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Abstract approved: 

A model has been developed for accurate emulation of the complex behavior 

of high performance dynamometers used in a broad range of applications including 

manufacturing systems, biomechanics research, and crash testing. The key objec­

tive of this research has been to reach the proper balance between the accuracy of 

emulation and complexity of the model and user-friendliness of the modeling pro­

cedure. As a result, a versatile, step-wise computer aided methodology was devel­

oped. The research focused further on the development and validation of efficient 

procedures and analysis techniques that allow rapid identification of distinctive dy­

namic relationships in force sensors and encapsulating these relationships in ana­

lytical, constitutive models. 

The assumption of rigid body, lumped parameter nature of the modeled class 

of dynamometers underlie the methodology used in this research. This assumption 

is justified since the dominant source of the system's dynamic behavior is the elas­

tic coupling between individual components, rather than deformations of the com­

ponents themselves. Lagrange's energy formalism and Mathematica' s symbolic 

programming environment, which facilitates arbitrary precision computations, are 

utilized for model generation. 

Experimental analysis was implemented to verify the developed model. The 

actual motion of the dynamometer components caused by external excitation forces 

was studied and compared with responses predicted by the model. Spatial dis­
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placements were obtained by analyzing acceleration signals from several sensors 

placed in suitable locations on the tested system. To enhance and speed up the vali­

dation ofmodeling results, a visualization module was developed. It allows rapid 

comparison and rigorous analysis of the spatial motion recorded from the actual 

system with the model based prediction. 
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NOMENCLATURE 

(XYZ) = global coordinate system comprises of X,Y, and Z axes 

(X.YZ)A = coordinate system at the plate's center mass comprises of XA,YA, and 

ZA axes 

(XYZ)/ = instantaneous coordinate system of the plate comprises of XJ,YJ, and 

Z/axes 

(XYZ)R = reference coordinate system of the plate comprises of XR,YR, and ZR 

axes 

ac ' a p = accelerations of point C and P, respectively, in (X.YZ)R 

acru = calculated acceleration 

a i •j = acceleration in i direction at at comer j; i=x, y, and z; j=C, 1,2, and 3 

as = acceleration signal from sensor 

BSDE = matrix of damping of SDE 

bpij = damping constants of SDE connected between plate and base in 

locationj with i direction; i=x, y, and z; j=l, 2, 3, and 4 

C = origin of (X.YZ)/ 

CR = origin of (X.YZ)R 

Cs = calibrated factor [V/g] (sensitivity) 

D! = 4xl matrix describes a vector from point ito pointj 

dc,d p = generalized coordinates of point C, and P, respectively, with respect 

to (xyz) 

d I = generalized coordinate of point C with respect to (XYZ)R 

do =generalized coordinate of point CRwith respect to (XYZ) 

Fi = input force in i direction 

G =system's center of mass 

Gij =transfer function of i direction from the j direction input 

GD(z) = discrete-time transfer function 

G = acceleration due to gravity 

Ii,r = inertia matrix 

i = index denoting the direction 



NOMENCLATURE (Continued) 

K = vector of magnification coefficients 

kpiJ = spring constants of SDE connected between plate and base in 

location j with i direction; i=x, y, and z; j=l, 2, 3, and 4 

L = Lagrangian function 

mi = moment about i axes 

mp, ms = mass of plate, mass of base 

o = origin of the (XYZ) 

P = position vector for the location of SDE 

P = arbitrary point on a rigid plate 

Qj = vector of external force and torque associated with i-th generalized 

coordinate 

qj =vector of generalized coordinate for i-th 

41 = time derivative vector of generalized coordinate for i-th 

rx, ry, rz = distances between accelerometers 

Sv = the sensitivity of accelerometer 

T = sampling period 

T = total kinetic energy 

Tj = total kinetic energy of i-th body 

U = total potential energy 

Uj = total potential energy of i-th body 

T m = total homogeneous transformation matrix 

Tp = 'Pitch' transformation matrix 

Ta = 'Roll' transformation matrix 

TT = 'Translational' transformation matrix 

Ty = 'Yaw' transformation matrix 

TMP = transformation matrix of the platform 

TMB = transformation matrix of the base 

TF = transfer function 

U(s) = input signal in s domain 

V0 = amplifier output voltage 



NOMENCLATURE (Continued) 

x, y, Z = translations of point G relatively to point 0, parallel to X, Y, and Z 

axes 

xc' yc' Zc =translations of point C relatively to point 0, parallel to X, Y, and Z 

axes 

X G ' YG' za = translations of point G relatively to point 0, parallel to X, Y, and Z 

axes 

XI ,y I,ZI =translations of point C relatively to point CR, parallel to X, Y, and Z 

axes 

Y(s) =output signal in s domain 

(X =angular accleration of point P in (XYZ)/ 

(Xj =angular accelerometer component of vector (X ; i =X, y, and Z 

~t =sampling period 

e, cp, '" =rotations of (XYZ)G around X, Y, -and Z axes, respectively 

eo CPc' "'c =rotations of (XYZ)/ around X, Y, and Z axes, respectively 

el, CPI' "'I =rotations of (XYZ)/ around XR, YR, and ZR axes, respectively 

eo' CPo' "'0 =rotations of (XYZ)R around X, Y, and Z axes, respectively 

OJ =angular velocity of point P in (XYZ)/ 

tiJ j =angular velocity component of vector OJ; i = X, y, and z 

C =damping coefficient 



COMPUTER-AIDED MODEL GENERATION FOR HIGH 

PERFORMANCE DYNAMOMETERS 

1. INTRODUCTION 

Model derivation has many important aspects for understanding various 

dynamic systems. Properly emulated dynamic models not only provide the 

information of a system without troublesome experimental analysis, but also make 

it possible to predict the response of the system given certain excitation input. The 

dynamic properties of a system should be carefully considered during the modeling 

procedure to make it closer to the real system. Also this modeling should not be too 

complicated so that it is manageable for any analysis. Model derivation needs 

modification to make is closer to the real system or to make it a simpler one. For 

these kinds of modification, there should be a credible standard to for comparison. 

Experimental analysis is necessary for that comparison. Proper model derivation of 

a system base on comparison with experimental analysis is a main goal of this 

research. 

1.1 MODEL GENERATION AND VALIDATION 

Although more computation is needed for symbolic manipulation, the benefits 

are worth it. First, once the symbolic program is developed, it can be easily 

modified without re-modeling for different configurations. Second, it provides 

almost infinite precision of calculation because it uses symbols instead of numbers. 

And third, it gives an intuitive idea about the program because of symbols. 

In the modeling of a dynamometer, a rigid body assumption is applied. The 

dynamometer consists of two rigid plates connected with each other with spring 

and damping elements. Lagrange's energy formalism is implemented to obtain the 
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equations of motion. For ease of computation, linearization procedure is applied 

with the small angular rotation assumption. 

Experimental analysis should be carefully considered because is provides good 

validation of the model. The signal procedure, that is necessary for the calculation 

of displacements from the raw signals, is taken with deliberate steps. 

1.2 SCOPE OF WORK 

The system, which for this research is dynamometer, needs to be simplified to 

be emulated in a manageable way. Thus the model in this research is considered as 

rigid body motion. Flexible body motion is beyond the scope of this research, so 

vibration of flexible mode should not be a dominant factor to expect reasonable 

result from the model of system. 

Laplace transform is applied to get transfer function from the differential 

equations of motions. The reason to use Laplace transform instead of state variable 

is to reduce the amount of computation. 

1.3 CHAPTER OVERVIEW 

In Chapter 2, distributed parameter system and lumped parameter system are 

presented as common methodologies. And three different formalism techniques are 

introduced. The advantages and disadvantages of using symbolic and numeric 

models are also discussed in this chapter. 

The methodology and formalism used in this research are generally discussed 

in Chapter 3. In Chapter 4, the actual model derivation of dynamometer is taken 

into account. Several techniques for experimental validation are presented in 

Chapter 5. Signal processing procedures are carefully considered for the signals 

captured from the accelerometers, and the results of these procedures are compared 

with the results of the simulation of the model. 
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Visualization of excited dynamometer is included in Chapter 6 as an 

application of this research. In Chapter 7, conclusion of this research and the way 

to go in the future research are outlined. 
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2. LITERATURE REVIEW 

In each procedure for CAMGHD1
, there can be many different ways to 

approach. Each method has its own advantages and disadvantages. Decisions such 

as whether to use symbolic or numeric computation, distributed and lumped 

systems, or linear or nonlinear calculation should be chosen so that the developed 

model satisfies the required conditions. 

This chapter outlines the structure configuration and the theories of dynamics 

used in this research. 

2.1 BUILDING MODELS 

It is important to note that no system can be modeled exactly; inclusion of all 

the parameters affecting a particular system would be impossible to construct and 

analyze [Kamopp and Rosenberg, 1975]. On the contrary, if the model is too 

simple by too much simplification, it will not represent the real system. The desired 

model of system should be one that is manageable, but also one that includes the 

most important information about the system. 

The first step for modeling is to disassemble the real system into components 

in terms of dynamics. Distributed parameter system or lumped parameter system 

can be considered for this first step. 

If flexible components make up the system, using a distributed parameter 

approach can be a good decision. And a lumped parameter approach is a good 

decision for systems with rigid components. Also, the combination of these two 

approaches can be applied. 

1 CAMGHD : Computer-Aided Model Generation of a High performance Dynamometer 
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(a) (b) 
Figure 2.1: Pendulums with (a) lumped and (b) distributed masses. 

2.1.1 Distributed Parameter System 

Distributed or continuous parameter method can be applied for the dynamic 

system where the flexible modes of a particular body are significant. The 

distributed parameter system typically is a better representation of real system. 

However it also typically requires greater computation compared with lumped 

parameter system .. 

Since these structures are truly "continuous", they possess an infinite number 

of degrees of freedom [Tomson, 1981]. For example, exciting a simply supported 

flexible machine tool spindle with a continuous mass and elasticity distribution can 

result in any of an infinite number of mode shapes. 

Although the use of partial differential equations provides an excellent 

description of the system, they do not always produce obtainable results from 

controls theory for complex shapes or multiple bodies in the system. However, 

since in most cases the dominant modes are the lowest few, these modes shapes can 

be approximated by a polynomial fit for the spindle deflection [Ewins, 1984]. The 

result is a set of ordinary differential equations in place of a set of partial 

differential equations [Shabana, 1991]. 
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The next question is which polynomial to use. Indeed, as structural shapes 

increase in complexity, the choice of polynomial fit becomes obscure. This 

problem can be remedied by the use of Finite Element methods. With these 

methods the structure is divided into simpler elements, and the deformations within 

each element are described by interpolating polynomials [Shabana, 1991]. These 

methods are often successfully implemented with good accuracy where body 

deformations are of a concern, but those require more intensive computation 

[Came, et. AI., 1988; Cheung and Leung, 1991; Fagann, 1992; Friswell and 

Mottershead, 1995; Weaver and Johnston, 1987; Gysin; Zatarain, 1998; for 

spindles, Reddy and Sharan, 1987; Comparin, 1983; for machine tools, Bianchi and 

Paolucci, Weck, 1984, Brisbone, 1998]. 

Figure 2.2: Simply supported fixed & free flexible spindle with excited first mode. 

2.1.2 Lumped Parameter System 

In many cases, systems do not have to be considered as distributed parameter 

method if the deformation of bodies within the system is not a significant factor 

compared with dynamic behaviors of the structure. For these systems, the elastic 

couplings between individual components are the dominant dynamic factors. And 

each component of the system is considered a rigid body. 

One example of such a structure is the spindle housing system shown in Fig. 

2.3 [Aini, et. AI., 1990;Matsubara, 1988;Shin, et. al., 1990; Spiewak, 1995; 

Weikert, et. al., 1997]. In machining processes, low to medium frequency dynamics 



7 

of the structure playa critical role in tool path errors. This can be successfully 

modeled by the use of lumped parameters, since the housing and spindle structure 

are of sufficient rigidity such that their flexible modes (usually high frequency) 

have little influence on the dynamic frequency range of interest [Comparin, 1983; 

Weck, 1984; Weikert, et. aI., 1998; Brisbone, 1998]. 

Rigid support 
~ 

Housin 

Figure 2.3 Rigid body model of spindle housing structure [Spiewak, 1995]. 

A pair of bearings, which are considered as springs and dampers, couples the 

spindle to the housing. Because the mass of the bearings is small compared to the 

spindle and housing, omission of these masses will not affect the results of the 

model. By that omission, the computation for model generation can be greatly 

reduced. 
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Advantages of the lumped parameter method include a reduced number of 

generalized coordinates, use of ordinary differential equations, simplified 

computations, and the existence of an obtainable result. 

Figure 2.4 Rigid body approximation of fixed & free spindle mode shape. 

In the case where there exists both dominant flexible mode and rigid body 

motion, it is useful to combine both methods [Weck, 1984]. In addition, 

formulation of the equations of motion for deformable bodies often finds it 

convenient to separate out the rigid body and deformational contributions from the 

overall motion [Ginsberg, 1995; Marion and Thornton, 1988; Weck, 1984]. 

2.2 MODELING METHODOLOGIES 

There are three widely used formalisms: Newton [Marion and Thornton, 

1988], Lagrange [Ginsberg, 1995; Marion and Thornton, 1980; Scheck, 1994], and 

Kane [Kane and Levinson, 1985; Kane, et. al., 1983]. Each of these three 

methodologies have their own advantages to use in different structure 

configuration. 

Newton's Laws of Mechanics is the most accepted method for modeling 

systems. Newton's Second Law is used to obtain the ordinary differential equations 

of motion from a certain system. This is the most straightforward and intuitive way 
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for modeling and for the verification of the already developed models. For the 

system with simple structure, this is still an adequate method, but for the complex 

system, this is not a viable method to use. 

Lagrange's method is a suitable for structures with increased complexity. 

Contrary to Newton's method, which is concerned with forces and torques, the 

Lagrange's method considers the energies (kinetic, potential and dissipative) of the 

system. Although more abstract, the generated equations are nearly identical to 

Newton's approach only in a slightly different form [Rosenthal and Sherman, 

1986]. Defining the energies of a particular system is much easier than defining the 

forces and torques of a system. Thus this research uses Lagrange's energy method. 

Kane's method deals with generalized active and inertia forces [Kane, et. al., 

1983]. Using the cancellation of forces that contribute nothing on the body of a 

system, simplified equations can be derived. This is the most compact form with 

the easiest way to obtain the equations of motion. But there is also a set of 

associated kinematical equations that must be satisfied when using this method 

[Ginsberg, 1995]. 

Lagrange's energy formalism was chosen in this research for the sake of 

convenience of using symbolic problem-solving environment provided by 

Mathematica. 

2.3 NUMERIC VS. SIMBOLIC MODELS 

As used in early-automated modeling, a numeric method can be free from 

intensive computations. But it also has several drawbacks, including: 

1. 	 Repeated setup of the dynamic equations at each computation step or 

integration, resulting in excessive operations and extensive computation 

time. 

2. 	 Difficulty in implementing control strategies in numerical equations, 

obstructing real time operations as required by some multi-body systems. 
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3. 	 Unclear physical insight into the system as a result of numerical 

expressions. 

4. 	 Equations of motion existing as only mathematical operations in the 

computer program [Lieh and Haque, 1991; Hale and Meirovitch, 1978]. 

Numeric algorithms can give accurate results, but not sufficient for the 

reasons mentioned above. The fascinating advantages of using symbolic method 

include: 

1. 	 Infinite precision, since calculated values are not subjected to 


accumulated errors caused by limited machine precision. 


2. 	 One time model derivation, since iterative calculations only involve 

parameter value substitutions. 

3. 	 Clear intuitive insight into the physical system. 

4. 	 Straightforward control strategy implementation as a result of (3). 

5. 	 Greater accuracy of estimating unknown parameters. 

6. 	 Ability to potentially produce closed form solutions, as opposed numeric 

computations that give iterative solutions [Brisbone, 1998]. 

