exposure of flowing blood to 
the sub-endothelial matrix components initiates interaction of vWF 
and platelet GPIb eventually leading to the further recruitment of 
platelets. This aggregate becomes crosslinked by fibrinogen and 
vWF within the hemostatic plug.  
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1.3.2 Coagulation Response 

 1.3.2-1 Vitamin K-Dependent Coagulation Factors 

 Coagulation factors that are solubilized in the blood plasma freely float in the 

bloodstream in an inactivated zymogen form. They are sequentially activated to their 

serine protease form by limited proteolysis. Factors II (prothrombin), VII, IX, X, and the 

anticoagulant precursor Protein C, are all vitamin-K dependent proteins (Huntington 

2009). Post-translational modifications to these proteins to their fully active form depend 

on vitamin-K which results in carboxylation of glutamic acid residues in the Gla domains 

of the coagulation factors (Sunnerhagen et al. 1995). The Gla domains of the 

coagulation factors associate with exposed phosphatidylserine surfaces in the presence 

of Ca2+ leading to the assembly of coagulation factor-activating complexes (Figure 1.4). 

This feature facilitates the rapid progression of coagulation at the injury site.  (Nemerson 

1968, Stenflo 1972, Nemerson 1975) 

 
 
Figure 1.4 - Coagulation factor activation complexes on the 
surface of platelets. Calcium-mediated interactions between PS 
(red) and coagulation factors lead to factor binding on the 
platelet membrane surface. The TF-FVIIa complex (left) 
promotes the activation of FIX and FX in the extrinsic tenase 
complex. FIXa and cofactor FVIIIa assemble to activate FX 
(middle) in the intrinsic tenase complex. Prothrombin (Mohle et 
al.) is activated to thrombin (FIIa) by FXa and FVa in the 
prothrombinase complex (right).  
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 1.3.2-2 Extrinsic Coagulation 

 Damage to the endothelium exposes tissue factor (TF) to flowing blood, initiating 

coagulation through the extrinsic pathway (Figure 1.5). Exposed TF serves as a cofactor 

for activated factor VII (FVIIa). As a complex, the TF-FVIIa activates factor IX (FIX) and 

factor X (FX) to their protease forms, FIXa and FXa, respectively. (Nemerson 1975, 

Osterud et al. 1977, Gailani et al. 1991, Mann 2003) 

 
Figure 1.5 - The coagulation cascade. Fibrin formation is dependent 
upon the activation of thrombin either by the extrinsic (TF-
mediated/injury) or the intrinsic pathways. Thrombin has numerous 
enzymatic functions including generation, amplification, and 
regulation of thrombin production at the site of vascular injury.   

  

 As illustrated in the Figure 1.5, FIXa associates with activated Factor VIII (FVIIIa) 

to activate FX in the tenase complex. Following, FXa joins its cofactor, activated factor V 

(FVa), in the prothrombinase complex to convert prothrombin (a zymogen, FII) to its 

activated serine protease form, thrombin (FIIa). Thrombin cleaves solubilized fibrinogen 

that is freely floating in flowing blood to its insoluble form, fibrin. Thrombin also activates 

factor XIII (FXIII) to its active form, FXIIIa, which crosslinks the fibrin to a mesh that 
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stabilizes the platelet plug at the site of injury. Thrombin also participates in a positive 

feedback systems leading to explosions in the concentration of thrombin by way of 

activation of upstream coagulation components such as factor XI and cofactors V and 

VIII.  This generates thrombin at ever-increasing rates in order to ensure fibrin deposition 

to the site of vascular injury. (Bevers et al. 1982, Kakkar et al. 1995, Mann et al. 2003, 

Lu et al. 2004, Mackman 2009) 

 1.3.2-3 Intrinsic Coagulation: FXI Contributions 

 Activation of the intrinsic pathway is a second mechanism for the initiation of 

coagulation. Intrinsic, or contact activation, has been traditionally associated with the 

presence of foreign substances exposed to flowing blood, such as polyphosphates 

released by dense granules. These molecules initiate the cleavage of factor XII (FXII) 

into activated FXII (FXIIa). Tethered to a surface, FXIIa is a potent activator of factor XI 

(FXI). Studies suggest that a significant number of patients with FXI deficiencies 

experience bleeding in response to coagulation challenges, such as surgery. This would 

suggest that FXI may be crucial to sustained thrombin generation during vascular injury. 

(White-Adams et al. 2009) 

 FXI is a 160 kDa homodimer that circulates in the bloodstream complexed with 

high molecular weight kinnogen (HMWK). Activated FXI (FXIa) is generated by FXIIa, 

auto-activation, or by thrombin. Further, FXIa activation of FIX leads to the convergence 

of the two arms of the coagulation cascade pinpointed at FX activation. (Gruber et al. 

