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Recent sensor System-on-Chips (SoC) have enabled significant advances in energy-

efficiency by incorporating various micro-powered building blocks. Unfortunately, 

most of these sensor systems do not address the high power cost associated with data 

storage and transmission, which in some cases vastly exceeds the power consumed by 

the rest of the SoC. In recent years, Compressive-Sensing (CS) has been proposed as a 

method to accomplish significant sensor data compression, achieving compression 

rates up to 10x depending on the signal sparsity. 

This work addresses conventional CS issues including non-adaptive compression 

rate and offers a solution. First, a feasibility study is conducted to investigate the 

sparsity variance of some biomedical signals. Then an adaptive CS framework is 

proposed, to adjust the compression rate based upon the input signal’s sparsity on-the-

fly. Thirdly, a CS framework is proposed, the reconstruction of which is aided by 

statistics collection. It is demonstrated how to fuse sensor data and statistics 

information together to improve the signal-to-error ratio (SER) of reconstruction. A 

test chip fabricated in TSMC 65-nm technology to implement the algorithm in a SoC 

incorporating statistics collection block in order to improve performance of the CS 

algorithm. 



 

 

The final portion of this research devoted to study emerging application of time-

of-flight cameras for depth measurement. These devices generate a 3 Dimensional (3D) 

point cloud that basically includes 3D details of objects in front of them. A framework 

to apply CS to 3D point cloud data is presented. Finally it demonstrates how the idea 

of adaptive CS can be used for 3D point cloud data compression. 
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1. Introduction 

1.1 Motivation and Problem Definition 

Recent sensor System-on-Chip (SoC) have enabled significant advances in energy-efficiency, 

incorporating various micro-powered building blocks, including low-power analog amplifier 

front-end [1], ADC [2], sub/near-threshold DSP [3], and radio [4].  Unfortunately, most of 

these sensor systems have ignored the problem of sensor data local storage, where the power 

consumed by storing (or transmitting) the data greatly exceeds the power consumed by the rest 

of the SoC.  For example, a 14-day 10uW ECG patch sampling at 100Hz will require over 2Gb 

of data storage.  Storing this large amount of data in the off-chip Flash RAM or sending the 

data via the wireless radio will be infeasible, given the I/O power of Flash-Memory or 

Bluetooth.  Figure 1-1 shows how much energy different building blocks will consume to 

process this amount of data. Here, we used some commercial integrated circuits for reference. 

It is very clear that most of the system energy will be consumed in either radio or flash memory. 

A similar problem exists for other sensor applications, such as environmental monitoring or 

smart buildings. Therefore to reduce energy consumption significantly, one can reduce the total 

number of data system needs to transmit or process. In other words, solution is data 

compression as shown in Figure 1-2. 

 

Figure 1-1: Energy consumption of some commercial integrated circuits 

 

Figure 1-2: Data compression as an energy saving solution in wireless SoC 
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In recent years, compressive sensing (CS) has been proposed as a method to accomplish 

significant sensor data compression, achieving compression rates from 2-10x, depending 

on the signal sparsity [5].  Unfortunately, these CS systems assume an a-priori, blind 

compression rate that may miss important input signal information.  The sensor input is 

negligible in general, however when an event occurs, it should not be overlooked by the 

CS compression.  

1.2 An Introduction to Compressive-Sensing 

In this section a brief explanation of compressive-sensing algorithm is presented. This section 

is adopted from chapter 1 of [6]. In recent years, compressive sensing has attracted considerable 

attention in many areas by suggesting that it might be possible to surpass the traditional limits 

of sampling theory. CS builds upon the fundamental fact that we can represent many signals 

using only a few non-zero coefficients in a suitable basis or dictionary. Nonlinear optimization 

can then enable recovery of such signals from very few measurements. The amount of data 

generated by emerging sensing systems has significantly grown. Unfortunately, in many 

important and emerging applications, the resulting Nyquist rate is so high that we end up with 

far too many samples. Alternatively, it may simply be too costly, or even physically impossible, 

to build devices capable of acquiring samples at the necessary rate. Thus, despite extraordinary 

advances in computational power, the acquisition and processing of signals in application areas 

such as imaging, video, medical imaging, remote surveillance, spectroscopy, and genomic data 

analysis continues to pose a tremendous challenge. To address the computational challenges 

involved in dealing with such high-dimensional data, we often depend on compression, which 

aims at finding the most concise representation of a signal that is able to achieve a target level 

of acceptable distortion. One of the most popular techniques for signal compression is known 

as transform coding, and typically relies on finding a basis or frame that provides sparse or 

compressible representations for signals in a class of interest. By a sparse representation, we 

mean that for a signal of length 𝑛, we can represent it with 𝑘 ≪ 𝑛 nonzero coefficients. By a 

compressible representation, we mean that the signal is well-approximated by a signal with 

only 𝑘 nonzero coefficients. Both sparse and compressible signals can be represented with high 

fidelity by preserving only the values and locations of the largest coefficients of the signal. This 

process is called sparse approximation, and forms the foundation of transform coding schemes 

which exploit signal sparsity and compressibility, including the JPEG, JPEG2000, MPEG, and 

MP3 standards.  
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Leveraging the concept of transform coding, compressive sensing (CS) has emerged as a 

new framework for signal acquisition and sensor design. CS enables a potentially large 

reduction in the sampling and computation costs for sensing signals that have a sparse or 

compressible representation. While the Nyquist-Shannon sampling theorem states that a certain 

minimum number of samples is required in order to perfectly capture an arbitrary bandlimited 

signal, we can vastly reduce the number of measurements that need to be stored when the signal 

is sparse in a known basis. Consequently, when sensing sparse signals we might be able to do 

better than suggested by classical results. This is the fundamental idea behind CS: rather than  

first sampling at a high rate and then compressing the sampled data, we would like to  find 

ways to directly sense the data in a compressed form  i.e., at a lower sampling rate. The field 

of CS grew out of the work of Candes, Romberg, and Tao and of Donoho, who showed that a 

finite-dimensional signal having a sparse or compressible representation can be recovered from 

a small set of linear measurements [5]. The design of these measurement schemes and their 

extensions to practical data models and acquisition systems are central challenges in the field 

of CS. 

Mathematically a signal 𝑥 is called 𝑘-sparse if  

 ‖𝑥‖0 ≤ 𝑘. (1.1) 

And ‖𝑥‖0 (norm-0) is defined a number 0f non-zero elements of 𝑥. Few real signals are 

exactly sparse. To quantify the compressibility of  𝑥 by a 𝑘-sparse signal, we consider the 

following quantity: 

 𝜎𝑘(𝑥)𝑝 = min
𝑥̂∈Σ𝑘

‖𝑥 − 𝑥̂‖𝑝 (1.2) 

Σ𝑘 is set of all 𝑘-sparse signals. In other words 𝜎𝑘(𝑥)𝑝 is the minimum approximation error 

when 𝑥 is represented by a 𝑘-sparse signal. The objective is to estimate 𝑥 based on some 

measurements, while restricting our estimate to be 𝑘-sparse and the estimation error is as 

close as possible to 𝜎𝑘(𝑥)𝑝. Consider the following measurement system: 

 

𝑦 = Φ𝑥 + 𝑒    , 𝑦 ∈ ℝ𝑛 , 𝑥 ∈ ℝ𝑚 , 𝑚 < 𝑛 

𝑦: Measurements 

𝑥: Sparse or compressible signal (that we want to estimate) 

Φ: Sensing matrix 

𝑒 : Measurement noise 

(1.3) 

Suppose 𝑥 is 𝑘-sparse with respect to certain basis Ψ such that: 

 𝑥 = Ψ𝑥̅   , 𝑥 ∈ Σ𝑘 (1.4) 
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So we have: 

 𝑦 = Φ(Ψ𝑥̅) + 𝑒 = (ΦΨ)𝑥̅ + 𝑒 = 𝐴𝑥̅ + 𝑒    , 𝐴 ≜ ΦΨ (1.5) 

The main theoretical question is for a fixed Φ what class of 𝑥 can be recovered? How 

should we design Φ such that 𝑥 can be well recovered from 𝑦. Theory of compressive-

sensing answer all of these questions by setting some restrictions on sensing matrix. Eldar 

[6] has explained this theory in more detail. 

1.3 Goal of This Work 

In this research, we address two problems of conventional CS algorithm: Fixed compression 

rate and reconstruction error. Adaptive CS is proposed to modify compression rate based on 

sparsity of input signal. Also an on-chip signal processing have proposed which detects 

important events in the sensor input data, and uses that information during reconstruction to 

minimize the reconstruction error. The adaptive CS is used for two different applications of 

biomedical signals and depth measurement data to show that it can be used for different 

application. A test-chip was built to implement CS algorithm on chip for biomedical signals.  

This dissertation includes five chapters. Chapter one is introduction talking about problem 

definition and motivation of this work. Chapter two investigates sparsity variance of 

biomedical signals and based on that proposes a rate-adaptive CS for biomedical signal. 

Appendix A at the end of this chapter gives more details about the concept of dictionary 

learning. The third chapter explains use of some statistics from input signal to reduce 

reconstruction error. A test chip fabricated in TSMC 65nm technology as proof of concept. 

Chapter four introduces a framework for CS of 3D point cloud data. Appendix C at the end of 

this chapter introduces concept of depth measurement, its application and some of research 

done in this area. Chapter five implements idea of adaptive CS for point cloud data. Finally 

chapter six concludes with a brief summary of findings and includes possible future research 

in continue of this work.  

1.4 References 
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2. Rate-Adaptive Compressive-Sensing and Sparsity Variance of 

Biomedical Signals 

2.1 Abstract 

Biomedical signals exhibit substantial variance in their sparsity, preventing conventional a-

priori open-loop setting of the compressive sensing (CS) compression factor. In this work, we 

propose, analyze, and experimentally verify a rate-adaptive compressed-sensing system where 

the compression factor is modified automatically, based upon the sparsity of the input signal. 

Experimental results based on an embedded sensor platform exhibit a 16.2% improvement in 

power consumption for the proposed rate-adaptive CS versus traditional CS with a fixed 

compression factor. We also demonstrate the potential to improve this number to 24% through 

the use of an ultra-low power processor in our embedded system. 

 

Keywords: adaptive compressive-sensing; low power wireless sensors; sparsity variance; 

embedded system 

2.2  Introduction  

Power consumption is one of the most critical constraints for sensor networks and future 

Internet-of-Things devices. The most power consuming block is the radio (transmitter), 

typically responsible for 60-80% of the total sensor’s energy usage [7]. A known method to 

reduce the radio power consumption is transmitter duty cycling, sending data in quick bursts 

before rapidly powering down [8]. To obtain the largest benefit from transmitter duty cycling, 

the amount of sensor data transmitted with the radio must be reduced, such as using data 

compression.   

Signal specific compression methods do exist (e.g. JPEG) that very efficiently decrease 

the amount of data required to recover the original signal [9]; However they typically are 

specific and cannot be applied to multiple sensor data types. Due to these limitations, a 

compression method generalizable to many different types of data is highly desirable. 

Compressive-Sensing (CS) is a subsampling method that requires no a-priori information 

about the input signal as long as the input shows a property called sparsity (explained in detail 

below). Figure 2-1 shows both traditional and compressive- sensing systems and their energy 

consumption specifications. The complexity of the receiver in a CS system is higher than its 

traditional counterpart; however the receiver typically does not have as tight of a power 
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consumption constraint. On the other hand, the CS sensor node will exhibit significant energy 

savings in the transmitter (radio), outweighing any additional energy consumed by 

implementing the compression block.  

 

Figure 2-1: A compressive-sensing system vs. a traditional sensing system  

Various methods have been previously proposed that implement a CS TX framework [10].  

Unfortunately, all previous CS works assume a fixed and predetermined input signal sparsity. 

