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This study aims to compare different methods of obtaifing maximum growing
season leaf area index (LAI) maps using remote sensing data, LAI and tree cover
field data in a boreal forest near Thompson, Manitoba, Canada. The comparison
includes aspatial methods such as traditional regression, inverse regression and
reduced major axis, and spatial methods such as kriging, cokriging, kriging with an
external drift, and conditional simulation. The LAI maps will serve as input in
process models to obtain maps of net primary production (NPP).

The present work was done in the context of the BigFoot project

(http://www.fsl.orst.edu/ larse/bigfoot) which focuses on the validation of the

MODIS (Moderate Resolution Imaging Spectrometer) land cover, LAI/fAPAR
(fraction of absorbed photosynthetically active radiation), and NPP products

(http://modarch.gsfc.nasa.gov/MODIS, with the main objective of scaling up from

in situ ground measurements to the moderate spatial resolution of MODIS data

products (250 - 1000 m spatial resolution).



Due to the clumped structure of the boreal forest and the presence of a highly
reflective understory, vegetation indices derived from remotely sensed data were
not useful in explaining LAT variability. The use of mid-IR bands and tree cover
data improved the performance of the models. Kriging with an external drift
performed better in the presence of trends and anisotropy. An integrated aspatial
(reduced major axis)/épaﬁal (cokriging) method produced a useful compromise
between local accuracy and pattern rcp;'esentation. Conditional simulation
maintained global accuracy and spatial variability. Conditional simulation also
prow,;ided a measure of spatial uncertainty useful to assess how LAI variability
affects process models, and to evaluate how spatial variability influences the
upscaling from Landsét ETM+ (25-30 m) to MODIS (250-1000 m) spatial
resolutions.

Our maiﬁ conclusion is that the selection of the optimal mapping technique
depends on user requirements, because not all the desired map characteristics can

be achieved simultaneously.
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Comparison of Regression and Geostatistical Methods to Develop
LAI Surfaces for NPP Modeling

Chapter One: Introduction

Objectives

This study aims to compare different methods of obtaining maximum growing
season leaf area index‘(LAI) maps using remote sensing data, and LAI and tree
cover field data in a boreal forest near Thompson, Manitoba, Canada. The
comparison includes aspatial methods such as traditional regression, inverse
regression and reduced major axis, and spatial geostatistical techniques such as
kriging, cokriging, kriging with an external drift, and conditional simulation. The
LAI maps will serve as input in process models to obtain net primary production

(NPP).

The present work was done in the context of the BigFoot project

(http://www.fsl.orst.edu/ larse/BigFoot) which focuses on the validation of the

MODIS (Moderate Resolution Imaging Spectrometer) land cover, LA/fAPAR
(fraction of absorbed photosynthetically active radiation), and NPP products

(http://modarch.gsfc.nasa.gov/MODIS) (Cohen and Justice, 1999). The main

objective of BigFoot is scaling up from in situ ground measurements to the



moderate spatial resolution of MODIS data products (250 - 1000 m spatial

resolution).

Leaf Area Index

Leaf area index (LAI) is a significant attribute of forest ecosystems that controls, in
part, physiological processes such as photosynthesis, transpiration and leaf
maintenance respiration, as well as physical processes such as snow melt, canopy
water interception and evaporation, and light attenuation (Landsberg and Gower,
1997; Waring and Running, 1998). LAI, defined here as half the total leaf area per
unit ground surface area (Chen and Cihlar,1996), is a widely used parameter that
drives biogeochemical process models that characterize the primary productivity of
extensive terrestrial areas (Running and Gower,1991). Estimates of :LAI are often
derived from remotely sensed data through empirical relationships with spectral
vegetation indices (SVIs). Vegetation indices are calculated from remotely sensed
reflectance data, and are often related to field LAl measurements using regression-
based relationships. These relationships have been shown to be valid over a wide
range of vegetation types and with an array of different sensors (Tucker, 1979,
Peterson et al., 1987; Spanner et al., 1990 a and b; Fassnacht et al., 1997; Turner et
al., 1999). Regression relationships, however, have limited accuracy in situations
where canopy closure varies (Loechel et al., 1997), and where the understory and

background materials contribute substantially to the reflectance signal received by



the sensor (Huete et al., 1985; Nemani et al., 1993), characteristics that were found
to be more pronounced for conifer species (Spanner et al., 1990 a).

In closed canopy cover conditions, LAI shows a negative relationship with red
reflectance and a positive one with near infrared (NIR) reflectance, maximizing the
utility of SVIs such as the normalized difference vegetation index (NDVI) and the
simple ratio (SR). But when canopy cover is not closed, the LAI-NIR relationship
may exhibit no relationship at all (Spanner et al., 1990 a; Nemani et al., 1993). To
complicate matters, background and understory reflectances change differently
through the seasons, due to snow cover or understory phenology (Chen and Cihlar,
1996), which sometimes depends on the overstory species composition (Miller et
al., 1997). Many attempts have been made to correct for this understory reflectance;
some of them included the use of mid- infrared (Mid-IR) wavelengths (Loechel et
al.,1997; Nemani et al., 1993). Mid-IR is negatively related to LAI in closed
canopies, and is strongly affected by leaf water content (Lillesand and Kiefer, 1999;
Nemani et al., 1993).

A further difficulty in the estimation of LAI from vegetation indices is a commonly
observed asymptotic relationship between LAI and SVIs, especially at high LAI
values (Spanner et al., 1990 a). Canopy architecture plays an important role in the
interception and reflection of solar radiation, influencing the signal received by the
sensor. Leaf spectral properties (Gates et al., 1965), foliar angular and spatial
distribution (including vertical distribution of foliage, tree height and gap

distribution) (Lefsky et al., 1999; Fournier et al., 1997; Chen and Cihlar, 1996;



Cohen et al., 1990), and foliar hierarchical clumping structure (Gower et al., 1999;
Ni et al., 1997), all contribute to the heterogeneity of the radiation environment

within the forest.

LAI estimation in boreal forests is challenging because these forests have high
variability at all scales of organization, not so much due to the species diversity,
which is low (Landsberg and Gower, 1997), but from structural diversity. The
complex structure of boreal forests is a function of topography, soil parent material,
climate and periodic disturbances (Van Cleve and Vierek, 1981) and stand age. At
the large scale, fire is the most important natural disturbance (followed by tree
damage by insects), influencing species composition, nutrient availability, and
forest age and productivity (Larsen, 1982). Fire frequency may have increased

lately as a result of increased temperatures coupled with drier conditions (Van

Cleve and Vierek, 1981).

Boreal conifers have narrow, columnar crowns, and clumping at the shoot, branch
and crown level, to maximize light interception and reduce damage from snow
loading (Landsberg and Gower, 1997). Black spruce is a good example, with 40 to
50 % of the foliage concentrated in the top of the crown, leading to LAI
underestimation by optical measurement methods (Chen et al., 1997). Another
characteristic of boreal forests is the rich understory and soil cover, composed of

various shrubs, grasses, tree regeneration, and abundant mosses, lichens and



sphagnum species, distinctive of boreal plant communities. Bryophytes exhibit
different spectral characteristics from vascular plants (Bubier et al., 1997; Petzold
and Goward, 1988; Vogelman and Moss, 1993). Depending on the density and
composition of the overstory vegetation and the time of year, these components
affect differently the signal remotely received by overhead sensors (Chen and
Cihlar, 1996; Miller et al., 1997). Chen and Cihlar (1996) found that late spring
images were superior to summer ones to determine overstory LAI because the
effect of the understory is minimized, and that there was no obvious saturation

point in the LAI-NDVI relationship because of the clumpiness of the canopy.

Tree Cover

Cover, like LAI is an ecological property with great functional signiflc;cmce. It
influences the microenvironment within the forest in terms of light, temperature,
rainfall and snow interception, which play a role in overstory and understory
development. Loechel et al. (1997) observed the positive correlation between LAI
and canopy cover and suggested that cover may be an important variable to add to
LAI models when poor NIR-LAI relationships are present, such as in the open
canopy situations of this study.

Cover was defined by Mueller-Dombois and Ellenberg (1974) as “the vertical
projection of the crown or shoot area of a species to the ground surface expressed
as a fraction or percent of a reference area”. Bunnell and Vales (1990) suggested

mean crown completeness (MCC) as a useful measure of canopy cover as observed



from the ground. MCC is a stand or plot measurement denoting the mean of several
measurements of the proportion of the sky covered by tree crowns within a
specified angle from a single point (Bunnell and Vales, 1990). The area sampled is
determined by trigonometric principles and depends on the angle of view, the
height to base of live crown and the height from which the angle is projected.
Bunnel et al. (1990) and Vales and Bunnel (1988) compared several different cover
measurement techniques including ocular, moosehorn, spherical densiometer,
regular and hemispherical photographs to evaluate differences among techniques
and effects of the obseryers. They agreed that narrow angles of view and vertical
projections are the least biased ways of estimating MCC to include both gaps
between and within crowns. They observed that wide angles of view masked small
gaps, included objects not directly above the point. sampled, and had an angular
view of the canopy at the outer edges, overestimating MCC. On the other hand,
Bunnel et al. (1990) suggested that wide angles may be more appropriate when
examining relationships between overstory and understory radiation in boreal

forests, where low solar angles are present.

Digital photography has the advantage of offering a permanent and objective record
of the samples that allows flexible laboratory analysis and eliminates observer

effects.



Theory of Applied Methods

This section reviews the theory of the different aspatial and spatial LAI estimation

and simulation techniques tested in this study (Fig. 1).

. Regression
(Reg,)
- Ordinary kriging
Inverse > (OK)
|_,.| Regression Sequential Gaussian
(Reg,) Kriging with an Conditional Simulation
—> external drift ‘
D
L, Reduced (KED) o -
j t locat: rigi
b Standardized i ods Seepiery
|, | ordinary cokriging ' variable
with one secondary (SGCS)
. variable (OCK)

RMA + RMA residuals
OCK with Cl g,

Figure 1. Scheme of methods used in this study.

Aspatial Regression-based Methods

A regression equation can generally be expressed as:

Y =a+ BX +¢



where Y is the variable to be estimated, & is the intercept, § is the slope, X is the

independent variable, and € is the error, assumed to be independent and normally
distributed. Regression methods assume that data are spatially independent.

In remote sensing, the independent variable is the earth’s surface reﬂéctance, and
the dependent variable is the signal received by the sensor. Commonly used SVIs
are based in traditional regression (Regr), and are expressedas ¥ = a + BX +¢ ,
where Y is LAl and X is reflectance or one of several SVIs. This type of
regression analysis is based on the assumption that there are no measurement errors
in the independent variable, and is designed to estimate ¥ by minimizing the sum
of squares errors in Y. Curran and Hay. (1986) described the major measurement
errors that should be accounted for in remote sensing variables, and that are
generally ignored when using traditional regression. This problem is solved by
using the inverted equation X = a + BY + ¢ , referred to as inverse regression
(Curran and Hay., 1986), or Reg ;, which minimizes the sum of squared errors in
X . However, Chen and Cihlar (1997) pointed out that commonly used allometric
methods to estimate LAI can accumulate errors, and it is difficult to keep the total
error under 25 %. A method that accounts for measurement errors in both
dependent and independent variables is needed in such situations. The reduced
major axis method (RMA) improves the traditional and inverse regression
procedures in that it minimizes the sum of the cross-products of the differences on

both axes, accounting simultaneously for the errors in both dependent and



independent variables (Miller and Kahn, 1962; Davis, 1986) and is given by

Y = (o + BX +e)‘(—l)-.

The main difference among these methods is that traditional and inverse regression
equation coefficients (a and g ) are determined by least squares, while reduced

major axis intercept and slope are given by:

Oy v

a =y —L*y
Ox
= Or
B o,

where ¥ and x are the means of the dependent and independent variables

respectively, and o, and o, are their standard deviations.

Geostatistics

Geostatistics, based on the theory of regionalized variables (Journel and Huijbregts,
1978), is concerned with a variety of techniques aimed at understanding and
modeling spatial variability through estimation and simulation (Deutsch, 2000;
Journel, 1989; Goovaerts, 1997). A regionalized variable equation differs from a
regression equation in that its components are indexed by their position in space or
time:

Z(x)=m(x)+&'(x)+£&"

where Z(x) is the variable to be estimated at location x, m(x) is a deterministic

component, £'(x) is spatially correlated variability, and £” is a spatially
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independent random residual, assumed to be normally distributed and interpreted as
nugget variance. Geostatistics accounts for the presence of spatial autocorrelation

and joint dependence in space and time, which occur in most natural resources

variables (Myers, 1997).

In an ecological context, geostatistics has been used to describe scale and pattern of
spatial variability (Woodcock et al., 1988; Legendre and Fortin, 1989; Turner et al.,
1990; Rossi et al., 1992), to characterize canopy structure (Cohen et al., 1990; St-
Onge and Cavayas, 1997; Hudak and Wessman, 1998; Wulder et al., 1998), to
estimate continuous and categorical variables (Rossi et al., 1993; Milne and Cohen,

1999), and to assess risk (Myers, 1997; Saito and Goovaerts, 2000).