2.4 MODEL LINEARIZATION 

Few physical elements of a system in nature display truly linear 

characteristics. Typically, the equations of motion for dynamic systems are 

nonlinear. Such equations are much more difficult to solve than linear ones, and the 

kinds of possible motions resulting from the nonlinear model are much more 

difficult to categorize than those resulting from the linear model [Gene F. Franklin, 

1994]. The more important difference is the behaviors of the linear and nonlinear 

models. The behavior of a linear model can be understood much more 

comprehensively and with a small fraction of the effort required to analyze a 
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nonlinear model. As a result, an important aspect of any modeling program is 

effective and accurate linearization of the system where appropriate. 

Several attempts have been done to make linearization more efficient. Miller 

and White used an innovative approach by writing all transformation matrices as 

exponentials, making differentiation and thus linearization easier [Miller and 

White, 1987]. 

For most systems, the movement of interest usually involves small 

displacements or rotations about a nominal or equilibrium position. This nominal 

position is not necessarily fixed, but can change with varying configurations of the 

system. For such a system, the most widely used method of linearization is a multi­

variable Taylor Series expansion about the nominal position [Ginsberg, 1995; 

Marion and Thornton, 1988]. Some that is done to perform the expansion on the 

complete nonlinear equations of motions, while others perform the expansion at an 

earlier stage of equation development. For the Lagrange's energy formalism, the 

simplest form of linearization is accomplished by expanding the energies, which is 

also done in this work. Another advantage that arises from the expansion of 

potential energy is a pre-check concerning verification of the model, which is 

explained in the next chapter. 

2.5 CLOSURE 

Structure configuration and dynamical theories are introduced. The 

comparison of distributed and lumped parameter system provides a guide for 

choosing proper, modeling methods of a system. Widely used formalisms such as 

Newton's, Lagrange's, and Kane's method, are mentioned. The advantage of 

numeric method provides the reason of using numeric method in this research. 

Linearlization, which is essential for manageable computation is also mentioned. In 

next chapter, procedures of derivation of the model are described. 
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3. COMPUTER AIDED MODEL GENERATION 

For the complete understanding of a certain dynamic system, having various 

analysis approaches with different method, would be useful, or might be necessary. 

For example, methods such as simulated response to actual input, location of poles 

and zeros, test for the controllability, and modal properties of system could be 

considered. To perform these kinds of analysis, different forms of model such as 

the transfer-function form, or the state-variable form are required. Also it should be 

possible for the model to be converted in different domains including continuous 

time domain, Laplace domain, or discrete-time domain. General concept of 

modeling is described in this chapter. 

3.1 GENERALIZED RIGID BODY SYSTEM 

Lumped parameter method is applied in this research to represent the 

dynamic relationships between forces and displacements. The components of each 

body are connected by 'spring and damper element' (SOE). The bearing couples 

such as shown in fig. 2.3, can be an example of system represented by SOE. Each 

rigid body has six degrees of freedom (OaF). Three OaF from translations, and 

other three OaF from rotations. So If there are 'n' number of rigid body, whole 

oaF will be 6n. 

Efficient mapping between the actual system's components and their 

representation in the model is possible by the method mentioned above 
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y 

Figure 3.1 Generalized multi-degree-of-freedom rigid body system [Spiewak,1995]. 

3.2 LAGRANGE'S ENERGY FORMALISM 

After defining the generalized model structure, the equations of motion can be 

derived. Since defining the energies of arbitrary structure is generally simpler than 

defining the forces, Lagrange's Energy Formalism is used in this research. 

For the conservative system, the Lagrange's equations can be stated as 

~ aL _ aL =0 (3.1)at aqj aqj 
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The choice for L is not unique, but the natural choice (and the convention followed 

here) is to set 

L=T-U (3.2) 

where T represents the kinetic energy and U represents the potential energy. 

External forces acting on the system are taken into account by Lagrange's 

equations of the second kind [Pandit, 1991], and shown as below 

~ aL _ aL =Q. (3.3) 
at a4 j aqj I 

where Qi represents the external forces or torques associated with the i-th 

generalized coordinate. 

3.3 ASSOCIATED SYSTEM ENERGIES 

Instead of considering force equilibriums for the direct derivation of equation 

of motion from a structure, in Lagrangian method, a concentration on energies of a 

structure is taken. The kinetic, potential, and damping (dissipation) energies are the 

only of concern. Fig.3.1 shows the dashpots and springs which are main sources of 

all energies of the structure. 

3.3.1 Kinetic Energy 

In assumption that SDEs are massless, the only contributors to the kinetic 

energy are the movements of the rigid bodies themselves. So the kinetic energy can 

be separated into two parts, namely translational, and rotational. 

(3.4) 
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the translational kinetic energy is written as 

(3.5) 

where mj is mass matrix in diagonal form and (t,T = {Xi' Yi,Zi } is the generalized 

translational vector of velocity for the i-th rigid body in the global reference frame. 

The generalized rotation vector of velocity for the i-th rigid body is also 

defined as (t,r = ~i'~i ,<Pi}' as it is for translational vector of velocity. The 

rotational kinetic energy is written as 

T (. ) 1 ·rI . (3.6)i,rO! qi,r = "Zqi,r i,rqi,r 

The inertia tensor, Ii,r , will always be diagonal as long as the local coordinate axes 

correspond with the principal axes of inertia [Marion and Thornton, 1988; 

Ginsberg, 1995] for the body. This is not always the case, but it is generally less 

tedious to define the principal inertias (diagonal elements of the tensor) and 

transform to another configuration rather than fill in all the elements of the tensor 

for each change in orientation. 

By defining transformation matrix A.i' the rotations about global axes can be 

easily obtained from the rotation about the local axes. Especially, more than two 

rigid bodies are concerned, the rotation about global axes is useful. 

q 'R =A..Rq·I, I, I,T 
(3.7) 

And for the sake of clarity, the transformation matrix A.i is assumed as time 

independent, so the rotational velocity about the global axes is obtained in same 

way. 

• '1' q 'R =A·Rq·I, (3.8)I, I,r 
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Figure 3.2 Transformation, Ai •R • relating rotations between local and global 

coordinates. 

Substituting Eq.3.8 into Eq.3.6, the rotational kinetic energy for the i-th rigid in a 

global coordinates are obtained as 

(3.9) 
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For the orthogonal matrices, the inverse matrices are equal to the transpose 

matrices. And the rotation matrix is one of the orthogonal matrices. So the Eq.3.17 

can be simplified as 

7: C ) = .!.. . T A I AT • (3.10)i,rot qi,R 2 qi,R i,R i,r i,Rq 

Substitution of Eq.3.5 and Eq.3.l0 into Eq.3.4 gives the total kinetic energy 

for the i-th rigid body about global axes, and shown as 

7: (q' 'T,q· 'R) = '!"q'TTm'Tq' 'T + '!"q'TRA'R l ATRq· 'R (3.11)
I ,rot 't I. 2 I. J, I, 2 I. J, l,r I, I, 

The total kinetic energy for a system of n rigid bodies is simply the summation of 

the kinetic energies of each individual body 

n 

T = ~7:(q. 'T,q'R) (3.12)£..i I J, I, 

i=1 

3.3.2 Potential and Damping Energies 

The model shown from the Fig.3.1 has two kinds of potential energies, 

namely due to gravitation and elongation of SDEs. Gravitational potential energy 

can be obtained by using the vertical displacement of the rigid body from the 

original position. As follows 

(3.13) 

The second form of energy storage is in compression or tension of the SDEs 

between the bodies. The elongation of any elastic element between bodies i and j 

that is due to a motion of the i-th body can be written as 
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[·k =[·k(q·) k=I,2, ... ,m (3.14)I, I, I 

where m is the number of springs which connecting the two bodies, and 

qi = {Xi'~ ,Zi ,8i,q,i ,<Pi} is the coordinate vector including translations and 

rotations of the body i. 

All elongations between the bodies due to the movement of the i-th body can 

be written as 

(3.15) 

If the coordinate of the j-th body is concerned in a same way, the potential energy 

between the i-th and j-th body due to the elongation of SDE between the two bodies 

can be calculated as 

(3.16) 

where K SDE represents the stiffness matrix which consists of stiffness constants of 

the SDEs which connect the two bodies. And by summing all potential energy of 

'n' number of rigid bodies, the total potential energy is given as 

(3.17) 

The dissipation energy can be calculated in the similar manner to the 

elongation energy, except the velocity of deflection is used instead of the 

displacement 

(3.18) 
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where B SDE represents a diagonal matrix of damping of the SDEs between the i-th 

andj-th bodies. Again, summation over all n bodies gives the total damping energy 

n n 

D = LLDij(qi,Qj) (3.19) 
i=1 i=j 

3.4 THE EQUATIONS OF MOTION 

By substituting Eq.3.l0 into Eq.3.11, the simplified result is obtained [Pandit, 

1991] as 

!!...( aT J- aT + au =Q. i =1,2,... ,6n (3.20)
dt aqf aqf aqf I 

where Qj represents the external force associated with the i-th generalized 

coordinate from the global list of generalized coordinate q g representing all n 

bodies. Modifying this to include the damping energy is accomplished by the 

addition of another term 

[Pandit, 1991] 

!!...( aT J- aT + au + aD =Q. i =1,2,... ,6n (3.21)
dt aqf aqf aqf aqf I 

For the multi-degree-of-freedom system, by solving Eq.3.21, the equations of 

a motion for each generalized coordinate is obtained. In Mathematica code2 
, 

Eq.3.29 is represented successfully by the following formula. 

2 The whole Mathematica code is attached in Appendix B 
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LagrEqns[T_, U_, Damp_, Q_List, Coor_List] := 

Flatten [MapThread[ 

{d (d H2T) - d#2(T - U) + dd #2Damp - #1 =o} &,t , I 

{Q, Coor}]]; 

To derive the equations of motion, the above function is provided with the 

kinetic energy, potential energy, dissipation energy, external forces, and 

coordinates of the system. 

3.5 CLOSURE 

General methodology of modeling by the use of Lagrange's energy method is 

discussed in this chapter. Properly defined energies with the appropriate 

coordinates provide the equations of motion by using Mathematica with the 

Control System Professional package. For the modeling of a complicated system 

including many rigid bodies, Lagrange's energy method gives a clear solution, 

because the only concerns in this method are energies rather than force­

equilibriums in Newton's method. 
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4. MODELING OF DYNAMOMETER 

In the structure of the dynamometer, a prismatic platform made of high 

strength steel is supported by the spring and damping elements (SDEs), as shown 

in Fig 4.1. Compared with the mass of the platform and base, the masses of the 

SDEs are negligible. So it is possible to assume the SDE as massless without 

affecting the result of analysis. Assuming that the platform and the base are rigid 

bodies, each of these has six degrees of freedom, three from translations and three 

from rotations. Considered as dynamic system, the dynamometer exhibits twelve 

resonance frequencies associated with its vibration modes [Chung, 1993]. 

- P pph P pph Ppph P pp1 are the points on the bottom face of the platform, which are 
attached to SDEs. 

Figure 4.1. Mechanical configuration of the dynamometer under consideration.3 

3 SDEs between the base and the foundation are omitted in the Fig.4.I. 
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4.1 TRANSFORMATION MATRICES 

Twelve generalized coordinates are used for modeling of the dynamometer, 

namely six coordinates for the platform, and the other six coordinates for the base. 

Mass, inertia, stiffness and damping for each body are defined by suitable matrices 

as discussed in Chapter 3. 

Combining rotational and translational motions of the platform and base, 

partial transformation matrices are derived. Next, by mUltiplying these 

transformation matrices, total homogeneous (4x4) transformation matrices are 

developed. For small angular displacements, the total transformation matrix of the 

platform is written as 

1 -1/11* ttl cP 1*[t] x1*[t] 
1/11*[t] 1 -e1* ttl y1*[t]

'IMP = 
-cP1*[t] e1*[t] 1 z1*[t] 

o o o 1 (4.1) 

x1*[t], y1* [t], z1*[t] : 

Translational coordinates ofplatfonn, :incrarental carpanents only 

e1*[t], cP1*[t], 1/11*[t] : 

Rotational coordinates ofplatfonn, incrarental ccnpanents only 

The total transformation matrix of base has the same structure while the 

coordinates are the translations and rotations are of the base. 

1 -1/12* ttl cP2*[t] x2*[t] 
1/12*[t] 1 -e2* ttl y2*[t]

'IMB= 
-cP2* ttl e2*[t] 1 z2*[t] 

o o o 1 (4.2) 

x2*[t], y2* [t], z2*[t] : 
Translational coordinates of:base, incrarental carp:nents only 

e2*[t], cP2* [t], 1/12*[t] : 

Rotational coordinates of:base, incrE!lBltal carpcnents only 
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4.2 DEFINING POSITION VECTOR AND ENERGIES 

The configuration of SDEs. as supponing elements between the platform and 

the base, and between the base and the foundation . define the position vectors of 

SDE's connection points on each with the platform and base as shown in Fig. 4.2 

[Nickel, 1999] . 

y 

z 
P~·o 

P- l'.. 

H, 

H.. 

H, 

H~ 

Platform 
H, = 0.022 
H.. = 0.012 

Base H, =0.026 
H~ = 0.03 

FoundationI l'bI I 

Figure 4.2 Simplified diagram of the Dynamometer configuration with Spring & 
Damping Elements (SOEs). 

P1'1'\: Position vector of the platform-base connection4
, point #1 on the 

P

P

platfonns. 


Ppb\: Position vector of the platform-base connection, point #1 on the base. 


bbl : Position vector of the base-foundation. point #1 on the base. 


bfl : Position vector of the base-foundation, point #1 on the foundation. 


Each individual position vector is defined as shown in Fig 4.2. 

l'",,= {-ai, bl, hi , !) 

• the first subscript 'p' stands for the platfonn-base connection. 


S the second subscript 'p" or 'b' stands for the point on the plntfonn or on the base, respectively. 
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Ppp,= {aI , bl , hI, I} 


= {aI, -bl , hI , I} 


P

PppJ
 

pp '= {-aI , -bl , hI. I} 


x 

.' 

H, z• Platform 

a2 

Base 

L2 

Figure 4.3. Configuration of the platfonn and the base [Dimensions are given in 
Appendix A.2] . 

Four position vectors on each body, such as Pppl, Ppp2, Ppp3, and Ppp4 on 

the bottom face of platform, represent the position of each body in every moment 

and these points of position vectors are used to calculate all energies discussed in 

Chapter 3. For example, fOUf position vectors on the bottom face of platform are 

expressed as a matrix in Mathematica as 
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VectorsOnPlate=Transpose[ {Ppp 1 ,Ppp2,Ppp3,Ppp4 } ]; 

MatrixForm[VectorsOnPlate] 

-al al al -al 
bl bl -bl -bl 

h1 h1 h1 h1 

1 1 1 1 
 (4.3) 

4.2.1 Potential Energy 

Deflection caused by the rotational and translational motion of each body 

generates the major components of potential energy of the system, u, that is used 

for defining equations of motion by use of Lagrange's method. Deflections of the 

elements between the platform and the base, which are introduced in Eq.3.15 are 

calculated by the following expression. 

