

Oregon Relational Spatial Topology (ORST)
Representation

by

David Hunt

Submitted to Oregon State University

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Computer Science

Computer Science Department

Oregon State University

Corvallis, OR

August 2006

Abstract
We designed a concise way to store and manipulate GIS coverage data in a geospatial database. Our

geospatial database is implemented with PostgreSQL and PostGIS. PostgreSQL is an object-relational

database, and PostGIS supports various geospatial operations as an SQL extension. In our Oregon

Relational Spatial Topology (ORST) approach, topological relationships among polygons, arcs, and

points are represented explicitly. With this explicit representation of polygon data, such spatial

operations as moving a point, merging a polygon, and splitting a polygon can be supported with relative

ease. In order to populate this database, we developed a process for converting polygon data stored as

an ESRI shapefile first to the ESRI E00 coverage format and then to the ORST representation. We also

implemented the spatial operations discussed above.

TABLE OF CONTENTS

Abstract..2

1 Introduction ..4

2 Overview of Oregon Relational Spatial Topology (ORST) Representation.................................6

3 ESRI E00 Format for GIS Data...11

4 Advanced Polygon Manipulation Features...14

 4.1 Move Point Operation…………………………………………………………………………………………..14

 4.2 Merge Polygon Operation……………………………………………………………………………….……..18

 4.3 Split Polygon Operation………………………………………………………………………………………..22

5 Conclusion..31

References..32

 APPENDIX A ..33

1. Introduction
 A shapefile is a popular binary data format for geospatial vector data. Spatial data stored in a

shapefile does not explicitly represent topological relationships among polygons. Without the

topological relationships, it is not easy to manipulate polygons while maintaining correct topological

relationships among them. One way to obtain the topological relationships is to convert the shapefile

data into a coverage, which is a proprietary format developed by ESRI, a company specializing in GIS

software. ESRI provides another text-based data format called E00 for coverage data. This format is

proprietary. However, a specification, although incomplete, has been published by a third party.

 The Oregon Relational Spatial Topology (ORST) representation allows topological relationships

among polygons to be specified within a database. For this purpose, we used relational tables in the

object-relational DBMS PostgreSQL augmented with PostGIS [1]. PostGIS supports spatial operations

as an SQL extension compatible with the OGC (Open Geospatial Consortium) specification [2] [3].

 In converting coverage data in the E00 format to the ORST representation, specific sections of the

E00 file are parsed and SQL insert statements are generated. These insert statements can be executed on

a database supporting PostGIS. The parcel data for the City of Corvallis, Oregon was converted to the

ORST representation as a test case.

 We then implemented the spatial operations moving a point, merging a polygon, and splitting a

polygon for the coverage data in the ORST representation. Moving a point allows a user to move an end

point of an arc to a new location. When an end point of an arc is moved, the geometry of the arc is

recomputed with the new coordinates of the moved point. Then the geometries of the polygons sharing

the arc are recomputed. To merge two polygons into a single polygon, the user can delete an arc shared

by those two polygons. To split a polygon into two new polygons, the user can draw an arc through a

polygon.

 Section 2 gives an overview of the ORST representation. We discuss the E00 format in Section 3,

concentrating on the parts needed to create coverage data in the ORST representation. In Section 4

implementation of the spatial operations Move Point, Merge Polygon, and Split Polygon are discussed.

Section 5 concludes this report.

2. Overview of Oregon Relational Spatial Topology (ORST) Representation

The ESRI shapefile format is a popular binary data format for geospatial vector data [4]. A shapefile

stores such features as line strings, points, and polygons, and the attributes associated with them in

multiple files. When polygons are stored in a shapefile, topological relationships among the polygons

are not explicitly represented. On the other hand, a coverage, which is another ESRI GIS data format,

can represent topological relationships among polygons explicitly. Figure 1 shows three polygons (a) in

a shapefile and (b) a coverage.

 a) Polygons in a shapefile

 b) Polygons in a coverage

Figure 1: Shapefile vs. Coverage representations.

We now explain the major difference between a shapefile and a coverage by using the example in Figure

1. In the shapefile representation, the right edge of polygon P1 and the left edge of polygon P2 are

different edges. On the other hand, in the coverage representation, polygon P1 and P2 share the edge

A8, which is called an arc.

1. Assume that the user moves the right edge of polygon P1. In the shapefile representation, the

left edge of polygon P2 does not move, even though the right edge of polygon P1 is identical to

the left edge of polygon P2. In the coverage representation, arc A8 is moved, with both polygon

P1 and P2 being reshaped as they share arc A8.

2. Assume that the user wants to merge polygon P1 to P2. In the shapefile representation, the user

needs to delete polygons P1 and P2 and create a new polygon by merging them. In the coverage

representation, the user can remove arc A8 to merge polygons P1 and P2.

In the ORST representation, we follow the standard approach for storing coverage data in relational

tables, whose schema is given in Figure 2.

Figure 2: ORST representation of coverage data.

The end points of the arcs are stored in table point . The records in table arc designate arcs. The start

point and the end point of an arc are specified by attributes from_point and to_point ,

respectively. The polygon records are stored in table polygon . Each arc has one polygon on its left

side and right side. These polygons are designated by attributes left_poly and right_poly ,

respectively, of an arc record. Table poly_arc define the arcs constituting each polygon. The

order_value of a poly_arc record designates the sequence number of the arc designated by the

arc_id , where the arc is an edge of the polygon designated by poly_id . The direction ,

f(orward) or r(everse) , tells whether the arc should be traversed from the from_point to the

to_point or from the to_point to the from_point , respectively.

We now list the attributes in each table shown in Figure 2.

Table point stores data for the points:

• point_id – Unique identifier for the point.

• the_geom – Geometry of the point represented as an (x, y) pair.

Table arc stores the geometry and data for the arcs connecting points:

• arc_id – Unique identifier for the arc.

• from_point - Identifier for the start point of the arc.

