Oregon Relational Spatial Topology (ORST)
Representation

by
David Hunt

Submitted to Oregon State University
In partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

in Computer Science

Computer Science Department
Oregon State University
Corvallis, OR
August 2006

Abstract
We designed a concise way to store and manipuli8edverage data in ageospatial database. Our

geospatial database is implemented with Postgre8@LPostGIS. PostgreSQL is an object-relational
database, and PostGIS supports various geosppéiedtions as an SQL extension. In our Oregon
Relational Spatial Topology (ORST) approattipol ogical relationships among polygons, arcs, and
points are represented explicitly. With this egplrepresentation of polygon data, such spatial
operations amoving a point, merging a polygon, andsplitting a polygon can be supported with relative
ease. In order to populate this database, we oleeela process for converting polygon data stosed a
an ESRI shapefile first to the ESRI EOO coveragmédt and then to the ORST representation. We also

implemented the spatial operations discussed above.

TABLE OF CONTENTS
2N 11 = T3 2.

i (oo 18 Tod 1 (o] o I PRSP PRRPPPPY”
2 Overview of Oregon Relational Spatial Topology (BST) Representation..............c..cceueuvennd 6.
3 ESRI EOO FOrmat for GIS Datal..........cuueiiiiiiiriiiieeeeiiiiiiee et s e 11
4 Advanced Polygon Manipulation FEALUIES...........uuiiiieiiiee e eeee ettt e e e e e 14
4.1 Move POINt OPEIatiON.............vtiir i it e s LD
4.2 Merge Polygon OpPeratiQnl...........c.cooooiiiiiiiiiiiii e e e 018
4.3 Split Polygon OPeration...............ooooiiiiiiiiiiii e e a0 22
5 CONCIUSION. ...ttt e et e e et e e e e e sk e et e s smme e e e e e r e e e e e e 31
RETEIEINCES ... ettt e e oot e 32

APPENDIX A e e 33

1. Introduction
A shapefile is a popular binary data format fgeospatial vector data. Spatial data stored in a

shapefile does not explicitly represéopol ogical relationships among polygons. Without the
topological relationships, it is not easy to maiapel polygons while maintaining correct topological
relationships among them. One way to obtain tpeltmical relationships is to convert the shapefile
data into aoverage, which is a proprietary format developed by ESRtpompany specializing in GIS
software. ESRI provides another text-based datadbcalled EOO for coverage data. This format is
proprietary. However, a specification, althougbomplete, has been published by a third party.
TheOregon Relational Spatial Topology (ORST) representation allows topological relatfops
among polygons to be specified within a datab#&s®.this purpose, we used relational tables in the
object-relational DBMS PostgreSQL augmented with PostGIS [1]. PIssbipports spatial operations
as an SQL extension compatible with the OGC (Opeospatial Consortium) specification [2] [3].

In converting coverage data in the EOO fortndahe ORST representation, specific sections@f th
EOQO file are parsed and SQL insert statementsarergted. These insert statements can be exemuted
a database supporting PostGIS. The parcel dataddCity of Corvallis, Oregon was converted to the
ORST representation as a test case.

We then implemented the spatial operatioagng a point, merging a polygon, andsplitting a
polygon for the coverage data in the ORST representafidoving a point allows a user to move an end
point of an arc to a new location. When an endpaf an arc is moved, the geometry of the arc is
recomputed with the new coordinates of the movedtpd hen the geometries of the polygons sharing
the arc are recomputed. To merge two polygonsardimgle polygon, the user can delete an arc dhare

by those two polygons. To split a polygon into taew polygons, the user can draw an arc through a

polygon.

Section 2 gives an overview of the ORST regmegtion. We discuss the EOO format in Section 3,
concentrating on the parts needed to create covelaig in the ORST representation. In Section 4
implementation of the spatial operatidvisve Point, Merge Polygon, andSplit Polygon are discussed.

Section 5 concludes this report.

2. Overview of Oregon Relational Spatial Topology (ORST) Representation

The ESRIshapefile format is a popular binary data format for geosphaector data [4]. A shapefile
stores such features lase strings, points, andpolygons, and the attributes associated with them in
multiple files. When polygons are stored in a stidg, topological relationships among the polygons
are not explicitly represented. On the other hamdyerage, which is another ESRI GIS data format,
can represent topological relationships among moiggexplicitly. Figure 1 shows three polygonsiiia)

a shapefile and (b) a coverage.

a) Polygons in a shapefile b) Polygons in a coverage
(1,12) pT3 (3.12) (6,12)
PT2 T AT 1 A2 T PT4
P1 P2 A6 P1 "T P2 A3
(3,6) l
PT1 A5 . A4 PTS
(1) PT6 (6.:6)
P3 P3
PT8 A7 PT7

(1,13 (8,1)

Figure 1: Shapefile vs. Coverageepresentations.

We now explain the major difference between a sfilagnd a coverage by using the example in Figure
1. In the shapefile representation, the right eafgeolygon P1 and the left edge of polygon P2 are
different edges. On the other hand, in the cowveragresentation, polygon P1 and P2 share the edge
A8, which is called a®arc.
1. Assume that the user moves the right edge of palyjo In the shapefile representation, the
left edge of polygon P2 does not move, even thdhghight edge of polygon P1 is identical to
the left edge of polygon P2. In the coverage regamtation, arc A8 is moved, with both polygon

P1 and P2 being reshaped as they share arc A8.

2. Assume that the user wants to merge polygon P2 tdrPthe shapefile representation, the user
needs to delete polygons P1 and P2 and create aalggon by merging them. In the coverage
representation, the user can remove arc A8 to nglygons P1 and P2.

In the ORST representation, we follow the standguoroach for storing coverage data in relational

tables, whose schema is given in Figure 2.

poly_arc

poly
- PK,FK1 | poly_id
PK |poly id | g———PKFK2 |arc_id

the_geom B direction
order_value

arc

point

PK |point id |g————|PK |arcid
the_geom ¢——L"—{FK1 | from_point

1.* | FK2 | to_point
left_poly
right_poly
the_geom

Figure 2: ORST representation of coverage data.