(TMP - I) Ppp - ( TMB - I) P pb (4.4a) 

Which in Mathematica is expressed as 

deflSpr~latfonn= 

(('IMP- Identit:yl>Btrix[4]) .VectorsCklPlate­


('IM8- ldentit:yl>Btrix[ 4] ) . VectorsCktI'q;i)fBase) 
 (4.4b) 

The stiffness matrices of elements between the platfonn and the base, and 

between the base and the foundation, which are introduced in Eq.3.16 are defined 

in Mathematica as, 

~ kpQ kpa ~ 
stiffArrayOtBP = kpn. kpY2 kpyJ kpy4 • 

~~~~'[ 
o 0 0 0 ,  

1<tKJ. kl:iC2 kbx3 ktK4)  
stiffArrayOfBF =  klm. k},a ktJi3 kttI4j.

kc£l ktzz ktz3 ~ I 

o 0 0 0 (4.5) 
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With the matrices of deflection and the matrices of stiffness defined above, the 

total potential energy of SDEs between the platform and the base designated as 

"TotalPotOfBP" is calculated in Mathematica as 

res1 ='Iranspose[deflSpri.nJBa,sePlatfoDn] * stiffArrayOfBP * 
deflSpringBasePlatfoDni 

Clear [i, j, tJI..SJfBF] 
For[tJI..SJfBF= 0; i = 1, i ~ 3, i++, For[j = 1, j ~ 4, j ++, 

'IbtalPotOfBP = UI.SOfBF +1/ 2 res1 [ [i, j ]]]] ; (4.6) 

Similarly, the total potential energy of the SDEs between the base and 

foundation, ''TotalPotOBF' is found in Mathematica as 

res2 ='Iranspose[deflSpdnJBaseFcundation] * stiffArrayOfBF* 
deflSpringBaseFcundation; 

Clear [i, j, tJI..SJfBF] 
FoqtJI..SJfBF=O;i=l, i~3, i++, For[j=l, j~4, j++, 

TdI'alPotOfBF = UI.SOfBF + 1/ 2 res2 [ [ i, j ]]]] ; (4.7) 

Finally, the total potential energy in SDEs is found as 

'IbtalSprPot = 'IbtalPotOfBF + TdI'alPotOfBF; (4.8) 

Adding gravitational potential energy to total spring potential energy, total 
potential energy is obtained according to Eq.3.17. 

lIt =ill + 'IbtalSprPot; (4.9) 

Where, 

UG: ravitational Potential Fnergy 
TotaISprPot: Total~onPotentialFIugy 
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4.2.2 Kinetic Energy 

Derivatives of the generalized coordinates are used to calculate the kinetic 

energy. There are two components of this energy, namely due to the translational 

and the rotational generalized coordinates. By adding these two, total kinetic 

energy is obtained according to Eq.3.12, as 

Tt = Ttrcns + Trot 

~ (mPx1'[t] 2 +mPyl' [t]2 + mP zl' [t]2) +  
2 


~ (mBx2'[t] 2 +mBy2'[t]2+ mBz2, [t]2) + 
2 


1 l' 2 l' 2 l' 2
"2 (JPxxe [t] + JPyycP [t] + JPzz 1/1 [t] ) + 

~ (JBxxe2' [t]2 + JByycP2' [t]2 + JBzz 1/12'[t]2)
2 (4.10) 

4.2.3 Dissipation Energy 

Damping constants of SDEs need to be combined into the matrices in order to 

calculate the total damping energy according to Eq.3.18. Damping elements 

between the platform and the base are defined in Mathematica as 

~ ~ ~ l:pvA 
~ l::pyz l:py3 l:i:rl4

darrp.<\I:rayOfBP = 
~~G;ID~ 
o 0 0 0 

Dm1l>ArrayOfBP : dan:t>ingooefficient Imtrixbetweenthe baseand thepIatfonn 

Dm1l>ArrayOfBF: dan:t>ingcoefficient mtrixbetweenthe baseand theFoundation (4.11) 

With the matrices of deflection's derivatives and matrices of damping 

constants, total dissipation energy is calculated by Mathematica according to Eq. 

3.18, as 
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res3 = Transpose[OtdeflSpri.n;]BasePlatfonn] * darrpl\rrayOfBP * 

OtdeflSpr~latfonn; 

Clear [i, j, D:m{:OfBP] 

For[D:m{:OfBP= 0; i = 1, i::s 3, i++, 

For[j = 1, j::s 4, j++, D:m{:OfBP = I:arcp)fBp+ 1/ 2res3[ [i, j]]]]; 

res4 = Transpose[otdeflSpringBaseFoundatian] * darrpl\rrayOfBF* 

otdeflSprin;:JBaseFoundatiani 
Clear[i, j, D:m{:OfBF] 
For[D:lIrP)fBF= 0; i = 1, i::s 3, i++, 

For[j = 1, j::s 4, j++, D:lIrP)fBF = I:arcp)fBF + 1/ 2 res4[ [i, j]]]]; (4.12) 

'Ibta1D:lIrP)fBp = D:m{:OfBp; 


'Ibta1D:lIrP)fBF = D:m{:OfBF; 


Dt = 'Ibt:al.D:mp)fBp + 'Ibta.1.I:arrp)fBF; 


Where, 

DanpOfBP: Total cIan1>ingenergy betweenthe baseand theplatform 

DanpOfBF: Total cIan1>ingenergy betweenthe bmeand the Foundation 

4.2.4 External Input Force and Moment 

All necessary external input forces and moments in Eq.3.21 are contained in 

the vector designated below as "minGen". Coordinates of the force application 

points within the plate and the base needed to calculate moments generated by the 

external forces about the center of gravity are included in "minGen". 

MatrixFonn[rn:in3en] 

fx[t] 
fy[t] 


fz[t] 

-zinfy[t] + Yin fz[t] + melt] 

Zinfx[t] - Xinfz[t] + rry[t] 


-Yinfx[t] +Xin fy[t] +mdt] 


f:xs[t] 

f}fl[t] 


fzB[t] 

-Zlli3 f}fl[ t] +Ylli3 fzB [t] + ITb!B[ t] 


Zlli3 f:xs[ t] - Xlli3 fzB[ t] +~[t] 


-Ylli3 f:xs[ t] + Xlli3 f}fl [t] + ITlzB[ t] 
 (4.13) 
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4.3 THE LAGRANGE'S EQUATIONS OF MOTION 

As already mentioned, the Lagrange's equation is concisely coded in 
Mathematica as 

LagrEqns [T_, U_, D:mp_, Q...List, Coor_List1 .-
Flatten[M:lp'Ihread[ {ot(0Bt:#2T) - 0#2 (T - U) + 00ti2L8rrp - #1 == O} &, 

{Q, Coor} 11 i (4.14) 

With all energies (potential, kinetic, and dissipative) defined, all input force 

and moment, and coordinates of the platform and base, this "LagrEqns" function 

generates twelve equations of motion. All these equations involve symbolic 

variables. In the remaining parts of this thesis, a simplified model is· analyzed. It is 

obtained by assuming a fixed base position. Thus, the number of equations of 

motion reduces to six. Similarly, six transfer functions represent the dynamic 

characteristics of the dynamometer's platform. 

4.4 BODE PLOT FROM TRANSFER FUNCTION 

By using Mathematica 'Control System Professional' , representative transfer 

function, are obtained and their Bode plots are shown in Fig.4.4. Resonance 

frequencies of the system can are computed and shown in Table 4.1. Bode plots 

and resonance frequencies are in good agreements with experimental results 

processed in Chapter 5. 

Transfer Function Natural Freguency 

Gxx =600 RadlSec 

Gyy =600 RadlSec 

Gzz =1250 RadlSec 

Gij : i direction response inj direction input. 


Table 4.1 Estimated Natural Frequencies from Bode Plots of TF. 
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in the x direction. 
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Figure 4.4b Bode plot for transfer function between the force and displacement in 
the y direction. 
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Figure 4.4c Bode plot for transfer function between the force and displacement in 
the z direction. 

4.5 SIMULATION OF MODEL RESPONSE TO ACTUAL IMPACT 

The transfer functions discussed in the previous section allow obtaining the 

response of the model to experimental signals. Since these transfer functions are 

continuous, and it is necessary to convert them into discrete form required for the 

compatibility with discretized experimental records. There are several 

discretization techniques that can be used for simulating continuous-time system. 

The most important of them are shown below [Katsuhiko Ogata 1987]. 

1. Backward difference method. 

2. Forward difference method. Since this method may lead to an unstable, it 

should be used with cautions. 

3. 	Bilinear transformation method (a numerical integration method base on the 

trapezoidal integration rule). 
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4. Jrnpulse-Invariance method (impulse-invariance method with sample-and­

hold - the z transform based method coupled with a fictitious sample-and­

hold). 

5. Matched pole-zero mapping method. 

These different methods yield slightly different discrete-time systems. The bilinear 

transformation method has been chosen in this research. 

4.5.1 Bilinear transformation method 

Fig. 4.5 shows the area approximation by the bilinear transformation method. 

y[k] is representing the left part area from the time kT, and y[k-l] is representing 

the left part area from the time kT - T. 

y[k] 

y[k-l] 

u[k-l] 

kT- T kT t 

Figure 4.5 Trapezoidal integration. 

Considered is a transfer function D(s) of a system with the input U(s) and the 

output Yes). 

yes) =D(s)=!, (4.15)
U(s) s 
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In the discrete time, this transfer function represents the following integral 
equations. 

L
kT T- J.kTy(kT) = u(t)dt + u(t)dt (4.16)
o kT-T 

This equation can be next approximated by a recursive discrete time equation 

T
y(k) = y(k -1) +-[u(k -1) + u(k)] (4.17)

2 

Applying the z-transformation to the above equation yields 

(4.18) 

Comparison of Eq.4.15 and Eq.4.18 gives the relationship between the s­

domain and the z-domain transfer function. It suggests that by substituting 

2(I-Z-1J (4.19)
s=T l+z-1 

in the continuous time transfer functions, respective discrete time D(z), the transfer 

functions can be obtained. 

This transformation method, referred to as Tustin's or the bilinear [Franklin, 

1994], is available in 'Control System Professional' package, for rapid symbolic 

conversion from the continuous-time to the discrete-time domains. The following 

function needs to be called. 

lI!tDiscrTF =ToDiscrete'I'ilre [n¥IF, Mathod~ Biline:n:TransfoDn, 
CriticalF':requa1CY~ Autaratic, Sarrpla:l~ Perloo[tsll (4.20) 
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4.5.2 Impulse-invariance method 

By using the inverse-Laplace transformation and z transformation, the 

equivalent discrete-time transfer function G D (z) can be obtained as follows. 

GD(z) =Z[gD(kT)] =TZ[g(t)] =TZ[L-1[G(s)]] =TG(z) (4.23) 

Where, the inverse z transformation of G D (z) is gD (kT) , the discrete time transfer 

function, and this is T times of g(t). This g(t)is also expressed as L-1[G(s)]. 

As a example suppose a continuous-time system is described by a transfer 

function as 

a
G(s)=- (4.22) 

s+a 

Then, the equivalent discrete-time transfer function is as below 

Ta 
GD(z) = TG(z) = 1 -aT-I (4.24) 

-e Z 

Since G D (z) is proportional to the z transform of the continuous-time transfer 

function, so the impulse-invariance method is also called the "z transform method" 

[Katsuhiko Ogata 1987]. 

4.5.3 Simulation of response to the actual force impact 

By using the actual impact signal from an instrumented hammer together with 

the discrete-time transfer-function, derived for the model under investigation, the 

realistic impulse response of modeled system can be simulated. This response is 

readily obtained in Mathematica by executing the following command. 

It!{Resp= OJtpltRespanse(It¥DiscrTF, Take[inpactvectorCalibr, {I, dataSize} 11; 

(4.21) 

http:G(s)=-(4.22
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N  
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20 

"myResp" : simulated response, 


"myDiscrTF' : discrete transfer function obtained from EqA.20, and 


"ImpactVectorCalibr: the experimentally recorded impact force. 
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Figure 4.6 (a) Calibrated impact force, (b) simulated impact response of the 

system in the y direction(obtained from the transfer function Gyy(s). 

4.6 CLOSURE 

By applying the Lagrange's energy formalism and symbolic method such as 

'Mathematica', the equations of motion are readily derived. From the Bode plots of 

the transfer functions (Gij) in the x, y, and, z directions, natural frequencies are 

estimated. These frequencies characterize the model-based responses of the 

dynamometer under consideration. In the next chapter, they are compared with 

signal-based responses to validate the presented modeling methodology. 
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5. EXPERIMENTAL VALIDATION 

In previous chapter, the equations of motion of dynamometer are derived. 

Under the assumption of no foundation and base displacement, simplified transfer 

functions are obtained, and these transfer functions provide agreeable bode plots 

which show reasonable natural frequencies for the model under consideration. For 

the next steps, the validation is taken by the use of experimental test. As a response 

of an impact force on the platform of dynamometer, the movement of the platform 

is calculated by using several experimental techniques. These techniques include 

data acquisition procedure, numerical double integration, and several processes for 

eliminating drift. Simulated responses that come from the model of dynamometer 

will be compared with the results that are captured and calculated from the 

experimental test. 

5.1 DATA ACQUISITION SYSTEM 

A standard data acquisition (DAQ) system comprises the following basic 

components: 

(1) a controller, (2) a signal conditioner, (3) a multiplexer and amplifier, (4) an 

analog-to-digital converter (ADC), (5) a storage unit or a memory unit, and (6) a 

readout device [Dallyet al.,1993]. In the DAQ system used in this research, data 

from the sensors (accelerometers) is stored in desktop computer equipped with 

DAQ board. A LabVIE~ program is used for controlling the DAQ system. The 

ADC, multiplexer and amplifier are provided in a plug-in DAQ printed circuit 

board type AT-MI016E2 from National Instruments [1994]. Low-pass filters serve 

as signal conditioners to prevent signal aliasing. A schematic diagram of the 

employed DAQ system is shown in Fig. 5.1 [Jitpraphai, 1997]. 
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Impact Force and 
Accelerometers 

ADXL202 

Signal Couplers and Amplifiers 
Kistler'" 5128A 

PIEZOTRON coupler 
(Kistler, 1996) 

AntI-aliasing Filters 
Precision'" 88B (Precision, 1989) 


And 

Datel'" FU-D6LA2(Datel , 1987) 


ADe, Multiplexers, Amplifiers 
National Instrument'" AT-MJO- 16E2 


(National Instruments , 1995) 

LabVIEw"DAQ program 


