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Extensions of the Proportional Hazards  
Log likelihood for Censored Survival Data  

Chapter 1 

1. Introduction 

1.1 Survival Data 

In the health sciences, subjects are often observed from the time they enter a study 

until some event of interest occurs, often called the failure time (unfortunately this is 

often a catastrophic event such as death). Subjects may enter the study after it has 

begun and may either drop out of the study or fail to manifest the event of interest 

before the study ends. For this reason, only a portion of the subjects have a reported 

failure time. The rest of the subjects have a censoring time, which is effectively a lower 

bound on their failure time. Data of this type are usually called censored survival data. 

An important element in survival data is the hazard rate. Intuitively, the hazard rate 

is the likelihood a subject fails in the next small time increment, given that the subject 

has not yet failed at time t. For continuous distributions this can be expressed as: 

A(t) = f(t)/S(t), where S(t) = 1 F(t), 

where f(t) is the density of the failure times, F(t) is the cumulative density function, and 

S(t) is the survivor function. 

The Cox proportional hazards (PH) model supposes: 

)(t,z) = A(t)exp(z0), 

where z is a vector of covariates and 13 are fixed unknown parameters. All subjects 

share a common underlying baseline hazard, A(t), and have varying hazard rates that 

depend multiplicatively only on covariates. This relationship is called proportional 
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hazards, because any one subject's hazard rate is a fixed multiple of any other subject's 

and this multiple is not time dependent. 

1.2 The Proportional Hazards Log likelihood 

Some notation is commonly used: A(t) = fotA(s)ds is the cumulative hazard 

function; 61 is an indicator variable: 1 for a failure or 0 for a censored time. We will 

assume for simplicity that the events are ordered (i > j = ti > ti) and there are no ties. 

The loglikelihood for PH survival data with n independent subjects and random 

censoring becomes 

A(ti)exp(zi 13) + > Silog { A (ti)exp(0)}. (1) 
= 

When a parametric model is specified A( ) and A( ) are replaced by specific 

expressions. If a specific non-parametric estimate, the Breslow cumulative hazard and 

its associated baseline hazard, are used for A( ) and A( ); then (1) becomes the partial 

loglikelihood of Cox (Breslow, 1974): 

E 6i[zi13 log{ > exp(zi13)} ], (2) 
1=1 J=1 

where the events are ordered in time. 

When the cumulative hazard is specified as a step function, as with the Breslow 

cumulative hazard, then 

A(ti) = 17jz , (3) 
J=1 

where Di = ti ti_i, to = 0 and Ai is a constant failure rate on the interval (ti _1, ti). Then 

-E exp(ziO)E AkAk + E silog{ Aiexp(4)} 
i=1 k=1 1=1 

n n 
= -E Ai E exp(zkii) + > Slog{ Aiexp(zif3)}. (4) 

1=1 k=i 1=1 



3 

1.3 Deviance Residuals 

To compute the deviance residual for observation j, we first need to form a special 

loglikelihood ratio test: Ho: the current model fits at observation j; Ha: a different 

model is appropriate for observation j. For any model, the null loglikelihood and 

alternative loglikelihood differ only in that, in the alternative loglikelihood observation j 

has a single indicator variable instead of a covariate vector. This has the effect of 

artificially allowing the observed and predicted (maximum likelihood) values to be 

exactly equal for observation j. 

If we denote this loglikelihood ratio as Li, then the deviance residual is  

di = sign(observedi predictedi) Gi2  

In many cases, Li is approximately xi, so di is approximately standard normal. 

Deviance residuals measure the discrepancy between the observed and predicted 

values for an observation, placing the degree of discrepancy on a "nice" scale standard 

normal. 

1.4 Common Themes 

The next three chapters, which comprise the main work of the dissertation, share 

two common themes: first use of (1) instead of (2) gives opportunities to think more 

carefully about the choice of A( ) normally treated as a nuisance parameter, allows 

more flexibility in the selection of A( ), and allows derivations that are simple and 

intuitively clearer. Secondly, all three chapters use deviance residuals to detect outliers. 

In Chapter 2 we use (1) and (3) and specify a cumulative hazard that is different 

from the Breslow cumulative hazard, but still non-parametric. By clustering 

neighboring observations to form a smoother baseline hazard, we find a deviance 

residual that detects outliers more effectively than do the current deviance residuals. 
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The main result of Chapter 3 involves using relations (3) and (4) to derive a new 

deviance residual. Using (3) to approximate a parametric cumulative hazard, i.e., 

A(ti) A(ti)Di, we derive these deviance residuals for parametric models as well. 
= 1 

This new deviance residual assumes the baseline hazard is locally constant over the time 

between observations. Outliers detected by these residuals indicate time segments 

where the observed and predicted hazard rates are very different. Using (1) and (3), we 

also derive a non-parametric estimate of baseline hazard that is monotone increasing. 

In Chapter 4 we focus on the split-plot design in survival data. Using a hierarchical 

Bayesian framework and the PH model, we develop an estimation and testing procedure 

for the fixed effects. Our algorithm is easily implemented in current software; neither 

numeric integration nor Newton's method is required of the user. The simplifying ideas 

depend heavily on using derivatives from the Bayesian posterior joint density formed 

with (1) instead of (2). 

Split-plots are unusual in that there are experimental units at the whole-plot level 

and the sub-plot level. Our method also estimates random effects, which for normal 

models are the deviance residuals at the whole-plot level. Using the estimated random 

effects, it is possible to look for outliers at the whole-plot level. In medical studies, 

these may be subjects that react in an unusual manner to treatment, whom it would be 

important to identify. 
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Chapter 2  

Improved Outlier Detection in Survival Models  

De Wayne R. Derryberry and Paul A. Murtaugh  
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2.1 Abstract 
Deviance residuals have been recommended for outlier detection in Cox (1972) 

regression. The purpose of this paper is two-fold: to show that deviance residuals often 

do not detect outliers, and to present modified deviance residuals that better detect 

outliers. Simulation results compare the new residuals to those currently in use. 

2.2 Introduction 

2.2.1 Survival Data 

In many medical studies, subjects with a serious medical condition (such as cancer) 

are observed until a catastrophic event (such as death) occurs. The response variable is 

the time to the event, or failure time. Because subjects may begin the study at any time 

and leave the study before the event of interest occurs, many responses are right 

censored. In such studies, the identification of outliers is important as they may 

represent subjects responding in an unusual manner. Lawless (1982) and Kalbfleisch 

and Prentice (1980) discuss such data. 

Consider n independent subjects, each having a censoring time c, and a failure time 

fi, although only the earlier event is observed. Sample information for subject i consists 

of a triplet (ti, b,, z,), where t, = M1N(f,,c,), 6, = I(f, < c,), and z, is a vector of 

covariates. For simplicity, the paper considers one covariate, an indicator variable 

distinguishing treatment and control subjects. Without loss of generality, the events are 

sorted chronologically ( i > j implies t, > ti), and there are no ties. 
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2.2.2 Regression Models 

Assume a hazard function of the form A(t,z) = A(t)exp(z,3), where A(t) is the 

baseline hazard. Cox's (1972) partial likelihood uses this relationship, which we will 

call the PH (proportional hazards) model, with baseline hazard unspecified. An 

important parametric model, Weibull regression, uses the PH model with A(t) = pAPtP-1. 

For PH models with random censoring, the loglikelihood is 

-E A(ti)exp(ziO) + E Silog1A(ti)exp(zi0)1, (1) 
= 

where A(ti) = fot'A(s)ds is the cumulative hazard function. 

The baseline hazard can be modeled as a step function, which is equivalent to 

modeling the cumulative hazard function as a linear spline. The interval (0,T], where T 

is the last event time, can be partitioned into sub-intervals of the form (tm_i, tm], each 

with a constant hazard rate Am. Suppose tk E tm_i, tm], and let to= 0 and Am = tm 
m -1 

tm_i. Then A(tk) = (tk 1m_i)Am + E A; A,. 
j = 1 

Modeling the baseline hazard as a step function is not new, having been suggested 

by Oakes ( 1972), Kalbfleisch and Prentice (1973), and Breslow (1974) as a method for 

estimating the cumulative hazard and survivor functions. Kalbfleisch and Prentice 

chose to partition (0,T] independently of the data, while Oakes and Breslow based the 

partition on the failure times. We will select a different partition, which will generally 

have little effect on estimation, but which may substantially alter the estimated hazard 

function and deviance residuals in a few cases. 

2.2.3 Outlier Detection 

Data analysis, especially model selection, requires the identification and 

investigation of poorly fitted observations. Deviance residuals are recommended for 

outlier detection in generalized linear models (Pierce and Schafer, 1986; McCullagh and 
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Nelder, 1991) and survival analysis (Fleming and Harrington, 1984; Therneau and 

Grambsch, 1990). 

If we treat failure time as the response, the ith deviance residual in a PH model is 

di = -sign(Mi){2{-M, Silog(6i M,)}]1, (2) 

where 

= 6, A(ti)exp(0). (3) 

Even with the baseline hazard restricted to a step function, the di's differ for 

different partitions. Some partitions have special significance. The null partition, one 

constant hazard rate, is exponential regression. When the interval (0,T] is partitioned at 

the failure times, A(ti) is estimated by the Breslow cumulative hazard function and (1) is 

equivalent to the partial likelihood of Cox (Breslow,1974). In this latter case, (2) yields 

the deviance residual discussed in the counting process literature (Fleming and 

Harrington, 1984), which we will call the FH deviance residual. (The deviance 

residuals above have a sign opposite that of similar residuals defined in the counting 

process literature. This is because the sign is determined by failure times, not counts.) 

2.3 The Problem 
A desired property of semi-parametric deviance residuals is that they mimic 

parametric deviance residuals when the associated parametric model is correct. FH 

deviance residuals do not always display this property. 

Cox regression implicitly assumes a partition consisting of all failure times 

(Breslow, 1974) -- a model that may have almost as many nuisance parameters as 

observations (Kalbfleisch and Prentice, 1980, p. 79). We believe this causes over-fitting 

of the baseline hazard. When the first event occurs very early, the baseline hazard 
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becomes locally large; and when the last event is very late, the hazard becomes locally 

small. 

Consider an uncensored first event. Maximization of (1), when the failure times 
A A 

form a partition, yields: ti = lexp(ziO) +...+ exp(z,3)}-1. The event time t1 should 

be identified as an outlier when ti > 0. Because the method of estimating Q is rank-

based, the right hand side of the equation is unaffected by this limiting process. So 

oo, i.e., the model "explains" the early failure by assigning a large local estimate of 

hazard. Similarly (tn to -1),n = bnexP(-zn 73), so 0 as to oo. The anomalous 

nature of the event time is absorbed in the baseline hazard, not reflected in the deviance 

residual. This analysis is only tractable for the first and last events and the paper will 

focus on these cases. It is unclear to what extent FH deviance residuals for other events 

are similarly affected. 

2.4 A Proposed Solution 

If the problem arises due to over-fitting of the baseline hazard, any thoughtful 

reduction in the number of nuisance parameters should be beneficial. Neighboring 

events can be clustered to give a pooled local estimate of the baseline hazard. 

Clustering is a simple non-parametric smoothing technique that, for large data sets, can 

substantially reduce the number of nuisance parameters. 