2003, White-Adams et al. 2009, White-Adams et al. 2010) 

 1.3.2-4 Regulation of Coagulation 

 Thrombin, along with its ability to generate additional thrombin via feedback 

amplification, also participates in several events that downregulate thrombin generation 

in order to confine coagulation to the site of vascular injury. This is important because 
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without these mechanisms, the explosive nature of coagulation would generate large 

clots without regulation. In particular, thrombin activates the coagulation factor, protein 

C. Protein C is a vitamin K-dependent protein and is the zymogen precursor to activated 

protein C (APC). APC is responsible for inactivating cofactors VIIIa and Va, thereby 

negatively regulating thrombin generation. (Crawley et al. 2008) 

1.4 COAGULATIVE DISORDERS: THROMBOSIS 

 Activation of platelets, formation of the platelet plug, coagulation, and the 

creation of a tight, fibrin mesh are essential for normal haemostasis. However, these 

events can be triggered in a disease state, such as rupture of an atherosclerotic plaque. 

Pathological stimuli or imbalances in coagulative processes may lead to thrombus 

formation. This event can be a precursor to many diseases such as heart attack, 

pulmonary embolism, or stroke. All of these diseases represent a significant portion of 

morbidity and mortality in advanced nations. (Lloyd-Jones et al. 2010) 

 Combating pathological thrombus formation requires anti-platelet or 

anticoagulation agents, such as aspirin, warfarin, or heparin. Anticoagulants or 

thrombolytic agents (such as tissue-type plasminogen activator, tPA) are used to break 

up thrombi in diseases such as stroke. (Chuang et al. 2001, Gray et al. 2008) 

 Antithrombotic agents are effective in preventing thrombus formation by either 

blocking the recruitment of platelets (i.e. preventing platelet aggregation) or removing 

thrombi from circulation by using fibrinolytic agents. However, usage of these powerful 

anti-thrombotics may carry severe hemorrhagic risk. For example, tPA treatment for 

stroke is currently the only approved treatment in the US but it has been shown to 

increase the instances of brain hemorrhage, has only 3-hour time window for efficacy, 

and can directly damage neurons. Similarly, aspirin exhibits the ability to inhibit 

activation and aggregation of platelet but can also predispose patients to a bleeding 
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diathesis. Oral platelet receptor αIIbβ3-blockers can cause an increase in cardiovascular 

disease mortality. Therefore, it is imperative to find treatments that can address the 

issue of thrombosis while still maintaining hemostasis. (Ansell et al. 2008, Gray et al. 

2008, Lovelock et al. 2010, Wallentin et al. 2010, Akl et al. 2011, Donati et al. 2012) 

 Several novel factor inhibitors have been developed to remedy the problems of 

current anticoagulation therapies. Of particular interest is the role of factor XI (FXI) and 

ways to inactivate this factor. Studies have shown, as mentioned previously, that FXIa is 

required for sustained thrombin generation at the site of vascular injury. However, 

inactivation of this factor using novel monoclonal antibodies may retain the body's ability 

for hemostasis while preventing thrombosis. Two anti-FXI monoclonal antibodies have 

been created - anti-human FXI mAb, 1A6, which blocks the ability to activate FIX, and 

the anti-murine FXI mAb, 14E11, which blocks the ability of FXIIa to activate FXI (Figure 

1.6). (Gruber et al. 2003, Tucker et al. 2009, White-Adams et al. 2009, Berny et al. 2010) 

 
Figure 1.6 - Novel FXI inhibitors. Neutralizing anti-human FXI 
antibody (1A6) inhibits FXIa from activating FIX. Antibody 14E11 
binds FXI and interferes with FXI activation by FXIIa in vitro. 

 

 Several studies have pointed to the correlation between thrombosis and cancer 

(Meyer et al. 1973, Baron et al. 1998, Sorensen et al. 1998, Sorensen et al. 2000, 

Rickles et al. 2001). Cancer metastasis, a process whereby cancer cells detach from the 

primary tumor, migrate in the vasculature, survive the circulating environment, exit into 

new tissue, and colonize in the invaded microenvironment, represents a major source of 

morbidity and mortality in cancer patients. Epithelial cancers, such as certain types of 
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breast cancer, are not well understood in terms of behavior of cancer cells in the fluid 

phase during transit in the vasculature (Berny-Lang et al. 2011). There is mounting 

evidence that supports the idea of coagulation activation in cancer. Therefore, the need 

arises to understand cancer in terms of coagulation in order to elucidate novel treatment 

therapies. (Berny-Lang et al. 2011)  

1.5 MODELS OF THROMBOSIS 

1.5.2 In-vitro models 

 Over the course of new drug evaluation in the field of thrombosis, rational drug 

design and high throughput screening are performed to select suitable candidates for 

possible in vivo studies. Potency assays are performed in vitro to further evaluate 

potential compounds for specified potency and selectivity. They are evaluated further in 

human plasma using in vitro clotting assays such as Activated Partial Thromboplastin 

Time (aPTT) or Prothrombin Time (PT), or in the case of antiplatelet agents, by platelet 

aggregation tests. (Gruber et al. 2003, Pickering et al. 2004) 

 A commonly used in vitro flow model is the parallel plate which mimics the in vivo 

environment of the vasculature. Shear rates, though vary widely in the vasculature, can 

be precisely controlled and manipulated to mimic those observed in both venous and 

arterial environments. The mechanism of action (Figure 1.7) to create the shearing 

environment relies on a syringe pump that either pulls blood through a thrombogenic 

capillary tube at a constant volumetric flow rate. Using a specialized microscope, the 

developing clot can be visualized with the aid of fluorescence or contrast microscopy. 