• to_point – Identifier for the end point of the arc.

• left_poly – Identifier for the polygon to the left of the arc.

• right_poly – Identifier for the polygon to the right of the arc.

• the_geom – Geometry of the arc represented as a line string. The coordinate values of the start

and end points of an arc must match the coordinate values of those points in table point . An

arc may contain intermediate points in between the start and end points.

Table poly stores data for polygons:

• poly_id – Unique identifier for the polygon.

• the_geom – Geometry of the polygon represented as a multi-polygon. The geometry of the

polygons is redundantly stored so that a GIS application can render the polygon.

Table poly_arc stores the relationship data between polygons and arcs:

• poly_arc_id – Unique identifier for the poly_id and arc_id combination.

• poly_id – Unique identifier of the polygon formed by the arc designated by arc_id .

• arc_id – Unique identifier of the arc which is an edge of the polygon designated by poly_id .

• direction – Direction in which arc is traversed, where the arcs forming the polygon are

visited clockwise order.

• order_value – Sequence number of the arc forming the polygon.

Figure 3 shows the content of the tables for the coverage specified in Figure 1 (b). The values -1 in the

left_poly and right_poly attributes of table arc designates the universal polygon, which is the

surrounding area of all the polygons defined in table poly .

point
point_id the_geom
PT1 . . .
PT2 . . .
PT3 . . .
PT4 . . .
PT5 . . .
PT6 . . .
PT7 . . .
PT8 . . .

H

Arc
arc_id from_point to_point left_poly right_poly the_geom
A1 PT2 PT3 -1 P1 . . .
A2 PT3 PT4 -1 P2 . . .
A3 PT4 PT5 -1 P2 . . .
A4 PT5 PT6 P3 P2 . . .
A5 PT6 PT1 P3 P2 . . .
A6 PT1 PT2 -1 P1 . . .
A7 PT5 PT1 -1 P3 . . .
A8 PT6 PT3 P1 P2 . . .

poly

poly_id the_geom
P1 . . .
P2 . . .
P3 . . .

poly_arc
poly_id Arc_id direction order_value
P1 A6 f 1
P1 A1 f 2
P1 A8 r 3
P1 A5 f 4
P2 A8 f 1
P2 A2 f 2
P2 A3 f 3
P2 A4 f 4
P3 A7 f 1
P3 A5 r 2
P3 A4 r 3

Figure 3: ORST representation of coverage data.

A major objective of this project was to devise a process to convert a shapefile to the ORST

representation, and we came up with the process shown in Figure 4 as one that required the least amount

of our work.

Figure 4: Process to convert a shapefile into an ORST representation.

The process consists of the following two steps.

1. A shapefile is first converted to the ESRI proprietary E00 coverage format with the conversion

tool in the ArcToolbox of ESRI ArcMap. This coverage can be converted to the E00 format

again with the conversion tool in ArcToolbox. The sequence of the commands used by this step

can be found in Appendix A.

2. The coverage in the E00 format is parsed with a PHP script, and the SQL INSERT statements

for the ORST representation are generated [5]. The script parses only the ARC and RPL section

in the E00 coverage file.

Figure 5 gives examples of the ARC and RPL sections of an E00 file. The formats of these sections are

explained in Section 3.

a) ARC section for points and arcs
 1 1 5 1 -1 3 3
 6.00000000000000E+06 6.00000000000000E+05
 6.00000000000000E+06 1.00000000000000E+05
 1.00000000000000E+06 1.00000000000000E+05
 1.00000000000000E+06 6.00000000000000E+05

b) RPL section for a polygon
3 1.00000000000000E+06 1.00000000000000E+05 6.0 0000000000000E+06 6.00000000000000E+05
 7 0 0 -5 0 0
 -4 0 0

Figure 5: Examples of ARC (a) and RPL (b) sections in an E00 file.

The SQL INSERT statements generated from the E00 data given in Figure 5 are shown in Figure 6.

a) Insert for table point.

Insert into e00_point(point_id,the_geom)values
(1, GeomFromText('POINT(1272815.12498623 3328705.62 537365)', 32026));

b) Insert for table arc.

Insert into e00_arc(arc_id,from_point, to_point, le ft_poly, right_poly,
the_geom)values(1,1,3,1,-1, GeomFromText('LINESTRIN G (1272815.12498623
3328705.62537365, 1272752.87502497 3328387.18707713 , 1272731.75015514
3328279.68742550)', 32026));

c) Insert for table poly.

Insert into e00_rpl(poly_id, the_geom) values(8,
GeomFromText('MULTIPOLYGON(((1272815.12498623 33287 05.62537365, 1272752.87502497
3328387.18707713, 1272731.75015514 3328279.68742550 , 1269840.443398000000
331915.382004284000,1269932.322300500000 331912.755 438105000, 1272815.12498623
3328705.62537365)))', 32026));

d) Insert for table poly_arc.

Insert into e00_poly_arc_test(poly_arc_id, poly_id, arc_id, order_value,
direction)values(1, 1,1, 1,'f');

Figure 6: SQL INSERT statements generated from the E00 file.

3. ESRI E00 Format for GIS Data

The E00 format for coverage data is a proprietary data format of ESRI. However, the specification of

the E00 format has been published, although not complete, by a third party [6]. An E00 file consists the

following sections:

• ARC –sets of data on the arcs

• CNT – center points of the polygons

• LAB – sets of labels for polygons

• LOG – coverage edit history

• PAL – repeating sets of data on the polygons

• PRJ – map projection data

• SIN – spatial index

• TOL – multiple lines defining the tolerance type, the tolerance status, and the tolerance value

• TXT – annotations

• TX6/TX7 – annotations

• RXP – associations of polygons within a region and the PAL section

• RPL - sets of data on the polygons for regions

Coordinate values contained in a E00 file are either 8-digit floating point (single precision) values or

15-digit floating point (double precision) values. In the current version of the ORST implementation,

we only support double precision values. In converting data to the ORST representation, only the ARC

and RPL sections of the E00 file are used.