When the first two events are clustered (and both are uncensored),  

Al = 2{AlEexp(zi,3) + A2E exp(zile)}-1.  
i=1 i=2 

In this case, t1 0 implies 51 > 2[ t2 {exp(z2,3) +...+ exp(zn)}]-1. When the 

local hazard rate cannot become arbitrarily large, the first event is revealed to be an 

outlier. 



10 

A similar argument applies to the last event. In fact, any scheme that clusters the 

first event with one or more subsequent events and clusters the last event with one or 

more preceding events has the desired property that ti -4 0 implies d1 -oo (when 

the first event is a failure), and to f oo implies do > oo. Clustering, while only 

slightly reducing the flexibility of the baseline hazard, reduces the problem of over-

fitting. 

We assume the true baseline hazard is a continuous function, so cluster sizes are 

chosen to reduce both bias and sampling error as sample size increases. Intuition 

suggests smaller clusters reduce bias, while larger clusters reduce sampling error. The 

chosen cluster size, n2, is one of many possible clustering schemes consistent with these 

goals. 

For any cluster of adjacent observations, if an estimate of /3 is available, a common 

constant baseline hazard Ac can be estimated using maximum likelihood: 
A AA, = E bei / > AiE exp(zki3) 

j in cluster j in cluster k = j 

Deviance residuals constructed with the Cox regression estimate of and this 

clustering scheme are MB (modified baseline) deviance residuals, and the linear spline 

formed by integrating this baseline hazard is the MB cumulative hazard. 

2.5 Simulations 
Weibull data sets were generated using the relationship )(t,z) =pAPtP-lexp(z/3). The 

censorship rate, baseline hazard rate, and sample size were all varied. The parameters A 

and /3 were chosen so that the control group had a mean of 1 and the treatment group 

had a mean of 2. Censoring times were exponential. 

Each data set had one outlier, either the first or last event. If the outlier was the first 

event, it was constructed to be an uncensored control, having an exact deviance residual 
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of -5. When the outlier was the last event, it was constructed to be an uncensored 

treated case, having an exact deviance residual of 5. These combinations of covariates 

and responses probably give the FH deviance residuals the most difficulty. 

For each data set, the deviance residuals were estimated using (2), but with 

differing methods of estimating A(t) and /3: 

Parametric With p known and A(t) = APV, A and /3 were estimated by maximizing 

(1). 

FH A(t) was estimated with Breslow's cumulative hazard function, and /3 was 

estimated by Cox regression. 

MB 0 was estimated by Cox regression, but A(t) was estimated with the MB 

cumulative hazard. 

Each method was evaluated by comparing its residuals to exact deviance residuals. 

Exact deviance residuals were computed using (2) with the parameter values for A(t) 

and 0 instead of estimates. Ideally, estimated deviance residuals should mimic the exact 

deviance residuals for both the outlier and the n-1 non-outliers. A more modest hope is 

that estimated deviance residuals behave as standard normal variates for non-outliers 

and display a significant large deviation from normality for outliers. 

2.6 Results 
Figure 2.1 shows histograms for the event times for a typical data set, separated into 

the treatment and control group. This data set was generated with a Weibull shape 

parameter (p) of 2 and consisted of 100 observations, 7 of which were censored. 

Deviance residuals for this data set are presented in Figures 2.2-2.4. FH deviance 

residuals are plotted against exact deviance residuals in Figure 2.2. The constructed 

outlier, which has an exact deviance residual of 5, has an FH deviance residual of only 
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1.98 (2.24 standardized), giving little indication that the observation is an outlier. 

Figure 2.3 shows that the MB deviance residual, with a value of 2.85 

(3.12 standardized), gives substantial evidence of an outlier, although the magnitude is 

much smaller than the true value of 5. Finally, Figure 2.4 shows that the parametric 

deviance residual, with a value of 4.45 (4.21 standardized), both identifies the 

observation as an outlier and assigns it a realistic magnitude. 

(a) control group 
CD 

CO 

-.4- OIL Cs.1  

O 
4 6 8 10 

time 
(b) treatment group 

CO 

liltO  
O 2 4 6 8 10 

time 

Figure 2.1 Histograms of the event times for the example data set. The extreme 
observation ( failure time = 9.1) in the treatment group is the outlier. 

For the 99 non-outliers in the data set, the estimated residuals for all three methods 

fall close to the 45° line, indicating a close match of the estimated residual to the exact 

residual (Figures 2.2-2.4). The mean absolute deviations (MAD) between estimated and 



13 

exact residual for the non-outliers were 0.108, 0.100, and 0.078 for the FH, MB and 

parametric deviance residuals, respectively. These results are typical of errors in 

estimation of the exact deviance residuals for non-outliers. 

0 2 4 
exact deviance residuals 

Figure 2.2 FH deviance residuals plotted against exact deviance residuals for the 
example data set. A 45° line has been added. 
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0 

c:i 

O 2 4 
exact deviance residuals 

Figure 2.3 MB deviance residuals plotted against exact deviance residuals for the 
example data set. A 45° line has been added. 

ci 

-2 O 4 
exact deviance residuals 

Figure 2.4 Parametric deviance residuals plotted against exact deviance residuals for 
the example data set. A 45° line has been added. 
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Table 2.1 Confidence intervals for estimated deviance residuals, exact deviance 
residual = -5. Sample size, n. Censorship rate, 0. Weibull parameter, p. Each 95% 
confidence interval is based on 1000 data sets. 

Method of computing estimated deviance residual 
A n 0 FH MB parametric 
1 100 50% -2.63, -2.62 -6.85, -6.84 -4.99, -4.992 

10% -2.63, -2.63 -6.87, -6.86 -5.00, -4.99  
196 50% -2.87, -2.87 -6.82, -6.81 -5.00, -5.00  

10% -2.87, -2.87 -6.83, -6.82 -5.00, -4.99  

1 100 50% -2.58, -2.58 -4.97, -4.96 -5.00, -4.99 
10% -2.58, -2.58 -4.97, -4.96 -5.00, -4.99 

196 50% -2.83, -2.83 -4.97, -4.96 -5.00, -5.00 
10% -2.86, -2.83 -4.98, -4.97 -5.00, -5.00 

2 100 50% -2.51, -2.51 -3.77, -3.76 -4.99, -4.98 
10% -2.51, -2.51 -3.66, -3.66 -4.99, -4.99 

196 50% -2.76, -2.76 -3.88, -3.86 -5.00, -4.99 
10% -2.76, -2.76 -3.73, -3.72 -5.00, -5.00 

Table 2.1 consists of confidence intervals for the deviance residual when the first 

event time is an outlier. The parametric residual accurately estimates the exact deviance 

residual. The FH deviance residual was relatively insensitive to the presence of an 

outlier and actually assigned a value of about -2.6 (-2.85) to the first observation, when 

it was an uncensored control and the sample size was 100 (196), irrespective of the 

failure time. The MB deviance residual performs well for constant hazards (p = 1), and 

gives results that depend little on sample size or censoring rate at all hazard rates. 

MB deviance residuals always associate a large deviation with the outlier, but give 

estimates that are too small for decreasing failure rates (p = 0 and too large for the 

increasing failure rates ( p = 2). This is due to the bias introduced when estimating a 

monotone function with a step function. A step function will generate a measure of 
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central tendency for the baseline hazard on each interval. When the actual function 

being estimated is monotone decreasing, the step function must generally give estimates 

too low on the left end of each interval and too high on the right end of each interval. 

For a monotone increasing function the bias will be the opposite. The step function 

estimate of the baseline hazard for the earliest event will always be too low for 

decreasing failure rates and too high for increasing failure rates. 

Table 2.2 Confidence interval for estimated deviance residual, exact deviance 
residual = +5. Sample size, n. Censorship rate, 0. Weibull parameter, p. Each 95% 
confidence interval is based on 1000 data sets. 

Method of computing estimated deviance residual 
A n 0 FH MB parametric 
1 100 50% 0.89, 0.91 1.65, 1.73 3.59, 3.64 
2 

10% 1.73, 1.75 3.16, 3.23 4.13, 4.18  
196 50% 0.96, 0.98 1.99, 2.06 4.12, 4.17  

10% 1.89, 1.91 3.73, 3.77 4.52, 4.55  

1 100 50% 1.11, 1.14 2.10, 2.16 3.53, 3.58 
10% 1.84, 1.86 2.94, 2.97 4.15, 4.19 

196 50% 1.26, 1.29 2.53, 2.59 4.09, 4.14 
10% 2.06, 2.08 3.34, 3.38 4.50, 4.53 

2 100 50% 1.17, 1.19 1.83, 1.87 3.24, 3.30 
10% 1.88, 1.90 2.57, 2.60 4.15, 4.19 

196 50% 1.37, 1.40 2.14, 2.18 3.90, 3.95 
10% 2.14, 2.14 2.91, 2.95 4.51, 4.55 

Table 2.2 consists of confidence intervals for the deviance residual when the final 

event time is a constructed outlier. The FH deviance residuals are especially ineffective, 

rarely associating a large deviation with the outlier. Even the parametric deviance 
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residuals suffer somewhat, since the last observation, when an outlier, is highly 

influential for the estimation of 0. The MB deviance residuals perform reasonably well 

for low levels of censorship and always outperform FH deviance residuals. 

Figure 2.5 compares the correct cumulative hazard for the example data set to that 

used with our method (MB cumulative hazard) and that used with FH residuals 

(Breslow cumulative hazard). The Breslow cumulative hazard is too large at 

intermediate values and too flat at extreme values. Our method reduces this problem 

but does not fully correct it. 

2.7 Discussion 
For these particular parametric models and outliers, the MB deviance residuals 

behave more like parametric deviance residuals than do the FH deviance residuals. 

When there are no outliers in the data, standard asymptotic results can be used to show 

that parametric deviance residuals behave much like independent standard normal 

variates for large samples (Pierce and Schafer, 1986). When there are no outliers, FH 

deviance residuals have been observed to follow a standard normal distribution as well, 

especially when the censoring rate is not too high (Fleming and Harrington, 1984; 

Therneau and Grambsch, 1990). We found similar behavior with MB deviance 

residuals in these simulations. 
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0 2 4  
time  

Figure 2.5 Three cumulative hazards for the example data set. The true cumulative 
hazard, our MB cumulative hazard based on clustering the baseline hazard, and the 
Breslow cumulative hazard. 

On the other hand, when there is an outlier in the data, it is supposed the outlier will 

have a deviance residual indicating a large deviation from a standard normal 

distribution. Both the parametric and MB deviance residuals display this behavior to 

varying degrees. FH deviance residuals, however, seem to behave as independent 

standard normal random variates whether or not there is an outlier in the data, making 

their diagnostic value suspect. Clustering events, with the resulting modified hazard 

function, generates semi-parametric deviance residuals with increased diagnostic power. 

Clustering events may have other benefits as well. Baltazar-Aban and Pena (1995) 

considered a semi-parametric residual similar to 1 Mi, where Mi is defined in (3). This 
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residual is closely related to the deviance residual and is another tool for checking 

model assumptions in PH models. They similarly found those residuals displayed the 

distributional properties expected under model assumptions, even when the model 

assumptions were violated, calling their diagnostic value into question. They 

conjectured, as we have, that "overusing the data" to estimate A( ) may be the source of 

the problem. The Breslow hazard function, with its numerous nuisance parameters, 

may not be appropriate for diagnostic purposes. A hazard function with fewer nuisance 

parameters, but still non-parametric, may generally be more useful. 

