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NOMENCLATURE

= global coordinate system comprises of X,Y, and Z axes

= coordinate system at the plate’s center mass comprises of Xy,Y4, and
Z4 axes

= instantaneous coordinate system of the plate comprises of XY}, and
Z; axes

= reference coordinate system of the plate comprises of Xg,Yz, and Zz

axes

= accelerations of point C and P, respectively, in (XYZ)z

= calculated acceleration

= acceleration in i direction at at corner j; i=X, y, and z; j=C, 1, 2, and 3

= acceleration signal from sensor

= matrix of damping of SDE

= damping constants of SDE connected between plate and base in
location j with i direction; i=x, y, and z; j=1, 2, 3, and 4

= origin of (XYZ),

= origin of (XYZ)r

= calibrated factor [V/g] (sensitivity)

= 4x1 matrix describes a vector from point 1 to point j
= generalized coordinates of point C, and P, respectively, with respect

to (XYZ)
= generalized coordinate of point C with respect to (XYZ)r

= generalized coordinate of point Cg with respect to (XYZ)
=input force in i direction

= system’s center of mass

= transfer function of i direction from the j direction input
= discrete-time transfer function

= acceleration due to gravity

= inertia matrix

= index denoting the direction



NOMENCLATURE (Continued)

= vector of magnification coefficients

Kpij = spring constants of SDE connected between plate and base in
location j with i direction; i=x, y, and z; j=1, 2, 3, and 4

L = Lagrangian function

m; = moment about i axes

mp, mp = mass of plate, mass of base

0 = origin of the (XYZ)

P = position vector for the location of SDE

P = arbitrary point on a rigid plate

Qi = vector of external force and torque associated with i-th generalized
coordinate

qi =vector of generalized coordinate for i-th

q, = time derivative vector of generalized coordinate for i-th

Ix, Iy, I; = distances between accelerometers

Sy = the sensitivity of accelerometer

T = sampling period

T = total kinetic energy

T; = total kinetic energy of i-th body

U = total potential energy

U; = total potential energy of i-th body
Tar = total homogeneous transformation matrix
Ty = ‘Pitch’ transformation matrix

Tx = ‘Roll’ transformation matrix

T, = ‘Translational’ transformation matrix
Ty = ‘Yaw’ transformation matrix

TMP = transformation matrix of the platform
TMB = transformation matrix of the base

TF = transfer function

U(s) = input signal in s domain

Vo = amplifier output voltage



NOMENCLATURE (Continued)

X, Y,z = translations of point G relatively to point O, parallel to X, Y, and Z

axes
X¢»Ye»Zc = translations of point C relatively to point O, parallel to X, Y, and Z

axes

Xg»Yg»Zg = translations of point G relatively to point O, parallel to X, Y, and Z

axes

X;»Y;»Z; = translations of point C relatively to point Cg, parallel to X, Y, and Z

axes
Y(s) = output signal in s domain

o = angular accleration of point P in (XYZ),

Q, = angular accelerometer component of vector a.;i=X, y, and z
At = sampling period

6, ¢, y = rotations of (XYZ); around X, Y, and Z axes, respectively

0c, 0, Y = rotations of (XYZ); around X, Y, and Z axes, respectively

8,, ¢,, ¥, =rotations of (XYZ); around Xz, Yz, and Zg axes, respectively
80, 0o, Vo  =rotations of (XYZ)g around X, Y, and Z axes, respectively
o = angular velocity of point P in (XYZ),

o, = angular velocity component of vector @ ;i=X,y,and z

'd = damping coefficient



COMPUTER-AIDED MODEL GENERATION FOR HIGH
PERFORMANCE DYNAMOMETERS

1. INTRODUCTION

Model derivation has many important aspects for understanding various
dynamic systems. Properly emulated dynamic models not only provide the
information of a system without troublesome experimental analysis, but also make
it possible to predict the response of the system given certain excitation input. The
dynamic properties of a system should be carefully considered during the modeling
procedure to make it closer to the real system. Also this modeling should not be too
complicated so that it is manageable for any analysis. Model derivation needs
modification to make is closer to the real system or to make it a simpler one. For
these kinds of modification, there should be a credible standard to for comparison.
Experimental analysis is necessary for that comparison. Proper model derivation of
a system base on comparison with experimental analysis is a main goal of this

research.

1.1 MODEL GENERATION AND VALIDATION

Although more computation is needed for symbolic manipulation, the benefits
are worth it. First, once the symbolic program is developed, it can be easily
modified without re-modeling for different configurations. Second, it provides
almost infinite precision of calculation because it uses symbols instead of numbers.
And third, it gives an intuitive idea about the program because of symbols.

In the modeling of a dynamometer, a rigid body assumption is applied. The
dynamometer consists of two rigid plates connected with each other with spring

and damping elements. Lagrange’s energy formalism is implemented to obtain the



equations of motion. For ease of computation, linearization procedure is applied
with the small angular rotation assumption.

Experimental analysis should be carefully considered because is provides good
validation of the model. The signal procedure, that is necessary for the calculation

of displacements from the raw signals, is taken with deliberate steps.

1.2  SCOPE OF WORK

The system, which for this research is dynamometer, needs to be simplified to
be emulated in a manageable way. Thus the model in this research is considered as
rigid body motion. Flexible body motion is beyond the scope of this research, so
vibration of flexible mode should not be a dominant factor to expect reasonable
result from the model of system.

Laplace transform is applied to get transfer function from the differential
equations of motions. The reason to use Laplace transform instead of state variable

is to reduce the amount of computation.

1.3 CHAPTER OVERVIEW

In Chapter 2, distributed parameter system and lumped parameter system are
presented as common methodologies. And three different formalism techniques are
introduced. The advantages and disadvantages of using symbolic and numeric
models are also discussed in this chapter.

The methodology and formalism used in this research are generally discussed
in Chapter 3. In Chapter 4, the actual model derivation of dynamometer is taken
into account. Several techniques for experimental validation are presented in
Chapter 5. Signal processing procedures are carefully considered for the signals
captured from the accelerometers, and the results of these procedures are compared

with the results of the simulation of the model.



Visualization of excited dynamometer is included in Chapter 6 as an
application of this research. In Chapter 7, conclusion of this research and the way

to go in the future research are outlined.



2. LITERATURE REVIEW

In each procedure for CAMGHD', there can be many different ways to
approach. Each method has its own advantages and disadvantages. Decisions such
as whether to use symbolic or numeric computation, distributed and lumped
systems, or linear or nonlinear calculation should be chosen so that the developed
mode] satisfies the required conditions.

This chapter outlines the structure configuration and the theories of dynamics

used in this research.

2.1 BUILDING MODELS

It is important to note that no system can be modeled exactly; inclusion of all
the parameters affecting a particular system would be impossible to construct and
analyze [Karnopp and Rosenberg, 1975]. On the contrary, if the model is too
simple by too much simplification, it will not represent the real system. The desired
model of system should be one that is manageable, but also one that includes the
most important information about the system.

The first step for modeling is to disassemble the real system into components
in terms of dynamics. Distributed parameter system or lumped parameter system
can be considered for this first step.

If flexible components make up the system, using a distributed parameter
approach can be a good decision. And a lumped parameter approach is a good
decision for systems with rigid components. Also, the combination of these two

approaches can be applied.

! CAMGHD : Computer-Aided Model Generation of a High performance Dynamometer



(a) (b)

Figure 2.1: Pendulums with (a) lumped and (b) distributed masses.

2.1.1 _Distributed Parameter System

Distributed or continuous parameter method can be applied for the dynamic
system where the flexible modes of a particular body are significant. The
distributed parameter system typically is a better representation of real system.
However it also typically requires greater computation compared with lumped
parameter system..

Since these structures are truly “continuous”, they possess an infinite number
of degrées of freedom [Tomson, 1981]. For example, exciting a simply supported
flexible machine tool spindle with a continuous mass and elasticity distribution can
result in any of an infinite number of mode shapes.

Although the use of partial differential equations provides an excellent
description of the system, they do not always produce obtainable results from
controls theory for complex shapes or multiple bodies in the system. However,
since in most cases the dominant modes are the lowest few, these modes shapes can
be approximated by a polynomial fit for the spindle deflection [Ewins, 1984]. The
result is a set of ordinary differential equations in place of a set of partial

differential equations {Shabana, 1991].



The next question is which polynomial to use. Indeed, as structural shapes
increase in complexity, the choice of polynomial fit becomes obscure. This
problem can be remedied by the use of Finite Element methods. With these
methods the structure is divided into simpler elements, and the deformations within
each element are described by interpolating polynomials [Shabana, 1991]. These
methods are often successfully implemented with good accuracy where body
deformations are of a concern, but those require more intensive computation
[Carne, et. Al., 1988; Cheung and Leung, 1991; Fagann, 1992; Friswell and
Mottershead, 1995; Weaver and Johnston, 1987; Gysin; Zatarain, 1998; for
spindles, Reddy and Sharan, 1987; Comparin, 1983; for machine tools, Bianchi and
Paolucci, Weck, 1984, Brisbone, 1998].

Figure 2.2: Simply supported fixed & free flexible spindle with excited first mode.

2.1.2 Lumped Parameter System

In many cases, systems do not have to be considered as distributed parameter
method if the deformation of bodies within the system is not a significant factor
compared with dynamic behaviors of the structure. For these systems, the elastic
couplings between individual components are the dominant dynamic factors. And
each component of the system is considered a rigid body.

One example of such a structure is the spindle housing system shown in Fig.
2.3 [Aini, et. Al., 1990;Matsubara, 1988;Shin, et. al., 1990; Spiewak, 1995;
Weikert, et. al., 1997]. In machining processes, low to medium frequency dynamics



of the structure play a critical role in tool path errors. This can be successfully
modeled by the use of lumped parameters, since the housing and spindle structure
are of sufficient rigidity such that their flexible modes (usually high frequency)
have little influence on the dynamic frequency range of interest [Comparin, 1983;

Weck, 1984; Weikert, et. al., 1998; Brisbone, 1998].

Figure 2.3 Rigid body model of spindle housing structure [Spiewak, 1995].