The end points of the arcs are stored in tpbiat . The records in tablerc designate arcs. The start
point and the end point of an arc are specifiedtybutesfrom_point andto_point

respectively. The polygon records are storedhbiefaolygon . Each arc has one polygon on its left
side and right side. These polygons are desigrigteditributedeft poly andright_poly
respectively, of an arc record. Taplely arc define the arcs constituting each polygon. The
order_value of apoly_arc record designates the sequence number of theeargnéted by the
arc_id , where the arc is an edge of the polygon desigriag@oly id . Thedirection

f(orward) orr(everse) , tells whether the arc should be traversed fromirthm_point to the
to_point or from theto_point to thefrom_point |, respectively.

We now list the attributes in each table shownigufe 2.

Tablepoint stores data for the points:

e point_id - Unique identifier for the point.

» the_geom — Geometry of the point represented ag¢xaly) pair.
Tablearc stores the geometry and data for the arcs comgeptints:

e arc_id - Unique identifier for the arc.

from_point - Identifier for the start point of the arc.

* to_point — Identifier for the end point of the arc.
* left_poly — Identifier for the polygon to the left of thecar
* right_poly — Identifier for the polygon to the right of theca

the_geom — Geometry of the arc represented as a line stflige coordinate values of the start
and end points of an arc must match the coordiedtees of those points in talgeint . An
arc may contain intermediate points in betweerstad and end points.
Tablepoly stores data for polygons:

 poly id - Unique identifier for the polygon.

* the_geom — Geometry of the polygon represented as a maljigon. The geometry of the

polygons is redundantly stored so that a GIS agftin can render the polygon.

Tablepoly _arc stores the relationship data between polygonsaarsl

e poly arc_id — Unique identifier for theoly id andarc_id combination.

 poly id - Unique identifier of the polygon formed by the designated bgrc_id

e arc_id - Unique identifier of the arc which is an edgehe polygon designated Ipply id

e direction — Direction in which arc is traversed, where thesdorming the polygon are
visited clockwise order.

» order_value - Sequence number of the arc forming the polygon.

Figure 3 shows the content of the tables for theerage specified in Figure 1 (b). The values -tha
left_poly andright_poly attributes of tablarc designates theniversal polygon, which is the

surrounding area of all the polygons defined inealoly .

point Arc
point_id | the geom arc_id| from_point| to point left poly right poly thgeom
PT1 . Al PT2 PT3 -1 P1 S
PT2 . A2 PT3 PT4 -1 P2
PT3 . A3 PT4 PT5 -1 P2
PT4 . A4 PT5 PT6 P3 P2
PT5 . A5 PT6 PT1 P3 P2
PT6 . A6 PT1 PT2 -1 P1
PT7 . A7 PT5 PT1 -1 P3
PT8 . A8 PT6 PT3 P1 P2
poly poly_arc

poly_id | the_geom poly id | Arc_id| direction| order_value
P1 s P1 A6 f 1
P2 s P1 Al f 2
P3 s P1 A8 r 3

P1 A5 f 4

P2 A8 f 1

P2 A2 f 2

P2 A3 f 3

P2 A4 f 4

P3 A7 f 1

P3 A5 r 2

P3 A4 r 3

Figure 3: ORST representation of coverage data.

A major objective of this project was to deviseragess to convert a shapefile to the ORST

representation, and we came up with the processrshioFigure 4 as one that required the least amoun

of our work.
Conversion ESRI
Shapefile +—— To E00 —— ORST POSTQIS
Coverage Format Compatible
Database

Figure 4: Process to convert a shapefile into anRST representation.

The process consists of the following two steps.

1. A shapefile is first converted to the ESRI prorgtEOO coverage format with the conversion
tool in the ArcToolbox of ESRI ArcMap. This covgemcan be converted to the EOO format
again with the conversion tool in ArcToolbox. T$erguence of the commands used by this step
can be found in Appendix A.

2. The coverage in the EOO format is parsed with a Bttipt, and the SQINSERT statements
for the ORST representation are generated [5]. sthet parses only th@RCandRPL section
in the EOO coverage file.

Figure 5 gives examples of tA®RCandRPL sections of an EQO file. The formats of theseiges are
explained in Section 3.

a) ARC section for points and arcs

1 1 5 1 -1 3 3
6.00000000000000E+06 6.00000000000000E+05
6.00000000000000E+06 1.00000000000000E+05
1.00000000000000E+06 1.00000000000000E+05
1.00000000000000E+06 6.00000000000000E+05

b) RPL section for a polygon

3 1.00000000000000E+06 1.00000000000000E+05 6.0 0000000000000E+06 6.00000000000000E+05
7 0 0 -5 0 0
-4 0 0

Figure 5: Examples ofARC (a) andRPL (b) sections in an EQO file.

The SQL INSERT statements generated from the EGOgiaen in Figure 5 are shown in Figure 6.

a) Insert for table point.

Insert into e00_point(point_id,the_geom)values
(1, GeomFromText('POINT(1272815.12498623 3328705.62 537365)', 32026));

b) Insert for table arc.

Insert into e00_arc(arc_id,from_point, to_point, le ft_poly, right_poly,
the_geom)values(1,1,3,1,-1, GeomFromText('LINESTRIN G (1272815.12498623
3328705.62537365, 1272752.87502497 3328387.18707713 , 1272731.75015514

3328279.68742550)', 32026));
c) Insert for table poly.

Insert into e00_rpl(poly_id, the_geom) values(8,
GeomFromText(MULTIPOLYGON(((1272815.12498623 33287 05.62537365, 1272752.87502497
3328387.18707713, 1272731.75015514 3328279.68742550 , 1269840.443398000000
331915.382004284000,1269932.322300500000 331912.755 438105000, 1272815.12498623
3328705.62537365)))", 32026));

d) Insert for table poly_arc.

Insert into e00_poly_arc_test(poly_arc_id, poly _id, arc_id, order_value,
direction)values(1, 1,1, 1,'f);

Figure 6: SQL INSERT statements generated from th&O00 file.