We now explain the format of an ARC section by using an example given in Figure 7.

1 1 5 1 -1 3 3
 6.00000000000000E+06 6.00000000000000E+05
 6.00000000000000E+06 1.00000000000000E+05
 1.00000000000000E+06 1.00000000000000E+05
 1.00000000000000E+06 6.00000000000000E+05

Figure 7: ARC section listing.

The attributes in the top row of the ARC section have the following meaning:

1. 1: coverage number – not converted

2. 1: coverage ID – not converted

3. 5: from node – id of the first point in the current arc

4. 1: to node – id of the last point in the current arc

5. -1: left polygon – id of the polygon on the left of the arc

6. 3: right polygon – id of the polygon on the right of the arc

7. 3: number of coordinates – number of point geometries in the arc

Attributes 3 – 6 are the unique identifiers of the points and the polygons. These values are used also in

tables point and poly . Each row after the first contains (x, y) values of a point contained in the

arc. The second row is for the from node, and the final row for the to node .

We now explain the format of an RPL section by using again an example given in Figure 8.

3 1.00000000000000E+06 1.00000000000000E+05 6.0 0000000000000E+06 6.00000000000000E+05
 7 0 0 -5 0 0
 -4 0 0

Figure 8: RPL section listing.

The attributes in the top row of the RPL section have the following meaning:

1. 3: number of arcs in the current polygon

2. 1.00000000000000E+06: x min of the current polygon

3. 6.00000000000000E+05: y min of the current polygon

4. 6.00000000000000E+06: x max of the current polygon

5. 6.00000000000000E+05: y max of the current polygon

The subsequent lines contain one or two sets of three values. In our example, the second line contains

two sets and the third one set. Each set contains the following values:

1. 7: Arc_Id – ID of the arc contained in the current polygon

2. 0: From_Node_Id - not converted

3. 0: Adjacent_Polygon_Id - not converted

A coverage produced from a shapefile contains data on a single region. The RPL section contains for

each polygon a complete list of the ids of the arcs forming the polygon. If one of the arc IDs is zero,

then the polygon contains a hole as shown in Figure 9. The arc IDs following the zeros represent the

inner polygon, which is a hole.

Figure 9: Polygon containing a hole

The RPL section defines the same polygons as those in the PAL section in the E00 file. We used the

data in the RPL section instead of those in the PAL section because of the following reasons.

1. The polygons are listed in the RPL section in the same order as in the original shapefile.

2. If the PAL section is used, we need to parse the RXP section to determine the correct polygon ID

ordering.

The PAT section of the E00 file contains the attributes of the polygons. However, we use the attribute

data in a table created directly from a shapefile, and hence the PAT section is not parsed.

4. Advanced Polygon Manipulation Features

4.1 Move Point Operation

We want to allow the user to move a point node with a Move Point operation. The current

implementation of the operation supports moving only the from point and the to point of an arc.

A future release may support a Move Point operation for any point within an arc. When a point is

moved, the arcs attached to the point and the geometry of the polygon containing those arcs must be

updated as shown in Figure 10.

a) Before moving point PT3

b) After moving point PT3

Figure 10: Move Point operation on point PT3.

To update a point, the user selects the point on the map and drags it to a new location. The point is

updated in the point table with the new coordinates.

The code for updating the arcs is shown in figure 11.

1) $affected_polys = array(); //holds ids of poly gons that need to be updated
2)
3) //get all arcs that contain moved point
4) $sSQL_arcs = sprintf("Select arc_id, from_point , to_point, " .
5) "left_poly, right_poly, astext(the_geom) as the_ geom" .
6) " from arc where from_point = %s or to_point = % s", $point_id, $point_id);
7)
8) $result = pg_query($link, $sSQL_arcs);
9)
10) //update each arc with updated point
11) while($row = pg_fetch_assoc($result)){
12) $new_arc = ""; //holds updated geometry of arc
13)
14) //check if point matches from point of arc
15) if($row[from_point] == $point_id){
16) //overwrite old from point with new point
17) $new_arc = "LINESTRING(" . $point . "," .
18) substr($row[the_geom], strpos($row[the_geom], ",") + 1);
19) }
20) //point matches arcs to point
21) else{
22) //overwrite old to point with new point
23) $new_arc = substr($row[the_geom], 0,
24) strrpos($row[the_geom], ",") + 1) . "$point)";
25) }
26)
27) //check if polygon containg the arc has alread y been added to affected_polys
28) if(!in_array($row[left_poly], $affected_polys)){
29) array_push($affected_polys, $row[left_poly]) ;
30) }
31) if(!in_array($row[right_poly], $affected_polys)){
32) array_push($affected_polys, $row[right_poly]);
33) }
32)
33) //update arc with new geometry

34) $sSQL_update_arc = sprintf("Update arc set the _geom = geomfromtext('%s',%s) "
35) . "where arc_id = %s", $new_arc, $data_sr id, $row[arc_id]);
36)
37) pg_query($link, $sSQL_update_arc);

Figure 11: Updating the arcs affected by a Move Point operation.

Once the arcs adjacent to the point moved are retrieved, (lines 4-8), then all the end points of arcs that

match the point moved are updated (lines 9-25 and 34-37). When each of the affected arcs are updated,

the IDs of the polygons that are on the left or right of that arc are also saved for future processing (lines

27-33). The geometry of those polygons need be updated with the new arc data.

After the arcs affected by the modified point are updated, table poly_arc is queried with each ID

stored in $affected_polys , to get the list of all the arcs forming the polygon and the geometry of

the polygon is updated. The code for this process is shown in Figure 12.

