Abstract: The Center for Agricultural Partnerships (CAP) in cooperation with growers and their organizations, crop consultants, researchers and farm advisors has developed a project to implement sprayable mating disruption and other new technologies on 25% of the walnut acreage susceptible to codling moth (CM) infestation (approximately 25,000 acres by the end of the fourth year). During year 1 (2001) the project’s potential for success was researched, project objectives were developed, the project architecture was designed and cooperators were identified. In year 2 (2002) baseline surveys of cooperators were conducted, work plans were formulated and the pilot field project was initiated with regional coordinators, 3 key pest management consultants and 8 grower cooperators on 900 commercial walnut acres statewide. 2002 results showed that cooperators have a continuing commitment to testing the target technologies under commercial field conditions, that mating disruption, though more expensive than conventional spray technologies, does have potential as a tool for CM management in walnuts, that the DA lure significantly out-captures pheromone baited traps in mating disrupted walnuts and that there is continued interest in expanding the project into 2003. Discussion of the problems and pitfalls of this approach to wide-scale commercial implementation will also be provided. Codling moth is one of the key pests of walnuts, infesting 60% of the more than 200,000 acres in California. Uncontrolled codling moth can lead to economic damage of up to 40% of the crop. The walnut crop in California was valued at $346 million in 2001.

Implementation

Development of Palm Pilot based spray recommendation databases for deciduous fruits

Vincent P. Jones and Gary Grove
Washington State University, Tree Fruit Research and Extension Center, Wenatchee, WA

Abstract: Palm OS databases were developed to help agricultural consultants make decisions for IPM programs in deciduous fruits and grapes. The databases allow the user to view the recommendations by time of season and pest or disease. Each record for a pesticide includes rates, information on other pests controlled, effects on natural enemies, re-entry interval, pre-harvest interval, bee toxicity and any use restrictions. The disease databases are similar, but also include cross-resistance factors that are a serious concern with disease management programs. The inclusion of this information in a small, inexpensive, and easy-to-use hand-held computer allows the user to compare pesticides to maximize control while considering other use factors.