3. ESRI EOO Format for GIS Data
The EOO format for coverage data is a proprietatg dformat of ESRI. However, the specification of
the EOO format has been published, although nopteten by a third party [6]. An EQO file consigte
following sections:

* ARC-sets of data on the arcs

* CNT- center points of the polygons

» LAB - sets of labels for polygons

» LOG- coverage edit history

* PAL - repeating sets of data on the polygons

* PRJ- map projection data

* SIN — spatial index

 TOL- multiple lines defining the tolerance type, tblerance status, and the tolerance value
* TXT — annotations

* TX6/TX7 — annotations

» RXP- associations of polygons within a region andRA& section

RPL - sets of data on the polygons for regions

Coordinate values contained in a EOO file are ei@aéigit floating point (single precision) values
15-digit floating point (double precision) valuels the current version of the ORST implementation,
we only support double precision values. In cotingrdata to the ORST representation, onlyARC
andRPL sections of the EQO file are used.

We now explain the format of a&kRCsection by using an example given in Figure 7.

1 1 5 1 -1 3 3

6.00000000000000E+06 6.00000000000000E+05
6.00000000000000E+06 1.00000000000000E+05
1.00000000000000E+06 1.00000000000000E+05
1.00000000000000E+06 6.00000000000000E+05

Figure 7: ARC section listing.

The attributes in the top row of thdRCsection have the following meaning:
1. 1: coverage number — not converted
2. 1: coverage ID — not converted
3. 5: from node - id of the first point in the current arc
4. 1: tonode -id of the last point in the current arc
5. -1: left polygon — id of the polygon on the left of the arc
6. 3: right polygon — id of the polygon on the right of the arc

7. 3: number of coordinates — number of point geometries in the arc

Attributes 3 — 6 are the unique identifiers of gwénts and the polygons. These values are usedrals
tablespoint andpoly . Each row after the first contaifs y) values of a point contained in the
arc. The second row is for tirem node, and the final row for theo node

We now explain the format of &PL section by using again an example given in Fi@ure

3 1.00000000000000E+06 1.00000000000000E+05 6.0 0000000000000E+06 6.00000000000000E+05
7 0 0 -5 0 0
-4 0 0

Figure 8: RPL section listing.

The attributes in the top row of tiRPPL section have the following meaning:

1. 3: number of arcs in the current polygon

2. 1.00000000000000E+06x min of the current polygon

3. 6.00000000000000E+05y min of the current polygon

4. 6.00000000000000E+06x max of the current polygon

5. 6.00000000000000E+05y max of the current polygon
The subsequent lines contain one or two sets eéthalues. In our example, the second line comtain
two sets and the third one set. Each set contlag®llowing values:

1. 7: Arc_Id - ID of the arc contained in the current polygon

2. 0: From_Node_ld - not converted

3. 0: Adjacent_Polygon_lId - not converted
A coverage produced from a shapefile contains diata single region. THRPL section contains for
each polygon a complete list of the ids of the &wosing the polygon. If one of the arc IDs isaer
then the polygon contains a hole as shown in Figur&he arc IDs following the zeros represent the

inner polygon, which is a hole.

100 200
Outer Polygon
HOLE 300 400 Y9
000 500
600 700 Inner Polygon (Hole)
OUTER POLY G0N 300

Figure 9: Polygon containing a hole

TheRPL section defines the same polygons as those iRAhesection in the EQO file. We used the
data in the RPL section instead of those in the Bédtion because of the following reasons.
1. The polygons are listed in tiPL section in the same order as in the original sfilape
2. If the PAL section is used, we need to parseRXé§ion to determine the correct polygon ID
ordering.
ThePAT section of the EQO file contains the attributeshef polygons. However, we use the attribute

data in a table created directly from a shapeditel hence thBAT section is not parsed.

4. Advanced Polygon Manipulation Features

4.1 Move Point Operation

We want to allow the user to move a point node witMiove Point operation. The current
implementation of the operation supports movings@énéfrom point and theo point of an arc.
A future release may support a Move Point operdtomny point within an arc. When a point is
moved, the arcs attached to the point and the gepmwiethe polygon containing those arcs must be

updated as shown in Figure 10.

a) Before moving point PT3 b) After moving point PT3

Al PT3 AD PT2

FT2 o PT4
Al A2
AB P1 A8 P2 A3 PT2 PT4
AB Ad AB
PT1e 4 PT5 P2
PTe A6 P A3
P3 PT1 e AB . Ad * PT5
PTE
FTE = -
e PT7 o
PTS @ AT & PT7

Figure 10: Move Point operation on point PT3.

To update a point, the user selects the point emtap and drags it to a new location. The point is
updated in the poirtble with the new coordinates.

The code for updating the arcs is shown in figure 1

1) $affected_polys = array(); //holds ids of poly gons that need to be updated
2)

3) //get all arcs that contain moved point

4) $sSQL_arcs = sprintf("Select arc_id, from_point , to_point, " .

5)'left_poly, right_poly, astext(the_geom) as the__ geom".

6)" from arc where from_point = %s or to_point = % s", $point_id, $point_id);

7)

8) $result = pg_query($link, $sSQL_arcs);
9

10) //update each arc with updated point

11) while($row = pg_fetch_assoc($result){

12) $new_arc =""; //holds updated geometry of arc
13)

14) /Icheck if point matches from point of arc

15) if($row[from_point] == $point_id){

16) //overwrite old from point with new point

17) $new_arc = "LINESTRING(" . $point . "," .

18) substr($row[the_geom], strpos($row[the_geom], "M+ 1);
19)

20) //point matches arcs to point

21) else{

22) [loverwrite old to point with new point

23) $new_arc = substr($row[the_geom], O,

24) strrpos($row[the_geom], ",") + 1) . "$point)";
25) '}

26)

27) llcheck if polygon containg the arc has alread y been added to affected_polys
28) if(lin_array($row[left_poly], $affected_polys) N

29) array_push($affected_polys, $row(left_poly]) ;

30) }

31) if(lin_array($row[right_poly], $affected_polys W

32) array_push($affected_polys, $row[right_poly]);

33) }

32)

33) /lupdate arc with new geometry

34) $sSQL_update arc = sprintf("Update arc set the _geom = geomfromtext('%s',%s) "
35) . "where arc_id = %s", $new_arc, $data_sr id, $row[arc_id]);

36)

37)pg_query($link, $sSQL_update_arc);

Figure 11: Updating the arcs affected by a Move Pot operation.
Once the arcs adjacent to the point moved areeved, (lines 4-8), then all the end points of dines
match the point moved are updated (lines 9-25 d@r873. When each of the affected arcs are updated,
the IDs of the polygons that are on the left ohtigf that arc are also saved for future procesgings
27-33). The geometry of those polygons need batepdwvith the new arc data.
After the arcs affected by the modified point apelated, tabl@oly arc is queried with each ID
stored indaffected_polys , to get the list of all the arcs forming the pawgand the geometry of

the polygon is updated. The code for this proceskown in Figure 12.