A pair of bearings, which are considered as springs and dampers, couples the
spindle to the housing. Because the mass of the bearings is small compared to the
spindle and housing, omission of these masses will not affect the results of the
model. By that omission, the computation for rhodel generation can be greatly

reduced.



Advantages of the lumped parameter method include a reduced number of
generalized coordinates, use of ordinary differential equations, simplified

computations, and the existence of an obtainable result.

Figure 2.4 Rigid body approximation of fixed & free spindle mode shape.

In the case where there exists both dominant flexible mode and rigid body
motion, it is useful to combine both methods [Weck, 1984]. In addition,
formulation of the equations of motion for deformable bodies often finds it
convenient to separate out the rigid body and deformational contributions from the

overall motion [Ginsberg, 1995; Marion and Thornton, 1988; Weck, 1984].

2.2 MODELING METHODOLOGIES

There are three widely used formalisms: Newton [Marion and Thomton,
1988], Lagrange [Ginsberg, 1995; Marion and Thornton, 1980; Scheck, 1994], and
Kane [Kane and Levinson, 1985; Kane, et. al., 1983]. Each of these three
methodologies have their own advantages to use in different structure
configuration.

Newton’s Laws of Mechanics is the most accepted method for modeling
systems. Newton’s Second Law is used to obtain the ordinary differential equations

of motion from a certain system. This is the most straightforward and intuitive way



for modeling and for the verification of the already developed models. For the
system with simple structure, this is still an adequate method, but for the complex
system, this is not a viable method to use.

Lagrange’s method is a suitable for structures with increased complexity.
Contrary to Newton’s method, which is concerned with forces and torques, the
Lagrange’s method considers the energies (kinetic, potential and dissipative) of the
system. Although more abstract, the generated equations are nearly identical to
Newton’s approach only in a slightly different form [Rosenthal and Sherman,
1986]. Defining the energies of a particular system is much easier than defining the
forces and torques of a system. Thus this research uses Lagrange’s energy method.

Kane’s method deals with generalized active and inertia forces [Kane, et. al.,
1983]. Using the cancellation of forces that contribute nothing on the body of a
system, simplified equations can be derived. This is the most compact form with
the easiest way to obtain the equations of motion. But there is also a set of
associated kinematical equations that must be satisfied when using this method
[Ginsberg, 1995].

Lagrange’s energy formalism was chosen in this research for the sake of
convenience of using symbolic problem-solving environment provided by

Mathematica.

2.3 NUMERIC VS. SIMBOLIC MODELS

As used in early-automated modeling, a numeric method can be free from

intensive computations. But it also has several drawbacks, including:

1. Repeated setup of the dynamic equations at each computation step or
integration, resulting in excessive operations and extensive computation
time.

2. Difficulty in implementing control strategies in numerical equations,

obstructing real time operations as required by some multi-body systems.



Unclear physical insight into the system as a result of numerical
expressions.
Equations of motion existing as only mathematical operations in the

computer program [Lieh and Haque, 1991; Hale and Meirovitch, 1978].

Numeric algorithms can give accurate results, but not sufficient for the

reasons mentioned above. The fascinating advantages of using symbolic method

include:

24

A

. Infinite precision, since calculated values are not subjected to

accumulated errors caused by limited machine precision.

One time model derivation, since iterative calculations only involve
parameter value substitutions.

Clear intuitive insight into the physical system.

Straightforward control strategy implementation as a result of (3).

Greater accuracy of estimating unknown parameters.

10

Ability to potentially produce closed form solutions, as opposed numeric

computations that give iterative solutions [Brisbone, 1998].

MODEL LINEARIZATION

Few physical elements of a system in nature display truly linear

characteristics. Typically, the equations of motion for dynamic systems are

nonlinear. Such equations are much more difficult to solve than linear ones, and the

kinds of possible motions resulting from the nonlinear model are much more

difficult to categorize than those resulting from the linear model [Gene F. Franklin,

1994]. The more important difference is the behaviors of the linear and nonlinear

models. The behavior of a linear model can be understood much more

comprehensively and with a small fraction of the effort required to analyze a



11

nonlinear model. As a result, an important aspect of any modeling program is
effective and accurate linearization of the system where appropriate.

Several attempts have been done to make linearization more efficient. Miller
and White used an innovative approach by writing all transformation matrices as
exponentials, making differentiation and thus linearization easier [Miller and
White, 1987].

For most systems, the movement of interest usually involves small
displacements or rotations about a nominal or equilibrium position. This nominal
position is not necessarily fixed, but can change with varying configurations of the
system. For such a system, the most widely used method of linearization is a multi-
variable Taylor Series expansion about the nominal position [Ginsberg, 1995;
Marion and Thornton, 1988]. Some that is done to perform the expansion on the
complete nonlinear equations of motions, while others perform the expansion at an
earlier stage of equation development. For the Lagrange’s energy formalism, the
simplest form of linearization is accomplished by expanding the energies, which is
also done in this work. Another advantage that arises from the expansion of
potential energy is a pre-check conceming verification of the model, which is

explained in the next chapter.

2.5 CLOSURE

Structure configuration and dynamical theories are introduced. The
comparison of distributed and lumped parameter system provides a guide for
choosing proper, modeling methods of a system. Widely used formalisms such as
Newton’s, Lagrange’s, and Kane’s method, are mentioned. The advantage of
numeric method provides the reason of using numeric method in this research.
Linearlization, which is essential for manageable computation is also mentioned. In

next chapter, procedures of derivation of the model are described.
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3. COMPUTER AIDED MODEL GENERATION

For the complete understanding of a certain dynamic system, having various
analysis approaches with different method, would be useful, or might be necessary.
For example, methods such as simulated response to actual input, location of poles
and zeros, test for the controllability, and modal properties of system could be
considered. To perform these kinds of analysis, different forms of model such as
the transfer-function form, or the state-variable form are required. Also it should be
possible for the model to be converted in different domains including continuous
time domain, Laplace domain, or discrete-time domain. General concept of

modeling is described in this chapter.

3.1 GENERALIZED RIGID BODY SYSTEM

Lumped parameter method is applied in this research to represent the
dynamic relationships between forces and displacements. The components of each
body are connected by ‘spring and damper element’ (SDE). The bearing couples
such as shown in fig. 2.3, can be an example of system represented by SDE. Each
rigid body has six degrees of freedom (DOF). Three DOF from translations, and
other three DOF from rotations. So If there are ‘n’ number of rigid body, whole
DOF will be 6n.

Efficient mapping between the actual system’s components and their

representation in the model is possible by the method mentioned above
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Figure 3.1 Generalized multi-degree-of-freedom rigid body system [Spiewak,19951.

3.2 LAGRANGE’S ENERGY FORMALISM

After defining the generalized model structure, the equations of motion can be
derived. Since defining the energies of arbitrary structure is generally simpler than
defining the forces, Lagrange’s Energy Formalism is used in this research.

For the conservative system, the Lagrange’s equations can be stated as

20 (3.1)
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The choice for L is not unique, but the natural choice (and the convention followed
here) is to set

L=T-U (3.2)

where T represents the kinetic energy and U represents the potential energy.
External forces acting on the system are taken into account by Lagrange’s

equations of the second kind [Pandit, 1991], and shown as below

e ) (3.3)

where Q; represents the external forces or torques associated with the i-th

generalized coordinate.

3.3 ASSOCIATED SYSTEM ENERGIES

Instead of considering force equilibriums for the direct derivation of equation
of motion from a structure, in Lagrangian method, a concentration on energies of a
structure is taken. The kinetic, potential, and damping (dissipation) energies are the
only of concern. Fig.3.1 shows the dashpots and springs which are main sources of

all energies of the structure.

3.3.1 Kinetic Energy

In assumption that SDEs are massless, the only contributors to the kinetic
energy are the movements of the rigid bodies themselves. So the kinetic energy can
be separated into two parts, namely translational, and rotational.

T,=T,

itrans

+T

i,rot

3.4
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the translational kinetic energy is written as

zmzn:(th) thm qlT (35)

where m; is mass matrix in diagonal form and q; ; = {Xi Y, Z, } is the generalized
translational vector of velocity for the i-th rigid body in the global reference frame.
The generalized rotation vector of velocity for the i-th rigid body is also

defined as q,, = {é,. 0., 9, }, as it is for translational vector of velocity. The

rotational kinetic energy is written as

T...q,,)= q,, . (3.6)

The inertia tensor, I;, , will ai\;éys be diagonal as long as the local coordinate axes
correspond with the principal axes of inertia [Marion and Thomton, 1988;
Ginsberg, 1995] for the body. This is not always the case, but it is generally less
tedious to define the principal inertias (diagonal elements of the tensor) and
transform to another configuration rather than fill in all the elements of the tensor
for each change in orientation.

By defining transformation matrix A, , the rotations about global axes can be

casily obtained from the rotation about the local axes. Especially, more than two

rigid bodies are concerned, the rotation about global axes is useful.

qir = A’i,qu,r 3.7
And for the sake of clarity, the transformation matrix A, is assumed as time

independent, so the rotational velocity about the global axes is obtained in same

way.

qi,R = A’i,RQi,r (3.8)
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Figure 3.2 Transformation, 4, ., relating rotations between local and global
coordinates.

Substituting Eq.3.8 into Eq.3.6, the rotational kinetic energy for the i-th rigid in a

global coordinates are obtained as

- 1. X s
T, (Q,2) = E‘IIR (;'La.:w g I, r'.:?qi.ﬂ (3.9
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For the orthogonal matrices, the inverse matrices are equal to the transpose
matrices. And the rotation matrix is one of the orthogonal matrices. So the Eq.3.17

can be simplified as
. 1. .
Lo (Gin) = 5 Ainiel, And (3.10)

Substitution of Eq.3.5 and Eq.3.10 into Eq.3.4 gives the total kinetic energy
for the i-th rigid body about global axes, and shown as

T (Qi7-4;2) = thmthlT+ q:RA'tRI A’ERQ:‘,R (3.11)

The total kinetic energy for a system of n rigid bodies is simply the summation of
the kinetic energies of each individual body

T =2Ti((.li,T’(li,R) (.12)

i=1

3.3.2 Potential and Damping Energies

The model shown from the Fig.3.1 has two kinds of potential energies,
namely due to gravitation and elongation of SDEs. Gravitational potential energy
can be obtained by using the vertical displacement of the rigid body from the

original position. As follows
U,, =mgZ, (3.13)

The second form of energy storage is in compression or tension of the SDEs
between the bodies. The elongation of any elastic element between bodies i and j

that is due to a motion of the i-th body can be written as
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Ly=1,@a,) k=12,..,m (3.14)

where m is the number of springs which connecting the two bodies, and
q, =1{X,.Y,,Z,,8,,0,,9, } is the coordinate vector including translations and
rotations of the body i.