(Berny et al. 2008, White-Adams et al. 2009, Berny et al. 2010) 
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Figure 1.7 - Schematic of the parallel-plate in vitro flow system. 
Anticoagulated whole blood or reconstituted blood (washed platelets 
and RBCs) are added to a sample reservoir. The blood sample is 
pulled through a protein-coated chamber at desired shear conditions 
with a syringe pump. The flow chamber is mounted above a 
microscope for imaging of platelet interactions and aggregate 
formation during and after perfusion 

 

1.5.1 In-vivo models 

 Currently, in vivo models use rodents to test efficacy of novel antithrombotic 

drugs. Typically, researchers can measure thrombus formation using thrombotic injury 

models that employ the use of either electrolytic or ferrous chloride-induced carotid 

artery injuries. For compounds that are meant for the venous side, several methods 

cause stasis in the inferior vena cava which results in thrombus formation. Formation of 

thrombus in the stasis region can be accelerated by addition of FXa or TF directly.  

 Other animals may be used to confirm and extend results from rodents. Rabbits 

are used in a variety of models, as the blood biochemistry of rabbits is closer to human 

blood biochemistry than rodent blood biochemistry. Additional mammalian models of 

thrombosis include canine, porcine, and non-human primate models. One such model is 

the baboon arteriovenous shunt model, wherein a thrombogenic segment is placed in an 

exteriorized chronic arteriovenous shunt. Blood flow is regulated through the segment to 
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venous levels of shear, and thrombus formation is quantified by measuring the 

deposition of radiolabeled platelets and fibrin. (Gruber et al. 2002, Gruber et al. 2003) 

 The vast majority of in vivo models require controlled incisions in anesthetized 

animals. These produce relatively constant experimental environments as the injuries 

can be experimentally controlled and standardized. Currently, genetic models of 

thrombosis include genetic knock-out mice. These mice have been created with the 

deletion of one specific, coagulation protein. The effects of the deletion can be studied 

and novel therapeutics could be used to mimic the deletion (Ni et al. 2000). Conversely, 

prothrombotic genetic models have been created through the deletion of fibrinolytic 

pathways. These mice tend to have vascular occlusive diathesis. Interestingly, these 

mice may be acceptable models for myocardial infarction caused by thrombosis. These 

models, though useful for genetic studies and for the basis for finding new treatments for 

diseases can be extremely variable and hard to standardize. Ideally, researchers want a 

model for intravascular thrombus formation that is spontaneously triggered in a diseased 

blood vessel. The inherent difficulty of working with spontaneous models has forced 

researchers to employ the use of external injury models or additions of thrombogenic 

surfaces to generate a thrombotic phenotype under well-defined experimental conditions 

in vivo. (Tabrizi et al. 1999, Welsh et al. 2012) 

1.6 THESIS OVERVIEW 
 
 Vascular injury perpetuates a carefully planned and neatly orchestrated 

sequence of events that result in the deposition of platelets and activation of coagulation 

pathways to stop aberrant blood loss. Development of a model to recapitulate a venous 

blood flow system is essential to understanding the molecular pathways of coagulation. 

This information could be used to generate new and efficacious drugs that would 

address the need for anti-thrombotics that retain the overall hemostatic functions of the 
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body. In order to evaluate these potential mechanisms, a validated ex vivo model of 

thrombus formation is needed. This thesis centers on the development of an ex vivo 

model of thrombosis and reveals new insights to the molecular pathways that contribute 

to thrombosis. 

 Chapter Three describes the development and validation of the ex vivo model as 

well as two studies that were used in conjunction with the ex vivo flow model to provide 

new insight into the process of thrombus formation in a variety of settings. In Chapter 

Four, the findings from my thesis research are summarized and areas of interest for 

future work are considered and outlined.  
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CHAPTER TWO:  

COMMON MATERIALS AND METHODS 
 

2. 1 ETHICAL CONSIDERATIONS 
 
Studies in this thesis were conducted using blood from human sources. All human 

donors were healthy and gave full informed consent in accordance with the Declaration 

of Helsinki. Experiments using human donors were performed under approval of the 

Oregon Health & Science University Institutional Review Board.  

2.2 COLLECTION OF HUMAN BLOOD 
 
Human venous blood was drawn by venipuncture from healthy male or female 

volunteers, age 18 or order, who had been aspirin-free for at least two weeks prior or 

ibuprofen-free for at least 6 days prior. Blood was collected into a syringe containing 

0.38% (final concentration, v/v) sodium citrate (a metal chelator) at room temperature. 