38) //this loop updates each polygon with the new arcs
39) foreach($affected_polys as $poly_id){
40) //if polygon id is -1 then no update needed
41) if($poly_id <> -1){
42) $begin_poly = true; //indicates if arc should be the first arc in the polygon
43) $poly_geom = "MULTIPOLYGON((("; //holds new polygon geometry for updating
44)
45) //gets the order and direction of the arcs for the polygon
46) $sSQL_poly_arc = sprintf("Select poly_arc.arc_id, order_value, direction," .
47) "astext(the_geom) as the_geom from poly_arc " .
48) "join arc on arc.arc_id = poly_arc.arc_id " .
49) " where poly_id = %s order by order_value", $poly_id);
50)
51) $result = pg_query($link, $sSQL_poly_arc);
52)
53) //add each arc to the updated polygon
54) while($row = pg_fetch_assoc($result)){
55) $hole = false; //indicates if polygon has a hole
56) $arc_geom = ""; //holds geometry of arc to add to polygon
57)
58) //check if arc should be reversed
59) if($row[direction] == "r"){
60) $arc_geom = TrimGeom(ReverseArcGeom($row[the_geom], $link));
61) }
62) //check if arc does not need to be reversd
63) elseif($row[direction] == "f"){
64) $arc_geom = TrimGeom($row[the_geom]);
65) }
66) //polygon contain a whole since direction value is h
67) else{
68) $hole = true;

69) $poly_geom = $poly_geom . ",),(";
70) $begin_poly = true;
71) }
72) //if polygon did not have a hole then add arc to polygon
73) if(!$hole){
74) //if arc is first arc in polygon or hole
75) if($begin_poly){
76) $poly_geom = $poly_geom . $arc_geom . ",";
77) $begin_poly = false;
78)
79) //arc is not first arc in polygon or hole
80) else{
81) $poly_geom = $poly_geom . TrimFirstPoint($arc_geom) . ",";
82) }
83) }
84) }
85) //remove extra , at end of polygon
86) $poly_geom = rtrim($poly_geom, ",") . ")))";
87)
88) //update polygon with geometry
89) $sSQL_update_poly = sprintf("update poly set the_geom = geomfromtext('%s', %s) " .
90) "where poly_id = %s", $poly_geom, $data_srid, $poly_id);
91)
92) pg_query($link, $sSQL_update_poly);
93) }

Figure 12: Code for updating the polygons when a point is moved.

The process of updating the polygons consists of the following steps.

1. The values of attributes the arc_id , order_value , direction , and the_geom of the

arcs in the polygon are retrieved from tables poly_arc and arc (lines 46-51). The

direction value is checked for a f , r , or h value (lines 59, 63, and 67).

2. If a direction value was a f or r , then the arc is added to the polygon. Otherwise, a hole

must be created (line 69). If the arc is the first arc in the polygon, then it can be added to the set

of the nodes for the polygon (line 76). If the arc is not the first edge of the polygon then the first

point of the arc must be removed before the rest of the points of the arc arc added to the polygon

(line 81).

3. The geometry of the polygon is updated (lines 89-92).

4. Steps 1-4 are repeated for each polygon whose ID is in $affected_polys (line 39).

4.2 Merge Polygon Operation

We want to allow the user to merge two polygons with a Merge Polygon operation. After selecting this

operation, the user can select an arc to be deleted. Then the polygons on the left and right sides of the

arc are merged into a single polygon. A special handling is needed when a polygon is merged with the

universal polygon. In this case, the polygon is actually deleted, since the universal polygon is the

surrounding area. Figure 12 illustrates the normal and special cases for merging polygons.

a) Polygons before merging

b) Removing arc A8

 c) Removing arc A3

Figure 12: Merge Polygon operation.

Polygons P1 and P2 can be merged into new polygon P3 as follows.

1. Let the sets of the arcs of P1 and P2 be arcs(P1) and arcs(P2), respectively. Compute the set of

arcs of P3 as arcs(P3) = arcs(P1) ∩ arcs(P2) – arcs(P1) ∪ arcs(P2). The set arcs(P1) ∩

arcs(P2) represents all the arcs each of which is used by P1 or P2. The set arcs(P1) ∪ arcs(P2)

represent the arcs shared by P1 and P2 along the common boarder.

2. Delete the arcs in the set arcs(P1) ∪ arcs(P2) from tables arc and the related entries in table

poly_arc . Also, the points adjacent to those arcs need be deleted from table point if they

are not adjacent to any of the remaining arcs.

3. Insert polygon P3 into table poly and update the entries in tables arc and poly_arc for

arcs(P3) . The geometry of P3 need be computed from arcs(P3).

4. Delete polygons P1 and P2 from table poly .

Step 1 is accomplished by the following SQL statement.

arcs(P3) = select arc.arc_id, from_point, to_point,
astext(the_geom) as the_geom,
order_value, direction from arc, poly_arc
where (poly_id = P1 or poly_id = P2) and arc.arc_id = poly_arc.arc_id
except
select arc.arc_id, from_point, to_point,
astext(the_geom) as the_geom,
order_value, direction from arc, poly_arc,
(select p1.arc_id from poly_arc as p1, poly_arc as p2
where ((p1.poly_id = P1 and p2.poly_id = P2)
and (p1.arc_id = p2.arc_id and p2.arc_id = p1.arc_i d))) as arc1
where (poly_arc.arc_id = arc1.arc_id)
and (poly_arc.arc_id = arc.arc_id)

Step 2 is accomplished by the following sub-steps repeated for each arc.

i. The following SQL statement removes all the arcs that P1 and P2 have in common.

 delete from arc where arc_id in (select p1.arc_id, from_point,
 to_point from arc, poly_arc as p1, poly_arc as p2

 where (p1.poly_id = P1 and p2.poly_id = P2)
 and (p1.arc_id = p2.arc_id) and (p1.arc_id = arc.a rc_id))

ii. This following SQL statement removes the poly_arc entries for the arcs deleted by the
previous step.

 delete from poly_arc where arc_id = id_of_deleted_arc

iii. The following pseudo-code removes the end points that are not used by any of the remaining arcs.

 from_point_count = select count(arc_id) from arc w here
 from_point = deleted_arc[from_point] or
 to_point = deleted_arc[from_point]

 to_point_count = select count(arc_id) from arc whe re

 from_point = deleted_arc[to_point] or
 to_point = deleted_arc[to_point]

 if (from_point_count <= 1) {
 delete from point where point_id = deleted_arc[f rom_point]
 }
 if (to_point_count <= 1) {
 delete from point where point_id = deleted_arc [to_point]

Step 3 is accomplished by the following pseudo-code shown in Figure 13.