All elongations between the bodies due to the movement of the i-th body can

be written as

L.@)=0,,0,d .1 (3.15)

If the coordinate of the j-th body is concerned in a same way, the potential energy
between the i-th and j-th body due to the elongation of SDE between the two bodies

can be calculated as
1
U,.j.(qi,qj)z—z-[L,.—Lj]TKSDE[L,.—Lj] (3.16)

where K, represents the stiffness matrix which consists of stiffness constants of

the SDEs which connect the two bodies. And by summing all potential energy of

‘n’ number of rigid bodies, the total potential energy is given as

n 1 n
U= Z(Ui,g +52Uu (‘li’qj)] (3.17)

j=t

The dissipation energy can be calculated in the similar manner to the
elongation energy, except the velocity of deflection is used instead of the

displacement

Dg.(q,.,qj)%[L,. ~L, T By, -L,] (3.18)
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where B, represents a diagonal matrix of damping of the SDEs between the i-th

and j-th bodies. Again, summation over all n bodies gives the total damping energy

p=¥3D,@.4, (3.19)

i=1 i=j

3.4 THE EQUATIONS OF MOTION

By substituting Eq.3.10 into Eq.3.11, the simplified result is obtained [Pandit,
1991] as

d{ JaT aT JU
- - =Q. i1i=12,...,6 3.20
dt(aq,?) 20’ o 2 noG0

where Q, represents the external force associated with the i-th generalized

coordinate from the global list of generalized coordinate q* representing all n

bodies. Modifying this to include the damping energy is accomplished by the
addition of another term
[Pandit, 1991]

d(ar) of U 9D i=12,...6n (3.21)

@\ 27 ) ot o aqF

For the multi-degree-of-freedom system, by solving Eq.3.21, the equations of
a motion for each generalized coordinate is obtained. In Mathematica code?® ,

Eq.3.29 is represented successfully by the following formula.

* The whole Mathematica code is attached in Appendix B
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LagrEqns[T_, U_, Damp_, Q_List, Coor_List] =
Flatten[MapThread[
{at(aa,,,zT) -0,(T-U) + aalnDamp - #1 =0} &,

{Q, Coor}]1;

To derive the equations of motion, the above function is provided with the
kinetic energy, potential energy, dissipation energy, external forces, and

coordinates of the system.

3.5 CLOSURE

General methodology of modeling by the use of Lagrange’s energy method is
discussed in this chapter. Properly defined energies with the appropriate
coordinates provide the equations of motion by using Mathematica with the
Control System Professional package. For the modeling of a complicated system
including many rigid bodies, Lagrange’s energy method gives a clear solution,
because the only concerns in this method are energies rather than force-

equilibriums in Newton’s method.
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4. MODELING OF DYNAMOMETER

In the structure of the dynamometer, a prismatic platform made of high
strength steel is supported by the spring and damping elements (SDEs), as shown
in Fig 4.1. Compared with the mass of the platform and base, the masses of the
SDE:s are negligible. So it is possible to assume the SDE as massless without
affecting the result of analysis. Assuming that the platform and the base are rigid
bodies, each of these has six degrees of freedom, three from translations and three
from rotations. Considered as dynamic system, the dynamometer exhibits twelve

resonance frequencies associated with its vibration modes [Chung, 1993].

Ppp2
\
P \ F
pp3 = *.___,7' /
temmotf] Fommef') | Platform
-V [
P ] ] LA
i Loy .y
-t —
Base
Pppl /
Foundation

- Ppp1> Ppp1, Ppp1, Ppp1 are the points on the bottom face of the platform, which are
attached to SDEs.

Figure 4.1. Mechanical configuration of the dynamometer under consideration.>

3 SDEs between the base and the foundation are omitted in the Fig.4.1.
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4.1 TRANSFORMATION MATRICES

Twelve generalized coordinates are used for modeling of the dynamometer,
namely six coordinates for the platform, and the other six coordinates for the base.
Mass, inertia, stiffness and damping for each body are defined by suitable matrices
as discussed in Chapter 3.

Combining rotational and translational motions of the platform and base,
partial transformation matrices are derived. Next, by multiplying these
transformation matrices, total homogeneous (4x4) transformation matrices are
developed. For small angular displacements, the total transformation matrix of the

platform is written as

1 -yl (t]  ¢lr(t]  x1*([t]
| vty 1 -el*[t] yl*[t)
T -el*[t]  el*[t] 1 z1*[t)
0 0 0 1 @.1

x1'[t), y1'(t], z1°(t)

Translational coordinates of platform, incremental camponents only
e1"[t], ¢17(t], wl'[t]

Rotaticnal coordinates of platform, incremental campanents only

The total transformation matrix of base has the same structure while the

coordinates are the translations and rotations are of the base.

1 -y2*[t]  ¢2*[t] xX2*[t]

_ o2ty 1 -62* [t] y2*[t]

B= -02* (] 62*[t] 1 z2*[t]
0 0 0 1 4.2)

xr[t], Y2'(t], z2%(f]

Translational coordinates of base, incremental camponents anly
62*[t], ¢2*(t], ¥2"[t]

Rotaticnal coordinates of base, incremental carponents only
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4.2 DEFINING POSITION VECTOR AND ENERGIES

The configuration of SDEs, as supporting elements between the platform and

the base, and between the base and the foundation, define the position vectors of

SDE's connection points on each with the platform and base as shown in Fig. 4.2

[Nickel, 1999].

a"dl

"UI

z"ul o—r"'ul

]

H,  platform
H, =0.022
Hy, H,, =0.012
H, Base H, =0.026
H,, H, =0.03
Foundation

Figure 4.2 Simplified diagram of the Dynamometer configuration with Spring &

Damping Elements (SDEs).

ﬁwl : Position vector of the platform-base connection®, point #1 on the

platforms

P

w1 - Position vector of the platform-base connection, point #1 on the base.

P,,, : Position vector of the base-foundation, point #1 on the base.

P,,, : Position vector of the base-foundation, point #1 on the foundation.

Each individual position vector is defined as shown in Fig 4.2.

P,,={-al,bl,hl, 1}

* the first subscript ‘p’ stands for the platform-base connection.

3 the second subscript ‘p’, or ‘b’ stands for the point on the platform or on the base, respectively.
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P ,={al,bl,hl, 1}

P.,={al,-bl,hl, 1}

P .= {-al,-bl,hl, 1)

£,

7

al .-

p_« Platform <

] A
2 = F
& b2 :
é

Base

v

L2

Figure 4.3. Configuration of the platform and the base [Dimensions are given in
Appendix A.2].

Four position vectors on each body, such as Pppl, Ppp2, Ppp3, and Ppp4 on
the bottom face of platform, represent the position of each body in every moment
and these points of position vectors are used to calculate all energies discussed in
Chapter 3. For example, four position vectors on the bottom face of platform are

expressed as a matrix in Mathematica as
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VectorsOnPlate=Transpose[{ Ppp1,Ppp2,Ppp3.Ppp4}l;

MatrixForm[VectorsOnPlate]

-al al al -al
bl bl -bl -bl
hi hl hi hi

1 1 1 1

(4.3)

4.2.1 Potential Energy

Deflection caused by the rotational and translational motion of each body
generates the major components of potential energy of the system, u, that is used
for defining equations of motion by use of Lagrange’s method. Deflections of the
elements between the platform and the base, which are introduced in Eq.3.15 are
calculated by the following expression.

(TMP-1)P_-(TMB-I)P,, (4.42)

Which in Mathematica is expressed as

deflSpringBasePlat form=
( (TMP- IdentityMatrix[4]) .VectorsOnPlate -
(TMB- IdentityMatrix(4]) .VectorsOnTopOfBase) (4.4b)

The stiffness matrices of elements between the platform and the base, and
between the base and the foundation, which are introduced in Eq.3.16 are defined

in Mathematica as,

kpa koo koo kou
. ken ko ko kove
ffArrayOfBP = ;
s R
o 0 0 0],
ksa kse ks ko)
. _ ke ke ks kona |
sﬁffAnayOfBE‘-m]wmm,
0 0 0 O

4.5)
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With the matrices of deflection and the matrices of stiffness defined above, the
total potential energy of SDEs between the platform and the base designated as
“TotalPotOfBP” is calculated in Mathematica as

resl = Transpose[deflSpringBasePlatform] « stiffArrayOfBP «
deflSpringBasePlatform;

Clear(i, j, ULSOfBP]

For{ULSOfBP=0;1=1, 1 <3, 1++, For[j=1, J<4, J++,
TotalPotOfBP = ULSOfBP+ 1/2resli[i, j]11]1;

(4.6)
Similarly, the total potential energy of the SDEs between the base and
foundation, “TotalPotOBF” is found in Mathematica as
res2 = Transpose|[deflSpringBaseFoundation] « stiffArrayOfBF «
deflSpringBaseFaundation;
Clear(i, j, ULSOfEF]
For[ULSOfBF=0;1=1, i<3, i++, For[j=1, j<4, j++,
ToTalPotOfBF = ULSOfRF+ 1/ 2res2[ (1, j]1]1]]; 4.7
Finally, the total potential energy in SDEs is found as
TotalSprPot = TotalPotOfBP + ToTalPotOfEF ; 4.8)

Adding gravitational potential energy to total spring potential energy, total
potential energy is obtained according to Eq.3.17.

