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A MODEL REFERENCE ADAPTIVE SYSTEM FOR

CONTROL OF A FLEXIBLE MECHANICAL MANIPULATOR

I. INTRODUCTION

Since the first use of the term "robot" in 1920,

robotic technology has been applied to a number of man-

ufacturing areas and at present has increasingly been

applied to practical purposes. The study of robotics

is an interdisciplinary field, including the technology

of mechanical and electrical component design, motion

analysis, controller and sensor design, and artificial

intelligence. The various robotics applications re-

quire the type of continuous research and development

effort associated with advanced performance problems.

Mechanical manipulators are a case in point. In

many instances, mechanical manipulators are considered

as rigid bodies, existing for the convenience of ana-

lyzing kinetic and dynamic motion and controller de-

sign. In order to satisfy the assumption of rigid body

motion, the structure must possess reasonable stiff-

ness, a requirement which increases the weight and

therefore the sizes of the high powered actuators nec-

essary for control. In the case of a long and thin
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manipulator, the deflection of the manipulator causes a

decrease in robotic accuracy.

In this investigation, the flexible manipulator

has been studied as a physical model for the considera-

tion of an increase in accuracy, a decrease in weight,

and a reduction in actuator sizes. Motion analysis of

a flexible manipulator involves completion of a number

of difficult tasks, including system modeling, feedback

sensing techniques, and control strategies associated

with distributed parameters. Several studies of the

flexible manipulator have examined these tasks [4,5,6,

13,35,45] and have derived a number of advantages from

the development of robotic flexible manipulators: an

increase in accuracy, higher speeds, smaller actuators,

lower energy consumption, lower overall cost, safer op-

eration due to reduced inertia, less bulky design, en-

hanced back-driveability due to the elimination of

gearing, lower overall mass to be transported, and low-

ered mounting strength and rigidity requirements.

Among these advantages, this study has focused upon the

improvement of accuracy standards.

Most research studies of flexible manipulators

have been based on the assumption that the parameters

of the system are known. When the flexible manipulator

reflects unknown parameters, imperfect modeling condi-

tions, or variations in parameters, control strategies

become more complicated. With conventional control
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strategies, control of the flexible manipulator becomes

more difficult to achieve in proportion to model uncer-

tainties. For instance, when the payload is uncertain,

when the system modeling is imperfect, or when the pa-

rameters vary in time, the control scheme for the sys-

tem should have the ability to adjust or adapt to these

effects.

Based upon this consideration, the physical model

of a mechanical manipulator developed for this study is

based upon the assumptions that the manipulator has a

one-link flexible arm and the system contains unknown

parameters or variations in parameters. For develop-

ment of the mathematical modeling for this flexible ma-

nipulator, an assumed-mode method is employed. The

assumed-mode method is based upon a set of admissible

functions, which satisfy the geometric boundary condi-

tions of the system under consideration, and general-

ized coordinates, used in conjunction with the applica-

tion of Lagrange's equations to obtain an approximate

formulation of the equations of motion. This method

has the advantage of reducing a continuous system to a

multi- degree -of- freedom system, quite similar to the

Rayleigh-Ritz method. The dynamic response is then ob-

tained, based on the mode-superposition method in which

a set of coupled equations can be transformed into a

set of uncoupled equations through use of the normal

modes of the system. When reduction of the number of
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assumed modes is necessary, the mode-acceleration

method suggested by Williams [44] may be applied.

To control a system for which the characteristics

are imperfectly known or the parameters are varied,

adaptive control systems can offer highly effective

control schemes [8,19,20]. Among various adaptive con-

trol systems, the model reference adaptive system is

investigated for the flexible manipulator control

scheme.

In Chapter II, a physical model of a flexible ma-

nipulator is described, accompanied by the introduction

of the assumed-mode method for constructing a mathemat-

ical model. In Chapter III, the concept of the model

reference adaptive system, in conjunction with hyper-

stability theory, is discussed. The application of the

model reference adaptive system to system control, rep-

resented in the form of partial differential equations,

is difficult. Problems in this form of expression can

be overcome by use of the assumed-mode method for math-

ematical modeling, and a modified control scheme for

the model reference adaptive system is presented in

Chapter IV. Computer simulation of the model and the

results of this study are also included in Chapter IV

and conclusions are offered in Chapter V.
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II. MODEL DESCRIPTION

There are various methods of describing nonrigid,

distributed parameter systems. However, it is diffi-

cult to precisely analyze the mathematical models of

flexible manipulators due to their nonlinearities and

coupled terms. Moreover, control maneuvers for a sys-

tem described in partial differential equations are

complicated. In this chapter, a physical model of a

one-link flexible manipulator is considered and a dis-

crete method for the approximation of a continuous sys-

tem, the assumed-mode method, is discussed. The prin-

cipal advantage of the application of the assumed-mode

method to the modeling of a flexible manipulator is the

convenient application of control strategies without

the loss of accuracy.

2.1 Physical Model

The one-link flexible manipulator represented in

Figure 2.1 has been selected as the physical model for

this investigation. When desired, the study of one-

link flexible manipulators may be extended to the exam-

ination of multi-link flexible manipulators. For the
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Assumptions:

Small defelction

y

x

Rotary intertia and shear deformation
effects ignored

Payload at the tip of the manipulator

Base motion prespecified

Figure 2.1 Physical Model
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model selected, the following simplifying assumptions

have been considered:

1) Motion occurs entirely in the x-y plane;

2) The deflection, y(x,t), of the manipulator dur-

ing motion is so slight that any axial exten-

sion may be ignored;

3) Torsinal deflection is neglected;

4) The model is considered as a Bernoulli-Euler

beam, i.e., rotational inertia and shear de-

flection are ignored; and

5) The arm remains straight at rest, i.e., at rest

deflection is zero.

In partial differential equations, the mathemati-

cal model of the flexible beam is represented in terms

of the position x and the time t. In the following

section, an assumed-mode method for the development of

a mathematical model of the flexible manipulator is in-

troduced.

2.2 Theoretical Background of the Assumed-Mode Method

Precise expressions of a flexible beam are pre-

sented in the form of partial differential equations.

In a practical sense, the use of a partial differential

model is cumbersome and, in many cases, closed-form so-

lutions of the exact mathematical model cannot be ob-

tained. Consequently, various methods of approximating

continuous systems have been developed [9,12,22,32].
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Among these methods, two discrete approximations of a

flexible beam, the Galerkin method and the assumed-mode

method, have been considered during the course of this

investigation.

The Galerkin method is a procedure which allows

elimination of spatial dependence by discretizing spa-

tial variables, resulting in ordinary rather than par-

tial differential equations. The assumed-mode method

discretizes the equations for kinetic energy, potential

energy, and external forces prior to application of the

Lagrange equations, generating equations of motion for

the physical model in generalized coordinates which

approximate the dynamic responses of the flexible sys-

tem. Though the two approaches are quite similar, the

second method encompasses more convenient discretiza-

tion since it provides a solution series. Therefore,

it is the method chosen for the derivation of the equa-

tions of motion for the flexible manipulator. For the

generation of expressions of the dynamic model in un-

coupled form, the mode superposition method is em-

ployed.

In order to understand the theoretical background

of the assumed-mode method, it is first necessary to

examine the Rayleigh-Ritz method and Galerkin's method,

two procedures which allow conversion of eigenvalue

problems of a continuous system into eigenvalue prob-

lems for a discrete system. This is done by the
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assumption of a solution in the form of a finite ser-

ies, consisting of known functions multiplied by un-

known coefficients. Depending on the method used, as-

sumed functions may be selected as comparison functions

or admissible functions. If the series consists of N

functions, the corresponding eigenvalue problem yields

N-eigenvalues and N associated eigenvectors. The com-

ponents of each of the resulting N-dimensional eigen-

vectors are multiplied by their respective assumed

functions to obtain the desired eigenfunctions. The

following are distinctions of admissible functions and

comparison functions as assumed functions, which are

briefly discussed below.

1) Admissible functions are any arbitrary func-

tions which satisfy all of the geometric bound-

ary conditions of the eigenvalue problem, or

the system under consideration, possessing

derivatives of the order at least equal to that

appearing in the strain energy expression for

the system.

2) Comparison functions are any arbitrary func-

tions which satisfy all boundary conditions

(geometric and natural) of the eigenvalue prob-

lem, or the system under consideration, pos-

sessing derivatives of order at least twice

that appearing in the strain energy expression

for the problem or the system.
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2.2.1 Rayleigh's Energy Method

Based on Rayleigh's principle [40], Rayleigh's

method can be used to obtain an approximate value of

the fundamental frequency of a system without solving

the equations of motion for either a discrete or a con-

tinuous system. In the case of continuous systems,,

this method is useful when the system stiffness and

mass are not uniformly distributed and an exact solu-

tion of the eigenvalue problem is impossible to obtain.

For a continuous system, the general eigenvalue

problem takes the form

L[w] = A M[w] , (2.2.1)

where L and M are linear homogeneous differential oper-

ators. Any eigenvalue, A1, with the associated eigen-

function, wi, must satisfy Equation (2.2.1) and the as-

sociated boundary conditions of the problem. There-

fore, Equation (2.2.1) can be rewritten as

L[wi] = A M[wi], i = 1,2, (2.2.2)

Multiplying both sides of Equation (2.2.2) by wi, inte-

gration over the domain x yields

f w- L[w-] dx
AI = i = 1,2, - (2.2.3)

w- M[wi] dx

The expression of Rayleigh's quotient can be obtained

from the assumption that the boundary conditions do not

depend on the eigenvalue A and that u be a comparison

function as follows:
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ing a continuous system by a single-degree-of-freedom

f u L[u] dxw2
(2.2.4)1 u M[u] dx

11

(2.2.4)

w2

with the

= R(X(x))

energy conservation

1L
0=

82x

law,

2

dxdx

yield:

(2.2.8)
2157

L
m(x) X2(x) dx

(2.2.4) with the energy conservation law, yield:

1L
0
L

57
dxdx

82x 2

21
w2 = R(X(x)) = (2.2.8)

m(x) X2(x) dx
0

2.5)

where X(x) represents the transverse displacement at

point x and q(t) the harmonic time dependent function.

Its kinetic energy is expressed in the form

T(t) -
1

2
m(x)

[ay(x,12

0 at

L1
= --- q(t)2 1 m(x) X(x)2 dx (2.2.6)

2 0

and potential energy in the form

V(t) =
1

2
EI

(92y(x,t)
2 dx

0 ax2

2x 2

= q(t)2 EI
1 L (9

--- 1 [----- (2.2.7)
2 0 ax2

Equations (2.2.6) and (2.2.7), introduced to Equation

This method can be used as a procedure for approximat-

0

ing a continuous system by a single-degree-of-freedom

This method can be used as a procedure for approximat-
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system and for calculation of approximate fundamental

frequency.

2.2.2 The Rayleigh-Ritz Method

Rayleigh's quotient provides an upper bound for

the first eigenvalue, A1,

R(u) > Al , (2.2.9)

where the equality sign holds true if, and only if, the

comparison function u is actually the first eigenfunc-

tion of the system, i.e. the true fundamental frequency

is always smaller that the estimated one. In the

Rayleigh-Ritz method, the main object is to minimize

the estimate. The method for a multi-degree-of-freedom

system approximates the frequencies of the reduced num-

ber of modes. It selects the minimizing sequence ser-

ies of admissible functions, Xi, which satisfy all

boundary conditions of the system, and constructs a

linear combination,

N
wn = U.X.n . , 1 11=1

(2.2.10)

where Xi are preselected, linearly independent func-

tions and Ui are unknown coefficients to be obtained.

The substitution of wn into Rayleigh's quotient

leads to

R(wn)

wn n] dx
2 _

wn M[wn] dx

N(wn)

D(wn)
, (2.2.11)
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where

N(wn) = J wn L[wn] dx and (2.2.12)

D(wn) = j wn M[wn] dx , (2.2.13)

indicate, respectively, the numerator and denominator

of Rayleigh's quotient.

For the determination of the coefficient Ui, Ritz

proposed to make Rayleigh's quotient, R(w ), station-

ary, leading to

aR(wn)
0, i=1,2, N . (2.2.14)

aui

Then, Equation (2.2.13) gives

aD(wn) aN(wn)
N(wn) D(wn) = 0 (2.2.15)

aui aui

and the condition (2.2.15) becomes

aN(wn) aD(wn)w2 = 0, i=1,2,- -,N (2.2.16)
aui aui

where min R(wn) is denoted as w2.

Then, let

kij = I Xi L[Xj] dx
i,j = 1,2,- - -,N (2.2.17)mij = f Xi M[Xj] dx

and if the system is self-adjoint, then

kij = kji, mij = mji . (2.2.18)

Since the operators L and M are linear, Equations

(2.2.12) and (2.2.13) become

N=
IN N
S Ui Xi lit 2 ui xi } dx

i=1 j=1

N N
= S S kii

"
Ui Uj , and (2.2.19)

i=1 j=1



D= N
E Ui Xi m E u. x4 } dx
i=1 =1 J

N N
= E mij

i=1 j=1
U. U.

14

(2.2.20)

The partial derivatives of N and D with respect to 111,

and the symmetric condition of the coefficients, yields

aN N N aUi aUi
= E u
1=1 j=1 IJTIT j

+ kijou
aUr

N
=
j1

aj,krj r=1,2, - N . (2.2.21)
=

In similar fashion, one obtains

ap
= 2 2 mii Ui, j=1,2, N . (2.2.22)

auj i=1

The substitution of Equations (2.2.21) and

(2.2.22) into (2.2.16) then leads to

E (k - w2 m-.1J ) U-
J
= 0, i=1,2,- -,N

j=1 13

or

([k] - w2 [m]) (U) = (0)

where [k] and [m] are N x N symmetric matrices.

(2.2.23)

(2.2.24)

The

eigenfunctions associated with the estimated eigen-

value, w, are then determined by introducing the coef-

ficient Ui into Equation (2.2.10) as follows:

N
w = E U1 X1

i=1 1 2.2.25)
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2.2.3 Galerkin's Method

Galerkin's method [9,22] seeks approximate solu-

tion of boundary value problems with a series of com-

parison functions which satisfy all the boundary condi-

tions and possess derivatives of order at least twice

that appearing in the strain energy expression. The

error can be determined by the substitution of a series

of comparison functions into the differential equation,

with the condition that the integral of the weighted

error over the domain be zero. Then, an eigenvalue

problem for an N-degree-of-freedom system, associated

with N series of comparison functions, can be repre-

sented as.

L[w] = A M[ w] , (2.2.26)

where L and M are, respectively, self-adjoint linear,

homogeneous operators of the orders 2p and 2q. In gen-

eral, the function w is subjected to boundary condi-

tions which do not depend on the eigenvalue A. The so-

lutions of eigenvalue problem can be assumed in the

form

N
wn =.E, Ui Xi ,

1=1.
(2.2.27)

where Ui are coefficients to be determined and Xi are

comparison functions. The introduction of Equation

(2.2.27) into Equation (2.2.26) gives the error

e = L[wn] - A M[wn] , (2.2.28)
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where A is the estimate of the eigenvalue, A.

The representation of the condition that the

weighted error integrated over the domain is zero can

be written

e Xi dx = 0, i=1,2, - N . (2.2.29)

Then, let

N
Xj L[wn ] dx = Xi Xi L[Xi] dx (2.2.30)

i=1

N
=
i

Kri r=1,2,- -,N ,
,

1

where the coefficients, Kri, are symmetric,

(2.2.31)

Kri = Kir = f Xr L[Xi] dx, r=1,2,- -,N ,(2.2.32)

since L is self-adjoint.

Similarly, one obtains

Xi M[wil] dx =1. m,- a. i=1,2,- -,N ,(2.2.33)
j1 =1 IJ J.

where the coefficients, mij, are given by

mij = mji = J Xi M[Xj]dx (2.2.34)

and are symmetric because M is self-adjoint. Equations

(2.2.31) through (2.2.34) yield

N
(Kij A m--

IJ
)a-

J
= 0, i=1,2,-

i=1
, (2.2.35)

which is called Galerkin's equation, representing an

eigenvalue problem for an N-degree-of-freedom system.

This result is similar to Equation (2.2.24) obtained by

the Rayleigh-Ritz method. When a series of comparison
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functions are used, rather than the admissible func-

tions used in the Rayleigh-Ritz method, results of both

the Galerkin method and the Rayleigh-Ritz method are

identical.

2.2.4 Assumed-Mode Method

This method assumes a solution of boundary value

problems in the form

N
yN(x,t) =

i1
Xiqi(t) ,

=
(2.2.36)

where Xi are admissible functions satisfying the geo-

metric boundary conditions and qi are the generalized

coordinates. The substitution of Equation (2.2.36)

into expressions for the kinetic energy, T, and the po-

tential energy, V, and the application of Lagrange's

equations yield the equations of motion for the N-

degree-of-freedom system. The functions, Xi(x), repre-

sent the displacement shape for the entire structure

under consideration. They must form a linearly inde-

pendent set.

The kinetic energy expression, T(t), and the po-

tential energy expression, V(t), can be written

and

1 N N
T(t) = E E mij qi(t) qj(t) (2.2.37)

2 i=1 j=1

1 N N
V(t) =

2 i
E
1 j

E kij qi(t) qj(t) ,==1 (2.2.38)



where the mass components, mij, depend upon the mass

distribution of the system, the selected admissible

functions, Xi, and the stiffness components, kij, de-

pend upon the stiffness properties of the system, and

the admissible functions Xi and its derivatives.