This assumption implies that the compression factor is statically fixed, and is not a function of 

a varying input signal; however, there is a trade-off between input sparsity and optimum 

compression factor [11]. An input signal with time-varying sparsity must adjust its compression 

factor continuously in order to achieve the lowest error rate during reconstruction.  Using the 

signal sparsity to determine the sensor’s optimal compression factor is critical if the sparsity of 

the signal varies significantly over time, across different sensor types. To our knowledge, there 

is no prior work that has studied the sparsity variance for several different biomedical signals. 

In this paper, we first conduct a feasibility study on adaptive compressive sensing, 

investigating the sparsity variance of electrocardiogram (ECG), electroencephalogram (EEG) 

and electromyogram (EMG), using the physionet database [12]. Next, we propose an adaptive 

CS framework, adjusting the compression rate based upon the input signal’s sparsity on-the-

fly. Finally, we implement this rate-adaptive CS using a miniature, low-power wearable 

platform that captures ECG signals under varying sparsity conditions, calculate the sparsity 

variance, and adapt the CS rate.  

This paper is organized as follows. Section II covers the theory of compressive-sensing, 

reconstruction and key system requirements. The requirements of an adaptive compressive-

sensing system are then described in Section III. The miniature wearable system developed to 

capture test signals and implement adaptive CS framework is then outlined in Section IV, and 

conclusions are summarized in Section V. 

2.3  CS  Framework 

2.3.1 Compressive-Sensing Background 

Compressed-Sensing SystemTraditional Sensing System

Sensing Processing

Es0

Sensor Node Receiver

EP0

Sensor Node Receiver

Compressed 
Sensing

Decompression 

Processing

Ec<<Es0 ED +EP >>EP0
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Compression using CS is achieved using a simple matrix multiplication, where an 

uncompressed input vector 𝒇 of size N multiplied by a measurement matrix 𝚽 of size M-by-N 

that produces a measurement vector 𝒚 of size M. 𝚽 is a matrix of random numbers (e.g., 

Bernoulli, Gaussian, uniform, etc.), such that 𝒚 is a vector of random linear projections of 𝒇 on 

𝚽 . CS can compress bio-signals with compression factors as large as 10x, which reduces the 

amount of data transmitted and therefore the total power dissipation of the sensor node by a 

similar factor [14]. To reconstruct the original signal 𝒇 from the measured signal 𝒚 in the 

receiver, we need to solve an underdetermined set of equations where the number of equations 

is much less than the number of unknown variables. In general, there is not a unique solution 

for these types of equations. However, CS theory shows that if the signal 𝒇 is sparse in any 

basis (e.g. fourier transform, wavelet transform), then there are optimized methods to 

reconstruct the original signal with minimum error based on convex optimization [11]. In other 

words, if there is a transformation matrix 𝚿 such that 𝒇 = 𝚿𝐱 (and therefore 𝒚 = 𝚽𝒇 = 𝚽𝚿𝐱) 

and 𝐱 is sparse, then reconstruction is possible. Figure 2-2 summarizes the complete CS 

framework [15]. 

 

Figure 2-2: Complete CS framework 

2.3.2 Sparsity Number 

In theory, sparsity of a vector  𝐱  is defined as the number of non-zero values of 𝐱 (this is called 

the norm-0 of 𝐱 and represented as ‖𝒙‖0). It is shown that if the number of measurements (M) 

is approximately 𝜇‖𝒙‖0log (𝑁), an optimum reconstruction can be achieved with high 

probability where 𝜇 is a constant related to 𝚽 and 𝚿 [11][12]. The reconstruction process in 

the receiver, as shown in Figure 2-2, consists of two steps. The first step finds an approximation 

of the sparse vector 𝐱 by minimizing norm-1 of 𝐱 , subject to the main equation 𝒚 = 𝚽𝚿𝐱  

(norm-1 also known as l1-norm is defined as the sum of absolute values of vector 𝐱 and is 

represented by ‖𝒙‖1). The problem of minimizing the l1-norm has been shown to be solvable 

efficiently and requires only a small set of measurements (M<<N) to enable perfect recovery. 

CS 

Sampling

Find Sparse 

Solution
Reconstruction

=
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After finding the optimized approximation of  𝐱 (𝐱∗), the second step reconstructs the original 

signal using matrix multiplication 𝒇∗ = 𝚿𝐱 . 

Fortunately, some biomedical signals have sparse representation in either gabor or wavelet 

domains [17][18]. In general, any type of sensor data can be represented in its sparse form by 

using a method called dictionary learning. Based on the ideal definition of sparsity, it should 

be very easy to find the sparsity of a signal simply by counting the number of non-zero elements 

of the signal in the sparse domain. Unfortunately, for all real signals the representation of the 

input signal in sparse domain has non-zero elements. There are a few large values with other 

elements that are very small but not zero. To address this issue, Lopes in [19] introduced a new 

metric called sparsity number, as defined in Eq. (1) below, which is the lower bound of the 

ideal definition of sparsity:  

 
𝑠𝑥 =

‖𝑥‖1
2

‖𝑥‖2
2 =

(∑|𝑥𝑖|)2

∑ 𝑥𝑖
2  (2.1) 

To find the sparsity number of a signal we need to first transfer that signal to the sparse 

domain. For some signals the sparse domain is known; however, for other signals there is not 

a specific domain for this purpose and we must use dictionary learning to train a dictionary to 

transfer the signal 𝒇 to its sparse representation 𝐱. 

2.3.3 Dictionary Learning 

While ECG signal has known domain of sparsity, most other types of sensor signals do not 

have well-known domains where the signal is sparse. To extend the application of CS to 

different type of signals, it is necessary to have a general method for converting signals to a 

sparse representation. Fortunately, a method called dictionary learning exists for this purpose. 

Using a dictionary D, a vector 𝒇 (that is input signal) is represented as approximation of a linear 

combination of a few atoms where atoms are columns of D (such that the dictionary in fact is 

a matrix). To generate this dictionary, a training process called dictionary learning is required. 

Dictionary learning is the problem of finding D such that the approximation of many known 

vectors (the training set) are as good as possible given a sparseness criterion on the coefficients 

(i.e. allowing only a small number of non-zero coefficients for each approximation)[20]. 

Different methods are available for dictionary learning, such as KSVD [20] and MOD[21]. In 

this paper, we use the KSVD method to check the sparsity variance of EMG and EEG signals. 

Having D any new signal in the same family of training set can be represented in the sparse 

domain by solving Eq. (2), where 𝛾 controls the sparseness of the answer: 
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 𝑥∗ = 𝑎𝑟𝑔 min
𝑥

‖𝑥‖𝑝 + 𝛾‖𝑓 − 𝐷𝑥‖2
2           𝑝 ∈ {0,1} (2.2) 

2.4 Sparsity-Aware Compressive Sensing 

The number of measurements (M), which also defines the compression factor (M/N), is related 

to the sparsity level of the input signal. A trade-off exists between the compression factor and 

the accuracy of the reconstructed signal. Increasing the compression factor creates more errors 

in the reconstructed signal, while lowering the compression factor increases the amount of 

transmitted data without any benefit to the reconstruction. Figure 2-3 shows the output of a 

sparse optimization block (𝐱∗) for a CS system with a fixed compression factor of 16 for two 

different input signals. The first signal is a single tone (that is sparse in the Fourier domain) 

and the second signal is the summation of 5 sine waves with different frequencies. It is clear 

that by changing the statistics of the input signal we will see a large difference between the 

reconstructed sparse signal (𝐱∗) and actual sparse representation of the input signal in the sparse 

domain. This results in a large error in the output of the reconstruction algorithm. 

 

Figure 2-3: Effect of sparsity on reconstruction error for two different signals 

Obtaining updated information about the sparsity of the input signal will help us to adjust 

the compression factor to the optimum value. Using sparsity number as a key to find the 

optimum compression factor is only beneficial if the sparsity of the input signal changes 

sufficiently over time and for different sensor data types. This means that sparsity variance is 

a key feature for adaptive compressive sensing.  

2.4.1 Sparsity Variance 

If sparsity of an input signal does not change significantly over time, we can use a fixed 

compression factor that corresponds to the type of input signal. To the best of our knowledge, 

we have found no prior works have investigated and quantified the sparsity variance for 

different biomedical data types. In this work, we analyze the sparsity variance for three 
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different types of clinical biomedical signals (ECG, EEG and EMG), using the nsrdb, mitdb, 

chbmit and drivedb databases of physionet [13]. We also obtained the sparsity variance of ECG 

data captured by own embedded system, platform. In each case, several signals divided in 

blocks of 256 samples and then transferred to sparse domain to calculate the sparsity numbers. 

Finally we plot the histogram of the sparsity number and calculate mean and standard deviation 

of distribution. Figure 2-4 shows the simulation results, showing that the sparsity changes 

drastically and that a fixed compression factor is not a good choice. 

2.4.2 System Models for Sparsity-Aware Compressive-Sensing 

Figure 2-5 shows two possible methods for implementing rate-adaptive compressive-sensing, 

using the input signal sparsity to adjust the compression factor. In the first system (Method 1), 

the receiver calculates the sparsity and transmits it to the sensor node of the system. The sensor 

then adjusts its compression factor based on this information. Because the receiver already has 

the sparse representation of signal, this system can easily implement CS rate adaption in the 

sensor node; however, one limitation with this system is the round trip delay, or the latency 

required to calculate the sparsity in the receiver and the transmission delay to send the result 

back to the sensor. If this latency is large, the sensor node must buffer recently acquired data 

until it has received the most up-to-date estimate of sparsity from the receiver. Another problem 

is that the calculation of sparsity is performed on the current data block; however this result is 

then used to compress the next data block, which may have a different sparsity 
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Figure 2-4: Sparsity variance for different type of biomedical signals 

 

Figure 2-5: Possible methods for adaptive CS system implementation 

The second system (Method 2) calculates the sparsity of the input data on the sensor node of 

the system. This eliminates possible problems associated with the round trip delay, and also 

allows for the calculated sparsity of each data block to be used in the compression of that same 

block. Unfortunately, this method requires additional power to operate the sparsity monitoring 

-50 0 50 100 150 200 250 300
0

200

400

sw distribution: mean = 85.5152, std = 18.8113

-50 0 50 100 150 200 250 300
0

100

200

sk distribution: mean = 40.3458, std = 21.3977

-50 0 50 100 150 200 250 300
0

100

200

sk_norm0 distribution: mean = 50.7214, std = 28.8895

ECG-nsrdb database
Wavelet Domain

mean  = 85.5
std       = 18.8

-50 0 50 100 150 200 250 300
0

200

400

sw distribution: mean = 85.5152, std = 18.8113

-50 0 50 100 150 200 250 300
0

100

200

sk distribution: mean = 40.3458, std = 21.3977

-50 0 50 100 150 200 250 300
0

100

200

sk_norm0 distribution: mean = 50.7214, std = 28.8895

ECG-nsrdb database
Dictionary Domain

mean  = 40.3
std       = 21

-50 0 50 100 150 200 250 300
0

200

400

sw distribution: mean = 25.1284, std = 17.0262

-50 0 50 100 150 200 250 300
0

500

sk distribution: mean = 19.8357, std = 14.9089

-50 0 50 100 150 200 250 300
0

500

sk_norm0 distribution: mean = 33.122, std = 26.1431

ECG-mitdb database
Wavelet Domain

mean  = 25.1
std       = 17

-50 0 50 100 150 200 250 300
0

20

40

sw distribution: mean = 115.0855, std = 47.3013

-50 0 50 100 150 200 250 300
0

50

100

sk distribution: mean = 220.5895, std = 16.3667

-100 0 100 200 300 400 500 600
0

200

400

sk_norm0 distribution: mean = 490.4725, std = 17.1016

EEG-chbmit database
Dictionary Domain

mean  = 220.5
std       = 16.4

-50 0 50 100 150 200 250 300
0

50

100

sw distribution: mean = 31.8464, std = 24.168

-50 0 50 100 150 200 250 300
0

50

sk distribution: mean = 94.4126, std = 60.5251

-100 0 100 200 300 400 500 600
0

200

400

sk_norm0 distribution: mean = 434.08, std = 164.2826

EMG-drivedb database
Dictionary Domain

mean  = 94.5
std       = 60.5

-50 0 50 100 150 200 250 300
0

20

40

sw distribution: mean = 39.3252, std = 21.6077

-50 0 50 100 150 200 250 300
0

10

20

sk distribution: mean = 80.9199, std = 23.1194

-50 0 50 100 150 200 250 300
0

100

200

sk_norm0 distribution: mean = 256, std = 0

ECG-WHAM Board
Wavelet Domain

mean  = 39.3
std       = 21.6

Histogram of Sparsity Number

Method 1

Method 2

Sensor Node Receiver

Compressed 
Sensing

Decompression 

Sparsity 
Monitoring

Processing

Sensor Node Receiver

Compressed 
Sensing

Decompression 

Sparsity 
Monitoring

Processing



14 

 

 

block, which may not be available on the energy-constrained sensor node. In addition, this 

system has no direct access to the sparse representation of the input signal, and therefore 

requires a sparsity estimation block that obtains the sparsity of the input data directly from the 

time domain signal. To our knowledge, this is currently an unsolved problem and hence, we 

evaluate the feasibility and performance of only Method-1 here. 