"Data Acquisition (version 2.6 s). vi"  

Figure 5. 1 Block diagram showing the data acquisition system used in this 
research. 

5,l.l Overview of the Methodolol:Y 

The acceleration signals from each sensor are recorded by a data acquisition 

(DAQ) system, The DAQ is controlled by a LabVlEw"-based Dara Acquisirion 

Controller program, developed in previous research [Jitpraphai , 1997]. To obtain 

displacements of the dynamometer's platfonn from the voltage signals generated 

by accelerometers placed on the platfonn, the following steps are needed; 

I) Amplifying the signals. 

2) Fi ltering the signals. 

3) Converting the voltage signals to acceleration signals. 

4) Double integration to obtain a 'rough' estimate of displacements. 

5) Eliminating the drifts to obtain accurate estimates of displacements 
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5.1.2 Data Acquisition Program 

A controller program for data acquisition (DAQ) is required to read data from 

accelerometers. The program "DAQ Controller.Vf' written in the LabVIE~'s G 

language is used in this research [Jitpraphai, 1997]. This is an interface program 

between the user and a DAQ board AT-MIO 16E2 [National Instrument, 1995]. 

The user can command the board to acquire analog voltage signals with desired 

parameters. The user can readily inspect the acquired signals, select suitable 

sampling parameters for these signals and acquire data again with optimized 

parameters. 

5.2 EXPERIMENTAL SETUP 

By using impact hammer, transient excitation is applied to the experimental 

model of a Kistler® dynamometer type 9257A [Kistler, 1996]. Several acceleration 

signals (the system's responses representing vibrations) were recorded and 

processed to obtain the movements of the dynamometer's platform. Instruments are 

set up according to the schematic diagram shown in Fig. 5.2. 

Impact Hammer with [S] SignaJ Conditioner Tri-Star DesktopPiezoelectric Load Cell 
Computero 

Trigger DAQ Controller
Channel. ProgramIAccelerometers 

l=:::I Analog­
1--........ Input 
 o1=:::::1 Channels.......~.\., 


Dynamometer ~~m 
DAQCardAccelerometer Anti-aJiasing 

Coupler Filters Interface Panel 

Figure 5.2 Schematic diagram of the experimental setup. 

http:Controller.Vf
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5.3 SIGNAL PROCESSING IN EXPERIMENTAL DATA 

Signal processing procedure includes several steps required for the calculation 

of the actual displacements from the 'raw' voltage signal generated by the 

accelerometers. The signal processing steps are summarized in Fig. 5.3. 

5.3.1 	 Conversion to Physical Units and modification 

Raw voltage data that is acquired from an accelerometer needs several 

processing steps to be converted to displacement. First, this data should be 

converted to physical units of acceleration i.e. rnIs2
• The calibration equation is 

(5.1) 

Where, 	3cal _ calculated acceleration. 

as - acceleration signal from sensor [V]. 

CS - calibrated factor [V/g] (sensitivity). 

Sensitivity is the parameter of accelerometer that is specified by its manufacturer. 

Two kinds of accelerometers are used in this research and the sensitivities of these 

sensors are given in Appendix A.I (ADX202 : 0.312 V/g, Kistler: 0.5 V/g). The 

signals, from ADX202 accelerometers are pre-amplified 5 times by their respective 

hardware circuitry. This gain should be considered in the conversion defined in Eq. 

5.1. After calibration, data is ready for the integration. Ideally, the data from 

accelerometer should be centered, in other words the acceleration before the impact 

and after the transient part should be zero. Realistically, it is not the case. Non­

centered data can cause large errors of numerical integration. To avoid these errors, 

subtraction of the average signal value before the integration is required. Another 

centering of data is required before the second integration. Finally displacement is 

obtained, but it is still severely distorted. Even in the data obtained from high 
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Subtracting the Average or Moving·average Values 

performance sensors, the di storted signal is useless without additional processing. 

Eliminating distortion without affecting the shape of the actual measured 

disp lacement is required. There are several methods to accomplish this, and these 

methods are discussed in Section 5.3.3. 

Conversion to Physical Units of Acceleration, i.e .. rnIs2 

First Numerical Integration 

Subtracting the Average Velocity 

Second Nurnericallntegration 

Eliminating drifts 

Note: Clear blocks represent operations while the shadowed blocks represent 
signals. 

Figure 5.3 Flowchart of signal processing. 



41 

5.3.2 Double Integration Procedure 

After modifying the raw acceleration signal, a rectangular rule6 numerical 

integration method [Yakowitz, 1989], is performed by using Mathematica to 

calculate velocities. This is accomplished by the following code: 

frO] =0; 


f[n_] := f[n] = f[n-1] + accellSI[n) ts; 

velocity= Table[f[n], {n, 1, dataSize}] ; 
 (5.2) 

Where accellSI - an array of recorded and pre-processed data. 
velocity - an array of integrated acceleration data. 

An example velocity calculated by numerical integration of the calibrated and 

pre-processed acceleration is shown in Fig. 5.4. Before performing the second 

integration of this velocity signal, zero centering by subtracting the average value is 

applied again, and second integration is performed as 

velocity = Table[f[n], {n, 1, dataSize}]; 
displacatent = Table[h[n], {n, 1, dataSize}] ; (5.3) 

The obtained displacement signal is shown in Fig.5.5. 

Velocity (ml S) 

0.02 

0.01 

~-rt-t--...,I--\-+-'rP"""'------- Time( sec)o 0.06 0.08 0.1 
-0.01 

-0.02 

-0.03 

Figure 5.4 Velocity calculated by numerical integration of the calibrated 
acceleration signal. 

6 Acceptable due to high sampling frequency 
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Figure 5.5 Displacement calculated by numerical double integration. 

For comparison, a response simulated by means of the derived analytical 

model is shown together with displacement obtained by double integration in Fig. 

5.6. 

- •• --_••• Displacement from Model  
- Displacement from double integration  

Comparison 
100 

.. .----------- .. --- ._- .-._- ...------------ .. ----- ------­-~-----------80 

· .. ,. . 
" ---------... _----------_._---------_ ... --------- .. _---------- ...------------ .. ---------­60 · , . . . .· . .· . .E 

:::J 
I , I I I---------- .... ---------_ .... ----------_ .. ..... ------------.. ---------... ----------------------­40C " '" 

-
. '" . .Q) . . 

E -- -~ ---- -- --- --i-- "-- -- ---- -~-- -- --- -.."-~ -- ---- ---­Q) 20 
u 
~ 
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0 

·20 -- ---------~--. -- --- -r~----- ------i- -.-- ------ -t---- -------t --- ---------r-- ---- ---. 
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• • I , • 

----------.:------ ---t------------r------------r------------;------------.:---------­·40 
. . 

.": : : 
·60 

·0.02 o 0.02 0.04 0.06 0.08 0.1 0.12 
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Figure 5.6 Displacement obtained from the analytical model and by double 
integration of the experimental acceleration occurred from impact. 
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5.4 COMPARISON FOR VALIDATION 

From twelve equations of motion derived by Lagrange's equation in Chapter 4, 

twelve transfer functions are obtained. As already mentioned, for the sake of 

brevity, the above model was simplified by assuming fixed base, and for the each 

model, six transfer functions have been obtained. Responses to an impact force in 

every coordinates of the platform was simulated from these transfer functions. In 

the remaining part of this chapter, these simulated responses will be compared with 

the responses obtained by the method described above. In addition, various 

methods of estimating the "true" drift in double integrated acceleration signal will 

be considered. The accelerometers are mounted on the faces of platform as shown 

in Fig. 5.8. Three acceleration signals need for the translational movements, and six 

more signals are required to obtain the rotational movements without using 

numerical solution [Padgaonkar, 1975; Lie, 1976]. By using two direction signals 

capturing accelerometer such as "ADXL202", with 5 sensors, 9 required signals 

accelerations can be obtained. More details are discussed in Chapter 6. 

As discussed in section 4.5.1, by using 'Bilinear transformation' method, 

transfer functions are described in discrete time domain, and with these, the impact 

responses of the system are simulated. The displacements obtained from this 

simulation can be verified by direct comparison with the displacements that are 

obtained from double integration and simple procedure of eliminating drift. Fig. 

5.8, and Fig. 5.9 are showing the figures of the experimental test, and the several 

strong displacements, which are calculated from the test. Fig. 5.8 is showing the 

displacements in same direction of the applied impact force. These responses are 

strong and close to the simulated responses as shown in Fig. 5.7. In the other hand, 

the displacements shown in Fig. 5.9 are weak responses, and even after the 

elimination of drift by simple signal processing procedure, there still remained 

distortions that should be rectified. In Chapter 5.5, several methods are discussed 

for reducing the error. 
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Figure 5.7 Displacement comparison between the model and experimental test. 

5.5 MINIMIZING ERRORS 

Clearly, there is a significant drift in the displacement as shown in Fig. 5.6 that 

should be eliminated. To rectify the current data that includes the drift, several 

models that represent the drift are introduced. For example, by using selective 

exponential model or a polynomial model, the drift part of the displacement can be 

represented_ Subtracting these models from the distorted displacement yields the 

actual displacement as shown in Fig. 5.10. 

Fig. 5.10.b shows a realistically looking displacement of the dynamometer 

under consideration. But in many cases, especially for the weak signals, just 

eliminating sensor drift by the above-presented simple model does not give 

satisfactory results. So several improved methods for eliminating drift are discussed 

below. 

http:0.020.040.060.08
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Figure 5.8 Location of nine sensors on the platform and example strong signals 
obtained from the experiment. 
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Figure 5.9 Location of nine sensors on the platfonn and example weak. signals 

obtained from the experiment. 
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Figure 5.10 Double integrated acceleration signal used for polynomial estimation 
(a), and displacement after drift elimination (b). 

5.5.1 Eliminating Drift by Piecewise Polynomial Model 

This is the simplest way to eliminate drift. Considering the double integrated 

acceleration signal with drift as shown in Fig. 5.11, by excluding the "transient" 

part ofthe signal, two separate sections shown in Fig. 5.12 with thick lines are 

obtained. This curve can be well fitted with a polynomial. Assuming this fitted 

curve represents the drift, the actual displacement is obtained by subtracting this 

fitted curve from the original curve. The result is shown in Fig.5.13. 

http:Fig.5.13
http:20.040.060.08


48 

Displacemen~ j1m) 

30 


20 


10 


0.06 0.08 0.1 
Time(sec) 

-10 

Figure 5.11 Displacement with drift 
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Thick lines: data to be fitted. Thin line: fitted polynomial. 

Figure 5.12 Piecewise Displacement estimation with Polynomial model. 
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Figure 5.13 The estimated displacement obtained after eliminating drift. 

Although attractive for its simplicity and robustness, this method rarely gives 

satisfactory results. Even changing the order of the polynomial model to 5th does 

not improve the result much. As can be seen in Fig. 5.13, the displacement exhibits 

oscillations, which in this case cannot be attributed to the dynamics of the tested 

dynamometer. Therefore more accurate curve fitting procedure should be 

considered. One such procedure is obtained by performing two separate fits on 

suitably chosen data subsections as shown in Fig. 5.14. A small improvement is 

made in beginning part, but still the result is not satisfactory as shown in Fig.S.1S. 

http:Fig.S.1S
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Figure 5.15 Displacement after drift elimination 

5.5.2 Eliminating Drift by Using Polynomial & Impact Response Models 

By using a polynomial model that will represent drift, and an impact response 

model that will represent the displacement response of system, better displacement 

Section fitted by polynomial 

'rl'II""""t_~___-~_.....-.J Time(sec) 
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estimation can be obtained. If the sum of response of these models (polynomial and 

impact response) can fit satisfactorily the double integrated acceleration siganl, the 

impact response model can be considered as a representative for the displacement. 

Nonlinear fitting code in 'Mathematica' is shown in Eq. 5.5. After defining 