38) /lthis loop updates each polygon with the aees

39) foreach($affected_polys as $poly_id){

40) /lif polygon id is -1 then no update needed

41) if($poly_id <> -1){

42) $begin_poly = true; //indicates if arc shibbk the first arc in the polygon

43) $poly_geom = "MULTIPOLYGON((("; //holds nepolygon geometry for updating
44)

45) /lgets the order and direction of the aocgtie polygon

46) $sSQL_poly_arc = sprintf("Select poly_arc.ad, order_value, direction," .

47) "astext(the_geom) as the_geom from poly" .

48) "join arc on arc.arc_id = poly_arc.arc" id

49) " where poly_id = %s order by order_ed|upoly_id);
50)

51) $result = pg_query($link, $sSQL_poly_arc);

52)

53) //add each arc to the updated polygon

54) while($row = pg_fetch_assoc($result)){
55) $hole = false; //indicates if polygon hasode
56) $arc_geom="";
57)

58) /lcheck if arc should be reversed

59) if($row[direction] == "r"){

60) $arc_geom = TrimGeom(ReverseArcGeom($itmvjgeom], $link));
61)

62) /Ilcheck if arc does not need to be reversd

63) elseif($row[direction] == "f"){

64) $arc_geom = TrimGeom($row[the_geom]);

65) }
66) //polygon contain a whole since directi@ue is h
67) else{

68) $hole = true;

69) $poly_geom = $poly_geom . ")),(";

70) $begin_poly = true;

1)}

72) /lif polygon did not have a hole then aaid to polygon
73) if(!$hole){

74) /lif arc is first arc in polygon or hole

75) if($begin_poly){

76) $poly_geom = $poly_geom . $arc_ged .

77) $begin_poly = false;

78)

79) /larc is not first arc in polygon or éol

80) else{

81) $poly_geom = $poly_geom . TrimFirstR(Barc_geom) . ",";
82) '}

83) }

84) }

85) /lremove extra , at end of polygon

86) $poly_geom = rtrim($poly_geom, “,") . ")))";

87)

88) //lupdate polygon with geometry

89) $sSQL_update_poly = sprintf("update poly ket geom = geomfromtext('%s', %s) " .
90) "where poly_id = %s", $poly_geom, $data_ssigoly_id);
91)

92) pg_query($link, $sSQL_update_poly);

93) }

Figure 12: Code for updating the polygons when a piot is moved.
The process of updating the polygons consistseofdalowing steps.
1. The values of attributes tlaec_id , order_value ,direction , andthe_geom of the
arcs in the polygon are retrieved from talgey _arc andarc (lines 46-51). The
direction value is checked forfa, r, orh value (lines 59, 63, and 67).
2. If adirection value was d orr, then the arc is added to the polygon. Othervasele
must be created (line 69). If the arc is the fnstin the polygon, then it can be added to the se
of the nodes for the polygon (line 76). If the eraot the first edge of the polygon then thetfirs
point of the arc must be removed before the retepoints of the arc arc added to the polygon
(line 81).
3. The geometry of the polygon is updated (lines 8p-92
4. Steps 1-4 are repeated for each polygon whose itb@affected_polys (line 39).

4.2 Merge Polygon Operation

We want to allow the user to merge two polygonhwitMerge Polygon operation. After selecting this
operation, the user can select an arc to be deldtkdn the polygons on the left and right sidethef
arc are merged into a single polygon. A speciabdhag is needed when a polygon is merged with the
universal polygon. In this case, the polygon imially deleted, since the universal polygon is the

surrounding area. Figure 12 illustrates the nommal special cases for merging polygons.

a) Polygons before merging b) Removing arc A8
PTa AD PT3 AZ
PT2 Al PT4 PT2 Al . PT4
PT1 AB Ad PT5 PT1 AB - = PT5
PTG PTG

c) Removing arc A3

PT3
PT2 Al

6 P1 A8
PT1 A8 PT6

Figure 12: Merge Polygon operation.
PolygonsP1 andP2 can be merged into new polygB8 as follows.

1. Let the sets of the arcs Bl andP2 bearcs(P1) andarcs(P2), respectively. Compute the set of
arcs ofP3 asarcs(P3) = arcs(P1) n arcs(P2) —arcs(P1) O arcs(P2). The setrcs(P1l) n
arcs(P2) represents all the arcs each of which is usedlbgr P2. The setrcs(P1) [arcs(P2)
represent the arcs sharedRiyandP2 along the common boarder.

2. Delete the arcs in the satcs(P1) [arcs(P2) from tablesarc and the related entries in table
poly _arc . Also, the points adjacent to those arcs neatkleted from tablgoint if they

are not adjacent to any of the remaining arcs.

3. Insert polygorP3 into tablepoly and update the entries in tabées andpoly _arc for
arcs(P3) . The geometry d?3 need be computed froancs(P3).
4. Delete polygon®1 andP2 from tablepoly .
Step 1 is accomplished by the following SQL stateime

ar cs(P3) =select arc.arc_id, from_point, to_point,

astext(the_geom) as the_geom,

order_value, direction from arc, poly_arc

where (poly_id = P1 or poly_id = P2) and arc.arc_id = poly_arc.arc_id
except

select arc.arc_id, from_point, to_point,

astext(the_geom) as the_geom,

order_value, direction from arc, poly_arc,

(select pl.arc_id from poly_arc as p1l, poly_arc as p2
where ((pl.poly_id = P1 and p2.poly_id = P2)
and (pl.arc_id = p2.arc_id and p2.arc_id = pl.arc_i d))) as arcl

where (poly_arc.arc_id = arcl.arc_id)
and (poly_arc.arc_id = arc.arc_id)

Step 2 is accomplished by the following sub-stepeated for each arc.