Deviance residuals of all kinds detect early events as outliers much more readily 

than they detect late events as outliers. This is surprising because, when the late event is 

an outlier of the magnitude considered here (Figure 2.1), it is obviously an unusual 

observation in any univariate analysis. The apparent difficulty is the influence of the 

late event on the cumulative hazard function when it is an outlier. Estimation of the 

Breslow cumulative hazard on the far right depends solely on the last event; 

consequently, this event has significant influence on the right extreme of the function 

(see Figure 2.5). Clustering only marginally reduces this problem. A residual that 

explicitly addresses this pattern of influence may better detect unusual observations 

among late events in failure time data. 

Finally, there is nothing special about treating the baseline hazard as a step 

function, nor in the particular cluster sizes chosen. Both kernel smoothers (Staniswalis, 

1989) and polynomial splines (Kooperberg et. al., 1995) have been suggested for 

estimating the baseline hazard. Either a more sophisticated clustering strategy or one of 

these other non-parametric smoothing techniques could be used to estimate martingale-

based residuals, potentially leading to better results than found here. 
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3.1 Abstract 
A new deviance residual is derived for proportional hazards survival data. It is 

used to identify the shape of the baseline hazard and to judge when a reasonable model 

has been fitted to the hazard. Some important properties of the residual are here 

derived; its use is demonstrated with several examples, and its effectiveness is evaluated 

with simulations. 

3.2. Introduction 
The most common models for censored survival data are the Cox (1972) model and 

the Weibull model. Both regression models share the proportional hazards (PH) 

assumption: 

A(t,z) = A(t)exp(z0), (1) 

where A( . ) is a cumulative hazard, z is a covariate vector and 0 is a vector of 

parameters to be estimated. For Weibull regression, A(t) = APtP. For Cox regression, 

A(t) is left unspecified, although the Breslow cumulative hazard, a non-parametric 

estimate, is often used in conjunction with Cox regression (Fleming and Harrington, 

1991). The exponential or constant-hazards model is a special case of the Weibull, 

having p equal to one. 

Although A(t) is a nuisance parameter, there is often an interest in A(t) itself, or 

more frequently in 
dA(t) 

A(t).dt 

This latter quantity, often called the baseline hazard, offers considerable information 

about the nature of the failure mechanism. In medical applications, the baseline hazard 

is often conjectured to be constant or monotone increasing (Lawless, 1982, p.11; 



23 

Padgett and Wei, 1980). In Engineering, it is often argued that the baseline hazard is U-

shaped (Lawless, 1982, p. 11; Grosh, 1989, p. 27). 

We will present a new residual as a diagnostic tool for identifying the form of the 

baseline hazard. Use of the residual is demonstrated as follows: data from four types of 

baseline hazards are simulated and three hypothesized models are fitted, yielding 

residuals predicated on that hypothesized model. When the hypothesized model is 

correct, these residuals appear random, but when the hypothesized model is incorrect, 

these residuals display systematic departures from randomness. The four true models 

and three hypothesized models were chosen so that every hypothesized model would be 

appropriate in some cases and inappropriate in others. 

These residuals give a local (in time) estimate of the difference between the 

modeled baseline hazard and the observed baseline hazard. When the hypothesized 

model is constant hazard, these residuals are of special significance, because the 

discrepancy between the model and the observed failure rates are deviations from a 

constant rate over time. For example, these residuals (assuming constant hazard), when 

plotted in temporal order, can be used to visually identify whether the baseline hazard is 

constant, monotone increasing, or U-shaped. 

The following presentation will be three-fold: first, we will discuss the properties of 

the new residual. Next, we will present illustrative examples showing how the residual 

is used to identify the shape of the baseline hazard. Finally, we will examine via 

simulation the effectiveness of the new residuals. 
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3.3 Deviance Residuals 

3.3.1 The PH Loglikelihood 

For randomly censored survival data, with proportional hazards (1), the log-

likelihood is 

-> A(t1)exp(z,13) + E SilogiA(t,)exp(43)}, (2) 
=1 i =1 

where ti...tn are the ordered observation times and Si is an indicator variable set to 1 for 

observations that are failures and 0 for observations that are censored. When A(t) is the 

Breslow cumulative hazard, (2) is equivalent to the partial likelihood used in Cox 

regression (Breslow, 1974). The diagnostic tool we consider is a deviance residual 

derived from this loglikelihood, with each hypothesized model (constant hazard, 

Weibull, non-parametric monotone) representing a different choice of A(t). 

A deviance residual can be defined as the signed square root of a likelihood ratio 

test where the relevant hypotheses are: Ho: the current model fits at sample value i; 

Ha: a different model is appropriate for sample value i. For each observation in the 

sample 

cl, = f [2floglik(full model,) loglik(reduced model)}}1, 

where sample value i has a unique value for the parameter of interest in the full model. 

The usual deviance residual in the Cox model is 

d, = f (2[A(t1)exp(z1/3) 6, 61log{A(t1)exp(0)}])1, (3) 

where the sign is determined by the sign of A(Oexp(z,if)) 6, (Fleming and Harrington, 

1991, p. 168). The covariate parameters are estimated using Cox regression, and A(t) is 

usually estimated with the Breslow hazard. This residual, found by treating the 

covariate parameters as those of interest and the hazard function as a nuisance 
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parameter, is useful in detecting outliers (Therneau and Grambsch, 1990; Fleming and 

Harrington, 1991, p. 189). 

The residual above was found by treating the observed times (censored or failures) 

as the sample values. By defining Ai = ti ti_i and to = 0, where t is the observed time, a 

different set on n sample values is obtained. This approach treats the baseline hazard as 

the parameter of interest and the covariate parameters as nuisance parameters, we can 

derive (see Appendix) a new deviance residual of the form 

= f A(tt exp(zkia) 6; - SilogfAi(tt exp(zk,i())1]). (4) 
k = i k = i 

This residual measures differences between observed and predicted failure rates on the 

intervals between observed times. 

3.3.2 Properties of the New Deviance Residual 

When the correct model is chosen for the baseline hazard, with certain 

qualifications stated below, these residuals are independent and identically distributed, 

from a bell-shaped (but not normal) distribution with known statistical properties. 

Property i For a data set with n independent observation times (failures or 

censored observations), the n residuals defined by (4) are "almost" independent. In this 

case, Ai and ,6,j, with i j, are independent, unless j = i-1 or i+1. As is common when 

taking differences, adjacent A,'s have a negative correlation of 2-1. Because the 

deviance residual is a transformation of this random variable, only adjacent deviance 

residuals are dependent; all others are independent of each other. Hence, the n deviance 

residuals are "almost" independent in the sense that each one is independent of 

100(n-3)/(n-1)% of the other residuals. Some additional dependence may be induced 

because parameters are estimated from the data and are then used to calculate the 

residuals. 
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Property ii For identically distributed uncensored data, the quantity 

A!' = {Ai(n-i+1)}-1 is both the observed local failure rate and the Breslow baseline 

hazard rate on the interval (ti_1,t1]. It can be shown (4) has the form: 

dl = sign[log{5(ti)/A!) }](2[A(ti) /A1' 1 -log{ (ti)/Ar 
b ABy Taylor series expansion near Ai = A(ti), 

-dl log(Aib) log {5:40}. (5) 

This residual is always zero when the observed failure rate equals the hypothesized 

failure rate, negative when the hypothesized failure rate exceeds the observed failure 

rate, and positive otherwise. The residual defined in (4) can be thought of as a 

monotone transformation and generalization of (5) that improves the overall 

distributional shape and extends to censored regression data. 

Property iii - The residual defined by (4) closely parallels (3), the standard 

deviance residual. Suppose the baseline hazard rate is almost constant on each observed 

interval. Further, recall that the minimum of several exponential event times is 

exponential with a rate that is the sum of the individual rates. Then 

h: = exp(zki) EXPO(1), 
k=i 

which can be extended to include censoring by using the memoryless property of 

exponentials ( Lawless, 1982, p. 281) to 

exp(zi, + 1 6; EXPO(1). (6) 
k=i 

Then (4) can be re-expressed as, 

dl = sign(h1 1)[2{111 1 Silog(111)}] (7) 

Similarly, the standard deviance residual (Lawless, 1982, p. 366) has 

hi = A(ti)exp(0) + 1 EXPO(1), (8) 

and (3) can be re-expressed as 

di = sign(hi 1)[2{hi 1 Silog(hi)}]. 
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Property iv For identically distributed uncensored data, detailed knowledge of the 

distribution of the new deviance residuals is possible. Using (6) and (4), or (8) and (3), 

both dl and di become a transformation of a unit exponential: 

y, EXPO(1), and d, = sign(y, 1)[2{y, 1- log(n)}}1. (9) 

These are not standard normal, as has been conjectured (Therneau and Grambsch, 

1990). A plot of 10,000 such random variables (Figure 3.1) shows that although they 

display an approximate bell shape, they are shifted away from 0. The median is 

(2[log(2) 1 log{log(2)}})1 -0.34543. 

0 4 
Deviances 

Figure 3.1 Histogram of the transformation y = sign(e 1)12(e 1 log(e)} 2 applied 
to 10,000 unit exponential random variables. 
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The approximate symmetry of the distribution justifies using the median as an 

estimate of the mean. The expectation of the squared residual can be shown to be 2'y, 

where -y :::-.. 0.5772... (Euler's number). This distribution, then, is nearly symmetric with 

a mean of about -0.34543 and a variance of about 1.03508. For the data from the 

histogram, the sample mean was -0.352, the sample median was -0.3688, and the 

sample variance was 1.0537. 

When the negatives of these residuals are plotted in temporal order, discrepancies 

between hypothesized failure rates and observed failure rates emerge. When the correct 

model is selected, the residuals are "almost" independent and identically distributed 

following the transformed distribution in (9). In this case, the residuals should look 

random when plotted in temporal order. When an incorrect model is selected, trends 

and outliers appear in the residuals. Outliers indicate intervals where observed failure 

rates differ greatly from predicted failure rates. Using (9), one can estimate quantiles, 

making identifying and interpreting outliers straightforward. 

When the hypothesized model is constant hazard, patterns in the negative residuals 

indicate the form of the true baseline hazard. Systematic trends have a simple 

interpretation. For example, a U-shaped pattern in the negative residuals is evidence of 

a U-shaped baseline hazard. 
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3.4 Examples of Diagnostic Plots 

3.4.1 Examples with Known Baseline Hazard 

Below are examples of residuals from various models fitted to simulated data with 

a known baseline hazard. 

In each of Figures 3.2-3.5, 100 failure times from one of the following baseline 

hazards were simulated: 

Baseline hazard Constant Weibull Monotone U-shaped 

A(t) = 1 2{F(1.5)}2t .25 + t2 .45 + .9(t 1)2 

The characteristics we identify in each figure are typical for data sets generated in this 

manner. 

Residuals were found subject to three fits: constant, Weibull, and non-parametric 

monotone increasing baseline hazards. Parameter estimates were found by maximum 

likelihood in the Weibull and constant-hazards cases. For a non-parametric monotone 

increasing hazard, a Cox regression estimate of the regression parameter was found; 

then a monotone step function was found for the baseline hazard by using an algorithm 

suggested by the proofs given by Chung and Ching (1994). 

In each of Figures 3.2-3.5, four plots appear: a scatterplot and three residual plots. 