2.5 Experimental Results 

To analyze the performance of this proposed rate-adaptive CS system, we developed an 

experimental wireless monitoring platform, called the Wearable Health and Activity Monitor 

(WHAM). We implemented the compression on the WHAM sensor node, while the 

corresponding reconstruction algorithm is performed in an iOS iPhone/Mac application used 

as the receiver device. We implemented the GPSR algorithm [22] for reconstruction, which is 

faster than other reconstruction algorithms like LASSO[23]. We particularly were interested in 

investigating the energy consumption of the wearable sensor portion of the system with and 

without the use of adaptive data compression. Minimizing the delay associated with the 

reconstruction algorithm is critical because it directly affects the size of the buffer needed at 

the sensor node, before the receiver can calculate and send back the sparsity number needed to 

compress the next data block on the sensor. 

2.5.1 WHAM System Overview 

The WHAM platform is a low-cost, reconfigurable, wearable, wireless platform designed 

specifically to collect, process and display data related to the user’s activity and health. 

Utilizing wireless Smartphone connectivity using Bluetooth, the WHAM was designed to be 

operated by a wide variety of users. The complete system includes a functional custom 

hardware, a fully functioning iOS application, which can control and display data from the 

sensor from a variety of Apple products. The system weighs just 9.5 grams and is small enough 

to be easily stitched into clothing. Using a small CR2032 coin cell battery, the WHAM can 

provide continuous streaming ECG data collection for over 100 hours. The system currently 

consists of 3 physical components: The main board, the battery, and the flexible ECG board. 

The dime-sized main board consists of a stack of two miniature two-layer PCBs which contain 

the SoC, accelerometer, printed circuit board antenna, and other necessary passive components. 

The flexible ECG board contains the electrodes and instrumentation amplifier necessary for 

ECG data acquisition. Because of the flexibility and simplicity of its development platform, 

iOS was chosen as the operating system. The iOS application plots the real-time ECG graph 
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and Beats per Minute (BPM) calculation. Figure 2-6 shows the WHAM main sensor board, 

and top and bottom sides of the flexible electrode ECG patch. 

 

Figure 2-6: WHAM main board (top), Flexible electrode patch (bottom). 

2.5.2 Implementation Methodology 

As illustrated in Figure 2-2, CS compression is the product of a block of N input samples (here 

N=256) to a random matrix. We implemented this matrix multiplication at the sensor node. For 

simplicity, the random matrix 𝚽 has a fixed size of 192×256, so it always generates 192 

measured values from every 256 input samples. Based on the feedback from the receiver, the 

sensor only transmits the required number of measured samples. For example, if M=128 then 

only the first 128 samples will be transmitted. This is equivalent to multiplying the input vector 

with the first 128 rows of 𝚽. In the receiver we also use the first 128 rows of 𝚽 for 

reconstruction. The receiver constantly checks the sparsity number of the data it is receiving. 

If the sparsity of the input signal changes by more than 50% when compared to the previous 

block of data, it will change the value of M. Even for a normal ECG signal the sparsity number 

may change in a range of 40%. Analysis of the data sets investigated in this work found that a 

50% variation in sparsity number is a significant change in the input signal (e.g. ECG 

abnormality such as atrial fibrillation). 

For our wireless radio protocol, we adopted Bluetooth Low Energy (BLE) as it is one of 

the most commonly used low-power sensor radio standards, and heavily utilizes duty cycling. 

A BLE connection between two devices is made every T seconds where the devices exchange 

some data. After this exchange both devices disconnect and power down their radios for a 

period of time. The receiver portion of the system (e.g. the App running on the iPhone) is able 

to set T. Unfortunately, the system we developed for this work has limitations on the possible 

values of T and the number of samples that each BLE transmission is able to send. For this 

reason we only use a limited number of values for M, as shown in Table 2-1 below, where CF 

stands for the compression factor. 
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Table 2-1: Possible options for choosing M 

T 

N=256, ADC Sample Rate=200 sample/sec 

1 sample per  

BLE Transm. 

2 samples per  

BLE Transm. 

3 samples per  

BLE Transm. 

Tx Rate 
C

F 
M Tx Rate 

C

F 
M Tx Rate CF M 

20ms 50 4 64 100 2 128 150 1.33 192 

30ms 33 6 42 66 3 84 99 2 128 

40ms 25 8 32 50 4 64 75 2.66 96 

50ms 16.6 10 25 40 5 50 60 3.33 75 

 

In our implementation of adaptive CS, we transmit three samples for each BLE transmission 

such that the possible values of M are 192, 128, 96, 75 and 63. Initially the system starts with 

a default value of M (e.g. M=96 that is equal to a compression factor of 256/96=2.7). During 

normal operation, anytime the receiver detects a 50% change in the sparsity number it adjusts 

T appropriately such that the sensor automatically switches to the next higher or lower M value.  

2.5.3 Measurments Results 

To calculate the average power consumption of the system, we used a 1.3Ω resistor in series 

with the battery to measure the voltage drop across it. Figure 2-7 contains the system setup for 

power measurements as well as real-time signal acquisition. Transmission of data occurs in 

very short time durations but with high current consumption.  

 

Figure 2-7: System setup for power measurement and signal acquisition 

Our measurements show that the average current changes negligibly when sending 1, 2 or 3 

samples with each BLE transmission. For this reason we decided to control the CS compression 

factor by controlling the turn-on period (T). To demonstrate and analyze the performance of 

Main 
Sensor

Programming 
Board
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adaptive CS system, we selected two sections of an ECG signal captured by the WHAM system 

that showed a significant change in their sparsity number. After this signal is stored in the 

sensor, the data is then compressed and transmitted to the receiver, where it is then 

reconstructed and analyzed. Analysis of the reconstructed data in the receiver provides a new 

estimate of the sparsity number, where the sparsity number is used to set the new transaction 

time (T) of the BLE connection. The reconstructed signal is then appropriately scaled and 

analyzed using MATLAB in order to compare it with the original signal to calculate the 

reconstruction error. The reconstruction error is determined using the equation for Signal to 

Error Ratio (SER), as defined in Eq. (3) where 𝒇 , 𝒇∗ are the original and reconstructed signals, 

respectively: 

 
𝑆𝐸𝑅 = 10 log10(

‖𝑓‖2
2

‖𝑓 − 𝑓∗‖2
2) (2.3) 

Figure 2-8 shows the original and reconstructed signals. The first two blocks are normal with 

low sparsity where the system transmits 3 samples every 40ms, equivalent to a compression 

factor of 2.7. Based on the information in Table 2-1, in order to transmit these two blocks, M 

must be set to 96. In the 3rd block of ECG, motion artifact noise is observed. Due to this noise, 

its sparsity number changes by more than 50% when compared with ECG block 2. The receiver 

senses this change and adjusts the BLE transmission time to 30ms, equivalent to a compression 

factor of 2 (M=128), to compensate for this sparsity change. The sensor then applies this lower 

compression factor, obtaining a more accurate reconstruction in the receiver. Note that this 

system always exhibits a one block delay, as the 3rd block is compressed with the compression 

factor calculated from the 2nd block. Because of this the system experiences some error upon 

reconstruction. 
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Figure 2-8: Original vs. reconstructed signal for adaptive CS system 

Table 2-2 summarizes the measurement results. First we measure the average power 

consumption in 3 modes: Adaptive CS versus traditional CS with fixed compression factors of 

2 and 2.7. We calculate the average power consumption of the adaptive CS system assuming 

50% of the time the system experiences signals with a high sparsity number (e.g. noisy or 

abnormal). These results show that when targeting more than 10dB of SER, adaptive CS 

exhibits the same performance as a fixed compression rate system (with M=128) but consumes 

14% less power. If the target is a minimum SER of 16dB for all input blocks, we will then need 

a fixed value of M=192 (Table 2-3). In this case, using adaptive CS that switches between 

M=192 and M=128 gives us the same performance but with 16.2% less power consumption. 

The average power consumption of the adaptive system is based on the assumption that the 

signal input is a normal signal with low sparsity number for a long time duration, until it 

abruptly changes to a signal with high sparsity number (e.g. because of abnormalities or motion 

artifact) and remains this way for a long time period. In this case, we can approximate the 

average power of the adaptive system using the formula in Eq. (4), where 𝑃𝑎𝑣𝑔−𝑓𝑖𝑥𝑒𝑑1 and 

𝑃𝑎𝑣𝑔−𝑓𝑖𝑥𝑒𝑑2 are the average power of the CS system with old and new compression factors: 

  
𝑃𝑎𝑣𝑔−𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 =

1

2
(𝑃𝑎𝑣𝑔−𝑓𝑖𝑥𝑒𝑑1 + 𝑃𝑎𝑣𝑔−𝑓𝑖𝑥𝑒𝑑2) (2.4) 

 

Original

Reconstructed

Block 1 Block 2 Block 3 Block 4

sx=23.4 sx=25.3 sx=40.6 sx=41.6

Large error peaks 
because of high 
sparsity number
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Lower compression 
rate applied



19 

 

 

.  

Table 2-2: Performance of the Adaptive CS System for SERmin=10dB 

CS method 
SER(dB)  

Block1 Block2 Block3 Block4 Average Power 

Adaptive  13.2 12.5 4.9 10.5 2.5mW 

Fixed (M=128) 14.9 14.7 10.2 10.5 2.9mW 

Fixed (M=96) 13.2 12.5 4.9 6 2.1mW 

  

Table 2-3: Performance of the Adaptive CS System for SERmin=16dB 

CS method 
SER(dB)  

Block1 Block2 Block3 Block4 Average Power 

Adaptive  14.9 14.7 10.2 16.3 3.6mW 

Fixed (M=192) 22 19 16.1 16.3 4.3mW 

Fixed (M=128) 14.9 14.7 10.2 10.5 2.9mW 

 

Figure 2-9 shows the measured average power consumption of the sensor for different 

transmission rates of BLE. Unfortunately, the results show that the power consumption of the 

embedded processor dominates after some point, such that decreasing transmission rate 

(increasing T) does not improve power consumption proportionally. Using an ultra-low power 

processor we could expect 1.5mW power consumption for T=40ms giving average power of 

2.2mW for the adaptive CS system, equivalent to a 24% improvement when compared with a 

fixed CS system with M=128. 

 

Figure 2-9: Measured average power for different BLE transmission rates 

Finally, we measured the execution time of the reconstruction algorithm on the receiver (a 

MacBook Air), where the worst case reconstruction latency was found to be 24 ms, or less than 

the time required by the ADC to generate 5 samples.  