1) foreach(merge_arc) {
2) if(merge_arc[direction] == f) {
3) forward_arcs[merge_arc[from_point]] = merge_arc
4) next_point = [merge_arc[from_point]
5) } else
6) reverse_arcs[merge_arc[to_point]] = merge_arc
7) }
8) }
9)
10) first_arc = true;
11) for(i = 0; i < sizeof (forward_arcs) + sizeof (reve rse_arcs) ; i++) {
12) if (exists (forward_arcs, next_point) {
13) if(first_arc) {
14) poly_geom = forward_arcs[next_point][the_geom]
15) first_arc = false
16) } else {
17) poly_geom = poly_geom .
18) remove_first_point (forward_arcs[next_point][the_geom])
19) }
20) update poly_arc set order_value = $i where poly_id
21) forward_arcs[next_point][poly_id]and arc_id = forw ard_arcs[next_point][arc_id]
22)
23) next_point = forward_arcs[to_point]
24) } else {
25) if (first_arc) {
26) poly_geom = reverse_arc (reverse_arcs[next_ point][the_geom])
27) } else {
28) poly_geom = poly_geom .
29) remove_first_point (reverse_arc (reverse_ arcs[next_point][the_geom]))
30) }
31) update poly_arc set order_value = $i where po ly_id
32) reverse_arcs[next_point][poly_id]and
33) arc_id = reverse_arcs[next_point][arc_id]
34)
35) next_point = reverse_arcs[from_point]
36) }
37) P3_id = Insert into poly (the_geom) values (poly_g eom)
38)
39) foreach (forward_arcs as arc) {
40) Update arc set right_poly = P3_id where arc_id = arc[arc_id]
41) }
42) foreach (reverse_arcs as arc) {
43) Update arc set left_poly = P3_id where arc_id = arc[arc_id]
44) }
45) update poly_arc set poly_id = P3_id where poly_id = P1_id or poly_id = P2_id
46) }

Figure 13: Pseudo-code to merge two polygons.

The arcs in arcs(P3) are split into two arrays (line 1-8). All arcs with a direction value of f are placed

into array forward_arcs, using the arcs from_point ID as the index value (lines 2 and 3). The

arcs with a direction value of r are placed into array reverse_arcs , using the arcs to_point ID as

the index value (lines 5 and 6). Variable next_point contains the end point ID of the first arc to be

added to P3 (line 4). The forward_arcs and reverse_arcs are checked to find which array

contains the point ID contained in next_point (lines 12 and 21). When the array with the index

value matching next_point is found, the arc is added to the geometry of P3 (lines 13-18 and 22-26).

If the added arc was from the forward_arcs array then the new next_point will be the arcs

to_point (line 20). Otherwise, the next_point will be the arcs from_point ID (line 28). As

each arc is added to P3, the sequence number is updated in table poly_arc (lines 20 and 31). After

P3 has been inserted and its ID returned, the left_poly or right_poly IDs are updated for each

arc (lines 32 – 37). For each arc contained in forward_arcs, the right_poly ID is updated with

P3’s ID (line 33). For each arc contained in reverse_arcs, the left_poly ID is updated with

P3’s ID (line 36). The IDs of polygons P1 and P2 are updated with P3’s ID in table poly_arc .

Step 4 is accomplished by the following SQL statement.

delete from poly where poly_id = P1 or poly_id = P

4.3 Split Polygon Operation

The Split Polygon operation allows the user to split a polygon into two new polygons. After selecting

this operation, the user can draw an arc to split a polygon, with the splitting arc as the common boarder.

Figure 14 illustrates the polygon P1 being split. The user can choose to draw an arc that intersects one

or two arcs used by a single polygon. Figure 14 (a) illustrates a case when the arc splitting the polygon

intersects two edges of the polygon. In this case, each of the intersected arcs is divided into two new

arcs. Figure 14 (b) illustrates a case where one arc is intersected. When this happens, the intersected arc

is divided into three new arcs.

a) Splitting polygon P1 by intersecting arc A1 and A3.

b) Splitting polygon P1 by intersecting arc A1 twice.

Figure 14: Split Polygon operation.

Polygon P can be split into polygons P1 and P2 as follows.

1. Use the split arc As to compute the arcs intersected and the intersection points. Then use the

intersection points as the end points of As. In Figure 14 (a), PT5 and PT6 are intersection points

and A6 is As.

2. Obtain the arcs of P that were not intersected by As as the set arcs(P) . In Figure 14 (a), P = P1

arcs(P) = {A2, A4}.

3. If two arcs are intersected, let them be Ai and Aj, compute the arcs Ai1 and Ai2 from Ai and Aj1

and Aj2 from arc Aj. In Figure 14 (a), Ai = A1, Aj = A3, Ai1 = A5, Ai2 = A8, Aj1 = A7, and Aj2 =

A9. If only one arc, Ai is intersected, compute the arcs Ai1, Ai2, and Ai3 from arc Ai. In Figure 14

(b), Ai = A1, Ai1 = A5, Ai2 = A7, and Ai3 = A8.

4. Create P1 and P2 with the arcs contained in arcs(P), Ai1, Ai2, Aj1, Aj2, and As. Insert P1 and P2 into

table poly . In Figure 14 (a), P1 = P2 and P2 = P3.