Biogeochemical models are increasingly adopting an explicitly spatial
configuration. Spatial surfaces of meteorological values such as temperature and
evapotranspiration or accuréte digital elevation models (DEM) are commonly
required as model inputs (Running and Nemani, 1987). Geostatistics is currently
used to improve such data layers (Goovaerts, 2000; Kyriakidis, 1999). The latest
applications of geostatistics have emphasized the use of models of uncertainty that
depend on the data values in addition to data configuration (Deutsch and Journel,
1998). Stochastic simulation is an example of a probabilistic approach that
provides a distribution of possible values for each cell of the surface, characterizing

uncertainty. These uncertainty measurements improve ecological interpretation,
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help assess error areas and decrease losses and risks in policy and management

decision-making (Rossi et al., 1993).

Spatial structure may be described by structure functions that allow the
quantification of spatial dependency. The structure functions used in this study
were semivariance and cross-correlation.

Semivariance, y(h), is a measure of spatial variability used to assess the average
dissimilarity between data separated by a vector h (Curran, 1988; Goovaerts, 1997).
It is computed as follows:

N(h)

1
y(h) = W a2=1 [2(ug ) — 2(g +h))?

where £ is the lag, or vector separation between the attribute z at locations u,,

and (u, + h), and N (h)is the number of pairs of data locations a vector 4 apart.

The subscript o represents the sample data.

An experimental semivariogram is a graphical representation of the semivariance
versus the lag, and summarizes the magnitude, spatial scale, and pattern of the
variation for a given set of data (Curran, 1988; Wulder et al., 1998; Milne and
Cohen, 1999).

Experimental semivariograms are interpreted in terms of the sill, range, slope, and
nugget. The sill represents the maximum semivariance, the point where increments
of the lag do not result in increases in semivariance because spatial autocorrelation

is no longer present (St. Onge and Cavayas, 1997). The lag distance at which the
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sill is reached is called the range and within this distance, sample points are
spatially dependent. The slope represents the rate of change of the semivariance
with lag dstance. The nugget variance is the apparent discontinuity at the origin of
the sémivariogram. It is the sum of two components: measurement errors, and
variation below the minimum lag distance (Burrough, 1995; Rossi et al., 1992;
Wulder 1998; Deutsch 2000). In an image context, the height of the sill is
proportional to the global image variance and related to the density of scene
objects, and the range is a good indicator of texture coarseness, related to the size
of the objects (St-Onge and Cavayas, 1997; Woodcock et al., 1988)

The computation of the experimental semivariogram based on a sample data set
allows for the construction of models used in geostatistical estimation and
simulation methods. Semivariograms can be computed as either an average over all
directions (omnidirectional semivariograms) or in a particular direction (directional
semivariograms), allowing isotropic and anisotropic analysis of the data,
respectively.

Model functions were fitted to experimental following Isaaks and Srivastava
(1989), and Deutsch and Journel (1998). To ensure the positive definiteness
condition required by the covariance kriging matrices to guarantee positive
variance values, it is advised to use only the functions that are known to be positive
definite, such as spherical, exponential, and hole effect (refer to Isaaks and
Srivastava, 1989, and Deutsch and Journel, 1998, for a full description of these

functions). The present study modeled the semivariograms and cross variograms
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using “nested structures”, which are linear combinations of the basic functions. The

following is an example of a nested isotropic model:
Y zox (h) = a + b* sph 4y ,) + ¢ * hole (45,

where a is the nugget effect ; b is the sill contribution to the model sph, a
spherical model, up to dist ,, the range of the second structure; and c is the sill

contribution to the model hole , a hole effect model, up to dist}, , the range of the
third structure.

In this way, the most relevant features of the experimental semivariogram can be
represented in the models to be used in the geostatistical procedures. Cross-
validation procedures helped assess model fit. Simplicity is an important rule in the

construction of the models.

The cross-correlation is a unit-free measure of similarity between two different

attributes. It is given by:

C..(h)
p,-,-(.h)=2”—2 e[-1+1]
ag. 0.
n J+a
with

N
2 (zi—mi)z;—m;)

=1
C,’j=n N
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where C;; (h) is the covariance between z;and z;j : values separated by vector 4,

N is the total number of pairs of sample values (z;,z;), m;and m ;are the means

of the i and ; attributes, and with

N(h)
c? = Y 2zt —mi, 1
a=1

N(h)

2 _ 1 2
e —maz,l[zj(ua) m;j |

where O'i2 and 0'12. are the variances of the two different attributes at the tail and
-h +h

head of vector h, m i, and m; are the means of the tail and head values, and

z;(u, ) are the i attributes of variable z at locations u,, (Rossi et al., 1992;

Goovaerts, 1997).

A plot of the cross-correlation values versus distance is called a cross-correlogram
and helps to visualize and interpret how two variables vary jointly in space.
Generally, the cross-correlation between two variables reaches its maximum at lag

0, and decreases as the distance increases.

Geostatistical Methods
Geostatistics is based on the concepts of random variables and random functions

(Isaaks and Srivastava, 1989). A random variable (RV) is a variable whose values
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are randomly generated according to some probabilistic mechanism thaf models the
uncertainty about the attribute under study. In predictive statistics, any unsampled
(unknown) value is characterized as a random variable. The probabiljty distribution
of the random variable is usually location and information-dependent (Deutsch,
1998). The random variable seen as a function of spatial location is called a random
function (RF). A random function is a set of random variables that have associated
spatial locations and whose dependence on each other is specified by some

probabilistic procedure (Isaaks and Srivastava, 1989; Deutsch, 2000).

‘Kriging is a generalized least-squares linear regression technique that accounts for
the spatial dependence among observations. The kriging estimators are :exact
interpolators, meaning that they honor or reproduce the sample values at their
locations (Goovaerts, 1997). Three different kriging variants were applied in this
study: ordinary kriging (OK), kriging with an external drift (KED) and ordinary

cokriging (OCK).

Ordinary Kriging

Ordinary kriging is a univariate technique that accounts for local fluctuations in the
mean value by limiting the domain of stationarity of the mean to a local
neighborhood centered on the location being estimated (Goovaerts, 1997). The

ordinary kriging estimator is calculated as follows:
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n(u)
Zoe@)= D AZ () Z(u,)

o=1

under the constraint:

where Z,, () is the ordinay kriging estimator at location u, /12" (u) are the OK

weights corresponding to the n samples at location u, and Z(up ) are the nearby

sample values.

Kriging minimizes the error variance and aims to obtain a mean residual error equal
to 0. These constraints and the specification of a pattern of spatial continuity (a
model applied to the experimental semivariogram) lead to a normal system of
linear equations called the ordinary kriging system that provides the OK weights.
For a detailed description of the kriging computation refer to Isaaks and SrivastaQa,

(1989), Goovaerts, (1977), or Deutsch and Journel, (1998).

The ordinary kriging variance is:

n(u)
05 (1) =C(0)- 2112’{ )C(ug —u) = ok ()
a =
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where ¢ é K (u) is the minimum error variance, C(0) is the stationary covariance,

C(ug —u)is the covariance with the unknown value, and ug (1) is the Lagrange
parameter.

This error variance is dependent on the data configuration but independent of the
data values, so it is not a good measure of error. The variation is always 0 at sample
data locations, increases away from the data and reaches a maximum value at

locations most distant from sample data points (extrapolation situations).

Kriging with an External Drift

Kriging with an external drift (KED) is a variant of kriging that allows for the use
of secondary information known at every location (exhaustive), which is assumed
to reflect the spatial trend of the primary variable (Deutsch and Journel, 1998;
Goovaerts, 1997). At a landscape scale, spatial variation can be decomposed into
two components: large-scale variation and small-scale variation. Large-scale
variability may be influenced by geomorphology, elevation, slope, aspect,
precipitation, or disturbances like fire or disease. Small-scale variability may be
influenced by soil permeability, nutrient availability, or pH. The KED trend
represents the large-scale variability of the primary variable. The residuals from the
trend represent the small-scale variability, and the final KED result combines both.
KED models the trend under the assumption of a linear relationship between
primary and secondary variables, and smooth variation of the secondary variable.

The distinctive feature of KED is that the algorithm considers a non-stationary
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random function model, where stationarity is limited within each search
neighborhood, yielding more local detail (Deutsch and Journel, 1998).

The KED estimator is written:

n(u)
Z;(ED W)= 2/15’5" W) Z(uy)
o =]

where Z,,, (u) is the kriging with an external drift estimator at location u,

/1§ED (u) are the KED weights corresponding to the # samples at location u,

and Z(uq ) are the nearby sample values.

The procedure consists of three steps (Goovaerts, 1997); first, the trend coefficients
aa(u) and a; (u) of the trend model m;(ED (u) are evaluated within the search
neighborhood, from the n(u) data pairs (z(u),z, (4)) , where z;(u)are the primary
variable sample points, and z, () are the secondary variable sample data. These
coefficients are estimated through the kn'éing system. Then, the trend components
m(u) are estimated at all primary sampled locations and at all locations being

estimated. Finally, a simple kriging is performed in the residuals of the trend:

n(u)
Zkep W) =migp W)= Y A WIZ(ug) - mygp (4g)]
a=1

where m;(ED (u)1s the trend component, estimated as

mxEp (W) = ag(u)+a; ()2 () va=l,...nu)
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where o are the sample data, and AgK are the simple kriging weights.
The minimized error variance is:

0 %ep () = CR(0) - ZIAKEDWCR(u ~u)- Zu D () fr ()

where C(0)is the residuals’ stationary covariance, “k (u) are the Lagrange

parameters, and f} (#) are the trend functions. KED is also useful to estimate the

trend itself, not only acting as a local estimation procedure, but also as a global one

(Isaaks and Srivastava, 1989).

Standardized Ordinary Cokriging
Standardized ordinary full cokriging (OCK) is a multivariate extension of kriging
that allows for the use of secondary data, accounting for the spatial cross
correlation between the primary (undersampled) and secondary (exhaustive)
variables. The OCK estimator is written:

ny (u) n,

Zock () = Y AOCK ()Zy (ug, )+ z AOCK W)Z (g, ) *[Z9 (g, ) —my +my ]
a, =1 o, =1

with the constraint

n, () n, (1)
z;tgch (u) + Z lng (u)=1

a, =1 o,=1
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where Z,,., (u)is the standardized ordinary cokriging estimator at location u,
OCK
Agi

(u) are the ordinary cokriging weights, and m;and m, are global means of

the primary and secondary variables, respectively.

The minimum error variance is computed as follows:

2 OCK ") ock m ) ock '
05ck W) =CiO)-pu""" W) — X Ay WCi(ugy )~ X Ay @)Coi(ugr —w)
ay =1 a2=]

where G%CK (u) is the minimum error variance, Cj1(0) is the primary stationary
variance, Cjj(uy —u)is the covariance between the primary variable and the

unknown, Cy;; (4y —u)is the covariance between the secondary variable and the

OCK

unknown, and u;" " (u) is the Lagrange parameter.

Cokriging requires a joint model that includes the modeling of the direct
semivariograms of primary and secondary variables and their respective cross-
semivariograms under the condition that the whole set of semivariograms be
positive definite (Isaaks and Srivastava, 1989; Goovaerts 1997). This need for
positive definiteness imposes many constraints on the models that can be chosen; a

relatively easy way of checking this property is the linear model of

coregionalization (LMC).
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The LMC is defined as a set of direct and cross-semivariogram models ¥;j(h) such
that:
S I}
Y=Y bhgi(h) Vi, j
=0

where each function g; (k) is a permissible model and the (L +1) matrices of .

coefficients b,-i- corresponding to the sill or slope of the model g, (k), are all

positive semi-definite. Refer to Goovaerts, (1997) for an exhaustive development

of the linear model of corregionalization.

The main differences between OCK and KED are first, that the cokriging estimates
are directly influenced by the secondary data, while in the KED approach,
secondary data only provide information about the trend; and second, that the
secondary information influences the KED depending on the slope of the trend,
while OCK accounts for the global correlation of the primary and secondary data

through the cross-semivariogram.

Integrated Models

In cases where a trend is present, it is better to model the trend using physical
knowledge of the phenomenon under study (Isaaks and Srivastava, 1989). Such an
approach involves modeling the trend from the observed sample values, the

subtraction of the trend to obtain the residuals, and the interpolation estimation on
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the residuals (i.e. through kriging), adding up the trend and the estimated residuals

at the end.

Metzger, (1997) suggested a combination of trend surface analysis and kriging or
cokriging to combine the use of remote sensing data and field data, and she
improved the estimation of certain forest variables. The conceptual idea underlying
this procedure is to exploit large scale variability using remote sensing data through
the trend surface analysis, and to describe small scale variability using the residuals

of the trend model cokriged with a secondary exhaustive source of information.

Journel] et al., (1989) stated that the choice of a particular trend model acquires

more relevance in extrapolation conditions, outside the window data.

Conditional Simulation

Stochastic simulation is a probabilistic approach that provides a distribution of
multiple, equally probable realizations of the joint distribution of one or more
attribute values in space, generating a model of spatial uncertainty (Goovaerts,

1997; Rossi et al., 1993).

Several different simulation algorithms are used to model spatial uncertainty,
depending on the purposes of the final outputs. The approach used in this study was

sequential Gaussian conditional simulation (SGCS) with simple collocated
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cokriging with one secondary variable. SGCS is based on the Bayes postulate
describing the conditional or posterior probability of two events:

P4 N 4y)
P(4y)

P4 | 4)=
This expression can be read as the probability that an event A; will occur given that
event A; has occurred, and is equivalent to the ratio of the joint probability between
the two events and the individual probability of event Ay (Rossi et al., 1993). This
expression can be expanded to n events, the events being the nodes or cells to
simulate on the map.