polynomial and impact response model with symbolic coefficients, by using the 

'NonlinearRegress' function, the coefficients of the function that provide best fit of 

curve for the double integrated acceleration signal are readily determined. The 

equation of the function used for fitting is as below. 

(5.4) 

in Mathematica code, it is as below. 

lelRes =~s[da.taForPlottinJ, 


aO+ alx+ a2X2+ a3:x? +a4x4 +a5x5 + 


a6 Exp[ - a7 (x- delay)) * sin[aS (x- delay) +a9) d.mitStep[x- delay), x, 
{aO, al, a2 , a3, a4, as, a6, a7, as, a9}, MaxIterations -> 300, 

RegressianReport -> BestFitPararreters) 

(5.5) 

Due to strong non-linearity and mUltiple minima of the minimized cost 

function, this simple procedure in general is not satisfactory since it does not 

converge to the global minima. 

5.5.3 Polynomial & Impact Response Model with User Specified Initial Values 

By using the function 'FindMinimum' in Mathematica, the coefficients of the 

model that fit the original curve most closely can be obtained. One initial value per 

an estimated coefficient that is close to the global minimum is required by this 

method. Note that the procedure presented in Section 5.3.2 did not require 

specifying the initial conditions. 



52 

The function used to fit the double integrated acceleration is a sum of 5th order 

polynomial and time lifted impact response function of the 2nd order system. This 

function is defined with the name of "funcI" as shown below. 

func1[aO_, al_, a2_, a3_, a4_, as_, a6_, a7_, a8_, a9_, x.-J :=  
5 aO + al x + a2 ,(- + a3 ~ + a4 x4 + as x + 

a6Exp[ - a7 (x- delay)] * Sin[a8 (x- delay) +a9] UnitStep[ (x- delay)] (5.6) 

The function "residual" is defined by subtracting the defined function, "funcl" 

from the raw displacement (displacement with drift). The square sum of "residual" 

is defined as "chisqr" as shown in Eq.5.8, and is used for finding minimum as 

shown below. 

N 2 

J(ao,a"...,a9 ) = IJfd (i) -r(x i ;ao,a"... a9 )] (5.7) 
i=l 

f d (i) : displacement in time of 1 sec., 

10000 


r(x i ; ao' a l , •••a 9 ) : function used to fit the double integrated acceleration signal. 

residual[aO_, al_, a2_, a3_, a4_, as_, a6_, a7_, as_, a9_, i_] := 

(func1[aO, al, a2, a3, a4, as, a6, a7, as, a9, i/10000]-displacarent[i]) 

chisqr[aO_, al_, a2_, a3_, a4_, as_, a6_, a7_, as_, a9_, n.-J := 

Sum[ (residual [aO, al, a2, a3, a4, as, a6, a7, a8, a9, index]) "2, 

{index, 1, n}] (5.8) 

Once the performance index "chisqr" is defined, it is minimized in 

mathematica by the command of below. 
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res = FindM:i.nim.nn[chisqr[aO, al, a2, a3, a4, as, a6, a7, as, a9, (1000)], 

{aO, -0.04}, {al, -0.031}, {a2, 0.068}, {a3, -0.025}, {a4, 0.004}, 

{as, -0.00021}, {a6, -1.4}, {a7, 149.1}, {a8, 1550.8}, {a9, 2.387}, 

MaxIteratians -> 30] (5.9) 

Initial values of the coefficients of the fitted model are provided in the 

command. This method suffers from similar weakness as the simpler function in 

Section 5.3.2, namely, it tends to converge to the nearest local minimum. 

Consequently the obtained coefficients do not provide satisfactory model for the 

drift and response of the system. This disadvantage is exacerbated by using 

gradient minimization technique. Finding minimum with bracketing initial values 

is recommended. 

5.5.4 Polynomial & Impact Response Model with Bracketing Initial Values 

There are two methods for minimization technique, namely gradient method 

and non-gradient method. Gradient method requires computation of gradients. 

Obviously, if an objective function is not differentiable, or if it is very difficult to 

compute its gradient, this method cannot be used. And there is no guarantee that a 

solution returned by gradients method is a global minimum [Bhatti, 1998]. On the 

other hand, non-gradient method requires only the function values or generates an 

approximation of a gradient vector by using finite differences. This method takes 

more time and expenses, but there are several virtues of non-gradient method that 

make them worth the price. In general, non-gradient method tends to be more 

reliable than gradient method, and provides a means for solving a problem which is 

insoluble in gradient method [Hansen, 1992]. By the option of using bracketing 

initial values in "FindMinimum', non-gradient method can be applied in 

Mathematica. By using the bracketing initial values, the likelihood of finding the 

global minimum is increased. And as expected, this method takes more time 
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depends on the size of bracket's range. Mathematica code for finding minimum by 

using bracketing initial values is written in Eq. 5.13. 

resD= F:i.rd1inim..nn[chisqr[aO, al, a2, aJ, a4, as, a6, 1024] , 


{aO, {0.2aOinit, 4aOinit}}, {al, {4alinit, 0.2alinit}}, 


{a2, {0.2a2init, 4a2init}}, {a3, {4a3init, 0.2a3init}}, 


{a4, {4 a4init, 0.2 a4init} }, {as, {0.2 aSinit, 4 aSinit}} , 


{a6, {O. 2 a6init, 4 a6init} } ] 
 (5.10) 

Where, the function for fitting is defined as below. 

ftmc2 [aO_, al_, a2_, a3_, a4_, a4_, as_, a6-1 := 
aO+alx +a2~+a3~+a4Exp[-aSx] Sin[a6 (x-0.0197)] unitStep[x-0.0197] 
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Figure 5.16 Comparison of minimization between gradient initial method (a), and 

bracketing initial values method (b). 

Fig. 5.16 shows an example of the difference between using a gradient search 

method and using the quadratic minimization method. The user specified initial 

values were bad for both case, but as shown in Fig.5.16, the result has big 

difference. Even with bad initial values, brackets method gives better curve fitting 

than the method of using gradients. But it is still not satisfactory unless the 

specified initial values are well predicted. 

http:Fig.5.16
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5.5.5 Polynomial & Impact response Model by using "MultiStartMin" 

By using "MuItiStartMin7
", which is special package in Mathematica, 

satisfactory curve fitting is obtained as shown in Fig.5.17. By eliminating the 

polynomial model from the fitted curve, the fitted impact response is obtained as 

shown in Fig.5.1S. 

5.6 CLOSURE 

Rigorous numerical comparison of displacements simulated from the 

analytical model and the experimental test shows a good agreement. This validates 

the assumption underlying the model development. In next chapter, by using 

visualization, the simultaneous comparison of three-dimensional motion will be 

performed. 

Displacement:( j..lm) 

30 

20 

10 

Time(sec) 
o 

-10 

Black line: fitted curve; Gray line: displacement with drift. 

Figure 5.17 Curve fitting By using "MultiStartMin". 

http:Fig.5.1S
http:Fig.5.17


56 

Displacement:( J.1TIl) 

10 


5 


Time(sec) 
o. 0.04 0.05 

-5 


-10 


-15 

Black line: estimated impact-response; Gray line: displacement with drift. 


Figure 5.18 Comparison of the estimated impact-response and double integrated 

acceleration (displacement with drift). 
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6. APPLICATION TO VIBRATION VISUALIZATION 

Entire process for visualization is partitioned into four major steps, namely, (1) 

data acquisition procedure, (2) signal processing, (3) generalized coordinates 

calculation, and (4) 3-D animation procedure. In these processing steps, (1) and (2) 

are already discussed in Chapter 5. So the step (3), and (4) are the subject to be 

discussed in this chapter. 

6.1 VISUALIZATION OF SYSTEM VIBRATION 

As assumed in the model of dynamometer, in this chapter, visualization is also 

derived under the assumption of "rigid body" of the plate of the dynamometer. 

There are six degrees of freedom (DOF) for the plate, namely three for translation, 

and three for rotation. With these variables, generalized coordinate list dG, is 

formed as shown in Eq. 6.1, and Fig. 6.1 shows the coordinate components of the 

plate. With one generalized coordinate list, one specified position of the plate at a 

certain time instance can be described. And by showing these sequential pictures of 

generalized coordinate lists rapidly, the motion of system can be animated. The 

technique to calculate these generalized coordinate lists is discussed in this chapter. 

dG = [x Y z e cp '"y (6.1) 
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f 

I/----------­
..••...•.••/. 

~--~y 

Fig. 6.1 Components of the generalized coordinate list d G, describing the 'rigid­

body' motion of the plate. 

The flowchart in Fig. 6.2 shows the algorithm used in this visualization. There 

are two different approaches. One is the signal based visualization. This means the 

visualization that is base on the experimental data. In this approach, the 

translational components are straightforward to calculate, but the rotational 

components should be calculated from the processed translational displacements 

signals by using the equations proposed by Padgaonkar et al. [1975], as further 

explained in section 6. The other is model based visualization. In this approach, six 

coordinate responses computed from the model derived in Chapter 4 are used for 

components of the generalized list dGo With these two generalized coordinate lists, 

animations of visualization are generated separately. 
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Impact 

Physical 
System 

~ 
Accelerometers 

Idealization and •Decomposition 
Section 3. 1 Data Acquisition 

(LabVIEw<' DAQ Controller) 
Section 5. 1 

Simplified 'Rigid •Body' Model 
Signal Processing 

Section 4.3 
-subtracting moving average • -conversion to physical un its 

Simulating -double integration procedure 

4 Displacements -recovery of the "true" displcament 

Section 4.5.3 Section 5.3, 5.5 

Generalized Coordinate 
Calculation 

Section 6.3 

•3-D Animation 
Section 6.4 

Figure 6.2 Flowchart of the methodology used for the visualization of vibrations of 

the dynamometer plate. 

6.2 COORDINATE SYSTEM 

Coordinate systems are defined in this chapter. A brief explanation of 

terminology used henceforth is presented starting with the Coordinate Systems 

(C.S.) as shown in Fig. 6.3. 
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1. Reference Coordinate System of the Plate (XYZ)R 

This is the coordinates system with initial position of the plate. Origin point of 

the C.S. is at the comer point marked CR. 

2. Instantaneous Coordinate System (XYZ)I 

This coordinates system moves together with vibrating plate. Points of 

comers remain without changing in this C.S., so this C.S. can be easily 

converted into the reference C.S., (XYZ)R 

3. Global Reference Coordinate System (Xyz) 

The above coordinate systems suffice to visualize the motion of only one 

plate. However, if multiple plates are involved, it is advantageous to introduce one 

global coordinate system. With this better system, each plate has its unique 

Reference and Instantaneous coordinate systems. 

The initial location of the reference C.S. can be described by a six components 

list, do. First three components are the coordinates of CR of Reference C.S. given 

in the Global Reference C.S. the three remaining components are angles between 

Reference C.S. and Global Reference C.S. The list, do is defined as 

(6.2) 
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Reference Coordinate System x 
of the Plate (Xl'Z)R 

d [] ••........ .  O 
........... 


x 
.__..::~::::.;...,.~:,:.:.:.:.:::.:;';~...........•.._.III""""'J~""----~~,.......~ 

e······ / //
••••• R ./ ../ 

ZI 
Instantaneous Coordinate System 
~y of the Plate (XYZ)/z 

Z 

Global Coordinate 
System 
of the Plate (Xl'Z) 

Figure 6.3 Coordinate systems used in describing the plate motion. 

6.3 CALCULATION OF THE GENERALIZED COORDINATES 

In physical systems, there are restrictions on where sensor can be mounted. For 

an example, locating the accelerometer at the system's center of mass may not be 

possible. However, the accelerometers can be easily mounted on flat surfaces of the 

plate, such as at point such as 'C' in Fig. 6.3. So it is advantageous to redefine the 

generalized coordinates describing the instantaneous spatial location of the plate. 

From now on consider the generalized coordinates that have their origin at the 

comer 'C' and then transform these to the coordinates that is defined at the center 

of mass by applying homogeneous coordinate transformation. 

The first three components of the new list of generalized coordinates, d .. 

define the position of point C in the reference C.S. (XYZ)R. Three positions are 
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designated XI. yI. and ZI. The remaining three components define orientation of the 

plate with respect to (XYZ)R. These later components are designated 91, <1>1' and "'I. 

Thus the entire new list of generalized coordinates is 

(6.3) 

In these generalized coordinates of instantaneous coordinate system, the 

rotations such as 91, <1>1' and "'I' are calculated according to a method proposed by 

Padgaonkar et al. (1975) briefly summarized below. 

Under the rigid body assumption, the relative acceleration of a point P is given by 

the formula (Hibbeler, 1995). 

a p = ac + axr +mx(mxr) (6.4) 

where 

p - the arbitrary point on a rigid plate, in this case one of the comers; P =1,2, 

and 3, shown in Fig. 6.4. 

a p - the acceleration of point P in (XYZ)R, 