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

5.00E-03

0.00E+001.00E-022.00E-023.00E-024.00E-025.00E-026.00E-027.00E-02

Chart Title

Average Power (mW)

T (ms)

4.3

2.9

2.1

1.7
1.6

20 30 40 50 60

1.5



20 

 

 

2.6 Conclusion 

In this paper we propose an adaptive compressive-sensing system that enables real-time 

adjustment of the compression factor, depending on the variance in the sparsity number of the 

input signal. We also investigated the sparsity variance of different biomedical signals to 

provide justification for implementing an adaptive compressive-sensing system. We then 

validated our proposed system through experiments conducted on a custom embedded 

hardware. We showed that our adaptive compressive-sensing system can reduce power 

consumption by 16.2%, without any major change on the sensor node. Despite this initial 

success, the criteria for which the adaptive system should change the compression factor has 

not been fully explored and is the subject of future work Furthermore, the relationship between 

sparsity and the desired compression factor is also still unknown for real biomedical signals, 

and requires future research. 

2.7 Appendix A: Dictionary Learning 

This appendix adopted from [21]. Dictionary learning is a topic in signal processing area. 

Dictionary is usually used for sparse representation or approximation of signals. In sparse 

representation a vector 𝑥 is represented or approximated as a linear combination of a few atoms 

of dictionary 𝐷. Each column of 𝐷 is called atom. 

 𝑥𝑎 = 𝐷. 𝑤  , 𝐷 ∈ ℝ𝑁×𝐾 (2.5) 

Where 𝑤 is a vector containing mostly zero coefficients. Dictionary is the problem of finding 

𝐷 such that the approximation of many vectors (the training set) are as good as possible given 

a sparseness criterion on the coefficients (i.e. allowing only a small number of non-zero 

coefficients for each approximation). Here is an example: 

 
𝑥𝑎 = 𝐷. 𝑤 = 𝑤1𝑑1 + 𝑤4𝑑4 + 𝑤7𝑑7 

𝑥 = 𝑥𝑎 + 𝑟 ∴   𝑟 = 𝑥 − 𝑥𝑎 = 𝑥 − 𝐷. 𝑤 
(2.6) 

Where 𝑤1, 𝑤4, 𝑤7 are respectively first, fourth and seventh element of vector 𝑤 and 𝑑1, 𝑑4, 𝑑7 

are respectively first, fourth and seventh column (atom) of dictionary. If most of entries in 𝑤 

are zero, this is a sparse approximation. We can find the optimum 𝑤 by solving the following 

optimization problem: 

 𝑤𝑜𝑝𝑡 = arg min
𝑤

(‖𝑤‖𝑝 + 𝛾‖𝑥 − 𝐷. 𝑤‖2
2)  ,    𝑝 ∈ {0,1} (2.7) 

The process of dictionary learning starts with collection (L) of training vectors (training set) 

collected in a matrix 𝑋 ∈ ℝ𝑁×𝐿: 
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{𝐷𝑜𝑝𝑡 , 𝑊𝑜𝑝𝑡} = arg min

𝐷,𝑊
∑(‖𝑤𝑙‖𝑝 + 𝛾‖𝑋 − 𝐷. 𝑊‖2

2)

𝐿

𝑙=1

  , 𝑝 ∈ {0,1}   

𝑊𝑜𝑝𝑡 ∈ ℝ𝐾×𝐿 , 𝐷𝑜𝑝𝑡 ∈ ℝ𝑁×𝐾 

(2.8) 

Different methods are available for dictionary learning such as MOD, K-SVD, RSL-DLA. K-

SVD is an iterative method including two steps in each iteration: 

1- Keeping 𝐷 fixed and find 𝑊. This gives 𝐿 independent problems. 

2- Keeping only non-zero positions in 𝑊 fixed find 𝐷 and 𝑊 using Singular Value 

Decomposition (SVD) decomposition. 
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3. A Compressive-Sensing Sensor-on-Chip Incorporating Statistics 

Collection to Improve Reconstruction Performance 

3.1 Abstract  

Reconstructing signals accurately is a critical aspect of compressive sensing. We propose a 

compressive-sensing sensor-on-chip that compresses and also extracts key statistics of the input 

signal at sampling time. These statistics can be used at the receiver to significantly improve the 

accuracy of reconstruction. When compared against a conventional compressive-sensing 

system, our experimental measured results demonstrate an improvement of as much as 9-18 

dB in the signal-to-error (SER) of the reconstructed signal, depending on input data type and 

compression factor.  

 

Keywords: compressive sensing, sensor-on-chip, reconstruction error, statistics collection. 

3.2 Introduction 

Power consumption is one among the most critical constraints for sensor networks and future 

Internet-of-Things devices. The most power-consuming block in a sensor system-on-chip is 

the radio (transmitter), typically responsible for more than 60-80% of the total sensor’s energy 

usage [24]. Thus, one direct way to reduce the radio’s energy consumption is to minimize the 

amount of transmitted data, such as by using data compression. Compressive sensing is an 

attractive way of compressing data since it requires no prior knowledge about the input signal, 

as long as the signal exhibits a property called sparsity. It is broadly applicable because many 

types of sensor data exhibit sparsity, including biomedical signals [25].  

Although compressive sensing is a signal-agnostic method of compression, incorporating 

additional statistics about the input signal (along with its sparsity) can provide more 

information that can aid reconstruction algorithms at the receiver. Hence, such statistics 

collection (SC) can improve the accuracy of signal reconstruction. However, to realize systems 

based on this principle, sensor nodes will need to transmit additional data (statistics) to the 

receiver, which may increase transmission-energy costs. 

In the literature, various systems have previously implemented the compressive-sensing 

framework [26][27].  However, all of them employ blind reconstruction with no SC. They do 

not incorporate any extra information about the input signal to aid reconstruction, resulting in 

less-than-optimal SERs at the receiver. 
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In this paper, we implement for the first time a compressive-sensing framework whose 

reconstruction is aided by statistics collection. We demonstrate how to fuse sensor data and 

statistics information together to improve the signal-to-error ratio (SER) of reconstruction by 

as much as 18 dB. Furthermore, using various low-power design techniques, we show that for 

an ECG data input, SC can be performed with just 0.4µW/12.6µW (dynamic/static power) at a 

sampling rate of 96 kHz (an overhead of <1% of the communication energy assuming a 1mW 

radio). 

The paper is organized as follows. In Section II, we provide background on compressive 

sensing, reconstruction, and the design of the proposed SC approach. We then describe the 

micro-architectural details of the various sub-blocks of the sensor-on-chip (SoC) in Section III. 

We present the digital circuit implementation of the SoC in Section IV, measurement results in 

Section V, and conclusions in Section VI. 

3.3 System Overview  

3.3.1 Background on Compressive Sensing 

In compressive sensing, compression of digitized data is performed using matrix 

multiplications. In particular, an uncompressed input vector 𝒇 of size N is multiplied by a 

measurement matrix 𝚽 of size M×N, producing a measurement vector 𝒚 of size M. Since 𝚽 is 

typically a matrix of random numbers, 𝒚 is a vector of random linear projections of 𝒇 onto 𝚽. 

To reconstruct the original signal 𝒇 from the measured signal 𝒚, we need to solve a set of 

equations, where the number of equations is much less than the number of unknown variables. 

In general, there is no unique solution for these types of equations. However, the theory of 

compressive sensing [5] shows that if the signal 𝒇 is sparse in any basis 𝚿 (e.g. time, Fourier, 

wavelet), then there exist known techniques to reconstruct the original signal with minimum 

error using convex optimization 0. In other words, if there is a transformation matrix 𝚿 such 

that 𝒇 = 𝚿𝐱 (and therefore 𝒚 = 𝚽𝒇 = 𝚽𝚿𝐱) and 𝐱 is sparse, then reconstruction is possible. 

Since reconstruction is complex, in typical sensing systems, it is usually performed at an 

energy-unconstrained receiver, such as in a cellphone or the cloud. 

3.3.2 SC-Assisted Reconstruction 

Various algorithms are available for reconstruction [28]. Most of them attempt to minimize the 

l1-norm of 𝐱 using an iterative approach. The gradient-projection for sparse reconstruction 

(GPSR) algorithm is one such algorithm that minimizes the l1-norm and optimization error 

simultaneously, as shown below [30]: 
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𝑥∗ = 𝑎𝑟𝑔 min

𝑥
𝜏‖𝒙‖1 + 0.5‖𝒚 − 𝚽𝒙‖2

2 (3.1) 

where 𝜏 is a non-negative real parameter. In the above formulation, note that 𝜏 can also be a 

column vector with the same number of non-negative entries as x. In this case, the objective 

function then weighs each element of x differently such that the following relationship holds 

true: 

 

𝑥∗ = 𝑎𝑟𝑔 min
𝑥

𝜏𝑇𝑎𝑏𝑠(𝑥) + 0.5‖𝑦 − 𝚽𝑥‖2
2 

 

(3.2) 

  

In this paper, our system first extracts some statistics about the sensor’s input signal (i.e. timing 

location of the R-peaks in the ECG). Based on these statistics, during reconstruction at the 

receiver, we choose smaller values for the elements of vector 𝜏 that correspond to more 

important timing locations of the input signal. Using this technique, we can significantly 

decrease the reconstruction error (results shown in Section V). One drawback of this method 

is that the input signal x must be sparse in time. To the best of our knowledge, there are 

currently no similar algorithms for signals that are sparse in other domains (e.g., wavelet), so 

we leave this for future work.  

3.4 Sensor-on-Chip Architecture 

Figure 3-1 shows the block diagram of the proposed SC-assisted compressive-sensing SoC. It 

consists of an analog front-end (AFE), analog-to-digital converter (ADC), and digital-

processing module. The digital-processing module comprises of specialized elements for 

compressive sensing (CS), statistics collection (SC), and packet management (PM) that 

organizes all of the required data into a packet format and relays them to the serial interface. 

Next we present implementation details on each of the sub-blocks. 

 

Figure 3-1: Block diagram of the proposed SC-assisted compressive-sensing SoC. 
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loop (DSL) and a differential output buffer (X1). Figure 3-2 shows block diagram of the AFE 

and its output for an ECG input. The FGA is used to adjust the bandwidth of the amplifier from 

250-935 Hz, while the PGA is used to adjust the gain between 40-53.7 dB. The DSL rejects 

the offset of the input signal and also sets the high pass corner of the amplifier. The schematic 

of the CFIA is shown in Figure 3-3. It includes three transconductance stages, one each for the 

input signal (Vin), feedback input (Vfb), and DSL output (Vos). The current through the input 

and feedback differential pairs are equal in order to obtain equivalent gains, while a common-

source stage is used to drive the load.  The measured AFE performance is listed in Table 3-1. 

 

Figure 3-2: Block diagram of the AFE. 

 

Figure 3-3: Schematic of the CFIA. 

3.4.2 Analog-to-Digital Converter 

For high-resolution data conversion, higher-order ΔΣ ADCs are more prone to instability, and 

exhibit a limited non-overloaded input range. Therefore, we integrate a two-step incremental 

ADC (IADC), which was previously presented in [31]. The two-step operation achieves nearly 

third-order noise shaping performance while using only second-order IADC circuitry, 

improving the energy efficiency significantly. The measured performance shows that at 500S/s, 

the ADC achieves a 100 dB dynamic range and 91 dB SNDR for a 250 Hz input signal. The 
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3.4.3 Digital-Processing Module 

On-chip digital processing includes three main blocks. First, the compressive-sensing (CS) 

block implements compression, where the number of measurements (M) is fixed to 50 in this 

design. To change the compression factor (CF), the user needs to adjust the length of the input 

signal (N). Second, the SC block extracts the maximum, threshold point, and for an ECG input, 

the location and width of the R-peaks. Third, the PM organizes all of the required data into a 

packet and relays them out of the chip through the SPI port. In the next section, we present 

more details on each of these blocks. 