The application of Lagrange's equation for a con-

servative system of Equations (2.2.37) and (2.2.38),

leads to the equation of motion,

N - N
qj ik

:1=1

mij
j=1 j _j = 0, i=1,2,- -,N

18

(2.2.39)

From the assumption that the dynamic response of the

system is harmonic motion, Equation (2.2.39) leads to

the representation of the eigenvalue problem in the

form

iL(kij w2 mij) qj = 0, i=1,2,- -,N (2.2.40)

and its matrix form for Equations (2.2.39) and (2.2.40)

can be written, respectively,

[m](q) + [k](q) = (0) (2.2.41)

and

([k] w2[m]) {q} = (0) . (2.2.42)

Equation (2.2.40) then has the same form that Galer-

kin's method expressed in Equation (2.2.35).

2.2.5 Summary

Three common methods for discretizing a continuous

parameter system have been compared. In summary, Gal-

erkin's method bears a result identical to the
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Rayleigh-Ritz method when the latter approach is used

in a minimizing sequence, with a series of comparison

functions in place of admissible functions. In some

instances, the Rayleigh-Ritz method may be considered

as a special case of applying the assumed-mode method

[22]. Moreover, Galerkin's method leads to results

identical to the assumed-mode method, but with differ-

ences in approach.

Given its convenient approach, the assumed-mode

method has been used to develop the equations of motion

of the physical model presented in section 2.1. The

introduction of kinetic energy, potential energy, and

generalized forces into Lagrange's equations may be ex-

pressed in the form

d aT aT av() Qi, i=1,2,- -,N , (2.2.43)dt aqi aqi aqi

which leads to a system of linear, ordinary differen-

tial equations describing the motion of the manipula-

tor. In Equation (2.2.43), T(t) and V(t) are, respec-

tively, kinetic energy and potential energy, Qi repre-

sents generalized forces, and the generalized coordi-

nates are qi(t).

2.3 Mathematical Modeling of The Physical Model Using

the Assumed-Mode Method

The fundamental approach of the assumed-mode

method discussed in section 2.2 is employed to obtain
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the equations of motion of the N-degree-of-freedom sys-

tem of the physical model depicted in Figure 2.2. With

the assumptions given for the proposed model in section

2.1, kinetic energy, T(t), and potential energy, V(t),

can be determined. From the mechanics of materials,

one obtains

as
Mxl = EI

ax

where EI is the flexural rigidity of the beam.

The kinetic energy can be written

1 L
T(t) = pA {v(x,t) }2 dx

2 0

1
+ mo {v(11,t)}2 ,

2

(2.3.1)

(2.3.2)

where y(x,t) is the velocity of the infinitesimal ele-

ment of the beam and m is the payload at the tip of the

beam. The velocity v(x,t) can be approximated in the

form

form

80(t) ay(x,t)
v(x,t) z x + . (2.3.3)

at at

The potential energy, V(t), can be obtained in the

V(t) =
1 L

EI {
a2Y(x,t)

}2
2 0 ax2

(2.3.4)
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X

EI : Flexural rigidity of the beam

: Density of the beam

L Crosssectional area

mo : Tip mass

Figure 2.2 Physical Model



The deflection, y(x,t), is assumed by

N
y(x,t) =i21 Xi(x) qi(t)

=

where Xi are the admissible

geometric conditions

Xi(0) =

since

y(0,t)

for all t.

axi
ax

= 0
X=0

ay(x,t)

ax
= 0

X=0

22

(2.3.5)

functions which satisfy the

(2.3.6)

(2.3.7)

By the substitution of Equations (2.3.5) and

(2.3.6) into Equations (2.3.2) and (2.3.4), kinetic en-

ergy can be written

or

T =
1

[I pAx2 dx + mo L2] {;(t)}2
2 0

+ 2 [{1 pAx Xi(x) dx + moL Xi(L)} ;(t)]
i=1 0

1 N N
2 [( pAx Xi(x)Xj(x)dx

2 1=1 j=1 0

moL xi(L) xj(1)) aim aim] (2.3.8)

1

a0(t)}2 + E bi ai(t)
2 1=1

N N
+ 2 .2 mi., aim aim ,

31=1 .1
(2.3.9)



where

and

form

a =
L

pA x2 dx + mo L2 ,

0
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(2.3.10)

Lb. = pAx Xi(x) dx + mo LXi(L) , (2.3.11)
0

L
mij = pAXi(x)Xj(x) dx + moXi(L) Xj(L) .(2.3.12)

Similarly, potential energy can be modified in the

V(t) =

where

1 N N
2 kij qi(t) qj(t)

2 i=1 j=1

L
kij = EI Xi"(x) Xj"(x) dx .

0

(2.3.13)

(2.3.14)

Substitution of Equations (2.3.9) and (2.3.13) into La-

grange's equation yields the discrete equations of mo-

tion in the form

[m] {4(t)} + [k] {q(t)} = -{b} 1(t) , (2.3.15)

where [m] and [k] are N x N matrices and {b} is the

N x 1 matrix, the components of which are expressed in

Equation (2.3.11). The generalized coordinate matrix,

{q}, is then determined from these equations of motion.

Each admissible function, Xi(x), in Equation

(2.3.5) must be a continuous function of x, and its

first and second derivative with respect to x must be
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continuous since the strain energy expression contains

y"(x,t). The notation (") indicates the second deriva-

tive of the function with respect to x. Even though it

is not necessary that the functions Xi satisfy the na-

tural boundary conditions, it is possible to use com-

parison functions that satisfy both the geometric and

the natural boundary conditions. In this study, the

functions Xi(x) have been selected as the exact modes

of a cantilever beam of the form

Xi(x) = (sinhzi + sinzi)[cos(zix/L) - cosh(zix/L)]

(coshzi + coszi)[sin(zix/L) sinh(zix/L)]

i=1,2,- N , (2.3.16)

where zi are solutions of the characteristic equation

of a cantilever beam with a mass, mo, at the tip, i.e.,

1 + h(coszi sinhzi - sinzi coshzi)

+ coszi coshzi = 0, i=1,2,- -,N , (2.3.17)

and where

mo
h = .

pAL
(2.3.18)

The results of the substitution of Equation

(2.3.16) into Equations (2.3.11), (2.3.12), and

(2.3.14) are presented in Appendix A. The dynamic re-

sponse of the system represented in Equation (2.3.15)

is obtained by letting

bi = 0, i=1,2, - - N (2.3.19)

with the harmonic functions, qi, in the form

{q(t)} {u)i cos(wt-a), i=1,2,- - -,N, (2.3.20)
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where {u}i is a scalar vector. This leads Equation

(2.3.15) into the eigenvalue problem,

([I] wi2[m])(u)i = {0), i=1,2,- - -,N . (2.3.21)

For non-trivial solutions of Equation (2.3.21), it

is necessary to satisfy

det {[k] wi2[m]) = 0 , (2.3.22)

which is termed the characteristic equation. Equation

(2.3.22) yields the eigenvalues or squared natural fre-

quencies, wit, and the corresponding eigenvectors or

natural mode, {u}i. If the eigenvalues are ordered

from the lowest to the highest,

0 < w12 < w22 < - - - < wi2 < wN2 (2.3.23)

then the modal matrix can be written

[U] = [u1 u2 - uN] , (2.3.24)

where ui = {u }1.

The orthogonality property may be expressed as

10,
(114T [m] {t}j =

if i * j

(2.3.25)
Mi, if i = j

and

if i * j
{11}iT [k] {u}j =

10,

(2.3.25)
Ki, if i = j

The ith and jth modes are said to be orthogonal with

respect to the mass and stiffness matrices. This prop-

erty yields an important procedure to transform the

equations of motion in the generalized coordinates into

the description in the principal coordinates. It also

generates the modal mass matrix, [M], and the modal
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stiffness matrix, [K], in the form of a diagonal matrix

by post- and pre-multiplication of the modal matrix [U]

and its transpose matrix to, respectively, the mass ma-

trix, [m], and the stiffness matrix, [k], as follows:

[M] = [U]T[m][U] = diag(M1 M2 - MN) (2.3.26)

and

[K] = [U]T[k][U] = diag(K1 K2 KN) . (2.3.27)

The dynamic response of the equation of motion ex-

pressed by Equation (2.3.15) can be determined by the

normal-mode, using the properties expressed in Equa-

tions (2.3.26) and (2.3.27) by transforming Equation

(2.3.15) in generalized coordinates into principal co-

ordinates. If the principal coordinates have a rela-

tionship in the form

{q(t)} = [U]{g(t)} , (2.3.28)

where {g(t)} are the principal coordinates, the equa-

tions of motion in the principal coordinates can be

represented in the form

[M]{:;(t)} + [K]{g(t)} = {B(t)} , (2.3.29)

where

[M] = [U]T[m][U] = modal mass matrix , (2.3.30)

[K] = [U]T[k][U] = modal stiffness

matrix , (2.3.31)

and

{B} = [U]T{b}V(t) = modal force vector . (2.3.32)



27

Since the modal mass matrix and the modal stiff-

ness matrices are diagonal, Equation (2.3.29) can be

rewritten as N uncoupled equations,

Migi(t) + Kigi(t) = Bi(t), i=1,2,- -,N ,(2.3.33)

where Mi and Ki are given by Equations (2.3.26) and

(2.3.27) and Bi(t) are obtained by

Bi(t) fuliT fbi)d(t) . (2.3.34)

The initial conditions in principal coordinates can

then be determined by

or

and

y(x,0) =
i1

Xi(x) q(0) {Xi}T[U] (g(0)) , (2.3.35)
=

Sr(x,0)
11Xi(x) 4(0) {x0T[u] (1(0)) , (2.3.36)
=

{q(0)} [U]{q(0)} (2.3.37)

{a(0)} = [u]{g(0)} . (2.3.38)

The multiplication of these equations by [U]T [m] leads

to

and

[U]T [m] (q(0)) [U]T [m] [U] {g(0)}

= [M]{g(0)} (2.3.39)

ru,T [m] (am} = CU]T Cm] [U] a(0)}

= [M]a(0)} (2.3.40)



Since the matrices [M] and [K] are diagonal, the

modal initial conditions are given by

gi(0) =

28

{ }iT [m] {q(0)}, i=1,2,- -,N

(2.3.41)

1
(

M_-_)
{t}iT [m] {am}, 1 =1,2,- - -,N

-

(2.3.42)

The use of the Duhamel integral with Equations

(2.3.33), (2.3.41) and (2.3.42) yields the ith modal

response in the form

gilt) = g1(0) cos(w1t) + (--1) g1(0) sin(wit)
w-

where

sult

and

1
+ (

t
B1(t) sinwi(t-r) dr , (2.3.43)

0

by Equation (2.3.23). The final re-

by introducing Equations (2.3.43)

Equation (2.3.5) in the form

M-w-

wi is given

can be obtained

(2.3.28) into

y(x,t) = {X(x)} [U]{g(t)} , (2.3.44)

where

{X} = {X1 X2 XN} (2.3.45)

and

(g} = (g1 g2 goT (2.3.46)

The assumed-mode method, in conjunction with mode-

superposition method, can be used for the response of a

system with a special type of damping called modal

damping. The equations of motion of this system in

generalized coordinates can be expressed in the form
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[m]{4(t)} + [c]{a(t)} + [k]{q(t)}

= {p(t)} , (2.3.47)

where the matrices [m] and [k] are identical to those

in Equation (2.3.15), {p(t)} is the generalized force

matrix, and [c] is the system damping matrix.

If the eigenvectors, {u}i, and the eigenvalues,

w12
, are obtained from the relationships expressed in

Equations (2.3.21) and (2.3.22), and if the system

damping matrix [c] satisfies the condition

{u}iT [c] {11}j fCi,

0, if

if

i

i

* j

j

(2.3.48)

then the type of damping is classified as modal damp-

ing. Therefore, the equation of motion of a system

with the modal damping in principal coordinates can be

written

or

Mi gi(t) + Ci 11(t) + Ki g1(t)

= P1(t), i=1,2,- -

g(t) + 2 w1 a1(t)

1

= P1(t) i=1,2,-
M1

where

Ki = {u}iT [k] {u} ,

Mi = {u}iT [m] {u} ,

N

wi2 g1(t)

N ,

(2.3.49)

(2.3.50)

(2.3.51)

(2.3.52)
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C 11
( ) {u)iT [c} {u}i . (2.3.53)2Mw 2Mw

In a practical sense, the damping matrix can be

approximated in the form of Equation (2.3.48). Further

study of the application of adaptive control laws to a

flexible manipulator for which damping can be approxi

mated in the above form will be invaluable. In this

study, it is assumed that the system damping matrix can

be represented in the form of proportional damping,

termed Rayleigh damping, defined by

[c] = co[m] + c1[k] , (2.3.54)

where co and c1 are constants chosen to produce speci-

fied modal factors for two given modes.

By the introduction of the orthogonality condi-

tions

{u}iT [m] {u}i

and

= M11 ij (2.3.55)

{u}iT [k] {u}i = Ki bij = wi2 Mi bij , (2.3.56)

where oii is the kroneker delta, one obtains

{u }1T[c] {u); = C
= (co + c1wi2) Mi

The comparison of Equation

(2.3.53) yields

Si =
1 co

2
(w cl wi)

1

bij

(2.3.57)

(2.3.57)

with Equation

(2.3.58)
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For the damping factors to be specified for all

modes of interest, the following procedure can be

utilized. The damping matrix in generalized coordi-

nates can be written

[c] = ([0]T)-1 [C] [0]-1 (2.3.59)

From the relationship expressed in Equation (2.3.26),

one obtains

[0]-1 = [M]-1[U]T[m] (2.3.60)

and

([u] -1)-1 = DIO[U][M]-1 (2.3.61)

The substitution of Equations (2.3.60) and (2.3.61)

into Equation (2.3.59) yields

[0] = am][U][m]-1) [C] ([M]-1[U]T[m])

or

N cw
[0] = E (

2i i
) (Em)(10i) (Emhu}i)T

1.1 Doti

(2.3.62)

(2.3.63)

The Equation (2.3.63) can be truncated to a limited

number of the lower-frequency modes as follows:

[c] = Ec(2S1W!) ([m]{1.}0 ([m]{u}i)T . (2.3.64)
i=1 MI -

The Equation (2.3.64) can then be further modified to

provide damping in the modes higher than Nc in the form

[c] = a1[k]

-1Nc c'
+
i

(
wi
-) amllu}i) ([m]{u}i)T , (2.3.65)

=1 .



where

2qical =

and

wNc

wi
CNc(7,--)

wNc
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(2.3.66)

(2.3.67)

Therefore, the solutions for Equations (2.3.49) or

(2.3.50) can be expressed in the form

1
gilt) ( ) Pi(r) exp{-s'iwi(t-r)}

Miwdi 0

x sin[wdi(t-r))dr

+ gi(0) exp{-fiwit} cos{wdit}

,
+ (-

1

--)(gi(0)}
wdi

+ exp{-g-iwit} sin{wdit) , (2.3.68)

where

wdi wi .477717 (2.3.69)

The advantage of this procedure is that the state

variables in Equations (2.3.15) or (2.3.49) can be rep-

resented, respectively, as the modal state variables

are in Equations (2.3.29) or (2.3.49) and the control

laws can be directly applied. The measurement of sys-

tem state variables can be converted either into gener-

alized coordinates or into in principal coordinates

from, respectively, the relationships in Equations

(2.3.5) or Equation (2.3.28). In this study, dynamic

strain gauges are considered as the feedback sensors
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located along the manipulator. In such a case, the

measured state variables can be expressed either in the

form

(q(t)) [X"]-1 {y(t)"}m

in generalized coordinates, or in the form

{g(t)) = [U]-1 [X"]-1 {Y(t)"}m

(2.3.70)

(2.3.71)

in principal coordinates, where [X"]-1 indicates the

inverse of the matrix [X"] and {y(t)}/11 are the values

of the gauge readings at the positions of xm,

m=1,2,- - -,N and time t. The matrix [X"] consists of

[X"] [Xi" X2" - XN]T , (2.3.72)

where

a2XI" =
4

[X1(xi)X2(xi)
ax XN(xi)] (2.3.73)

and where xi are the locations of the dynamic strain

gauges in x coordinates. The following chapter will

include details of the use of this property.
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III. MODEL REFERENCE ADAPTIVE SYSTEM DESIGN

PROBLEM AND GENERAL DISCUSSION

The performance of conventional control schemes is

limited when the parameters of the system under consid-

eration are poorly known, when there are significant

variations in the system parameters, or when the model

is constructed imperfectly. The adaptive control sys-

tem has been developed to overcome such difficulties.

Among the choices of adaptive control systems, the

model reference adaptive system, as modified for appli-

cation to the control of a flexible manipulator, is

discussed in this chapter.

3.1 Model Reference Adaptive System Theory

The adaptive control system is characterized by a

property allowing the system to self-redesign or self-

adjust its system according to changes in enviromental

conditions. Among the variety of adaptive control sys-

tems, the model reference adaptive system implements

self-adjusting adaptations by direct comparisons be-

tween the outputs of the reference model and that of

the adjustable system. In effect, the adaptation mech-

anism adjusts the parameters of the adjustable system
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so that the output differences finally vanish. Figure

3.1 shows a typical representation of the basic model

reference adaptive system.

