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ABSTRACT

A rather simple model has been proposed to examine the effect o f

wind and wind waves on shoreline erosion . The technique employed fo r

estimating waves is that developed by the Corps of Engineers . Th e

solutions for the combined wind and wave setup is based on radiatio n

stress concepts, as is the generation of the longshore current . Th e

sediment transport model is based on energetics . And finally, th e

shoreline evaluation model is based on conservation of sediment . The

methodology and numerical results were produced for the first fou r

tasks . Only the methodology was outlined for the fifth task .

Without the completion of the fifth task, it is difficult to quan-

tify the effects of wind wave erosion on the shoreline . However, it is

clear that the sediment transport is increased in a narrow band alon g

the water line . Whether this sediment transport is of sufficient magni-

tude or duration to cause significant erosion remains unanswered .



FOREWORD

The Water Resources Research Institute, located on the Oregon Stat e

University campus, serves the State of Oregon . The Institute fosters ,

encourages, and facilitates water resources research and educatio n

involving all aspects of the quality and quantity of water available fo r

beneficial use . The institute administers and coordinates statewide an d

regional programs of multidisciplinary research in water and relate d

land resources . The Institute provides a necessary communications an d

coordination link between the agencies of local, state, and federa l

government, as well as the private sector, and the broad research com-

munity at universities in the state on matters of water-relate d

research. The Institute also coordinates the interdisciplinary program

of graduate education in water resources at Oregon State University .

It is Institute policy to make available the results of significan t

water-related research conducted in Oregon's universities and colleges .

The Institute neither endorses nor rejects the findings of the author s

of such research . It does recommend careful consideration of the accu-

mulated facts by those concerned with the solution of water-relate d

problems .
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INTRODUCTIO N

There are many large bodies of fresh water in the Pacific North-

west . Significant wind waves may be generated on these bodies of wate r

which increase sediment transport along the shoreline . This increased

transport may result in erosion and turbidity . Higher levels of turbid-

ity reduce the environmental and recreational quality of the lake .

Increased erosion may result in a terraced shoreline which has reduce d

recreational and aesthetic value and is more difficult to manage as a

flood control reservoir .

A model is proposed to address this problem and involves severa l

specific tasks . The first task, estimating wave conditions, employ s

existing methods . Next, an expression for the water depth along th e

shoreline is developed including the combined effects of wind an d

waves . The wind setup is due to a surface stress at the free surfac e

while the wave setup is due to the onshore-onshore radiation stress .

Longshore currents are also calculated for the combined effects of win d

and waves . The forcing mechanisms are similar to those in the setup ,

but the flow is now resisted by a bottom drag rather than a pressur e

gradient . A sediment transport model is presented which is based on

energetics . This model has been widely used in the marine environmen t

and the empirical transport coefficient has been determined . The final

step, determination of the shoreline response due to the longshor e

currents and waves, is discussed but no analytical results ar e

presented .



METHODOLOGY..

The determination of the wind wave effects on sediment transpor t

involves several specific tasks . These include : 1) estimating th e

waves from the wind speed and duration and the lake depth and length ; 2 )

determining the influence of the wind and waves on water depth at th e

shoreline (setup) ; 3) calculating the wind and wave-induced currents ;

4) estimating the sediment transport ; and 5) calculating the change i n

shoreline configuration . Each of these tasks is discussed in greate r

detail in this section .

1 .

	

Wind Waves

The wind waves which are generated in the lake or reservoir are a

function of the wind speed and duration, as well as the fetch length an d

depth of the lake or reservoir . The fetch length may be determine d

using the effective fetch method (U .S . Army,, 1962) . The application o f

this method is shown in Fig . 1 .

The generation of wind waves for a given wind speed is eithe r

limited by the duration of the storm event or by the size of the body o f

water. Wave generation is, therefore, referred to as being fetch, o r

duration, limited . For wind speeds of interest (greater than 30 mph), a

fetch length of 30 statute miles will become fully arisen in a duratio n

of less than 4 hours . A body of water with a fetch length of 10 statut e

miles will require a duration of less than 2 hours . Therefore, in

smaller bodies of water, it is reasonable to assume that the generatio n

of wind waves is fetch limited . Bretschneider and Reid (1953) proposed

a model considering the effects of bottom friction and percolation in
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Fig. 1 . Effective fetch method .
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eff =11 .51 X 52Ig~=3.7MIie s
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the bottom sediments . This technique was modified by Bretschneide r

(1965) and Ijima and Tang (1966) yielding the relationships given i n

Figs . 2 and 3 for wave height and period, respectively . In Figs . 2 and

3, g is the acceleration due to gravity (ft/s 2 ) ; H is the wave heigh t

(ft) ; U is the wind speed (f t/s) ; F is the fetch length (ft) ; and d i s

the water depth (ft) .