The first 1 mL of the venipuncture draw was generally discarded to prevent inclusion of 

tissue factor (TF).   

2.3 FLOW ASSAY 
 
 The events of hemostasis occur in a dynamically changing environment of 

flowing blood. Wall shear stresses on the blood vessel wall range from 10-70 dynes/cm2 

in the arteries and about 1-6 dynes/cm2 in veins. These correspond to shear rates of 

about 260-1800 s-1 and 30-160 s-1, respectively. Connecting these effects of flow and 

stress to flow assays allows for characterization of hemostatic function in vitro.  

Rectangular glass capillary tubes were used to develop a ex vivo thrombosis model. 

This model used gravity to drive recalcified whole blood through the glass capillary tube 
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under a constant pressure gradient (Figure 2.1). The height of the blood required to 

drive this system was calculated using the Navier-Stokes equation within the capillary 

tube, which in the z-direction in Cartesian coordinates is:  
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 [2.1] 

where ρb is blood density, t is time, u is velocity, P is pressure (including effects due to 

gravitational forces), and µb is blood viscosity. Under the assumptions that the flow is 

laminar and does not change with time (steady-state); velocity is only in one direction 

(unidirectional) in the z-direction; the flow is fully developed and does not change as a 

function of the z-coordinate; the width of the capillary (x-direction) is much larger than 

the depth (y-direction) and thus the velocity is only a function of y; and that the blood 

behaves a Newtonian, incompressible, and isothermal fluid in this model, the Navier-

Stokes Equation (2.1) simplifies to Equation 2.2:  
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 [2.2] 

Upon double integration of Equation 2.2, we employed the following boundary conditions 

for pressure: at the entrance of the capillary (z = 0), the pressure term was defined as 

the atmospheric pressure (Pa) plus the pressure resulting from the height of blood (z =hb) 

in the reservoir (ρbghb). At the exit of the capillary (z = -hc), the pressure was defined as 

the atmospheric pressure minus the resulting pressure from the height of the capillary 

(ρbghc) plus  the pressure term from the depth that the capillary was submerged in the 

phosphate buffered saline (PBS; ρpbsghpbs). The boundary conditions for velocity were: 

(1) at the wall, velocity was zero due to the assumption of a no slip boundary condition; 

(Karnicki et al.) at the center of the tube (defined in the y-direction as 2a), the velocity 

was maximum and the gradient of velocity in the y-direction (the shear rate) was zero. 

Solving the Equation 2.2 employing the above boundary conditions and assumptions 
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resulted in Equation 2.3 where the shear rate at the wall (γw) can be calculated given a 

width of capillary (a) and height of the reservoir of blood (Plow et al.): 
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where γw is the wall shear rate, ρb is the density of blood, ρpbs is the density of PBS, hc is 

the height of the capillary tube, hb is the height of the blood in the reservoir, hpbs is the 

depth that the capillary tube is submerged in PBS, g is the magnitude of acceleration 

due to gravity, µb is the viscosity of blood, and a is half the width of the capillary along 

the x-direction. An initial capillary wall shear rate of 350 s-1 can be achieved in a 0.2 x 

2.0 x 50 mm glass capillary tube (Vitrotube™ Catalog # 5002, Vitrocom, Mountain 

Lakes, NJ) by maintaining a height of blood (Plow et al.) in the reservoir at 2.2 cm.  

 

Figure 2.1 - Pressure driven occlusive thrombus formation model. 
Diagram of ex vivo model of thrombus formation. Recalcified blood 
flows through height of the capillary (hc) into a bath of PBS by action 
of the pressure generated by the constant height of blood.  

 

 Glass capillary tubes were coated with variety of thrombogenic proteins at 

varying concentrations according to the experiment (Berny et al. 2010, White-Adams et 

al. 2010, Berny-Lang et al. 2011). The tubes were then washed with PBS and blocked 

with BSA (5 mg/mL) for 1 hour. Coated tubes were vertically mounted below a reservoir 
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(Figure 2.1). Citrated whole blood samples were recalcified with CaCl2 and MgCl2 (final 

concentrations at 7.5 and 3.75 mM, respectively) and serially added to the syringe 

reservoir in order to maintain constant height of blood. Recalcified blood was allowed to 

drain from the reservoir, through the coated capillary, into a PBS bath. Time to occlusion 

of the capillary was recorded as the time blood first exited the capillary into the bath until 

the time the blood ceased to flow from the capillary (Figure 2.2). 

 
 
Figure 2.2 - Time to occlusion for whole blood in the model of 
thrombosis. Over a time period of 30 minutes shown above, whole 
blood flows through the coated capillary into the PBS bath. Time to 
occlusion is recorded from the time blood exits the capillary until the 
time blood ceases to flow from the capillary.  