Changes in environment, unpredictable variations

in parameters, or imperfect modeling causes output er-

rors between the reference model and the adjustable

system. The adaptation mechanism measures these dif-

ferences, adjusting the parameters of the adjustable

system. The main work of the model reference adaptive

system application is to design an adaptation mechanism

with the ability to tune the adjustable system, based

on comparison of the reference model and adjustable

system outputs. The whole system must be stable during

this operation.

The stability of the model reference adaptive sys-

tem can be achieved by the application of various meth-

ods, including local parametric optimization theory,

Lyapunov redesign, or hyperstability and positivity

concepts. In this study, the latter approach has been

used for the design of the model reference adaptive

system. The balance of this chapter is concerned with

mathematical descriptions of the model reference adap-

tive system and its design with reference to hypersta-

bility and positivity concepts. The extension of its

application to the control of a flexible manipulator is
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then developed. For a review and fundamental theoreti-

cal study of the model reference adaptive system, see

Landau [18,19] and Leininger [20].

3.2 Model Reference Adaptive System Representation

Classification methods for model reference adap-

tive systems were introduced by Landau [19]. Among

these classifications, the parallel model reference

adaptive system will be considered since its fundamen-

tal properties can be extended easily to other configu-

rations and various applications. Figure 3.2 indicates

the basic structure of the parallel model reference

adaptive system. To describe the model reference adap-

tive system-in the format of a state-variable descrip-

tion, the reference model can be given by

{is} = [Ar]{r} + [Br]{v}, {r(0)} = fro} , (3.2.1)

where

{r(t)} = the N-dimensional model reference state vec-

tor, and

{v} = the input vector where [Ar] and [Br] are

system matrices, which are, respectively,

constant NxN- and NxM-dimensional matrices.

The reference model is assumed to be stable and com-

pletely controllable [28].

The adjustable system can be represented in the

form
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{g} = [As] {s} + [Bs]{v},{s(0)} = {so}, [As(0)]

= [Aso], [Bs(0)] = [Bso] (3.2.2)

where

{s(t)} = the N-dimensional adjustable system state

vector and

[As] and

[Bs] = time varying matrices which, respectively,

have the identical dimension of [Ar] and

[Br] in Equation (3.2.1).

When the generalized state error vector, {e}, is d -

fined by

{e} = {r} {s} ,

the adaptation mechanisms use the values of {e} to con-

struct the parametric matrices [As] and [Bs]. The

principal objective of the design of the adaptation law

is that the parametric matrices, [As] and [Bs], are

properly adjusted in order that the error vector, {e},

approaches zero for an arbitrary input, {v}. When no

difference in parameters initially exists between the

reference model and the adjustable system, the para-

metric matrices [As] and [Bs] should remain in their

original state. Moreover, the adaptation mechanism

must be capable of memorizing the values of the para-

meters which lead the error vector, {e}, to zero, i.e.,

the adaptation mechanism must contain an integral

(3.2.3)
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component whose values are dependent upon not only

{e(t) at current time, t, but also upon the values of

{e(r)} throughout past time, r, when T < t.

In other words, the fundamental problem in the de-

sign of the reference model adaptive system is formula-

tion of the adaptation mechanism allowing the elimina-

tion of an unknown initial difference at t = to, be-

tween the reference model and the adjustable system pa-

rameters. This condition is represented in the form of

a perfect asymptotic adaptation as follows:

1{e(t)} = ,iim[{r(t)} - {s(t)}] = {0} (3.2.4)

and

mf[Ar] - [AS]} = [0] , (3.2.5)

pm([Br] [Bs]) = [0] . (3.2.6)

Equations (3.2.5) and (3.2.6) can be rewritten

and

.tim[As] = [Ar] (3.2.7)

.iim[Bs] = [Br] (3.2.8)

respectively.

The adaptation law, which contains an integrator

in the adaptation mechanism, can be expressed in the

forms

[As(e,t)] = [R1(e,t,r)]dr + [R2(e,t)]
0

[Aso] (3.2.9)



and

t

[Bs(e,t)] I [S1(e,t,r)]dr + [S2(e,t)]

[B50]
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(3.2.10)

where [R1] and [R2] are N x N matrices and [S1] and

[S2] are N x M matrices. The first term on the right

hand sides of Equations (3.2.9) and (3.2.10) provide

the memory for the adaptation mechanism and the second

term indicates the elements of the adaptation mechanism

which vanish when the error vector, {e}, becomes zero.

Figure 3.3 shows the parallel model reference adaptive

system in state-space representation.

The matrices of the adaptation mechanism, [R1],

[R2], [S1], and [S2], must be determined in order that

the system remain stable throughout entire operations

and that the conditions represented by Equations

(3.2.4), (3.2.5) and (3.2.6) are satisfied. Since the

information necessary to implement these requirements

is limited to the values of {e}, representation of the

system in terms of the error vector {e} is required.

Therefore, the equivalent feedback representation of

the state error system is applicable to this implemen-

tation.

The substraction of Equation (3.2.2) from Equation

(3.2.1) leads to
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{e} - {;} [Ar] {r} - [As] {s}

+ ([Br]-[Bs]) {v}

or

{e} = [Ar] {e} + ([Ar]-[ ]){s}

+ ([Br]-[Bs]){v} .

Equation (3.2.12) is obtained by adding and

ing the term [Ar]{s} on the right-hand side

(3.2.11). Furthermore, the substitution of

(3.2.9) and (3.2.10) into Equation (3.2.12)

43

(3.2.11)

(3.2.12)

substract-

of Equation

Equations

transforms

the description of the model reference adaptive system

into equivalent representation of the system, as fol-

lows:

{e} [Ar]{e} + ([Ar]-[Aso]-[R1]'-[R2]){s}

+ (D3r]-[Bs0]-[S1]'-[S2]){v} ,

where

(3.2.13)

[R1]' = [R1(e,t,r)] dr (3.2.14)
0

and

[SO' = [R1(e,t,r)] dr (3.2.15)
0

Figure 3.4 represents the equivalent feedback rep-

resentation of the state error system of the parallel

model reference adaptive system. The equivalent system

can be divided into two parts, characterized as linear

time-invariant and non-linear time-varying. When the
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e
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FEEDFORWARD BLOCK

f

{v [B (0)]-[Br
FEEDBACK BLOCK

Figure 3.4 Equivalent Feedback Representation
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matrix, [Ar], is predetermined, processing the values

of {e} through the linear compensator enhances assur-

ance of the stability of the linear part. The adapta-

tion mechanism then applies the values of (c }, which

are obtained by the linear compensator, [L], in the re-

lationship

{c} [L]{e} (3.2.16)

rather than the direct application of {e}. The matrix

gain, [L], must be determined, based on the stability

requirements of the system. This process is discussed

in greater detail in the following section.

The equivalent representation of the state error

system can be modified by introducing Equation (3.2.16)

as an element of the linear part, expressed as follows:

{e} = [Ar] {e} + [I] {WO ,

{c} = [L]{e}

and

(3.2.17)

(3.2.18)

{W} = -(W1} = aR1P+[R2]+[Aso]-[Ar]){s}

+ ([S1]' +[S21+[Bso];[Br]){v} , (3.2.19)

where the matrix, {W}, indicates the output of the

feedbackword block in Figure 3.4, in turn representing

the Equations (3.2.17), (3.2.18), and (3.2.19).

In the following section, the method of designing

the adaptation mechanism based upon the use of equiva-

lent representation of the model reference adaptive

system is discussed. Among the various methodological
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options, hyperstability and positivity concepts have

been selected as the underlying design principles.

3.3 Model Reference Adaptive System Design Based on

Hyperstability and Positivity Concepts

The design of the adaptation mechanism of the

model reference adaptive system includes the fundamen-

tal requirement of system stability during operations.

Of the three basic design options, i.e., the local

parametric optimization method, the Lyapunov redesign

method, and hyperstability theory, the hyperstability

approach is the most useful method for the design of

the model reference adaptive system.

The local parametric optimization approach synthe-

sizes adaptive loops by the use of sensitivity func-

tions [30,31]. The method poses difficulties due to

time dependence and non-linearity of the model refer-

ence adaptive system. The Lyapunov redesign approach

is limited because of its difficulties in extending the

adaptation laws for a globally stable model reference

adaptive system. However, a third approach, the hyper-

stability theory introduced by V. M. Popov [31], has

been recognized as a succesful method by which the

model reference adaptive system can incorporate a large

family of adaptation laws and has been adapted for that

purpose in this study.
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In the previous section the model reference adap-

tive system was represented as an equivalent of the

state error system, as expressed in Equations (3.2.17),

(3.2.18), and (3.2.19). Figure 3.5 shows the system

divided into two blocks, a linear time-invariant feed-

forward block and a non-linear, time-varying feedback-

ward block. If the feedback system is globally stable

for all feedback blocks, satisfying the Popov integral

inequality,

tl
P(0,t1) I {W1}T {c} dt > p02

0

for all tl>0 , (3.3.1)

where {c) and {W1) are, respectively, input and output

vectors of the feedback block and p02 is a finite posi-

tive constant, then the feedback system is hyperstable

and the feedfoward block is called a hyperstable block.

For hyperstable conditions, the transfer matrix of

the feedforward block must satisfy the properties of a

positive dynamic system. To solve the stability prob-

lem using the hyperstability approach, the original

problem must first be cast as a stability problem re-

lated to the feedback system. This expression must

have the ability to isolate one part for verification

of the Popov integral inequality of Equation (3.3.1),

while the remainder is used to verify a corresponding

positivity condition assuring the hyperstability of the

entire system [19].
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The system which results, termed a positive dynam-

ic system, may be mathematically defined in the follow-

ing sequence [19,20,31], based on the concept and pro-

perties of positive dynamic systems.

3.3.1 Definition 1

A matrix, [R(w)], of a complex variable, h = a +

ib, is a Hermitian matrix if

[R(h)] [R(R)]T (3.3.2)

where h is the complex conjugate of h.

Some properties of a Hermitian matrix include the

following:

1) [R(h)] is a square matrix and its diagonal

terms are real;

2) The eigenvalues of [R(h)] are always real; and

3) The quadratic form {u}T[R(h)]{U} is always

real, where (u} is any vector of complex com-

ponents.

3.3.2 Definition 2

An N x N matrix, [R(h)], of real rational func-

tions of the complex variable, w, can be defined as

positive real if:

1) All elements of [R(h)] are analytic in

Re[h] > 0;

2) Any purely imaginary pole, ib, of any element

of [R(h)] is a simple pole, and the associated
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residue matrix of [R(h)] is a nonnegative defi-

nite Hermitian; and

3) The matrix, [R(ib)] + [R(-ib)]T, is a positive

semidefinite Hermitian for all real values of

h, which are not poles of any element of

[R(h)].

Alternatively, conditions 2 and 3 may be replaced by

4) The matrix [R(h)] + [R(171)]T is non-negative de-

finite Hermitian in Re[h] >0.

3.3.3 Definition 3

An N x N matrix, [R(h)], of real rational func-

tions is strictly positive real if all elements of

[R(ib)] + [R(-ib)]T are positive definite Hermitian for

all real w. The positivity of a continuous linear

time-invariant system is expressed as

{;} [A](s} + [B](v} (3.3.3)

and

{c) = [F]{s} + [G]{v} , (3.3.4)

where {s} is an N-dimensional state vector, and {v} and

(c} are, respectively, M-dimensional input and output

vectors (see Definition 4).

3.3.4 Definition 4

Equations (3.3.3) and (3.3.4) are positive if the

integral, P(0,t1), can be written in the form
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tl
P(0,t1) fOT (v) dt = [a(s)]r

0

+

Itl

[13(s,v)] dt> p02 for all tl>0 ,(3.3.5)
0

where [fl(s,v)]>0 for all (s)ERN and {v}ECM, and the

functions [a(s)] and [/3(s,v)] are defined for all (s)

and {v}.

In Equations (3.3.3) and (3.3.4), the pair,

([A],[B]), are assumed to be completely controllable

and the pair, ([F],[A]), are completely observable.

The square transfer matrix [T(h)] of the system can

then be written

[T(h)] = [G] + [F] (h[I]-[A])-1 [B] . (3.3.6)

3.3.4.1 Theorem

The positivity properties may be expressed in var-

ious equivalent formulations to provide convenient ap-

plication flexibility. The following theorem repre-

sents some of these equivalent property formulations

for the system expressed in Equations (3.3.3) and

(3.3.4).

1) Equations (3.3.3) and (3.3.4) are positive in

conformity with Definition 2;

2) In Equation (3.3.6), [T(h)] is a positive real

transfer matrix;

3) There exists a symmetric positive definite ma-

trix, [P], a symmetric positive semidefinite
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matrix, [D], and matrices [S] and [R]

that

in order

[P][A] + [A]T[P] = -[D] , (3.3.7)

[B]T[P] + [S]T = [C] (3.3.8)

[G] + [G]T = [R] , (3.3.9)

and

[D] [S]

1

> [0] ; (3.3.10)
[S]T [R]

4) There is the Kalman-Yakubovitch-Popov Lemma, in

which a symmetric positive marix, [P],

trices [K] and [L] exist in order that

and ma-

[P][A] + [A]T[P] = -[L][L]T , (3.3.11)

[B]T[P]

and

+ [K]T[L]T = [F] (3.3.12)

[K]T[K] = [G] + [G]T ; (3.3.13)

5) The Hermitian matrix [Z(-h,h)] = [T(-h)]T

+ [T(h)] is positive semidefinite for all

h = -ib in which det(ib[I] [A]) * 0;

6) Every solution, {s(so,v,t)}, of Equations

(3.3.3) and (3.3.4) verifies the following

equality:

1
{c}T{v)dt = {s(t1))T[P]{s(t1)}

0 2

ti
1

h
2

{s0}T[P]{s0} + I
2

({s}T[Ds)
0

+ 207)T[S]is)+(v)T [R][v))dt , (3.3.14)

and



7) For {s)0)} = {0}, for any input vector func-

tion, {y(t)}, and its corresponding solution,

{s(0,v,t)}, or for the system in Equations

(3.3.3) and (3.3.4), the following inequality

is satisfied:

{c}T{v}dt > 0 .

0
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(3.3.15)

Proposition 3 of the theorem implies proposition 4.

When [G] is [0] in Equation (3.3.4), the following

lemma can be established.

3.3.4.2 Lemma 1

The linear time-invariant system,

{g} = [A]{s} + [B]{v} (3.3.16)

and

{c} = [D]{s} , (3.3.17)

are positive and the transfer matrix,

[T(h)] = [D]T(h[I]-[A])-1 [B] , (3.3.18)

is a positive real transfer matrix if, and only if,

there exists a symmetric positive definite matrix, [P],

and a symmetric positive semidefinite matrix, [D], in

order that

[P][A] + [A]T[p] = -[D] (3.3.19)

and

[B]T[P] [D] . (3.3.20)

An appropriate proposition of the theorem given in

section 3.3.4.1 can be used for the test or for the
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construction of a positive system. Similarily, the

positivity of the case of a linear, time-varying,

multi-variable system given by

{g} = [A(t)]{s} + [B(t)]{v} (3.3.21)

and

{c} = [F(t)]{s} + [G(t)]{v} , (3.3.22)

where (s) is an N-dimensional state vector and (v) and

{c} are, respectively, M-dimensional input and ouput

vectors, can be characterized as given by Definition 5.

3.3.5 Definition 5

The system given in Equations (3.3.21) and

(3.3.22) is positive if the integral, P(0,t1), can be

written

tl
P(0,t1) E {0}T {v} dt =

sNitl
,J0

0

tl
+ [p(s,v)] dt> -p02 for all tl>0 , (3.3.23)

0

where [,Q(s,v)] > 0 for all tl>0 . (3.3.24)

From direct extension of the results of the theo-

rem given in section 3.3.4.1, two sufficient conditions

for the positivity of the system in Equations (3.3.21)

and (3.3.22) are as given in the lemma 2 (section

3.3.5.1).

3.3.5.1 Lemma 2

The system represented by Equations (3.3.21) and

(3.3.22) is positive if there exists an asymmetric
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time-varying positive definite matrix, [P(t)], differ-

ential with respect to t, a symmetric time-varying

semidefinite matrix, [D(t)], and matrices [S(t)] and

[R(T)] in order that

and

OM] + [A(t)]T[P(t)] + [P(t)][A(t)]

-[D(t)] ,

[B(t)]T[P(t)] + [S(t)]T = [C(t)] ,

[G(t)] + [G(t)]T = [R(t)] ,

I [D(t)] [S(t)]
> [0]

[S(t)]T [R(t)] I

(3.3.25)

(3.3.26)

(3.3.27)

(3.3.28)

3.3.5.2 Lemma 3

The system represented by Equations (3.3.21) and

(3.3.22) is positive if every solution, {s(so,v,t)},

satisfies the following equality:

{c}T{v}dt = 1{{
0 2

(t1)}T[P]{s(t1)}

1 1

2
{s0}T[P(t)]{sn} + ({s}T[D(t)]{s}
2 0

+ 2{v}T[S(t)]{s} + {v}T[R][v}) dt , (3.3.29)

with

[D(t)] [S(t)]
[P(t)] >

I

> [0]
[S(t)]T [R(t)]

for all tl>0 . (3.3.30)

The concept of the positive dynamic system is then

applied to the design of the model reference adaptive
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system, with the incorporation of additional hypersta-

bility theory definitions. A feedback system can be

represented both by a feedforward block,

{;} [A] { s} + [B]{v} [A]{s} [B]{w} , (3.3.31)

{c} [F]{s} + [G]{17} = [F]{s} [G]{14} , (3.3.32)

and by a feedbackward block,

{w} {f(c,t,r)}, r<t , (3.3.33)

where {s) is the N-dimensional state vector of the

feedforward block, and {r} and {c} are, respectively,

M-dimensional input and output vectors of the feedfor-

ward block. The pair, ([A],[B]), are completely ob-

servable, and {f(.)} denotes a vector functional. This

system can then be represented as shown in Figure 3.3.