ac - the acceleration of point C in (XYZ)R, 

m - the angular velocity of point P in (XYZ)/ 

a. 	- the angular acceleration of point P in (XYZ)/, and 


r - the position vector of point P from the origin, C, in (Xyz)/.  

From Eq.6.4, by substituting corresponding position numbers into Pas 1,2, 

and 3 with X, y, z direction, and C with X, y, and z direction, three nonlinear 

coupled equations are obtained as below [padgaonkar et al., 1975]. 

(6.4a) 
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a y =-(a z2 -azc)lrx +tiJ x ·tiJz (6.4b) 

a z = (a y2 -ayc)/rx -tiJx ·my (6.4c) 

where 

a j - the angular acceleration component of the vector a around the i axis; i = 
x,y,z, 

tiJ j - the angular velocity component of the vector tiJ around the i axis; i =x,y,z. 

rx' ry, rz- the distances between accelerometers shown in Fig. 6.4. 

As shown in equations 6.4a, 6.4b, and 6.4c, from the linear accelerations, the 

angular accelerations can be calculated. At minimum, six linear accelerations and 

three angular velocities are required. Six linear accelerations can be easily obtained 

from the accelerometers, which are shown as thick gray arrows in Fig 6.4, but the 

angular velocities are not so simple. With angular velocities, these nonlinear 

differential equations should be solved numerically. This is a time consuming task 

and the convergence of solution is not guaranteed. [Padgaonkar, 1975; Lie, 1976]. 

So there is another way to get the angular accelerations. With three more linear 

accelerations, which are captured from three accelerometers shown as black thick 

arrows in Fig 6.4, three more equations that are similar to equations 6.4a, 6.4b, and 

6.4c, are obtained as 

ax = (a y3 -ayC)/rz +tiJy ·tiJz (6.4d) 

a y = (a x3 - axc)/rz -tiJx ·tiJz (6.4e) 

x 3 (6.4f) 
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Figure 6.4 Locations of nine accelerometers required for the calculation of the 

generalized coordinates [Padgaonkar et aI., 1975]. 

Now by eliminating cross products of the angular velocities from equations 

6.4a -6.4f, the angular accelerations can be obtained as 

(6.5a) 

(6.5b) 

(6.5c) 

Where 
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The roll (81), pitch ( cl>1)' and yaw ('II I ) angles are calculated using 

displacements obtained by double integration procedures from the all nine 

accelerometers on the plate according to equations. 

81 =(x zl -x zc )/2·ry-(x y3 -xyC)/2·r (6.6a)z 

cl>1 )/2·r )/2·r (6.6b)= (x x3 -x xc z -(x z2 -x zc x 

'III =(x y2 -x yc )/2·rx -(xxi -xxc )/2·ry (6.6c) 

where 

XiJ - displacement obtained by double integration of the acceleration aiJ, 

i, j - the notation for axis, i = x, y, and z;j = C, 1,2, and 3 (comers of the plate 

where the accelerometers are located). 

The "true" displacements used above for the calculation of the angles are 

obtained by additional procedure such as "drift elimination" after the double 

integration as discussed in Chapter 5. 

6.4 ANIMATION OF THE RIGID BODY MOTION 

The animation procedure consists of three steps: (1) finding the absolute 

position of the reference corner points, C, (2) calculating coordinates of the plate's 

center in the C.S. (XYZ)R using homogeneous coordinate transformation, and 

drawing a single 3-D picture representing instantaneous position of the plate by 

using homogeneous transformation, and (3) animation of the 3-D pictures. These 

steps are discussed in the following subsections. 

6.4.1 Finding Absolute Position of the Reference Comer Point 

The coordinate vector d l of the instantaneous coordinate system represents 

only the relative position and orientation of the C.S. (XYZ)I with respect to 

http:2�r)/2�r(6.6b
http:xyC)/2�r(6.6a
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(XYZ)R as shown in Fig.6.3. Absolute generalized coordinates of plate in position 

'C' can be calculated by combining do (Eq. 6.2), and d, (Eq. 6.3). List of the 

reference position, do can be assumed '0' because only one plate is being 

concerned in this research. And considering that the movements are small, a 

suitable magnification coefficients, such as K, for translational movement, and 

Kr for rotational movement need to be introduced. So the absolute generalized 

coordinates d A is calculated as 

(6.7) 

Where 

SA 	 =Kr ·SI' 

<PA 	 =Kr .<PI' 

'" A = Kr . '"" 

6.4.2 Homogeneous Transformation 

For the visualization of vibrating plate, "solid" representation supported by 

Mathematica is used. Three programs are used for visualization in this research. 

The programs are written in Mathematica, mainly using homogeneous 

transformation matrices and as follow, 

1. 	"visual.nb". This program develops the plate shape by connecting eight 

comers, shown as Eq. 6.8, and by homogeneous transformation matrices 

(Wovolich, 1987), calculates the location of the plate after the 

excitation. And by showing rapidly changing sequential plate shape, 

visualization of the vibrating plate is accomplished. The generalized 

coordinates at the center is required for this calculation. 

http:visual.nb
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2. 	"coordCmaker.nb". This program makes the generalized coordinate that 

is needed for the program "visual.nb". First the x, y, and z direction 

displacements, which are calculated from the signals of accelerometers, 

are read and the angles, 8) ,$) , and w) are calculated as it is discussed in 

Section 6.3. Finally by homogeneous coordinate transformation 

technique, the generalized coordinates of center is obtained from the 

coordinate at the point 'C'. 

3. "signal_process.nb". This program processes the raw signals from 

accelerometers to get the displacements. (Chapter 5) 

Comers of plate of dynamometer are defined as 

FRU[ lengtlL, width_, height_l = {O. 5 width, - 0.5 length, 0.5 height} ; 


FUJ[length_, width_, height~ = {-0.5width, -0.5 length, 0.5 height} ; 


FLL[ length_, width_, height_l = {- 0.5 width, -0.5 length, -0.5 height} ; 


FRL[length_, width_, height~ = {0.5width, -0.5 length, -0.5 height} ; 


RRIJ[ length_, width_, height_l = {O. 5 width, 0.5 length, 0.5 height} ; 

RW[ length_, width_, height~ = {- 0.5 width, 0.5 length, 0.5 height} ; 


RI.L [length_, width_, height-l = {- 0 . 5 width, 0.5 length, - 0 . 5 height} ; 

RRL[length_, width_, height~ = {0.5width, 0.5 length, -0.5 height} ; (6.8) 


Homogeneous transformation matrices, which are used in this visualization 

are as follow. 

1. 'Yaw' transformation matrix, T y( $, ). 

This matrix accounts for a rotation around the Zo axis by an angle W . 

cos(w) - sinew) 0 0 


sinew) cos(w) 0 0 

(6.9)Ty(w) = o 0 0 0 


o o o 1  

2. 'Pitch' transformation matrix, T p( $ ). 

http:signal_process.nb
http:visual.nb
http:coordCmaker.nb
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This matrix accounts for a rotation around the Y 1 axis by an angle e/). 

cos(e/») 0 sin(e/») 0 

o 1 0 0 
Tp(e/») = 

sinee/») 0 cos(e/») 0 
(6.10) 

o 0 0 1 

3. 'Roll' transformation matrix, T R( S ). 


This matrix accounts for a rotation around the X2 axis by an angle S . 


1 0 0 o 

TR (S) = 
0 

0 

cos(S) - sin(S) 

sin(S) cos(S) 

o 
o 

(6.11) 

0 0 0 1 

4. Translational transformation matrix, T T(X,y,Z).  

This matrix accounts for x, y, and Ztranslations along the X3, Y3, and Z3 axes. 


000 x 

000 y  

(6.12)TT(X,y,Z) = 
000 z 

o 0 0 1 

A succession of coordinate transformations, each represented by a particular 

transformation matrix, can be represented by a matrix product of individual 

transformation matrices [Wolovich 1987]. Therefore, the total transformation 

matrix that including the translational, and the rotational can be obtained as shown 

in Eq. 6.13. 

(6.13) 
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The position of point C in C.S. (XYZ)R is directly calculated by double 

integration procedure, and as shown in Fig. 6.5., the position can be described as 

vector, V~ = [xe,Ye,zeY. 

Homogeneous coordinate transformation technique is applied to find 

coordinates of the point G, which is the system's center of mass. The coordinate 

vector of center G, vg = [x G' Y G ,zG Y is shown in Fig. 6.5. And the following 

steps are used to calculate the coordinates. First, vectors vg and V~are rearranged 

to the column form lx4 as shown in Eq. 6.15, to be compatible with the 

homogeneous transformation matrix. 

Figure 6.5 Application of the homogeneous coordinate transformation for finding 
coordinates of point G (system's center of mass). 

Xe XG 

(6.14), and (6.15)D~ ;[~~]; ~; D~ ;[~~]; ~: 
1 1 
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It should be noted that the coordinates of point G defined in C.S. (XYZ)I are 

converted to its coordinates in the global c.s. (XfZ). A location vector, vg, is 

defined as a vector that contains local coordinates of the comer under consideration 

in the C.S. (XYZ)I, i.e., the coordinate with reference to the comer, C. In this 

example, dimensions of the plate are I,w, and h, where 

1 - the length of the plate measured parallel to the XI axis, 

w - the length of the plate measured parallel to the YI axis, and 

h - the length of the plate measured parallel to the ZI axis. 

G Iwh T G.
The column vector, Dc = [- - - 1 ] ,arranged from the vector V c ' IS then 

222 

used in the calculation of the coordinates of the point G in the global C.S. (XfZ) as 

(6.16) 

6.4.3 Drawing a 3-D Picture 

To create a complete motion of the plate in a certain time, its edges (eight 

comer points) are plotted and connected with line by using 'Graphic3D' in 

Mathematica. The generalized coordinates including three translations and three 

rotations are required for the position of excited plate of dynamometer at a certain 

time. Consecutive plots of the plate are obtained by using the sequential 

generalized coordinates. And by showing these consecutive plots rapidly, the 

movement of the plate according to the actual vibration or according to the 

simulation of model is accomplished as shown in Fig. 6.6. 
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(a) (b) 

Figure 6.6 Captured pictures of the animated dynamometers. (a) from actual signal, 

(b) from the model. 

6.S CLOSURE 

Two kinds of 3-D visualizations for the vibrating dynamometer are perfomed. 

After developing the visuali zation program, 'v isual.nb' by using malilemarica, 

calculating the generali zed coordinates turns to be main concerns. From the 

simulated model , the generalized coordinates are easi ly obtained because the 

coordinates are same between the model and the animation. Different from the 

model , several procedures are required to calculate the generalized coordinates 

from the actual signal from the accelerometers. The rotations should be calculated 

from the translations, and the transformation is also needed to get the generalized 

coordinates of the center. By these different procedures, two visuali zations are 

accomplished and compared as shown in Fig. 6 .6 . Visual comparison of animated 

http:visual.nb
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motion in the case of different excitation signals showed a good agreement of the 

model based and experimentally obtained responses of the platform. It corroborated 

the conclusion from Chapter 5 that the developed model of the dynamometer well 

represents its behaviors. 



73 

7. CONCLUSIONS AND RECOMMENDATIONS  

7.1 CONCLUSIONS 

The presented Computer-Aided Model Generation of a High performance 

Dynamometer gives the methodology of analyzing the dynamic system with multi­

degree of freedom. Generation of the system's model is the first stage. And the 

validation of the model is the second stage. In the first stage, the rigid body 

assumption is made for the modeling in consideration that the deformation of 

dynamometer's plate is negligible. For the simplification purpose, the fixed 

foundation and base assumption is also applied. Finally six transfer functions that 

represent the motion of the platform are obtained by using Lagrange's energy 

formalism. The use of "Mathematica" with the "Control System Professinal" 

package provides several ways to check the result of the modeling. By plotting 

'bode plot's of the each transfer functions, the natural frequencies of the system can 

be obtained. Also the output responses of the system can be simulated. The second 
-

stage consists of data processing and visualization procedures. Signals captured 

from the accelerometers are double integrated to get the displacements. Several 

extra processes are applied to eliminate drifts. For the strong signals, drift 

elimination procedure is simple and easy, but for the weak signals, it is not as easy 

to eliminate drift as it is for the strong signals. Several minimization techniques are 

discussed and acceptable drift estimation is achieved. The comparison between the 

displacements calculated from the signals and the displacements simulated from the 

model provides reasonable matches. For the application of this research, the 

visualization is performed base on the both ways, namely signal based one, and 

model based one. The generalized coordinates, which are necessary for the 

animation of vibrating platform is calculated. As expected from the comparison of 

the displacements, the animations of both ways matched quit well. 
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7.2 RECOMMENDATIONS FOR FURTHER RESEARCH 