Ut = UG + TotalSprPot;
Where,

(4.9)

UG: ravitational Potential Energy
TotalSprPot : Total Elongation Potential Energy
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4.2.2 Kinetic Energy

Derivatives of the generalized coordinates are used to calculate the kinetic
energy. There are two components of this energy, namely due to the translational
and the rotational generalized coordinates. By adding these two, total kinetic

energy is obtained according to Eq.3.12, as

&
]

Trans + Trot
(mPxL'[t]2 +mPyl [t] 2+ P Z1' [£]) +
(MBx2'[t]2 +nBy2’ [t} 2+ mB 22 [£]2) +

(TPxx61’ [£] 2, JPy 1 [t] 2, Jpy ¥l 2) +

Nl RN RN RN R

JBco2 [£] 2 62 [£]% + IBg y2'[£] >
( [E17+IByo2 [E]7+ [€]17) (4.10)

4.2.3 Dissipation Energy

Damping constants of SDEs need to be combined into the matrices in order to
calculate the total damping energy according to Eq.3.18. Damping elements

between the platform and the base are defined in Mathematica as

Bea hae bus Bos b b

b b

bon o bas bor b1 b b b
dampArrayOfBP = H = 4| .
bt b bes bos|’ CTPITNOEFS ) b bo b

0 0 0 0 0 0 0 0

Damp Array OfBP : damping coefficient matrix between the base and the platform
Damp Array OfBF : dampingcoefficient matrix between the base and the Foundation 4.1

With the matrices of deflection’s derivatives and matrices of damping
constants, total dissipation energy is calculated by Mathematica according to Eq.
3.18, as



res3 = Transpose[drdeflSpringBasePlatform] * dampArrayOfBP
dcdeflSpringBasePlatform;

Clear(i, j, DampOfBP]

For[DampOfBP=0; 1 =1, 1 <3, i++,
For(j=1, j=4, j++, DampOfBP = DanpOfBP + 1/ 2 res3( (1, j111];

resd = Transpose|drdeflSpringBaseFoundation] * dampArrayOfBF
dcdef1SpringBaseFourdation;

Clear([i, j, DampOfEF]

For[DampOfBF=0; 1 =1, 1 <3, i++,
For(j=1, j< 4, j++, DampOfBF = DampOfBF + 1/ 2resd [ (1, j1111;

TotalDempOfBP = DampOfBP;
Total DampOfBF = DampOfBF;
Dr. = TotalDampOFEP + TotalDempOfEF;

Where,

DampOfBP : Total dampingenergy between the base and the platform
DampOfBF : Total dampingenergy between the base and the Foundation

4.2.4 External Input Force and Moment

28

(4.12)

All necessary external input forces and moments in Eq.3.21 are contained in

the vector designated below as “minGen”. Coordinates of the force application

points within the plate and the base needed to calculate moments generated by the

external forces about the center of gravity are included in “minGen”.

MatrixForm[minGen)]

£x[t]
fylt]
fz(t]
- Zin £y (t] +¥in fz[t] +mk(t]
Zin £x[t] - Xin fz(t] +my[E]
~¥in £x[t] +Xin fy[t] + mg[t]
Emlt]
frlit]
fm(t]
-zims fys(t] +vims £z8(t] +m(t]
zie Exsl t] - Xims f28[t] + mgp[t]
-yirg £x8lt] + Xims fi8(t] + men[ t]

4.13)
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4.3 THE LAGRANGE’S EQUATIONS OF MOTION

As already mentioned, the Lagrange’s equation is concisely coded in
Mathematica as

LagrBEans([T_, U_, Damp_, Q List, Coor_List] :=
Flatten[MapThread| {0t (Gac#2T) - 42 (T - U) + OopszDamp - #1 == 0} &,
{Q, Coor}ji: 4.14)

With all energies (potential, kinetic, and dissipative) defined, all input force
and moment, and coordinates of the platform and base, this “LagrEqns” function
generates twelve equations of motion. All these equations involve symbolic
variables. In the remaining parts of this thesis, a simplified model is analyzed. It is
obtained by assuming a fixed base position. Thus, the number of equations of
motion reduces to six. Similarly, six transfer functions represent the dynamic

characteristics of the dynamometer’s platform.

44 BODE PLOT FROM TRANSFER FUNCTION

By using Mathematica ‘Control System Professional’, representative transfer
function, are obtained and their Bode plots are shown in Fig.4.4. Resonance
frequencies of the system can are computed and shown in Table 4.1. Bode plots
and resonance frequencies are in good agreements with experimental results

processed in Chapter 5.

Transfer Function Natural Freguency
Gy = 600 Rad/Sec
Gyy = 600 Rad/Sec
G, = 1250 Rad/Sec

G;; : i direction response in j direction input.

Table 4.1 Estimated Natural Frequencies from Bode Plots of TF.
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Figure 4.4a Bode plot for transfer function between the force and displacement
in the x direction.
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Figure 4.4b Bode plot for transfer function between the force and displacement in
the y direction.
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Figure 4.4c Bode plot for transfer function between the force and displacement in
the z direction.

4.5 SIMULATION OF MODEL RESPONSE TO ACTUAL IMPACT

The transfer functions discussed in the previous section allow obtaining the
response of the model to experimental signals. Since these transfer functions are
continuous, and it is necessary to convert them into discrete form required for the
compatibility with discretized experimental records. There are several
discretization techniques that can be used for simulating continuous-time system.

The most important of them are shown below [Katsuhiko Ogata 1987].

1. Backward difference method.

2. Forward difference method. Since this method may lead to an unstable, it

should be used with cautions.

3. Bilinear transformation method (a numerical integration method base on the

trapezoidal integration rule).
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4. Impulse-Invariance method (impulse-invariance method with sample-and-
hold - the z transform based method coupled with a fictitious sample-and-

hold).
5. Matched pole-zero mapping method.

These different methods yield slightly different discrete-time systems. The bilinear

transformation method has been chosen in this research.

4.5.1 Bilinear transformation method

Fig. 4.5 shows the area approximation by the bilinear transformation method.
y[k] is representing the left part area from the time kT, and y[k-1] is representing
the left part area from the time kT - T.

yIk] |
A i
y[k' 1] 1 :
1 |
| I

| /\\

S ulk]
ufk-1]
—
kT -T kT t

Figure 4.5 Trapezoidal integration.

Considered is a transfer function D(s) of a system with the input U(s) and the

output Y(s).

YO _py =1
U(S)—D(s) % 4.15)
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In the discrete time, this transfer function represents the following integral
equations.

y&D=[" udt+ [ ude (4.16)
0 KT-T )
This equation can be next approximated by a recursive discrete time equation
T
y(k) =y —-1)+E[u(k -1 +u(k)] (4.17)

Applying the z-transformation to the above equation yields

Y(Z)=I(l+z'l) .18)

U@z) 2|1-z"

Comparison of Eq.4.15 and Eq.4.18 gives the relationship between the s-

domain and the z-domain transfer function. It suggests that by substituting

-1
s=3[1'Z ) (4.19)

T\ 142

in the continuous time transfer functions, respective discrete time D(z), the transfer
functions can be obtained.

This transformation method, referred to as Tustin’s or the bilinear [Franklin,
1994], is available in ‘Control System Professional’ package, for rapid symbolic
conversion from the continuous-time to the discrete-time domains. The following

function needs to be called.

myDiscrTF = ToDiscreteTime[myTF, Method » BilinearTransform,
CriticalFrequency -» Autamatic, Sampled- Period|ts] ] (4.20)
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4.5.2 Impulse-invariance method

By using the inverse-Laplace transformation and z transformation, the

equivalent discrete-time transfer function G, (z) can be obtained as follows.

Gp(2) = Zlg, (KD]1=TZgM)]=TZILTG()]]=TG(2) (4.23)

Where, the inverse z transformation of G, (z)is g, (kT), the discrete time transfer

function, and this is T times of g(t). This g(t)is also expressed as £ ' [G(s)].

As a example suppose a continuous-time system is described by a transfer

function as

G(s) = —— 4.22)
s+a

Then, the equivalent discrete-time transfer function is as below

Gp(2) =TG(2) = N T2 (4.24)

_ e—aTZ—l

Since Gy, (z) is proportional to the z transform of the continuous-time transfer

function, so the impulse—invariance method is also called the “z transform method”
[Katsuhiko Ogata 1987].

4.5.3 Simulation of response to the actual force impact

By using the actual impact signal from an instrumented hammer together with
the discrete-time transfer-function, derived for the model under investigation, the
realistic impulse response of modeled system can be simulated. This response is

readily obtained in Mathematica by executing the following command.

myResp = QutputRespanse [myDiscyTF, Take[impactVectorCalibr, {1, dataSize}]];
4.21)


http:G(s)=-(4.22
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In which
“myResp” : simulated response,
“myDiscrTF” : discrete transfer function obtained from Eq.4.20, and

“ImpactVectorCalibr : the experimentally recorded impact force.

Displacements (m)
0.00004
0.00002

0.040.060.08 0.1 59

-0.00002
Tive (seC)

,8888§z

20 400 600 80 1000

(a) (b)

Figure 4.6 (a) Calibrated impact force, (b) simulated impact response of the

system in the y direction(obtained from the transfer function Gy,(s).

4.6 _CLOSURE

By applying the Lagrange’s energy formalism and symbolic method such as
‘Mathematica’, the equations of motion are readily derived. From the Bode plots of
the transfer functions (G;;) in the x, y, and, z directions, natural frequencies are
estimated. These frequencies characterize the model-based responses of the
dynamometer under consideration. In the next chapter, they are compared with

signal-based responses to validate the presented modeling methodology.
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5. EXPERIMENTAL VALIDATION

In previous chapter, the equations of motion of dynamometer are derived.
Under the assumption of no foundation and base displacement, simplified transfer
functions are obtained, and these transfer functions provide agreeable bode plots
which show reasonable natural frequencies for the model under consideration. For
the next steps, the validation is taken by the use of experimental test. As a response
of an impact force on the platform of dynamometer, the movement of the platform
is calculated by using several experimental techniques. These techniques include
data acquisition procedure, numerical double integration, and several processes for
eliminating drift. Simulated responses that come from the model of dynamometer
will be compared with the results that are captured and calculated from the

experimental test.