The general idea of SGCS with collocated cokriging is to produce a set of joint
realizations of the spatial distribution of the primary attribute, conditional to both

the primary and collocated secondary information.

The collocated simple cokriging estimate of the primary attribute is:

* n(u)
Zsek ) = 3 B K21 lug)) =m ]+ Kot IZa )= my]+m
a1=]

where Zg., (u)is the colocated simple cokriging estimator at location u,
SCK
Agi

(u) are the collocated simple kriging weights, and m;and m, are global

means of the primary and secondary variables, respectively.
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Unlike full cokriging, collocated cokriging just uses the lag correlation function
between the primary and secondary variables, following the Markov-type

approximation:

P12(h) = p12(0)* py (k)

where pj,(h) is the lag cross-correlation function of the primary and secondary
variables, pj,(0) is the correlation coefficient between the primary and secondary

variables, and pjj(#) is the lag correlation function of the primary variable.

This approximation avoids modeling the linear model of coregionalization; only the
semivariogram of the primary variable needs to be modeled. The cross-variogram
model is derived as a linear rescaling of the primary variable semivariogram model
by the correlation coefficient p,(0) . In collocated cokriging, the dependence of
the secondary variable on the primary one is limited to the collocated datum to
avoid matrix instability problems caused by highly redundant secondary

information, and to speed up the process (Goovaerts, 1997).

The smoothing effect of kriging and cokriging is due to a missing variance
component (Deutsch, 1998). The conditional simulation realizations have added
back the missing variance estimated by cokriging, representing in a more realistic
way the spatial distribution of the features observed in the original data. Because

spatia] heterogeneity is a natural feature of ecosystems, conditional simulation
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realizations have the advantage of representing high spatial entropy, producing

more realistic output displays of the variable in terms of spatial variability.

The variance of the cokriged estimate is
Var{Zck )} = 0% - o3k (u)
where Var{Z ;'CK (1)} 1s the variance of the simple collocated cokriged estimate,

o 2is the variance of the stationary random function or the variance at lag = 0, and
o §CK (u) is the simple collocated cokriging variance.

So, the cokriging variance of the estimate is smaller than the total variance and that
explains why cokriging maps are smooth. A way of incorporating this missing
variance is to add an independent random component R(u), while reproducing the

covariance properties of cokriging. The simulated value Zg (1) would then be:

Zs(u) = Zgox (u) +R(1)

The SGCS algorithm used here (Deutsch, 1998) proceeds as explained in the
following steps (Deutsch, 2000; Goovaerts, 1997). First, the original data are
transformed to a standard normal distribution. A multivariate multi-point Gaussian
random function model is adopted if the joint normal score random functions are
normally distributed. Subsequently, a random path to visit once all the nodes of the
grid is defined. Then, a location u is visited randomly and collocated cokriging is

performed to obtain the cokriged estimate and its corresponding variance, using the
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conditional information provided by neighboring primary and collocated secondary
normal score data. Next, the algorithm draws a random residual (through Monte
Carlo simulation) that follows a normal distribution with mean equal to 0 and
variance equal to the cokriging variance. The cokriged estimate and the random
residual are added to obtain the simulated value. The simulated value is included in
the data set and the algorithm proceeds to the next node, looping until all nodes are
simulated. Finally, the simulated normal scores are backtransformed to their

original values. Another realization can be obtained by repeating the process with a

different random visiting path.

Simulations were developed initially to provide measures of spatial uncertainty, but
they have increasingly been used as maps of the variable of interest in cases where
the reproduction of the spatial variability is more important than local accuracy and
where sample and exhaustive data are available (Deutsch, 1998). Unlike kriging,
conditional simulation emphasizes the global accuracy of the simulated variable,
reproducing its sample statistics (mean, histogram, covariance) and its pattern of
spatial continuity (Deutsch, 1998; Dungan, 1999). Another differencé With
interpolation algorithms is that stochastic simulation provides measures of local
and global joint accuracy. Table 1 summarizes the relevant properties of the

methods used. It also provides information for use in comparing the methods.
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Abstract

This study aims to compare different methods of obtaining maximum growing
season leaf area index (LAI) maps using remote sensing data, LAI and tree cover
field data in a boreal forest near Thompson, Manitoba, Canada. The comparison
includes aspatial methods such as traditional regression, inverse regression and
reduced major axis, and spatial methods such as kriging, cokriging, kriging with an
external drift, and conditional simulation. The LAI maps will serve as input in
process models to obtain maps of net primary production (NPP).

The present work was done in the context of the BigFoot project

(http://www.fsl.orst.edu/ larse/bigfoot) which focuses on the validation of the

MODIS (Moderate Resolution Imaging Spectrometer) land cover, LAI/fAPAR
(fraction of absorbed photosynthetically active radiation), and NPP products

(http://modarch. gsfc.nasa.gov/MODIS, with the main objective of scaling up from

in situ ground measurements to the moderate spatial resolution of MODIS data

products (250 - 1000 m spatial resolution).

Due to the clumped structure of the boreal forest and the presence of a highly
reflective understory, vegetation indices derived from remotely sensed data were
not useful in explaining LAI variability. The use of mid-IR bands and tree cover
data improved the performance of the models. Kriging with an extefnal drift
performed better in the presence of trends and anisotropy. An integrated aspatial

(reduced major axis)spatial (cokriging) method produced a useful compromise



- between local accuracy and pattern representation. Conditional simulation
maintained global accuracy and spatial variability. Conditional simulation also
provided a measure of spatial uncertainty useful to assess how LAI variability
affects process models, and to evaluate how spatial variability influences the
upscaling from Landsat ETM+ (25-30 m) to MODIS (250-1000 m) spatial
resolutions.

Our main conclusion is that the selection of the optimal mapping technique
depends on user requirements, because not all the desired map characteristics can

be achieved simultaneously.

Keywords: LAI maps, reduced major axis, kriging, cokriging, kriging with an

external drift, conditional simulation , boreal forest.
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Introduction

Leaf Area Index

Leaf area index (LAI) is a significant attribute of forest ecosystems that controls, in
part, physiological processes such as photosynthesis, transpiration and leaf
maintenance respiration, as well as physical processes such as snow melt, canopy
water interception and evaporation, and light attenuation (Landsberg and Gower,
1997, Waring and Running, 1998). LA, defined here as half the total leaf area per
unit ground surface area (Chen and Cihlar,1996), is a widely used parameter that
drives biogeochemical process models that characterize the pnmary productivity of
extensive terrestrial areas (Running and Gower,1991). Estimates of LAI are often
derived from remotely sensed data through empirical relationships with spectral
vegetation indices (SVIs). Vegetation indices are calculated from remotely sensed
reflectance data, and are often related to field LAI measurements using regression-
based relationships. These relationships have been shown to be valid over a wide
range of vegetation types and with an array of different sensors (Tucker, 1979,
Peterson et al., 1987; Spanner et al., 1990 a and b; Fassnacht et al., 1997; Turner et
al., 1999). Regression relationships, however, ‘have limited accuracy in situations
where canopy closure varies (Loechel et al., 1997), and where the understory and
background materials contribute substantially to the reflectance signal received by
the sensor (Huete et al,, 1985; Nemani et al., 1993), characteristics more

pronounced for conifer species (Spanner et al., 1990 a).
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In closed canopy cover conditions, LAI shows a negative relationship with red
reflectance and a positive one with near infrared (NIR) reflectance, maximizing the
utility of SVIs such as the normalized difference vegetation index (NDVI) and the
simple ratio (SR). But when canopy cover is not closed, the LAI-NIR relationship
may exhibit no relationship at all (Spanner et al., 1990 a; Nemani et al., 1993). To
complicate matters, background and understory reflectances change differently
through the seasons, due to snow cover or understory phenology (Chen and Cihlar,
1996), which sometimes depends on the overstory species composition (Miller et
al., 1997). Many attempts have been made to correct for this understory reflectance;
some of them included the use of mid- infrared (Mid-IR) wavelengths (Loechel et
al.,1997; Nemani et al., 1993). Mid-IR is negatively related to LAI in closed
canopies, and is strongly affected by leaf water content (Lillesand and Kiefer, 1999;
Nemani et al., 1993).

Canopy architecture plays an important role in the interception and reflection of
solar radiation, influencing the signal received by the sensor. Leaf spectral
properties (Gates et al., 1965), foliar angular and spatial distribution (including
vertical distribution of foliage, tree height and gap distribution) (Lefsky et al.,

1999; Foumnier et al., 1997; Chen and Cihlar, 1996; Cohen et al., 1990), and foliar
hierarchical clumping structure (Gower et al., 1999; Ni et al., 1997), all contribute

to the heterogeneity of the radiation environment within the forest.
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LAI estimation in boreal forests is challenging because these forests have high
variability at all scales of organization, not so much due to the species diversity,
which is low (Landsberg and Gower, 1997), but from structural diversity. The
complex structure of boreal forests is a function of topography, soil parent material,
climate and periodic disturbances (Van Cleve and Vierek, 1981) and stand age. At
the large scale, fire is the most important natural disturbance, influencing species

composition, nutrient availability, and forest age and productivity (Larsen, 1982).

Boreal conifers have narrow, columnar crowns, and clumping at the shoot, branch
and crown level, to maximize light interception and reduce damage from snow
loading (Landsberg and Gower, 1997). Black spruce is a good example, with 40 to
50 % of the foliage concentrated in the top of the crown, leading to LAI
underestimation by optical measurement methods (Chen et al., 1997). Another
characteristic of boreal forests is the rich understory and soil cover, composed of
various shrubs, grasses, tree regeneration, and abundant mosses, lichens and
sphagnum species, distinctive of boreal plant communities. Bryophytes exhibit
different spectral characteristics from vascular plants (Bubier et al., 1997; Petzold
and Goward, 1988; Vogelman and Moss, 1993). Depending on the density and
composition of the overstory vegetation and the time of year, these components
affect differently the signal remotely received by overhead sensors (Chen and
Cihlar, 1996; Miller et al., 1997). Chen and Cihlar (1996) found that late spring

images were superior to summer ones to determine overstory LAT because the
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effect of the understory is minimized, and that there was no obvious saturation

point in the LAI-NDVI relationship because of the clumpiness of the canopy.

Tree Cover .

Cover, like LAL is an ecological property with great functional significance. It
influences the microenvironment within the forest in terms of light, temperature,
rainfall and snow interception, which play a role in overstory and understory
development. Loechel et al. (1997) observed the positive correlation between LAI
and canopy cover and suggested that cover may be an important variable to add to
LAI models when poor NIR-LAI relationships are present, such as in the open
canopy situations of this study.

Covef was defined by Mueller-Dombois and Ellenberg (1974) as “the vertical
projection of the crown or shoot area of a species to the ground surface expressed
as a fraction or percent of a reference area”. Bunnell and Vales (1990) suggested
mean crown completeness (MCC) as a useful measure of canopy cover as observed
from the ground. MCC is a stand or plot measurement denoting the mean of several
measurements of the proportion of the sky covered by tree crowns within a
specified angle from a single point (Bunnell and Vales, 1990). The area sampled is
determined by trigonometric principles and depends on the angle of view, the
height to base of live crown and the height from which the angle is projected.
Bunnel et al. (1990) and Vales and Bunnel (1988) compared several different cover

measurement techniques including ocular, moosehorn, spherical densiometer,
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regular and hemispherical photographs to evalﬁate differences among techniques.
and effects of the observers. They agreed that narrow angles of view and vertical
projections are the least biased ways of estimating MCC to include bpth gaps
between and within crowns. They observed that wide angles of view masked small
gaps, included objects not directly above the point sampled, and had an angular
view of the canopy at the outer edges, overestimating MCC. On the other hand,
Bunnel et al. (1990) suggested that wide angles may be more appropriate when
examining relationships between overstory and understory radiation in boreal

forests, where low solar angles are present.

Digital photography has the advantage of offering a permanent and objective record
of the samples that allows flexible laboratory analysis and eliminates observer

effects.

This study aims to compare different methods of obtaining maximum growing
season leaf area index maps using remote sensing data, and LAI and tree cover
field data in a boreal forest near Thompson, Manitoba, Canada. The comparison
includes aspatial methods such as traditional regression, inverse regression and
reduced major axis, and geostatistical techniques such as kriging, cokriging, kriging
with an external drift, and conditional simulation. The LAT maps will serve as input

in process models to obtain net primary production.



The present work was done in the context of the BigFoot project

(http://www.fs].orst.edu/ larse/BigFoot) which focuses on the validation of the

MODIS (Moderate Resolution Imaging Spectrometer) land cover, LAI/fAPAR
(fraction of absorbed photosynthetically active radiation), and NPP products

(http://modarch.gsfc.nasa.gov/MODIS) (Cohen and Justice, 1999). The main

objective of BigFoot is scaling up from in situ ground measurements to the
moderate spatial resolution of MODIS data products (250 - 1000 m spatial

resolution).
Mapping LAI with Aspatial and Geostatistical Methods
This section reviews briefly the theory of the different aspatial and spatial LAI

estimation and simulation techniques tested in this study (Fig. 1).

Aspatial Regression-based Methods

37

Commonly used SVIs are based in traditional regression (Regr), and are expressed

as: Y =a + BX +¢€,

where « is the intercept, B is the slope, € is the error, assumed to be independent

and normally distributed, ¥ is LAl and X is reflectance or one of several SVIs.

Regression methods assume that data are spatially independent and that there are

no measurement errors in the independent variable; it is designed to estimate ¥ by

minimizing the sum of squares errors in Y.
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Figure 1. Scheme of methods used in this study.