5. Insert the new arcs into table arc and add the entries for P1 and P2 into table poly_arc .

6. Delete the entries for P in table poly_arc and P from table poly .

7. Update the entries in table poly_arc for the left_poly or right_poly contained in Ai

and Aj. The entries for Ai or Aj are deleted and replaced with entries for Ai1 and Ai2 or Aj1 and Aj2.

When the new arcs are added the values of order_value for the arcs after Ai or Aj are

reassigned.

8. Delete arcs Ai and Aj from table arc .

The following pseudo-code shown in Figure 15 describes the outline of Step 1.

1) intersected_arcs = select arc_id, left_poly, right_ poly,from_point, to_point,
2) astext(the_geom) as the_geom,astext(intersection(th e_geom, As) as intersect_geom
3) from arc where intersects(the_geom, As)
4)
5) if (sizeof(intersected_arcs) == 1) {
6) intersect_pt1 = get_first_point (intersected_arcs[0][intersect_geom])
7) intersect_pt2 = get_second_point (intersected_arcs[0][intersect_geom])
8) } else {
9) intersect_pt1 = intersected_arcs[0][intersect_geom]
10) intersect_pt2 = intersected_arcs[1][intersect_geom]
11) }
12)
13) split_arc_points = get_points(As)
14)
15) if (split_arc_points == 2) {
16) As = intersect_pt1 . intersect_pt2
17) } else {
18) if (GetPointDistance (intersect_pt1, split_arc_po ints[1])
19) < GetPointDistance (intersect_pt1,
20) split_arc_points[sizeof(split_arc_points)-2])) {
21) for(i = 1; I < sizeof (split_arc_points) – 1; i++) {
22) As = split_arc_points[i]
23) }
24) As = intersect_pt1 . As .intersect_pt2
25) } else {
26) for (i = sizeof (split_arc_points) - 2; i >= 1; i --) {
27) As = split_arc_points[i]
28) }
29) As = intersect_pt1 . As .intersect_pt2
30) }

Figure 15: Pseudo-code to create split arc.

The arcs intersected by As are stored in variable intersected_arcs (lines 1-3). If only one arc is

contained in intersected_arcs , then only one arc is intersected, with the two intersection points

being stored in variables intersect_pt1 and intersect_pt2 (lines 5-7). If two arcs are

intersected, then the intersection point for each arc is stored in variables intersect_pt1 and

intersect_pt2 (lines 8-11). The points contained within As are stored in variable

split_arc_points (line 13). If As contains only two points, then intersect_pt1 and

intersect_pt2 are the end points (line 15 and 16). If As contains more than two points, the new

split arc As is created with the internal points in the correct order. If the second point in

split_arc_points is closer to intersect_pt1 , then all the points in split_arc_points

except for those at the ends are added between intersect_pt1 and intersect_pt2 (lines 18-

24). If the point next last is closer to intersect_pt1 , then all points except the end points of

split_arc_points are added between intersect_pt1 and intersect_pt2 (lines 25-30).

Step 2 is implemented with the following SQL statements.

i. Two arcs are intersected by the splitting arc:

Select arc.arc_id, arc.left_poly, arc.right_poly,
arc.from_point, arc.to_point, order_value, directio n,
astext(the_geom) as the_geom
from poly_arc, arc where poly_id = P
and poly_arc.arc_id = arc.arc_id
and (arc.arc_id != Ai and acr.arc_id != Aj)

ii. One are is intersected by the splitting arc:

Select arc.arc_id, arc.left_poly, arc.right_poly,
arc.from_point, arc.to_point, order_value, directio n,
astext(the_geom) as the_geom
from poly_arc, arc where poly_id = P
and poly_arc.arc_id = arc.arc_id and arc.arc_id != Ai

The following pseudo-code shown in Figure 15 describes the outline of Step 3.

The following pseudo-code describes the algorithm employed when two arcs are intersected by a

splitting arc.

1) points = split("," , arc_data["the_geom"]);
2) current_arc = 1;
3) for (c = 0; c < sizeof(points); c++) {
4) if(c <> sizeof(points)-1) { //check if we are n ot at the last point
5) intersect = get_arc_intersect (point[c] . "," . points[c+1],
6) split_arc);
7)
8) if (intersect <> null) {
9) arc1["from_point"] = arc_data["from_point"];
10) arc2["to_point"] = arc_data["to_point"];;
11)
12) if(inter == intersect_point1_data["the_geom "]) {
13) arc1["to_point"] = intersect_pt1["point_id"];
14) arc2["from_point"] = intersect_pt11["point_ id"];
15) } else {
16) arc1["to_point"] = intersect_pt2["point_id"];
17) arc2["from_point"] = intersect_pt2["point_i d"];
18) }
19) arc1["the_geom"] = arc1["the_geom"]. points[c] . "," . inter . ",";
20) arc2["the_geom"] = intersect
21)
22) current_arc++;
23) } else {
24) if(working_arc == 1) {
25) arc1["the_geom"] = arc1["the_geom"] . point s[c] . ",";
26) } else {
27) arc2["the_geom"] = arc2["the_geom"] . points [c] . ",";
28) }
29) }else {
30) arc2["the_geom"] = arc2["the_geom"] . points[c];
31) }

Figure 16: Pseudo-code for creating arcs Ai1, Ai2, Aj1, and Aj2 from arcs Ai and Aj.

The code in Figure 16 is executed once for Ai and again for Aj. The current arc being split is represented

by the variable arc_data . Variable points stores all points that are contained within the given arc

(line 1). Variable current_arc indicates if the first or second arc being created from Ai or Aj is being

created. Since an arc can be have many points between the end points, it must be determined between

which two points the intersection point should be inserted (lines 5 and 6). If the intersection location has

been found it is stored in variable intersect, then the end of the first new arc of Ai or Aj is found

and the beginning of the second new arc is created (lines 8–22). The from point of the first new arc

is the same from point of Ai or Aj and the to point of the second new arc is the same as the to

point of Ai or Aj (line 9 and 10). The point stored in intersect is checked against the first

intersection point that was inserted into table point from step 1. If the points match then the id of the

intersection points contained in intersect_pt1 and intersect_pt2 are used so set the from

point and to point IDs (lines 12-14). If the first intersection point does not match then the second

point is used to set the from point and to point IDs (lines 15-18). Then the geometry of the

intersection point is added to the two new arcs and the (line 19 and 20). If the intersection point is not

found between two points then the points are added to the current arc be created (lines 24-31). The

process to create the three new arcs when only one arc is intersected is similar to the above process and

will not be discussed.