The plot in the upper left corner is a scatterplot of log (hazard) versus log (time). A 

linear relation indicates a Weibull model, and no pattern indicates a constant hazard. 

Unfortunately, any other systematic pattern is difficult to interpret. The straight line and 

step function superimposed on this plot are the Weibull and non-parametric estimates of 

log (hazard), respectively. 

This plot, though useful, has several limitations: it is unclear how to extend this 

plot to include censored data, how much deviation from linearity is required before we 
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claim the data are not Weibull, and how to identify other models by using this plot or 

some modification of it. 

The other three graphs in each of Figures 3.2-3.5 are of residuals from fitting a 

constant hazard (upper right), Weibull hazard (lower left), and non-parametric 

monotone hazard (lower right) to the data. When the correct model is chosen, the 

residual plots appear random; when an incorrect model is chosen, trends and outliers 

appear in the residuals. 

The three horizontal lines are quantiles of 0.01, 0.50, and 0.99 (i.e. about half the 

residuals should be above the center line, about 1 in 100 above the upper line, and about 

1 in 100 below the lower line) based on (9), and are useful for detecting outliers. The S-

Plus function "lowess" (Venables and Ripley, 1994, section 10.1) was applied to the 

residuals in each plot to help identify trends. 

In Figure 3.2, the true baseline hazard is constant. The scatterplot of log (hazard) 

versus log (time) suggests a single, constant hazard rate. The step function (non-

parametric fit) and straight line (Weibull fit) overlaid on the scatterplot both 

approximate a constant hazard rate. The residual plot for a constant hazard seems 

random: all three residual plots fit the data well and have similar lowess-smoothed 

residuals. Although there is an outlier, it persists in all three models. Because all three 

fitted models are reasonable, constant hazard is the parsimonious choice. 
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Figure 3.2 For a sample data set of 100 failure times with a constant baseline hazard, 
the upper left plot is a scatterplot of log(time) versus log(hazard). The straight line and 
step function superimposed on the scatterplot are the Weibull and non-parametric 
estimates of log(hazard). The remaining three graphs are of residuals, plotted in 
temporal order, from a constant-hazards fit (upper right), a Weibull fit (lower left), and a 
non-parametric monotone fit (lower right). There are 0.01, 0.50, and 0.99 quantiles and 
a lowess-smoothed curve overlaid on each residual plot. 

In Figure 3.3, with data generated from a Weibull baseline hazard, the relation 

between log (time) and log (hazard) appears linear. The non-parametric (step-function) 

and parametric (straight line) fits are similar. The residual plot for constant hazard has a 

trend in the residuals evidence that a constant hazard is inadequate and that a better fit 

is monotone increasing. The earliest interval has an extremely small residual, 
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suggesting a failure rate far less than expected under constant hazards. Three other early 

residuals are borderline outliers in the same direction. The next two plots show an 

appropriate fit the outliers are gone and the lowess-smoothed curve is relatively flat. 

As expected, the Weibull and non-parametric monotone models are both adequate for 

the data. Parsimony suggests the simpler Weibull model. 

-2 -1 0 0 20 40 60 80 100 
Log time Order 

20 40 60 80 100 
Order 

Figure 3.3 For a sample data set of 100 failure times with a Weibull baseline hazard, 
the four plots are as in Figure 3.2. 
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Figure 3.4 For a sample data set of 100 failure times with a monotone (but not 
Weibull) baseline hazard, the four plots are as in Figure 3.2. 

Figure 3.4 has data simulated with a non-Weibull monotone baseline hazard. The 

scatterplot suggests deviation from a Weibull fit. Comparing the two fits overlaid on 

the scatterplot, we see that the straight line (Weibull fit) is inadequate. The step 

function (non-parametric fit), which does fit the scatterplot, appears almost L-shaped. 

Again, the plot of residuals from a constant fit indicates a monotone increasing hazard. 

Two negative outliers are associated with early time intervals, and several mild positive 

outliers are associated with late time intervals, which is evidence that the constant-

hazard model overestimates the early failure rates and underestimates later failure rates. 

0 
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The residuals from a Weibull fit are also inadequate (as expected); a slight dip persists 

in the middle of the residuals (the lowess-smoother accentuates this), and a large 

negative outlier is still present. Although the non-parametric fit does have two mild 

outliers in the first half of the data, it has the flattest lowess-smoothed curve and the 

mildest outliers, and it seems a reasonable model. 

-4 -3 -2 -1 0 20 40 60 80 1001 

Log time Order 
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Order Order 

Figure 3.5 For a sample data set of 100 failure times with a U-shaped baseline hazard, 
the four plots are as in Figure 3.2. 
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A U-shaped baseline hazard was used to generate the data in Figure 3.5. The 

scatterplot is uninterpretable, except that a Weibull fit is out of the question. The large 

negative outliers in the middle of each residual plot approximate the minimum of the 

true baseline hazard. The residual plot predicated on a constant hazard is indicative of a 

U-shaped hazard. 

As expected, both monotone models poorly fit the data from a U-shaped hazard. 

The residuals from both the Weibull and non-parametric fit still contain systematic 

departures from randomness. The non-parametric fit, being more flexible, displays a 

better fit then the Weibull. Nevertheless, the non-parametric residuals display several 

severe outliers and some trend in the lowess-smoothed curve. 

For each of the above examples, examination of trends and outliers in the residual 

plots help identify the model we knew to be correct. 

3.4.2 An Example from Lifetime Testing 

Lawless (1982, p. 189) presents data on 40 specimens of cable insulation. A 

voltage stress test was performed with the following results. 

Insulation type Failure times 
I 32.0, 35.4, 36.2, 39.8, 42.1, 43.3, 45.5, 46.0, 46.2, 46.4, 46.5, 

46.8, 47.3, 47.4*, 47.6, 49.2, 50.4, 50.9, 52.4, 56.3 
II 39.4, 45.3, 49.3*, 49.4, 51.3, 52.0, 53.2, 53.3*, 54.9, 55.5, 57.1, 

57.2, 57.5, 59.2, 61.0, 62.4, 63.8, 64.3, 67.3, 67.7 
* Ties were broken by adding 0.10 to some of the original failure times. 

There was no censoring. The data are claimed by Lawless to follow a Weibull 

distribution of the form: 

)(t z) = pAPtP-I exp(zi3), 
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where z is and indicator for insulation type. If the Weibull model is appropriate, then 

H0:/ = 0 is the test of whether insulation types differ. 

In Figure 3.6, the first plot is the usual scatterplot of log(hazard) versus log(time). 

The straight line based on a Weibull maximum likelihood fit characterizes the relation. 

Nevertheless, the new residuals will be presented as an alternative analysis that is at 

least as illuminating but more general. 
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Figure 3.6 For the insulation type, voltage test data (Lawless 1982, p. 189), the four 
plots are as in Figure 3.2. 
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The residual plot predicated on constant hazard, in Figure 3.6, gives evidence of a 

monotone increasing hazard, suggested both by the trend in the lowess-smoothed 

residuals and by the many outliers in the data. The large negative deviation associated 

with the first time interval suggests this interval has a much smaller observed failure 

rate than is consistent with constant hazard, while several positive outliers at much later 

time segments indicate failure rates much higher than predicted, assuming constant 

hazard. A runs test performed on these residuals yielded a p-value of 0.004, indicating 

the inadequacy of a constant-hazards model. 

The Weibull model residuals appear random (runs test p-value = 0.30), except 

perhaps for the slight outlier associated with the initial time interval and a slight 

monotone trend in the lowess curve for early time segments. The non-parametric fit has 

neither outliers nor any indication of trend (runs test p-value = 0.646). More 

experience is required with these residuals before we can say whether the Weibull 

model is sufficient, or whether the non-parametric fit is needed. 

3.5 A Simulation 
The presentation of the previous section is inherently anecdotal and subjective. An 

objective assessment of the residual plots as diagnostic tools was undertaken by 

simulating data with the four different baseline hazards. Data were simulated both with 

and without censoring; with and without a regression covariate; and at two sample sizes. 

With censoring, rates were about 10-15%, and censoring times were from an 

exponential distribution. All three models (constant, Weibull, and monotone baseline 

hazard) were fitted to each data set. A runs test (Daniel, 1990) was performed on each 

set of residuals to assess the appropriateness of the assumed model. 
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The first expectation was that the runs test has a rejection rate of about 5% when 

the null hypothesis is true, and a higher rate when the null hypothesis is false. Even for 

small sample sizes (Table 3.1, sample size = 50), this was generally the case. The lone 

exception occurred when the fitted model was non-parametric and the true model was 

Weibull or monotone. In these cases, rejection rates were high (a 95% confidence 

interval of 0.064 to 0.08). 

Table 3.1 Each entry is a rejection rate (at the 0.05 level) for 500 simulated data sets of 
sample size 50; the rates in italics should be 0.05 (the null hypothesis is true), and the 
rates in bold should exceed 0.05 (the null hypothesis is false). 

Actual model 
Data type Fitted model Constant Weibull Monotone U-shaped 

Identically 
distributed constant 0.050 0.236 0.434 0.320 

Weibull 0.056 0.046 0.082 0.282 
monotone 0.050 0.078 0.098 0.136 

Censored 
constant 0.060 0.246 0.362 0.300 
Weibull 0.050 0.058 0.080 0.274 
monotone 0.046 0.064 0.060 0.134 

Regression 
constant 0.038 0.334 0.374 0.318 
Weibull 0.038 0.076 0.068 0.304 
monotone 0.060 0.068 0.066 0.140 

Censored, 
regression constant 0.042 0.316 0.458 0.286 

Weibull 0.040 0.052 0.120 0.268 
monotone 0.032 0.064 0.080 0.148 
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Next, we considered whether rejection rates were similar in the four cases: 

identically distributed data, censored data, regression data, and censored regression data. 

Although the properties of the residuals were derived under the assumption of 

identically distributed, uncensored data, we found these residuals useful for censored 

regression data as well. For each of the twelve possible pairings of true and 

hypothesized models, rejection rates were of comparable magnitude in each of the four 

cases. For example, when a constant hazard is fitted to data with a Weibull hazard, the 

rejection rates were 0.236, 0.246, 0.334, and 0.316 for the identically distributed, 

censored, regression, and censored-regression cases, respectively. 

Table 3.2 Each entry is a rejection rate (at the 0.05 level) for 500 simulated data sets of 
sample size 100; the rates in italics should be 0.05 (the null hypothesis is true), and the 
rates in bold should exceed 0.05 (the null hypothesis is false) 

Actual model 
Data type Fitted model Constant Weibull Monotone U-shaped 

Identically 
distributed constant 0.042 0.352 0.660 0.556 

Weibull 0.050 0.056 0.058 0.550 
monotone 0.044 0.106 0.086 0.228 

Censored 
constant 0.056 0.428 0.662 0.486 
Weibull 0.054 0.042 0.126 0.486 
monotone 0.044 0.068 0.102 0.202 

Regression 
constant 0.050 0.502 0.754 0.498 
Weibull 0.052 0.054 0.070 0.508 
monotone 0.056 0.068 0.094 0.184 

Censored, 
regression constant 0.044 0.478 0.656 0.466 

Weibull 0.040 0.047 0.130 0.442 
monotone 0.052 0.074 0.104 0.240 
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Increased sample sizes produced better results. In general, we expect rejection rates 

in Table 3.2 (sample size = 100) to be closer to 5% when the null hypothesis is true (all 

italicized rejection rates), and we expect substantial increases in rejection rates when the 

null hypothesis is false (all rejection rates in bold). 