Curran and Hay (1986) described the major measurement errors that should be
accounted for in remote sensing variables, and that are generally ignored when
using traditional regression. This problem is solved by using the inverted equation
X =a + BY + ¢ , referred to as inverse regression (Curran and Hay, 1986), or
Reg 1, which minimizes the sum of squared errors in X . However, Chen and Cihlar
(1997) pointed out that commonly used allometric methods to estimate LAIT can

accumulate errors, and it is difficult to keep the total error under 25 %. A method
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that accounts for measurement errors in both dependent and independent variables
is needed in such situations. The reduced major axis method (RMA) improves the
traditional and inverse regression procedures in that it minimizes the sum of the
cross-products of the differences on both axes, accounting simultaneously for the
errors in both dependent and independent variables (Miller and Kahn, 1962; Davis,
1986) and is givenby ¥ = (@ + BX + &) *(~1) .

The main difference among these methods is that traditional and inverse regression
equation coefficients (@ and g ) are determined by least squares, while reduced

major axis intercept and slope are given by:

_O'*___,
o0 =y —*Yx
Ox
Oy
B o

where ¥ and x are the means of the dependent and independent variables

respectively, and o, and o, are their standard deviations.

The Geostatistical Framework

Geostatistics, based on the theory of regionalized variables (Journel and Huijbregts,
1978), is concerned with a variety of techniques aimed at understanding and
modeling spatial variability through estimation and simulation (Deutsch, 2000;

Journel, 1989; Goovaerts, 1997). A regionalized variable equation differs from a
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regression equation in that its components are indexed by their position in space or
time:

Z(x)=m(x)+ €' (x)+€"

where Z(x) is the variable to be estimated at location x, m(x) is a deterministic
component, £'(x) is spatially correlated variability, and €” is a spatially
independent random residual, assumed to be normally distributed and interpreted as
nugget variance. Geostatistics accounts for the presence of spatial autocorrelation

and joint dependence in space and time, which occur in most natural resources

variables (Myers, 1997).

In an ecological context, geostatistics has been used to describe scale and pattern of
spatial variability (Woodcock et al., 1988; Legendre and Fortin, 1989; Tumer et al.,
1990; Rossi et al., 1992), to characterize canopy structure (Cohen et al., 1990; St-
Onge and Cavayas, 1997; Hudak and Wessman, 1998; Wulder et al., 1998), to
estimate continuous and categorical variables (Rossi et al., 1993; Milne and Cohen,

1999), and to assess risk (Myers, 1997, Saito and Goovaerts, 2000).

Biogeochemical models are increasingly adopting an explicitly spatial
configuration. Spatial surfaces of meteorological values such as temperature and
evapotranspiration or accurate digital elevation models (DEM) are commonly
required as model inputs (Running and Nemani, 1987). Geostatistics is currently

used to improve such data layers (Goovaerts, 2000; Kyriakidis, 1999). The latest
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applications of geostatistics have emphasized the use of models of uncertainty that
depend on the data values in addition to data configuration (Deutsch and Journel,
1998). Stochastic simulation is an example of a probabilistic approach that
provides a distribution of possible values for each cell of the surface, characterizing
uncertainty. These uncertainty measurements improve ecological interpretation,
help assess error areas and decrease losses and risks in policy and management

decision-making (Rossi et al., 1993).

Geostatistical Estimation Procedures

Geostatistics is based on the concepts of random variables and random functions
(Isaaks and Srivastava, 1989). A random variable (RV) is a variable whose values
are randomly generated according to some probabilistic mechanism that models the
uncertainty about the attribute under study. In predictive statistics, any unsampled
(unknown) value is characterized as a random variable. The probability distribution
of the random variable is usually location and information-dependent (Deutsch,
1998). The random variable seen as a function of spatial location is called a random
function (RF). A random function is a set of random variables that have associated
spatial locations and whose dependence on each other is specified by séme

probabilistic procedure (Isaaks and Srivastava, 1989; Deutsch, 2000).

Kriging is a generalized least-squares linear regression technique that accounts for -

the spatial dependence among observations. The kriging estimators are exact
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interpolators, meaning that they honor or reproduce the sample values at their
locations (Goovaerts, 1997). Three different kriging variants were applied in this
study: ordinary kriging (OK), kriging with an external drift (KED) and ordinary

cokriging (OCK).

Ordinary Kriging

Ordinary kriging is a univariate technique that accounts for local fluctuations in the
mean value by limiting the domain of stationarity of the mean to a local
neighborhood centered on the location being estimated (Goovaerts, 1997). The

ordinary kriging estimator is calculated as follows:

n(u)
Zocw)= Y A (W)Z(u,)
a=1

under the constraint:
AGK (u) =1

where Z_, (u) is the ordinay kriging estimator at location u, /12" (u) are the OK

weights corresponding to the n samples at location u,and Z(ug ) are the nearby

sample values.

Kriging minimizes the error variance and aims to obtain a mean residual error equal

to 0. These constraints and the specification of a pattern of spatial continuity (a
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model applied to the experimental semivariogram) lead to a normal system of
linear equations called the ordinary kriging system that provides the OK weights.
For a detailed description of the kriging computation refer to Isaaks and Srivastava,

(1989), Goovaerts, (1977), or Deutsch and Journel, (1998).

The kriging error variance is dependent on the data configuration but independent
of the data values, so it is not a good measure of error. The variation is always 0 at
sample data locations, increases away from the data and reaches a maximum value

at locations most distant from sample data points.

Kriging with an External Drift

Kriging with an external drift (KED) is a variant of kriging that allows for the use
of secondary information known at every location (exhaustive), which is assumed
to reflect the spatial trend of the primary variable (Deutsch and Journel, 1998;
Goovaerts, 1997). At a landscape scale, spatial variation can be decomposed into
two components: large-scale variation and small-scale variation. Large-scale
variability may be influenced by geomorphology, elevation, slope, aspect,
precipitation, or disturbances like fire or disease. Small-scale variability may be
represents the large-scale variability of the primary variable. The residuals from the
trend represent the small-scale variability, and the final KED result combines both.

KED models the trend under the assumption of a linear relationship between
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primary and secondary variables, and smooth variation of the secondary variable.
The distinctive feature of KED is that the algorithm considers a non-stationary
random function model, where stationarity is limited within each search
neighborhood, yielding more local detail (Deutsch and Journel, 1998).

The KED estimator is written:

n(u)
Zxep )= Y AEEP W)Z(ug)
a=]

where Z,, (u) is the kriging with an external drift estimator at location u,
KED . . )
Ag~ "~ (u) are the KED weights corresponding to the n samples at location u,

and Z(ug ) are the nearby sample values.

The procedure consists of three steps (Goovaerts, 1997); first, the trend coefficients
aa(u) and ,aI (u) of the trend model m;(ED (u) are evaluated within the search
neighborhood, from the n(u) data pairs (z;(u),z5(¥)) , where z;(u) are the primary
variable sample points, and z, (4) are the secondary variable sample data. These
coefficients are estimated through the kriging system. Then, the trend components
m(u) are estimated at all primary sampled locations and at all locations being

estimated. Finally, a simple kriging is performed in the residuals of the trend:

n(u) X
Zigp W)= migp (W)= . A W Z(ug)— mygp (ug)]
o=

* . .
where mggp (u)is the trend component, estimated as
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m}ED(u)=a8(u)+a;(u)zz (u) va=1,.,nu)

where @ are the sample data, and /1;,9" are the simple kriging weights.

The minimized error variance is:

n(u) K
0 25p ) =Cg(0) - >:I ASEPEOC R (ug -u)-kZu,{‘ED (u) f3 (1)
a= =0

where Cp(0)is the residuals’ stationary covariance, /,thD (u) are the Lagrange

parameters, and f; (u) are the trend functions. KED is also useful to estimate the

trend itself, not only acting as a local estimation procedure, but also as a global one

(Isaaks and Srivastava, 1989),

Standardized Ordinary Cokriging

Standardized ordinary full cokriging (OCK) is a multivariate extension of kriging
that allows for the use of secondary data, accounting for the spatial cross
correlation between the primary (undersampled) and secondary (exhaustive)
variables. The OCK estimator is written:

n (u) ny(u)
Zock W)= 3 QK WZiug )+ X A5 W)Z; (g, ) * 23 (ug, ) = mg +m]
a;=1 o, =1

with the constraint

ny(u) n, (u)
zlglCK (u)+ z/lgzcx (w) =1

a,=1 a,=1
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where Z, ., () is the standardized ordinary cokriging estimator at location u,

/13 ,-CK (u) are the ordinary cokriging weights, and mjand m, are global means of

the primary and secondary variables, respectively.

Cokriging requires a joint model that includes the modeling of the direct
semivariograms of primary and secondary variables and their respective cross-
semivariograms under the condition that the whole set of semivariograms be
positive definite (Isaaks and Srivastava, 1989; Goovaerts 1997). This need for
positive definiteness imposes many constraints on the models that can be chosen; a
relatively easy way of checking this property is the linear model of

coregionalization (LMC).

The LMC is defined as a set of direct and cross-semivariogram models v;(h) such

that:

L
< ./ ..

vi(W=) bigi(h) Vi,j

1=0

where each function g; (%) is a permissible model and the (L +1) matrices of

coefficients b,-lj corresponding to the sill or slope of the model g;(h), are all

positive semi-definite. Refer to Goovaerts, (1997) for an exhaustive development

of the linear model of corregionalization.
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The main differences between OCK and KED are first, that the cokriging estimates
are directly influenced by the secondary data, while in the KED approach,
secondary data only provide information about the trend; and second, that the
secondary information influences the KED depending on the slope of the trend,
while OCK accounts for fhe global correlation of the primary and secondary data

through the cross-semivariogram.

Integrated Models

In cases where a trend is present, it is better to model the trend using physical
knowledge of the phenomenon under study (Isaaks and Srivastava, 1989). Such an
approach involves modeling the trend from the observed sample values (i.e.
through regression), the subtraction of the trend from the sample values to obtain
the residuals, and the interpolation estimation on the residuals (i.e. through

cokriging), adding up the trend and the estimated residuals surfaces at the end.

Metzger, (1997) suggested a combination of trend surface analysis and kriging or
cokriging to combine the use of remote sensing data and field data, and she
improved the estimation of certain forest variables. The conceptual idea underlying
this procedure is to exploit large-scale variability using remote sensing data through
the trend surface analysis, and to describe small-scale variability using the residuals

of the trend model cokriged with a secondary exhaustive source of information.
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Geostatistical Simulation Procedures

Stochastic simulation is a probabilistic approach that provides a distribution of
multiple, equally probable realizations of the joint distribution of one or more
attribute values in space, generating a model of spatial uncertainty (Goovaerts,

1997; Rossi et al., 1993).

Several different simulation algorithms are used to model spatial uncertainty,
depending on the purposes of the final outputs. The approach used in this study was
sequential Gaussian conditional simulation (SGCS) with simple collocated
cokriging with one secondary variable.

The general idea of SGCS with collocated cokriging is to produce a set of joint
realizations of the spatial distribution of the primary attribute, conditional to both
the primary and collocated secondary in.forrnation.

The collocated simple cokriging estimate of the primary attribute is:

* m (u)
Zsek )= 3 Ay X @21 (ug, ) =m ]+ 2g K W25 @) =my]+my
a,=1

where Z;.. (u)is the colocated simple cokriging estimator at location u,

/'Lg,CK (u) are the collocated simple kriging weights, and m; and m, are global

means of the primary and secondary variables, respectively.
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Unlike full cokriging, collocated cokriging just uses the lag correlation function
between the primary and secondary variables, following the Markov-type

approximation:

P12(h) = p12(0)* py1(h)

where p1,(h) is the lag cross-correlation function of the primary and secondary
variables, p17(0) is the correlation coefficient between the primary and secondary

variables, and py1(h) is the lag correlation function of the primary variable.

This approximation avoids modeling the linear model of coregionalization; only the
semivariogram of the primary variable needs to be modeled. The cross-variogram
model is derived as a linear rescaling of the primary variable semivariogram model
by the correlation coefficient p;,(0). In collocated cokriging, the dependence of
the secondary variable on the primary one is limited to the collocated datum to
avoid matrix instability problems caused by highly redundant secondary

information, and to speed up the process (Goovaerts, 1997).

The smoothing effect of kriging and cokriging is due to a missing variance
component (Deutsch, 1998). The conditional simulation realizations have added
back the missing variance estimated by cokriging, representing in a more realistic
way the spatial distribution of the features observed in the original data. Because

spatial heterogeneity is a natural feature of ecosystems, conditional simulation
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realizations have the advantage of representing high spatial entropy, producing

more realistic output displays of the variable in terms of spatial variability.

The variance of the cokriged estimate is
Ve Z* 2 2
ar{Zscg (W)} =0" —0o5ck (u)

where Var{Z ;CK (u)} is the variance of the simple collocated cokriged estimate,

o 2is the variance of the stationary random function or the variance at lag = 0, and

GgCK (u) is the simple collocated cokriging variance.