To accomplish the complete model with more accuracy, and more efficiency 

way, additional works are required. For the model generation, reconsideration of 

the assumptions would improve the results. For an example, employing flexible 

mode or combination of rigid body and flexible mode would be taken into account 

to get the closer result from the actual system. And expanding the degree-of­

freedom by considering the movements of base, instead of fixed base assumption 

model would provide the closer model to the actual system. 

Validation for the improved model also should be improved. For the signal 

processing procedures, elimination of drifts should be performed with the advanced 

methods because the errors considered as negligible in this research would not be 

negligible in further research. For the model with flexible mode, visualization 

should be considered differently from the model with rigid body. Employing 

platform with several sections would be appropriate for the model with flexible 

mode. To accomplish this, more sensors can be employed and a modal analysis 

technique would be applied. 
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Appendix A 
Experimental Specifications, and Constant Parameters. 

A.I Information of Sensor used in the Experiment 

Comments 
Direction 

in 
Sensor 

Location 
(Fig.) 

Sensitivity Channel 
Amplifier 

Gain 

ADXL202 Xh Clcx 0.312 V/g 2 1 

ADXL202 Yh Clcy 0.312 V/g 3 1 

ADXL202 Yv Clcz 0.312 V/g 4 1 

ADXL202 YI al y 0.312 V/g 5 1 

ADXL202 Xl alz 0.312 V/g 6 1 

ADXL202 X2 a2x 0.312 V/g 7 1 

ADXL202 Y2 a2z 0.312 V/g 8 1 

ADXL202 Y3 a3x 0.312 V/g 9 1 

ADXL202 X3 a3y 0.312 V/g 10 1 

Kistler 
8302A 10/5202A2 al y 0.5 V/g 11 1 

Load cell 
Not 

fixed 
2.248mVIN 12 10 
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A.2 Dimensions of the Dynamometer 

units: mm 	 ZG 

Figure A.l 	Dimensions of the dynamometer used in the experiment in units of mm 
(the sensing elements are not shown).[Jitpraphai, 1997] 

A.3 Constant Parameters in the Spatial Matrices 

Mass of the platform [Chen, 1996]. 

m= 2.714 kg. 

Mass moment of inertia of the platform around the center of mass, G [Chen, 1996]. 

!xx = .006187217392 kg·m2
, Iyy = .002398407627 kg·m2

, Izz = .008366544210 
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Stiffness of the sensing elements [Chen, 1996]. 

kOI =262000 N/m, k02 = 1260000 N/m. 

kOl =kxl = kx2 =kx3 = kx4 =kyl =ky2 = ky3 =ky4. 

k02 = kzl = kz2 = kz3 =kz4. 

Damping coefficients of the sensing elements [Chen, 1996]. 

cox =140 N·S/m, coy =125 N·S/m, coz =275 N·s/m. 

cox =cxl = cx2 =cx3 = cx4. 

coy =cyl =cy2 =cy3 = cy4. 

coz = czl = cz2 = cz3 = cz4. 

Distances of the sensing elements from the center of mass [Chen, 1996]. 

a =0.02999 m (in XG direction), 

b =0.04979 m (in YG direction), 

h =0.01070 m (in ZG direction). 
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Appendix B  
Plots of the Experimental Responses from 'y' direction impact force.  
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Appendix C 

Model Derivation of Dynamometer in Mathematica  

Model of Dynamometer 

Generating Equations of Motion 


Development History: 

Based on a model of HEXACT ("HexactS_3.nb") developed by B. Brisbine (last rev. 05/03/99) 

Started: 7111/99: S.Ko 
Last Rev.: 111512000: S.Ko 

O. Call packages (Check if loaded succesfully) 
& clear numerical constants and variables 
1. Set properties of the working environment 
2. Symbolize variables 
3. Vectors of coordinates and system parameters 
4. Transfonnation matrices 
5. Defining EDE position vectors 
6. Potential Energy 
7. Kinetic energy 
8. Damping energy 
9. External input force and moment 
10. The Lagrange's equations of motion 
10.1 Define the Lagrangian function. 

LagrEqns [T_, U_, Danp_, Q.List, Coer_List I : = 

Flatten [MapThread[ {at (00t#2T) - 0#2 (T- U) + 0ot#2Dar!p- #1== O} &, {Q, Coer} 11; 

10.2 Calculate equations of motion. 
incrCoord 

{x1(1), y1(1), zl(l), 61(1), ¢l1(1), t/t1(1), x2(I), y2(I), z2(I), 62(1), ¢l2(1), t/t2(I)}  

EX:Ml. = LagrF.qns [Tt , Ut , Dt , minGen, incrCoord ] ; 

Twelve equations of motion for the Dynamometer. 

11 ¢l1(1) 347 ¢l2(1) t/t 1(1) 4979 t/t2(1) )
(k Xl x1(1)-x2(I)+--- +-- 1+(

P 1000 2<xx)() 20 100(00) 

11 ¢l1(1) 347 ¢l2(1) t/t 1(1) 4979 t/t2(t) )
k", x1(t) -x2(t) + -- - + - - 1 + (p 1000 2<xx)() 20 100(00) 

11 ¢l1(t) 347 ¢l2(t) t/t 1(t) 4979 t/t2(t) ) 
k XI x1(t) -x2(t) + -- - - - + 1 + 
(p 1000 2<xx)() 20 100(00) 

11 ¢l1(t) 347 ¢l2(1) t/t 1(t) 4979 t/t2(t)) I"(k Xl x1(t) -x2(t) + -- - - - + 1- JJ(I) + 
p t 1000 2<xx)() 20 100(00) x 

http:HexactS_3.nb
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, 11~1'(1) 347~2'(t) ",1'(1) 4979",2'(1)'
bpX3 xl (I) - x2'(t) + - + -- - 1+( 1000 20000 20 100000) 

, 11 ~1'(t) 347 ~2'(t) '" l'(t) 4979 ",2' (I) , 
bp~ (xl'(t) - x2 (I) + 1000 - 20000 + 20 - 100000 ,+ 

11 ~1'(t) 34H2'(t) ",1'(1) 4979 "'2'(1) ,  
bpX1 (xl'(1) - x2'(t) + 1000 - 20000 - 20 + 100000 ,+ 


, 11 ~I'(t) 347 ~2'(t) ",1'(t) 4979",2'(1) , " 0 

bpX2 (xl'(t) - x2 (I) + 1000 - 20000 - 20 + 100000 ,+mPxl (t) == , 


( 1101(1) 34702(1) 3 ",1(1) 2999 ",2(1) , 
kpy2 \yl(1) - y2(1) - 1000 + 20000 + ---wo - 100000 ,+ 

( 1101(1) 34702(1) 3",1(1) 2999 ",2(1) ,  
kpy3 \yl(1) - y2(1) - 1000 + 20000 + ---wo - 100000 ,+ 


1101(1) 34702(t) 3",I(t) 2999",2(1) ,  
kpYl ( Y1(t) - y2(1) - 1000 + 20000 - ---wo + 100000 ,+ 


1101(1) 34702(1) 3",1(1) 2999",2(1)' 
kpY4 ( yl(l)-y2(t)- 1000 + 20000 -----wo-+ 100000 ,-fy<l)+ 

, , 1101'(1) 34702'(1) 3",1'(1) 2999",2'(1) ,  
bpY2 ( yl (I) - y2 (I) - 1000 + 20000 + -----wo- - 100000 ) + 


( 1101'(1) 34702'(1) 3",1'(1) 2999",2'(1),  
bpy3 \yl'(1) - y2'(1) - 1000 + 20000 + -----wo- - 100000 ) + 


1101'(1) 34702'(1) 3",1'(1) 2999",2'(1),  
bpY1 ( yl'(1) - y2'(1) - 1000 + 20000 - -----wo- + 100000 ) + 


( 1101'(1) 34702'(1) 3",1'(1) 2999",2'(1), "  
bpy4 \yl'(t)-y2'(I)- 1000 + 20000 ------wo-+ 100000 ,+mPyl (1)==0,  

, 981mP ( 01(1) 497902(1) 3~1(1) 2999~2(1),
zl' (t) mP + -- + It.~ zl(1) - z2(1) + - - + -- - I + 

100 ""PU 20 100000 100 100000) 
01(1) 497902(1) 3~1(1) 2999~2(1)'

k~7A zl(1) -z2(I)- - + + -- - 1+(
I"'-"'" 20 100000 100 100000) 

01(t) 497902(1) 3~1(1) 2999~2(1), 

~'Z2 ( zl(1) - z2(1) + 20 - 100000 -100 + 100000 ,+ 


k ( z2( 01(1) 497902(1) 3~1(1) 2999~2(1), f  
pZ3 zl(1) - I) - 20 + 100000 -100 + 100000 ,- :z(1) + 


, , 01'(1) 497902'(1) 3~1'(1) 2999~2'(1)' 

bpZl ( zl (I) - z2 (t) + 20 - 100000 + ---.00- - 100000 ) + 


, , 01'(1) 497902'(1) 3~1'(1) 2999~2'(1)' 

bp:zA. ( zl (I) - z2 (I) - 20 + 100000 + ---.00- - 100000 j +  

01'(1) 497902'(1) 3~1'(t) 2999¢/2'(1) ,  
bp'Zl ( zl'(1) - z2'(1) + 20 - 100000 - ---.00- + 100000 j +  

, , 01'(1) 497902'(1) 3~1'(1) 2999~2'(1), 0 

bpZ3 ( zl (I) - z2 (I) - 20 + 100000 - ---.00- + 100000 j== ,  

1 ( 01(1) 497902(1) 3 ~I(I) 2999 ~2(1) ,  
20 kpZl zl(1) - z2(1) + 20 - 100000 + 100 - 100000 ) + 


1 ( 01(1) 497902(1) 3 ~1(1) 2999 ~2(1) ,  
- kpZ3 -zl(1) +z2(1) + - - + -- - 1+ 

20 \ 20 100000 100 100000) 

1 ( 01(1) 497902(1) 3~1(1) 2999~2(1)' 

- kp'Zl zl(1) - z2(1) + - - - -- + I + 

20 \ 20 100000 100 100000) 


1 ( 01(t) 497902(1) 3~1(1) 2999~2(t) , 
- It~. -zl(1) +z2(1) + - - - -- + 1-
20 "~\ 20 100000 100 100000) 
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1 (( 1101(t) 34792(t) 3",1(t) 2999",2(t) n 
1000 11kpY2 ly1(t)-y2(t)- ]000 + 20000 +100- 100000 jj-

1 (( 1101(t) 34792(t) 3",1(t) 2999 ",2(t) ))  
1000 11kpY3~y1(t)-y2(t)- 1000 + 20000 +100 - 100000 jj-

1 (( 1191(t) 34792(t) 3",1(t) 2999 ",2(t) ))  
1000 11kpYlly1(t)-y2(t)- 1000 + 20000 -100+ 100000 jj-

1 (( 1101(t) 347/J2(t) 3",1(t) 2999 ",2(t) ))  
1000 ~ 11 kpY4 y1(t) - y2(t) - 1000 + 20000 -100 + 100000 j) + <to If.t) -

1 (, , 01'(t) 497992'(t) 3¢>l'(t) 2999¢>2'(t) ,  
y; f (t) - mj..t) + - bpZI zl (t) - z2 (t) + -- - + -- - I -

ID Z 20 ~ 20 100000 100 100000 J 
1 ( , 01'(t) 497992'(t) 3¢>l'(t) 2999¢>2'(t) ,  

- b~7A zl'(t)-z2 (t)- -- + + -- - 1+  
20 !'<" 20 100000 100 100000 J 

1 (, , 01'(t) 497992'(t) 3¢>l'(t) 2999¢>2'(t) , 

- b~7) zl (t)-z2 (t)+ -- - - -- + 1-
20 .......... 20 100000 100 100000 J 

1 (, , 01'(t) 497992'(t) 3¢>l'(t) 2999¢>2'(t) , 

- bpZ3 zl (t) - z2 (t) - -- + - -- + I -
20 20 100000 100 100000 J 


1 ( (, , 1101'(t) 34792'(t) 3 ",l'(t) 2999 ",2'(t) n  
1000 11 b pY2 Y1 (t) - y2 (t) - 1000 + 20000 + -----wo- - 100000 j j -

1 ( (, , 1101'(t) 34792'(t) 3 ",l'(t) 2999 ",2'(t) ))  
1000 11 b pY3 Y1 (t) - y2 (t) - 1000 + 20000 + -----wo- - 100000 »-

1 ( (, , 1101'(t) 34792'(t) 3 ",l'(t) 2999 ",2'(t) ))  
1000 11 b pY1 y1 (t) -y2 (t) - 1000 + 20000 - -----wo- + 100000 jj-

1 (( 1191'(t) 34792'(1) 3 ",l'(t) 2999",2'(t»)) 
1000 11bpY4 y1'(t)-y2'(t)- 1000 + 20000 ------wo-+ 100000 jj+JPJO(Ol"(t) ==0, 

3 ( 01(t) 497992(t) 3 ¢>1(t) 2999 ¢>2(t) , 
- kpZI zl(t) - z2(t) + - - + -- - I + 
100 20 100000 100 100000 J 

3 ( 01(t) 497992(t) 3 ¢>1(t) 2999 ¢>2(t) ,  
- k~7A zl(t) - z2(t) - - + + -- - I -
100 !'<" 20 100000 100 100000 J 

3 ( 01(t) 497992(t) 3 ¢>1(t) 2999 ¢>2(t) , 

- k~7) zl(t) - z2(t) + - - - -- + I -
100 .......... 20 100000 100 100000 J 

3 ( 01(t) 497992(t) 3 ¢>1(t) 2999 ¢>2(t) ,  

- kpZ3 zl(t) - z2(t) - - + - -- + I +  
100 20 100000 100 100000 J 


1 (11 k (1 xl{ 11 ¢>1(t) 347 ¢>2(t) '"1(t) 4979 "'2(t) n  
1000 pX3 \ x (t) - t) + 1000 - 20000 + 20 - 1 ()()()()() )) +  
1 (( 11 ¢11(t) 347 ¢>2(t) '"1(t) 4979 ",2(t) "  

1000 11 kp~ x1(t) - xl{t) + 1000 - 20000 + 20 - 100000 jj +  

1 (( 11 ¢>1(t) 347 ¢>2(t) ",1(t) 4979 ",2(t) n  
1000 11 kpXJ x1(t) - x2(t) + 1000 - 20000 - 20 + 100000 »+  

1 (( 11¢>1(t) 347¢>2(t) ",1(t) 4979",2(t) n  
1000 11 kpX2 x1(t) - x2(t) + 1000 - 20000 - 20 + 100000 j j - Zio I~t) +  

3 (, , 01'(t) 497992'(t) 3¢>l'(t) 2999¢>2'(t) ' 
Xio/z(t) - mf..t) + - bpZI zl (t) -z2 (t) + -- - + -- - I +  

100 20 100000 100 100000 J 

3 (, , 01'(t) 497992'(t) 3¢>l'(t) 2999¢>2'(t) ,  

- bp7A zl (t) - z2 (t) - -- + + -- - I -
100 ~ 20 100000 100 100000 J 


3 (, , 91'(t) 497902'(t) 3¢>l'(t) 2999¢>2'(t) ,  
100 bpZ2 ~zl (t) - z2 (t) + 20 - 100000 -100 + 100000 j -
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3 b (, , 01'(1) 4979(12'(1) 3~1'(t) 2999~2'(t)) 
- pZ3lz1 (t) - z2 (t) - -- + - -- + I + 
100 20 100000 100 100(00) 

1 (lIb (, x2' 11~1'(t) 347~2'(t) 1/11'(1) 49791/12'(1»))-- X3 xl (t) - (t) + - + -- - II + 

1000 \ P 1000 20000 20 100(00)) 


1 ( b (, , 11~1'(1) 347~2'(t) I/I1'(t) 49791/12'(1»)) 
-- I 11 ~ xl (1) - x2 (t) + - + -- - I I + 

1000 \ P \ 1000 20000 20 100(00)) 


I ( b (, , 11~1'(t) 347~2'(t) I/I1'(t) 49791/12'(1)))
--ll1 Xl xl (t)-x2(1)+ - ---+ 11+ 

1000 P 1000 20000 20 100(00)) 


1 ( b (, , 11 ~1'(t) 347 ~2'(t) I/I1'(t) 49791/12'(t) )) " 
-- 11 pX2 xl (t)-x2 (t)+ - - -- + II +JPyy~1 (t) ==0,
1000 \ 1000 20000 20 100(00)) 

1 k ( 11~1(t) 347~2(t) 1/11(t) 49791/12(t)) 
- X3 x1(t) - x2(t) + -- - + -- - I + 
20 p 1000 20000 20 100(00) 

I k (1 x2 11 ~1(t) 34H2(t) 1/11(1) 49791/12(t))
- ~ x (t) - (t) + -- - + -- - I + 
20 p 1000 20000 20 100(00) 
1 k ( 11 ~1(1) 347 ~2(t) I/Il(t) 49791/12(t)) 

- Xl -x1(1) +x2(I)--- + + -- - 1+ 
20 p \ 1000 20000 20 100(00) 
1 k ( 11 ~1(t) 347 ~2(1) 1/11(t) 49791/12(t))

- X2 -x1(t) +x2(t) - -- + + -- - 1+ 
20 p \ 1000 20000 20 100(00) 
3 k ( 11 01(t) 347 (I2(t) 31/11(t) 2999 1/I2(t) ) 

- Y2 y1(t)-y2(t)- -- + + -- - 1+ 

lOOP 1000 20000 100 100(00) 

3 k ( 11 01(t) 347 (I2(t) 31/11(1) 2999 1/I2(t) ) 

- Y3 y1(t)-y2(t)- -- + + -- - 1­
100 P 1000 20000 100 100(00) 

3 k ( 11 01(t) 347 (I2(t) 31/11(t) 2999 1/12(1) ) 

- YII y1(t)-y2(t)- -- + - -- + 1­
100 P \ 1000 20000 100 100(00) 

3 ( 11 01(1) 347 (I2(t) 31/11(t) 2999 1/I2(t) )  

- k Y4 y1(t) - y2(t) - -- + - -- + 1+ Y; fP)-
100 P 1000 20000 100 100(00) ID  

Ib (, , 11 ~1'(1) 347 ~2'(t) 1/11'(1) 49791/12'(t)) 
Xj (t)-m(t)+- X3 xl (t)-x2(t)+ - +--- 1+f 

D Y Z 20 P 1000 20000 20 100(00) 

I b (, , 11~1'(t) 347~2'(1) 1/11'(1) 49791/12'(t)) 
- ~ xl (1) - x2 (t) + - + -- - I + 
20 1000 20000 20 100000) 

3 b (, , 1101'(t) 347(12'(1) 31/11'(1) 29991/12'(t)) 
- Y2 yl (t)-y2 (t)- + + -- - 1+ 
lOOP 1000 20000 100 100(00) 

3 b (, , 11 01'(1) 347(12'(1) 31/11'(1) 29991/12'(t))  

- Y3 yl (t) -y2 (t) - + + -- - I ­
100 P \ 1000 20000 100 100000) 


3 b (, , 11 01'(t) 347 (I2'(t) 31/11'(1) 29991/12'(t) ) 
- YI yl(t)-y2(1)- + ---+ I­
lOOP 1000 20000 100 100000) 

3 b (, , 11 01'(t) 347(12'(1) 31/11'(1) 29991/12'(t)) 
- Y4yl(t)-y2(t)- + ---+ 1­
100 P 1000 20000 100 100(00) 
I b (, , 11~1'(1) 347~2'(1) 1/11'(1) 49791/12'(t)) 

- Xl xl (1) - x2 (t) + - - -- + I -
20 P 1000 20000 20 100000) 
I b (, , 11~1'(1) 347~2'(1) 1/11'(1) 49791/12'(1)) " 

-pX2xl(1)-x2(1)+ - ---+ I+JPzzI/II(t)==O,
20 1000 20000 20 100000) 

I 46H2(t) 31/12(1)) k ( 1467 ~2(1) 31/12(t) )
kbXl x2(t) + - --I + bX2 x2(1)+ --- 1­( 

20000 20) 20000 20) 

11 ~1(1) 347 ~2(1) 1/11(1) 49791/12(t) ) 

k X3 x1(t) - x2(1) + -- - + -- - I ­(P 1000 20000 20 100(00) 
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11~1(f) 34H2(t) r/t1(f) 4CJ79r/t2(t) ' 
kp~ xl(f) - x2(t) + -- - + - - I -( 1000 20000 20 100(00) 

11 ~1(f) 347 ~2(f) r/tl(t) 4979 r/t2(t) ,
k Xl x1(t) - x2(t) + -- - - -- + -1(

P 1000 20000 20 100(00) 
11 ~1(f) 347 ~2(f) r/t1(t) 4979 r/t2(f) ,

k Xl x (f) - x2(t) + -- - - -- + 1 +(1
p 1000 20000 20 100(00) 

1467 ~2( f) 3 r/t2( f), k ( 1467 ~2(t) 3r/t2(t), I'(kbX3 x2(f) + + -- 1 + b~ l x2(f) + + -- 1 - JxB (f) + 
\ 20000 20) \ 20000 20) 

, 1467 ~2'(f) 3r/t2'(f), b (, 146H2'(f) 3r/t2'(t) , 
bbXl x2 (t) + - -- 1 + bX2 x2 (f) + - -- 1 ­( 20000 20) 20000 20) 

' , 11~1'(f) 347~2'(t) r/tl'(t) 4979r/t2'(f) ' b X3 x (t) - x2 (f) + - + -- - 1 ­(1