3.5 Digital System Implementation 

3.5.1 Compressive-Sensing Block 

This block implements the multiplication of a set of N input samples (coming from the ADC) 

with a random M×N matrix 𝚽 with randomly selected 0 and 1 values.  To guarantee that the 

columns of 𝚽 are independent, we combine the outputs of two linear-feedback shift registers 

(LFSR)[24]. The compressive-sensing block thus generates M output samples for every N input 

samples. Each of M output samples are inner products of one row of 𝚽 and the N input samples. 

Since the elements of 𝚽 are either 0 or 1, we use a select-and-accumulate (SAC) unit to 

implement this inner-product computation. The clock signal of the digital blocks has a 

frequency of 96 kHz and is provided by the ADC. If the corresponding element of 𝚽 is 0, the 

clock is gated and the output of the SAC does not change. If it is 1, then the value of the ADC 

sample will be added to the output of the SAC. After N ADC samples, the SAC contains the 

final value and is then stored in a secondary register, resetting the SAC for the next data block. 

Figure 3-4 and Figure 3-5 show the compressive-sensing block and LFSR-based random matrix 

generation block, respectively. 

 

 

Figure 3-4: Block diagram of the compressive-sensing block. 

DFF

D      Q

Rst

Ф1,i 
clk_en1 

DFF

D      Q

Rst

Ф1,50 
clk_en50 

0

49

Controller

From 

ADC

N

Clk

 (96 kHz)

sel
reset

se
l

re
set

clk_eni 

LFSR clk

reset



29 

 

 

 

Figure 3-5: Hardware to generate elements of the random matrix 𝚽. 

3.5.2 Statistics-Collection Block 

SC operates by first finding the index and value of the largest element in each set of the N input 

samples. It also calculates the start index and width of a consecutive number of data samples 

that are above a user-defined threshold level. To limit the amount of data overhead created by 

the SC, the SC only extracts the first two locations of where the threshold is passed. The SC 

also finds the location and width of the first two R-peaks in the N samples. Thus, for every 

block of N ADC samples, the SC generates ten 16-bit values for the above statistics, resulting 

in a 20% data overhead. In practice, this overhead can be easily further reduced by using a 

larger value of M. Figure 3-6 shows block diagram of SC block. 

 

Figure 3-6: Block diagram of statistics-collection block. 
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as discussed in Section II, the current GPSR algorithm currently works only with signals that 

are sparse-in-time (i.e., 𝚿 is a unity matrix), such as UWB signals, neural spikes, and time-

sparse ECG waveforms. As part of future work, we plan to use a modification of this algorithm 

for signals that are sparse in other domains. 

Figure 3-8 shows the SER for different compression factors with and without using 

statistics for the same pulse-like input.  The SER is defined in Eq. (3) where 𝒇, 𝒇∗ are the 

original and reconstructed signals, respectively: 

 
𝑆𝐸𝑅 = 10 log10(

‖𝑓‖2
2

‖𝑓 − 𝑓∗‖2
2) (3.3) 

As shown in Figure 3-8 , SC-assisted reconstruction improves SER by as much as 18 dB.  

Finally, we demonstrate the effect of using statistic collection on the SER for a real ECG 

signal input, where timing samples that are not located near the R-peak location and below an 

adjustable threshold value are converted to zero, thereby providing sparsity in the time domain.  

Measurements of the reconstructed ECG R-peak waveform are shown in Figure 3-9. For this 

real ECG waveform experiment, we observe a 9 dB improvement in the SER. The die 

photograph of the SoC is shown in Figure 3-10, and a comparison with other similar 

compressive-sensing systems is summarized in Table 3-1. 

 

 

Figure 3-7: SC-assisted versus conventional reconstruction for a pulse waveform.  
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Figure 3-8: SER vs. compression factor with and without using signal statistics. 

 

Figure 3-9: Impact of SC on reconstruction for an ECG signal. 

 

Figure 3-10: Die photograph of the proposed SoC 
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3.7 Conclusion 

In this paper we presented a compressive-sensing SoC for compressing biomedical sensor data 

that incorporates statistics collection (SC). We showed that using some statistics from the input 

signal can dramatically improve the performance of reconstruction algorithms for signals that 

are sparse in the time domain. As part of future work, we are modifying the GPSR algorithm 

such that it can be used for signals that are sparse in non-time domain bases. 

Table 3-1: Performance comparison with previous compressive-sensing SoCs 

 
Previous CS Sensor-on-Chip 

This Work [3] [4] 

AFE No No 

Power: 10uW 

Gain: 40/53.7 dB 

BW:250/476/721 Hz 

Input Impedance: 2.5G CMRR: 73 dB 

@50Hz 

ADC 

SAR  

5-bits ENOB 

< 1.1µW 

SAR  

6.5-bits 

ENOB 

 

Incremental  

15-bits ENOB 

10.7 µW 

Compression 

2.5µW @ 100 

kHz 

28nW @ 

2kHz 

10.7 µW Static 

0.7 µW Dynamic 

@ 96kHz 

Statistics 

Collection 
No No 

12.6 µW Static 

0.4 µW Dynamic 

@ 96kHz 

Technology 90 nm CMOS 
0.13 µm 

CMOS 
65nm CMOS 
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3.9 Appendix B: Hardware Implementation Details 

The major benefit of CS algorithm is its simple implementation. Here we explain in more 

details the hardware implementation of CS block. CS as shown in Figure 3-11 is responsible 

for multiplication of random matrix Φ and vector 𝑓 of input signal samples. 

 

Figure 3-11: CS block implements a matrix-vector implementation 

The point is all elements of Φ are either 1 or 0. By rewriting matrix-vector multiplication we 

have equation (3.4). Φ𝑖 is the ith column of Φ. 

 

[

𝑦1

𝑦2

⋮
𝑦50

] = 𝑓1Φ1 + 𝑓2Φ2 + ⋯ + 𝑓𝑁Φ𝑁 (3.4) 

For the simplicity of implementation the number of output samples is always fixed and equal 

to 50. So to change the compression rate we change the number of samples in input vector 𝑓 

(N). Figure 3-12 shows the hardware used for implementation of (3.4). It consists of 50 (number 

of output samples) accumulator. The input clock to these accumulators are masked with 

elements of Φ. If one element is 0, it means the output of accumulator shouldn’t change and 

this is what exactly the AND gate is for. The LFSR block generates one column of  Φ in each 

clock cycle. At the first clock, when the first input sample (𝑓1) is ready the LFSR also generates 

the first column of Φ (Φ1) as shows in Figure 3-13. At this time any output which its 

corresponding element in Φ is 1 will change based on the input sample. For particular Φ shown 

in Figure 3-11 for example 𝑦2 will change but 𝑦1 will be fixed after first clock cycle. The same 

process repeats for the second clock cycle and this time both 𝑦1 and 𝑦2 will change as shown 

in Figure 3-14 because their corresponding elements in Φ is 1. Finally after Nth clock, all 50 

outputs have their final values and ready to transmit as show in Figure 3-15. 
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Figure 3-12: Hardware block diagram for CS implementation 

 

 

Figure 3-13: Signal values after the first clock cycle 

 

 

Figure 3-14: Signal values after the second clock cycle 
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Figure 3-15: Outputs are ready to transmit after the Nth clock cycle 

The same process will continue with the next block of N input samples. There is a timing block 

in system to reset hardware at the end of each data block. Packet manager block creates a data 

packet and sends the whole packet to serial interface to send data out of the chip. Figure 3-16 

shows format of data packet. Finally SPI used as a serial interface to transmit data out of chip. 

SPI is a 3-wire interface and Figure 3-17 shows SPI signaling. 

 

 

Figure 3-16: Data packet format 

 

 

Figure 3-17: SPI interface signaling 
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4. A Framework For Compressive-Sensing of 3D Point Clouds 

4.1 Abstract 

In this paper we propose a framework for analyzing 3D point cloud data compression using 

compressive-sensing. This framework uses real 3D point clouds and investigates different error 

sources that may affect performance of the system. Experimental results show that excluding 

edge points from error calculation gives us better criteria to decide the best compression ratio 

in the system. 

 

Keywords: compressive-sensing; point cloud; LiDAR 

4.2 Introduction 

In recent years depth sensing data has been widely used in many computer vision applications, 

such as 3D reconstruction, augmented reality (e.g. Microsoft HoloLens), autonomous driving 

(e.g. Google car), collision avoidance (e.g. DJI drones), and gesture recognition (e.g. Microsoft 

Kinect). The ability for a machine to sense both color (RGB) and depth (Depth Map) has been 

shown to significantly improve image classification. 

The conventional method for acquiring depth information is called stereo vision. It uses 

two RGB cameras to obtain a pair of stereo images and then uses computational algorithms to 

extract depth data from those images. Although this method provides a high resolution depth 

map and uses simple and cheap hardware, however, it uses a large amount of computational 

DSP hardware.  More importantly, stereo vision requires a large illumination that makes it 

inaccurate to use it in dark environments or poor contrast light scenarios [32]. As a result this 

method is not accurate for some applications like autonomous driving. 

Light Detection And Ranging (LiDAR) is an emerging mechanism that uses time-of-flight 

(ToF) measurements to compute the distance from the laser source to the target. Although the 

concept of ToF measurement is very simple, because of high speed of light its hardware 

implementation was not possible until recent years that high speed electronics are available. 

There are two types of LiDAR system. A scanning LiDAR typically acquires multiple 

samples of a volume by scanning the region at a specified scan rate. The scanning device can 

be a brushless motor or a MEMS mirror. Flash LiDAR uses an array of imager in which a 2 

dimensional array of sensors (e.g. PD or SPAD) are used to simultaneously acquire points, just 



39 

 

 

as a 2 dimensional scene is acquired with an array of detectors in a conventional camera [33]. 

For either single-beam scanning or flash LiDAR, The resulting measurement is called a point 

cloud of the region. Scanning LiDAR is generally slower than flash LiDAR but it is usually 

able to operate up to longer distances since all energy of the laser is focused at one point.  

In either scanning or flash LiDAR the light source can be pulsed or modulated by a 

continuous-wave (CW) source, typically a sinusoid or square wave. Pulsed LiDAR requires a 

fast photo-detector, usually a single-photon avalanche diode (SPAD) and ToF can be calculated 

by using a Time to Digital Converter (TDC)[34]. This approach necessitates fast electronics, 

since achieving 1 millimeter accuracy requires timing a pulse of 6.6 picoseconds in duration. 

In CW Lidar, the laser is modulated by a continuous sine wave and ToF will be calculated by 

measuring the phase difference between transmitted and received signal. CW LiDAR doesn’t 

need high frequency hardware but the maximum depth is limited by modulation frequency [32]. 

Unfortunately, there are two key limitations to LiDAR sensing. The first limitation is the 

amount of output data.  LiDAR data cannot use the traditional JPG encoding (used for 

traditional 2D-images), so the output data is typically uncompressed.  The result is that there is 

huge amount of data for large scanning LiDAR, and currently there is no way to compress that 

data.  

The second issue is the limited frame rate. Frame rate here means how many point cloud 

can LiDAR device capture in a second.  The frame rate is usually limited by scanning device 

or readout circuit and for many applications (e.g. autonomous driving) high frame rate is 

required. A key question in any power efficient LiDAR system (e.g. wireless sensor 

applications) is how many points we need to capture to fully obtain the scene point cloud. The 

lower points we need to capture the lower energy will be needed to transmit this data to the 

receiver. Also it increases the frame rate. 