I. The following SQL statement removes all the ared Bi andP2 have in common.

delete from arc where arc_id in (select pl.arc_id, from_point,
to_point from arc, poly_arc as p1l, poly_arc as p2
where (pl.poly _id = P1 and p2.poly_id = P2)
and (pl.arc_id = p2.arc_id) and (pl.arc_id = arc.a rc_id))

ii. This following SQL statement removes th@ly arc entries for the arcs deleted by the
previous step.

delete from poly_arc where arc_id = id of deleted arc

iii. The following pseudo-code removes the end poirgsdhe not used by any of the remaining arcs.
from_point_count = select count(arc_id) from arc w here
from_point = deleted_arc[from_point] or
to_point = deleted_arc[from_point]

to_point_count = select count(arc_id) from arc whe re

from_point = deleted_arc[to_point] or
to_point = deleted_arc[to_point]

if (from_point_count <=1) {
delete from point where point_id = deleted_arc[f
}
if (to_point_count <= 1) {
delete from point where point_id = deleted_arc

rom_point]

[to_point]

Step 3 is accomplished by the following pseudo-cid®vn in Figure 13.

1)
2)
3)

foreach(merge_arc) {
if(merge_arc[direction] ==f) {
forward_arcs[merge_arc[from_point]] = merge_arc
next_point = [merge_arc[from_point]
} else
reverse_arcs[merge_arc[to_point]] = merge_arc

}
}
first_arc = true;
for(i = 0; i < sizeof (forward_arcs) + sizeof (reve
if (exists (forward_arcs, next_point) {
if(first_arc) {
poly_geom = forward_arcs[next_point][the_geom]
first_arc = false
}else {

poly geom = poly_geom .
remove_first_point (forward_arcs[next_point

update poly_arc set order_value = $i where poly_id
forward_arcs[next_point][poly_id]and arc_id = forw

next_point = forward_arcs[to_point]
}else {
if (first_arc) {
poly _geom = reverse_arc (reverse_arcs[next_
} else {

rse_arcs) ; i++) {

lthe_geom])

ard_arcs[next_point][arc_id]

point][the_geom])

poly _geom = poly_geom .
remove_first_point (reverse_arc (reverse_ arcs[next_point][the_geom]))
update poly_arc set order_value = $i where po ly id
reverse_arcs[next_point][poly_idJand
arc_id = reverse_arcs[next_point][arc_id]
next_point = reverse_arcs[from_point]
}
P3_id = Insert into poly (the_geom) values (poly_g eom)
foreach (forward_arcs as arc) {
Update arc set right_poly = P3_i d where arc_id = arc[arc_id]
foreach (reverse_arcs as arc) {
Update arc set left_poly = P3_i d where arc_id = arc[arc_id]
}
update poly_arc set poly_id = P3_i d where poly_id = P1_idorpoly_id = P2_id
}

Figure 13: Pseudo-code to merge two polygons.

The arcs irarcs(P3) are split into two arrays (line 1-8). All arcstlva direction value of are placed
into arrayforward_arcs, using the arckom_point ID as the index value (lines 2 and 3). The
arcs with a direction value ofare placed into arragverse_arcs , using the arce_point 1D as
the index value (lines 5 and 6). Variabkext_point contains the end point ID of the first arc to be
added td”3 (line 4). Theforward_arcs andreverse_arcs are checked to find which array
contains the point ID containedmext_point (lines 12 and 21). When the array with the index
value matchingiext_point is found, the arc is added to the geometr@d({lines 13-18 and 22-26).
If the added arc was from therward_arcs array then the newext_point will be the arcs
to_point (line 20). Otherwise, theext_point will be the arcgrom_point ID (line 28). As
each arc is added B8, the sequence number is updated in tpblg_arc (lines 20 and 31). After
P3 has been inserted and its ID returned |effte poly orright_poly IDs are updated for each
arc (lines 32 — 37). For each arc containefiward_arcs, theright_poly ID is updated with
P3's ID (line 33). For each arc containedr@verse_arcs, theleft_poly ID is updated with
P3's ID (line 36). The IDs of polygonB1 andP2 are updated witR3's ID in tablepoly_arc

Step 4 is accomplished by the following SQL stateime

delete from poly where poly_id = P1 or poly id = P

4.3 Split Polygon Operation

The Split Polygon operation allows the user totgpfpolygon into two new polygons. After selecting
this operation, the user can draw an arc to sgdlggon, with the splitting arc as the common blear
Figure 14 illustrates the polygon Bging split. The user can choose to draw an atdtkersects one
or two arcs used by a single polygon. Figure }4ll(estrates a case when the arc splitting the/goh

intersects two edges of the polygon. In this caaeh of the intersected arcs is divided into tew n

arcs. Figure 14 (b) illustrates a case where onésantersected. When this happens, the intexdeantc
is divided into three new arcs.

a) Splitting polygon P1 by intersecting arc A1 andA3.

PT2 AT PT3 PT2 Ml em PT2g 29 PI5 A8 prs
Ad P A2 wp Ad P1 a2 w4l P2 P3 | a0
PT1 PT4

v Pt PT4 PTH 87— *PT4

b) Splitting polygon P1 by intersecting arc Al twie.

PT2 Al PT3 PT2 Al PT3 PT2 FTS FT& PT3
Ad P A7 mp A4 A e Ad AZ
P1
PT1 PT4 PT1 PT4 PT1 PT4
AJ AJ

Figure 14: Split Polygon operation.
PolygonP can be split into polygor?; andP, as follows.

1. Use the split arésto compute the arcs intersected and the intersepbmts. Then use the
intersection points as the end point®ef In Figure 14 (a), PT5 and PT6 are intersectioints
and A6 isAs.