It follows that the. Popov integral inequality can be

written as

tl
P(0,t1) a I (w}T (v} dt > -p02

0

for all tl>0 (3.3.34)

where p02 is the same value as given in Equation

(3.3.1). This inequality is used in the definitions

which follow.

3.3.6 Definition 6

The system given in Equations (3.3.31) and

(3.3.32) is hyperstable if there exists a positive con-

stant, 8 > 0, and a positive constant, 70 > 0, in order

that all solutions of (s[so,t]} satisfy the inequality
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Il{s(t)}11 < O[Il{s0)11 + /0] for all t>0 (3.3.35)

for any feedback block, (w) {f( {c },t,r) }, satisfying

the Popov integral inequality of Equation (3.3.34).

3.3.7 Definition 7

The system given in Equations (3.3.31), (3.3.32),

and (3.3.33) is asymptotically hyperstable if

1) It is hyperstable and

2) lim {s(t)} (0) for a feedback block,
t-*oo

(w) .(f(c,t,r)), which satisfies the Popov in-

tegral inequality of Equation (3.3.34).

3.3.8 Definition 8

The system given in Equations (3.3.31) and

(3.3.32) is asymptotically hyperstable if it is glob-

ally asymptotically stable for all feedback blocks

given in Equation (3.3.33) which satisfy the Popov in-

tegral inequality of Equation (3.3.34).

3.3.9 Definition 9

A block described by the input-output relation,

{w} [0](c} , (3.3.36)

where {w} and (c) are piecewise vector functions de-

fined for t>t0 and [0] is an operator acting on the in-

put {0, is termed hyperstable if it satisfies the

Popov integral inequality of Equation (3.3.34).

Definitions 6 through 9 can be extended to contin-

uous linear, time-varying, feedforward blocks or to
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discrete-time systems. Popov introduced the following

theorems, which can be applied to the design of model

reference adaptive systems.

3.3.9.1 Popov Theorem 1

The necessary and sufficient condition for the hy-

perstability of the feedback system given in Equations

(3.3.31), (3.3.32), and (3.3.33) is that the transfer

matrix,

[T(h)] = [G] + [F](h[I] [A])-1[B] , (3.3.37)

must be a positive real transfer matrix.

3.3.9.2 Popov Theorem 2

The necessary and sufficient condition for the

asymptotic hyperstability of the feedback system given

in Equations (3.3.31), (3.3.32), and (3.3.33) is that

the transfer matrix of Equation (3.3.37) must be a

strictly real transfer matrix.

A linear time-varying feedback block can be writ-

ten,

{s} [A(t)]{s} + [B(t)]{v} (3.3.38)

and

{c} [F(t)] {s} + [G(t)]{v} , (3.3.39)

where [A(t)], [B(t)], [F(t)], and [G(t)] are time-vary-

ing matrices with piecewise continous elements defined

for all t<to.
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3.3.9.3 Popov Theorem 3

The sufficient condition for the hyperstability of

the system given in Equations (3.3.38), (3.3.39),

(3.3.33), and (3.3.34) is that the blocks of Equations

(3.3.38) and (3.3.39) verify one of the positivity lem-

mas given in sections 3.3.5.1 and 3.3.5.2.

The definitions and theorems presented in section

3.3 can be applied to the design of the adaptation

mechanism of a model reference adaptive system. The

parallel model reference adaptive system given in Equa-

tions (3.2.1), (3.2.2), and (3.2.3), with adaptation

law in the form

and

t

[As(c,t)] I [Ri(c,t,r)] dr
0

+ [R2(c,t)] + [Aso] (3.3.40)

t
[Bs(0,t)] = I [S (c,t,r)] dr

0

+ [S2(c,t)] + [Bso] , (3.3.41)

can be represented in the equivalent feedback system as

follows:

and

(;) [Ar](e) + M{n} , (3.3.42)

{c} [D] {e} ,

1

(3.3.43)

tl
= { [R1(c,t,r)]dr + [R2(c,t)]

0
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tl

[Aso] [Ar] ) {s) + { [S1(c,t,r)]dr
0

+ [S2(c,t)] + [Bs0] - [Br] } {v} . (3.3.44)

Determination of the matrices, [D], [R1], [R2], [S1],

and [S2], must provide the following conditions:

(e(t)) = (0) , (3.3.45)

and

[As(c,t)] = [Ar]

im [Bs(c,t)] = [Br] . (3.3.46)

When the Popov integral inequality is applied to the

equivalent feedback system for the model reference

adaptive system expressed in Equations (3.3.42),

(3.3.43), and (3.3.44),

P(0,t1) =

+ [R2(c,t)]

it

tl
I {c}T {
0

+ [A0]

yields the inequality

[R1(c,t,r)] dr
0

} (s) dt

{c}T ( [S1(c,t,r)] dr
0 0

+ [R2(c,t)] + [A0] } {v) dt > -p02 , (3.3.47)

where [A0] = [Aso] [Ar], [Bo] = [Bso] [Br], and p02

have the same properties as given in Equation (3.3.1).

Equation (3.3.47) can then be divided by two inequal-

ities in the forms
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PR(0,t1) = I

+ [R2(c,t)]

tl t
{c}T { [R1(c,t,r)] dr

0 0

+ [A0] ) (s) dt > -pR2 (3.3.48)

and

tl
PSR(C1 ,t1) = I (c)T { I [S1(c,t,r)] dr

0 0

+ [S2(c,t)] + [B0] } {v} dt > -ps2 (3.3.49)

where pR2 and ps 2 are finite positive constants. Fur-

thermore, Equations (3.3.48) and (3.3.50) can each be

split by two corresponding sub-inequalities. Since the

inequalities in Equations (3.3.48) and (3.3.49) take

the same form, the formulation of solutions for any one

of them can also be extended to the others. Therefore,

Equation (3.3.48) can be replaced by the following sub-

inequalities,

and

t1

PR1(0,t1) = I {c}T [R1(c,t,r)] dr
0 0

+ [A0] } (s) dt > -pR12

PR2(0,tl)

(3.3.50)

Itl

{c}T[R2(c,t,r)]{s}dr>-pR22 (3.3.51)
0

where n-R1
2 and n-R2

2 are finite positive constants. The

matrices, [R1] and [R2], which satisfy the inequality

conditions in Equations (3.3.50) and (3.3.51) can be

obtained by the following lemmas.
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3.3.9.4 Lemma 4

The inequality of Equation (3.3.50) is satisfied

[R1(c,t,r)]

[R11(t-r)] {c(0) .i[R12]{s(r)}}-T , (3.3.52)

where

by

[1:111(t-r)]

[R12]

= a positive definite square matrix kernel

whose Laplace transform is a positive

real transfer matrix with a pole at

h = 0,

= a positive definite matrix.

3.3.9.5 Lemma 5

The inequality of Equation (3.3.51) is satisfied

[R2(c,t)]

[R21(t)] fc(t )) [1122]{s(t))P (3.3.53)

where [R21(t)] and [R22(t)] are time-varying positive

semidefinite matrices for all t > 0.

From these lemmas [19], solutions which satisfy

the inequality in Equation (3.3.48) can be found in

Equations (3.3.52) and (3.3.53). Similarily, the

solutions which satisfy the inequality in Equation

(3.3.49) can be written

[Si(c,t,r)]

and

' [S11 (t-r)] {c(r)} S12i(v(TMT

for all t>r (3.3.54)
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[S2(c,t)]

[S21(t)] {c(t)} -S22]{s(t)W , (3.3.55)

where

[S11(t-T)] = a positive definite matrix kernel whose

Laplace transform is a positive real

transfer matrix with a pole at h=0,

[S12] = a positive constant matrix, and

[S21(t)] and

[S22(t) = time-varying positive definite matrices

for all t > 0.

For a special case of integral and proportional

adaptation law, the matrices in Equations (3.3.52)

through (3.3.55) can be modified in the forms

[R11(t-T)] = [R11] > 0, [Sii(t-r)]

= [S11] > 0, for all t>0 ,

[R21(t)] = [R21],[S21(t)] = [S21],

and

(3.3.56)

[R22(t)] = [R22],[S22(t)]

= [S22] for all t>0 . (3.3.57)

The solutions in Equations (3.3.52) through (3.3.57)

can be used for the feedback block, which is the struc-

ture of the adaptation mechanism. The theorem given in

section 3.3.4.1 and the lemma given in section 3.3.4.2

can be applied to the condition that the feedforward

block be a strictly positive transfer matrix. The

adaptation laws, then, can be expressed in the follow-

ing theorem.
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3.3.9.6 Adaptation Laws Theorem

The parallel model reference adaptive system rep-

resented by Equations (3.2.1), (3.2.2), (3.2.3),

(3.2.16), (3.3.40), and (3.3.41) is globally asymptot-

ically stable if

1) [R1(c,t,r)], [R2(c,t)], [S1(c,t,r)], and

[S2(c,t)] are given by Equations (3.3.52) to

(3.3.55) and

2) The transfer matrix

[T(h)] = [D]{h[I] -[Ar]}-1 (3.3.58)

is a strictly positive real matrix.

3.4 Convergence of the Parameters

The paramenter convergence problem is important in

the application of the model reference adaptive system

to the identification problems represented by Equation

(3.3.46). Since the system is asymptotically stable in

the {e} space, the following relations are valid.

.tim({r}-{s}) = ,tim {e(t)} = {0}, lim{g(t)}

= {0} . (3.3.59)

The subtraction of Equation (3.2.2) from (3.2.1), and

the addition and substraction of [Ar] {s}, yields

{g(t)} =[Ar]{e} + {[Ar] [As(c,t)]}{s}

+ {[Br] [Bs(c,t)]}{v} . (3.3.60)
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When t tends to co, the introduction of Equation

(3.3.59) into Equation (3.3.60) gives

{[Ar]-[As(c,t)]){s} + {[Br]-[Bs(c,t)])(v)

= 0 . (3.3.61)

Equation (3.3.59) indicates that the state of the ad-

justable system {s) can be replaced by {r} as t goes to

infinity. Therefore, Equation (3.3.61) is modified in

the form,

{[Ar]-[As(c,t)]}{r} + {[Br]-Ds(c,t)11{v}

= 0 . (3.3.62)

If {r) and {v} are linearly independent vector

functions, Equation (3.3.58) is valid, indicating that

the parameters of the adjustable system asymptotically

converge with the values of the parameters of the ref-

erence model. The functions {r} and {v} are linearly

independent on condition that:

1) the reference model is completely controllable,

2) the components of (v) are linearly independent,

and

3) each component of {v} contains at least

(N + 1)/2 distinct frequencies [19].
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IV. APPLICATION OF MODEL REFERENCE ADAPTIVE CONTROL

SYSTEM TO CONTROL OF A FLEXIBLE MANIPULATOR

The application of the model reference adaptive

system to control of a distributed parameter system is

limited due to the necessity of mathematically modeling

the system under consideration in the form of partial

diferential equations. In particular, analysis of con-

trol system stability is a difficult task. However,

the assumed -mode method discussed in Chapter II approx-

imates the model expressed in the partial differential

equations as discretized ordinary differential equa-

tions. Furthermore, the system model in generalized

coordinates can be expressed in principal coordinates.

These properties make it possible to apply the model

reference adaptive system to the control of such dis-

tributed parameter systems as flexible manipulators.

In this chapter, the design principles of a model ref-

erence adaptive system are modified in order that the

major results developed from typical model reference

adaptive systems can be applied to flexible manipulator

control. Computer simulation of this application and

the results of the simulation are discussed.



4.1 Modified Control Scheme of the Model Reference

Adaptive System

The general representation of the model reference

adaptive system discussed in the previous chapter can

be summarized as follows.

1) The reference model may be expressed as

and

and
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{It} = [Ar]{r} + [Br] fv}, {r(0)}={ro} ; (4.1.1)

2) The parallel adjustable system is:

= [As]{s} + [Bs]{v}, {s(0)}

= {s0},[As(0)].[Aso] [Bs(0)]=[Bso] ; (4.1.2)

3) The state generalized error is:

{e} = {r} - {s} ; (4.1.3)

4) The adaptation mechanism:

{c} = [D] {e) , (4.1.4)

It

[As(c,t)] = [Ri(c,t,r)] dr + [R2(c,t)]

4- [Aso] ? (4.1.5)

It

[Bs(c,t)] = [Si(c,t,r)] dr + [S2(c,t)]
0

+ [Bso] (4.1.6)

where

[111(c,t,r)]

[R11(t-r)] (c(T)} "i[R12]{s(OW , (4.1.7)
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[R2(c,t,r)]

= [R21(t)] {c(t)} 22(t)]{s(t) }.T (4.1.8)

[Si(c,t,r)]

= [S11 (t-r)] {c(r)) -i[S12]{v(TMT , (4.1.9)

[S2(c,t,r)]

= [S21(t)] {c(t )} .i[S22(t)]{v(t)}}-T . (4.1.10)

The matrices in Equations (4.1.7) through (4.1.10)

have the same properties as the correspondinding matri-

ces in Equations (3.3.52) through (3.3.55). If the

system expressed in Equations (4.1.1) and (4.1.2) rep-

resent multi-input, multi-output systems, the design of

the adaptation mechanism becomes more complicated.

This is also true for the case of a mathematical model

in the generalized coordinates of a flexible manipu-

lator. However, if there exists a modal matrix which

can be used to transfer the equations of motion in

principal coordinates, this difficulty can be overcome.

If an orthogonal matrix, [U], exists, then the

state of the adjustable system, {s}, can be transformed

into a new set of states, {su}:

{su(t)} = [0]-1 {s} . (4.1.11)

The adjustable system can be also transformed into

{gu} = [Aus]{su}+[Bus]{

where

(4.1.12)
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[Au,] = [U]-1 [As] [U]

[Bus] = [U]-1 [Bs] . (4.1.13)

The adaptation mechanisms can be constructed by

and

{ell} = [U]-1 (c}

t

[Aus(cu,t)] = [Rul(cu,t,r)] dr [Ru2(cu,t)]

(4.1.14)

0

[Auso] (4.1.15)

t[Bus(cu,t)] = I u u,[S i(c t r)] dr + [Su2 )]
n

[Buso] (4.1.16)

where

[Rul(cu,t,r)] [Rull(t-r)] {cu(r)}

'Ru121{su(rMT

[Ru2(cu, t,r)] = [Ru21(t)]{cu(t))

.gRu22(t)](su(t)W

[Sui(cu, t,T)] = [Sull(t-T)] {cu(T)}

[Su12](v(T) } }T

[Su2(cu, t'T)] [Su21(t)]{cu(t))

aSu22(t )J {v(t)W

[Auso] =

and

1[As(0)][u] ,

(4.1.20)
(4.1.21)

[][Bs(0)] .[Buso] U-1 (4.1.22)

The matrices in Equations (4.1.16) through

(4.1.20) have the same equivalent properties as those

in Equations (4.1.7) through (4.1.10) . For the appli-

cation of the transformed adaptation mechanism in Equa-
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tions (4.1.14) through (4.1.20), it must be verified

that after it is transformed into the original state

system, the adaptation mechanism satisfies the condi-

tions in Equations (4.1.4) to (4.1.10).

From Equation (4.1.13), the adaptation mechanism

can be transformed into the original state system in

the form

[As]' = [U][Aus(cu,t)][U]-1

[Bs]' = [U][Bus(cu,t)] . (4.1.23)

The substitution of Equations (4.1.17) through (4.1.20)

into Equation (4.1.23) and the introduction of Equa-

tions (4.1.21) and (4.1.22) yields

and

t

[As]' = [11.1(cu,t,r)]' dr + [R2(cu,t)]'
0

[Bs]' =

where

and

[Aso]

t

1

[Si(c
u'

t dr + [S2(0,t)]'
0

+ [Bust)]

[Ri(cu,t,r)]' = [U] [Ru11(t-O]tcu(T))

X 'i[Rul2] fsu(T T [u]-1

[R2(cu,t,r)]' = [Run(t)]( (t))

X 'gRu22(t)][su(t)) [u]-1

[Si(cu,t,r)]' = [U] [Sull(t-r)](eu(r))

x [Su12]07(r) } }-T ,

(4.1.24)

4.1.25)

(4.1.26)

(4.1.27)

(4.1.28)



[S2(cu,t,r)]' = [U] [Su21(t)](cu(t))

X .i[Su22 (t)]fv(tmT .