 

2.4 COMMON REAGENTS 
 
Unless other specified, reagents used for blood collection, preparation of blood 

components, or for flow assays were from Sigma-Aldrich (St. Louis, MO). Recombinant 

tissue factor (TF, Innovin) was purchased from Dade Behrine (Marburg, Germany or 

Deerfield, IL) and fibrillar collagen was from Chrono-Log (Havertown, PA).  
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CHAPTER THREE: 

RESULTS AND DISCUSSION 
  

 The following three sections chronicle the use of the ex vivo model of thrombosis 

in three different scenarios: developing the model, using the model in to characterize the 

role of laminin in thrombus formation, and using the model for to evaluate the 

prothrombotic phenotype of epithelial breast cancer cells. 

3.1 MODEL DEVELOPMENT 

3.1.1 Materials and Methods 
 
 Glass capillary tubes were coated with fibrillar collagen (100 µg/mL) for 1 hour at 

room temperature, washed with PBS, and blocked with denatured bovine serum albumin 

(BSA, 5 mg/mL) for 1 hour. These coated capillary tubes were vertically mounted as 

previously described in section 2.3. Whole blood samples (either treated with inhibitors 

or not) were recalcified with CaCl2 and MgCl2 (7.5 and 3.75 mM, respectively) and 

serially added to the syringe in order to maintain the height of blood at 2.2 cm. Time to 

occlusion was recorded as the time the blood first exited the capillary into the PBS bath 

until the blood ceased to flow from the capillary tube. Experiments were observed over a 

40 minute time period. If occlusion did not occur after 40 minutes, experiments were 

terminated and a time point of 40 minutes was recorded.  

3.1.2 Results and Discussion 

 3.1.2-1 Results  

 Recalcified blood occluded the collagen-coated capillary tub after a mean time of 

17.4 ± 1.7 minutes (Figure 3.1). Occlusion time was significantly increased in BSA-only 

coated capillary tubes (30.6 ± 1.7 minutes, P < 0.05). No occlusion was seen in the 
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absence of the recalcification step. With the addition of platelet receptor αIIbβ3 antagonist, 

epitifibatide, was added (20 µg/mL; Cor Therapeutics Inc South San Francisco, CA), 

occlusion times in the collagen-coated capillary tube were extended to 30.0 ± 3.3 

minutes (Figure 3.1). Thrombus formation was dependent on the action of thrombin. 

Direct thrombin inhibitor, hirudin, was added (20 µg/mL; CIBA-Geigy Pharmaceuticals, 

Horsham, UK) and failed to occlude the collagen-capillary tube over the 40 minutes of 

blood flow (Figure 3.1). Factor X inhibitor, rivaroxaban, failed to occlude the capillary 

tube when added to the blood (10 µmol/L; Bayer Healthcare, Leverkusen, Germany) 

(Figure 3.1). Pretreatment of blood with activated protein C (APC, 5 µg/mL; 

Haematologic Technologies Inc, Essex Junction, VT), a natural anticoagulant that 

inhibits activated factors V and VIII, prolonged occlusion time to 39.4 ± 0.6 minutes 

(Figure 3.1).  

  

Figure 3.1 - Pressure driven occlusive thrombus formation on a 
collagen matrix. Sodium citrate anticoagulated whole blood was 
recalcified with CaCl2 and MgCl2 (final concentrations 7.5 and 3.75 
mM, respectively), serially added to the reservoir (1 mL aliquots), 
and allowed to drain through collagen-coated (100 µg/mL) capillary 
tubes into PBS bath. Experiments were performed in the presence of 
PBS (-), the integrin αIIbβ3 antagonist eptifibatide (20 µg/mL, anti-
αIIbβ3), the thrombin inhibitor hirudin (20 µg/mL), the activated factor 
X (FXa) inhibitor rivaroxaban (10 µM), or activated protein C (5 
µg/mL, APC). Time to occlusion is reported as mean ± SEM from at 
least three experiments. Statistical significance of differences 
between means was determined by ANOVA. *P < 0.05 with respect 
to PBS-treatment (−). 
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 3.1.2-2 Discussion  

 The aim of this study was to successfully recreate the process of intravascular 

thrombosis in a gravity driven, ex vivo model. The times to occlusion (17 minutes) that 

were observed on collagen were within the range of times of occlusion reported for 

mouse vessels exposed to FeCl3. Prolongation of time to occlusion with the addition of 

known antithrombotic reagents (e.g. hirudin, rivaroxaban, epitifibatide) is in agreement 

with established mechanisms of thrombus formation. This model can be used and 

expanded upon to evaluate occlusion times on a variety of surfaces to determine 

mechanisms that regulate coagulation under a physiologically relevant constant 

pressure gradient, to characterize efficacy of novel pharmaceutical agents designed to 

prevent occlusive thrombi, and/or to investigate the role of tortuosity in intravascular 

thrombosis.  

 This work was originally published by Springer; copyright 2010 in Cellular and 

Molecular Bioengineering 2010; Volume, Number 2, Pages: 187-189.  