The forecasting technique assumes that the bottom is flat and tha t

the lake is of constant depth . These assumptions may be acceptabl e

because the length scale associated with the wind waves is small wit h

respect to the length scale of the lake . Also, if the water depth is

more than twice the wave length, the waves are deep water waves and are

insensitive to the depth .

2 .

	

Water Depth

In the central parts of the lake or reservoir, where the waves ar e

generated, the waves tend to be somewhat insensitive to the botto m

profile . However, as the waves approach the shoreline and ultimately

break, they are very sensitive to the bottom profile and water depth .

Because of this sensitivity, special care must be taken when estimatin g

the water depth near the shoreline .

As the wind blows over the surface of the water, a shear stress i s

developed . This stress is balanced by a pressure gradient associated

with a setup of water at the shoreline . This wind setup, sometime s

referred to as a storm tide, may significantly increase the water dept h

at the shoreline, relative to the wave height .

There is a second mechanism, which is associated with the win d

waves, that also produces a setup of shoreline water levels . This wave

4
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setup produces a pressure gradient which balances the change in momentu m

flux associated with the waves as they break approaching the shore -

line. This breaking zone, or surf zone, is the region in which th e

effects of the waves are most important in generating turbulence, cur -

rents, and sediment transport .

Definition sketches of the nearshore region are shown in Fig . 4, in

which <n> is the mean displacement of the free surface due to wind an d

waves . The brackets denote time averaging over the wave period . This

is done to remove the fluctuating component of motion at the wave fre-

quency . The MWL (mean water level) is the time-averaged free surface

while the SWL (still water level) would be the location of the fre e

surface if no wind or waves were present . The SWL is assumed to be

known for the design conditions and it is necessary to determine the

MWL . The still water depth is termed h and the mean water depth (tota l

depth, actual depth) is denoted as d and is given by the sum of th e

still water depth plus the setup .

A general form for the depth- and time-averaged equation of motion

in the surf zone is (cf . Liu and Mei, 1974 )

pwd
Dt

<u> = <p>Vh - p wgd V <n> + V . (-s + t r + tm )

+ T s IVs l + T b

	

(1 )

in which D/Dt is the material derivative, V is the two-dimensiona l

horizontal gradient operator, V . is the divergence operator, <•> is a

temporal averaging operation over one wave period, <u> is the depth- an d

time-averaged horizontal velocity vector, <p> is the time mean pressure ,

<n> is the time mean displacement of the free surface due to the

7
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Fig . 4 . Definition sketches for nearshore domain .
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presence of the wind and waves, p w is the water density, g is th e

acceleration due to gravity, d is the total depth, s is the radiatio n

stress tensor, t r is the integrated Reynolds stress tensor, t m is th e

integrated viscous stress tensor, T s and T b are the surface and botto m

stresses, respectively, and s and b are the material coordinates for th e

surface and bottom, respectively . Seeking steady-state solution s

(8/8t = 0) and assuming no longshore gradients (3/3y = 0), that the flo w

is sufficiently turbulent to neglect the viscous transport of momentum

(tm = 0), that the time mean pressure, bottom gradients, and mean fre e

surface gradients vary slowly (<p>Vh = 0, IVbl = 1, 'Vs' = 1), and tha t

the turbulent stresses are related to the time and depth mean flows b y

an eddy viscosity model (t r. = pe d «u>0 + V<u>J), Eq . (1) reduces t o

Pwgd dx <n> - dx Sxx + T sx = 0 (2a)

-dx Sxy +T by +Tsy+dx (ueddxv) = 0 (2b)

in which Sxx is the onshore-onshore components of the radiation stres s

tensor, Sxy is the onshore-longshore component, T sx is the onshor e

component of surface stress, T sy is the longshore component of surfac e

stress, T by is the longshore component of bottom stress, ue is an edd y

viscosity, and v is the mean longshore current .