When the property of the transpose of matrices

([A][B])T = [B]T[A]T

and the property of the orthogonal matrix

[U] -1 [u]T
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(4.1.29)

(4.1.30)

(4.1.31)

are applied to Equations (4.1.26) to (4.1.29), one ob-

tains the following relations:

and

[Ri]' =

[R2]' =

[SO' =

[1111]' (cH[1112]' (sW
[R20'{c}i[R22]' (sW
Es11P[oirs12P[vW

[s2]' = Cs20' (cH[S22]' (v)T

where

[Rid]' = [U] [Ruij] [U]-1, i,j=1,2 ,

[SH]' = [U] [Sun.] [U]-1, i=1,2 ,

and

(4.1.32)

(4.1.33)

(4.1.34)

(4.1.35)

(4.1.36)

(4.1.37)

[Si2]' = [Si2], i=1,2 . (4.1.38)

It is obvious that the matrices [Rid]' and [Sid]' in

Equations (4.1.36) to (4.1.38) possess the same proper-

ties as the matrices [Rid] and [Sij] in Equations

(4.1.7) to (4.1.10) since [Ruij] and [Suij] are deter-

mined by the Lemmas 3.3.9.4 and 3.3.9.5 and the matrix,

[U], is orthogonal. This leads to the following lemma.
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4.1.1 Lemma 6

The adaptation mechanisms described by Equations

(4.1.11), (4.1.14) through (4.1.20), and Equation

(4.1.23) are equivalent to the adaptation mechanism in

Equations (4.1.4) to (4.1.10). Therefore, the equiva-

lent properties of the adaptation mechanism can be

characterized by the following theorem.

4.1.2 Theorem

The following conditions of the model reference

adaptive system adaptation mechanism expressed in Equa-

tions (4.1.1) and (4.1.2) are equivalent to each other:

1) The parallel model reference adaptive system

expressed in Equations (4.1.1) through (4.1.6)

is globally asymptotically stable if the adap-

tation mechanisms are given by Equations

(4.1.24) through (4.1.29); and

2) The parallel model reference adaptive system

expressed in Equations (4.1.1) through (4.1.6)

and Equation (4.1.11) is globally stable if the

adaptation mechanisms are given by Equations

(4.1.14) through (4.1.22).

If the orthogonal matrix is identical with the modal

matrix of the system described in Equation (2.3.46),

this theorem can be employed for the control of the

physical model represented in Chapter II. A detailed
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procedure for its application and a computer simulation

are discussed in the following sections.

4.2 Application of the Model Reference Adaptive System

to Control of a Flexible Manipulator

If the mathematical model of a flexible manipula-

tor is described by the assumed-mode method, the equa-

tions of motion in generalized coordinates can be writ-

ten as

[m]{4} + [c]{a} + [k]{q} = {p} , (4.2.1)

where {q} is from the approximation of y(x,t) in the

form

N
y(x,t) =

11 Xi(x)qi(t)
=

(4.2.2)

The principal coordinates are then defined by

{s(t)} = [U]-1{q(t)} (4.2.3)

by the use of eigenpairs corresponding to

([k] - w2[m]){u}i = {0}, i=1,2,- -,N (4.2.4)

The matrix [U] in Equation (4.2.3) is given by

[U] = [{u}1 {u}2 - - - {u}N] . (4.2.5)

Therefore, the equations of motion in principal coordi-

nates can be written as

[M]{(t)} + [C]{g(t)} + [K]{s(t)) = {P} , (4.2.6)

where

[M] [U]-1[m][U] = diag[M1 M2 - - - MN] ,

[C] [U]-1[c][U] = diag[C1 C2 - - CN] ,



74

[K] = [0]-1[k][0] = diag[Ki K2 - - ,

(P} [0]-1 (p) , (4.2.7)

or

Mi si(t) + Ci silt) + Ki silt) = Pi(t),

i=1,2,- -,N . (4.2.8)

Note that the damping matrix, [c], is assumed to be

modal damping as discussed in Chapter II. The system

described in Equation (4.2.8) is seen to consist of N,

independent, ordinary differential equations. The

availability of the expression of the equations of mo-

tion in generalized and in principal coordinates pro-

vides for the application of the adaptation laws of a

model reference adaptive system for a distributed pa-

rameter system.

The reference model, therefore, can be given by

[mr](41.) + [cr] {ar) + [kr] (qr) = (br)(v) (4.2.9)

where [br] {v} = (pr].

Similarly, the adjustable system can be given by

[ms](40 + [cs] {as) + [ks](qs)

= (bs)(v) . (4.2.10)

Equation (4.2.9) can be also represented in the state

system equation by the the form

{rM} = [Ar] (r(t)) + [Br] (v) (4.2.11)

where



and

{r(t)} ({1r(t)}T {arco}T)T

[Ar]
I CO] [I]

I [Ar1] [Ar2]

[[0] [I]

Emr]-1[kr] [mr]-1[cr] I

I [0]
[Br] r°3

Dr13 I I- [mr]-1[13r] ]

Similarly,
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(4.2.12)

(4.2.13)

(4.2.14)

{g(t)) [A ] {s(t)} + [Bs] {v} (4.2.15)

where

and

{s(t)} ((cis(t)}T tasco}T)T

[As] = [o] [I]

[Aso [As2]

I Co] [I]

[ms]-1[ks] [ms]-1[cs]

[0] 1 [ [0]
[Bs]

[Bs1] [ms] -1[bs]

(4.2.16)

(4.2.17)

(4.2.18)

For the construction of the adaptation mechanism,

the state values of both the reference model and the

adjustable system must be measured as feedback informa-

tion. Since the systems are descretized by the assumed

modes, it is difficult to directly measure the values

of the generalized or principal states. The construc-

tion of the sensors along the flexible manipulator arm
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is limited in practical terms by environmental condi-

tions. However, these difficulties can be overcome by

the use of strain gauges, the number of which are the

same as the numer of assumed modes. If the dynamic

strain gauges are placed at N locations along the ma-

nipulator arm with N assumed modes, the gauge readings

can be expressed in the form:

r Yin
j Y2"

X11"
X21"

. .

. .
- YN" - - 411

X12 X1N" ql
X22" X2N" q2

. .

.
XN2" . . xNN" qN

where

Y1 = YI(xI,t)

Xij" = Xj"(xi), I,J = 1,2,- -,N ,

(4.2.19)

(4.2.20)

(4.2.21)

and Xij" indicates the second derivative of XI with re-

spect to x and x1, which are the N-fixed locations of

the dynamic gauges. Therefore, the state of the system

in generalized coordinates can be written

J cli

X11"
q2

"

X211 = .

. .

. .

qN XN1"

form,or in short

xi2"X22,

xN2"

XiN"

x2Nu

. xNN"

-1
r yi"
j Y2"

- YN" m

(q(t)) = [X"]-1{y"}m (4.2.22)

where (y"}m are the gauge readings. Similarly, the de-

rivatives of the state can be represented in the form
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fa(t)) = [x"]-1 dr(t) "} (4.2.23)

where {y(t)}m can be approximated by

AU' Ui(xi,t-At) Ui(xi,t)
h(t) 767

At

1=1,2,- -,N (4.2.24)

if At is sufficiently small and the functions, yi(t),

are continuous.

The adjustable system described by Equation

(4.2.15) in a generalized coordinate state can be

transformed into a principal state system in the form

{sp(t)} =

where

[Usp] =

[Usp]-1 {s}

0[Us

[0]
[]

] [Us]

, (4.2.25)

(4.2.26)

In Equation (4.2.26), the matrix, [Us], is the modal

matrix of the adjustable system equivalent to the ma-

trix, [U], in Equation (4.2.5). The adjustable system

in the principal state system can be written

(gp(t)) = [Asp][sp(t)) + [Bsp]{v} (4.2.27)

where

[Asp] [usp]-1[As][usp]

[0] [I]

[uspl] [usp2]
[NI)] . cusp]-l[Bs] ,

and

(4.2.28)

(4.2.29)
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[uspl] = [Ms] -1[Ks] {[us]-1[ms][u ])-1

x {[us]-1[ks][us]) (4.2.30)

and

[Usp2] [Ms]-1[cs] {[us]-1[ms][u0}-1

x {[U0-1[0s][Us]) . (4.2.31)

The matrices [Uspl] and [Usp2] are diagonal matrices

whose diagonal elements are given by

Uspli = Ksi / Msi ws-2

Usp2i = Csi / Msi = Cspi (4.2.32)

If the generalized state of the adjustable system

is rearranged by

(spy) = (qs1 asl qs2 as2 clsN asN)T (4.2.33)

the equivalent expression of Equation (4.2.27) can be

obtained by the form

s3,
S41

4 ). =

SI,
SJ'-

0
2

wsl
1 0 0

Cspi 0 0

0 0 0 1

0 0 w-s22 esp2

0 1
w 2 r
-sN CspN

)
1T}

T{0
{BsB 2To

(0)
{BsoNT

vi
v2

:

vN

where J = 2xN and I = J-1.

Si,
s2,

s3,
SA,

SI,
SJ,

(4.2.34)



79

Equation (4.2.34) can then be considered as an

N-independent matrix equation in the form

sI, 0 1 si,

sI+1' wsI2 CsI sI+1

{0}

[BsP) I+1T

I = 1,3,5,- -,2(N-1) . (4.2.35)

If Equation (4.2.35) is considered as a system equiva-

lent to Equation (4.1.12), the corresponding adaptive

mechanism can be determined by Equations (4.1.14)

through (4.1.22). These N-subadaptive mechanisms can

then be combined and rearranged according to the ar-

ragement of principal states in Equation (4.2.25), fol-

lowing which the adaptation mechanisms can be trans-

formed back into the system expressed in the general-

ized state. The introduction of the theorem in section

4.1.2 assures that the construction of the model refer-

ence adaptive system described above procedure is hy-

perstable.

The discussion in this section can be applied to

the design of various types of model reference adaptive

systems, particularly for the control of distributed

parameter systems. The dual characteristics of the

model reference adaptive system leads to applications

in the area of system identification. In the following

section, computer simulation of the application of the



80

above argument to the parameter identification problem

of a flexible manipulator is discussed.

4.3 Computer Simulation of the Application of the Model

Reference Adaptive System to the Identification of

a Flexible Manipulator

The dual characteristics of the model reference

adaptive system make it possible to apply its control

scheme both to the control of a system and to the prob-

lem of system identification. The control scheme dis-

cussed previously will be examined in terms of the

problem of system identification, which is a less com-

plex problem [24]. In the case of the identification

problem, the reference model and the adjustable system

are considered, respectively, as the plant to be iden-

tified and the adaptive identifier.

The general mathematical representation of a flex-

ible manipulator obtained by the use of assumed-mode

method can be given by

N
y(x,t)

i1
Xi(x) qj(t)

and

(4.3.1)

[m]{4(t)} + [c]{a(t)} + [k]{q(t)}

{b} V(t) (4.3.2)

In this study, the mode functions, Xi(x), are deter-

mined in the form of Equation (2.3.16) and the elements

of the matrices [m], [k], and {b} are as represented in
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Appendix A. The [c] matrix can be determined by Equa-

tions (2.3.53) and (2.3.48) when damping factors are

once selected.

Equation (2.3.60) can be used for dynamic system

responses. Readings of the dynamic strain gauges are

simulated by Equation (4.2.19), which is transformed

into Equation (4.2.22) for determination of the state

values of the feedback mechanism. If different parame-

ters exist between the reference model and the ad-

justable system, they can be expressed in the forms of

Equations (4.1.4) through (4.1.10). Since Equation

(4.1.1) can be transformed into the equations of motion

in principal coordinates by the introduction of the

modal matrix and the orthogonal matrix [U] in Equation

(4.1.11), the adaptation mechanism can be determined in

the forms of Equations (4.1.15) through (4.1.22). When

the plant is constructed with unknown parameters, which

may be the properties of the structure of the manipula-

tor, the system can be considered as an imperfect

model. On the other hand, if critical parametric vari-

ations exist during operations, the characteristics of

the variations must be identified. In both cases, the

model reference adaptive system can be applied to the

identification of the plant. For simplification of the

computer simulation in this study, the tip mass as the

payload of the manipulator will be considered as the

only possible parameter variation. Parameters and the
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adaptation mechanisms which have been used for the com-

puter simulation are discussed in this section.

Common parameters for both the reference model as

the plant to be identified and the adjustable system as

the adaptive identifier are as follows:

Bending stiffness: EI = 5.67x10-4 N mm2

Arm length: L = 2000 mm

Mass per unit length: pA = 4.0 x 10-5 kg/mm

The payload of the reference model is considered as the

unknown parameter, while the payload of the adjustable

system is the known parameter adjusted by the adapta-

tion mechanism. The goal is to have the parameters of

the adjustable system converge with those of the refer-

ence model. The tip mass of the reference model and

the adjustable system are, respectively, initially 3 x

10-3 kg and 1.5 x 10-3 kg for the simulation. The en-

tire control system is shown in Figure 4.1.

The adaptation mechanisms are constructed accord-

ing to the concept developed in previous sections. The

compensator gain matrix, [L], for the ith mode is

[L] =
L1 L2

i=1,2,- -,N ,

L2 L3
(4.3.3)
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Figure 4.1 Block Diagram of Flexible Manipulator Model Reference
Adaptive Control System



where

ci ki
L1 = do, do > 1,

mi c-

L2 = 1 ,

L3 =
m
c-

d0, do > 1 .
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(4.3.4)

The adaptation mechanism of integral and proportional

laws have been proposed in Equations (3.3.56) and

(3.3.57). For the integral and proportional adaptation

law, the first adaptation block, [Rul], in Equation

(4.1.17) can be determined by the following matrices:

and

[Rull] =
1

-a (a2+;(112) R11,

i=1,2,- -,N (4.3.5)

1 0
[Ru12] =

0 1
R1

i=1,2,- -,N , (4.3.6)

where a, pi, R11 and R12 are positive constants. For

the simplification of the computer simulation, the

value a can be chosen in the form

cula = (4.3.7)
cu2

where cul and cu2 are given by Equation (4.1.14).

Similarly, the adaptation matrices, [Ru2], in

Equation (4.1.18) can be determined in same form as in

Equations (4.3.5) and (4.3.6), only with different

gains:



and

1 -a
[Ru21] = (a2 +4822)

R21,

i=1,2,- -,N

[Ru22] =
{ 0

0

1
R22,

i=1,2,- -,N .

The adaptation blocks, [Sul] and [Su2],
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(4.3.8)

(4.3.9)

in Equations

(4.1.19) and (4.1.20) are simplified as constants if

v(t) is a one dimensional vector in order that they can

be expressed in the form

Sul = Sull X Su12 (4.3.10)

and

Su2 = Su21 X Su22 (4.3.11)

The numerical values of the structure of the adaptation

mechanism used in the simulation program, FLEX, in-

cluded in Appendix B, are given by

do = 2.5 ,

RIAR12#1 0.15 ,

R21R22 /32

and

Sul

Su2

= 0.4 ,

0.15

0.4 . (4.3.12)

The first six mode shapes of the admissible func-

tions given in Equation (2.3.16) are represented in

Figures 4.2 through 4.7. Figures 4.8 to 4.10 show the

deflections of the manipulator at the tip in individual
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cases of the reference model, the adjustable system,

and the initial system without adaptative adjustment,

when different adaptation gains are selected. Figures

4.11 to 4.13 represent the position errors of the ma-

nipulators considered as a rigid body, fixed at the

initial state, and adjusted according to the corre-

sponding adaptation mechanisms. The same conditions

are given for each case, with the exception of the

adaptation gains where numbers of the three admissible

functions were used.

These figures illustrate the convergence of the

adjustable system constructed by the adaptation laws

developed in previous sections with the reference

model. However, comparison of Figures 4.8 to 4.10

shows that the smaller the adaptation gains, the slower

the rate of convergence. This tendency is shown in

Figures 4.14 through 4.16, which represent the conver-

gence of the payload for each case. The remainder of

the figures in this chapter are results obtained with

the adaptation gains given in Equation (4.3.12). Fig-

ure 4.17 shows the base motion, 0(t), given by

0(t) = -rsin ( 1.5 r + t) . (4.3.13)

Deflection differences of the adjustable system and the

initial system are shown in Figure 4.18. While the de-

flection error of the intial system is not changed, the

error of the adjustable system is diminished as time

increases.
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Error vectors filtered through the compensation

matrix, [L], are represented in Figures 4.19 to 4.24:

position error vectors in Figures 4.19 to 4.21 and ve-

locity error vectors in Figures 4.22 to 4.24. Figures

4.19 and 4.22, Figures 4.20 and 4.23, and Figures 4.21

and 4.24, respectively, are the error vectors corre

sponding to the first, second, and third modes. The

fact that the error vectors corresponding to the mode

functions of the higher-frequencies die out faster than

the lower-frequency mode functions, indicates the dim-

inished effectiveness of the higher frequency to the

system error.

The variations of the integral adaptation mecha-

nisms are shown in Figures 4.25 to 4.27. As time in-

creases, the values of the adaptation gains of the in-

tegral blocks become stationary. On the other hand,

the proportional adaptation gains, which are repre-

sented in Figures 4.28 to 4.30, converge to zero as the

adjustable system approaches the reference model.

The convergence of the parameters of the ad-

justable system are shown in Figures 4.31 to 4.36: Bi

and Mi indicate elements of the [B] and [M] matrices of

the dynamic equations of motion in the principal co-

ordinates.
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V. CONCLUSION

The assumed-mode method for the mathematical

modeling of the flexible manipulator has been examined.

The equations of motion in generalized coordinates for

a one-link flexible manipulator have been obtained.

Furthermore, based upon the assumption of Rayleigh

damping factors, the equations of motion for a flexible

manipulator with damping factors can be transformed

into the principal coordinates. This procedure for the

approximation of a flexible manipulator has been

presented as an application of the model reference

adaptive system.

The general concepts underlying the model

reference adaptive system has been reviewed and a

modified control scheme has been developed in order

that mathematical representation obtained by the

assumed-mode method may be utilized. The adaptation

law can be transformed by the introduction of

orthogonal matrix functions, allowing direct use of the

equations of motion in principal coordinates for the

flexible manipulator.