So, the cokriging variance of the estimate is smaller than the total variance and that

explains why cokriging maps are smooth. A way of incorporating this missing

variance is to add an independent random component R(u), while reproducing the

covariance properties of cokriging. The simulated value Zg¢(u)would then be:

Zg(u)=Zgcg () +R(u)

The SGCS algorithm used here (Deutsch, 1998) proceeds as explained in the
following steps (Deutsch, 2000; Goovaerts, 1997). First, the original data are
transformed to a standard normal distribution. A multivariate multi-point Gaussian
random function model is adopted if the joint normal score random functions are
normally distributed. Subsequently, a random path to visit once all the nodes of the
grid is defined. Then, a location u is visited randomly and collocated cokriging is

performed to obtain the cokriged estimate and its corresponding variance, using the
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conditional information provided by neighboring primary and collocated secondary
normal score data. Next, the algorithm draws a random residual (through Monte
Cario simulation) that foliows a normal distribution with mean equal to 0 and
variance equal to the cokriging variance. The cokriged estimate and the random
residual are added to obtain the simulated value. The simulated value is included in
the data set and the algorithm proceeds to the next node, looping until all nodes are
sﬁnulated. Finally, the simulated normal scores are backtransformed to their
original values. Another realization can be obtained by repeating the process with a

different random visiting path.

Simulations were developed initially to provide measures of spatial uncertainty, but
they have increasingly been used as maps of the variable of interest in cases where
the reproduction of the spatial variability is more important than local accuracy and
where sample and exhaustive data are available (Deutsch, 1998). Unlike kriging,
conditional simulation emphasizes the global accuracy of the simulated variable,
reproducing its sample statistics (mean, histogram, covariance) and its pattern of
spatial continuity (Deutsch, 1998; Dungan, 1999). Another difference with
interpolation algorithms is that stochastic simulation provides measures of local
and global joint accuracy. Table 1 summarizes the relevant properties of the

methods used. It also provides information for use in comparing the methods.
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Methods and Materials

Study Site Description
The study site (Fig. 2) is within the Boreal Ecosystem-Atmosphere Study
(BOREAS) Northern Study Area (NSA), near Thompson, Manitoba, Canada, at

latitude 56°N and longitude 98°W (http://www.eosdis.ornl.gov/BOREAS/bhs/bhs html).

It lies within the Canadian Shield Province, and has a gentle topography that
reflects the glacially smoothed Pre-Cambrian bedrock surface modified by glacial
drift. Most of its soils are derived from Glacial Lake Agassiz sediments and consist
of clays, organics, and some

sand deposits. Bogs and fens are present in low areas, and permafrost can often be
found a few feet below the surface of bogs or at greater depths in clay soils. Being
flat and having abundant wetland areas, the drainage of much of the surface is poor.

There are several tributaries of the Sapochi and Odei Rivers and a few small lakes.

There are five major overstory cover types in the study site. The predominant
species is black spruce (Picea mariana), of variable density, with stand ages up to
80 years. Black spruce may be present in muskeg, an open canopy coQ;ef fype,
associated with tamarack (Larix laricina), or in closed canopies, mixed with
tamarack and a low occurrence of balsam poplar (Populus balsamifera) and jack

pine (Pinus ba’nksiaria).
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LAI Measurements

In this study, LAI is expressed as one-half total overstory leaf surface area per unit
ground surface area. LAI was measured by the BigFoot team via harvesting and
allometric equations following the methods summarized by Gower et al., (1999)

and Campbell et al., (1999).

Cover Measurements

Canopy cover was quantified with a digital, true-color camera (Sony Mavica FD91)
oriented vertically on a monopod at a height of 1.70 m above ground. Photographs
were taken using an angle of view of 30°. Initially, four sub-plot measurements
were suggested to measure cover within each plot, but a pilot study during the
summer of 1999 determined that a better characterization of cover, with an
acceptable standard error for all components, reqﬁired nine sub-plots located on a
regular grid (Fig. 3 ¢) (Cohen et al, 1999). Previous the analysis, the digital photos
were enhanced with adjustments for color balance, contrast, and saturation using
Adobe Photoshop v5.0.2, (1998). Several grid densities were analyzed and finally a
reticular grid with 96 intersection points and a reliability of 11.5 % was selected
(Thompson, 1992) for cover determination. The proportions of conifer, hardwood
and snag were then quantified on the computer screen at the intersection points of
the grid, transformed to percents, and averaged for the nine photos covering each
plot to obtain a unique value per plot. The total cover values used in the

calculations included only conifer and hardwood values and excluded snags.
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Data Analysis

Satellite Image Processing

This study used a Landsat ETM+ image (path 33/ row 21), acquired on July 10",
1999, and an IKONOS image, acquired on May 20", 2000. The July 1999 image
digital numbers were converted to percent reflectance following the COST model

as developed by Chavez (1996).

The IKONOS panchromatic band (1m x [m) was georeferenced to UTM, WGS84
using ground control points provided by BigFoot personnel, measured using a GPS
with real-time correction and accurate and accurate to the nearest 0.1 m (Cohen et
al., 1999). The July 1999 image was then coregistered to match the panchromatic
IKONOS and resampled to 25 m using cubic convolution in ERDAS Imagine v8.3

(http://www.erdas.com). Misregistration was in the order of one pixel or less.

Reflectance values of Landsat ETM+ bands were extracted for the 86 plots within
the flux tower footprint, and NDVI ([NIR ~ Red] / [NIR + Red}]) and SR (NIR /
Red) spectral vegetation indices were calculated. Two canonical correlation
analyses (CCA) were performed, the first having LAI on one side of the equation,
and the ETM+ bands on the other side, and the second constructed in the same way,
this time using total cover instead of LAI. The CCA was preferred over of a
multivariate regression to obtain a unique set of values (the canonical index)

representing the linear combinations with the largest possible correlation of the two
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sets of variables (Johnson, 1998; Ramsey and Shafer, 1997) that allowed the

posterior application of the inverse regression and reduced major axis procedures.

Using the modeler tool in ERDAS Imagine, the two canonical index images (Clga;

and Clcover) Were created based in the following equation:

by — meany,
LIRS 3

CL, =) SCCy, * a0

where:
Cl, is the canonical index, where v is LAI or cover; SCCy, is the standardized
canonical coefficient for band x, meany is the mean of the band x values used in the

CCA calculation, and stdp; is the standard deviation of the band x values used in the

CCA calculation.

Regression Methods

Traditional regression (Regr), inverse regression (Reg) and a reduced major axis
regression (RMA) were performed as follows:

Traditional Regression

Lar =4.19 -1.23CI ,,

Inverse Regression

CI Ly -1.83

CIy =1.83 -0.44 * LAl | solved for LAlas L4l =
: 0.44

Reduced Major Axis

LAT =(4.19 -1.68*CI ,, (1)
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where the intercept is given by:

1.68
=419 -——*(I
o2 1.00 LAl

and the slope is defined as the ratio of the standard deviation of the two variables:

These three regression methods are aspatial in that the LAl estimations are derived
only from the explanatory variables at each single sampling point, regardless of
surrounding sample point information. These approaches assume that the residual
values are spatially uncorrelated. Inspection of the residuals’ spatial
autocorrelation for the three models was done using the Moran’s I and Geary’s C
coefficients calculated at a 0.05 significance level (Griffith, 1987; Reich, 1999),
and by visual inspection of their respective semivariograms.

Moran'’s I coefficient:

n n
NY 3 0yZi-2;
J = _i=lj=!
N N N 2
> X 6,27
i=l j=1 =l
Geary’s C coefficient:

S S 6,02 -2 )
(N -1) e i=1j=1

N N no_ s
2% 2 8y) 3.2

i=l j=|

C =

where: & jj are the weights of a distance weight matrix. These coefficients are

interpreted as follows: as Moran’s I values approach 1, there is positive spatial
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correlation; values near 0 indicate that data are spatially independent; as Geary’s C
values approach 0, there is positive spatial correlation; values near 1 denote

independence, while values near 2 point out negative spatial correlation.

Geostatistical Methods

Geostatistical procedures were perfomed with GSLIB (Geostatistical software
library, Deutsch et al., 1998). For all geostatistical analyses, the data were first
transformed using a normal score transformation (Goovaerts, 1997, Deutsch and
Journel, 1998). The normal scores transform is a non-linear, rank-preserving
transformation that matches the original data to a standard normal distribution (zero
mean, unit variance) (Fig. 6). After geostatistics procedures were performed, and
before mapping the results, the predictions were backtransformed to their original

data distributions.

An exploratory analysis of the data consisted of constructing location maps for LAI
and cover, histograms, scatterplots, semivariograms and cross-correlograms.
Pearson’s correlations were calculated for all of the variables. Omnidirectional
semivariograms for the normal score LAI and cover sample values were developed.
Because a periodic behavior was observed, omnidirectional semivariograms at
different spacings (lags = 25, 50, 75, and 100m) were computed for the normal

score LAI values, to see if this behavior was present at other scales.
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Cross-correlograms were also calculated between the primary (LAI) and auxiliary
variables (Cl_a; and Cleover). These data descriptors helped to reveal important

spatial and aspatial aspects of the data.

Declustering techniques were not applied because data were not spatially clustered
due to the pattern of the sampling design used; declustering-weight magnitudes

were very close to one another.
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An anisotropy analysis was performed for LAI with directional semivariograms
and a rose diagram. Rose diagrams are plots that indicate the distances at which
directional semivariograms reach a predetermined semivariance in those different
directions. Each segment represents the same amount of variability, though the
distances vary, allowing the visualization of the principal anisotropy axes (Isaaks
and Srivastava, 1989). Directional semivariograms were computed at 0,10, 30, 50,
70, 90, 100, 120, 140, and 160 degrees. A rose diagram was constructed for the
LAI normal scores. The directions of maximum and minimum continuity were

identified and used to construct the anisotropic models.

Experimental semivariograms were modeled with different positive linear
combinations of three permissible models (Deutsch and Journel, 1998; Goovaerts,

1997): nugget effect, spherical, and hole effect. In all situations, the simpler the

model, the lower the cross validation errors shown.

1. Nugget effect model

y(h) =0 if h=0, or ¢ otherwise

2. Spherical model

h VAT :
y(h) = c*SpH — |=4c*{1.5—-0.5) — | | , if h<a or c otherwise
a a a
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3. Hole effect model

y(h) = c*[l.O—co{ZI—*n)]
a

where

c is a positive variance contribution or sill value and a is the actual range.

The geostatistics algorithms applied consider a limited nearby conditioning data
closest to the location being estimated, called the search neighborhood. These local
search neighborhoods limit the stationarity assumption to small areas, allow the
calculation of local trends and means required for some of the isotropic and
anisotropic methods, and decrease computational time. GSLIB allows the user to
manage search neighborhoods by changing their size, shape, and the amount of
closest data to be used in the calculation, with closeness measured by the Euclidean
distance. Cross validation was used to evaluate the influence of different search

parameters (Deutsch and Journel, 1998).

Ordinary Kriging
Isotropic and anisotropic ordinary kriging methods were performed. The isotropic
model for LAI was a combination of a spherical plus a hole effect model, to

account for the periodic behavior of the experimental semivariogram (Fig. 7):

YLAI,, (h)=0.05+0.76* sPh(130m) +0.17* hole(115m)
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The anisotropic model for LAI was given by the combination of one model at
azimuth 70 degrees (minimum direction of continuity) and the other at azimuth 160
degrees (maximum direction of continuity) as follows:

Azimuth 70:y 7 47 (h) =0.05 +0.95* sph(9om)

Azimuth 160:y7 47 (h) = 0.05+ 0.95% sph(135 m)

The assembled model (Fig. 8) was:

YLAl ,, (1) =0.05+0.95 *sph(pmin =90, h max=135)

This is a case of geometric anisotropy, where the range changes with direction

while the sill remains constant.

14

. A |
/ * LAl (sample]
== Al (model)

Semivariance

0 50 0 150 200 250 X0 80 400 450 500
Distance

Figure 7. Experimental omnidirectional LAI semivariogram and
isotropic model.
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Figure 8. Experimental directional LAI semivariograms in
70 and 160 degrees and anisotropic model.

Kriging with an External Drift

KED allows for the use of exhaustive secondary information. In this case, Cloover
was chosen to characterize the trend of the primary attribute (LAI), then a simple
kriging was performed on the corresponding residuals. KED assumes that the
primary and secondary variables are linearly related. This assumption was met
because LAI was linearly related to Cleqyer. This relationship makes physical sense,

since LAI was related to both cover and the reflectance captured by the sensor.

The anisotropic model used to perform KED (Fig. 8) was given by:
YLAI ., (B) = 0.05+0.95% sph(p min =90, h max=135)

The trend was kriged with ordinary kriging.
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Standardized Ordinary Cokriging

Another approach for incorporating secondary information is cokriging. The
application of cokriging requires modeling the semivariograms for the primary
variable (LAI) and the secondary variable (Cl.over), and the cross-semivariogram
for both variables (LAI-Cliover). The linear model of corregionalization allows for
the modeling of these direct and cross-semivariograms so that the variance of the
variables is always positive. The linear model of corregionalizgtion for LAI and
Cliover (Fig. 9) was given by:

YLAI yor (h) = 0.05 +1.1* sph(130m)

YClcover,g, (B =0.05+0.95% sphq30 m)

YCIcover—LAI 5, (B)=0.05—0.8*sph(30m)
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Regression

Regression equations, predictions, and residuals for fhe sample lq‘catit‘ms can be
seen in Tables 6, 7, and 8, respectively. Plotted as pfedii:ted versus obéefvéd, Regr
resulted in the least pronounced slope, with overestimation for lower LAI values
and underestimation for high LAI values (Figs.16 and 17). Reg had the steepest
slope, while the RMA slope was intermediate (Fig. 16). The mean was well
preserved by all methods, the actual LAI range was reduced by all techniques, and
the standard deviations were too low for Regr and excessively high for Reg (Table

7).