2. Obtain the arcs d? that were not intersected Byas the setrcs(P) . In Figure 14 (a)p = P1
arcs(P) = {A2, A4}.

3. If two arcs are intersected, let themAandA;,, compute the arc; andA; from A andAj;
andA;; from arcA;. In Figure 14 (a)A = AL, A = A3, A1 = A5, A, = A8, A1 = A7, andAj; =
A9. If only one arc, Ai is intersected, compute #rcsAi1, Az, andAjz from arcA;. In Figure 14
(b), A = A1, Ay = A5, A, = A7, andA; = A8.

4. CreateP, andP, with the arcs contained arcs(P), Ai1, Aiz, A1, A2, andAs. InsertP; andP, into

tablepoly . In Figure 14 (a)P, = P2 and®; = P3.

5. Insert the new arcs into taldec and add the entries f& andP, into tablepoly arc

6. Delete the entries fd? in tablepoly_arc andP from tablepoly .

7. Update the entries in tabpoly _arc for theleft_poly orright_poly contained irA;
andA;. The entries foA; or A aredeleted and replaced with entries Aor andAi; or Aj; andAj;.
When the new arcs are added the valuesadr_value for the arcs aftefs or A are
reassigned.

8. Delete arc#\ andA; from tablearc .

The following pseudo-code shown in Figure 15 déssithe outline of Step 1.

1) intersected_arcs = select arc_id, left_poly, right_ poly,from_point, to_point,

2) astext(the_geom) as the_geom,astext(intersection(th e_geom, Ay as intersect_geom
3) from arc where intersects(the_geom, Ay

4)

5) if (sizeof(intersected_arcs) == 1) {

6) intersect_ptl = get_first_point (intersected_arcs[0 Jlintersect_geom])

7) intersect_pt2 = get_second_point (intersected_arcs| O][intersect_geom])

8) }else{

9) intersect_ptl = intersected_arcs[O][intersect_geom]
10) intersect_pt2 = intersected_arcs[1][intersect_geom]
11) }

12)

13) split_arc_points = get_points(A

14)

15) if (split_arc_points == 2) {

16) As=intersect_ptl . intersect_pt2

17) }else{

18) if (GetPointDistance (intersect_ptl, split_arc_po ints[1])
19) < GetPointDistance (intersect_pt1,

20) split_arc_points[sizeof(split_arc_points)-2])) {
21) for(i = 1; | < sizeof (split_arc_points) — 1; i++) {
22) As=split_arc_points]i]

23) '}

24) As=intersect_ptl . As.intersect_pt2

25) }lelse{

26) for (i = sizeof (split_arc_points) - 2; i >=1; i R
27) As=split_arc_points]i]

28) }

29) As=intersect ptl. As.intersect_pt2

30) }

Figure 15: Pseudo-code to create split arc.

The arcs intersected I8y are stored in variablatersected_arcs (lines 1-3). If only one arc is
contained inntersected_arcs , then only one arc is intersected, with the twersection points
being stored in variablestersect_ptl andintersect_pt2 (lines 5-7). If two arcs are
intersected, then the intersection point for eachsastored in variableéstersect_ptl and
intersect_pt2 (lines 8-11). The points contained witlAgare stored in variable
split_arc_points (line 13). IfAs contains only two points, thentersect_ptl and
intersect_pt2 are the end points (line 15 and 16). Af contains more than two points, the new

split arcAsis created with the internpbints in the correct order. If the second paint i

split_arc_points is closer tantersect_ptl , then all the points iaplit_arc_points

except for those at the ends are added betiwgersect ptl andintersect_pt2 (lines 18-
24). If the point next last is closeritdersect_ptl , then all points except the end points of
split_arc_points are added betweentersect_ptl andintersect_pt2 (lines 25-30).

Step 2 is implemented with the following SQL statens.
I. Two arcs are intersected by the splitting arc:

Select arc.arc_id, arc.left_poly, arc.right_poly,

arc.from_point, arc.to_point, order_value, directio n,
astext(the_geom) as the_geom

from poly_arc, arc where poly_id = P

and poly_arc.arc_id = arc.arc_id

and (arc.arc_id != A and acr.arc_id != A)

ii. One are is intersected by the splitting arc:

Select arc.arc_id, arc.left_poly, arc.right_poly,

arc.from_point, arc.to_point, order_value, directio n,
astext(the_geom) as the_geom

from poly_arc, arc where poly_id = P

and poly_arc.arc_id = arc.arc_id and arc.arc_id != A

The following pseudo-code shown in Figure 15 déssithe outline of Step 3.

The following pseudo-code describes the algoritimpleyed when two arcs are intersected by a
splitting arc.

1) points = split("," , arc_data["the_geom"]);
2) current_arc =1;
3) for (c = 0; c < sizeof(points); c++) {

4) if(c <> sizeof(points)-1) { //check if we are n ot at the last point
5) intersect = get_arc_intersect (point[c] . "," . points[c+1],
6) split_arc);

7)

8) if (intersect <> null) {

9) arcl["from_point"] = arc_data["from_point"];

10) arc2["to_point"] = arc_data["to_point"];;

11)

12) if(inter == intersect_pointl_data["the_geom DA

13) arcl['to_point"] = intersect_pt1["point_id" 1

14) arc2["from_point"] = intersect_pt11["point_ id";

15) } else {

16) arcl["to_point"] = intersect_pt2["point_id" 1;

17) arc2["from_point"] = intersect_pt2["point_i d";

18)

19) arcl['the_geom"] = arc1["the_geom"]. points[c]1."" . inter."";
20) arc2["the_geom"] = intersect

21)

22) current_arc++;

23) }else {

24) if(working_arc == 1) {

25) arcl['the_geom"] = arcl["the_geom"] . point s[c] . ",";
26) }else {

27) arc2['the_geom"] = arc2["the_geom"] . points [e].""
28) }

29) Jelse {

30) arc2["'the_geom"] = arc2["the_geom"] . points| cl;

31) }

Figure 16: Pseudo-code for creating archiy, Aiz, Aj1, and Ajz from arcs A; and Ay.