3.2 THE LAMININ STUDY  

3.2.1 Rationale 

 Initiation of coagulation and thrombus formation following exposure of blood to 

the extracellular matrix protein, collagen, has been extensively investigated. The roles of 

the minor components of the extracellular matrix, such as laminin, remain ill-defined. The 

aim of our study was to define the role of laminin in initiating coagulation and supporting 

thrombus formation under physiologically-relevant levels of shear.  
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3.2.2 Materials and Methods 

 Glass capillary tubes were coated in the manner described above using laminin 

(50 µg/mL), collagen (100 µg/mL), or tissue factor. Surfaces were blocked with 

denatured BSA (5 mg/mL) and washed with PBS. Sodium citrate anticoagulant, donor 

whole blood was pretreated with inhibitors in selected experiments for at least 10 

minutes at room temperature before being serially added (1 mL aliquots) after 

recalcification with CaCl2 (7.5 mM) and MgCl2 (3.75 mM) (Figure 2.1). In select 

experiments, blood was pretreated with corn trypsin inhibitor (CTI, an FXIIa inhibitor; 40 

µg/mL), 14E11 ( 20 µg/mL), or 1A6 (20 µg/mL). Flow through the capillary was driven by 

the force of gravity at a height that would produce an initial shear rate of 300 s-1 

according to Equation 2.3. The time to capillary occlusion was recorded with a maximum 

observation time of 40 minutes (Figure 3.2). Data is shown as means ± SEM. Statistical 

significance of differences between means was determined by ANOVA. Probability 

values of P < 0.05 were selected to be statistically significant.  

 

3.2.3 Results and Discussion 

 3.2.3-1 Results 

 The data demonstrates that capillary occlusion occurred after 22.0 ± 3.2 minutes 

in laminin-coated tubes (Figure 3.2). Similar occlusion times were observed in collagen- 

or tissue factor-coated capillary tubes. BSA coated tubes had occlusion times after 30.6 

± 1.6 minutes. Occlusive thrombus formation on any surface was thrombin dependent, 

as the direct inactivation of thrombin through the action of hirudin (20 µg/mL) abrogated 

occlusive thrombus formation in the capillary under the time limit of 40 minute (Figure 

3.2). Likewise, pretreatment of blood with CTI, 1A6, or 14E11 abrogated occlusion in 

laminin- and collagen-coated capillary tubes (Figure 3.2). In contrast, occlusion times in 
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the tissue factor coated capillaries were equivalent in the presence of vehicle, CTI, 

14E11, or 1A6 (Figure 3.2). 

  

 
Figure 3.2 - Laminin supports occlusive thrombus formation under a 
constant pressure gradient. Sodium citrate anticoagulated whole 
blood (0.38%) was recalcified with CaCl2 and MgCl2 (final 
concentrations 7.5 and 3.75 mM, respectively), serially added to the 
reservoir (1 mL aliquots), and allowed to drain through collagen- (100 
µg/mL), laminin- (50 µg/mL), or TF-coated capillary tubes into PBS 
bath. Experiments were performed in the presence of PBS (vehicle), 
the direct thrombin inhibitor hirudin (20 µg/mL), the activated factor 
XIIa (FXIIa) inhibitor CTI (40 µg/mL), or factor XI inhibitors 14E11 or 
1A6 (20 µg/mL each). Time to occlusion is reported as mean ± SEM 
from at least three experiments. Statistical significance of differences 
between means was determined by ANOVA. *P < 0.05 compared to 
occlusion time in the presence of vehicle on each representative 
surface.   

 

 3.2.3-2 Discussion 
  
 This study demonstrates that immobilized laminin on glass capillary surfaces is 

able to initiate and support thrombus formation and occlusion in the presence of gravity 

driven flow of whole human blood (Figure 3.2).  Laminin joins the registry of ECM 

proteins, including collagen, which contributes to FXII activation during exposure of 
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circulating blood in the event of injury. Further studies are required to define the 

mechanisms by which laminin triggers blood coagulation and platelet recruitment and 

activation. The current study suggests that laminin supports platelet recruitment, 

adhesion, and activation under flow conditions analogous to collagen.  

 This work was originally published in the Journal of Thrombosis and 

Haemostasis in 2010. J Throm. Haemost. 2010 March. 8: 1295-301. 

3.3 THE EPITHELIAL BREAST CANCER STUDY  

3.3.1 Rationale 

 Studies have demonstrated a correlation between elevated levels of circulating 

TF and thrombosis in cancer patients. While TF is a key initiator of blood coagulation, 

cancer cells seem to have several procoagulant functions. In the present study, the aim 

was to characterize occlusive thrombus formation under physiologically relevant shear 

conditions with epithelial cells originating from breast tumors.  