5.1 DATA ACQUISITION SYSTEM

A standard data acquisition (DAQ) system comprises the following basic
components:
(1) a controller, (2) a signal conditioner, (3) a multiplexer and amplifier, (4) an
analog-to-digital converter (ADC), (5) a storage unit or a memory unit, and (6) a
readout device [Dally et al.,1993]. In the DAQ system used in this research, data
from the sensors (accelerometers) is stored in desktop computer equipped with
DAQ board. A LabVIEW® program is used for controlling the DAQ system. The
ADC, multiplexer and amplifier are provided in a plug-in DAQ printed circuit
board type AT-MIO16E2 from National Instruments [1994]. Low-pass filters serve
as signal conditioners to prevent signal aliasing. A schematic diagram of the

employed DAQ system is shown in Fig. 5.1 [Jitpraphai, 1997].



Impact Force and
Accelerometers
ADX1.202

—

Signal Couplers and Amplifiers
Kistler® 5128A
PIEZOTRON coupler
(Kistler, 1996)

v

Anti-aliasing Filters
Precision® 88B (Precision, 1989)
And
Datel® FLI-D6LA2(Datel, 1987)

v

ADC, Multiplexers, Amplifiers
National Instrument® AT-MIO-16E2
(National Instruments, 1995)
LabVIEW® DAQ program
“Data Acquisition (version 2.6 s).vi”

Figure 5.1 Block diagram showing the data acquisition system used in this

5.1.1 _Overview of the Methodology

research.

The acceleration signals from each sensor are recorded by a data acquisition

(DAQ) system. The DAQ is controlled by a LabVIEW®-based Data Acquisition

Controller program, developed in previous research [Jitpraphai, 1997]. To obtain

displacements of the dynamometer’s platform from the voltage signals generated

by accelerometers placed on the platform, the following steps are needed;

1) Amplifying the signals.

2) Filtering the signals.

3) Converting the voltage signals to acceleration signals.

4) Double integration to obtain a ‘rough’ estimate of displacements.

5) Eliminating the drifts to obtain accurate estimates of displacements
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5.1.2 Data Acquisition Program

A controller program for data acquisition (DAQ) is required to read data from
accelerometers. The program “DAQ Controller.VI” written in the LabVIEW®’s G
language is used in this research [Jitpraphai, 1997]. This is an interface program
between the user and a DAQ board AT-MIO 16E2 [National Instrument, 1995].
The user can command the board to acquire analog voltage signals with desired
parameters. The user can readily inspect the acquired signals, select suitable
sampling parameters for these signals and acquire data again with optimized

parameters.

5.2 EXPERIMENTAL SETUP

By using impact hammer, transient excitation is applied to the experimental
model of a Kistler® dynamometer type 9257A [Kistler, 1996]. Several acceleration
signals (the system’s responses representing vibrations) were recorded and
processed to obtain the movements of the dynamometer’s platform. Instruments are

set up according to the schematic diagram shown in Fig. 5.2.

Impact Hammer with ) . )
Piezoelectric Load Cell ]| signal Conditioner Tri-Star Desktop
o] O Computer
—_— .
I—E z:gg:; / DAQ Controller
Accelerometers Program
i . D
1 X Input
L | Channels. \'\
TTT77TTT777 | —
Dynamometer v J S
Accelcrometer  Anti-aliasing \D AQ Card
Coupler Filters Interface Panel

Figure 5.2 Schematic diagram of the experimental setup.
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5.3__SIGNAL PROCESSING IN EXPERIMENTAL DATA

Signal processing procedure includes several steps required for the calculation
of the actual displacements from the ‘raw’ voltage signal generated by the

accelerometers. The signal processing steps are summarized in Fig. 5.3.

5.3.1 Conversion to Physical Units and modification

Raw voltage data that is acquired from an accelerometer needs several
processing steps to be converted to displacement. First, this data should be

converted to physical units of acceleration i.e. m/s>. The calibration equation is

aca,[m/sz]=9.81[ = ]-a—s (5.1)
s’-g|c

S
Where, ac,; . calculated acceleration.
a; - acceleration signal from sensor [V].

c; - calibrated factor [V/g] (sensitivity).

Sensitivity is the parameter of accelerometer that is specified by its manufacturer.
Two kinds of accelerometers are used in this research and the sensitivities of these
sensors are given in Appendix A.1 (ADX202 : 0.312 V/g, Kistler : 0.5 V/g ). The
signals, from ADX202 accelerometers are pre-amplified 5 times by their respective
hardware circuitry. This gain should be considered in the conversion defined in Eq.
5.1. After calibration, data is ready for the integration. Ideally, the data from
accelerometer should be centered, in other words the acceleration before the impact
and after the transient part should be zero. Realistically, it is not the case. Non-
centered data can cause large errors of numerical integration. To avoid these errors,
subtraction of the average signal value before the integration is required. Another
centering of data is required before the second integration. Finally displacement is

obtained, but it is still severely distorted. Even in the data obtained from high



performance sensors, the distorted signal is useless without additional processing.
Eliminating distortion without affecting the shape of the actual measured
displacement is required. There are several methods to accomplish this, and these

methods are discussed in Section 5.3.3.

Subtracting the Average Velocity I
Second Numerical Integration I

Note: Clear blocks represent operations while the shadowed blocks represent
signals.

Figure 5.3 Flowchart of signal processing.

40
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5.3.2 Double Integration Procedure

After modifying the raw acceleration signal, a rectangular rule® numerical
integration method [Yakowitz, 1989], is performed by using Mathematica to

calculate velocities. This is accomplished by the following code:

£[(0] = 0;
fin] := £[n] = £[n- 1] + accellSI[n] ts;
velocity = Table[f[n], {n, 1, dataSize}]; (5.2)

Where accellSI - an array of recorded and pre-processed data.
velocity - an array of integrated acceleration data.

An example velocity calculated by numerical integration of the calibrated and
pre-processed acceleration is shown in Fig. 5.4. Before performing the second
integration of this velocity signal, zero centering by subtracting the average value is

applied again, and second integration is performed as

velocity = Table[f[n], {n, 1, dataSize}];
displacement = Table(h[n], {n, 1, dataSize}]; (5.3)

The obtained displacement signal is shown in Fig.5.5.

Velocity (m/s)

0.02
0.01 [\
Av'\v‘* Time(sec)
ol p2\f o¥04 0.06 0.08 0.1
-0.01
-0.02
-0.03

Figure 5.4 Velocity calculated by numerical integration of the calibrated
acceleration signal.

6 Acceptable due to high sampling frequency
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Figure 5.5 Displacement calculated by numerical double integration.

For comparison, a response simulated by means of the derived analytical

model is shown together with displacement obtained by double integration in Fig.
5.6.

""""" Displtacement from Model
Displacement from double integration

Comparison
100ﬁ|.l;.v.—'r.:r!.wy!...!ﬁ—r.!;..

Displacement (um)

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

Time (Sec)

Figure 5.6 Displacement obtained from the analytical model and by double
integration of the experimental acceleration occurred from impact.
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54 COMPARISON FOR VALIDATION

From twelve equations of motion derived by Lagrange’s equation in Chapter 4,
twelve transfer functions are obtained. As already mentioned, for the sake of
brevity, the above model was simplified by assuming fixed base, and for the each
model, six transfer functions have been obtained. Responses to an impact force in
every coordinates of the platform was simulated from these transfer functions. In
the remaining part of this chapter, these simulated responses will be compared with
the responses obtained by the method described above. In addition, various
methods of estimating the “true” drift in double integrated acceleration signal will
be considered. The accelerometers are mounted on the faces of platform as shown
in Fig. 5.8. Three acceleration signals need for the translational movements, and six
more signals are required to obtain the rotational movements without using
numerical solution [Padgaonkar, 1975; Lie, 1976]. By using two direction signals
capturing accelerometer such as “ADX1.202”, with 5 sensors, 9 required signals
accelerations can be obtained. More details are discussed in Chapter 6.

As discussed in section 4.5.1, by using ‘Bilinear transformation’ method,
transfer functions are described in discrete time domain, and with these, the impact
responses of the system are simulated. The displacements obtained from this
simulation can be verified by direct comparison with the displacements that are
obtained from double integration and simple procedure of eliminating drift. Fig.
5.8, and Fig. 5.9 are showing the figures of the experimental test, and the several
strong displacements, which are calculated from the test. Fig. 5.8 is showing the
displacements in same direction of the applied impact force. These responses are
strong and close to the simulated responses as shown in Fig. 5.7. In the other hand,
the displacements shown in Fig. 5.9 are weak responses, and even after the
elimination of drift by simple signal processing procedure, there still remained
distortions that should be rectified. In Chapter 5.5, several methods are discussed

for reducing the error.
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Figure 5.7 Displacement comparison between the model and experimental test.

3.5 MINIMIZING ERRORS

Clearly, there is a significant drift in the displacement as shown in Fig. 5.6 that
should be eliminated. To rectify the current data that includes the drift, several
models that represent the drift are introduced. For example, by using selective
exponential model or a polynomial model, the drift part of the displacement can be
represented. Subtracting these models from the distorted displacement yields the
actual displacement as shown in Fig. 5.10.

Fig. 5.10.b shows a realistically looking displacement of the dynamometer
under consideration. But in many cases, especially for the weak signals, just
eliminating sensor drift by the above-presented simple model does not give
satisfactory results. So several improved methods for eliminating drift are discussed

below.
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Figure 5.8 Location of nine sensors on the platform and example strong signals
obtained from the experiment.
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Figure 5.10 Double integrated acceleration signal used for polynomial estimation
(a), and displacement after drift elimination (b).

5.5.1 Eliminating Drift by Piecewise Polynomial Model

This is the simplest way to eliminate drift. Considering the double integrated
acceleration signal with drift as shown in Fig. 5.11, by excluding the “transient”
part of the signal, two separate sections shown in Fig. 5.12 with thick lines are
obtained. This curve can be well fitted with a polynomial. Assuming this fitted
curve represents the drift, the actual displacement is obtained by subtracting this

fitted curve from the original curve. The result is shown in Fig.5.13.
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Figure 5.11 Displacement with drift
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Thick lines: data to be fitted. Thin line: fitted polynomial.

Figure 5.12 Piecewise Displacement estimation with Polynomial model.
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Displacementf pm)

Figure 5.13 The estimated displacement obtained after eliminating drift.