A computer simulation of the identification

problem for a one-link flexible manipulator has been
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developed, in conjunction with adaptation laws that

were determined for the integral and proportional

mechanisms. The simulation results show that the ad-

justable system achieves convergence with the reference

model. As the adaptation gains increased, the speed of

adaptation also increased. The values of the integral

adaptation blocks converged at certain values, while

the proportional blocks died out over time. This indi-

cates that the integral adaptation block memorizes the

gains, which in turn diminishes the parameter errors

between the reference model and the adjustable system.

It can be observed from the simulation results that the

higher-frequency modes are less effective in the con-

trol of adaptive system error than are the lower-

frequency modes.

The use of dynamic strain gauges as sensing

devices for feedback measurement provides is useful for

the control of a flexible manipulator. However, it

should be noted that the number of strain gauges fixed

on the flexible manipulator must be the same as the

number of mode functions utilized in the assumed-mode

method for the generation of the equations of motion.

This allows for ease of handling of the matrix problem.

Payload variations, presented as the tip mass,

have been easily identified by the adaptive identifier

based on the model reference adaptive system. Due to

the dual characteristics of the model reference
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adaptive system, the fundamental concept derived from

this method can be employed for identification of the

reference model based upon a control system with dis-

tributed parameters. Further studies of this topic

should yield a number of variations.

The extension of concepts discussed in this study

to the control of a multi-link flexible manipulator is

suggested. It is recommended that the use of the

digital control units for a flexible manipulator, based

upon the design of a discrete-time model reference

adaptive system, be studied further. For the case of

flexible manipulators with damping factors that cannot

be represented in the form of Rayleigh damping,

applications of the model reference adaptive system

should be subjected to additional study.
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APPENDIX A

Mathematical Representation of a Flexible Manipulator
by the Assumed-Mode Method.

The use of Lagrange's equations of motion incorpo-

rated with the assumed-mode method, with admissible

fuctions given by Equation (2.3.16), yields the equa-

tions of motion of a flexible manipulator in the form

of Equation (4.3.2). Detailed expressions of elements

of the [m], [k], and {p} matrices are represented in

this appendix. Note that the mass per unit length of

the manipulator is assumed as constant for purposes of

simplification. The symbol zi indicates the roots of

Equation (2.3.17). The stiffness property, EI, is also

considered as constant.

A.1 Elements of [m] matrix: mij

A.1.1

mij =

+

or

mij =

where

Case

m0

pA

1), when i * j,

pA Xi(x) Xj(x) dx

Xi(L) Xj(L) ,

Iij + m0 Jij

(A.1.1)

(A.1.2)

Iij = Xi(x) Xj(x) dx

Jij = m0 i(L) Xj(L) . (A.1.3)



By letting

ci = fsinh(zi)+sin(zi))(sinh(zp+sin(zp)
,

c2 = fsinh(zi)+sin(zi)1(cosh(zp+cos(zp)
,

c3 = (cosh(zi)+cos(zi)}(cosh(zj)+cos(zp)
,

04 = (cosh(zi)+cos(zi)Usinh(zp+sin(zp)
,

and

132

05 = 2 / (zi2 + zj2)
, (A.1.4)

one obtains

and

Iij = (L01/2)(all-05 a12 (L02/2){a21-05 a22)

+ (L03/2)(a31-05 a32)

(Lc4/2)fa41-c5 a42) (A.1.4)

Jij = 01 a51 - c2 a52 + 03 a53 04 a54 , (A.1.5)

where

all
sin(zi-zp+sinh(zi-zj)

Z- -Z.1 j
sin(zi+zp+sinh(zi+zi)

u (A.1.6)
zi+zj

a12 12 = zi(cosh(zpsin(zi)+sinh(zi)cos(zp}

+ zjfsinh(zj)cos(zi)

+ cosh(zi)sin(zp) , (A.1.7)

cosh(zrzi)-cos(zrzi)
a21 Zi-Zi

cosh(zi+zj)-cos(zi+zi)
u (A.1.8)zi +zj
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a22

a31

a32

a41

a42

a51

a52

a53

a54

=

+

=

=

+

=

+

+

=

=

=

=

zifsinh(zj)sin(zi)+sinh(zi)sin(zp)

zj{cosh(zpcos(zi)

cosh(zi)cos(zj)} ,

sin(zz.j )-sinh(z-z.)
J

(A.1.9)

(A.1.10)

(A.1.11)

(A.1.12)

(A.1.13)

(A.1.14)

(A.1.15)

(A.1.16)

(A.1.17)

z.-z-j

sin(zi+zj)-sinh(zi+zj)

zi+zj

zi(cosh(zi)sin(zp-sinh(zpcos(zi)}

zj{cosh(zpsin(zi)

sinh(zi)cos(zp} ,

cosh(zi-zp-cos(zi-zj)

Z.-Z-1 J

cosh(zi+zj)-cos(zi+zj)
zi+zj

zi[cosh(zi)cos(zp-cosh(zpcos(zi)}

zj(sinh(zi)sin(zj)

sinh(zpsin(zi)) ,

cos(zi)(cos(zj)-cosh(zp)

cosh(zi)(cos(zp-cosh(zp} ,

cos(zi)(sin(zj)-sinh(zp}

cosh(zi)(sin(zp-sinh(zp) ,

sin(zi){sin(zp-sinh(zp)

sinh(zi){sin(zp-sinh(zp) ,

sin(zi)(cos(zj)-cosh(zj))

sinh(zi){cos(zp-cosh(zp) .



or

A.1.2 Case 2, when i

M11 -- =

= j

pA Xj2(x) dx + mo Xi2(L)

mij = pA Iii + mo Jii

where

Iii =
0

X 2(x) dx
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(A.1.18)

Jii = mo Xi2(L) (A.1.19)

By letting

di = {sinh(zi) + sin(zi)}2 ,

d2 = {sinh(zi) + sin(zi)}{cosh(zi) + cos(zi)}

and

d3 = {cosh(zi) + cos(zi)}2 (A.1.20)

one obtains

Iii = {Ld1 /(4zi)} a61} - (Ld2/zi) a62}

and

{Ld3/(4zi)} a63}

Jii = d1 a71 2 d2 a72 + d3 a73 9

where

a61 = 4zi+sin(2zi)-4sinh(zi)cos(zi)

4cosh(zi)sin(zi)

+ 2sinh(zi)cosh(zi) ,

a62 = {sin(zi) sinh(zi)}2 ,

and

(A.1.21)

(A.1.22)

(A.1.23)

(A.1.24)



a63 = -sin(2zi) - 4cosh(zi)sin(zi)

+ 4sinh(zi)cos(zi)

+ 2sinh(zi)cosh(zi) .

A.2 The Elements of [k] Matrix: kij

A.2.1

kij =

or

k..ij =

where

Case 1,

EI

EI LiLij

when

Xi "( x)

i * j

Xj"(x)dx
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(A.1.25)

(A.2.1)

(A.2.2)

Lij = Xi"(x) Xj"(x) dx . (A2.3)
10

Letting

zi' = (zi/L)2 ,

zj' = (zj/L)2 ,

cl' = zi'zj' cl

c2' = zi'zj' c-
z

c3' = zi'zj' c3

c4' = zi'zj' c4

and

-c6 (zi2-1-z.2)

one obtains

(A.2.4.)

Lij = c1'{(L/2)a11 +c6 a12) c2'{(L/2)a21+c6 a22)

+ c3' {(L/2)a31 +c6a32}

04'[(L/2)a41+c6a42} (A.2.5)

where ci and aij are given by Equations (A.1.3) and

(A.1.7) to (A.1.13).



or

A.2.2 Case 2, when i = j

L
k-ij = EI ( -u(x)}2 dx

kij = El L11

where
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(A.2.6)

LLii = I {Xi "( x) }2 dx . (A.2.7)

Letting

di' = (zi/4)4 d1 ,

d2' = 2 (zi/4)4 d2

d3' = (zi/4)4 d3 ,

and

d4 = L/(4zi)

one obtains

Lii = (Ldi'/d4)a81 + 2d2 'a82 d3'a83
where

and

a81 = 4zi + sin(2zi) + 2sinh(zi)cosh(zi)

+ 4sinh(zi)cos(zi)

+ 4cosh(zi)sin(zi)} ,

a82 = (sin(zi) + sinh(zi)}2 ,

a83 = 2sinh(zi)cosh(zi) - sin(2zi)

+ 4cosh(zi)sin(zi)

4sinh(zi)cos(zi) .

(A.2.10)

(A.2.11)

(A.2.12)



A.3 Elements of {b} Matrix: bi

bi = pA x Xi(x) dx + mo L Xi(L)

or

bi = pA Bi + mo L Xi

where

B- = I x X1(x) dx .

Or
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(A.3.1)

(A.3.2)

bi = pA (L/zi)2 (a91-a92) + mo L Xi(L) (A.3.3)

where

agl = fsinh(zi) + sin(zi)) [(cosh(zi) + cos(zi)}

- zifsinh(zi)-sin(zi)) 2] (A.3.4)

and

a92 = (cosh(zi) + cos(zi)) Usinh(zi) + sin(zi))

- zi{cosh(zi)+cos(zi))]
. (A.3.5)
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APPENDIX B

Computer Simulation Program FLEX

B.1 Algorithm

The fundamental algorithm of the simulation pro-

gram FLEX is as follows:

1) Define the reference model and initial state of

the adjustable system;

2) Calculate the generalized states of the refer-

ence model and the adjustable system and obtain

the error vector;

3) Get filtered error vector;

4) Obtain the adaptive gains of the adaptation

mechanism by the use of the error vector fil-

tered through the compensator;

5) Adjust the adjustable system and define new pa-

rameters of the adjustable system; and

Repeat steps 2 through 5 of the above proce-

dure.
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B.2 Simulation Program FLEX

PROGRAM FLEX
C **************************************************************
C

C Simulation Program for Control of a Flexible Manipulator
C * Mathematical Model by Assumed-Mode Method
C * Control Scheme by Model Reference Adaptive System
C * Real Variables in Double-Precision
C

C **************************************************************

INTEGER RSIZE,PSIZE,ICHK,IGND,IPMT,IPVE,ICON,IPRT,ITF,INTL
REAL*8 RMAS,PMAS,RMASS(8,8),PMASS(8,8),RSTIF(8,8)
REAL*8 PSTIF(8,8),REVAL(8),PEVAL(8),REVEC(8,8),PEVEC(8,8)
REAL*8 AX3(3,3),W(6),WK(6),ZW(18),RMIJ,RKIJ,REIG,RCONS(15)
REAL*8 DX,DT,RT,RX,AX2(15,15),T,X,RTEVC(8,8),PTEVC(8,8)
REAL*8 RSCR1(8,8),RSCR2(8,8),RSCR3(8,8),RSCR4(8,8)
REAL*8 PSCR1(8,8),PSCR2(8,8),PSCR3(8,8),PSCR4(8,8)
REAL*8 RMR( 8), RKR( 8), RBM (8),RSTA(8),RDSTA(8),ERVEC(8)

REAL*8 PMR(8),PKR(8),PBM(8),PSTA(8),PDSTA(8),EDVEC(8)
REAL*8 ERV2(8),PH1(8,8),PH2(8,8),PI1(8),PI2(8),PMINK(8,8)
REAL*8 PHINT(8,8),THT,APNEW(8,8),BPNEW(8),PSTIN(8,8)
REAL*8 PMNEW(8,8),PBI(8),RDFL,PDFL,ACN(4),PFEVC(8,8)
REAL*8 PFEVL( 8), PFMR( 8), PFBM(8),PFSTA(8),PFDFL,RPER,RPFER
REAL*8 RTIVC(8,8),RMRT(8),PLRT(8),PFRT(8),PH,ERV1(8)
REAL*8 SCR,ADEVL(8),ADRM,ADRT(8),ADMAS(8),ADSTIF(8,8)
REAL*8 RFTH,PLTH,PFTH,PERTH,FERTH,GERTH,PFDSTA(8)
REAL*8 ZETA,ALPHA,RMLEN,PIINT(8)

C

C Calculation of Roots of Characteristic Equations.
C

PH = 3.14159265359
ZETA = 0.05
ALPHA = 2.5
RMLEN = 2000.
WRITE(*,*) ' Enter The Tip Mass of Ref. Model.'
READ(*,*) RMAS
WRITE(*,*) ' Eneter The Tip Mass of Int. Model.'
READ(*,*) PMAS
WRITE(*,*) ' ** RMAS & PMAS *4"
WRITE(*,*) RMAS, PMAS
CALL ROOT(RMAS,RMRT)
CALL ROOT(PMAS,PLRT)
WRITE(*,*) ' *** RMRT ***'
WRITE(*,*) (RMRT(I),I=1,8)
WRITE(*,*) ' *** PLRT ***1
WRITE(*,*) (PLRT(I),I=1,8)
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C

C Calculation of the Elements of [m] and [k] matrices.
C

WRITE(*,*) ' Please Enter Adaptation Constant ACN(4)!'
DO 10 ICON=1,4

READ(*,*) ACN(ICON)
10 CONTINUE

WRITE(*,*) (ACN(ICON),ICON=1,4)
RSIZE = 3

PSIZE = 3

CALL MK(RMAS,RMRT,RMASS,RSTIF,RSIZE)
CALL MK(PMAS,PLRT,PMASS,PSTIF,PSIZE)
ICHK = 0
WRITE(*,*) "
WRITE(*,*) ' ** RMASS & PMASS ** '

CALL PRNTM(RMASS,RSIZE)
CALL PRNTM(PMASS,RSIZE)

WRITE(*,*) ' ** RSTIF & PSTIF ** '

CALL PRNTM(RSTIF,RSIZE)
CALL PRNTM(PSTIF,RSIZE)

CALL EIGMT(RSIZE,RMASS,RSTIF,ICHK,REVAL,REVEC)
WRITE(*,*) ' ** REVEC & REVAL **I
CALL PRNTM(REVEC,RSIZE)
CALL PRNTV(REVAL,RSIZE)

ICHK = 1

CALL EIGMT(PSIZE,PMASS,PSTIF,ICHK,PEVAL,PEVEC)
WRITE(*,*) ' ** PEVEC & PEVAL **'

CALL PRNTM(PEVEC,PSIZE)
CALL PRNTV(PEVAL,PSIZE)

CALL CONS(RMRT,REVEC,REVAL,RMASS,RCONS,RSIZE)
CALL CONS(PLRT,PEVEC,PEVAL,PMASS,PCONS,PSIZE)

C

C Initilization fo Time Loop
C DT : Time Interval
C

DO 20 I = 1,PSIZE
DO 30 J = 1,PSIZE

PH1(I,J) = 0.
PMNEW(I,J) = PMASS(I,J)
PFEVC(I,J) = PEVEC(I,J)

30 CONTINUE
PI1(I) = 0.

PFEVL(I) = PEVAL(I)
PFRT(I) = PLRT(I)

20 CONTINUE

CALL BIMT(RSIZE,RMAS,RMRT,RBM)
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CALL BIMT(PSIZE,PMAS,PLRT,PBM)
DO 40 I = 1,PSIZE

PSCR3(I,1) = PBM(I)
PFBM(I) = PBM(I)

40 CONTINUE

CALL INVERS(PMASS,PSCR4,PSIZE)

CALL MULTI(PSCR4,PSTIF,PMINK,PSIZE,PSIZE,PSIZE)
WRITE(*,*) ' ** PMINK ** '

CALL PRNTM(PMINK,PSIZE)
I = 1

CALL MULTI(PSCR4,PSCR3,PSCR2,PSIZE,PSIZE,I)
DO 50 J = 1,PSIZE
PBI(J) = PSCR2(J,1)

50 CONTINUE

WRITE(*,*) ' ** RMASS & RSTIF ** '

CALL PRNTM(RMASS,RSIZE)
CALL PRNTM(RSTIF,RSIZE)
WRITE(*,*) ' ** PMASS & PSTIF **1
CALL PRNTM(PMASS,PSIZE)
CALL PRNTM(PSTIF,PSIZE)
WRITE(*,*) ' ** REVEC & REVAL **'
CALL PRNTM(REVEC,RSIZE)
CALL PRNTV(REVAL,RSIZE)
WRITE(*,*) ' ** PEVEC & PEVAL **'
CALL PRNTM(PEVEC,PSIZE)
CALL PRNTV(PEVAL,PSIZE)
WRITE(*,*) ' ** RBM & PBM **1

CALL PRNTV(RBM,RSIZE)
CALL PRNTV(PBM,PSIZE)
WRITE(*,*) ' ** PBI **'

CALL PRNTV(PBI,RSIZE)
C

C Calculation of [m] & [k] matrices of Reference Model
C

CALL TRANPS(REVEC,RTEVC,RSIZE,RSIZE)
CALL MULTI(RTEVC,RMASS,RSCR1,RSIZE,RSIZE,RSIZE)
CALL MULTI(RSCR1,REVEC,RSCR2,RSIZE,RSIZE,RSIZE)
CALL TRANPS(PEVEC,PTEVC,PSIZE,PSIZE)
CALL MULTI(PTEVC,PMASS,PSCR1,PSIZE,PSIZE,PSIZE)
CALL MULTI(PSCR1,PEVEC,PSCR2,PSIZE,PSIZE,PSIZE)
DO 60 I=1,RSIZE

RMR(I) = RSCR2(I,I)
PFMR(I) = PSCR2(I,I)

60 CONTINUE

WRITE(*,*) ' ** RMR **'

CALL PRNTV(RMR,RSIZE)

CALL INVERS(REVEC,RSCR1,RSIZE)
CALL INVERS(RTEVC,RTIVC,RSIZE)

C

C Configuration of Data Storage Files.
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OPEN(UNIT=1,FILE='MR1.DAT',STATUS=1OLD')
OPEN(UNIT=2,FILE='MR2.DAT',STATUS='OLD')
OPEN(UNIT=3,FILE=IMR3.DAT',STATUS='OLD')

OPEN(UNIT=4,FILE='BM1.DAT',STATUS='OLD')
OPEN(UNIT=5,FILE='BM2.DAT',STATUS=1OLD')
OPEN(UNIT=6,FILE='BM3.DAT',STATUS='OLD')

OPEN(UNIT=7,FILE='DFL.DAT',STATUS='OLD')
OPEN(UNIT=8,FILE='MAS.DAT',STATUS=1OLD9
OPEN(UNIT=9,FILE='DER.DAT',STATUS='OLD')

OPEN(UNIT=10,FILE='PILDAT',STATUS='OLD9
OPEN(UNIT=11,FILE='PI2.DAT',STATUS='OLD')
OPEN(UNIT=12,FILE='PI3.DAT',STATUS='OLD')

OPEN(UNIT=13,FILE='TH1.DAT',STATUS=1OLD')
OPEN(UNIT=14,FILE='TH3.DAT',STATUS=1OLD9

OPEN(UNIT=15,FILE=1EV1.DAT',STATUS='OLD9
OPEN(UNIT=16,FILE='EV2.DAT',STATUS='OLD')

T = 0.