3.3.2 Materials and Methods 

 An anti-TF antibody (clone D3H44) was from Genentech (South San Francisco, 

CA). Rivaroxaban, a FXa inhibitor, was obtained from Bayer Healthcare (Leverkusen, 

Germany). Hirudin, a direct thrombin inhibitor was obtained from CIBA-Geigy 

Pharmaceuticals (Horsham, UK). Dulbecco's Modified Eagle Medium (DMEM) for MDA-

MB-231 and MCF-10A cells, fetal bovine serum (FBS), horse serum, and recominant 

trypsin (TrypLE) were from Invitrogen (Carlsbad, CA). All other reagents were purchased 

from Sigma-Aldrich (St. Louis, MO).  

 MDA-MB-231 and MCF-10A cells were a kind gift from Dr. Tlsty (University of 

California, San Francisco, CA). Cells were trypsinized with TrypLE for 30 minutes at 

37°C, pelleted at 150g for 5 minutes, washed with serum-free DMEM, and resuspended 

to a concentration of 2×106 cells/mL in serum-free DMEM. MDA-MD-231 and MCF-10A 
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cells were cultured and prepared with assistance from Joseph Aslan and Garth Tormoen 

of the McCarty laboratory. 

 As described in Section 2.3, glass capillary tubes were incubated with fibrillar 

collagen (100 µg/mL) for 1 hour at room temperature, washed with PBS, and blocked 

with denatured BSA (5 mg/mL) for 1 hour at room temperature, and washed with PBS. 

These were vertically mounted below a syringe reservoir and submerged in a PBS bath 

(Figure 2.1) Sodium citrated whole blood was incubated with vehicle, MDA-MB-231, or 

MCF-10A cells for 5 minutes. Aliquots (500 µL) of treated blood were recalcified with the 

addition of 7.5 mM CaCl2 and 3.75 mM MgCl2 and serially added to the reservoir to 

maintain a prescribed height that would yield an initial wall shear rate of 285 s-1 through 

the capillary according to Equation 2.3. The time to occlusion of the capillary was 

recorded over an observation window of 60 minutes (Figure 3.3).  

 Data is presented as mean ± SEM. One-way ANOVA with Tukey post-hoc test 

was employed to determine statistical significance between means. Significance 

differences for all tests required P < 0.05 (Figure 3.3). 

3.3.3 Results and Discussion 

 3.3.3-1 Results 

 Time to capillary occlusion was significantly decreased in the presence of either 

MDA-MB-231 or MCF-10A cells (Figure 3.3). This reduction in time to occlusion was 

abrogated by the presence of anti-TF antibody or the thrombin inhibitor, hirudin. The 

time to occlusion for the vehicle was 36.0 ± 2.0 minutes (Figure 3.3). With the addition 

of MDA-MB-231 cells at a concentration of 1×103 cells/mL, a significant reduction of time 

to occlusion was observed (21.0 ± 0.5 minutes; Figure 3.3). At a concentration of 4×104 

cells/mL of MDA-MB-231 cells, there was an even greater reduction of time to occlusion 

(10.0 ± 0.5 minutes; Figure 3.3). Addition of anti-TF antibody to the higher concentration 
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(4×104 cells/mL) of MDA-MB-231 cells increased the time to occlusion to the levels 

similar to vehicle without cells (37.0 ± 1.0 minutes; Figure 3.3). Finally, addition of 

hirudin to the higher concentration (4×104 cells/mL) of MDA-MB-231 cells completely 

prevented capillary occlusion during the 60 minute observation period (Figure 3.3). 

Similar results were obtained for the MCF-10A cell line although the reduction in clotting 

time between vehicle and 1×103 cells/mL of MCF-10A cells was not significant (Figure 

3.3).  

 
Figure 3.3 - Cultured breast epithelial cells promote TF-dependent 
occlusive thrombus formation in flowing blood, ex vivo. Human 
sodium citrate-anticoagulated whole blood was mixed with vehicle, 
MDA-MB-231 or MCF-10A cells (4×104 or 1×103/mL) for 5 minutes at 
room temperature. In selected experiments, blood was treated with a 
neutralizing antibody to TF (anti-TF, 20 µg/mL) or the thrombin 
inhibitor, hirudin (20 µg/mL), in the presence of MDA-MD-231 or 
MCF-10A cells. Treated blood was recalcified with CaCl2 and MgCl2 
(final concentration 7.5 and 3.75 mM, respectively), added to a 
reservoir to a set height, and allowed to drain through collagen-
coated capillaries into a PBS bath. The time to thrombotic occlusion 
(time until blood ceased to flow from the capillary) was recorded. 
Data are mean ± SEM from three or more experiments. *P<0.05 
versus vehicle treatment in the absence of cells. #P<0.05 versus 
vehicle treatment of corresponding cell type at 4×104 cells/mL.  
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 3.3.3-2 Discussion 

 This data suggests that epithelial cells from breast cancers that enter circulation 

under pathologic conditions may contribute to thrombus formation in the presence of 

physiologically relevant shear forces (Figure 3.3). This data also suggests that 

coagulation may be inhibited in the presence of either anti-TF or hirudin. It has been 

shown that the coagulation potential exists in these cell lines upon incubation in whole 

blood however, it has been yet to be determined if and how these circulating tumor cells 

utilize mechanisms of coagulation during transit in the vasculature. What can be 

concluded from these studies is that the in vitro cultured MDA-MB-231 and MCF-10A 

cells lines have procoagulant tendencies that promote occlusive thrombus formation 

during pressure-driven flow.  