Although attractive for its simplicity and robustness, this method rarely gives
satisfactory results. Even changing the order of the polynomial model to 5" does
not improve the result much. As can be seen in Fig. 5.13, the displacement exhibits
oscillations, which in this case cannot be attributed to the dynamics of the tested
dynamometer. Therefore more accurate curve fitting procedure should be
considered. One such procedure is obtained by performing two separate fits on
suitably chosen data subsections as shown in Fig. 5.14. A small improvement is

made in beginning part, but still the result is not satisfactory as shown in Fig.5.15.
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Figure 5.14 Separated curves for individual fitting.
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Figure 5.15 Displacement after drift elimination

5.5.2 Eliminating Drift by Using Polynomial & Impact Response Models

By using a polynomial model that will represent drift, and an impact response

model that will represent the displacement response of system, better displacement
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estimation can be obtained. If the sum of response of these models (polynomial and
impact response) can fit satisfactorily the double integrated acceleration siganl, the
impact response model can be considered as a representative for the displacement.
Nonlinear fitting code in ‘Mathematica’ is shown in Eq. 5.5. After defining
polynomial and impact response model with symbolic coefficients, by using the
‘NonlinearRegress’ function, the coefficients of the function that provide best fit of
curve for the double integrated acceleration signal are readily determined. The

equation of the function used for fitting is as below.

fo(x)=a,+a,x+a,x* +a,x’> +a,x* +a,x’ + A-Exp(x - x,) - Sin(b(x —=x,) +¢)
5.4
in Mathematica code, it is as below.

1clRes = NonlinearRegress|{dataForPlotting,
a0+alx+a2x’+a3x +adx +a5x +
a6 Expl - a7 (x-delay) ] *Sin[a8 (x- delay) +a9] * InitStep[x- delay], X,
{a0, a1, a2, a3, a4, a5, a6, a7, a8, a9}, MaxTterations -> 300,
RegressionReport -> BestFitParameters]

5.5)
Due to strong non-linearity and multiple minima of the minimized cost
function, this simple procedure in general is not satisfactory since it does not

converge to the global minima.

5.5.3 Polynomial & Impact Response Model with User Specified Initial Values

By using the function ‘FindMinimum’ in Mathematica, the coefficients of the
model that fit the original curve most closely can be obtained. One initial value per
an estimated coefficient that is close to the global minimum is required by this
method. Note that the procedure presented in Section 5.3.2 did not require

specifying the initial conditions.
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The function used to fit the double integrated acceleration is a sum of 5™ order
polynomial and time lifted impact response function of the 2" order system. This

function is defined with the name of “func1” as shown below.

funclja0_,al ,a2_,a3_,ad ,a5 ,a6 ,a7_,a8 ,a9 , x_] :=
al+alx+ a2x2+a3x3+a4x4+a5x5+
a6 Exp| - a7 (x-delay) ] » Sin[a8 (x - delay) +a9)] UnitStep[ (x - delay) ] (5.6)

The function “residual” is defined by subtracting the defined function, “func1”
from the raw displacement (displacement with drift). The square sum of “residual”
is defined as “chisqr’” as shown in Eq.5.8, and is used for finding minimum as
shown below.

N 2
J(ay,2,,29) = O [f, () - 1(X;520, 8, .25 (.7

i=1

J(a,,a,,...,a4) : square sum of ‘residual’,

f,() : displacement in time of sec.,

1(X;;a,,4,,...,) : function used to fit the double integrated acceleration signal.

I&Sidual[ao_, al_, az_, a3_1 a4_l a5__l a6_l a7_l a8._l a9—l l—] =
(fmmclia0, al, a2, a3, a4, a5, a6, a7, a8, a9, i/10000] - displacement[i])

chisqr[aO_, al_, a2_, a3_, 4_, a5_.l a-6_.1 a-7_1 a-8_..l a9_l n__] =
Sum|[ (residualla0, al, a2, a3, a4, a5, a6, a7, a8, a9, index]) ~2,
{index, 1, n}] (5.8)

Once the performance index “chisqr” is defined, it is minimized in

mathematica by the command of below.
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res = FindMinimum{chisqgria0, al, a2, a3, a4, a5, a6, a7, a8, a9, (1000)1],
{a0, -0.04}, {al, -0.031}, {a2, 0.068}, {a3, -0.025}, {ad4, 0.004},
{a5, -0.00021}, {a6, -1.4}, {a7, 149.1}, {a8, 1550.8}, (a9, 2.387},
MaxTterations -> 30] (5.9)

Initial values of the coefficients of the fitted model are provided in the
command. This method suffers from similar weakness as the simpler function in
Section 5.3.2, namely, it tends to converge to the nearest local minimum.
Consequently the obtained coefficients do not provide satisfactory model for the
drift and response of the system. This disadvantage is exacerbated by using
gradient minimization technique. Finding minimum with bracketing initial values

is recommended.

5.5.4 Polynomial & Impact Response Model with Bracketing Initial Values

There are two methods for minimization technique, namely gradient method
and non-gradient method. Gradient method requires computation of gradients.
Obviously, if an objective function is not differentiable, or if it is very difficult to
compute its gradient, this method cannot be used. And there is no guarantee that a
solution returned by gradients method is a global minimum [Bhatti, 1998]. On the
other hand, non-gradient method requires only the function values or generates an
approximation of a gradient vector by using finite differences. This method takes
more time and expenses, but there are several virtues of non-gradient method that
make them worth the price. In general, non-gradient method tends to be more
reliable than gradient method, and provides a means for solving a problem which is
insoluble in gradient method [Hansen, 1992]. By the option of using bracketing
initial values in “FindMinimum’, non-gradient method can be applied in
Mathematica. By using the bracketing initial values, the likelihood of finding the

global minimum is increased. And as expected, this method takes more time
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depends on the size of bracket’s range. Mathematica code for finding minimum by -

using bracketing initial values is written in Eq. 5.13.

resD= FindMinimm[chisar([a0, al, a2, a3, a4, a5, a6, 1024],
(a0, {0.2a0init, 4 @linit}}, {al, {4 alinit, 0.2 alinit}},
(a2, {0-2a2init, 4 @2init}}, {@3, {4 a3init, 0.2a34nit}},
{a4, {4adinit, 0.2a44nit}}, (85, {0.2a5init, 4 85init}},
(a6, {0.2a6init, 4a6init}}] (5.10)

Where, the function for fitting is defined as below.

func2{a0_,al ,a2 ,a3_,ad ,ad_, a5, a6_] :=
a0+alx +a2x°+a3x + ad Exp[-a5x] Sin[a6 (x-0.0197) ] UnitStep{x - 0.0197)
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Figure 5.16 Comparison of minimization between gradient initial method (a), and

bracketing initial values method (b).

Fig. 5.16 shows an example of the difference between using a gradient search
method and using the quadratic minimization method. The user specified initial
values were bad for both case, but as shown in Fig.5.16, the result has big
difference. Even with bad initial values, brackets method gives better curve fitting
than the method of using gradients. But it is still not satisfactory unless the

specified initial values are well predicted.
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5.5.5 Polynomial & Impact response Model by using “MultiStartMin”

By using “MultiStartMin’”, which is special package in Mathematica,
satisfactory curve fitting is obtained as shown in Fig.5.17. By eliminating the
polynomial model from the fitted curve, the fitted impact response is obtained as

shown in Fig.5.18.

3.6 CLOSURE

Rigorous numerical comparison of displacements simulated from the
analytical model and the experimental test shows a good agreement. This validates
the assumption underlying the model development. In next chapter, by using
visualization, the simultaneous comparison of three-dimensional motion will be

performed.
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Black line: fitted curve; Gray line: displacement with drift.

Figure 5.17 Curve fitting By using “MultiStartMin”.
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Black line: estimated impact-response; Gray line: displacement with drift.

Figure 5.18 Comparison of the estimated impact-response and double integrated

acceleration (displacement with drift).
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6. APPLICATION TO VIBRATION VISUALIZATION

Entire process for visualization is partitioned into four major steps, namely, (1)
data acquisition procedure, (2) signal processing, (3) generalized coordinates
calculation, and (4) 3-D animation procedure. In these processing steps, (1) and (2)
are already discussed in Chapter 5. So the step (3), and (4) are the subject to be

discussed in this chapter.

6.1 VISUALIZATION OF SYSTEM VIBRATION

As assumed in the model of dynamometer, in this chapter, visualization is also
derived under the assumption of “rigid body” of the plate of the dynamometer.
There are six degrees of freedom (DOF) for the plate, namely three for translation,
and three for rotation. With these variables, generalized coordinate list dg, is
formed as shown in Eq. 6.1, and Fig. 6.1 shows the coordinate components of the
plate. With one generalized coordinate list, one specified position of the plate at a
certain time instance can be described. And by showing these sequential pictures of
generalized coordinate lists rapidly, the motion of system can be animated. The

technique to calculate these generalized coordinate lists is discussed in this chapter.

de =[x yz 0 ¢ yf 6.1)
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Fig. 6.1 Components of the generalized coordinate list dg, describing the ‘rigid-

body’ motion of the plate.

The flowchart in Fig. 6.2 shows the algorithm used in this visualization. There
are two different approaches. One is the signal based visualization. This means the
visualization that is base on the experimental data. In this approach, the
translational components are straightforward to calculate, but the rotational
components should be calculated from the processed translational displacements
signals by using the equations proposed by Padgaonkar et al. [1975], as further
explained in section 6. The other is model based visualization. In this approach, six
coordinate responses computed from the model derived in Chapter 4 are used for
components of the generalized list dg. With these two generalized coordinate lists,

animations of visualization are generated separately.
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Figure 6.2 Flowchart of the methodology used for the visualization of vibrations of

the dynamometer plate.

6.2 COORDINATE SYSTEM

Coordinate systems are defined in this chapter. A brief explanation of

terminology used henceforth is presented starting with the Coordinate Systems
(C.S.) as shown in Fig. 6.3.
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1. Reference Coordinate System of the Plate (XYZ)z
This is the coordinates system with initial position of the plate. Origin point of

the C.S. is at the comer point marked Cg.

2. Instantaneous Coordinate System (XYZ),
This coordinates system moves together with vibrating plate. Points of
corners remain without changing in this C.S., so this C.S. can be easily

converted into the reference C.S., (XYZ)g

3. Global Reference Coordinate System (XYZ)

The above coordinate systems suffice to visualize the motion of only one
plate. However, if multiple plates are involved, it is advantageous to introduce one
global coordinate system. With this better system, each plate has its unique

Reference and Instantaneous coordinate systems.