WRITE(*,*) ' ENTER DT.'
READ(*,*) DT
WRITE(*,*) ' ENTER FINAL INTERATION TIME, ITF.'
WRITE(*,*) ' ITF = (Final Time) / DT.'
READ(*,*) ITF

WRITE(*,*) 'ENTER INTERVAL OF DATA SAVING, INTL.'
READ(*,*) INTL

C CCCCCCCCCCCCCCCCCCCCCC
C CCCCC Time Loop CCCC

CCCCCCCCCCCCCCCCCCCCCC

DO 300 IGND = 1,ITF
IPRT = IPRT + 1
T = T + DT

IF (IPRT.NE.INTL) GOTO 70
WRITE(*,*)

WRITE(*,*) '

*****************************************,
** AT TIME =',T,' ** '

WRITE(*,*) ' '

C

C Calculation of [m] and [k] Matrices of Adjustable System
C

70 CALL TRANPS(PEVEC,PTEVC,PSIZE,PSIZE)
CALL MULTI(PTEVC,PMNEW,PSCR1,PSIZE,PSIZE,PSIZE)
CALL MULTI(PSCR1,PEVEC,PSCR2,PSIZE,PSIZE,PSIZE)
CALL MULTI(PTEVC,PSTIF,PSCR3,PSIZE,PSIZE,PSIZE)
CALL MULTI(PSCR3,PEVEC,PSCR4,PSIZE,PSIZE,PSIZE)
CALL INVERS(PEVEC,PSCR1,PSIZE)
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DO 80 I=1,RSIZE

PMR(I) = PSCR2(I,I)
PKR(I) = PSCR4(I,I)

80 CONTINUE

DO 90 IV = 1,3

WRITE(IV,*) T, RMR(IV),PMR(IV)
90 CONTINUE

WRITE(*,*) ' ** PMR **'
CALL PRNTV(PMR,PSIZE)
WRITE(*,*) ' ** RKR & PKR **-1
CALL PRNTV(RKR,RSIZE)
CALL PRNTV(PKR,PSIZE)
WRITE(*,*) ' ** PEVAL **'
CALL PRNTV(PEVAL,PSIZE)

C

C Calculation of Error Vector
C

CALL DST(RSIZE,RBM,RMR,RSTA,RDSTA,REVEC,REVAL,T)
CALL DST(PSIZE,PBM,PMR,PSTA,PDSTA,PEVEC,PEVAL,T)
CALL DST(PSIZE,PFBM,PFMR,PFSTA,PFDSTA,PFEVC,PFEVL,T)
WRITE(*,*) ' ** RSTA & RDSTA **'

CALL PRNTV(RSTA,RSIZE)
CALL PRNTV(RDSTA,RSIZE)

WRITE(*,*) ' ** PSTA & PDSTA **'
CALL PRNTV(PSTA,PSIZE)
CALL PRNTV(PDSTA,PSIZE)

C

C Calculation of Deflections at Tip
C

IF (IPRT.NE.INTL) GOTO 100
CALL FCDFL(RSIZE,RMRT,RDFL,RMLEN,RSTA)
CALL FCDFL(PSIZE,PLRT,PDFL,RMLEN,PSTA)
CALL FCDFL(PSIZE,PFRT,PFDFL,RMLEN,PFSTA)
WRITE(*,*) ' ++++ RDFL, PDFL & PFDFL ++++'
WRITE(*,*) RDFL,PDFL,PFDFL
RPER = RDFL PDFL
RPFER = RDFL PFDFL
WRITE(*,*) ' ',RPER,RPFER
WRITE(7,*) RDFL,PDFL,PFDFL
WRITE(9,*) T,RPER,RPFER

100 DO 110 IER = 1,RSIZE
RSCR2(IER,1) = RSTA(IER)
RSCR3(IER,1) = RDSTA(IER)
PSCR2(IER,1) = PSTA(IER)
PSCR3(IER,1) = PDSTA(IER)

110 CONTINUE
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C

C ETA-ERROR = PSCR3
C ETA-ERROR' = PSCR4
C PETA-STATE = RSCR3
C

IET = 1

CALL MULTI(RSCR1,RSCR5,RSCR4,RSIZE,RSIZE,IET)
CALL MULTI(RSCR1,RSCR2,RSCR5,RSIZE,RSIZE,IET)
CALL MULTI(PSCR1,PSCR3,PSCR4,PSIZE,PSIZE,IET)
CALL MULTI(PSCR1,PSCR2,PSCR5,PSIZE,PSIZE,IET)

WRITE(*,*) ' ** ERVEC & EDVEC **'
CALL PRNTV(ERVEC,PSIZE)
CALL PRNTV(EDVEC,PSIZE)

C

C V = [D](e), (V1) = [M:-1]*(e1) - (e2)
C (V2) (el) (e2)
C Del[A] = Int[Phl] + [Ph2]
C [Phi] = [Fa2] {V2)([Gal](Qp1):Tranps)
C [Ph2] = [Fa21](V2)([Gal'](Qp1):Tranps)
C ANEW = Del[A] + [Mp:-1]*[Kp]
C Del(B) = Int[Pil] + [Pi2]
C [Pil] = [Fb2](V2)Gb*THETAH(t)
C [Pi2] = [FID2'](V2)Gb'*THETA"(t)
C BNEW = Del(B) + [Mp:-1]*(Bp)
C

DO 120 IV = 1,RSIZE

ERV1(IV) = (2*ZETA + ALPHA/(2*ZETA)) * REVAL(IV)
* (RSCR2(IV,1)-PSCR2(IV,1))
+ RSCR3(IV,1) PSCR3(IV,1)

ERV2(IV) = RSCR2(IV,1) PSCR2(IV,1)
+ (ALPHA/(2*ZETA*REVAL(IV)))
* (RSCR3(IV,1) PSCR3(IV,1))

120 CONTINUE

WRITE(*,*) ' ** ERV2 **'

CALL PRNTV(ERV2,PSIZE)

WRITE(15,*) ERV1(1),ERV1(2),ERV1(3)
WRITE(16,*) ERV2(1),ERV2(2),ERV2(3)

C

C Qp1 = PSTA
C IF Fa2 = Gal = I, Fa2' = Gal' = I
C

C PH1 = (V2)*(Qp1:Tranps)
C (V2) = ERV2
C

CALL THETA(T,THT)
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RFTH = THT + (RDFL/RMLEN)
PLTH = THT + (PDFL/RMLEN)
PFTH = THT + (PFDFL/RMLEN)
PERTH = RFTH PLTH
FERTH = RFTH - PFTH
GERTH = RFTH - THT

WRITE(13,*) T,THT

WRITE(14,*) PERTH,FERTH,GERTH

DO 130 IV = 1,PSIZE

PHINT(IV,IV) = ACN(1) * ERV2(IV)

* PSCR2(IV,1)
WRITE(*,*) '** PHINT(',IV,JV,1)=1,PHINT(IV,JV)

PH1(IV,IV) = PH1(IV,IV) + DT*PHINT(IV,IV)
WRITE(*,*) 1** PH1(',IV,JV,')=',PH1(IV,JV)

PH2(IV,IV) = ACN(2) * ERV2(IV) * PSCR2(IV,1)
WRITE(*,*) '** PH2(',IV,JV,')=',PH2(IV,JV)

DO 140 JV = 1,PSIZE

IF (IV.EQ.JV) THEN

RSCR4(IV,JV) = PHINT(IV,JV)*DT + PH2(IV,JV)
ELSE

RSCR4(IV,JV) = 0.
ENDIF

140 CONTINUE

WRITE(*,*) 'ERV2(IV) =',ERV2(IV)
PIINT(IV) = ACN(3) * ERV2(IV) * THT * DT
PI1(IV) = PIINT(IV) + PI1(IV)

WRITE(*,*) '** PI1(',IV,1)=1,PI1(IV)
PI2(IV) = ACN(4)*ERV2(IV) * THT
WRITE(*,*) '** PI2(1,IV,')=1,PI2(IV)

PSCR3(IV,1) = PI1(IV) + PI2(IV)
130 CONTINUE

DO 150 IV = 10,12
JV = IV - 9

WRITE(IV,*) T,PI1(JV),PI2(JV)
150 CONTINUE

DO 160 IV = 1,PSIZE

PBI(IV) = PFBM(IV) + PSCR3(IV,1)
160 CONTINUE

CALL FINDM(PSIZE,PLRT,P8I,ADRM)

CALL ROOT(ADRM,PLRT)

IF (IPRT.NE.INTL) GOTO 170
WRITE(8,*) RMAS, ADRM

170 CALL MK(ADRM,PLRT,PMNEW,PSTIF,PSIZE)
CALL BIMT(PSIZE,ADRM,PLRT,PBM)
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DO 180 IV = 1,PSIZE
PI1(IV) = PBM(IV) - PFBM(IV)

180 CONTINUE

DO 190 IV = 4,6
JV = IV 3

WRITE(IV,*) T,RBM(JV),PBM(JV)
190 CONTINUE

IF (IPRT.NE.INTL) GOTO 200
WRITE(*,*) ' *** ADRM =',ADRM, ' ***'

WRITE(*,*) ' *=*=* PMNEW *=*=*'
CALL PRNTM(PMNEW,PSIZE)

WRITE(*,*) ' ** RBM *44'

CALL PRNTV(RBM,RSIZE)
WRITE(*,*) ' *=*=* PBM *=*=*'

CALL PRNTV(PBM,PSIZE)
IPRT = 0

200 ICHK = 1

CALL EIGMT(PSIZE,PMNEW,PSTIF,ICHK,PEVAL,PEVEC)
WRITE(*,*) ' *** PEVEC & PEVAL ***'

CALL PRNTM(PEVEC,PSIZE)
CALL PRNTV(PEVAL,PSIZE)

300 CONTINUE

ENDFILE 1
CLOSE(1)
ENDFILE 2
CLOSE(2)
ENDFILE 3
CLOSE(3)

ENDFILE 4
CLOSE(4)
ENDFILE 5
CLOSE(5)
ENDFILE 6
CLOSE(6)
ENDFILE 7
CLOSE(7)
ENDFILE 8
CLOSE(8)
ENDFILE 9
CLOSE(9)
ENDFILE 10
CLOSE(10)
ENDFILE 11

CLOSE(11)
ENDFILE 12

CLOSE(12)

ENDFILE 13
CLOSE(13)
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ENDFILE 14
CLOSE(14)

ENDFILE 15
CLOSE(15)

ENDFILE 16
CLOSE(16)

STOP
END

SUBROUTINE MK(RMK,MKRT,TMASS,TSTIF,IDIM)
C

C Calculation of Components of [m] & [k] Matrices
C Input : RMK(mass), MKRT, IDIM(dim)
C Output: TMASS = [m], TSTIF = [k]
C

INTEGER IDIM

REAL*8 MKRT(8),TMASS(8,8), TSTIF(8,8),RMM,RKK,RMK

DO 500 II=1,IDIM
DO 510 JJ=1,IDIM

IF (II.EQ.JJ) THEN
CALL MII(RMK,MKRT,RMM,II)
CALL KII(MKRT,RKK,II)

ELSE

CALL MIJ(RMK,MKRT,RMM,II,JJ)
CALL KIJ(MKRT,RKK,II,JJ)

ENDIF

TMASS(II,JJ) = RMM
TSTIF(II,JJ) = RKK

510 CONTINUE
500 CONTINUE

RETURN
END

SUBROUTINE EIGMT(IESZ,EMASS,ESTIF,ICH,EIGVAL,EIGVEC)
C

C Calculation of Eigen Values and Vectors.
C Input : IESZ(dim),EMASS,ESTIF,ICH
C Output: EIGVEC,EIGVAL
C

INTEGER IESZ,IA,IZ,N,IJOB,ICH,IM,IER,ISW
REAL*8 EMASS(8,8),ESTIF(8,8),AX1(8,8),AX2(8,8)
REAL*8 AXR(3,3),WR(6),WKR(6),ZWR(18)
REAL*8 AXP(3,3),WP(6),WKP(6),ZWP(18)
REAL*8 EIGVAL(8),EIGVEC(8,8),REIG,OCHK,SML



148

IA = IESZ
IZ = IESZ
N = IESZ
IJOB = 1

WRITE(*,*) ' EMASS =',((EMASS(IJI,JIJ),IJI=1,IESZ),
JIJ=1,IESZ)

CALL INVERS(EMASS,AX1,IESZ)
CALL MULTI(AX1,ESTIF,AX2,IESZ,IESZ,IESZ)

C

C Call Library (IMSL: "EIGRF")
C

DO 530 I = 1,IESZ
DO 520 J = 1,IESZ

IF (ICH.EQ.0) THEN
AXR(I,J) = AX2(I,J)

ELSE

AXP(I,J) = AX2(I,J)
ENDIF

520 CONTINUE
530 CONTINUE

IF (ICH.EQ.0) THEN

CALL EIGRF(AXR,N,IA,IJOB,WR,ZWR,IZ,WKR,IER)
ELSE

CALL EIGRF(AXP,N,IA,IJOB,WP,ZWP,IZ,WKP,IER)
ENDIF

IM = 1

DO 540 IK = 1,IESZ
IJ = IK*2
II = IJ-1

IF(ICH.EQ.0) THEN
REIG = DABS(WR(II))

ELSE

REIG = DABS(WP(II))
ENDIF

EIGVAL(IM) = DSQRT(REIG)
IM = IM + 1

540 CONTINUE

IMP = 0
DO 560 IL = 1,IESZ
DO 550 IM = 1,IESZ

IJ = 2*(IM+IMP)
II = IJ-1

IF (ICH.EQ.0) THEN
EIGVEC(IM,IL) = ZWR(II)

ELSE

EIGVEC(IM,IL) = ZWP(II)
ENDIF

550 CONTINUE
IMP = IMP + IESZ
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560 CONTINUE

IM = IESZ 1

DO 570 II = 1,IM
OCHK = EIGVAL(II)
ISW = II

DO 580 IJ = II+1,IESZ
SML = EIGVAL(IJ)

IF (OCHK.LE.SML) GOTO 580
ISW = IJ

OCHK = EIGVAL(ISW)
580 CONTINUE

IF(ISW.EQ.II) GOTO 570
EIGVAL(ISW) = EIGVAL(II)
EIGVAL(II) = OCHK
DO 590 IJ = 1, IESZ

OCHK = EIGVEC(IJ,II)

EIGVEC(IJ,II) = EIGVEC(IJ,ISW)
EIGVEC(IJ,ISW) = OCHK

590 CONTINUE
570 CONTINUE

RETURN
END

SUBROUTINE BIMT(IBDM,RMBI,BIRT,BMT)
C

C Calculation of [b] Matrix.
C

INTEGER IBDM

REAL*8 BMT(8),BIRT(8),SH,SN,CH,CN,A11,Al2,A21,A22,A1
REAL*8 RLEN, RHOA,AA,AB,RMBI,ZI

RLEN = 2000.

RHOA = (80.0D-3) / RLEN

DO 595 lB = 1,IBDM
ZI = BIRT(IB)
SH = DSINH(ZI)
SN = DSIN(ZI)

CH = DCOSH(ZI)
CN = DCOS(ZI)
Al = RHOA * (RLEN/ZI) * (RLEN/ZI)

All = SH + SN
Al2 = CH + CN - ZI * (SH-SN) - 2.
A21 = CH + CN
A22 = SH + SN ZI * (CH+CN)
AA = Al * (All*Al2 - A21*A22)
AB = RMBI * RLEN * (A11*(CN-SH) A21*(SN-SH))
BMT(IB) = AA + AB

595 CONTINUE



150

RETURN
END

SUBROUTINE FINDM(FNSIZE,FNRT,FNBI,FNRM)
C

C Caculation of Parameters Adjusted.
Input : FNSIZE(DIMENSION),FNRT(Zi)

C Output: FNRM(MASS)
C

INTEGER FNSIZE

REAL*8 FNRT(8),FSH,FSN,FCH,FCN,B11,B12,821,822,81
REAL*8 FLEN, RHOA,FAA,FAB,FNRM,FZI,FNBI(8),FNWRM

FLEN = 2000.