Table 6. Regression models and coefficients of determination.

Regression Models
LAl = 41922 - 1.2286*Clial 0.537
Cloa = 1.8314 - 0.4369*LAI 0.537

Al =440 el

Table 7. Summary statistics of predictions for the sample locations.

Method Min Max Mean Median STD Coef. Var. :

Field LAl 098 998 419 426 1.68

RegT 136 627 4.19 4.36  1.23 0.29

Regl 109 807 4.19 451 228 0.54
AR A p 4 4.4 Q 4

D
ERST TN
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Table 8. Summary statistics of prediction residuals for the sample locations.

Method Min Max Mean Median STD R? (residuals vs pred.)
RegT -2.48 388 0.00 0.03 1.14 0.00

Regl -3.12 392 0.00 -0.1 1.56 0.46

RMA -261  3.18  0.00 0.09 1.23 0.13

127
~— Regression (Y on X)
10 o — Inv. Regression (Xon Y)
8 ; ——— Reduced major axis
P \ + Sample data
e
4
2
0
-2 —T T T T T T T T T
-2 15 -1 -0.5 0 05 1 1.5 2 25 3
CILAI

Figure 16. Traditional regression, inverse regression, and reduced major axis
models for LAL

Regr and Reg residuals showed a homoscedastic distribution, with no apparent
trend; however, RMA residuals showed a slight trend, with overestimations for low
LAI values and underestimation for high LAI values (Fig. 18). There was no bias
exhibited for any model (ie. mean = 0.00 in Table 8). However, the R between

predictions and residuals and the range of residuals were highest for Reg.
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Figure 17 a.) Scatterplot of predicted versus observed LAI values for traditional
regression, b.) scatterplot of predicted versus observed LAI values for inverse
regression, and c.) scatterplot of predicted versus observed LAI values for reduced
major axis.



a) Traditional Regression

-2

17a.)

10

-2

17b.)

2 10
Observed LAl
b)inverse Regression
li“ >
Cabby £
N 4 "t “
T‘. N e
N - & e by
- |~ L
- - 4‘ -
. - " “
AL " ' )
/‘ & &
&
—
N -
A v v T
2 4 6 8 10
Observed LAI

92




¢) Reduced Major Axis

10 15 /
8 =
j |

Predicted LAI
H

2

0

-2 T T T ] !
0 2 4 6 8 10

Observed LAl
17¢.)

93



94

Figure 18 a.) Scatterplot of residuals versus predicted LAI values for traditional
regression, b.) scatterplot of residuals versus predicted LAI values for inverse

regression, and c.) scatterplot of residuals versus predicted LAI values for reduced
major axis.
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For each method, the spatial autocorrelation of the residuals was inspected using

Moran’s I and Geary’s C indices and semivariograms. Such measures indicated low

spatial autocorrelation, especially for Regr residuals, which were not significantly

autocorrelated at a significance level of 0.05 (Table 9). The high nugget effects

obtained by the three methods (Fig. 19) resulted from an initial low spatial

autocorrelation of LAI (Table 10), and because the models did a good job

accounting for the variation of their respective response variables.



Table 9. Moran's I and Geary's C autocorrelation coefficients for residuals of
regression methods.

Variable
RegT residuals 0.003 0.58 0.99 0.76
Regl residuals 0.077 0.00 0.91 0.02
RMA residuals 0.028 0.04 0.96 0.14

Moran's | p-value Geary's C p-value

Table 10 Moran's I and Geary's C coefficients for LAI and cover data.

Variable Moran's | p-value Geary's C p-value
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Figure 19. Semivariograms of residuals of the traditional regression, inverse
regression and reduced major axis models.
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Cross validation results revealed that Regr had the lowest RMSE, Reg the highest
and RMA was again intermediate (Table 11). Compared to the field data, all
methods reproduced closely the mean (Table 12), although the median showed a
slight positive bias. RegT exhibited a high degree of attenuation as shown in the
range of predictions in Table 12. Although the range of predictions was also
attenuated for RMA at the high end, it was close to the observed low values and it
was the only model to nearly match the variability of observed values. This can
also be observed in the histograms of cross-validation predictions (Fig.20). Graphs
of predicted versus observed values showed the attenuation effect of the Regr
model, with underpredictions at the high end and overpredictions at the low end

when compared to the sample LAI range (Fig. 21 a, b, and c).

Table 11. Cross validation RMSE and coefficient of determination of predicted
versus observed LAI values for regression methods.

Method
RegT

Regl
RmMa

Table 12. Summary statistics of cross validation predictions for regression
methods.

Method Min Max Mean - Median ~ Sud

- Field LAl 0.98 9.98 419 4.26 1.68
RegT 1.39 6.21 4.19 4.36 1.23
Regl -1.27 8.10 4,18 4.51 2.32
RViA —037 5.94 419 122 165
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Figure 20 a.) Histogram of cross validation predictions for traditional regression,
b.) histogram of cross validation predictions for inverse regression, c.) histogram of
cross validation predictions for reduced major axis.
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Scatterplots of the cross validation residuals vs. estimated LAI showed no trend for
Regr, high trend for Reg and a slight trend for RMA (Fig. 21). Table 13 showed a
slight positive skew for Reg and RMA, confirmed by the cross validation error
histograms (Fig. 22). This bias may result from the narrower estimated LAI ranges.
Moran’s I coefficients for the residuals of cross validation indicated that only the
Reg residuals had significant spatial autocorrelation (Table 13). This was
confirmed by the Regr and RMA semivariograms in fig. 22, which showed a pure

nugget effect.

Among the regression methods tested, RMA was judged to be the best model. This
is because RMA accounted for the errors in both variables, and preserved the mean
and the variance of the observed values in both, the estimation and cross validation

procedures.
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Figure 21 a.) Scatterplot of cross validation estimated LAI versus observed LAI
for traditional regression, b.) scatterplot of cross validation estimated LAI versus
observed LAI for inverse regression, c.) scatterplot of cross validation estimated
LAI versus observed LAI for reduced major axis, d.) scatterplot of cross validation
errors versus observed LAI for traditional regression, e.) scatterplot of cross
validation errors versus observed LAI for inverse regression, f.) scatterplot of cross
validation errors versus observed LAI for reduced major axis.
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Table 13. Summary statistics of cross validation errors for regression methods.

Method Min Max Mean Median Std Moran'sl p-vaiue

RegT -2.51 404 0.00 0.03 147 0.02 0.
Regl 313 392 001 010 160 0.08 0.02
RMA -2.60 343 0.01 0.10 1.24 0.02 0.14




Figure 22 a.) Histogram of cross validation errors for traditional regression,

b.) histogram of cross validation errors for inverse regression, c.) histogram of
cross validation errors for reduced major axis, d.) experimental semivariogram
of cross validation errors for traditional regression, e.) experimental
semivariogram of cross validation errors for inverse regression, f.) experimental
semivariogram of cross validation errors for reduced major axis.
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Geostatistics: Estimation Methods

Moran’s I and Geary’s C coefficients were calculated for LAI and cover, showing
that both variables had low but significant spatial autocorrelation (Table 10). LAI
and cover omnidirectional semivariograms looked very similar (Fig. 23), having
the same range of spatial autocorrelation of 122 meters, and differing slightly in

their normalized sills (1.15 for LAI and 1.13 for cover).
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Figure 23. Experimental semivariograms for the normal scores of LAI and cover.

LAI semivariograms calculated at lags of 25, 50, 75 and 100 meters showed
periodicity, no matter what the scale of the calculation (Fig. 24).
Directional LAI semivariograms indicated that the direction of major continuity

was 160 degrees, as also can be seen in the rose diagram (Fig. 25 ¢). Features with
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elongated shapes in this direction can also be observed in the original TM image

(Figs. 2 and 4).
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Figure 24. Experimental semivariograms of the normal scores of LAI at lags of 25,

50, 75, and 100 m.

Cross correlograms of LAI with Cl o1 and Clcover showed a similar behavior, with a

negative correlation decreasing rapidly up to 100 m, and then slowly up to 325 m

where the correlation becomes positive (Fig. 26). Because of their similar spatial
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behavior associated to LAI they could both be used as secondary variables for the
geostatistics bivariate procedures. LAI and cover were positively cross-correlated

up to 300 m but only highly cross-correlated up to 100 m (Fig. 26).
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Figure 25. Experimental directional semivariograms of the normal scores of LAI
grouped in a.) directions of maximum continuity and b.) directions of minimum
continuity c.) Rose diagram. Each segment represents the same semivariance
magnitude, allowing the visualization of the principal anisotropy axes.
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Figure 26. Cross correlograms of the nscores of LAI with the nscotes of Clpay,
Clcover and cover.

Cross correlograms of the residuals of each regression method with Clp; and
Cleover were very similar (Fig. 27). All of them showed a positive correlation up to
approximately 250 m, but after this distance the correlation was negative. The Regr
residuals showed the lowest cross correlation of all, with certain particular features:
a 0 correlation at lag 0, and a possible periodicity from positive to negative
correlation changing approximately each 200 m. This 0 correlation at lag 0
suggested that the residuals of the regression model were independent at this lag,
but their spatial autocorrelation increased with increasing lags, although not by

much. Reg and RMA residuals were not spatially dependent (Table 9), - . .
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Figure 27 a.) Cross cotrelogram of the normal scores of the residuals from
traditional regression with the normal scores of Cl a1 and Cleover. b.) cross
correlogram of the normal scores of the residuals from inverse regression with the
normal scores of Cl o1 and Cleover. C.) cross correlogram of the normal scores of the
residuals from reduced major axis with the normal scores of Cl o1 and Cleover.
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Cross validation RMSE of geostatistical methods indicated that the integrated
model performed best (Table 14). Geostatistical methods closely reproduced the
mean, showed some degree of positive skew, and OK and OCK had the lowest

standard deviations because of their smoothing effect (Table 15).
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Table 14. Cross validation RMSE and coefficient of determination of predicted
versus observed LAI values

Method
Isotropic OK
Anisotropic OK

OCK Cloyes
Anisotropic KED Cl_,. .,
Integrated Model Cl.,. .,

Table 15. Summary statistics of cross validation predictions for geostatistical
methods.

Method Max Mean Median Std

Field LAl 0.98 9.98 419 426 1.68
Isotropic OK 1.16 7.93 4.14 4.25 1.36

Anisotropic OK 1.27 7.75 419 445 1.27
OCK Cleover 2.09 6.87 422 426 1.19
Anisotropic KED Ci,,, 0.33 9.98 4.15 4.36 1.69
Integrated Model Cl,., 0.62 6.66 4.17 4.20 1.51

The KED histogram of cross validation predictions was the closest to the sample
LAI data (Fig. 28), as well as its standard deviation (Table 15). Scatterplots of the
cross validation residuals vs. estimated LAI showed a consistent overestimation for
low and underestimation for high LAI values, respectively (Fig. 29). Although
KED cross validation predictions covered the whole range of the LAI sample
values, the integrated method showed a better predictive ability (Fig. 29 d and e),

smaller bias (Fig. 29 i and j), and cross validation error distribution closer to

normal (Fig. 30 d).
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Figure 28. Histogram of cross validation predictions: a.) isotropic kriging,
b.) anisotropic kriging, c.) cokriging, d.) kriging with an external drift,
e.) integrated model.
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Figure 29. Scatterplots of observed LAI versus cross validation estimated LAI:
a.) isotropic kriging, b.) anisotropic kriging, ¢.) cokriging, d) kriging with an
external drift, e.) integrated model, f.) isotropic kriging, g.) anisotropic kriging,
h.) cokriging, i.) kriging with an external drift, j.) integrated model.
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Figure 30. Histograms of cross validation errors: a.) isotropic kriging,

b.) anisotropic kriging, c.) cokriging, d.) kriging with an external drift,

e.) integrated model, and experimental semivariograms of cross validation errors
f.) isotropic kriging, g.) anisotropic kriging, h.) cokriging,

i.) kriging with an external drift, j.) integrated model.
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Maps of the predicted cross validated values (Fig. 31) were compared with the
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sample LAI location map (Fig. 12). The N-S trend was reproduced by all methods.

The OK cross validation LAI location maps were the ones that most resembled the

sample LAI map. Geostatistical methods showed higher local accuracy than

regression models.

Transitions between different areas were smooth for regression and integrated
methods, while geostatistical methods showed a better capability of reproducing
heterogeneous contiguous areas. Although geostatistical techniques reproduced

well homogeneous areas (i.e. the northern 3 first sampling rows), in the

heterogeneous ones, high and low values were sometimes shifted (i.e. the eastern

two sampling columns).
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Table 17. Summary statistics of predictions for the whole area (see fig. 4) for
regression and geostatistical methods.

Method
Estimations {(Whole area) Min Mean Median STD Coef. Var.
RegT
Regl
RMA

Isotropic OK
Anisotropic OK
OCK Cleoyer
Anisotropic KED Ci_,,.,
Integrated Model Ci

cover

2-D maps (Fig. 34) showed increasing variability in LAI pattern going from Regr
to RMA to Reg. This can also be seen in the semivariograms of these surfaces
(Fig. 35), where ‘the semivariance magnitudes increased in the same order. If we
compare these three maps with the Cl a1 map, we observe that the distribution of
the patches is very similar (Fig. 34), as is the anisotropy represented by the
semivariograms (Fig. 35). Omnidirectional and 160 degrees semivariograms of the
whole area showed increasing semivariance, with no apparent sill, suggesting that

maybe a larger scale would better represent LAI variability.
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Figure 33. Histograms of whole predicted surfaces. a.) traditional regression,

b.) inverse regression, c.) reduced major axis, d.) isotropic kriging, e.) anisotropic
kriging, f.) cokriging, g.) kriging with an external drift, h.) integrated model. The
numbers in the X axis correspond to the upper-limit of each class.