The initial location of the reference C.S. can be described by a six components

list, d, . First three components are the coordinates of Cr of Reference C.S. given

in the Global Reference C.S. the three remaining components are angles between

Reference C.S. and Global Reference C.S. The list, d,, is defined as

d, = [xo Yo Zo 95 0o wo]r (6.2)
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Reference Coordinate System

X
of the Plate (XYZ)g ﬂ
1

A Zy
0 Y Instantaneous Coordinate System
Z of the Plate (XYZ),
Z
Global Coordinate
System
of the Plate (XYZ)

Figure 6.3 Coordinate systems used in describing the plate motion.

6.3 CALCULATION OF THE GENERALIZED COORDINATES

In physical systems, there are restrictions on where sensor can be mounted. For
an example, locating the accelerometer at the system’s center of mass may not be
possible. However, the accelerometers can be easily mounted on flat surfaces of the
plate, such as at point such as ‘C’ in Fig. 6.3. So it is advantageous to redefine the
generalized coordinates describing the instantaneous spatial location of the plate.
From now on consider the generalized coordinates that have their origin at the
corner ‘C’ and then transform these to the coordinates that is defined at the center
of mass by applying homogeneous coordinate transformation.

The first three components of the new list of generalized coordinates, dj,

define the position of point C in the reference C.S. (XYZ)g. Three positions are
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designated xy, y;, and z;. The remaining three components define orientation of the
plate with respect to (XYZ)z. These later components are designated 0,, ¢,, and v,.

Thus the entire new list of generalized coordinates is

d, = [xl Y1z, 6,0, Wl]T (6.3)

In these generalized coordinates of instantaneous coordinate system, the
rotations such as 6;, ¢,, and v, are calculated according to a method proposed by

Padgaonkar et al. (1975) briefly summarized below.

Under the rigid body assumption, the relative acceleration of a point P is given by

the formula (Hibbeler, 1995).

ap =a. +OUXT+WX(WXT) (6.4)
where
p - the arbitrary point on a rigid plate, in this case one of the comers; P =1, 2,
and 3, shown in Fig. 6.4.

a, - the acceleration of point P in (XYZ)g,
a_ - the acceleration of point C in (XYZ),

@ - the angular velocity of point P in (XYZ),
o - the angular acceleration of point P in (XYZ),, and

r - the position vector of point P from the origin, C, in (XYZ);
From Eq.6.4, by substituting corresponding position numbers into P as 1, 2,

and 3 with x, y, z direction, and C with X, y, and z direction, three nonlinear

coupled equations are obtained as below [Padgaonkar et al., 1975].

a, =(a, —a,)/r,-® -0, (6.4a)
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o, =-(a,-a,)r+@, @, (6.4b)
o, =(@,-ac)/r -, T (6.4¢)
where

«, - the angular acceleration component of the vector oaround the i axis; i =
X,y.Z,
@, - the angular velocity component of the vector @ around the i axis; i = X,y,z.

I,, I,, I, - the distances between accelerometers shown in Fig. 6.4.

x? ty»

As shown in equations 6.4a, 6.4b, and 6.4c, from the linear accelerations, the
angular accelerations can be calculated. At minimum, six linear accelerations and
three angular velocities are required. Six linear accelerations can be easily obtained
from the accelerometers, which are shown as thick gray arrows in Fig 6.4, but the
angular velocities are not so simple. With angular velocities, these nonlinear
differential equations should be solved numerically. This is a time consuming task
and the convergence of solution is not guaranteed. [Padgaonkar, 1975; Lie, 1976].
So there is another way to get the angular accelerations. With three more linear
accelerations, which are captured from three accelerometers shown as black thick
arrows in Fig 6.4, three more equations that are similar to equations 6.4a, 6.4b, and

6.4c, are obtained as

Q, =(@,z-a,)n+a@, @, (6.4d)
o, =(@,;-2a,)r, -0, o, (6.4¢)

X \ (6.4)



Figure 6.4 Locations of nine accelerometers required for the calculation of the

generalized coordinates [Padgaonkar et al., 1975].

Now by eliminating cross products of the angular velocities from equations

6.4a —6.4f, the angular accelerations can be obtained as

a, =@, —a,)/2r —(az—-a,)/21, (6.5a)
o, =(@,;-a,c)/21,—(a,—a,)/2 1, (6.5b)
(6.5¢)

o, =(a, —a,)/2-1, —(a,;—a,)/ 2T,

Where

d d d
o, == 0,08, = oF 0, = v of.
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The roll (6,), pitch (9,), and yaw (y, ) angles are calculated using

displacements obtained by double integration procedures from the all nine

accelerometers on the plate according to equations.

0, =(x, =X, )21, —(X;; =X, )20, (6.6a)

O, =X 3 X, )21, —(X,, = X,c)/2-1, (6.6b)

W =Xy, = Xye) 201, = (X =X )/ 207, (6.6¢c)
where

x;j - displacement obtained by double integration of the acceleration a;;,

i, j — the notation for axis, i =X, y,and z; j = C, 1, 2, and 3 (corners of the plate
where the accelerometers are located).

The “true” displacements used above for the calculation of the angles are
obtained by additional procedure such as “drift elimination” after the double

integration as discussed in Chapter 5.

6.4 ANIMATION OF THE RIGID BODY MOTION

The animation procedure consists of three steps: (1) finding the absolute
position of the reference comer points, C, (2) calculating coordinates of the plate’s
center in the C.S. (XYZ)g using homogeneous coordinate transformation, and
drawing a single 3-D picture representing instantaneous position of the plate by
using homogeneous transformation, and (3) animation of the 3-D pictures. These

steps are discussed in the following subsections.

6.4.1 Finding Absolute Position of the Reference Corner Point

The coordinate vector d, of the instantaneous coordinate system represents

only the relative position and orientation of the C.S. (XYZ); with respect to


http:2�r)/2�r(6.6b
http:xyC)/2�r(6.6a
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(XYZ)R as shown in Fig.6.3. Absolute generalized coordinates of plate in position -

‘C’ can be calculated by combining d, (Eq. 6.2), and d, (Eq. 6.3). List of the
reference position, d,, can be assumed ‘0’ because only one plate is being

concerned in this research. And considering that the movements are small, a

suitable magnification coefficients, such as K, for translational movement, and
K, for rotational movement need to be introduced. So the absolute generalized

coordinates d , is calculated as

d, =d, +K-d, ©7)
Where

x, =K, x;, 6, =K, -0,,

Ya =Ky 0, =K, 0,

z, =K, -z, v, =K, vy,

6.4.2 Homogeneous Transformation

For the visualization of vibrating plate, “solid” representation supported by
Mathematica is used. Three programs are used for visualization in this research.
The programs are written in Mathematica, mainly using homogeneous

transformation matrices and as follow,

1. “visual.nb”. This program develops the plate shape by connecting eight
corners, shown as Eq. 6.8, and by homogeneous transformation matrices
(Wovolich, 1987), calculates the location of the plate after the
excitation. And by showing rapidly changing sequential plate shape,
visualization of the vibrating plate is accomplished. The generalized

coordinates at the center is required for this calculation.
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2. “coordi_maker.nb”. This program makes the generalized coordinate that
is needed for the program “visual.nb”. First the x, y, and z direction
displacements, which are calculated from the signals of accelerometers,

are read and the angles, 0, ,¢, ,and y, are calculated as it is discussed in

Section 6.3. Finally by homogeneous coordinate transformation
technique, the generalized coordinates of center is obtained from the
coordinate at the point ‘C’.

3. “signal_process.nb”. This program processes the raw signals from

accelerometers to get the displacements. (Chapter 5)

Corners of plate of dynamometer are defined as

FRU[length , width_, height ] = {0.5width, -0.5 length, 0.5height};
FLU[length , width , height_] = {-0.5width, -0.5 length, 0.5height};
FLL[length , width , height_] = {-0.5width, -0.5 length, -0.5height};

FRL[ length _, width_, height ] = {0.5width, -0.5 length, -0.5height};
RRU{length , width_, height ] = {0.5width, 0.5 length, 0.5height};

RiU[length , width_, height ] = {-0.5width, 0.5 length, 0.5height};
RIL{length , width , height ] = {-0.5width, 0.5 length, -0.5height};
RRL[length , width , height ] = {0.5width, 0.5 length, -0.5height}; (6.8)

Homogeneous transformation matrices, which are used in this visualization

are as follow.

1. ‘Yaw’ transformation matrix, Ty(¢,).

This matrix accounts for a rotation around the Z, axis by an angle y .

cos(y) -sin(y) 0 O
i 0 0
Ty (y) = SH(I)(W) COOS(W) 0 0 6.9)

0 0 0 1

2. ‘Pitch’ transformation matrix, Tp(¢ ).
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This matrix accounts for a rotation around the Y, axis by an angle ¢ .

cos(¢) O sin(¢) O
0 1 0 0
T, =| (6.10)
sin(¢) 0 cos(p) O
0 0 0 1
3. ‘Roll’ transformation matrix, Tr(0).
This matrix accounts for a rotation around the X, axis by an angle 0.
1 0 0 0
0 0) -sin(@) O
T (8)=| O €O -sin®) 6.11)
0 sin(B) cos(@) O
0 0 0 1

4. Translational transformation matrix, T1(x,y,z).

This matrix accounts for x, y, and z translations along the X3, Y3, and Z; axes.

T, (x,y,2)= (6.12)

oS O O O
oS O O O
S O O ©

X
y
z
1

A succession of coordinate transformations, each represented by a particular
transformation matrix, can be represented by a matrix product of individual
transformation matrices [Wolovich 1987]. Therefore, the total transformation
matrix that including the translational, and the rotational can be obtained as shown
in Eq. 6.13.