The following pseudo-code shown in Figure 17 and 18 describes the outline of Step 4.

The following pseudo-code describes the algorithm employed when one arc is intersected.

1) if (arc_i1["direction"] == "f") {
2) new_poly1 = arc_i1["the_geom"] . ",";
3) $next_point = arc_i1["to_point"];
4)
5) if (next_point == split_arc["from_point"]) {
6) new_poly1 = new_poly1 . trim_first_point(split_ar c["the_geom"]) . ",";
7) } else {
8) new_poly1 = new_poly1
9) .trim_first_point(reverse_arc_geom($split_ar c["the_geom"])) . ",";
10) }
11) new_poly1 = new_poly1 . trim_first_point(arc_j1["t he_geom"]) . ",";
12) next_point = arc_j1["to_point"];
13)
14) done = false;
15)
16) while (!done) {
17) if (array_key_exists(next_point, forward_arcs)) {
18) new_poly1 =
19) $new_poly1.trim_first_point(forward_arcs[next_p oint]["the_geom"]). ",";
20) next_point = forward_arcs[next_point]["to_point "];
21) } else if (array_key_exists(next_point, reverse_a rcs)) {
22) new_poly1 = new_poly1 . trim_first_point(reve rse_arc_geom
23) (reverse_arcs[$next_point]["the_geom"])) . ", ";
24)
25) next_point = reverse_arcs[next_point]["from_poi nt"];
26) } else {

27) done = true;
28) }
29) }
30) new_poly2 = arc_i2["the_geom"] . ",";
31) next_point = arc_i2["to_point"];
32)
33) if (next_point == split_arc["from_point"]) {
34) new_poly2 = new_poly2 . trim_first_point(split_ar c["the_geom"]);
35) } else {
36) new_poly2 = $new_poly2 .
37) trim_first_point(reverse_arc_geom($split_arc["the _geom"])));
38) }
39) }

Figure 17: Pseudo-code for creating polygons P1 and P2 when one arc is intersected.

Variables arc_i1 , arc_i2 and arc_j1 contain data on the arcs created from the single intersected

arc Ai. Variable next_point indicates which end point of an arc to find next. To create P1 , arc_i1

is added and next_point is computed (lines 2 and 3). The next two arcs added are split_arc

and arc_j1 (lines 5-12). The arcs that were not affected by the split were divided into the two arrays

forward_arcs and reverse_arcs by the algorithm that is used also by the Merge Polygon

operation. The arcs in forward_arcs and reverse_arcs are added to the new polygon geometry

until the arc with a matching next_point is not found (lines 16-29). After all the arcs are added to

P1, P2 is created with arc_i2 and split_arc (lines 30-38). The above code shows the case when

the direction of arc_i1 is f . If the direction is r , then _i1 , arc_i2 , and arc_j1 need to be

reversed first. As each arc is added, the polygon to which the arc belongs to and the sequence value for

the arc are computed.

The following pseudo-code describes the algorithm employed when two arcs are intersected by a

splitting arc.

1) if (start_arc["direction"] == "f") {
2) next_point = start_arc["to_point"];
3)
4) new_poly = TrimGeom(start_arc["the_geom"]) . ",";
5) } else {
6) next_point = start_arc["from_point"];
7) new_poly = reverse_arc_geom(start_arc["the_geom"]) . ",";
8) }

9) done = false;
10)
11) while (!done) {
12) if (array_key_exists(next_point, forward_arcs)) {
13) new_poly = new_poly .
14) trim_first_point(forward_arcs[next_point]["the_geom "]) . ",";
15)
16) next_point = forward_arcs[next_point]["to_point"];
17) } else if(array_key_exists(next_point, reverse_arc s)) {
18)
19) new_poly = new_poly .
20) trim_first_point(reverse_arc_geom(reverse_arcs[next _point]["the_geom"])).",";
21)
22) next_point = reverse_arcs[next_point]["from_point"] ;
23)
24) } else {
25) done = true;
26) }
27) }
28) foreach (split_arcs as arc) {
29) if (arc[“direction”] == “f” && nex_point == arc[“fr om_point”]) {
30) next_point = arc["to_point"];
31) new_poly = new_poly . trim_first_point(arc["the_geo m"]) . ",";
32) break;
33) }
34) else if (arc[“direction”] == “r” && next_point == a rc[“to_point”]) {
35) next_point = arc["from_point"];
36) new_poly = new_poly .
37) . trim_first_point(reverse_arc_geom (arc["the_geom"])) . ",";
38) break;
39) }
40) }
41) if (next_point == split_arc["from_point"]) {
42) new_poly = new_poly . trim_first_point (split_arc[" the_geom"]);
43) } else {
44) new_poly = new_poly . trim_first_point (reverse_arc _geom
45) (split_arc["the_geom"]));
46) }

Figure 18: Pseudo-code for creating polygons P1 and P2 when two arcs are intersected.
The code in Figure 18 is executed once for P1 and again for P2. The first arc of the new polygon’s

geometry is stored in variable start_arc (lines 1-8). Variable next_point indicates which end

point of an arc to find next (line 2 and 6). The next set of arcs to connect to start_arc are the arcs

that were not affected by the splitting of P (lines 11-27). The arcs that are not affected by the split are

divided into the two arrays forward_arcs and reverse_arcs by the algorithm that is used also

by the Merge Polygon operation. The arcs in forward_arcs and reverse_arcs are added to the

new polygon geometry until the arc with a matching next_point is not found. Next, the arcs that are

created from the split operation are checked to find which arc has the matching end point id contained in

next_point (lines 28-40). The found arc is then added to the new polygon. The last arc to add is the

arc that split P (lines 41-45). Variable next_point is used to determine if the split arc is reversed

before being added. As each arc is added, the polygon to which the arc belongs to and the sequence

value for the arc are computed.