146

OK maps resulted in smooth surfaces, but the N-S trend can be seen in the 2-D
maps (Fig. 36) as well as in the mesh plots (Fig. 39). Semivariances for isotropic
kriging were a little higher than for anisotropic kriging. A possible explanation is
that the isotropic model includes a hole effect model that better represents the
periodicity observed in the experimental LAI semivariograms. Hole effect models
cannot be applied to different directions so they cannot be used in the anisotropic

model.

The variability of the maps and mesh plots increased in OCK and KED approaches
with respect to ordinary kriging (Figs. 36 and 39) because of the use of extensive
secondary data. OK and OCK semivariograms of the whole resultant LAI surfaces
did not show the anisotropy observed in the canonical index Cliaj semivariograms.
They all showed the same semivariance behavior up to 100 m. KED did a better job

of reproducing anisotropy features compared to OCK (Fig. 37)
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Figure 34. 2-D map of a.) Clpar (used as reference to observe pattern distribution).
2-D maps of LAI predicted surfaces: b.) traditional regression, c.) inverse
regression, d.) reduced major axis.
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~ Discussion and Conclusions

The results obtained in this study suggest that when mapping natural resource
attributes such as LAI, the optimal technique to select depends on the final uses of
the map, because not all the desired map characteristics can be achieved in a unique

model.

The location of the ground measurements has two important aspects: accuracy in
the match between ground and image data (georectification), and representativeness
of the ground data for the area to be estimated. Representativeness, defined by
Myers (1997) as “the degree to which sample data accurately and precisely
represent a characteristic of a population, parameter variations at a sampling point,
or an environmental condition”, is of crucial importance in some geostatistical
methods because attributes not sampled will not be present in the final outputs. A
good example of this is the hardwood area in the SW comer of the image (Fig. 4),
which was not sampled. This area was reproduced in the output maps by regression

methods, although it constitutes an extrapolation situation.

The same area was ignored by kriging and cokriging maps, but kriging with an
external drift and conditional simulation accounted for it because of their use of the
auxiliary variables. An unsupervised classification and/or a feature space analysis
are recommended as first steps in evaluating representativeness of the sampling

design.
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The sampling design plays a crucial role in the process of producing
environmentally-derived maps. The spatial distribution of the ground

measurements may have great influence in the final results. The systematic spatial
cluster sampling design used was appropriate for this study because of its

efficiency in diminishing redundant data collection, while distributing pairs of
points at different lags. However, orientation of the sampling units was not optimal
for our purposes because it did not correspond to the maximum direction of
continuity (Fig. 19). A basic a-priori anisotropy analysis of the image could have
avoided this inconvenience. Nevertheless, the available samples and the anisotropy
analysis allowed the identification of different spatial ranges that may be a result of

the glacial drift occurring in the area.

Measurement errors are intrinsic in both ground and image measurements.
Traditional regression and inverse regression take into account measurement errors
only in the response or the explanatory variables respectively, assuming that the
other variable is free of error. RMA is a useful improvement for many applications,
including this one, because it takes into account error measurements in both the
response and explanatory variables. The results of this study agreed with Curran
and Hay. (1986), who found the same effect when the regression slope was
underestimated under the assumption of measurement free of errors for the

explanatory variable.
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Measurement support, defined as the shape, size and orientation of the area or
volume being measured (Curran, 1999), is significant in determining at which scale
the analysis is valid. This study tried to match the ground-based measurements to
Landsat ETM+ pixel size. In both cases, averages over the support surface are used,
in which case the variograms are called “regularized”. The effects of regularization
are the same as those for aggregation: the variance is reduced, the range increases,
and the mean remains unchanged (Isaaks and Srivastava, 1989; Woodcock et al.,

1988).

The variance reduction may be more important if there is a large nugget effect, as
was observed when going from the RMA to the integrated model. One possible
explanation for this reduction is that originally, LAI had low spatial
autocorrelation, and the RMA model accounted for most of its variability. The
residuals of the RMA model had a high nugget effect and very low spatial
autocorrelation, and although Moran’s I coefficient was significant (at a 0.05
significant level), there was little spatial autocorrelation to be further explained.
The high nugget effect suggested that there was unexplained variability at scales
smaller than the support.

Statistical properties of spatial attributes strongly depend on the support of the
observations (Heuvelink, 1998). From the results of this study, processes
concerning LAI at this particular forest are relevant at scales smaller than 150 m, so

the scaling up to MODIS resolutions (250 to 1000 m) and the use of layers of
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information at these scales to inform process models would imply certain amount
of unknown error that should be quantified to assess the relevance of the final NPP

maps.

Spatial autocorrelation is present in natural environments at all spatial scales
(Legendre, 1993). This is reflected in the patterns observed in most ecological
phenomena. If spatial autocorrelation is present, one can decide to remove it so that
traditional statistical procedures can be used. A preferable alternative is to take it
into account by using other statistical methods such as geostatistics. Although in
this study LAI exhibited low spatial autocorrelation, the geostatistical techniques
exploited it and improved some features of the maps, thus showing that in some

cases it is worth the extra modeling effort.

Table 19 shows a summary of the spatial variability features obtained in the LAI
maps identified as trend, pattern and anisotropy, and explains how each method
accounted for them. In general, regression methods reproduced pattern and
anisotropy well but were not good at reproducing trends. A possible explanation for
this is that the regression coefficients were calculated over the entire area. When
search neighborhoods were applied in the geoste;tisﬁcal methods, the trends became
more apparent. Kriging and cokriging resulted in smoothed patterns, and a poor

anisotropy reproduction that may be a consequence of the minimization of the

variance. Kriging with an external drift improved the pattern reproduction but had
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less predictive ability than the integrated method. Although the integrated model
had a reduced semivariance over RMA, it performed best among the regression and
geostatistical estimation methods if a compromise between global and local
accuracy were the objective.

Conditional simulation reproduced trend, pattern and anisotropy well. Conditional
simulation used the secondary data in a different way than cokriging and kriging
with an external drift. While cokriging uses the full secondary data through the
cokriging system, kriging with an external drift uses them only to characterize the
trend of the primary variable, and conditional simulation uses only the colocated
data scaled by the correlation coefficient between the primary and the secondary
variables. Though KED maps reproduced a better pattern inside as well as outside
the sample grid (Fig. 36), not all the features were reproduced in the extrapolation
situatioﬁ. This is more evident in the northern area. Although the anisotropic LAI
model used in KED and in OK was the same, the semivariograms of the whole area
showed a better anisotropy reproduction for KED, suggesting that the secondary

information provided by Clover was useful in accounting for LAI spatial variability.

Besides, the use of this secondary information seemed to be more appropriate in the
KED case, compared to OCK. This may be explained by the way OCK
incorporated the full secondary data, some of which may be redundant. This is
confirmed by the colocated use of the secondary data by conditional simulation,

which yielded the best pattern representation of all.
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The methods used in this study suggest that high levels of local and global accuracy
cannot be achieved simultaneously. Kriging techniques aim to provide estimators

as close as possible to the true unknown values, with the criteria of unbiasedness
and minimal estimation variance. The minimization of the estimation variance
involves a smoothing of the true distribution of the original variable, resulting in
poor reproduction of spatial variability. On the other hand, conditional simulation
values are not the best possible estimators on a point by point basis, but the

variance of estimation is greater than the kriging variance, resulting in a better

reproduction in the pattern of the modeled variable (Journel, 1978; Dungan, 1999).

If local accuracy were the objective, and RMA the desired method, it would be
preferable to stratify first by land cover and apply different models for the different

cover types, as suggested by Turner et al. (1999).
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Table 19 (continued).

“ ‘ ngaiia? wariabiﬁéy features
Method Trend reproduction Pattern reproduction Anisotropy reproduction
Traditional

BEL AT N-S trend not very evident
Regr

Original pattem reproduced

inverse Aocauﬁfed for by the
ELICELIGHIE  N-S trend not very evident  Original pattem reproduced sampling and the image
Reg " information

Accounitad for by the
Original pattem reproduced sarmpling and the image
information

Reduced major

axis RMA N-S trend riot very evident

. Accounted for by the
variogram model and search
neighborhood but is not
showh well-bacause of
minimized varance

Accounts for trends because  Original pattern smoothed.
of local estimationofthe  Smoothing not unifortn, less
meah within each search  smooth where more sarnples
neighborhood. are available

Ordinary
kriging
OK

Accounts for local tr )
Kriging with an I:Mtiin s ::r?:h ends Original pattem smoothed, but Improved over OK and OCK,
NG G il neighborhoods, calculated improved over kriging and accounted for by the
KED as smooth varying functions cokriging. More realistic in variogram mods! and the
= of the secondary variable extrapolated areas search Heighborhood

Original pattern smoothed, but Acoounted for by the

Accounts for trends because improved over kriging. variogram:model and search

Ordinary of local estimation of the

cokriging mean within each search Smoothing not uniform, less neighbarhqu bqt is not
OCK helghborhood smooth where more samples - shown well.because of

) are available minirmizad varance

Accounted for by the

: . sampling; the-image

i';ii???: N-S trend m ved over Original pattem reproduced  Information; the varogram
o model, and the search
neighborhood

Accourtted for by the
Emphasizes spatial pattem  semivariogram model of the
through addition of missing  primary varable, the search
knging varance strategy, and miuftiple grid
simulation

Accounts for trends because

of local estimation of the

mean within each search
neighborhood.

Conditionat
simulation
SGCS




186

Estimation methods that take a deterministic approach provide a single estimate
map with aspatial (i.e. standard error in regression techniques) or poor (i.e. kriging
variance) assessment of errors. In contrast, simulation methods take a probabilistic
approach, where simulated values are conditional to the samples, honor their
statistics, and provide a s’patially quantitative measure of uncertainty.

A good spatial error map should depend on the values of the samples, their
distances and geometry. Fig. 44 shows an E-W transect that goes through 10
samples. The kriging error variance shows the variance is dependent on the data
configuration only; the variance decreasing when approaching the sample locations,
and increasing when going away from them. In contrast, the conditional variance
depends on the data configuration and the data values. The variance was greater
when two consecutive samples had dissimilar LAI values, and smaller when
consecutive values were more alike. The conditional variance of the whole set of

realizations provided a visual and quantitative spatial uncertainty measure (Fig32 a)
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Figure 44 a.) LAI sample values (red dots) and the corresponding error variances
of the kriging variance. b.) LAI sample values (red dots) and the corresponding
error variances for the conditional variance. Kriging variance only depends on data

configuration, while conditional variance depends on both, data configuration and
data values.



OK local uncertainty

3.5 7 T7
[ a
e’ - °
.‘5 25 ‘. w S 5
s 2 4
§ 3
E 15 £ P - 3
VAN AREY .Y
o
w05 1
0 T — 0
5631700 532200 532700 533200
(a) Distance (X coordinate)
SGCS local uncertainty
3 17
" 3 .\\ 3 o 6
g a " ;
g 25 o } T‘ l L 2
3 2 4
E [
§ 15— v A 3
s UV LR
2 1 Ag— Py 2
8§ |13 | [
oy I WUy 1
0 —r > T > T 0
531700 532200 532700 533200
(b) Distance (X coordinate)

LAl

188



189

Because cross validation RMSEs were so similar, they were difficult to evaluate. A
disadvantage of the cross validation method is that the RMSE is a global measure,
not specific to any particular location, and cannot indicate areas that may be more
likely in error (Kyriakidis et al., 1999). A better assessment of the methods could
be done with a further analysis of the cross validation predictions and cross
validation errors in terms of their summary statistics, distribution, and spatial

autocorrelation.

Besides the satisfactory statistical reproduction and improved pattern representation
provided by conditional simulation, this technique offers other advantages: a spatial
uncertainty measure allows one to identify areas with potentially higher errors, to
improve future sémpling efforts where uncertainty is high, and to assess the quality
of the map. The areas that showed highest uncertainty were not sampled at the

field, (i.e. near the center of the map on Fig. 45 a). An example of the usefulness of
the uncertainty measure was shown by changing the secondary variable Cl;gyer to
Clpa; in the conditional simulation run. The use of Cly a1 as a covariate in the
conditional simulation process resulted in a decline of the uncertainty of the map. A
possible explanation for this decline in the uncertainfy when using CI 4; is that the
Markov approximation rescales the primary variable with the correlation
coefficient of the primary and secondary variables. Because Cl; a1 has a slight

stronger correlation with LAI than Cleoyer (<0.73 vs. -0.70, see Table 4), this effect
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may have had a positive effect on the estimates. Therefore, this uncertainty measure
would also help to identify the best covariate in the conditional simulation process.

Some applications may need to identify areas of interest, and conditional simulated
maps may be post-processed to obtain probability maps of the classes of interest

(Fig. 45 b, c, and d).

The expected LAI map resulting from the average of the 51 realizations resulted in
very similar pattern compared to the Cl a; map (Fig. 41 d) and reproduced the
anisotropy, although at lower semivariance values, because of the averaging (Fig.