The radiation stress terms, the excess flux of momentum due to th e

presence of the waves, were given by Longuet-Higgins and Stewart (1960 )

for a coordinate system relative to the wave . Transforming to coordi-

nates relative to the beach (see Fig. 4), these terms are given by

9



Sxx = E [ (2n-1) cos 20 + (n-1/2)sin 20 ]

	

(3a)

Sxy = -E [nsinOcosO ]

	

(3b)

in which E is the wave energy density (E = 1/8 pgH 2 ), a is the loca l

wave height, n is the ratio of the group velocity to the local wav e

celerity (n = 1/2[1+2kh/sinh 2kh]) provided that k, the wave number, i s

determined by 2ir/T = (2k tanh kh ) 1/2 , T is the wave period, and 0 is the

wave angle as defined in Fig . 4 .

Inside the breaker line (x < x B ), the water is assumed to be shal-

low and, due to refraction, the wave angle is small . It is furthe r

assumed that the breakers are of the spilling type such that the break-

ing wave height is related to the local water depth by H = icd . Insid e

the breaker line, the radiation stress terms may then be given a s

Sxx = 3/16
pwg

ic 2d 2

Sxy = 1/16 p wg K 2d 2 sine

To determine the total depth profile, Eq . (2a) must be integrated ,

employing an appropriate value for the surface stress . The only surfac e

stress that will be considered is that due to the wind . This stress is

taken to be

2
T sx = Spa ca w cosy

(4a)

(4b )

(5 )

10



in which p a is the density of air, ca is a wind stress coefficient, w i s

the wind speed, and y is the wind direction relative to the shoreline .

The wind stress coefficient was given by Van Dorn (1953) a s

1 .1 x 10-6 ; w < 16 mph

	

(6a )

1 .1x1D 6 + (2 .5x10
6
)(1 - w6) ; w > 16 mph

	

(6b)

The a term accounts for the unsteadiness in the development of the win d

current . In the simplification of the equation of motion it was assume d

that only steady-state solutions would be sought . This is a reasonable

assumption for the wave-generated current because it forms rapidly .

However, the wind current develops more slowly . The S term accounts fo r

this development and estimates for S may be determined from the one -

dimensional equation for a wind-generated current without waves ,

dv_ 1
pw dt

	

d (TS

	

T b )

in which v is the mean fluid velocity . The wind stress is given by Eq .

(4) without the S term and a simple, linear bottom stress is given b y

T b = ap w cwv

	

(8 )

in which a is a dimensional linearizing coefficient and c w is the fluid

stress coefficient . As a first approximation, a may be taken as 3% o f

the wind speed. This is based on the observation that the wind drift i s

about this fraction of the wind speed (Wu, 1975) . Substitution of Eqs .

(5) and (8) into (7) and integrating yield s

ac t

	

p c 2

	

- w
v= pW cw dw cosy [1-e

	

d 1
1
1

(7 )

(9 )

11



in which it is assumed that the water is initially at rest . The maximum

current, v., occurs at very large times . The ratio of the time-

dependent velocity to v. is

ac t
w

-v

	

d
v = [1-e

This ratio defines the B given in Eq . (5) . Figure 5 shows this term for

dimensionless time defined as acwt/d .

With all of the terms in the cross-shore equation of motion speci -

fied, Eq . (2a) may be written

pwg (<rl> + h) dx <n> - dX (3/16 p wgK 2 d2 )

+ pacaw2 cosy = 0

	

; x < xB

A solution to this equation for a planar beach is given by

d=ax+b [1n(b+ 1) - 1] + c

in which

	 3	
a =

	

2
m

8+3K

(12c)

and c is an integration constant .