For all three fitted models when the true model is constant hazard, and for the 

Weibull fit when the true model is Weibull, rejection rates are generally closer to 0.05 in 

Table 3.2 than in Table 3.1. For example, the range of rejection rates in Table 3.1, over 

all the above cases, was 0.032 to 0.076, but in Table 3.2 the range was 0.040 to 0.056. 

The lone exception is, again, the non-parametric fit when the true model is either 

Weibull or monotone. In these cases the rejection rates are still too high. 

When rejection rates should be greater than 5% (i.e., when the null hypothesis is 

false), the rejection rates, with one minor exception, were much higher in Table 3.2 than 

in Table 3.1. In several cases, rejection rates are nearly twice as high in Table 3.2 than 

in Table 3.1. 

When a Weibull model is fitted to data with a more general monotone hazard, little 

difference appears in the rejection rates between Table 3.1 and Table 3.2. These data 

sets may just be too small, or the runs test too general to detect subtle differences 

between a Weibull hazard and a different shaped, but still monotone hazard. 

In Table 3.2 (as in Table 3.1), differences in the rejection rates were not practically 

significant for the four cases (identically distributed, regression, censored, and censored-

regression data), so the residuals seem equally useful in all four cases. 

The non-parametric monotone fit is problematic. The non-parametric residuals 

seemed to perform well in practice (for example, see Figures 3.2-3.6), but they did not 

behave as expected when a runs test was applied to them. The persistence of rejection 

rates greater than 5% when the null hypothesis is true requires further examination. 

Although we were not able to find a satisfactory explanation, two conjectures come to 



41 

mind. Because the fit is non-parametric, a degree of over-fitting of the data may be 

present. Over-fitting almost certainly accounts for the low rejection rates for a U-

shaped hazard (compared to parametric models), but it might also account for the high 

rejection rates for monotone hazards (over-fitting might cause too many runs in a set of 

residuals). A second possibility relates to the dependence among the residuals. 

Although this lack of independence did not seem to be a problem in general, it may 

interact with the non-parametric fit in some subtle way. 

3.6 Discussion 
The deviance residuals defined here are effective diagnostic tools for detecting and 

modeling the form of the baseline hazard. A temporally ordered plot of these residuals, 

with hypothesized constant hazard, indicates which sorts of models to consider. Any 

trend in this plot describes the shape of the correct hazard. Subsequent plots with new 

hypothesized models aid model selection because the residual plot will appear random 

(especially without trend or outliers) when the correct model is used. 

The residuals seem effective with mild censoring and in a simple regression setting, 

as well as in the identically distributed, uncensored case. 

These plots might be more useful then the simulations suggest. The runs test 

cannot, nor can any statistical test, simultaneously detect all departures from 

randomness. Statisticians rely on judgment rather than tests when examining residuals. 

We think that an experienced statistician would correctly reject as non-random many 

residual plots that the runs test does not reject without incurring a higher rate of type I 

error. In Figures 3.2-3.6, for example, the impression from each residual plot agreed 

with the p-value reported from a runs test with one exception. In the upper right corner 

of Figure 3.2, the residuals have a pronounced monotone trend, although the p-value 



42 

from a runs test was 0.51. If expert opinion could have been used in our simulations, 

instead of a runs test, the results in Tables 3.1 and 3.2 might have been stronger. 

This paper has limited the fitted models to two widely known models (constant and 

Weibull hazard) and to a non-parametric model (monotone increasing hazard) taken 

directly from the work of Chung and Ching (1994). These models are sufficient to 

illustrate the diagnostic power of the residual, but they are hardly exhaustive. The 

residuals we have derived are useful for any PH model (2) as long as some parametric or 

non-parametric method exists for estimating the baseline hazard. 

In particular, it seems attractive to have a method of examining the appropriateness 

of non-parametric models. For example, it seems possible to fit a non-parametric U-

shaped baseline hazard in a manner similar to the methods used by Chung and Ching 

(1994) for a monotone hazard. Given the use of U-shaped hazards in engineering, and 

the failure of a good parametric model to emerge, developing this algorithm seems 

important. 

Many non-parametric methods provide consistent estimators of the baseline hazard. 

These estimators may be as simple as smoothing the Breslow baseline hazard 

(Kooperberg, Stone and Troung, 1995; Staniswalis, 1989). Such models often have 

smoothing parameters or other constants that must be selected by the user. Residuals 

could play an important role both in evaluating the quality of estimators and in the 

selection of smoothing parameters or related constants. 
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3.8 Appendix 
A deviance residual for a sample value i can be defined as the signed square root of 

a likelihood ratio test for Ho: the current model fits at sample value i; Ha: a different 

model is appropriate for sample i. The residual has the form 

di = sign(ei predicted ei)12(loglik[full modeli] loglik[reduced model])}1, 

where ei denotes sample value i. We take the sample value to be the observed failure 

rate on the interval (ti_i,ti] between observed times. For the reduced model, we must 

find , A(t), and 54t)c that maximize 

L(reduced model) = -E A(ti)exp(zi 13) + E &log{ A(ti)exp(zif3)}. 
i =1 = 

Using A(ti)	 E A(tj)A, the baseline hazard is replaced by a step function. The 
j =1 

order of summation is also reversed to give 
A n A n	 n A 

L(reduced model) ',-,, -E [A(ti)cAiE exp(zki3c)} + E Silog{ (ti)c} + E (sizii3c 
i = 1 k = i i = 1	 i = 1 

The full model with respect to sample value i is maximized with the relation 

defined by the hypothesized model holding for all A(ti) except j = i, but the maximum 

likelihood estimate of A(ti) is chosen without any model constraints. 

L(full modeli) -E{ 540s E exp(zk 1)s)} + Sjlog {A(ti)s} 
k = jij 

EbiZji3, 54ti)s eXID(Zks) 6i10g{ (t.j)s } + SiziQs 
k = i 

Note that for sample value i, 
A 

5(ti)s = = fAiE exp(zki3)1-1.	 (10) 
k = i 

Exact deviance residuals cannot be calculated without computing n distinct 

likelihood ratio tests. These calculation costs are often considered prohibitive, and ige 

A A	 A A 
ti Os ,C, Ocox and A(ti)c A(ti), for i j are all assumed. Using these assumptions it 

is possible to approximate the exact deviance residual using the usual parameter 

estimates. The current model and Cox estimates have already been calculated as a by-
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product of the statistical analysis. We have used the Cox estimate of 0 and the current 
A 

model estimate of A(t) with subscripts dropped. In this case, 

= 2{L(full modeli) L(reduced model)} 

SO, 

cl]? 20(ti) Al) } AiE exp(zk + &log{ A1,Ati) } 
k= 

Using (10) and noting the "Si" inside the log function is redundant, 

d? 2[54ti)Aiexp(zkii3) Si- Silog{(ti)Aiexp(zki)}]. 
k=i k =i 

The sign of di must still be determined. The quantity log{ Al)} log{ (ti)}is the 

difference between an observed failure rate and a predicted failure rate. When 

Rog{ log{ A(ti)}I = 0; then cq = 0. Further, di2 increases as the magnitude 

} log{$40} 1 increases. Hence the signed deviance residual is 

di = sign[log{ Al'A(ti)}}(20(ti)Ai exp(zk 10) Si- &log{ (ti)6,1 exp(zici))1l) 
k=i k=i 
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Chapter 4  

Analysis of Split-Plot Censored Survival Data Using BLUP Estimators  

De Wayne R. Derryberry and Paul A. Murtaugh 
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4.1 Abstract 
Designed experiments in the health sciences sometimes involve blocking factors 

and split-plot designs, called "random effects models" in the linear models literature. 

Cox regression cannot be used directly to analyze data with these complex structures 

because the event times are not independent. We extend the Cox model to include 

random effects using a hierarchical Bayesian model. We describe and implement an 

algorithm for testing and estimating fixed effects in such cases. This algorithm 

produces BLUP-type predictors for the random effects. We then evaluate the algorithm 

for simulated split-plot data, and a data set is analyzed. 

4.2 A Random Effects Model 

The Cox (1972) regression model is widely used for analysis of censored survival 

data. As originally developed by Cox, this model is appropriate for data with 

independent observed times, although data sets in which the observations are not 

independent are common. For example, a medical study may require application of any 

one of several treatments to individual mice, but those many mice may come from just a 

few litters. If mice from the same litter are either robust or frail as a group, litter effects 

may overwhelm the treatment effects being studied. 

In such cases, the experiment should be designed (if possible) so that all treatments 

are included in each litter, and a statistical tool should be available that recognizes a 

"litter effect" and makes treatment comparisons "within a litter." Consistent with the 

linear models literature, we consider the litter effect to be a random effect and the litter 

to be a blocking factor. 
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The Cox model can be extended to include a random effect as follows: 

A(tijI Zij1, Oj ) = A(t1)exp(E zijti3f + t9j) (1) 
f = 1 

ej N(0, a2), (2) 

where f = 1.. s fixed effects; i = 1...rj observations in block j; and j = 1...b blocks. The 

observed (failure or censoring) time is tii; ziji, ...zus are the covariates associated with 

observation ij; Oj is the unobserved random effect for block j; and a2 is a variance 

common to the random effects. The cumulative hazard is A( ), and the unknown 

parameters associated with fixed effects are 01...13,. 

Equation (1) is the proportional hazards assumption upon which Cox regression is 

based, and (2) is a distribution on an unobserved random effect. This is a proportional 

hazards mixed model (PH-MM) because there are both fixed and random effects. 

4.3 Bayesian Analysis of the PH-MM Model 

The exposition that follows flows easily using Bayesian language, but the results 

are available in a form more palatable to frequentists (Robinson, 1991; Searle, Casella, 

and McCulloch, Chapter 9, 1992). Let 
r b r b r b 

= -E EA(tii)exp(E ziff3f ) + E E soog[A(to] + E E sij(E zif Of +0i ) 
i=1 j=1 f=1 i=1 j=1 i=1 j=1 f=1 

and 

P = b log(a) + [2a-2]-1E el, 
= 

where 6,j indicates whether the observation is a failure, and ,\(t) = an /at. Then 7-1= G-

P is a Bayesian posterior joint density in the observed values tu, 6,j and the unobserved 

G is equivalent to the partial loglikelihood of Cox when we estimate A( ) using 

Breslow's cumulative hazard (Breslow, 1974). 7-1 was first introduced in the Cox 

regression setting by McGilchrist and Aisbett (1991) as a penalized partial 
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loglikelihood. In this section we will discuss this expression from a Bayesian 

perspective, and in the next from the perspective of penalized loglikelihood. 

Expressions similar to N, but with different loglikelihoods for G, are common in 

the literature. Henderson (1950) introduced G-P when G is a normal loglikelihood, and 

he noted that it is not a true loglikelihood. Lee and Nelder (1996) discuss when G is 

a generalized linear model and for a more general P, referring to as an h-

loglikelihood. Correspondingly, we will refer to as an h-partial loglikelihood. 