Compressive sensing is a method that enables reduction of the LiDAR data.  Previous 

papers [35][36][37] attempted to do this, but didn’t propose a comprehensive framework to 

analyze a compressive-sensing LiDAR system. Lau [35] proposes a new way of applying 

compressive sensing, called re-sampling compressive sampling to reduce LiDAR sampling rate 

required to capture 3 dimensional scenes. This method needs to generate and process a matrix 

with the order of 𝑛4 elements for a 𝑛 × 𝑛 point-cloud that makes it computationally impractical 

for many applications. Hawe [36] proposes a conjugate subgradient method for solving the 

arising compressive-sensing problem of a depth map from a stereo vision camera. This method 

efficiently subsamples the depth map by randomly choosing points just from edges of the object 
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in the depth map, however, this method is just useful for stereo vision applications that depth 

map is extracted from original RGB images, so the edges points are known. For ToF camera 

finding edge points in a complex point cloud is not trivial and this method can’t be used. Liu 

[37] shows that stereo vision depth maps are sparser using a dictionary of both wavelet and 

contourlet atoms. He also proposed a new reconstruction algorithm that results in smaller error 

in the reconstruction depth map. However this method also doesn’t investigate the performance 

on a point cloud from a ToF camera. A key question that none of the above works answer is 

what sub-sampling ratio (compression rate) is actually enough for a given point cloud. We 

know that a higher compression rate results in higher reconstruction error, however, we need 

to know how much error is acceptable for a given point cloud. More importantly we are 

interested in finding the best criterion for the error measurement. To the best of our knowledge 

all literatures proposed compressive-sensing for depth map or point cloud use Mean Absolute 

Error (MAE) over all data points that may not be the best criterion. 

This paper presents a framework and methodology for compressive sensing of a LiDAR 

system. In this work we investigate different error criteria and the effect of different 

compression rates on these errors for multiple point clouds. Point clouds used in this research 

are taken by a Google Tango tablet that uses a CW ToF depth sensor [33]. We investigate two 

different error criteria: MAE over the whole point cloud with and without excluding errors at 

the edge points. The goal is to create a framework for point cloud compressive-sensing that 

gives us a better understanding about the best criterion for the selection of the optimum 

compression rate for a given scene. 

This paper is organized as follows. Section II introduces a basic background for 

compressive-sensing. Section III explains our proposed framework to analyze a compressive-

sensing LiDAR system. Experimental results will be shown in Section IV and finally Section 

V provides conclusion. 

4.3 Compressive-sensing  Background 

Compression using compressive-sensing is achieved using a simple matrix multiplication, 

where an uncompressed input vector 𝒇 of size N multiplied by a measurement matrix 𝚽 of size 

M-by-N that produces a measurement vector 𝒚 of size M. 𝚽 is a matrix of random numbers 

(e.g. Bernoulli, Gaussian, uniform, etc.), such that 𝒚 is a vector of random linear projections of 

𝒇 on 𝚽 . Compressive-sensing has shown to be able to compress different type of sensor signal 

with compression factors as large as 10x, which reduces the amount of data transmitted and 
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therefore the total power dissipation of the sensor node by a similar factor. To reconstruct the 

original signal 𝒇 from the measured signal 𝒚 in the receiver, we need to solve an 

underdetermined set of equations where the number of equations is much less than the number 

of unknown variables. In general, there is not a unique solution for these types of equations. 

However, compressive-sensing theory shows that if the signal 𝒇 is sparse in any basis (e.g. 

Fourier transform, wavelet transform), then there are optimized methods to reconstruct the 

original signal with minimum error based on convex optimization [39]. In other words, if there 

is a transformation matrix 𝚿 such that 𝒇 = 𝚿𝐱 (and therefore 𝒚 = 𝚽𝒇 = 𝚽𝚿𝐱) and 𝐱 is sparse, 

then reconstruction is possible. Figure 4-1 summarizes the complete compressive-sensing 

framework [40]. 

 

Figure 4-1: Complete compressive-sensing framework 

4.4 Compressive-sensing Framework For LiDAR 

Figure 4-2 shows the proposed framework for analysis of a compressive-sensing LiDAR 

system. After taking point cloud we need to remove singular points. These points are created 

because of LiDAR measurement error. Figure 4-3 shows one sample point cloud before 

removing singular points. As it can be seen these points usually happen at the edge of the 

objects and are result of light diffraction at the edges. Singular points create unwanted error 

when we convert point cloud to gray scale image. 

 

Figure 4-2: Compressive-sensing framework for LiDAR 

The next step is removing background points. Background points are usually not the points of 

interest and affect analysis of the compressive-sensing LiDAR system. Background usually 

includes a shadow of front objects and creates dummy edge points after converting point cloud 
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to a 2D image. Figure 4-3 shows how background points create dummy edges in 2D mapping 

of the point cloud. After removing background points we convert point cloud to a 2D gray scale 

image. This step helps to treat point cloud as an image and makes compressive-sensing 

implementation and analysis much easier. The only point here is that we have to make sure the 

resolution of 2D image is high enough such that multiple points of point cloud don’t map to a 

single pixel of 2D image. Having a 2D image implementation of compressive-sensing is 

straightforward and explained in different papers [36][37]. In this work we assume we have no 

a-priori knowledge of edge points and random samples of point cloud for compressive-sensing 

are chosen based on a uniform random pattern. 

 

Figure 4-3: Singular points and dummy edges in point cloud of scene 2 

After compressive-sensing we need to reconstruct the original 2D image from the compressed 

data by solving an optimization problem as explained in Section II. It is shown that point cloud 

data is sparse in wavelet and contourlet domains [37]. In this work we consider wavelet domain 

sparsity for reconstruction. Finally we calculate the reconstruction error. This error is actually 

the only parameter available to analyze how compressive-sensing affects the point cloud and 

what is the best compression rate based on this error. All available literature use MAE as an 

error criterion. This is a reasonable criterion but the problem is that when we calculate MAE 

over the whole point cloud the error from non-important points may exceed the error resulted 

from important points and affect our analysis. In this work we look at another error criterion that 

is MAE over the whole point cloud without considering errors from edge points. In other words 

we exclude edge points from error calculation. 

4.5 Experimental Results 

We capture point cloud from four different scenes with different complexity. After removing 

singular and background points we compress point clouds with different rates and for each case 

Top view Front view 
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calculate two different errors to understand how they are related to each other. Figure 4-3 shows 

front and top view of a 3D point cloud (from scene 2 in Figure 4-4). It can be seen that how 

singular points exist because of measurement error of LiDAR device at the edge of the objects. 

Front view shows how background points lead to false edges that create dummy edges in the 

resulting 2D image. As a result, our framework proposes to remove singular points and 

background points before next steps to avoid extra error in compressive-sensing system 

because of these artifact effects. 

 

Figure 4-4: Four different scenes and their point clouds 

Figure 4-4 shows experimental results. The first row is RGB image of each of four scenes. The 

second row is gray scale 2D version of 3D point cloud after removing singular and background 

points. The third row shows the reconstructed gray scale image after compressive-sensing.  The 

fourth row is the reconstruction error or in other word the difference between second and third 

rows. The darker pixels mean smaller errors. It can be seen that the largest errors happen at the 
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edge points. That is why it intuitively makes scene to exclude these points from error 

calculation. Remember that what we really need to know is distance of each object to LiDAR 

device so removing few edge points doesn’t create any problem. The fifth row shows plots of 

two different errors.  We calculate Mean Absolute Error (MAE) over all pixels of the point 

cloud with and without considering the errors at the edge points. For each point cloud we 

calculate error at five different compression rates of 1.54, 1.67, 2, 2.5, 2.86 that are respectively 

correspond to the under sampling ratios of 0.65, 0.6, 0.5, 0.4, 0.35. In the sixth row we plot the 

differential error. Starting at compression rate of 1.67 we calculate the difference between the 

current error and the reconstruction error at the previous compression rate. 

The question here is what the optimum compression rate for a given scene is without 

actually looking at the reconstructed point cloud. We suggest that using differential error helps 

to find this optimum rate. As you can see for scene 2 and 4 the highest increase rate at the error 

happens at compression rate of 2.5. We can find this by looking at the slope of the differential 

error plot. For scenes 3 and 4 this highest slope happens at the compression rate of 2 that can 

be selected as the optimum rate. Figure 4-5 shows reconstructed point clouds of scenes 1 and 

4 at 2.5x compression. It can visually be seen that at this compression rate, scene 1 

reconstructed well, however, scene 4 shows multiple extra objects because of error. This is 

compatible with our previous finding that 2.5x is not an optimum rate for scene 4. 

 

Figure 4-5: Point clouds of scene 1 and  4 after reconstruction at compression rate of 2.5 

Having such criterion for automatically choosing the optimum compression rate helps to 

develop machine learning or deep learning algorithm to find the optimum compression rate by 

looking at the input scene. It also can be seen that excluding edge points from error calculation 

slightly increases the slope of differential error plot at the optimum compression rate that make 

it easier to find this point. 

4.6 Conclusion 

In this paper we proposed a framework to analyze compressive-sensing LiDAR system. 

Experiments are done using different point clouds captured by a Google Tango tablet. We 
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showed that the maximum error generated by compressive-sensing happens at the edge points 

of point cloud. We also showed the effect of scene background and intrinsic measurement error 

of LiDAR at the edge points to the resulting point cloud. We finally showed that excluding 

edge points from error calculation can helps us to find an optimum compression rate for each 

point cloud in these specific scenes. 

4.7 Appendix C: Basics of Depth Measurement 

Depth measurement has found many applications in recent years including 3D scanning, 

gesture recognition and autonomous driving as shown in Figure 4-6. There are three major 

methods to measure distance to an object. Stereo matching is a cost-efficient but 

computationally intensive method that uses two RGB cameras located in a fixed position. By 

finding difference between locations of a particular point of object in two images, distance of 

that point to both cameras can be calculated. Structured light projects a structured pattern of 

light to the object as shown in Figure 4-7. An algorithm figures out how much the original 

pattern is distorted and based on that 3D shape of object can be extracted. The third method is 

called Time of Flight (ToF). A transmitter send a narrow pulse of laser beam. A receiver detects 

the received pulse. Since light travels in fixed speed, having time of flight easily calculates 

distance. Figure 4-8 shows a block diagram of this system. A device that uses ToF technique 

to extract depth information in called LiDAR. 

 

Figure 4-6: Some applications of depth measurement 

 

Figure 4-7: A structured pattern light  (Source: Microsoft Robotics Blog) 
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Figure 4-8: A simplified ToF camera system [Source: www.automationworld.com] 

A LiDAR device always includes a laser and a light detector and it may have a scanning device 

to scan a field of view. The result of scanning a field of view by LiDAR is called 3D point 

cloud that has distance to different points in the area of scanning. Figure 4-9 shows a sample 

LiDAR system setup. 

 

Figure 4-9: A sample LiDAR system setup 

Figure 4-10 shows a history of commercial devices used by distance measurements. As you 

can see new devices mostly use ToF mechanism. 

http://www.automationworld.com/
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Figure 4-10: History of depth measurement devices 

As mentioned before a LiDAR device includes a laser and a light detector as receiver. Light 

detector can be array based (e.g. PMD 19k-S3 from PMD technologies) or just a single photo 

diode. In this case usually a scanning device (e.g. MEMS mirror). Table 4-1 shows an example 

of these devices and their specifications. 

Table 4-1: Some typical parts used in a LiDAR device 

Part number Type Vendor Specifications  

PMD 19k-S3 Sensor PMD 120x160 Pixels, Up to 80 MHz  

175 mW (@ 3 ms Integration time & 5MHz 

readout speed) 

Flash 

SLD1239JL-54 Laser Diode Sony 2.5vx150mA = 375 mW  

(To generate 100 mW optical power) 

Flash 

Scanning  

MEMS 

Mirror/Driver 

Scanning Device Mirrorcle ~150 mW  Scanning  

C30659-900 APD Excelitas 35mA*5v = 175 mW Scanning  

 

Photo detector is the main part of a LiDAR device. Many recent detectors are designed as array 

of single detectors (shown as Pixel Matrix in Figure 4-11). The benefit of this array is that there 

is no need for a scanning device. Figure 4-11 shows a block diagram of an advanced LiDAR 

(depth) camera. 