Step 5 is accomplished by the following sub-steps.

i. The following SQL statement is executed for each new arc created by the split. After each
 insertion, the ID of the arc is stored for future use in table poly_arc .

arc[“arc_id”] = insert into arc (from_point, to_p oint, left_poly,
right_poly, the_geom) values(arc[“from_poin”t], arc [“to_point”],
arc[“left_poly”], arc[“right_poly”], arc[“the_geom”]);

ii. The following SQL statement is executed for each polygon after the arcs have been inserted into
 table arc and the polygons into table poly .

insert into poly_arc values (arc[“poly_id”], arc[“a rc_id”],
arc[“order_value”], arc[“direction”]);

Step 6 is implemented with the following SQL statements.

delete from poly where poly_id = P
delete from poly_arc where poly_id = P

The following pseudo-code shown in Figure 19 describes the outline of Step 7.

1) poly_arc_data = select arc_id, order_value, directi on from poly_arc
2) where poly_id = update_poly_id orde r by order_value;
3)
4) found = false;
5) foreach (poly_arc_data as arc) {
6) if (!found) {
7) if (arc[“arc_id”] = Ai) {
8) if (arc[“direction”] = “f”) {
9) update poly_arc set arc_id = Ai1 where poly_id = update_poly_id
10) and arc_id = arc[“arc_id”];
11)
12) insert into poly_arc values (update_poly_id , Ai1,
13) arc[“order_value”] + 1, “f”);
14)
15) found = true;
16) } else if (arc[“arc_id”] = A j) {
17) update poly_arc set arc_id = Aj2 where poly_id = update_poly_id
18) and arc_id = arc[“arc_id”];

19)
20) insert into poly_arc values (update_poly_id , Aj1,
21) arc[“order_value”] + 1, “f”);
22)
23) found = true;
24) } else {
25) update poly_arc set order_value = arc[“order_ value”] + 1 where
26) poly_id = update_poly_id and arc_id = arc[“ar c_id”];
27) }
28) }
Figure 19: Updating of table poly_arc for the left_poly or right_poly entries for Ai or Aj.

The polygon ID to be updated is stored in variable update_poly_id . Each record in table

poly_arc for the ID contain in update_poly_id is retrieved and stored in poly_arc_data ,

ordered by the records order_value attribute (lines 1 and 2). The entries in poly_arc_data are

searched to find the arc ID matching Ai or Aj (lines 5-29). When a match is found, the new arcs IDs are

inserted in place of the old arc and the order_value for the second new arc must be incremented by

one (lines 8-23). All entries after the matching entry has its order_value incremented to account for

the new arcs inserted (lines 24-27)

Step 8 is implemented with the following SQL statements.

delete from arc where arc_id = Ai or arc_id = Aj

5. Conclusion
 With the Oregon Relational Spatial Topology (ORST) approach, we can represent topological

relationships among polygons explicitly within an object-relational database. We made it possible to

convert GIS coverage data in the ESRI E00 coverage format into the ORST representation. The ORST

representation allows various spatial operations to be implemented with relative ease.

 For our test case we converted the parcel data for the City of Corvallis, Oregon into the ORST

representation. By using this data, we created a WebGD (Web-based GIS/database) application. A

WebGD application allows its user to insert, query, update, and delete geographical features, and it can

be rapidly created with the WebGD framework [7]. The advanced spatial operations were implemented

within the WebGD framework. Our application performs spatial operations and allows the user to see

their results with a web browser.

 By using the ORST representation, coverage data can be maintained with an open-source DBMS.

With this coverage data the spatial operations implemented can help reduce errors that occur when

performing moving, merging, and splitting against data not maintained in a coverage representation such

as ORST.

References

[1] PostgreSQL: The world’s most advanced open source database.
 http://www.postgresql.org.

[2] PostGIS: http://postgis.refractions.net.

[3] OpenGIS Simple Feature Specification for SQL Revision 1.1, Open GIS
 Consortium, Inc. http://www.opengeospatial.org/

[4] ESRI: GIS and Mapping Software. http://www.esri.com.

[5] PHP: Hypertext Preprocessor. http://www.php.net.

[6] Arc/Info Export (E00) Format Analysis. http://avce00.maptools.org/docs/v7_e00_cover.html

[7] Halim, S.. 2005. WebGD: Framework for Web-Based GIS/Database Applications.
 Oregon State University.

APPENDIX A

Steps to convert a shape file to a coverage

1. Launch ArcMap

2. Right Click toolbar and add ArcToolbox command (may have to click customize to find)

3. Open ArcToolbox

4. Expand Data Management Tools

5. Expand Features

6. Open Repair Geometry

7. Select shape file

8. Click Ok

9. Shape file is fixed and resaved

10. In ArcToolBox expand Conversion Tools.

11. Expand To Coverage

12. Chose Feature Class To Coverage

13. Select your shapefile

14. Give the output coverage a name

15. Click Environment Settings

16. Select Coverage Settings

17. Chose Highest for Precision For Derived Coverages

18. Chose Double for Precision For New Coverages

19. Click Ok

20. Chose a Cluster Tolerance or select Unknown from the drop down

21. Click OK

You now have a coverage.

Converting coverage to E00 data format

1. In ArcToolBox expand Coverage Tools

2. Expand Conversion

3. Chose Export to Interchange File

4. Select Cover for Feature Type

5. Select your coverage

6. Select name and location of ouput

7. Click OK

You now have an .e00 file.