The code in Figure 16 is executed oncefaand again foy. The current arc being split is represented
by the variablarc_data . Variablepoints stores all points that are contained within thesgiarc

(line 1). Variablecurrent_arc indicates if the first or second arc being credtech A; or A; is being
created. Since an arc can be have many pointsebatthe end points, it must be determined between
which two points the intersection point should heerted (lines 5 and 6). If the intersection lmrahas
been found it is stored in variabtgersect, then the end of the first new arcAfor A is found

and the beginning of the second new arc is cre@itess 8-22). Thérom point of the first new arc

is the same from point & or A; and theto point of the second new arc is the same addhe

point of A, or A (line 9 and 10). The point storedimersect is checked against the first
intersection point that was inserted into tgidéent from step 1. If the points match then the idhaf t
intersection points containediimersect_ptl andintersect_pt2 are used so set tfrom

point andto point IDs (lines 12-14). If the first intersection pbaoes not match then the second
point is used to set tHeom point andto point IDs (lines 15-18). Then the geometry of the
intersection point is added to the two new arcstardline 19 and 20). If the intersection posihot
found between two points then the points are adddde current arc be created (lines 24-31). The
process to create the three new arcs when onlainis intersected is similar to the above process

will not be discussed.

The following pseudo-code shown in Figure 17 andid&cribes the outline of Step 4.

The following pseudo-code describes the algoritimpleyed when one arc is intersected.

1) if (arc_il["direction"] == "f") {
2) new_polyl = arc_il["the_geom"]."";
3) $next_point = arc_il["to_point"];

4)

5) if (next_point == split_arc["from_point"]) {

6) new_polyl = new_polyl . trim_first_point(split_ar c['the_geom']) . ",";
7) lelse{

8) new_polyl = new_polyl

9) trim_first_point(reverse_arc_geom($split_ar c['the_geom'])) . ",";
10) }

11) new_polyl = new_polyl . trim_first_point(arc_j1["t he_geom']) . ",";
12) next_point = arc_j1["to_point"];

13)

14) done = false;

15)

16) while (!done) {

17) if (array_key_exists(next_point, forward_arcs)) {

18) new_polyl =

19) $new_polyl.trim_first_point(forward_arcs[next_p oint]["the_geom™]). ",";
20) next_point = forward_arcs[next_point]["to_point ";

21) } else if (array_key_exists(next_point, reverse_a rcs)) {

22) new_polyl = new_polyl . trim_first_point(reve rse_arc_geom
23) (reverse_arcs[$next_point]["the_geom"])) . ",

24)

25) next_point = reverse_arcs[next_point]["from_poi nt"];

26) }else {

27) done = true;

28) }

29) }

30) new_poly2 = arc_i2["the_geom"] . ",";

31) next_point = arc_i2["to_point"];

32)

33) if (next_point == split_arc["from_point"]) {

34) new_poly2 = new_poly2 . trim_first_point(split_ar c['the_geom"]);
35) }else {

36) new_poly2 = $new_poly2 .

37) trim_first_point(reverse_arc_geom($split_arc["the _geom'"));
38)

39) 1}

Figure 17: Pseudo-code for creating polygor®; and P, when one arc is intersected.
Variablesarc_il ,arc_i2 andarc_jl contain data on the arcs created from the simjgzsected
arcA. Variablenext_point indicates which end point of an arc to find nexb createP; , arc_il

is added andext_point is computed(lines 2 and 3). The next two arcs addedsal# _arc
andarc_j1 (lines 5-12). The arcs that were not affectedheysplit were divided into the two arrays
forward_arcs andreverse_arcs by the algorithm that is used also by the Mergigdrm
operation. The arcs florward_arcs andreverse_arcs are added to the new polygon geometry
until the arc with a matchingext_point is not found (lines 16-29). After all the arce added to

P1, P2is created wittarc_i2 andsplit_arc (lines 30-38). The above code shows the case when
the direction ofarc_il isf. If the directionisg, then_il ,arc_i2 , andarc_j1 need to be
reversed first. As each arc is added, the polygamhich the arc belongs to and the sequence vafue
the arc are computed.

The following pseudo-code describes the algoritimpleyed when two arcs are intersected by a

splitting arc.

1) if (start_arc["direction"] == "f") {

2) next_point = start_arc["to_point"];

3)

4) new_poly = TrimGeom(start_arc["the_geom"]) . ",";
5) }else{

6) next_point = start_arc["from_point"];
7) new_poly = reverse_arc_geom(start_arc["the_geom"])

8) }

9) done = false;

10)

11) while (!done) {

12) if (array_key_exists(next_point, forward_arcs)) {

13) new_poly = new_poly .

14) trim_first_point(forward_arcs[next_point]["the_geom .

15)

16) next_point = forward_arcs[next_point]["to_point"];

17) } else if(array_key exists(next_point, reverse_arc s)) {

18)

19) new_poly = new_poly .

20) trim_first_point(reverse_arc_geom(reverse_arcs[next _point]["the_geom™])).",";
21)

22) next_point = reverse_arcs[next_point]["from_point"]

23)

24) } else {

25) done = true;

26) }

27)

28) foreach (split_arcs as arc) {

29) if (arc[“direction”] == “f” && nex_point == arc[“fr om_point”]) {
30) next_point = arc["to_point"];

31) new_poly = new_poly . trim_first_point(arc['the_geo m"]) . """

32) break;

33)

34) else if (arc[direction”] == “r" && next_point == a rc[“to_point™]) {

35) next_point = arc["from_point"];
36) new_poly = new_poly .

37) . trim_first_point(reverse_arc_geom (arc['the_geom™])) . "";
38) break;

39) }

40) }

41) if (next_point == split_arc["from_point"]) {

42) new_poly = new_poly . trim_first_point (split_arc[" the_geom"));

43) }else {

44) new_poly = new_poly . trim_first_point (reverse_arc _geom

45) (split_arc["the_geom™)));

46) }

Figure 18: Pseudo-code for creating polygor; and P, when two arcs are intersected.
The code in Figure 18 is executed onceHpand again foP,. The first arc of the new polygon’s

geometry is stored in variabdart_arc (lines 1-8). Variableext_point indicates which end
point of an arc to find next (line 2 and 6). Thexnset of arcs to connectdtart_arc are the arcs
that were not affected by the splitting®flines 11-27). The arcs that are not affectedneysplit are
divided into the two arrayrward_arcs andreverse_arcs by the algorithm that is used also
by the Merge Polygon operation. The arckomvard_arcs andreverse_arcs are added to the

new polygon geometry until the arc with a matchmegt_point is not found. Next, the arcs that are

created from the split operation are checked t Which arc has the matching end point id contained
next_point (lines 28-40). The found arc is then added to& polygon. The last arc to add is the
arc that spliP (lines 41-45). Variableext_point Is used to determine if the split arc is reversed
before being added. As each arc is added, thgpolio which the arc belongs to and the sequence
value for the arc are computed.