PmdTechnologies 

Canesta 

PrimeSense 

MESA Imaging 

SoftKinetic 

Microsoft Kinect 

Microsoft Kinect  

(ToF) 

Quanergy (ToF) 

2000 2002 2005 2006 2007 2009 2013 2016 



48 

 

 

 

Figure 4-11: A simplified block diagram of an advanced Lidar camera [41] 

As mentioned before a LiDAR device can work in CW or pulse mode. In both cases after photo 

diode there is a circuit to calculate ToF. In CW LiDAR a method called 4-bucket approach is 

used to calculate ToF. This method will be explained in more detail in Appendix D. In pulse 

LiDAR a Time to Digital Converter (TDC) is used to directly calculate the time difference 

between transmit and received pulse. A detail explanation of TDC design for LiDAR 

application can be found in [42]. Figure 4-12 shows a basic block diagram of a pulse LiDAR 

with TDC circuit as proposed in [42]. 

 

Figure 4-12: A pulsed puled LiDAR with TDC [42] 

There are other publications about design of TDC for LiDAR. Jihyun Cho [43] has a good work 

for reference. Recently different companies has made effort to make LiDAR cameras with 

higher range and lower cost. Innoluce [44] achieved 250 meters target range with their LiDAR 

shown in Figure 4-13. This is a scanning LiDAR and there is a MEMS mirror at its core. 

Quanergy [45] is another startup has made low cost LiDAR camera. 



49 

 

 

 

Figure 4-13: High range LiDAR from Innoluce 

Many researchers have done works in this area as well both in LiDAR hardware design and 

point cloud data processing. Ahmed Kirmani [46] proposed a compressive depth acquisition 

camera framework that uses a single sine wave light source and different spatial light modulator 

to extract multiple depth values from a single receive. Figure 4-14 shows basic block diagram 

of this work. 

 

Figure 4-14: A compressive depth acquisition camera framework 

Robert Moss [47] implemented a complete LiDAR camera system using a 2D MEMS 

mirror as shown in Figure 4-15. The FPGA is responsible for driving MEMS mirror 

and processing digital samples of received light. Milanovic [23] proposed a method 

for optical 3D tracking using a MEMS mirror that also can be used as a LiDAR 

camera. It uses a beam splitter to conduct receive light to the receiver as shown in 

Figure 4-16. 
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Figure 4-15: A LiDAR camera system using 2D MEME mirror 

 

Figure 4-16: MEMSEye system for optical tracking and depth measurement 

 

Mutto [49] gives very detailed understanding of CW ToF cameras. It also explains 4-bucket 

approach to calculate phase difference between transmitted and received signal. Unfortunately 

details of calculation is not provided. Appendix D shows necessary calculation for 4-bucket 

approach. Kadambi [50] proposes a new depth sensing architecture that explains a fixed coded 

aperture to reduce the number of sensors needed for depth measurement. He also proposed 

coded ToF cameras [51] that uses sparse deconvolution to address multipath interference and 

recovery of time profiles. Two major applications of this work are visualizing light sweeping 

a scene and recovering depth of transparent objects. Kadambi [52] also proposes concept of 

frequency domain ToF that extracts object depth in frequency domain. In other words in his 

proposed system depth measurement is only relied on frequency not phase. Bhandari [53] used 

modulation frequency diversity and sparse regularization for resolving multi-path interference 

in ToF imaging. Kadambi [54] introduced a complete survey of 3D depth cameras and their 
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applications in computer vision. Lange [55] has one of the earliest work that adequately 

formulates problem of depth measurement using ToF cameras. Shcherbakova [56] designed a 

3D camera based on linear-mode gain-modulated avalanche photodiodes. Foix [57] reviewed 

the state of the art in the field of ToF cameras.  Castorena [58] proposed a new mechanism for 

compressive sampling of CW LiDAR by using concept of finite rate of innovation. He also 

introduced a mechanism to model scene sparsity in LiDAR camera using compressive-

sampling [59]. Laky [60] formulated sparse representation of CW LiDAR point clouds. Niclass 

[61] implemented a CMOS SoC in 0.18 𝜇m thechnology for a 100-m range 10 frames/s 200×96 

pixel ToF camera. Wang [62] proposed a mechanism for edge extraction by merging 3D point 

cloud and 2D image data. A survey of LiDAR technology and its application in spacecraft 

relative navigation presented by Christian [63]. One issue of ToF cameras is that they need 

calibration. Kahlmann [64] explained the calibration process to increase accuracy of CW 

LiDAR. Uriarte [65] modeled distance nonlinearity in ToF cameras and corrected these 

nonlinearities using integration time offset. 

4.8 Appendix D: Detail of ToF Calculation 

As mentioned before ToF for pulse LiDAR can directly be measured by measuring time 

difference between transmitted and received pulse. For CW we need a mechanism to find phase 

difference between transmitted and received wave. We can calculate ToF by having phase since 

the light speed is fixed and known. A method called 4-bucket can be used to measure phase 

difference. Assume the transmit signal is a sine waveform in the form of equation (3.5). 

 𝑥(𝑡) = sin (𝑤0𝑡) (3.5) 

The received signal will have an amplitude and phase offset as equation (3.6). 

 𝑠(𝑡) = 𝐴 sin(𝑤0𝑡 + 𝜑) + 𝐵 (3.6) 

The goal is finding 𝐴, 𝐵, 𝜑. In 4-bucket approach we sample 𝑠(𝑡) with a clock frequency equal 

to 4 times of input frequency (𝑤0) as shown in Figure 4-17. As a result at the receiver we have 

four samples with equations as in (3.7). 
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Figure 4-17: 4-bucket approach to measure phase difference [64] 

 𝑠0 = 𝑐(0) = 𝐴 sin(𝜑) + 𝐵 

𝑠1 = 𝑐(1) = 𝐴 sin (2𝜋𝑓0 ×
1

4𝑓0
+ 𝜑) + 𝐵 =  𝐴 cos(𝜑) + 𝐵 

𝑠0 = 𝑐(2) = 𝐴 sin (2𝜋𝑓0 ×
2

4𝑓0
+ 𝜑) + 𝐵 =  −𝐴𝑠𝑖𝑛(𝜑) + 𝐵 

𝑠0 = 𝑐(3) = 𝐴 sin (2𝜋𝑓0 ×
3

4𝑓0
+ 𝜑) + 𝐵 =  −𝐴𝑐𝑜𝑠(𝜑) + 𝐵 

(3.7) 

We can write (3.7) in a matrix form of (3.8) that 𝑒 is measurement error. 

 

[

𝑠0

𝑠1

𝑠2

𝑠3

] = [

𝑠𝑖𝑛𝜑       1
𝑐𝑜𝑠𝜑       1
−𝑠𝑖𝑛𝜑    1
−𝑐𝑜𝑠𝜑    1

] . [
𝐴
𝐵

] + 𝑒 ⇒ 𝑦 = 𝐾𝑥 + 𝑒 (3.8) 

The goal is finding 𝐴, 𝐵, 𝜑 such that estimation error is minimized. 

 𝑎𝑟𝑔 min
𝑥

‖𝑦 − 𝐾𝑥‖2
2 (3.9) 

This is a standard least square estimation problem we know that the solution of (3.9) is equation 

(3.10). 

 𝑥 = (𝐾𝑇𝐾)−1𝐾𝑇𝑦 (3.10) 

 

Interestingly 𝐾𝑇𝐾 is independent of 𝜑 . 

 

𝐾𝑇𝐾 = [
𝑠𝑖𝑛𝜑  𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜑 − 𝑐𝑜𝑠𝜑 
1           1            1              1      

] [

𝑠𝑖𝑛𝜑       1
𝑐𝑜𝑠𝜑       1
−𝑠𝑖𝑛𝜑    1
−𝑐𝑜𝑠𝜑    1

] = [
2 0
0 4

] (3.11) 

By solving (3.10) one can find: 
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𝑥 = [
𝐴
𝐵

] = [

1

2
(𝑠0 − 𝑠2)𝑠𝑖𝑛𝜑 +

1

2
(𝑠1 − 𝑠3)𝑐𝑜𝑠𝜑

1

4
(𝑠0 + 𝑠1 + 𝑠2 + 𝑠3)

] (3.12) 

By replacing 𝐴, 𝐵 in (3.9) we finally find that: 

 𝜑 = tan−1(
𝑠0 − 𝑠2

𝑠1 − 𝑠3
) (3.13) 
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5. Adaptive Compressive-Sensing of 3D Point Clouds1 

5.1 Abstract 

In this paper we propose a mechanism for adaptive compressive-sensing of 3D point cloud. 

One problem with conventional compressive-sensing algorithm is a-priori fixed compression 

rate. In this work we show that there is a correlation between sparsity of point cloud and number 

of edge points. The algorithm uses this information to estimate sparsity of input point cloud 

and adaptively change compression rate to achieve the same reconstruction error. 

 

Keywords: adaptive compressive-sensing; point cloud; LiDAR 

5.2 Introduction 

In recent years, depth sensing data has been widely used in many computer vision applications, 

such as 3D reconstruction, augmented reality (e.g. Microsoft HoloLens), autonomous driving 

(e.g. Google car), collision avoidance (e.g. DJI drones), and gesture recognition (e.g. Microsoft 

Kinect). The ability for a machine to sense both color (RGB) and depth (Depth Map) has been 

shown to significantly improve image classification. The conventional method for acquiring 

depth information is called stereo vision. It uses two RGB cameras to obtain a pair of stereo 

images and then uses computational algorithms to extract depth data from those images. 

Although this method provides a high resolution depth map and uses simple and cheap 

hardware, however, it needs a large amount of computational DSP hardware.  More 

importantly, stereo vision requires enough illumination that makes it inaccurate to use it in dark 

environments or poor contrast light scenarios [66]. As a result this method is not accurate for 

some applications like autonomous driving. 

Light Detection And Ranging (LiDAR) is an emerging mechanism that uses time-of-flight 

(ToF) measurements to compute the distance from the laser source to the target. Although the 

concept of ToF measurement is very simple, because of high speed of light its hardware 

implementation was not possible until recent years that high speed electronics are available. 

There are two types of LiDAR system. A scanning LiDAR typically acquires multiple samples 

of a volume by scanning the region at a specified scan rate. The scanning device can be a 

brushless motor or a MEMS mirror. Flash LiDAR uses an array of imager in which a 2 

                                                 

1 This paper submitted to the 2nd International Conference on Signal and Image Processing (ICSIP), 2017. 
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dimensional array of sensors (e.g. PD or SPAD) are used to simultaneously acquire points, just 

as a 2 dimensional scene is acquired with an array of detectors in a conventional camera [67]. 

Scanning LiDAR is generally slower than flash LiDAR but it is usually able to operate up to 

longer distances since all energy of the laser is focused at one point.  

In either scanning or flash LiDAR the light source can be pulsed or modulated by a 

continuous-wave (CW) source, typically a sinusoid or square wave. Pulsed LiDAR requires a 

fast photo-detector, usually a single-photon avalanche diode (SPAD) and ToF can be calculated 

by using a Time to Digital Converter (TDC) [68]. This approach necessitates fast electronics, 

since achieving 1 millimeter accuracy requires timing a pulse of 6.6 picoseconds in duration. 

In CW Lidar, the laser is modulated by a continuous sine wave and ToF will be calculated by 

measuring the phase difference between transmitted and received signal. CW LiDAR doesn’t 

need high frequency hardware but the maximum depth is limited by modulation frequency [66]. 

For either single-beam scanning or flash LiDAR, the resulting measurement is called a point 

cloud of region. 

Many emerging technologies generate huge amount of data. Google self-driving car for 

example, gathers 750MB of sensor data per second. The LiDAR device used by Google car – 

a Velodyne 64 beam laser – can take up to 1.3 million data points per second. There are many 

efficient and standard algorithms (e.g. JPEG) to compress 2D images, however, unfortunately 

there is no standard way to compress 3D data. We can compress 3D point cloud if we convert 

it to a 2D gray-scale image and then apply JPEG to that 2D image. The problem is by converting 

3D to 2D we will lose some data, since 3D points may be non-uniformly distributed in space. 