THT (X, Y.z, e’ ¢’ W) = T’r (X, Y, Z) ) TR (e) - TP (¢) : TY (W) (613)
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The position of point C in C.S. (XYZ)R is directly calculated by double

integration procedure, and as shown in Fig. 6.5., the position can be described as
vector, V§ = [Xc,Yerze ]

Homogeneous coordinate transformation technique is applied to find

coordinates of the point G, which is the system’s center of mass. The coordinate

vector of center G, V§ = [x¢,y4,2¢ ] is shown in Fig. 6.5. And the following

steps are used to calculate the coordinates. First, vectors V5 and V§ are rearranged

to the column form 1x 4 as shown in Eq. 6.15, to be compatible with the

homogeneous transformation matrix.

Figure 6.5 Application of the homogeneous coordinate transformation for finding
coordinates of point G (system’s center of mass).

Xc Xs

V§ Yc Vo Yo
Dg = °|= (6.14), and Dg=| °|= (6.15)

1 Zc 1 Zg
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It should be noted that the coordinates of point G defined in C.S. (XYZ), are
converted to its coordinates in the global C.S. (XYZ). A location vector, Vg , 18

defined as a vector that contains local coordinates of the corner under consideration
in the C.S. (XYZ),, i.e., the coordinate with reference to the corner, C. In this

example, dimensions of the plate are /,w, and h, where

l - the length of the plate measured parallel to the X; axis,
w - the length of the plate measured parallel to the Y; axis, and
h - the length of the plate measured parallel to the Z; axis.
The column vector, D¢ =[ é % g 117, arranged from the vector V¢, is then

used in the calculation of the coordinates of the point G in the global C.S. (XYZ) as

Dg ZTHT(XC’YCchvec,q)c’Wc)'Dg (6.16)

6.4.3 Drawing a 3-D Picture

To create a complete motion of the plate in a certain time, its edges (eight
corner points) are plotted and connected with line by using ‘Graphic3D’ in
Mathematica. The generalized coordinates including three translations and three
rotations are required for the position of excited plate of dynamometer at a certain
time. Consecutive plots of the plate are obtained by using the sequential
generalized coordinates. And by showing these consecutive plots rapidly, the
movement of the plate according to the actual vibration or according to the

simulation of model is accomplished as shown in Fig. 6.6.



71

Figure 6.6 Captured pictures of the animated dynamometers. (a) from actual signal,

(b) from the model.

6.5 CLOSURE

Two kinds of 3-D visualizations for the vibrating dynamometer are performed.
After developing the visualization program, ‘visual.nb’ by using mathematica,
calculating the generalized coordinates turns to be main concerns. From the
simulated model, the generalized coordinates are easily obtained because the
coordinates are same between the model and the animation. Different from the
model, several procedures are required to calculate the generalized coordinates
from the actual signal from the accelerometers. The rotations should be calculated
from the translations, and the transformation is also needed to get the generalized
coordinates of the center. By these different procedures, two visualizations are

accomplished and compared as shown in Fig. 6.6. Visual comparison of animated
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motion in the case of different excitation signals showed a good agreement of the
model based and experimentally obtained responses of the platform. It corroborated
the conclusion from Chapter 5 that the developed model of the dynamometer well

represents its behaviors.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 _CONCLUSIONS

The presented Computer-Aided Model Generation of a High performance
Dynamometer gives the methodology of analyzing the dynamic system with multi-
degree of freedom. Generation of the system’s model is the first stage. And the
validation of the model is the second stage. In the first stage, the rigid body
assumption is made for the modeling in consideration that the deformation of
dynamometer’s plate is negligible. For the simplification purpose, the fixed
foundation and base assumption is also applied. Finally six transfer functions that
represent the motion of the platform are obtained by using Lagrange’s energy
formalism. The use of “Mathematica” with the “Control System Professinal”
package provides several ways to check the result of the modeling. By plotting
‘bode plot’s of the each transfer functions, the natural frequencies of the system can
be obtained. Also the output responses of the system can be simulated. The second
stage consists of data proéessing and visualization procedures. Signals captured
from the accelerometers are double integrated to get the displacements. Several
extra processes are applied to eliminate drifts. For the strong signals, drift
elimination procedure is simple and easy, but for the weak signals, it is not as easy
to eliminate drift as it is for the strong signals. Several minimization techniques are
discussed and acceptable drift estimation is achieved. The comparison between the
displacements calculated from the signals and the displacements simulated from the
model provides reasonable matches. For the application of this research, the
visualization is performed base on the both ways, namely signal based one, and
model based one. The generalized coordinates, which are necessary for the
animation of vibrating platform is calculated. As expected from the comparison of

the displacements, the animations of both ways matched quit well.
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7.2 RECOMMENDATIONS FOR FURTHER RESEARCH

To accomplish the complete model with more accuracy, and more efficiency
way, additional works are required. For the model generation, reconsideration of
the assumptions would improve the results. For an example, employing flexible
mode or combination of rigid body and flexible mode would be taken into account
to get the closer result from the actual system. And expanding the degree-of-
freedom by considering the movements of base, instead of fixed base assumption
model would provide the closer model to the actual system.

Validation for the improved model also should be improved. For the signal
processing procedures, elimination of drifts should be performed with the advanced
methods because the errors considered as negligible in this research would not be
negligible in further research. For the model with flexible mode, visualization
should be considered differently from the model with rigid body. Employing
platform with several sections would be appropriate for the model with flexible
mode. To accomplish this, more sensors can be employed and a modal analysis

technique would be applied.
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Experimental Specifications, and Constant Parameters.

Appendix A

A.1 Information of Sensor used in the Experiment

79

fixed

Comments Dlrﬁi:fltlon L?;f;;“ Sensitivity | Channel A%Tii;ier
Sensor
ADXI1.202 Xh acx 0.312V/g 2 1
ADXI1.202 Yh acy 0.312 V/g 3 1
ADXL202 Yo 2, 0.312 V/g 4 1
ADXI1.202 Y1 ay 0.312 V/g 5 1
ADXL.202 X1 aj; 0.312V/g 6 1
ADXI.202 X7 ay, 0312 V/g 7 1
ADXIL.202 Y2 ay, 0312 V/g 8 1
ADXI1.202 Y3 asy 0.312 V/g 9 1
ADXI 202 X3 a3, 0312 V/g 10 1
B302A10/5502A2 Ay 0.5 Vig ! !
Load cell Not | 9248 mvN| 12 10
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A.2 Dimensions of the Dynamometer

169.93 Corner 3

| Center of l
‘ 98.4

Wz.lo 11.94 X6
o3 Base ,
\ 169.9

units: mm Zg v

Figure A.1 Dimensions of the dynamometer used in the experiment in units of mm
(the sensing elements are not shown).[Jitpraphai, 1997]

A.3 Constant Parameters in the Spatial Matrices

Mass of the platform [Chen, 1996].
m=2.714 kg.

Mass moment of inertia of the platform around the center of mass, G [Chen, 1996].

Ixx = .006187217392 kg-m’, Iyy = 002398407627 kg-m’, Izz = 008366544210

kg-mz,

Ixy = 0 kg-m?, Iyz = .00007500541682 kg-m?, Ixz = 0 kg-m>.
g



Stiffness of the sensing elements [Chen, 1996].
k01 = 262000 N/m, k02 = 1260000 N/m.
kO1 = kx1 = kx2 = kx3 = kx4 = kyl = ky2 = ky3 = ky4.
k02 = kz1 = kz2 = kz3 = kz4.

Damping coefficients of the sensing elements [Chen, 1996].
cox = 140 N-s/m, coy = 125 N:s/m, coz = 275 N-s/m.
cox =cxl =cx2=cx3 =cx4.
coy =cyl =cy2 =cy3 =cy4.

coz =czl =cz2 =cz3 =cz4.

Distances of the sensing elements from the center of mass [Chen, 1996].
a=0.02999 m (in X; direction),
b =0.04979 m (in Y; direction),
h =0.01070 m (in Z; direction).
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Appendix B
Plots of the Experimental Responses from ‘y’ direction impact force.
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Appendix C
Model Derivation of Dynamometer in Mathematica

Model of Dynamometer

Generating Equations of Motion
Development History:

Based on a model of HEXACT (""Hexact5_3.nb") developed by B. Brisbine (last rev. 05/03/99)

Started: 7/11/99: S. Ko
Last Rev.: 12/5/2000: S. Ko

0. Call packages (Check if loaded succesfully)
& clear numerical constants and variables

1. Set properties of the working environment
2. Symbolize variables

3. Vectors of coordinates and system parameters
4. Transformation matrices

5. Defining EDE position vectors

6. Potential Energy

7. Kinetic energy

8. Damping energy

9. External input force and moment

10. The Lagrange’s equations of motion

10.1 Define the Lagrangian function.

LagrEans([T_, U_, Damp_, Q List, Coor_List] :=
Flatten|MapThread| {0t (05 #2T) - 042 (T - U) + Og #2Damp - #1 == 0} &, {Q, Coor}]];

10.2 Calculate equations of motion.

incrCoord

x1(n, yl(9), z1(0), 61(n), $1(9, ¥1(0, x2(0), Y2(1), Z2(1), 02(0), $2(D), YD)

Bl = LagrEans [Tt' Utl Dt, minGen ' incrCoord ],‘

Twelve equations of motion for the Dynamometer.
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Appendix D
Minimization Methods for Eliminating Drift.

D.1_MultiStartMin

Defining chi square with 8 variables (as sum of squares of residuals)

chisgr8varfal_, al_, a2_, a3_, a4 _, a5_, a6_, myDelay ] =
dataSize

Z ((x=d[i, 1]; a0+alx+a2 ¥ +a3 x +

ad Exp[-ab (x-myDelay) ] Sinf[a6 (x-myDelay) ]
UnitStep[x-myDelay]) -dfi, 2]) *2;

resl =

MultiStartMin[chisqr8var(a0, al, a2, a3, a4, a5, a6, myDelay], , ,
{{a0, 0.2 alinit , 4 @0imr }, {@l, 4 alinic , 0.2 @linir },
{a2, 0.2 @2jnit , 4 @2inir }, {a3, 4 a3init , 0.2 &@3imit },
{a4, dadiye , 0.2a@dync }, {85, 0.2 @5inir + 4 @5imic },
{a6, 0.5 abimr , 2864t }, {myDelay, 0.5delinie , 2delinic }},
toler, ShowProgress - False, SimplifyOption -> False,
CampileOption -> True, Starts - 5] // Timing
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