As with linear models (C a normal loglikelihood), three strategies are possible for 

parameter estimation and hypothesis testing (Searle et al., Chapter 9, 1992): 

i If an improper prior, /3 UNIF( -oo, oo), is placed on the parameters 

associated with fixed effects, and (2) is used as a prior on 0i, and these elements are 

integrated out, we get a loglikelihood in a. This is one derivation of residual 

maximum likelihood (REML) estimation in linear models. 

ii If (2) is used as a prior for Oi and these unobserved values are integrated 

out, we get a joint loglikelihood in and a. This leads to the usual maximum 

loglikelihood (ML) estimation procedure. 

iii- A third approach is to maximize and Oj directly for some reasonable 

choice of a. This approach, dubbed the BLUP (best linear unbiased predictor) 

approach by some authors, was used by Henderson (1950) for linear models and 

generates the mixed model equations. This approach was used by Lee and Nelder 

(1996) for generalized linear models, and applied to Cox regression by McGilchrist 

and Aisbett (1991). Of the three approaches, only this one avoids integration. 

For our purposes, this third approach is especially useful for two reasons: first, 

because it produces estimates of the random effects (which we will use as residuals for 

some of the data analysis that follows), and second, because there is a simple 

implementation of the approach in any statistical programming language that has Cox 
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regression, "while" loops, and an offset function (for example, S-PLUS). In addition, 

we avoid matrix inversion. 

For linear models this procedure produces best linear unbiased estimators for the 

fixed effects (BLUEs) and best linear unbiased predictors (BLUPs) for the random 

effects (Robinson; 1991). Lee and Nelder (1996), considering generalized linear 

models, found this approach to produce asymptotically best estimators of the fixed and 

random effects and concluded that the h-loglikelihood is a reasonable surrogate for a 

true loglikelihood when performing hypothesis tests for the fixed effects. 

Our approach is similar to those of Mc Gilchrist (1993) and Mc Gilchrist and Aisbett 

(1991), but differs in three respects: our specific algorithm is easily coded in standard 

software, our choice of penalty weight avoids the excessive shrinkage of parameter 

estimates they reported, and we construct approximate likelihood ratio tests instead of 

Wald-type tests for the fixed effects. 

Since point estimates of random effects have come to be called BLUP's, we will 

refer to this as the BLUP approach, although this approach is known to produce Best 

Linear Unbiased Predictors only for linear models. 

The rest of this paper is composed of three parts. In the next section we consider 

the h-partial loglikelihood as a penalized partial loglikelihood and derive some results 

based on optimization theory. Secondly, we present an algorithm that computes BLUP 

estimates by embedding Cox regression in a "while" loop. The resulting BLUP 

estimators are evaluated via simulations. Finally, we use the BLUP approach to analyze 

a data set from censored survival data with repeated measurements per subject. This 

data set has fixed effects both between subject and within subject, and so represents a 

split-plot structure. 
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4.4 Penalized Partial Log likelihood 

When random effects are estimated as if they were fixed effects, the estimates are 

too large in absolute value. We know from (2) that the random effects have a mean of 

zero; this acts as prior information that requires the estimates be shrunken toward the 

origin compared to fixed effects (Robinson, 1991). A minimal requirement of any 

estimation procedure is that it should produce this shrinkage. The h-partial 

loglikelihood can be treated as a partial loglikelihood G and a penalty function P with a 

penalty weight of [2a2]-1. In the Appendix we show that the random effects are indeed 

always shrunk towards the origin when the penalty function P, with any positive penalty 

weight, is subtracted from G to form 7-1. 

In spite of this shrinkage, the fixed effects are often close in value to the random 

effects estimates. Suppose ESik > 0 for a block (litter, subject), and that there is at least 

one failure in that block. Then setting derivatives to zero yields 

E6ik[EA(tik)exp(ziO)i-1= exP(Ok) (3) 

for block k in the fixed effects model, and 

Esik[EA(tik)exp(0)]-1= exp(Ok) + Ok [U2EA(tik)eXp(Zi0)1-1 (4) 
i i 

for block k in the random effects model. If either the number of observations in the 

block becomes large [causing E A(tik )exp(zi,(3) to become large], or o-2 is large, the 

difference between the estimated random and fixed effect is small. From (3), we see 

that an effect Ok is not finite when ESik = 0. 

The value a should not be estimated as part of the optimization process with and 

Maximizing 7-1, either with the reparametrization u = log(a) or by using the 

maximizing condition a2 = WEB?, we see that 7-1 goes to positive infinity as a goes to 

zero. A procedure that estimates a must be chosen carefully to avoid excessive 

shrinkage of the random effects. We use the fixed effects estimates for initial estimates 
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of the random effects and a, and retain this fixed value of a, denoted Uwgt, throughout 

the maximization process. 

4.5 The Algorithm 
The estimation of parameters requires that we solve the system of equations: 

aa = 0; f = 1..s fixed effects and V = 0; j = 1..b random effects. (5) 

Hypothesis tests for the fixed effects are then formed by either 

Tf = 2{7-0, oigt, le) aw2gt, 'AD)} or  

Ta = Tf 2{A0) AA)}  
where A(0*) = 2 Elog Cas 0=0*).  

A 
The fixed value a-2 is used to form the penalty weight [2 a2 ]-1 /3 and 0 are thewgt wgt 

solutions to (5) under the alternative hypothesis; and no and Bo are the solutions to (5) 

under the null hypothesis. Tf is an (unadjusted) h-partial loglikelihood ratio test, and Ta 

is an adjusted h-partial loglikelihood ratio test. Both Tf and Ta have been suggested as 

reasonable hypothesis tests in the generalized linear models setting ( Lee and Nelder, 

1996), and we will consider them both. 

A naive application of Newton's method to solve (5) would require repeated 

inversion of a b+p rank matrix, where p is the number of fixed effects and b is the 

number of blocks. We will present a method that requires no matrix inversion. The 

maximization of 7-t can be decomposed into two steps: finding estimates of 0 given 

values of 3 and A( ), and finding values of and A( ) given values of 0. We should 

also maintain the constraint E0i = 0. 
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Our algorithm consists of the following steps: 

Step 0: Get initial estimates of the 0, A( ), 9, and aw2gt. 

Step 1: Use Newton's method to estimate 0, given estimates of Q and A( ), 

based on condition (4). 

Step 2: Center the random effects so that Ee; = 0. 

Step 3: Use Cox regression with the offset command to estimate ,(3 and A( ) for 

the current O. 

Repeat steps 1, 2, and 3 until convergence. 

Step 1 appears to require matrix inversion, but the resulting matrix of second 

derivatives is diagonal. Let 
ax and = g1 

and let g be the vector of gi's and let D be a diagonal matrix with diagonal elements qi; 

then the Newton's method estimate in step 1 is Dg. Compared to the usual matrix 

inversion, this results in a faster algorithm with fewer convergence difficulties. Step 2 

is possible because the mean of the random effects is not identifiable, so centering the 

random effects just alters the baseline hazard by a multiplicative factor. Newton's 

method is required in step 3, but this is embedded in professionally coded software and 

is hidden to the user. 

4.6 Initial Values 

In principle, initial values can be found by solving the Cox regression with the 

random effects assumed fixed. Two problems arise, however, especially when there are 

many blocks and few observations per block. If all observations in a block are censored, 

then the related fixed effect is not finite (discussed above). Further, the large number of 
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parameters relative to the number of observations sometimes causes convergence 

problems for Cox regression. 

Initial values were found as follows: 

Stepl: Perform Cox regression on the fixed effects only. 

Step 2: For each block, form the quantities >6,k and EA(t,k)exp(Ezikfi3f). 

Use (3) to get an initial estimate of each °k. If any Esik = 0, replace EO,k with 

(1- a)E6,k + a mean(6), where a is some small positive number. 

Step 3: Create a covariate vector with a value of Ok found in step 2 assigned to 

each observation in block k, for all blocks. 

Step 4: Perform Cox regression with the original covariate z and a new 

covariate vector created in step 3. Update Ok by multiplying the current value by 

the estimated regression coefficient from this Cox regression. 

This algorithm generates the initial values of )3 and 0 for the previous algorithm and the 

penalty weight, [2 oigt]-1, to be used throughout the maximization process. 

This algorithm only produces approximate solutions to the fixed effects model. 

Because these are only initial values for the previous algorithm, we are not concerned 

with exact solutions. Step 2 addresses the problem of unbounded fixed effects when all 

observations in a block are censored. Steps 3 and 4 reduce the dimension of the 

parameter space for Cox regression from p + b down to p + 1. This avoids the 

convergence problems mentioned above. 

The best choice for a penalty weight would presumably be the unknown true 

population variance. Because we are essentially using fixed effects in place of random 

effects at this point, we expect that this estimate of variance is usually too large, and the 

shrinkage of the random effects too little a result different from what others have 

found (McGilchrist and Aisbett,1991). 
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The penalty weight, [2 oigt]-1, is not changed during the optimization process. Only 

after final estimates of and 0 are found is a final estimate of variance made: 
A2 AA2 = [b-1]-1E0 where Oi are the final estimated random effects. 

4.7 Evaluating the Algorithm via Simulation 

In a split-plot design there is at least one treatment (covariate) that varies from 

block to block and at least one treatment (covariate) that varies within a block. For 

example, we might give subjects two different medications for an illness at two different 

times, but we might also be interested in the gender of the subject. In this case the 

medication varies within subject , but gender varies between subjects. Estimated 

random effects are especially useful for split-plot designs, as they are the residuals for 

blocks. An unusually large estimated random effect suggests an outlier, i.e. a block 

(subject, litter, etc.) that exhibits an unusual response to the treatment (or a possible 

error in the data). 

Several data sets used as examples in survival analysis share common 

characteristics: a split-plot structure, with few subjects (10 to 50), two or three 

observations per subject, and mild censoring. The design is not completely balanced 

the number of observations per subject varies slightly. Three such data sets are the skin 

graft data from Chapter 8 of Kalbfleisch and Prentice (1980), the catheter data used by 

McGilchrist and Aisbett (1991), and the HIV data used by Lipsitz and Parzen (1996). 

We evaluated our algorithm by simulating data with these characteristics. 

There were two observations simulated within each block, a treatment and a control 

for some factor W. Half the blocks received the treatment and the other half the control 

for some factor B. In terms of the model specified in (1) and (2), we let rj = 2 (two 

observations per block) , s = 2 (two fixed effects, one between subjects and the other 
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within subjects), zuf = 0 or 1 (an indicator that distinguishes treatments from controls ), 

b = 12 or 36 (the number of blocks), and cr2 = 2. There was mild censoring (about 

10%). 

The failure times and censoring times were exponential. Each fixed effect had two 

possible values: 0 or -log(2). Simulations were run for all four possible combinations of 

fixed effects values. The initial value of a-2wgt1 the estimated random effects, the 

estimated fixed effects, and the final estimate of .2 were all taken from a full model 

where both fixed effects were estimated. For hypothesis tests of the fixed effects, 

reduced models were fitted without the effect of interest. 

From Table 4.1 we see that the adjusted and unadjusted (in parentheses) h-partial 

loglikelihood produced nearly identical rejection rates. Subsequent discussion will 

focus on the rejection rates based on an adjusted h-partial loglikelihood only. 

There are few surprises in the rejection rates presented in Table 4.1. In the cases 

where the rejection rates should be 5% (in italics), they are very close, with two 

exceptions. The rejection rate for the 36-block case when there is a within-block effect, 

but no between-block effect, seems low (2.8%). The rejection rate is also too high 

(7.6%) in one case. The sample sizes for the within-block comparison were 24 and 72, 

and the sample sizes for the between-block comparison were 12 and 36. 