p 1000 20000 20 100(00) 

, , 11 ~1'(f) 34H2'(f) r/tl'(f) 4979r/t2'(f) , 
b ~ xl (f) - x2 (t) + - + -- - I -(

p 1000 20000 20 100(00) 
' x2' 11~1'(f) 34H2'(t) r/tl'(f) 4979r/t2'(f) , 

b Xl x (t) - (f) + - - -- + 1 ­(1P 1000 20000 20 100(00) 
, _'" 11~1'(f) 347~2'(t) r/tl'(t) 4979r/t2'(f) , 

b Xl xl (f) - ~ (f) + - - -- + 1 +(p 1000 20000 20 100(00) 

'(f) 146H2'(f) 3r/t2'(t), b (x2'(f) 1467~2'(f) 3r/t2'(f)' mBx2" 0bbX3 (x2 + + -- 1 + ~ + + -- 1 + (f) == ,
20000 20) \ 20000 20) 

1467 U2(f) 3r/t2(t), k ( 1467 U2(f) 3 r/t2(t) ,
kbYI (y2(t) - - -- 1 + bY4 y2(t) - - -- 1 ­

20000 10) 20000 10) 
1191(t) 347 U2(t) 3r/tl(t) 2999 r/t2(f) , 

k Y2 Y (f) - Y2(t) - -- + + -- - 1 ­(1
p 1000 20000 100 100(00) 

1191(t) 34792(t) 3r/tl(t) 2999r/t2(f) ,
k Y3 y1(f)-y2(f)---+ +--- 1-(

P 1000 20000 100 100(00) 
1191(t) 347 U2(f) 3r/tl(f) 2999 r/t2(f) ,

(1k YI Y (f) -y2(f) - -- + - -- + 1-
P \ 1000 20000 100 100(00) 

1191(f) 347 U2(t) 3 r/t 1(f) 2999 r/t2(f) , 
k Y4 Y (t) - Y2(f) - -- + - -- + 1+ (1P 1000 20000 100 100(00) 

1467 U2(f) 3r/t2(f) , ( 1467 U2(f) 3 r/t2(f) , 
kbY2 y2(f) - + -- 1 +kbY3 y2(t) - + -- 1 - fyB(f) +  ( 20000 10) \ 20000 10) 

, 1467U2'(f) 3r/t2'(f) , (, 1467U2'(f) 3r/t2'(f) ,
bbYI y2(f)- ---I+bbY4 y2(t)- ---1­( 

20000 10) 20000 10) 
, , 1191'(f) 347U2'(f) 3r/tl'(f) 2999r/t2'(f) ' 

b Y2 yl (f) - y2 (f) - + + -- - 1 ­(
p 1000 20000 100 100(00) 

' 2' 1191'(f) 347 U2'(f) 3r/tl'(f) 2999r/t2'(f) , b Y3 (1Y (f) - Y (f) - + + -- - 1-
P 1000 20000 100 100(00) 

(1' 2' 1191'(f) 347U2'(f) 3r/tl'(t) 2999r/t2'(f) \ 
b YI Y (f) - Y (t) - + - -- + r-

p \ 1000 20000 100 100(00) 
, , 1191'(f) 347U2'(f) 3r/tl'(f) 2999r/t2'(f) , (bpY4 yl (t) - y2 (f) - + - -- + 1+ 

\ 1000 20000 100 100(00) 
, 1467U2'(f) 3r/t2'(f) \ ( 1467U2'(f) 3r/t2'(f) \ (bbY2 y2 (f) - + -- r +bbY3 y2'(f) - + --r +mBy2"(f) == 0,

\ 20000 10) \ 20000 10) 

" mB 981 mB k (z2 3U2(t) 3~2(f) \ k ( 3U2(f) 3~2(t) \z2 (f) + -- + bZ3 (f) - -- - -- r + b22 z2(f) + -- - -- r-
100 \ 20 10) \ 20 10) 
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61(t) 497962(t) 3¢11(t) 2999¢12(t) '. 
kpZl z1(t) -72(t) + - - + -- - 1-( 

20 100000 100 l00000} 
k ( 6l(t) 497962(t) 3 ¢I1(t) 2999 ¢l2(t) , 

pZA l zl(t) - z2(t) - 20 + 100000 + 100 - 100000 }­

( 61(t) 497962(t) 3¢I1(t) 2999 ¢l2(t) ,  
kpZ2 \zl(t) -72(t) + 20 - 100000 -100 + 100000 t  
k ( 61(t) 497962(t) 3¢11(t) 2999¢12(t)' k ( 362(t) 3¢12(t) , 

pZ3 \ z1(t) - z2(t) - 20 + 100000 -100 + 100000 j+ hZA 72(t) - 20 +10) + 

362(t) 3 ¢l2(t) , (, 362'(t) 3 ¢l2'(t) , (kbZl 72(t) + -- + -- I - f7I3 (t) + bbZ3 72 (t) - -- - -- I +  
\ 20 1O} 20 1O} 


, 362'(t) 3¢12'(t)' b (, , 61'(t) 497962'(t) 3¢11'(t) 2999¢12'(t) ' (bbZ2 72 (t) + -- - -- I - pZ1 zl (t) -72 (t) + -- - + -- - I -
\ 20 1O} 20 100000 100 l00000} 

b (, , 61'(t) 497962'(t) 3¢11'(t) 2999¢12'(t) '  
pZA \ zl (t) -72 (t) - 20 + 100000 + l<X) - 100000 }­

b (, , 61'(t) 497962'(t) 3¢11'(t) 2999¢12'(t) ,  
pZ2 zl (t) - 72 (t) + 20 - 100000 -l<X) + 100000 j -

b (, , 61'(t) 497962'(t) 3¢11'(t) 2999¢12'(t) ,  
pZ3 \zl (t) - 72 (t) - 20 + 100000 -l<X) + 100000 }+  

_"I' 362'(t) 3¢12'(t) , b (_"I' 362'(t) 3¢12'(t) , 0bhZA ~ (t) - -- + -- I + bZl ~ (t) + -- + --I == ,( 20 1O} 20 1O} 

3 ( 362(t) 3 ¢l2(t) ,3 ( 362(t) 3¢l2(t) , 
- - kbZ3 72(t) - -- - -- I + - kbZ2 72(t) + -- - -- I -

20 20 1O} 20 20 1O} 

1 ( k ( 61(t) 497962(t) 3¢11(t) 2999¢12(t) " 
-- 4979 pZl z1(t) - 72(t) + - - + -- - I I +  
100000 \ 20 100000 100 l00000}} 


1 ( k ( 61(t) 497962(t) 3¢11(t) 2999¢12(t) "  
100000 4979 pZA zl(t) -72(t) - 20 + 100000 + l(X) - 100000 ,t  

1 ( k ( 61(t) 497962(t) 3¢11(t) 2999¢12(t) " 
-- 4979 pZ2 z1(t) - 72(t) + - - - -- + II +  
100000 \ 20 100000 100 l00000}} 


1 ( k ( 61(t) 497962(t) 3¢11(t) 2999¢12(t) " 
-- 4979 pZ3 z1(t) - 72(t) - - + - -- + I I -
100000 20 100000 100 l00000}} 

3 ( 362(t) 3¢12(t) ,3 ( 362(t) 3¢12(t) ,  

20 khZA z2(t) - z2(t) + 20 +10} -20 + ----w- )+ 20 kbZl 

1467 k (y2(t) - 146762(t) - 3tn(t») 1467 k (y2(t) _ 146762(t) _ 3tn(t») 
bYI 2(XXX) 10 bY4 2(XXX) lO 


------~==~-~-+ 

20000 20000 

1 (34 k ( 1161(t) 34762(t) 31/1 1(t) 2999 I/12(t) "  

20000 7 pY2 yl(t) - y2(t) - 1000 + 20000 + ----ux> - 100000 }} +  

1 (( 1161(t) 34762(t) 31/11(t) 29991/12(t) "  
20000 347kpY3 \yl(t)-y2(t)- 1000 + 20000 +100- 100000 U+  

1 (34 k ( 1161(t) 34762(t) 31/1 1(t) 2999 I/12(t) "  
20000 \ 7 pYI yl(t) - y2(t) - 1000 + 20000 -100 + 100000 }) +  

1 (( 1161(t) 34762(t) 31/1 1(t) 2999 I/12(t) "  
20000 l347kpy4 \yl(t)-y2(t)- 1000 + 20000 -100 + 100000 jt  
1467 k (y2(t) _ 146762(t) + 3I/12(t»)

bY2 2(XXX) lO 

20000 
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1467 k (y2(t) _ 146782(1) + 31/12(1»)
bY3 20000 10 

20000 + Z;nb fyB(t) - Yinb fzB(t) - mxB(t) ­

3 b (, 392'(t) 3r/J2'(t) , 3 b (, 392'(t) 3r/J2'(t) , 
- b23 z2(t)------I+- hZZ z2(t)+-----I­
20 20 10) 20 20 10) 

1 ( (" 81'(t) 497992'(t) 3r/Jl'(t) 2999r/J2'(t)"  
100000 4979 bpZl zl (t) - z2 (t) + 20 - 100000 + 100 - 100000 )) + 


1 ( b (, , 81'(t) 497992'(t) 3t/>1'(t) 2999r/J2'(t) " 
-- 4979 zl (t)-z2 (t)- -- + + -- - II­n7A 
100000 I"'"' 20 100000 100 100000)) 


1 ( (" 81'(t) 497992'(t) 3r/Jl'(t) 2999t/J2'(t)"

-- 4979 bn"n zl (t) - z2 (t) + -- - - -- + I I + 
1 00000 ~ ~ 20 100000 100 100000)) 


1 ( b (, , 81'(t) 497992'(t) 3r/Jl'(t) 2999r/J2'(t) "  
-- 4979 n'71 zl (t)-z2 (t)- -- + - -- + II­
1 00000 ~ 20 100000 100 100000)) 

3 b (, 392'(t) 3r/J2'(t) ' 3 b (, 392'(t) 3r/J2'(t) ,- ~ z2(t)---+--I+- bZl z2(t)+--+--I­
20 20 10) 20 20 10) 

1467 bbyJ(y2'(t) - 146782'(1) - 31/12'(1») 1467 bbY4 (y2'(t) _ 146782'(1) _ 31/12'(1)) 

______.....;20000="'---_----=..:10'---- _ 20000 10 + 


20000 20000 

1 ( b (, , 1181'(t) 34792'(t) 31/11'(t) 29991/12'(f)"  
20000 347 pY2~yl(t)-y2(t)- 1000 + 20000 +}OO- 100000 ))+ 


1 ( b (, , 1181'(t) 34792'(t) 31/11'(t) 29991/12'(f)"  
20000 347 pY3 yl (t) - y2 (t) - 1000 + 20000 +}OO - 100000 )) + 


1 ( b (, , 1181'(f) 347 (f2'(t) 31/11'(t) 29991/12'(t)" 
20000 347 pY1 lyi (t) -y2 (t) - 1000 + 20000 -}OO + 100000 )) + 

1 ( b (, , 1181'(t) 347 (f2'(t) 31/11'(t) 29991/12'(f)"  
20000 l347 PY4~yl (f) -y2 (t) - 1000 + 20000 -}OO + 100000 )) ­

1467 b (y2'(t) _ 146782'(1) + 31/12'(1)) 1467 bbY3 (y2'(t) _ 146782'(1) + 31/12'(1))
bY2 20000 10 ______--=20000="---_-=10_ +~ (f2"(t) == 0, 

20000 20000 

_~ kb23 (z2(t) _ 3(f2(t) _ 3r/J2(t) ~ _ 2 khZZ (z2(t) + 3(f2(t) _ 3r/J2(t) ~_ 
10 20 10) 10 20 10) 

1 ( k ( 81(t) 4979(f2(t) 3r/Jl(t) 2999r/J2I..t) " 
-- 2999 pZl z1(t) - z2(f) + - - + -- - I I ­
100000 20 100000 100 100000)) 


1 ( k ( 81(t) 4979(f2(f) 3r/J1(t) 2999r/J2(t) " -- 2999 zl(t) - z2(t) - - + + -- - I I + n74  
100000 a--'"' 20 100000 100 l00000}} 


1 ( k ( 81(t) 4979 (f2(t) 3 r/J1(t) 2999 r/J2(t) " -- 2999 n"n zl(t)- z2(f) + - - - -- + II + 

100000 ~ 20 100000 100 100000)) 


1 ( k ( 81(t) 4979 (f2(f) 3 r/Jl(t) 2999 r/J2(t) " 
-- 2999 p23 z1(t) - z2(f) - - + - -- + I I + 

100000 20 100000 100 100000 J)  
3 k ( 3 (f2(t) 3 r/J2(t) , 3 k ( 3 (f2(t) 3 r/J2(t) , 

- ~ z2(t)--- +--1+- bZl z2(t)+--+--I+
10 20 10) 10 20 1O} 

1467 k (x2(t) + 1467 ~2(I) _ 31/12(1») 1467 k (x2(t) + 146U2(I) _ ~)
bX1 20000 20 bX2 20000 20 

------===-----==-----+ ­
20000 20000 

1 (( 11 r/Jl(t) 347 r/J2(t) I/Il(t) 49791/12(t) " 
20000 347 kpX3 xl(t) - x2(t) + 1000 - 20000 + 20 - 100000 )) ­

1 (( 11 r/Jl(t) 347rP2(t) I/Il(t) 49791/12(t) "  
20000 347 kp~ xl(t) - x2(t) + 1000 - 20000 + 20 - 100000 )) ­
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1 ( k ( 11iP l(t) 347iP2(1) 1/1 1(1) 49791/12(1) \\ 
20000 347 pX1 x1(1) - x2(1) + 1000 - 20000 - 20 + 100000 )} ­

1 ( k ( 11iP1(1) 3471P2(1) 1/11(1) 49791/12(1) \\  
20000 347 pX2 x1(1) - x2(t) + 1000 - 20000 - 20 + 100000 )) + 


1467 kbX3 (x2(1) + 14671/12(1) + l!l@2) 1467 kb~ (x2(1) + 1467iP2(l) + 31/12(1») 

______-=2(XX)()='---_~20"__ + 2(xx)() 20 -.; /, (1) + 


20000 20000 nb xB  

3 (, 392'(1) 3iP2'(t) ' 3 (, 392'(1) 3iP2'(1) ,
XjnbfzB(1) - myB(1) -10 bbZJ 'Z2 (t) - -W -10) - 10 bb7l. 'Z2 (1) + -----w- --10-) ­

1 ( b (, , (H'(t) 497992'(1) 3iPl'(1) 2999iP2'(1) " 
-- 2999 pZI zl (1) - 'Z2 (1) + -- - + -- - I I -
100000 20 100000 100 l00000}} 


1 ( b (, , 01'(1) 497992'(1) 3iPl'(1) 2999iP2'(1) \\  
100000 2999 p~ zl (1) - 'Z2 (1) - 20 + 100000 + ~ - 100000 » + 


1 ( b (, , 01'(1) 497992'(1) 3iPl'(1) 2999iP2'(1) "  
100000 2999 p22 zl (1) - 'Z2 (1) + 20 - 100000 -~ + 100000 »+ 


1 ( b (, , 01'(1) 497992'(1) 3iPl'(t) 2999iP2'(1) " 
-- 2999 p23 zl (1) - 'Z2 (1) - -- + - -- + II + 

100000 ~ 20 100000 100 l00000}) 

3 b (, 392'(1) 3iP2'(1) , 3 b (, 392'(1) 3iP2'(1) , 

- t@ 'Z2 (1) - -- + -- I + - bZl 'Z2 (1) + -- + -- I + 
10 20 1O}1O ~ 20 1O} 

1467b (x2'(1) + 1467112'(1) _ 31/12'(1») 1467b (x2'(1)+ 14671/12'(1) _ 31/12'(1»)

bX1 2(XX)() 20 ,bX2 2O(XX) 20 


---------=~---~--+ ­
20000 20000 

1 ( b (, , 11iPl'(1) 3471/12'(1) 1/11'(1) 49791/12'(1) "  
20000 347 pX3 xl (1) - x2 (1) + 1000 - 20000 + 20 - 100000 )) ­

1 ( b (, , 11iPl'(1) 3471P2'(1) 1/11'(1) 49791/12'(1) \\  
20000 l347 p~ xl (1)-x2 (1)+ 1000 - 20000 + 20 - 100000 »)-

1 ( b (, , 11iPl'(1) 347iP2'(1) 1/11'(1) 49791/12'(1) "  
20000 347 pX1 xl (1) -x2 (1) + 1000 - 20000 - 20 + 100000 )) ­

1 ( b (, , 11iPl'(1) 3471P2'(1) 1/11'(1) 49791/12'(1) \\  
20000 347 pX2 xl (1) - x2 (1) + 1000 - 20000 - 20 + 100000 ») + 


1467bbX3 (x2'(1)+ 14671/12'(1) + 31/12'(1») 1467bb~(x2'(1)+ 14671/12'(1) + 31/12'(1») 
________-=2(XXX)=____-=20=___ + 2O(XX) 20 +JB iP2"(1) == 0, 

20000 20000 yy 
3 ( 146792(1) 31/12(1) ,3 ( 146792(1) 31/12(1) , 

-- y2(t) - - -- I - - y2(1) - - -- 1-kbYI kbY4
10 20000 1O} 10 20000 1O} 

3 k ( 14671P2(1) 31/12(1), 3 k ( 14671P2(t) 31/12(1) , 


- bX1 x2(1) + - -- I - - bX2 x2(1) + - -- I -
W 20000 W}W 20000 W} 

1 ( k ( 11iPl(1) 3471P2(1) 1/11(1) 49791/12(1) "  
100000 4979 pX3 x1(1) - x2(1) + 1000 - 20000 + 20 - 100000 »-
_1_ (4979k ~(X1(1)-x2(1)+ 11iP1(1) _ 3471P2(1) + 1/11(1) _ 49791/12(1) ~~_ 

100000 p 1000 20000 20 l00000}) 


1 ( k ( 1101(1) 34792(1) 31/11(1) 29991/12(1)"  
100000 2999 pY2 y1(1) - y2(t) - 1000 + 20000 + 100 - 100000 »-

1 ( k ( 1101(1) 34792(1) 31/11(1) 29991/12(1) "  
100000 ~2999 pY3 y1(1)-y2(1)- 1000 + 20000 +100 - 100000 )+ 


1 ( ( 11 01(1) 34792(1) 31/11(1) 29991/12(1) "  
100000 2999kpYI yl(t) - y2(t) - 1000 + 20000 -100 + 100000 »+ 
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I ( k ( 1181(1) 34782(t) 31/11(1) 2999t/12(l)"
I ()()()()() 2999 p Y 4 YI (t) - y2(t) - 1000 + 20000 - 100 + I()()()()() )) + 

_1_ (4979 k (xl(1) _ xl(1) + 11 1/11(1) _ 347t/12(1) _ 1/11(1) + 4979 t/I2(1) n+ 

I()()()()() \ pXJ \ 1000 20000 20 I()()()()() J J 


I ( ( 11 1/11(1) 347t/12(1) 1/11(1) 4979t/12(l)"  
I()()()()() \4979kpX2 \xl(l)-xl(1)+ 1000 - 20000 - 20 + I()()()()() ))+ 


3 k ( 14671/12(1) 3t/12(1) , 3 k (xl I 46H2(1) 3t/12(1) , 
- bX3 xl(1) + + -- I + - b~ (I) + + -- I + 
20 20000 20 J 20 20000 20 J 
3 ( 146782(t) 3 t/I2(1) ,3 ( 146782(1) 3 t/I2(1) ,10 kbY2 \ y2(1) - 20000 + ----.-0 )+ 10 kbY3 \ y2(1) - 20000 + ----.-0 )+ YinbfxB (I) - Xjnb fyB(1) -

3 (, 146782'(1) 3t/12'(1) , 3 (, 146782'(1) 3t/12'(1) ,
mzB(1) - - bbYl y2 (I) - - -- I - - bbY4 y2 (I) - - -- I -

10 \ 20000 10 J 10 20000 10 J 

3 b (, 14671/12'(1) 3t/12'(1) , 3 b (, 14671/12'(t) 3t/12'(1) ,  

20 bXJ lxl (I) + 20000 - -W)- 20 bX2 xl (t) + 20000 - ---w- )­
I ( b (, , 11 1/11'(1) 3471/12'(1) 1/11'(1) 4979t/12'(1) " 

-- 4979 X3 xl (I)-xl (1)+ - + -- - II-
I()()()()() p 1000 20000 20 I()()()()() J J 


I ( b (, , 11 1/11' (I) 3471/12'(I) 1/1 I' (I) 4979 t/I2' (I) " 

I()()()()() 4979 p~ \ xl (t) - xl (I) + 1000 - 20000 + 20 - I()()()()() )) ­

I ( b (, , 1181'(1) 34782'(1) 31/11'(1) 2999t/12'(1) "  
I ()()()()() \2999 pY2 \ YI (I) - y2 (I) - 1000 + 20000 + ----.00 - I()()()()() )) ­

I ( b (, , 1181'(1) 34782'(1) 31/11'(1) 29991/12'(1)"  
I ()()()()() 2999 p Y3l y I (I) - y2 (I) - 1000 + 20000 + ----.00 - I()()()()() )) + 


I ( b (, , 1181'(1) 34782'(1) 31/11'(1) 2999t/12'(I)"  
I()()()()() \2999 pYl yl (t) -y2 (1) - 1000 + 20000 - ----.00 + I()()()()() )) + 


I ( b (, , 1181'(1) 34782'(1) 31/11'(1) 2999t/12'(I)"  
I ()()()()() \ 2999 p Y 4 YI (I) - y2 (I) - 1000 + 20000 - ----.00 + I()()()()() )) + 


I ( (" 11 1/11'(1) 34H2'(1) 1/11'(1) 4979t/12'(1) "  
I()()()()() 4979 bpXJ xl (I) - xl (I) + 1000 - 20000 - 20 + I()()()()() )) + 


I ( b (, , 11 1/11'(1) 3471/12'(1) 1/11'(1) 4979t/12'(1) "  
I()()()()() 4979 pX2 xl (1) -xl (I) + 1000 - 20000 - 20 + I()()()()() )) + 


3 b (, 1467t/12'(1) 3t/12'(1) , 
- bX3 xl (I) + + -- I + 

20 20000 20 J 

3 b (, 1467t/12'(1) 3t/12'(1) , 3 b (, 146782'(1) 3t/12'(1) , 

- b~ xl (I) + + -- I + - bY2 y2 (I) - + -- I + 

20 20000 20 J 10 20000 10 J 


3 ( 1467 ((l'(1) 31/12'(1) ,  
- bbY3 y2'(t) - + -- I + lBzz 1/12"(1) == 01 
10 \ 20000 10 J 
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AppendixD  
Minimization Methods for Eliminating Drift.  

D.I MultiStartMin 

Defining chi square with 8 variables (as sum of squares of residuals) 

chisqr8var[aO_, al_, a2_, a3_, a4_, as_, a6_, rqyDelay~ = 
cbtaSize 

~ ((x=d[i, l];aO+alx+a2~+a3x?+ 

a4 Exp[-as (x - rcwDelay)] Sin [a6 (x - rrryDelay) ] 

UnitStep[x-rcwDelay]) - d[i, 2]) "2; 

resl = 

MultiStartMin[chisqrBvar [aO, al, a2, a3, a4, as, a6, rrryDelay] , , , 

{ {aO, 0.2 aOmit , 4 aO:init }, {al, 4 almit , 0.2 almit } , 

{a2, 0.2 a2mit , 4 a2mitl, {a3, 4 a3mit , 0.2 a3mit }, 

{a4, 4 a4mit , 0.2 a4mit }, {as, 0.2 aSmit , 4 aSmit } , 

{a6, O. 5 a6mit , 2 a6mit }, {rqyDelay , O. 5 delmit , 2 delmit } } , 

toler, Sh.<::1N'Proc.:;Jress ~ False, SinplifyOptian -> False, 


Ccrcpil~tian -> True, Starts ~ 5] / / Timing  