Step 5 is accomplished by the following sub-steps.

i. The following SQL statement is executed for each aec created by the split. After each
insertion, the ID of the arc is stored for futuse in tablgoly arc

arc[“arc_id"] = insertinto arc (from_point, to_p oint, left_poly,
right_poly, the_geom) values(arc[*‘from_poin™t], arc [“to_point™],
arc[“left_poly], arc[“right_poly], arc[‘the_geom” D;

ii. The following SQL statement is executed for eadlygun after the arcs have been inserted into
tablearc and the polygons into tabpoly .

insert into poly_arc values (arc[“poly_id"], arc[“a rc_id",
arc[“order_value”], arc[“direction™]);

Step 6 is implemented with the following SQL staens.

delete from poly where poly_id = P
delete from poly_arc where poly_id = P

The following pseudo-code shown in Figure 19 déswsithe outline of Step 7.

1) poly_arc_data = select arc_id, order_value, directi on from poly_arc
2) where poly_id = update_poly id orde r by order_value;
3)

4) found = false;
5) foreach (poly_arc_data as arc) {
6) if (ffound) {

7 if (arc[*arc_id"] = A){

8) if (arc[“direction] = “f") {

9) update poly_arc set arc_id = A ; where poly_id = update_poly id
10) and arc_id = arc[“arc_id";

11)

12) insert into poly_arc values (update_poly_id . A,

13) arc[‘order_value”] + 1, “f");

14)

15) found = true;

16) } else if (arc[*arc_id"] = A il

17) update poly_arc setarc_id = A » where poly_id = update_poly_id

18) and arc_id = arc[“arc_id";

19)

20) insert into poly_arc values (update_poly _id v A1

21) arc[‘order_value”] + 1, “f");

22)

23) found = true;

24) }else{

25) update poly_arc set order_value = arc[“order_ value”] + 1 where
26) poly id = update_poly_id and arc_id = arc[“ar c_id";

27}

28) }

Figure 19: Updating of tablepol y_ar c forthel eft _pol y orri ght _pol y entries for A; or A;.

The polygon ID to be updated is stored in varialpldate_poly id . Each record in table

poly arc for the ID contain irupdate_poly id Is retrieved and stored poly_arc_data
ordered by the recordsder_value attribute (lines 1 and 2). The entrieply _arc_data are
searched to find the arc ID matchifAgor A; (lines 5-29). When a match is found, the new #dssare
inserted in place of the old arc and thder_value for the second new arc must be incremented by
one (lines 8-23). All entries after the matchimgre has itorder_value incremented to account for
the new arcs inserted (lines 24-27)

Step 8 is implemented with the following SQL statens.

delete from arc where arc_id = A orarc_ id = A

5. Conclusion
With the Oregon Relational Spatial Topold@®RST) approach, we can represent topological

relationships among polygons explicitly within dnjext-relational database. We made it possible to
convert GIS coverage data in the ESRI EOO coveliageat into the ORST representation. The ORST
representation allows various spatial operatiortsetomplemented with relative ease.

For our test case we converted the parcelfdathe City of Corvallis, Oregon into the ORST
representation. By using this data, we createceb®D (Web-based GIS/database) application. A
WebGD application allows its useritasert, query, update, anddelete geographical features, and it can
be rapidly created with the WebGD framework [7heTadvanced spatial operations were implemented
within the WebGD framework. Our application perfar spatial operations and allows the user to see
their results with a web browser.

By using the ORST representation, coverage ck be maintained with an open-source DBMS.
With this coverage data the spatial operations@mginted can help reduce errors that occur when
performing moving, merging, and splitting againatadnot maintained in a coverage representatiom suc

as ORST.

References

[1] PostgreSQL: The world’'s most advanced opemc@database.
http://www.postgresql.org.

[2] PostGIS: http://postgis.refractions.net.

[3] OpenGIS Simple Feature Specification for SQdvRion 1.1, Open GIS
Consortium, Inc. http://www.opengeospatiaj/or

[4] ESRI: GIS and Mapping Software. http://wwwigom.
[5] PHP: Hypertext Preprocessor. http://www.php.ne
[6] Arc/Info Export (EOO) Format Analysis. htt@i/ce00.maptools.org/docs/v7_e00_cover.html

[7] Halim, S.. 2005. WebGD: Framework for Web-Ba$&lS/Database Applications.
Oregon State University.

APPENDIX A

Steps to convert a shape file to a coverage
1. LaunchArcMap
2. Right Click toolbar and addrcToolbox command (may have to click customize to find)
3. OpenArcToolbox
4. ExpandData Management Tools
5. ExpandFeatures
6. Open RepaiGeometry
7. Selectshape file
8. Click Ok
9. Shape file is fixed and resaved
10.In ArcToolBox expandConversion Tools
11.Expand ToCoverage
12.ChoseFeature Class To Coverage
13. Select yousshapefile
14.Give the output coverage a hame
15. Click Environment Settings
16. SelectCoverage Settings
17.Chose Highest foPrecision For Derived Coverages
18.Chose Double foPrecision For New Coverages
19. Click Ok
20.Chose &luster Toleranceor select Unknown from the drop down

21.Click OK

You now have a coverage.
Converting coverage to EOO data format
1. In ArcToolBox expandCoverage Tools
2. ExpandConversion
3. ChoseExport to Interchange File
4. Select Cover foFeature Type
5. Select your coverage
6. Selectnameandlocation of ouput
7. Click OK

You now have an .e00 file.