Although rejection rates of about 5% when the null hypothesis is true are not 

unexpected, there are several reasons this result might not have occurred. First, the 

claim that any loglikelihood ratio test is approximately X2 is based on asymptotic 

theory, while our sample sizes are relatively small, especially for the between-block 

effect. Secondly, the adjusted h-loglikelihood ratio test is only an approximation of a 

loglikelihood ratio test (Lee and Nelder, 1996). Finally, our test, which is an h-partial 

loglikelihood ratio test, is the extension of this approach to a new setting rather than a 

special case of the work of Lee and Nelder. 
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Table 4.1. Hypothesis testing for fixed effects. The rejection rates are for an adjusted 
h-partial loglikelihood ratio test (rejection rates for the h-partial loglikelihood ratio test, 
unadjusted, are in parentheses) where the full model includes both parameters and the 
reduced model excludes a parameter. Rejection rates when the null hypothesis (null) is 
true are in italics and should be 0.05, and those in bold are for when the alternative 
hypothesis (altn) is true and should be greater than 0.05. All rejection rates are based on 
500 simulated samples. 

Ow OB Ho: 13w = 0 Ho: /3B = 0 
Rejection Rates 

12 blocks 
null null 0.076 (0.080) 0.048 (0.048) 
null altn 0.052 (0.052) 0.106 (0.100) 
altn null 0.262 (0.268) 0.056 (0.054) 
altn altn 0.244(0.244) 0.104 (0.098) 

36 blocks 
null null 0.046 (0.046) 0.052 (0.050) 
null altn 0.050 (0.050) 0.222 (0.208) 
altn null 0.650 (0.652) 0.028 (0.028) 
altn altn 0.610 (0.610) 0.240 (0.234) 

When the alternative hypothesis is true, the rejection rates in Table 4.1 should be 

greater than 5%. Further, the hypothesis tests should be more powerful when the 

sample size is increased, and the test based on comparisons within a block should be 

more powerful than the test based on comparisons between blocks. 

For the test based on within-block comparisons, Ho: Ow = 0, the rejection rates 

increased from about 25% to about 63% as the sample size tripled. For the between-

block comparison, Ho: OB = 0, the rates increased from about 10% to about 22%. So, 

increased sample sizes produce dramatic increases in the rejection rates. 

These results also indicate that within-block comparisons are more precise than 

between-block comparisons. In all cases, the same alternative hypothesis was used 
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(0 = -log2). For the smaller sample size, the within-block comparison had a rejection 

rate of 25%, while the between-block comparison had a rejection rate of 10%. In the 

data with larger sample sizes, the within-block comparison yielded a 63% rejection rate, 

while the between-block comparison yielded a 22% rejection rate. This is the reason 

blocking is used in designed experiments. 

Efficient hypothesis tests with correct significance levels suggest the BLUP 

approach is useful, but it is also desirable to obtain reasonable point estimates of the 

fixed and random effects. 

Table 4.2 Estimated fixed effects. Below are median, 0.05, and 0.95 quantiles for the 
estimated fixed effects parameters for 500 simulated samples. When the null hypothesis 
is true (null) the numbers are in italics, and they should be centered around zero. When 
the alternative hypothesis is true (altn), the numbers are in bold, and they should be 
centered around -log2 (ti -0.693). 

/(3W 13B f3W iieB 

lower median upper lower median upper . 
12 blocks 
null null -1.137 -0.004 1.343 -2.037 0.009 2.151 
null altn -1.168 -0.010 1.150 -3.003 -0.817 1.121 
altn null -2.294 -0.920 -0.266 -2.088 0.132 2.279 
altn altn -2.621 -0.901 0.228 -3.114 -0.889 1.088 

36 blocks 
null null -0.592 0.007 0.631 -1.108 -0.019 1.047 
null altn -0.646 0.000 0.618 -1.874 -0.764 0.375 
altn null -1.617 -0.895 -0.208 -1.010 -0.009 1.017 
altn altn -1.552 -0.870 -0.228 -1.996 -0.802 0.335 

The earlier hypothesis test results indicate that within-block tests are more precise 

than between-block tests, and that larger sample sizes yield more precise tests. 
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Correspondingly, we expect the narrowest ranges for our parameter estimates in those 

cases where hypothesis tests are most precise. This principle explains the relative 

widths of the ranges for the fixed effects estimates in Table 4.2. The estimates for NB 

and for /3w have similar medians, but OB has a wider range, i.e., the betweenn-block 

comparison is less precise than the within-block comparison. Further, increasing 

sample sizes increases precision, so parameter estimates using 36 blocks have similar 

medians to those using 12 blocks, but narrower ranges. 

It is harder to generalize about the median value of the parameter estimates. When 

the correct value is zero, the median value is close to zero in all cases. When the correct 

value is -log(2), the median values are consistently too large in magnitude, although 

there does appear to be slight improvement with increased sample size. 

It is sometimes useful to estimate the random effects as well. The comparisons 

between the estimated random effects and the actual random effects in each simulated 

data set were made in two ways: we hope both that the variance of the estimated random 

effects be comparable to that of the actual random effects, and that the estimated 

random effect closely matches the actual random effect for each block. 

Table 4.3 summarizes the estimation of random effects. The first three columns 

characterize the range of the sample correlation between the estimated random effects 

and actual random effects. The last three columns summarize the ranges of the ratio of 

the sample variance of the estimated random effects to the sample variance of the actual 

random effects. 

The BLUP approach, as implemented in this paper, consistently overestimates the 

sample variance of the random effects. The ratio of our sample variance to the correct 

sample variance has a wide range for small sample sizes (about 0.459 to about 6.002) 

and a much smaller range for larger samples sizes (about 0.896 to 3.062), but the 
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median value is always about 1.60, suggesting a median inflation of our sample variance 

of about 60%, independent of sample size. 

For each data set, the sample correlation between the estimated and actual random 

effects was calculated. The range of the sample correlation is contained in the first three 

columns of Table 4.3. The correlation between the actual and estimated random effects 

is wide ranging for the smaller sample sizes ( 0.554 to 0.931), but has a much smaller 

range for larger sample sizes (0.730 to 0.903). The median correlation increases with 

sample size, from 0.81 to 0.84. 

Table 4.3 Estimated random effects. The first three columns characterize the range of 
the sample correlation between the estimated random effects and the simulated random 
effects; the second set of columns characterizes the ratio of sample variance for the 
estimated random effects to the sample variance for the actual random effects. The 
median, 0.05, and 0.95 quantiles for are given in each case. Each row was based on 500 
simulated samples. 

A2 
Ow OB r Cr /,S 

2 

lower median upper lower median upper 
12 blocks 
null null 0.545 0.816 0.934 0.465 1.626 5.400 
null altn 0.558 0.811 0.930 0.452 1.562 6.278 
altn null 0.565 0.815 0.933 0.464 1.621 6.761 
altn altn 0.549 0.806 0.928 0.453 1.537 5.568 

36 blocks 
null null 0.740 0.844 0.909 0.846 1.650 2.936 
null altn 0.735 0.838 0.901 0.937 1.635 3.067 
altn null 0.735 0.838 0.901 0.909 1.648 3.095 
altn altn 0.709 0.827 0.901 0.891 1.600 3.149 
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Figure 4.1. Four scatterplots of actual and estimated random effects for data sets with 
36 blocks. In each scatterplot a 45° line has been added. 

Figure 4.1 contains scatterplots of actual versus estimated random effects for four 

simulated data sets and shows the close correspondence between actual and estimated 

values. Although our method overestimates the overall variance between subjects, 

Figure 4.1 and the range of the sample correlations suggest that the random effects are 

being correctly estimated except for a scaling factor: the largest estimated random 

effects are associated with the largest actual random effects, estimated random effects 

near zero are associated with actual random effects near zero, and large negative 
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estimated random effects are associated with large negative actual random effects. It is 

this characteristic that makes them useful for outlier detection. 

Previous authors found that the BLUP method yields estimates of the fixed and 

random effects that are shrunk too much (Mc Gilchrist and Aisbett, 1991). Because of 

the way the initial estimate of variance is obtained, our implementation induces 

substantially less shrinkage. Neither our implementation nor the previous efforts induce 

the correct amount of shrinkage, and the bias resulting from our approach inflates 

parameter estimates. This bias seems relatively minor for parameter estimates of the 

fixed effects, but sizable for the sample variance. Strangely, the bias does not affect 

hypothesis tests. 

4.8 An Example 

Lipsitz and Parzen (1996) discuss a data set in which 36 HIV positive subjects were 

given one of three treatments (a placebo, or a low or high dosage of the drug ribavirin). 

Each subject had blood samples taken at 4, 8, and 12 weeks. The failure times are the 

times until the HIV virus can be detected in each blood sample; failure times are 

inversely related to disease severity (see Table 4.4). 

The authors used Cox regression, treating time (weeks 4, 8, and 12) as a covariate. 

This analysis gives a reasonable point estimate of the parameters of interest but does not 

take the correlation between repeated measures into account. They solved this problem 

by using a jackknife estimate of the standard error of the parameter estimates. The 

authors modeled the low and high dosage of ribavirin with two indicator variables. 
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Table 4.4. The data for 36 HIV positive subjects, taken from Lipsitz and Parzen. For 
weeks 4, 8, and 12 the numbers are the days until the HIV virus was detected in the 
blood sample. Censored times are marked (*). 

Treatment Subject 
Placebo 1  

2  
3  
4  
5  
6  
7  
8  
9  

10  
11  
12  

Low dose 13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  

High dose	 24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  

Week 4  
9  
4  
6  

10  
15  

3  
4  
9  
9  
6  
9  
9  
6  

16  
31  
27*  

7  
28*  
28*  
15  
18  

8  
4  

21  
13  
16  

3  
21  
7  

11  
27*  
14  

8  
8  
8  

19*  

Week 8  
6  
5  
7  

8  

7  
12  
19*  
5  

20*  
4  

17  
19*  
19*  
16  
7  
3  

12  
21*  
4  

21*  
9  
7  
6  
8  

19  
13  
18*  
14  
11  
4  
3  

10  

Week 12  
6  

10  
6  

21*  

6  
3  

12  
19*  
6  

18  
17*  

5  
21*  
21*  

23*  
19*  
16  
16  
22  

7  
7  
8*  

21*  
20  

6  
25*  

3  
21*  

9  
6  

15  
7  
9  

17  

estimated 
random effect 

0.47 
0.87 
1.07 

-1.35 
-0.62 
1.95 
1.38 

-0.38 
-1.42 
1.50 

-0.60 
-1.82 
2.97 

-0.30 
-2.02 
-1.68 
-0.05 
-0.82 
-0.23 
0.52 

-0.58 
2.15 
0.07 

-0.67 
-0.44 
-0.18 
1.66 

-1.36 
-0.02 
-0.59 
-1.54 
0.09 
0.34 
1.50 
1.30 

-1.20 



64 

An alternative approach is suggested by applied linear models. The blood samples 

for a specific subject are repeated measures, and we will assume these measurements are 

independent except that they share a common random effect. Since there is a within-

subject time effect and a between-subject treatment effect, this is a split-plot design 

(Mead, Chapter 14, 1988). We treated time as a categorical variable. 

Several hypothesis tests were performed in the course of analyzing the data. All the 

fitted models are displayed in Table 4.5. The initial estimate of 52 was taken from the 

model labeled "Wk", but the initial estimates from the other models are similar and we 

assume our results do not depend on this choice. 