Seaward of the breaker line, the'shallow water assumptions may no t

be invoked . However, seaward of the breaker line, energy is conserved

(10)

(12a)

(12b)

8 p acaw
2

cosy
b = m

apwg

12
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Fig. 5 . Wind stress time coefficient .
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(friction and percolation are small) so that an energy conservatio n

equation may be written . The time-averaged Bernoulli equation is

P+u2 +w2
<>-

Bpacaw cosy

p wg

	

2g

	

n

2

	

2

= ~° + u°2gw° + <
n°

>

	

(13)
p wg

; x x B

in which ( )° denotes a value in deep water . Noting that the wave-

induced mean free surface displacement goes to zero in deep water ,

assuming that the wind setup vanishes at great distances offshore, an d

employing linear wave theory yield s

2

	

ap
acaw2cosy	 H k	

<n> _ - 8sinh 2kh +

	

p wg

	

'
x

xB

The integration constant in Eq . (12) may be determined by equating

(12) and (14) at the breaker line, x = xB ,

	

K2
40 - 3K2

	

(16 - K 2 )h B
c =

168+3K2
hB-b[1n(

	

16b

	

+1)- 1]

	

(15)

Typical setup profiles are given in Fig . 6 . These setup profile s

are very nearly linear . Therefore, assume

(14)

d = b
1
x + b 2

in which

b1 =b

	

1/2dB +b

	

K2
40- 3K 2

b2=bin(

	

+

	

h

	

dB +b ~

	

16 8+3K 2

	

B

(16a )

(16b)

(16c)
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It is convenient to define a coordinate transformation such that the

origin is located at the point on the beach where the depth goes t o

zero. This is given by

d=b 1 x

	

(17a )

where

x = x + b1 /b2

	

(17b )

It is also convenient to express the depth in a dimensionles s

form. Using upper case letters to denote dimensionless variables defin e

D = d/xB (18a)

X = x/xB (18b )

B

	

= b (18c )1

	

1

The dimensionless depth profile, including wind and wave setup, is give n

by

D= B 1 X

	

(19 )

3 .

	

Longshore Curren t

The longshore current due to wind and waves is determined from Eq .

(2b) . The divergence of the radiation stress term is determined employ-

ing Snell's Law for refraction and assuming conservation of energy i n

the offshore .

1 6



15 6 pwgK2 sin
e

	

-

	

~d) 1/2 d

	

(d)

	

x < xB

	

(20a)
B

	

dx

	

0

	

; x > xB

	

(20b )

The wind stress term is the same as for the onshore equation of motio n

except that the sin(y) component is taken rather than cos(y) component .

The bottom stress term may be approximated using a linear shallo w

water, small wave angle relationship for the waves (cf . Liu and

Dalrymple, 1978) and a linear relationship for the wind current (see Eq .

(8)) .

T by = - - K p w(gd) 1/2 v ap wcwv

The eddy viscosity is assumed to be proportional to a characteristi c

velocity, density, and length . The form proposed by Longuet-Higgins

(1970b) is employed .

u e = Pw N(gd) 1/2 x

in which N is a numerical constant .

Employing the above relationship in the equation of motion yield s

NTrbl d

	

"5/2 dv

	

"1/2	 	 an	
px

	

) - (x

	

+

	

v =
K cw dx

	

dx

	

(gb l ) 1/2K

b
5

	

Tr
16 c K bl(g d B) 1/2 sineB b1

x
3/ 2

w

	

dB

p c

(g
x ) 1/2 pw cw w

2siny

	

; x > xB
b l

(21 )

(22)

p c

~

	

w2siny x < xb
P(gb)

1/2 w c
w

1

(23b)

(23a)

17



Again, it is convenient to define dimensionless variable s

P 1
NitB 1

K Cw
(24a)

__ 7t	 a	
P2

	

K
(gB

1
xb ) I/

2

B 1
DB

=	 01
Pa ca	 w2	

nYP4

	

Bl l/2 Pw cw
(g xB)vBL s

i

V =
v/vBL

=
v/[5 c K bl (gdB ) 1/2 sin6 B]

16 w

The term vBL is the longshore current due to waves alone which occurs a t

the breaker line for the case of no turbulent lateral mixing (Longuet -

Higgins, 1970a) . It is common to use this for scaling longshor e

currents .

In dimensionless variables the equation is written a s

- P3 X3/2 - P4 ; X < 1 (25a )

P
d

	

X5/2 dV

	

1/2

	

) V =
1 T.(

(

	

757,) _
(x

	

+ P
2

P4

	

; X > 1 (25b )

Boundary conditions are that the longshore current velocity i s

bounded at the shoreline and far offshore, and that the velocity an d

gradient of velocity match at the breaker line . Equation (25) has bee n

integrated analytically in the course of this study . Unfortunately, the

resulting solution is rather complicated and it is more convenient t o

P 3

(24b)

(24c )

(24d )

(24e )

18



just use a numerical integration . Several example profiles are shown i n

Fig . 7 for different wind and wave conditions .