 
 This work was originally published by IOP Science in February 2011. Phys Biol. 

2011 Feb; 8(1):015014
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CHAPTER FOUR: 

FUTURE DIRECTIONS AND CONCLUSIONS  
 

4.1 Expand ex vivo model to a quantitative model of thrombosis 

 Chapter 3 describes the development and characterization of an ex vivo model of 

occlusive thrombosis formation on collagen or laminin matrices. In agreement with 

standardized animal models of occlusive thrombus formation, the time to occlusion was 

increased with the addition of inhibitors of coagulation. This model, therefore, is an ideal 

platform for future work to evaluate mechanisms of thrombus formation and to test 

efficacy of novel antithrombotics.  

 Currently, the occlusive model relies on an operator to qualitatively assess the 

time to occlusion. Imaging modalities added to the model would greatly enhance the 

quantitative functionality of the assay. Laser dopler flow (LDF) probe coupled with optical 

coherence microscopy could provide additional data during the experimental observation 

time. Blood velocity exiting the capillary during an experiment could be continuously 

monitored. Standards for occlusion (e.g. 5% of max blood velocity through the capillary) 

would provide a means by which to standardize the ex vivo model.  

4.2 Determine the role of donor characteristics thrombus formation  

 We have used ex vivo model of thrombus formation to determine mechanism of 

thrombosis in many physiological settings. The outcomes of these experiments have 

yielded noteworthy insights to the nature of thrombosis in an in vitro setting. The problem 

with this model, however, is that it does not take into account the inherent variability in 

donor blood. Whole blood differentials, from donor to donor, would unsurprisingly yield 

diversified blood cell counts: red blood cells, white blood cells, platelets, and other 
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proteins necessary for coagulation are present in fluctuating amounts. The reason 

behind these differences lies in the native variability within a donor. Even with the same 

donor, blood counts may significantly change due to the dynamic nature of the body. As 

a general rule of thumb, we have been assuming, for the purposes of our experiments, 

that donor blood is generally the same. This rule, however, can radically change the 

outcome of the experiment and therefore there is a need to quantify the extent by which 

these variables transform the end point of the experiment. The aim of this study would 

be to establish the extent of the variances between these donor qualities in the outcome 

of the diagnostic technique. It has become clearly evident, through several case-studies, 

that patients can have huge dissimilarities in their blood workup. This is natural – each 

person, clinically, may be healthy; however, their range of blood constituents may 

undergo significant changes from day to day and from person to person. Therefore, 

there is a need to assess the variance in the factors that contribute to occlusive 

thrombus formation. From this data, we can interpret the clinical efficacy of the model as 

well as establish a baseline for occlusive thrombus formation. 

4.3 Characterize TF-dependent coagulation kinetics at zero, low, and 
high flow rates 
 
 Tissue factor is an essential transmembrane glycoprotein constitutively 

expressed by extravascular tissues that serves as the physiological initiator of 

coagulation. Tissue factor (TF) activity was thought to be regulated through its limited 

exposure to blood, as TF exposure only occurred in the event of blood vessel injury. This 

regulatory mechanism is unique from the other coagulation factors, which circulate in the 

blood as inactive zymogens or procofactors. Recently, the discovery that TF is persistent 

at low levels within the vasculature (circulating tissue factor, CTF) has challenged 

conventional views of TF regulation through limited exposure. CTF has been shown to 

contribute to experimental thrombus formation, suggesting a role for CTF in hemostasis 
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and demonstrating that CTF is capable of driving coagulation. However, CTF has also 

been linked to several disease states associated with thrombotic and hemorrhagic 

phenotypes. Therefore, the influence of CTF on coagulation is variable, and the 

conditions that drive CTF to induce coagulation are not well understood. It has not been 

postulated how CTF fits into the ethos of hemostasis, where coagulation factors are 

present but only activated in the event of blood vessel injury.  

 The occlusive model of thrombosis assay can be utilized to elucidate the 

coagulation kinetics for CTF in both closed and open systems, and under conditions of 

flow relevant to venous and arterial shear rates. Characterization of TF-dependent 

coagulation kinetics at zero, low and high flow rates would determine the role of shear 

rate and transport parameters on the coagulation kinetics of TF under physiologically 

relevant flow conditions. Using this data, it could be determined whether CTF 

coagulation in the circulation is transport-limited. 

4.4 Conclusions 
 
 The work presented in this thesis has contributed to studies pertaining to the 

mechanisms further linking platelets, the ECM, or procoagulant cancer cells to 

coagulation. These mechanisms were elucidated using a validated model of occlusive 

thrombus formation under physiologically relevant flow conditions.  
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