Table 4.5. The models used in the analysis of the HIV data. The model label is given as 
well as the factors in the model, the number of regression parameters needed, and the 
initial estimated sample variance. 

Model Factors Parameters Initial 1;2 
I-a low dosage, high dosage, 6 2.284 

time, low dosage x time. 
I-b low dosage, high dosage, 6 2.351 

time, high dosage x time. 
Wk low dosage, high dosage, time 4 2.297 
Tr low dosage, high dosage 2 2.177 
Lid low dosage, time 3 2.459 
Hd high dosage, time 3 2.730 

Two interaction models (I-a and I-b) were used to test for any interaction effects. 

There was no evidence of interaction, and these will not be discussed further. 
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From Table 4.6, we see that our results are similar to the results of Lipsitz and 

Parzen. The parameter estimates are close, but our p-values are smaller. In each case, 

the conclusion is the same. Low doses of ribavirin are effective, but high doses are not. 

Table 4.6. (a) An analysis of the HIV data in a split-plot format. (b) Comparison of the 
Lipsitz and Parzen parameter estimates and hypothesis test to our results. Lipsitz and 
Parzen computed a jackknife standard error and their p-values are based on the 
approximate normality of a Wald test using this standard error. Our p-values are based 
on the h-partial loglikelihood being approximately X2 with the degrees of freedom 
listed. 

(a) 
full reduced 
model model Xdf 

df p-value 
Between subject 

Low dosage Wk Hd 8.12 1 0.004 
High dosage Wk Ld 3.10 1 0.078 

Within subject 
Time Wk Tr 3.90 2 0.142 

(b) 
Lipsitz & Parzen BLUP 

parameter estimates p-value parameter estimates p-value 
Low dosage 0.8636 0.031 -0.727 0.004 
High dosage 0.4024 0.222 -0.370 0.078 

Our p-values are smaller that those of Lipsitz and Parzen and there are at least two 

possible sources of the difference: First, the underlying models presumed in the two 

analyses are quite different, and may not always give identical results. Second, it is 

possible that our model, which is arguably "more parametric," might be noticeably more 
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efficient for this small data set, as there are only 36 observations for the comparisons 

involving ribavirin dosage. 

The estimated random effects for the subjects are presented in Figure 4.2. Subject 

13 in Table 4.4 may be an outlier. This subject is in the "best" treatment group, but has 

three of the worst failure times in the data set. This is noteworthy, and was made 

obvious by our estimation method, but it does not affect the analysis above. Deleting 

this subject and re-analyzing the data gave almost identical results for all the hypothesis 

tests and parameter estimates. 

co + outlier ? 

+ 
LN O 

O 0 
# 

# 
# 

O 
O 

O + 
# 

0 
O 
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+ 

+ 
+ 

+ 
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# 

# 
# # 

0 0 

0 
+ 

# 
# 

# 

+ 

10 20 30 
Subjects: o -- Placebo + -- Low dosage # -- High dosage 

Figure 4.2. Estimated random effects for each subject for the HIV data set, with 
subjects ordered as in Table 4.4. 
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The fact that all the predicted random effects may be too large in magnitude does 

not affect outlier detection, because here we are only interested in whether any one is 

large compared to the others (scaling is irrelevant). 

4.9 Conclusions 
With the BLUP estimation algorithm presented here, it is possible to analyze 

survival data from experiments with blocking factors, including many randomized block 

designs and split-plots. Our algorithm can easily be implemented in statistical 

languages (i.e., S-PLUS) as an extension of Cox regression. This method allows for 

hypothesis tests for the fixed effects, estimates of the fixed effects, and the estimates of 

random effects (up to a scaling factor), which are useful for detection of blocks 

(subjects, litters, etc.) that are potential outliers at the between-subject level. 

Our parameter estimates were slightly inflated in magnitude, almost certainly 

because the initial estimate of cr2 is too large. It is possible that a better method of 

finding initial values, or a wiser method of selecting o-w2gt, would lead to better 

parameter estimates. Nevertheless, the hypothesis tests for fixed effects performed well, 

the estimated random effects appeared useful for detecting outliers, and the estimated 

fixed effects were reasonable, although slightly inflated. 
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4.11 Appendix 
Part 1 The estimated random effects are always shrunk toward the origin when 

estimated using a penalty function compared to the random effects estimated as if they 

were fixed, i.e., E0FE > E02RE. 

Fixed effects are estimated by maximization of f(13, 0), and random effects are 

estimated by maximization of fa 0) w(E0). Denote fixed effects solutions as 

(OFE,OFE) and random effects solutions as (/3RE,ORE); then f(OFE, OFE) > ORE) an-

f(ORE, ORE) w(EOL,i) > f(OFE, OF E) w(E0k). Add both sides of the preceding 

inequalities and drop common terms yields -w(a2zEJ) > -w(EOLi). If we let 

w = [2a2] -1 > 0, then EOL > 

Part - 2. If common estimates of A( ) and 0 are given and there is at least one failure 

in each block, random effects estimates are shrunk individually compared to the fixed 

effects estimates for that block. 

Suppose ESik > 0 for each block (litter, subject), i.e., that there is at least one 

failure in each block; let yk = ES,k[EA(t,k)exp(Ezift3f)]-1 and ck = 
i i f  

[0-2EA(t,k)exp(Ez,030]-1 be a fixed non-negative constant for each block k. Then 
i f  

setting derivatives to zero will yield yk = exp(OFE,k) (1) for each block k in the fixed 

effects model and 

yk CkORE,k = exp(ORE,k) (2) for the random effects model. 

cjaFor both (1) and (2), > 0 and yk is continuous in Ok. Also Ok = 0 when yk = 1
dok 

in both cases, so O1 ,k and ORE,k always agree in sign. If Ok < 0, then 0 > ORE,k > ORE,k 

Similarly, when Ok > 0, 0 < ORE,k < OFE,Ic SO ORE,k = ORE,k = 0 when 

= EA(tik)exp(Eziff3f); otherwise IORE,k1 < IOFE,k1. 
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The above demonstrates that for any common estimate of A( ) and 13, the random 

effects estimates are shrunk individually, compared to the fixed effects estimates for that 

block. In practice, there may be exceptions because the fixed and random effects 

models generate slightly different estimates of A( ) and /3. 
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Chapter 5 

5. Conclusions 

5.1 The Incompletely Specified PH Log likelihood 

We have, shown in a variety of settings, that an incompletely specified proportional 

hazards loglikelihood, 

-E ivtoexp(o) + E Slog{ A(ti)exp(ziO) } , (1) 

is more useful than the partial loglikelihood, 

E 6i[z3 log { exp(z3) }], 
= 

(2) 

originally introduced by Cox. The loglikelihood (1) is incomplete in that it is not a 

loglikelihood (or partial loglikelihood) until A( ) and A( ) are specified. 

In principle, many of the results we found could have been derived using only the 

partial loglikelihood. Nevertheless, many results were more easily obtained using (1). 

It was particularly beneficial to use (1) instead of (2) when forming partial derivatives 

that have intuitive interpretations. 

The main difference between the partial loglikelihood and the incompletely 

specified PH loglikelihood, is that the hazard function is completely removed from the 

partial loglikelihood. Deviance or martingale residuals, however, require that a 

cumulative hazard be specified. Deriving residuals using the partial loglikelihood 

involves the rather artificial process of removing the nuisance parameter at one step, 

only to re-introduce it a few steps later. Nor is it clear that the Breslow cumulative 

hazard, implicit in the partial loglikelihood, is always the best choice. 
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5.2 Implications for Further Study 

In Chapter 2, we found that the deviance residuals used in Cox regression fail to 

detect certain obvious outliers. Although it was easy to identify the problem, a solution 

is difficult. Our partial solution was to cluster neighboring observations to form a 

smoothed baseline hazard. For early outliers, the assumption of a locally constant 

baseline hazard was too crude and introduced a bias in the deviance residual that 

depends on whether the true underlying hazard is monotone increasing or decreasing. 

This bias disappears with larger sample sizes, but rather slowly. Late outliers, on the 

other hand, are influential in the calculation of the estimated parameters A( ) and /3, 

introducing a bias that carries over to the deviance residual itself. As with the early 

outlier, the bias disappears very slowly with increased sample size. 

The first problem, associated with early outliers, could probably be solved by using 

a kernel smoother or lowess smoother to smooth the baseline hazard, which would give 

the benefits of clustering while producing a smoother function. The latter problem, 

associated with late outliers, might be solved by sequentially deleting each observation 

when computing the deviance residual for that observation. 

In Chapter 3, we found deviance residuals that reveal the shape of the underlying 

baseline hazard. Ignoring censored data, these are equivalent to: 

d, = sign(h, -1){2[h, log(h,)] (3)1 

where h, is the ratio of the observed and predicted (maximum likelihood) local baseline 

hazard rate. When the predicted failure rate is constant, this suggests a one-to-one 

mapping between the deviance residuals and the baseline hazard function. An efficient 

way to find a smoothed baseline hazard would be to compute deviance residuals, 

smooth the deviance residuals, then numerically invert (3) back to a baseline hazard. 
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5.3 Constrained Optimization 
There are several other areas where use of (1) in place of (2) might be useful. In 

Chapter 3, a non-parametric monotone baseline hazard was found. For ordered 

observed times t1...tn, the optimization problem we solved was: 

Maximize -E A(ti)exp(ziO) + E Si log{ Aiexp(zi0)} 
1=1 

subject to A(ti) = E AjAi and < for all tn, < tk. 
j = 1 

This general class of optimization problems produces a non-parametric step function for 

the baseline hazard, but it can be used to place other constraints on the baseline hazard. 

Two obvious examples are a U-shaped baseline hazard (common in reliability 

applications) and a baseline hazard smoothed to limit variation. 

5.4 Hierarchical Models 
In Chapter 4, we developed a Bayesian hierarchical model to create the random 

effects model needed for a split-plot design. Many interesting designed experiments 

include random effects or repeated measures, so the approach we used should be 

generally applicable in these cases. 

Bayesian methods should directly apply to (1) because it is a loglikelihood. A 

typical case in which (1) is far more useful then (2) is when the prior information is on 

the hazard function, so the hazard must be explicitly modeled. 

A hierarchical model that is different from the random effects model is the 

measurement error model, in this model covariates are random rather than fixed. This 

kind of problem can be attacked using (1). 
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5.5 Grouped and Tied Data 

Grouped data and data with ties are quite common in survival analysis. Methods 

for dealing with such data are "ad hoc". When a loglikelihood is available, tied and 

grouped data present no special problems. Using (1), it is possible to directly derive the 

correct loglikelihood in these cases. 

5.6 Summary 
In many applications of the proportional hazards semi-parametric model a 

cumulative hazard must be specified, e. g., when we compute median failure times, 

compute residuals, or plot a baseline hazard. It is artificial to remove the cumulative 

hazard, derive formulas, and then re-introduce a cumulative hazard. But this is required 

when using (2) in place of (1). Avoiding this awkwardness produces derivations that 

are simpler and often intuitively meaningful. 

Using (2) in place of (1) also presupposes that one particular non-parametric hazard 

is best. There is no unique, correct non-parametric hazard function; but using (2) 

implicitly commits the analyst to the Breslow cumulative hazard. Using (1), the analyst 

can specify the cumulative hazard as she wishes. 
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