4 .

	

Sediment Transport

Bagnold (1963) proposed a sand transport model which assumes tha t

the sediment is mobilized by wave motion and wave power is expended t o

maintain the motion of the sediment . The presence of a mean curren t

transports the sediments . The immersed-weight transport rate per uni t

width of surf zone is (McDougal and Hudspeth, 1983 )

i = K' dx
(2 pga2Cg) um

	

(26)

where K' is a dimensionless coefficient which depends on the degree o f

the transport mechanism developed, C g is the wave group velocity . The

coefficient can be treated as a constant for a particular coast from th e

view of long-term climate . Furthermore, it can be considered as a

constant in a season or in a storm (Hou, Lee, and Lin, 1980) .

Assuming linear shallow-wave conditions exist and that the wav e

energy flux and the bottom orbital velocity outside the breaker line ca n

be evaluated at the breaker line, Eq . (26) become s

' pgK d dr (d) v
dx

x < xb (27a)

S K' pgK [d d" (d)]-

	

v ; x > xb
dx

In terms of nondimensional variables, the immersed-weight transport rat e

becomes

(27b)

19
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D b dX
(EL)

V (x)

	

X < 1

	

(28a)

d
rr

	

V (X)

	

; X > 1

	

(28b)dx
b X= 1

where

I
i

1BL
(28c)

5
1BL __ 8 R p s gKdbSbvBL

(28d )

Sb
d b

xb (28e )

and p s is the density of the sediment .

For the linear total depth profile given in Eq . (19), the sedimen t

transport is

X < 1

	

(29a)

X > 1

	

(29b)

Dimensional transport profiles are shown in Fig . 8 for the long-

shore current profiles given in Fig . 1 .

The total sediment transport is given b y

co

	

1

	

co

IT = J I dX =

o

f

	

1XV dX + f VdX0

This integral is numerically evaluated .

XV

V

(30 )
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5 .

	

Shoreline Evolution

Shoreline evolution is based on the net flux of sediment along a

given beach . The shoreline is broken into a number of segments o f

length AS . The immersed weight dynamic transport given in Eq . (30) may

be converted to a volume transport rate by dividing by the porosity, n ,

and the immersed weight density .

S =	 I
n( ps-pw) g

in which S is the volume transport and p s is the density of the sedi-

ment . From conservation of the sediment mass, the change sediment in

depth is given a s

aE	 	 1	 al	 M	
at - n(p s-p w)g ax As hNp

in which E is the normal to the bottom and h Np is the depth to the nul l

point . The null point is the maximum depth of wave-induced sedimen t

transport. For lakes and reservoirs, this depth may be on the order o f

five feet . The change in depth also results in a change in the positio n

of the shoreline . This change is given by

aR

	

m2 + I ) D E
at -

	

2 ) at
m

in which R is the shoreline position relative to the initial conditio n

and m is the bottom slope .

The change in shoreline may be computed using the solution obtaine d

for total longshore transport and then solving Eq . (33) numerically . An

implicit finite difference scheme may be used in space while the solu-

tion is explicitly marched in time .

(31)

(32)

(33 )
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It should be noted that at each change in shoreline configuration ,

the breaker angle must be recomputed for each segment . This may be

rapidly, but rather crudely, done employing Snell's Law .

CONCLUSIONS

A rather simple model has been proposed to examine the effect o f

wind and wind waves on shoreline erosion . The technique employed fo r

estimating waves is that developed by the Corps of Engineers . The

solution for the combined wind and wave setup is based on radiation

stress concepts, as is the generation of the longshore current . The

sediment transport model is based on energetics . And, finally, the

shoreline evolution model is based on conservation of sediment . The

methodology and numerical results were developed for the first fou r

tasks . Only the methodology was outlined for the fifth task .

Without the completion of the fifth task, it is difficult to quan-

tify the effects of wind wave erosion on the shoreline . However, it i s

clear that the sediment transport is increased in a narrow band along

the water line . Whether this sediment transport is of sufficient magni-

tude or duration to cause significant erosion remains unanswered .
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