43 d).
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Figure 45. 2-D maps of selected post-processing outputs: a.) conditional variance
of 51 realizations, b.) probability map of LAI being grater than 2, c.) grater than 4,
and d.) greater than 6.
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individually, bands 5 and 7 were the best-correlated with LAI, and they contributed
substantially'to the canonical indices (Table 5). Nemani et al., (1993‘) used a mid-
IR cotrected NDVI that responded to canopy closure for correcting for understory
and other background materials (mid-IR decreased as canopy closure increased and
as water content of the understory increased). The bryophyte species covering the
soil in our boreal forest have water holding capacities of 16 to 26 times their own
dry weight (Vogelman and Moss, 1993), which may have lowered the mid-IR

signal.

Cover was a significant variable in this study because of the particular canopy
structure of boreal forests, its variable canopy closure, and the poor NIR-LAI
relationship in open canopies. It was useful to help explain LAI spatial and aspatial
variability and served as a good covariate in the multivariate geostatistical models.
The boreal forest canopy and understory, especially the soil cover components,
have dissimilar spectral properties. For these reasons, image spectral mixture
models (Peddle et al., 1999) for estimating subpixel fractions of overstory and

understory cover components might be explored to derive more accurate LAI maps.
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Chapter Three: Discussion and Conclusions

The results obtained in this study suggest that when mapping natural resource
attributes such as LAI, the optimal technique to select depends on the final uses of
the map, because not all the desired map characteristics Can be achieved

simultaneously.

The location of the ground measurements has two important aspects: accuracy in
the match between ground and image data (georectification), and representativeriess
of the ground data for the area to be estimated. Representativeness, defined by
Myers (1997) as “the degree to which sample data accurately and precisely
represent a characteristic of a population, parameter variations at a sampling point,
or an environmental condition”, is of crucial importance in some geostatistical
methods because attributes not sampled will not be present in the final outputs. A
good example of this is the hardwood area in the SW comer of the image, which
was not sampled. This area was reproduced in the output maps by regression
methods, although it constitute an extrapolation situation. The same area was
ignored by kriging and cokriging maps, but kriging with an external drift and
conditional simulation accounted for it because of their use of the auxiliary
variables. An unsupervised classification and/or a feature space analysis are

recommended as first steps in evaluating representativeness of the sampling design.
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The sampling design plays a crucial role in the process of producing
environmentally-derived maps. The spatial distributionof the ground

measurements may have great influence in the final results. The systematic spatial
cluster sampling design used was appropriate for this study because of its
efficiency in diminishing redundant data collection, while distributing pairs of
points at different lags. However, orientation of the sampling units was not optimal
for our purposes because it did not correspond to the maximum direction of
continuity (Figs. 4 and 25). A basic a-priori anisotropy analysis of the image could
have avoided this inconvenience. Nevertheless, the available samples and the
anisotropy analysis allowed the identification of different spatial ranges that may be

a result of the glacial drift occurring in the area.

The conditional bias observed in the scatterplots of cross validation errors versus
estimated LAI may be a result of the smoothing in the case of the geostatistical
methods, but this may also be a consequence of a smaller number of samples of

lower and higher LAI values.

Measurement errors are intrinsic in both ground and image measurements.
Traditional regression and inverse regression take into account measurement errors
only in the response or the explanatory variables respectively, assuming that the
other variable is free of error. RMA is a useful improvement for many appliéations,

including this one, because it takes into account error measurements in both the
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response and explanatory variables. The results of this study agreed with Curran
and Hay. (1986), who found the same effect when the regression slope was
underestimated under the assumption of measurement free of etrors for the
explanatory variable. The total error of the maps was not thoroughly calculated, but
includes the errors generated in the processing of the images, the misregistration
error, the measurement errors of the ground variables, the interpretation, estimation,
and simulation errors. Heuvelink, (1998) stated that there is not still a single,

accepted method for handling these kinds of errors and their propagation in GIS.

Measurement support, defined as the shape, size and orientation of the area or
volume being measured (Curran, 1999), is significant in determining at which scale
the‘ analysis is valid. This study tried to match the ground-based measurements to
Landsat ETM+ pixel size. In both‘ cases, averages over the support surface are used,
in which case the variograms are called “regularized”. The effects of regularization
are the same as those for aggregation: the variance is reduced, the range increases,
and the mean remains unchanged (Isaaks and Srivastava, 1989; Woodcock et al.,

1988).

The variance reduction may be more important if there is a large nugget effect, as
was observed when going from the RMA to the integrated model. One possible

explanation for this reduction is that originally, LAI had low spatial
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autocorrelation, and the RMA model accounted for most of its variability. The
residuals of the RMA model had a high nugget effect and very low spatial
autocorrelation, and although Moran’s I coefficient was significant (at a 0.05
significant level), there was little spatial autocorrelation to be further explained.
The high nugget effect suggested that there was unexplained variability at scales
smaller than the support.

Statistical properties of spatial attributes strongly depend on the support of the
observations (Heuvelink, 1998). The description of pattern implies the description
of variation and Vaﬁation quantification requires the determination of scales (Levin,
1992), and supports.

From the results of this study, processes concerning LAI at this particular forest are
relevant at scales smaller than 150 m, so the scaling up to MODIS resolutions (250
to 1000 m) and the use of layers of information at these scales to inform process
models would imply certain amount of unknown error that should be quantified to

assess the relevance of the final NPP maps.

Spatial autocorrelation is present in natural environments at all spatial scales
(Legendre, 1993). This is reflected in the patterns observed in most ecological
phenomena. If spatial autocorrelation is present, one can decide to remove it so that
traditional statistical procedures can be used. A preferable alternative is to take it
into account by using other statistical methods such as geostatistics. Although in

this study LAI exhibited low spatial autocorrelation, the geostatistical techniques
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exploited it and improved some features of the maps, thus showing that in some

cases it is worth the extra modeling effort.

Spatial variabilit_y is generated by the complexity of the processes that reflect
ecological functions, which we intend to interpret. LAI has important ecological
meaning because it influences the microclimate of the forest, and regulates
ecophysiological processes that determine the exchange of heat, water, nutrients,

carbon, and other elements.

Table 19 shows a summary of the spatial variability features obtained in the LAI
maps identified as trend, pattern and anisotropy, and explains how each method
accounted for them. In general, regression methods reproduced pattern and
anisotropy well but were not good at reproducing trends. A possible explanation for
this is that the regression coefficients were calculated over the entire area. When
search neighborhoods were applied in the geostatistical methods, the trends became
more apparent. Kriging and cokriging resulted in smoothed patterns, and a poor
anisotropy reproduction that may be a consequence of the minimization of the
variance. Kriging with an external drift improved the pattern reproduction but had
less predictive ability than the integrated method. Although the integrated model
had a reduced semivariance over RMA, it performed best among the regression and
geostatistical estimation methods if a compromise between global and local

accuracy were the objective.
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Conditional simulation reproduced trend, pattern and anisotropy well. Conditional
simulation used the secondary data in a different way than cokriging and kriging
with an external drift. While cokriging uses the full secondary data through the
cokriging system, kriging with an external drift uses them only to characterize the
trend of the primary variable, and conditional simulation uses only the colocated
data scaled by the correlation coefficient between the primary and the secondary
variables. KED maps reproduced a better pattern inside as well as outside the
sample grid (Figs. 36 and 39), not all the features were reproduced in the
extrapolation situation. This is more evident in the northern area. Although the
anisotropic LAI model used in KED and in OK was the same, the semivariograms
of the whole area showed a better anisotropy reproduction for KED, suggesting that
the secondary information provided by Clcover Was useful in accounting for LAI
spatial variability. Besides, the use of this secondary information seemed to be
more appropriate in the KED case, compared to OCK. This may be explained by
the way OCK incorporated the full secondary data, some of which may be
redundant. This is confirmed by the colocated use of the secondary data by
conditional simulation, which yielded the best pattern representatioh of all. Ideally,
LAI maps used as inputs in process models should represent actual LAI spatial

variability to attain more realistic results.

The methods used in this study suggest that high levels of local and global accuracy

cannot be achieved simultaneously. Kriging techniques aim to provide estimators
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as close as possible to the true unknown values, with the criteria of unbiasedness
and minimal estimation variance. The minimization of the estimation variance
involves a smoothing of the true distribution of the original variable, resulting in
poor reproduction of spatial variability. On the other hand, conditional simulation
values are not the best possible estimators on a point by point basis, but the
variance of estimation is greater than the kriging variance, resulting in a better
reproduction in the pattern of the modeled variable (Journel, 1978; Dungan, 1999).
If local accuracy were the objective, and RMA the desired method, it would be
preferable to stratify first by land cover and apply different models for the different

cover types, as suggested by Tumner et al. (1999).

Estimation methods that take a deterministic approach provide a single estitnate
map with aspatial (i.e. standard error in regression techniques) or poor (i.e. kriging
variance) assessment of errors. In contrast, simulation methods take a probabilistic
approach, where simulated values are conditional to the samples, honor their
statistics, and provide a spatially quantitative measure of uncertainty.

A good spatial error map should depend on the values of the samples, their
distances and geometry. Fig. 44 shows a E-W transect that goes through 10
samples. The kriging error variance shows the variance is dependent on the data
configuration only; the variance decreasing when apprdaching the sample locations,
and increasing when going away from them. In contrast, the conditional variance

depends on the data configuration and the data values. The variance was greater
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when two consecutive samples had dissimilar LAI values, and smaller when
consecutive values were more alike.
The conditional variance of the whole set of realizations provided a visual and

quantitative spatial uncertainty measure (Fig.45 a).

Because cross validation RMSEs were so similar, they were difficult to evaluate. A
disadvantage of the cross validation method is that the RMSE is a global measure,
not specific to any particular location, and cannot indicate areas that may be more
likely in error (Kyriakidis et al., 1999). A better assessment of the methods could
be done with a further analysis of the cross validation predictions and cross
validation errors in terms of their summary statistics, distribution, and spatial

autocorrelation.

Besides the satisfactory statistical reproduction and improved pattern representation
provided by conditional simulation, this technique offers other advantages: a spatial
uncertainty measure allows one to identify areas with potentially higher errors, to
improve future sampling efforts where uncertainty is high, and to assess the quality
of the map. The areas that showed highest uncertainty were not sampled at the

field, (i.e. near the center of the map on Fig. 45 a). An example of the usefulness of
the uncertainty measure was shown by changing the secondary variable Cleover to
ClI.ar in the conditional simulation run. The use of CIp 1 as a covariate in the

conditional simulation process resulted in a decline of the uncertainty of the map. A
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possible explanation for this decline in the uncertainty when using 4CILA1 is that the
Markov approximation rescales the primary variable with the correlation
coefficient of the primary and secondary variables. Because Clar has a slight
stronger correlation with LAI than Clioyer (-0.73 vs. -0.70, see Table 4), this effect
may have had a positive effect on the estimates. Therefore, this uncertainty measure
would also help to identify the best covariate in the conditional simulation process.
Some applications may need to identify areas of interest, and conditional simulated
maps may be post-processed to obtain probability maps of the classes of interest

(Fig. 45 b, ¢, and d).

The expected LAI map resulting from the average of the 51 realizations resulted in
very similar pattern compared to the CI o; map (Fig. 41 d) and reproduced the
anisotropy, although at lower semivariance values, because of the averaging (Fig.

43).

The set of simulations may also serve as input for sensitivity analysis in two ways:
to assess how LAI variability affects process models, and to assess how the

variability influences the upscaling from Landsat ETM+ (25-30 m) to MODIS

(250-1000 m) spatial resolutions.

Conditional simulation may be promising for upscaling for other reasons as well.

Aggregation usually decreases the variance; if smoothed maps were used for
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upscaling, the final variability would not be representative of the actual patterns.
The variance and semivariance of the variable of interest should be determined at
the different scales studied, to preserve the ecological significance and validity of
the maps, because the variability observed in the system is conditional to the scale
of description. If maps were used at MODIS scales, conditional simulation would
be suggested. MODIS-scale grids are being developed to capture global trends and
will be used in highly generalized models. Conditional simulation provides global
accuracy and a better representation of the landscape patterns, essential properties
for the mentioned applications. Another advantage of conditional simulation is that

it allows for the generation of maps with associated uncertainty.

Spectral vegetation indices such as NDVI and SR may not be useful for
characterizing complex canopy structure such as in boreal forests, which has
variable canopy closure, clumped canopy and highly reflective understory. The use
of mid-IR bands helped to explain more of the LAI variability. When analyzed
individually, bands 5 and 7 were the best-correlated with LAI, and they contributed
substantially to the canonical indices (Téble 5). Nemani et al., (1993) used a mid-
IR corrected NDVI that responded to canopy closure for correcting for understory
and other background materials (mid-IR decreased as canopy closure increased and
as water content of the understory increased). The bryophyte species covering the

soil in our boreal forest have water holding capacities of 16 to 26 times their own
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dry weight (Vogelman and Moss, 1993), which may have lowered the mid-IR

signal.

Cover was a significant variable in this study because of the patticular canopy
structure of boreal forests, .its variable canopy closure, and the poor NIR-LAI
relationship in open canopies. It was useful to help explain LAI spatial and aspatial
variability and served as a good covariate in the multivariate geostatistical models.
The boreal forest canopy and understory, especially the soil cover components,
have dissimilar spectral properties. For this reason, image spectral mixture models
(Peddle et al., 1999) for estimating subpixel fractions of overstory and understory

cover components might be explored to derive more accurate LAI maps.
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