Figure 5-1 shows a sample 3D point cloud an object with 15915 points and process of 

converting it to 2D image. It can be seen that all 3D points in the black box should be averaged 

and map to a single pixel value in 2D image plane. As shown in Table 5-1 for this point cloud 

even with a 1024x2048 pixels image we still lose some data points. As a result, this method of 

compression may be acceptable for some applications but it is not suitable for applications that 

need all data points like high resolution 3D shape extraction.  
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Figure 5-1: Process of converting 3D point cloud to 2D image 

 Table 5-1: Maximum number of 3D points mapped to a single 2D Pixel 

2D Image Size # of 2D Pixels 
Max # of 3D points mapped to 

a single 2D pixel 

64x128 8k 42 

128x256 32k 22 

256x512 128k 10 

512x1024 512k 5 

1024x2048 2M 2 

 

A key question in any power efficient LiDAR system (e.g. wireless sensor applications) is how 

many points we need to capture to fully obtain the scene point cloud. The lower points we need 

to capture the lower energy will be needed to transmit this data to the receiver. Compressive-

sensing is a method that enables direct compression of the LiDAR data.  Previous papers 

[35],[36],[37] attempted to apply CS to point cloud data. Lau [69] proposes a new way of 

applying compressive sensing, called re-sampling compressive sampling to reduce LiDAR 

sampling rate required to capture 3 dimensional scenes. This method needs to generate and 

process a matrix with the order of 𝑛4 elements for a 𝑛 × 𝑛 point-cloud that makes it 

computationally impractical for many applications. Hawe [70] proposes a conjugate 

subgradient method for solving the arising compressive-sensing problem of a depth map from 

a stereo vision camera. This method efficiently subsamples the depth map by randomly 

choosing points just from edges of the object in the depth map, however, this method is just 

useful for stereo vision applications that depth map is extracted from original RGB images, so 

the edges points are known. For ToF camera finding edge points in a complex point cloud is 

not trivial and this method can’t be used. Liu [71] shows that stereo vision depth maps are 

sparser using a dictionary of both wavelet and contourlet atoms. He also proposed a new 
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reconstruction algorithm that results in smaller error in the reconstruction depth map. However, 

this method also doesn’t investigate the performance on a point cloud from a ToF camera. None 

of these papers try to address the optimum rate for compression. As theory of CS suggests there 

is a relationship between sparsity of the input signal and optimum compression rate [72]. In 

other words, a fixed compression rate is not appropriate for CS. Instead, we need to adaptively 

change the rate based on the sparsity of point cloud, which gives us the idea of adaptive CS. In 

our previous paper [73] we applied adaptive CS to biomedical signals by calculating sparsity 

at the receiver node. This is an easy method since reconstruction algorithm at the receiver 

recovers that sparse representation of signal and we exactly calculate the sparsity and modify 

the compression rate based on that, however as we explained in [73], this method creates a 

delay in the system that may not be acceptable in some applications. 

In this paper, we show that there is a correlation between sparsity of point cloud and 

number of edge points in that point cloud and we can use number of edge points as an 

estimation of sparsity and modify the compression rate based on that. Since we directly 

estimate sparsity at the sensor node there is no delay in this mechanism. 

This paper is organized as follows. Section II introduces a basic background for 

compressive-sensing. Section III explains system models for adaptive CS. Section IV 

introduces system architecture for proposed adaptive CS of point cloud. Experimental results 

will be shown in Section V and finally Section VI provides conclusion. 

5.3 System Models for Adaptive Compressive-Sensing 

Figure 5-2 and Figure 5-3 show two possible methods for implementing adaptive compressive-

sensing, using the input signal sparsity to adjust the compression factor. In the first system 

shown in Figure 5-3, the LiDAR sensor transmit compressed data to the cloud and 

reconstruction algorithm in the cloud exactly calculates the sparsity and transmits it to the 

sensor. The sensor then adjusts its compression factor based on this information. Because the 

reconstruction algorithm already has the sparse representation of signal, this system can easily 

implement CS rate adaption in the sensor node; however, one limitation with this system is the 

round trip delay, or the latency required to calculate the sparsity in the cloud and the 

transmission delay to send the result back to the sensor. If this latency is large, the LiDAR 

sensor must buffer recently acquired data until it has received the most up-to-date estimate of 

sparsity from the receiver. Another problem is that the calculation of sparsity is performed on 
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the current data block; however, this result is then used to compress the next data block, which 

may have a different sparsity. 

 

Figure 5-2: Sparsity-calculation adaptive CS system 

 

Figure 5-3: Sparsity-estimation adaptive CS system 

The second system shown in Figure 5-3 estimates the sparsity of input data on the sensor node 

of the system. This eliminates possible problems associated with the round trip delay, and also 

allows for the calculated sparsity of each data block to be used in the compression of that same 

block. Unfortunately, this method requires additional power to operate the sparsity monitoring 

block, which may not be available on the energy-constrained sensor node. In addition, this 

system has no direct access to the sparse representation of the input signal, and therefore 

requires a sparsity estimation block that obtains the sparsity of the input data directly from the 

time domain signal. In our previous paper [73] we studied the feasibility and performance of 

first method. In this work we evaluate performance of second method for a different 

application. We show that we can use number of edge points in the point cloud to estimate 

sparsity of point cloud. 

5.4 System Architecture 

We found that there is a correlation between sparsity of point cloud data and number of edge 

points. Since there is no accurate algorithm to extract edge points directly from 3D points we 
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use a secondary sensor (RGB) to calculate this. Many LiDAR systems already has a cheap low 

resolution RGB camera beside LiDAR device (e.g. Google Tango). It is shown that if the 

LiDAR and camera are in a fixed position with respect to each other a projection matrix can 

convert 3D point clouds to correspondent 2D image captured by RGB camera. In other words, 

number of edge points in 2D image captured by RGB camera is approximately equal to number 

of edge points in 3D point cloud. Figure 5-4 shows the system architecture used in this project.  

 

Figure 5-4: System Architecture 

We used two different hardware sets to evaluate this system. The first set uses a Logitech C920 

HD webcam and LiDAR-Lite TOF sensor. It is mounted on turret which performs the scan of 

an area in 2 dimensions. It scans the scene and provides a point cloud with 12288 points. The 

second set uses a Google Tango that has an RGB sensor integrated in to the device. Figure 5-5 

shows these two hardware sets. 

 

Figure 5-5: Two hardware sets used to capture data: LiDAR-Lite (Left), Google Tango (Right) 

5.5 Experimental Results 

We capture point cloud from six different scenes with different complexity using LiDAR-Lite 

and Google Tango. Then we transfer point cloud to wavelet domain and count number of 

significant coefficients as a measure of sparsity. We also use Canny algorithm to extract edges 

from 2D image and count number of edge points. The next step is applying CS to point cloud. 

The initial compression rate assumed to be 2.5. We continue to compress point clouds with the 

same rate and the goal is to achieve similar reconstruction error that is calculated as Mean 
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Absolute Error (MAE). When error changes significantly we change the compression rate 

appropriately to get the similar error as before.  

Figure 5-6 and Figure 5-7 shows dataset captured by both LiDAR-Lite and Tango 

respectively. The first row is the 2D image captured by image sensor. The second row shows 

the output of edge detection algorithm on 2D image labeled with the total number of edge 

points. The third row shows the point cloud that is converted to 2D for better visualization and 

is labeled with the sparsity number of point cloud. As mentioned before this number represents 

number of major wavelet coefficients of point cloud data. The forth row shows reconstructed 

point clouds when conventional CS is used and we compress all point clouds with the fixed 

initial rate of 2.5. It is clear that without adaptive system the reconstruction error is so large 

that easily can be seen by naked eye. Finally the last row shows the reconstructed point cloud 

and associated compression rate to maintain the initial MAE for adaptive CS system.  

 

Figure 5-6: LiDAR-Lite: Six different scenes and their point clouds and related 2D image 
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Figure 5-7: Google Tango: Six different scenes and their point clouds and related 2D image 

It can be seen that sparsity significantly changes from scene 2 to 3 and we changed compression 

rate from 2.5 to 1.6 to keep the same MAE. At scene 6 the sparsity returns to the initial level 

and we can increase rate to 2.5 again. Figure 5-8 shows the sparsity of point cloud and total 

number of edge points in 2D image for each scene and for each hardware set. These plots first 

show how sparsity is correlated with the number of edge points and secondly it shows that in 

order to keep the same MAE, number of edge points provide information about point cloud 

sparsity that eventually can be used by CS algorithm to change the compression rate. 
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Figure 5-8: Sparsity vs number of edge points for each scene 

Finally, two problems need to be addressed that are subject to future work. First problem is 

how we set the threshold level to calculate sparsity and number of edge points. Second problem 

is how to translate sparsity change to the compression rate change in order to keep the same 

MAE. In other words, is sparsity changes 50% from scene 3 to scene 4 how do we know that 

compression rate should change to 1.6 from 2.5 to achieve the same MAE. We believe some 

machine learning algorithms can help to solve these problems by training them with a larger 

set of point cloud and image training pairs. 

5.6 Conclusion 

In this paper we proposed a mechanism for adaptive compressive-sensing 3D point cloud. We 

showed that there is a correlation sparsity of point cloud and number of edge points. This 

correlation helps us to modify the compression rate based on complexity of 3D point cloud. 

We evaluated this mechanism using two different hardware sets. As experimental results 

showed using conventional CS can cause very large error during reconstruction. Finally further 

work needs to be done to find suitable threshold levels to calculate sparsity number and number 

of edge points automatically. We believe machine learning algorithm such as deep learning can 

help to find these thresholds. 

LiDAR-Lite 

Google Tango 
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6. Conclusion 

This work addresses conventional CS issues including non-adaptive compression rate and 

offers solutions for using in low power SoCs. 

In chapter 2 an adaptive compressive-sensing system was presented that enables real-time 

adjustment of the compression factor, depending on the variance in the sparsity number of the 

input signal. Also sparsity variance of different biomedical signals investigated to provide 

justification for implementing an adaptive compressive-sensing system. This system validated 

through experiments conducted on a custom embedded hardware. It was shown that this 

adaptive compressive-sensing system can reduce power consumption by 16.2%, without any 

major change on the sensor node. Despite this initial success, the criteria for which the adaptive 

system should change the compression factor has not been fully explored and is the subject of 

future work. Furthermore, the relationship between sparsity and the desired compression factor 

is also still unknown for real biomedical signals, and requires future research. 

In chapter 3 a compressive-sensing SoC for compressing biomedical sensor data that 

incorporates statistics collection (SC) was presented. Is was shown that using some statistics 

from the input signal can dramatically improve the performance of reconstruction algorithms 

for signals that are sparse in the time domain. As part of future work, one can try to modify the 

GPSR algorithm such that it can be used for signals that are sparse in non-time domain bases. 

In chapter 4 a framework to analyze compressive-sensing LiDAR system was presented. 

Experiments were done using different point clouds captured by a Google Tango tablet. It is 

shown that the maximum error generated by compressive-sensing happens at the edge points 

of point cloud. It is finally shown that excluding edge points from error calculation can helps 

us to find an optimum compression rate for each point cloud in these specific scenes. 

In chapter 5 a mechanism for adaptive compressive-sensing of 3D point clouds were 

presented. It was shown that there is a correlation between sparsity of point cloud and number 

of edge points. This correlation helps us to modify the compression rate based on complexity 

of 3D point cloud. The proposed mechanism evaluated using two different hardware sets. As 

experimental results showed using conventional CS can cause very large error during 

reconstruction. Finally further work needs to be done to find suitable threshold levels to 

calculate sparsity number and number of edge points automatically. We believe machine 

learning algorithm such as deep learning can help to find these thresholds. 
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