RHOA = (80.0D-3) / FLEN
FNRM = 0.
DO 600 IB = 1,FNSIZE

FZI = FNRT(IB)
FSH = DSINH(FZI)
FSN = DSIN(FZI)

FCH = DCOSH(FZI)
FCN = DCOS(FZI)
B1 = RHOA * (FLEN/FZI) * (FLEN/FZI)
B11 = FSH + FSN
B12 = FCH + FCN FZI * (FSH-FSN) - 2.
B21 = FCH + FCN
B22 = FSH + FSN FZI * (FCH+FCN)
FAA = B1 * (B11*B12 B21*622)
FAB = FLEN * (811*(FCN-FSH) 821*(FSN-FSH))
FNWRM = ((FNBI(IB)-FAA) / FAB)
FNRM = FNWRM + FNRM

600 CONTINUE

FNRM = FNRM / FNSIZE
RETURN
END

SUBROUTINE DST(DSIZE,DBI,DMI,DSTA,DDSTA,DVEC,DVAL,TD)
C

C Calculation of Matural Coordinates, DSTA & DDSTA with
C Rayleigh Damping Factors.
C

C Input : DSIZE(Dim), DBI(Bi Matrix), DMI(Mi Matrix),
C DVEC(Modal Matrix), DVAL(Eigenvalues)
C Output: DSTA(Position), DDSTA(Velocity)
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INTEGER DSIZE,ID
REAL*8 TD,DVAL(8),DVEC(8,8),DBI(8),DMI(8),DSTA(8)
REAL*8 DDSTA(8),DAA,DAB,DAC,DA1,DA2,DA3,DB1,DB2
REAL*8 DC1,DC2,DC3,DC4,DC5,DDB1,DDB2,DDA1,DDA2
REAL*8 DW,DZW,DZWT,ARG,DZETA,DPHI

DPHI = 3.14159265359
DZETA = 0.05

DO 605 ID = 1,DSIZE
ARG = 1 - DZETA*DZETA
DW = DVAL(ID) *DSQRT(ARG)
DZW = DZETA * DVAL(ID)
DB1 = 1 + DW
DB2 = 1 DW
DZWT = DZW * TD
DA1 = 1.5 * DPHI + TD
DA2 = 1.5 * DPHI DW*TD
DA3 = 1.5 * DPHI + DW*TD
DC1 = DEXP(-DZWT)
DC2 = DB1 /DZW

DC3 = DB2/DZW
DC4 = 1/DC2
DC5 = 1/DC3

DAC = DBI(ID) *DPHI /(DMI(ID) *DW)
DAA = (DC3*DC3/(2*DB2))*DC1*(DC1*(DC5*DCOS(DA1)

+ DSIN(DA1)) - (DC5*DCOS(DA3) + DSIN(DA3)))
DAB = (DC2*DC2/(2*DB1))*DC1*(DC1*(DC4*DCOS(DA1)

+ DSIN(DA1)) - (DC4*DCOS(DA2) + DSIN(DA2)))
DSTA(ID) = DAC * (DAA-DAB)
DDA1 = DC1*(-2*DZW*(DC5*DCOS(DA1) + DSIN(DA1))

+ (-DC5*DSIN(DA1) + DCOS(DA3)))
DDA2 = DZW*(DC5*DCOS(DA3) + DSIN(DA3)) +

DC5*DW*DSIN(DA3) - DW*DCOS(DA3)
DDA = (DC3*DC3/(2*DB2)) * DC1 * (DDA1+DDA2)
DDB1 = DC1*(-2*DZW*(DC4*DCOS(DA1)+DSIN(DA1))

- DC4*DSIN(DA1) + DCOS(DA1))
DDB2 = DZW*(DC4*DCOS(DA2) + DSIN(DA2)

- DC4*DW*DSIN(DA2) + DW*DCOS(DA2))
DDB = (DC2*DC2/(2*DB1)) * DC1 * (DDB1+DDB2)
DDSTA(ID) = DAC * (DDA-DDB)

605 CONTINUE

RETURN
END
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SUBROUTINE STAD(ISTA,ISDM,EBI,MRE,STA,EVEC,EVAL,ET)
C

C Calculation of Natural Coordinates, STA (if ISTA=0)
C or its Derivatives (if ISTA=1), without Damping.
C Input : ISTA(check), ISDM(dim),EBI,MRE,EVEC,EVAL
C Output: STA
C

INTEGER ISTA,ISDM,IEE

REAL*8 EBI(8),MRE(8),STA(8),ET,EA1,EA2,EA3
REAL*8 EVAL(8),EVEC(8,8),SSCR1(8,8),SSCR2(8,8)

C

C SSCR1i = (PHI*Bi)*SIN(1.5PHI+T)*COS(Wi*T) / (Mr*Wi*Wi)
C

PHI = 3.1415927
DO 610 IE = 1,ISDM

EA1 = (PHI / (MRE(IE)*EVAL(IE)*EVAL(IE))) * EBI(IE)
EA2 = 1.5*PHI + ET
EA3 = EVAL(IE)*ET
IF (ISTA.EQ.0) THEN
SSCR1(IE,1) = EA1*DSIN(EA2)*(1-DCOS(EA3))

ELSE

SSCR1(IE,1) = EA1 * (DCOS(EA2)*(1-DCOS(EA3))
& EVAL(IE)*DSIN(EA2) * DSIN(EA3))

ENDIF
610 CONTINUE

C

C CALCULATE THE VECTOR [PHI]*(ETA)
C

IEE 1

CALL MULTI(EVEC,SSCR1,SSCR2,ISDM,ISDM,IEE)
DO 615 IE = 1,ISDM
STA(IE) = SSCR2(IE,1)

615 CONTINUE
RETURN
END

SUBROUTINE FCDFL(IFDM,FDRT,FDFL,XF,FETA)
C

C Calculation of Deflection of Fexible Body, FDFL.
C XF = x (POSITION)
C - FETA = [PHI]*(ETA) AT TIME t (=ET) IN SUBROUTINE "ETAD".
C

INTEGER IFDM,IFI

REAL*8 FDRT(8),FDFL,XF,FSCR(8,8),FETA(8),XFD,FZN
FDFL = 0.
DO 620 IFI = 1,IFDM

FZN = FDRT(IFI)
CALL XMODE(FZN,XF,XFD)
FDFL = FDFL + XFD*FETA(IFI)
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620 CONTINUE
RETURN
END

SUBROUTINE XMODE(ZN,XLEN,XMOD)
C

C Calculation of Mode Function.
C

REAL*8 ZN,ZLEN,XLEN,RLEN,A1,A2,A3,A4,XMOD
RLEN = 2000.
ZLEN = ZN*XLEN / RLEN

Al = DSINH(ZN) + DSIN(ZN)
A2 DCOSH(ZN) + DCOS(ZN)
A3 = DCOS(ZLEN) DCOSH(ZLEN)
A4 = DSIN(ZLEN) - DSINH(ZLEN)

XMOD = Al * A3 - A2 * A4
RETURN
END

SUBROUTINE CONS(CNRT,EIGVEC,EIGVAL,RMASS,RCONS,ICDM)
C

C Calculation of Coefficients Vectors "RCONS(SIZE1)"
C with Non-Zero Initial Conditions.
C

INTEGER ICDM

REAL*8 CNRT(8),EIGVEC(8,8),EIGVAL(8),RMASS(8,8)
REAL*8 RCONS(8),ATL(8,8),BTL(8,8),RMC,A1,A2,A3,A4,A5
REAL*8 RS1(8,8),RS2(8,8),RS3(8,8),RMRC(8),RLEN
REAL*8 RHOA,ZI
RMC = 12.0D-3
RLEN = 2000.
VI = 1000.

RHOA = (80.0D-3) / RLEN
DO 625 IC = 1,ICDM

ZI = CNRT(IC)
Al = DSINH(ZI) + DSIN(ZI)
A2 = DCOSH(ZI) + DCOS(ZI)
A3 = DSIN(ZI) DSINH(ZI)
A4 = DCOS(ZI) + DCOSH(ZI) 2.0
A5 = RLEN / ZI
ATL(IC,1) = A5*(A1 *A3+A2*A4)
BTL(IC,1) = A1*(DCOS(ZI)-DCOSH(ZI))

-A2*(DSIN(ZI)-DSINH(ZI))
625 CONTINUE

CALL TRANPS(EIGVEC,RS1,ICDM,ICDM)

CALL MULTI(RS1,RMASS,RS2,ICDM,ICDM,ICDM)

CALL MULTI(RS2,EIGVEC,RS3,ICDM,ICDM,ICDM)
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DO 630 IC = 1,ICDM
RMRC(IC) = RS3(IC,IC)

630 CONTINUE

L = 1

CALL MULTI(RS1,ATL,RS2,ICDM,ICDM,L)
CALL MULTI(RS1,BTL,RS3,ICDM,ICDM,L)

DO 640 IC = 1,ICDM
WRITE(*,*) ' RMRC(',IC,')= ',RMRC(IC)
IF (RMRC(IC).EQ.0.) GOTO 650
RCONS(IC) = (RHOA*RS2(IC,1)+RMC*RS3(IC,1))*VI

(RMRC(IC)*EIGVAL(IC))
GOTO 660

650 WRITE(*,*) ' RMRC(IC) IS "ZERO"'
660 WRITE(*,*)' RCONS(',IC,')=',RCONS(IC)
640 CONTINUE

RETURN
END

SUBROUTINE MII(RM,MIRT,RMIJ,I)
C

C Calculation of Elemetns of [m] when i=j.
C

REAL*8 MIRT(8),RMIJ,AA

REAL*8 RLEN,RHOA,RM,ZI,DZ,CI,SI,CHI,SHI,S2I
REAL*8 D1,D2,D3,TR1,TR2,TR3,TB1,TB2,TB3,AII,BII
RLEN = 2000.

RHOA = 80.00-5 / RLEN
ZI = MIRT(I)
DZ = 2.*ZI
CI = DCOS(ZI)
SI = DSIN(ZI)

CHI = DCOSH(ZI)
SHI = DSINH(ZI)
S2I = DSIN(DZ)
D1 = (SHI+SI)
D2 = (CHI+CI)
AA = .5 * RLEN / ZI

TR1 = D1*D1*AA*(2.*ZI+.5*S2I-2.*(SHI*CI+CHI*SI)+SHI*CHI)
TR2 = 2.*D1*D2*AA*(SI-SHI)*(SI-SHI)
TR3 = D2*D2*AA*(SHI*CHI - 2.*(CHI*SI-SHI*CI)-.5*S2I)
All = TR1 TR2 + TR3

TB1 = D1*(CI-CHI) D2*(SI-SHI)
= TB1*TB1

RMIJ = RHOA*AII + RM*BII

RETURN
END
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SUBROUTINE MIJ(RM,MJRT,RMIJ,I,J)
C

C Calculation of Elements of [m] When i.NE.j
C

REAL*8 MJRT(8),RMIJ,RLEN,RHOA,RM,ZI,ZJ,ZM,ZP,ZS
REAL*8 CI,CJ,CM,CP,SI,SJ,SM,SP,CHI,CHJ,CHM,CHP
REAL*8 SHI,SHJ,SHM,SHP,C1,C2,C3,C4,AIJ,BIJ
REAL*8 TR11,TR12,TR21,TR22,TR31,TR32
REAL*8 TR41,TR42,TB1,T82,T83,1114
RLEN = 2000.

RHOA = 80.0E-3 / RLEN
ZI = MJRT(I)
ZJ = MJRT(J)
ZM = ZI ZJ

ZP = ZI + ZJ
ZS = ZI*ZI + ZJ*ZJ

CI = DCOS(ZI)
CJ = DCOS(ZJ)
CM = DCOS(ZM)
CP = DCOS(ZP)
SI = DSIN(ZI)
SJ = DSIN(ZJ)
SM = DSIN(ZM)
SP = DSIN(ZP)
CHI = DCOSH(ZI)
CHJ = DCOSH(ZJ)
CHM = DCOSH(ZM)
CHP = DCOSH(ZP)
SHI = DSINH(ZI)
SHJ = DSINH(ZJ)
SHM = DSINH(ZM)
SHP = DSINH(ZP)

Cl = (SHI+SI) * (SHJ+SJ)
C2 = (SHI+SI) * (CHJ+CJ)
C3 = (CHI+CI) * (CHJ+CJ)
C4 = (CHI+CI) * (SHJ+SJ)

TR11 = ((sm+sHm)/zm) + ((SP+SHP)/ZP)
TR12 = 2.*(ZI*(CHJ*SI+SHI*CJ) + ZJ*(SHJ*CI+CHI*SJ)) / ZS
TR21 = ((CM-CHM)/ZM) + ((CHP-CP)/ZP)
TR22 = 2.*(ZI*(SHJ*SI+SHI*SJ) + ZJ*(CHJ*CI-CHI*CJ)) / ZS
TR31 = ((SM-SHM)/ZM) - ((SP-SHP)/ZP)
TR32 = 2.*(ZI*(CHI*SJ-SHJ*CI) + ZJ*(CHJ*SI-SHI*CJ)) / ZS
TR41 = ((CHM-CM)/ZM) + ((CHP-CP)/ZP)
TR42 = 2.*(ZI*(CHI*CJ-CHJ*CI) + ZJ*(SHI*SJ+SHJ*SI)) / ZS
AIJ = .5*C1 *RLEN*(TR11-TR12) - .5*C2*RLEN*(TR21-TR22)

+ .5*C3*RLEN*(TR31-TR32) .5*C4*RLEN*(TR41-TR42)
TB1 = CI*CJ - CI*CHJ CHI*CJ + CHJ*CHI
TB2 = CI*SJ - CI*SHJ - CHI*SJ + CHI*SHJ
TB3 = SI*SJ - SI*SHJ - SHI*SJ + SHI*SHJ
TB4 = SI*CJ - SI*CHJ SHI*CJ + SHI*CHJ
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BIJ = Cl*TB1 C2*TB2 + C3*TB3 - C4*TB4
RMIJ = RHOA*AIJ + RM*BIJ

RETURN
END

SUBROUTINE KII(KIRT,RKIJ,I)
C

C Calculation of Elements of [k] Matrix, When i=j.
C

REAL*8 KIRT(8),RKIJ,RLEN,REI,ZI,Z2I,CI,SI,CHI,SHI
REAL*8 S2I,ZI4,A1,A2,A3,DD,TR1,TR2,TR3
RLEN = 2000.
REI = (1.80+8) * 315.
ZI = KIRT(I)
Z2I = 2.*ZI
CI = DCOS(ZI)
SI = DSIN(ZI)
CHI = DCOSH(ZI)
SHI = DSINH(ZI)
S2I = DSIN(Z2I)
ZI4 = (ZI/RLEN)**4

Al = ZI4*(SHI+SI)*(SHI+SI)
A2 = ZI4*(CHI+CI)*(CHI+CI)
A3 = 2.*ZI4*(SHI+SI)*(CHI+CI)
DD = .5*RLEN ZI
TR1 = DD*(2.*ZI+.5*S2I+SHI*CHI+2.*SHI*CI+2.*CHI*SI)
TR2 = DD*(SHI*CHI-.5*S2I+2.*CHI*SI-2.*SHI*CI)
TR3 = DD*(SI+SHI)*(SI+SHI)

RKIJ = (Al*TR1 + A2*TR2 A3*TR3) * REI
RETURN
END

SUBROUTINE KIJ(KJRT,RKIJ,I,J)
C

C Calculation of Elements of [k] Matrix, When i.NE.j
C

REAL*8 KJRT(8),RKIJ,RLEN,REI,RHLN,ZI,ZJ,ZM,ZP,ZLIJ
REAL*8 CI,CJ,CM,CP,SI,SJ,SM,SP,CHI,CHJ,CHM,CHP
REAL*8 SHI,SHJ,SHM,SHP,ZIS,ZJS,AS,A1,A2,A3,A4
REAL*8 TR11,TR12,TR1,TR21,TR22,TR2,TR31,TR32,TR3
REAL*8 TR41,TR42,TR4
RLEN = 2000
REI = (1.8D+8) * 315.
RHLN = 500. / 2.
ZI = KJRT(I)
ZJ = KJRT(J)
ZM = ZI - ZJ
ZP = ZI + ZJ



157

ZLIJ = RLEN (ZI*ZI + ZJ*ZJ)
CI = DCOS(ZI)
CJ = DCOS(ZJ)
CM = DCOS(ZM)
CP = DCOS(ZP)
SI = DSIN(ZI)
SJ = DSIN(ZJ)
SM = DSIN(ZM)
SP = DSIN(ZP)
CHI = DCOSH(ZI)
CHJ = DCOSH(ZJ)
CHM = DCOSH(ZM)
CHP = DCOSH(ZP)
SHI = DSINH(ZI)
SHJ = DSINH(ZJ)
SHM = DSINH(ZM)
SHP = DSINH(ZP)

ZIS = (ZI/RLEN) ** 2
ZJS = (ZJ/RLEN) ** 2
AS = ZIS*ZJS

Al = AS * (SHI+SI) * (SHJ+SJ)
A2 = AS * (CHI+CI) * (CHJ+CJ)
A3 = AS * (CHI+CI) * (SHJ+SJ)
A4 = AS * (SHI+SI) * (CHJ+CJ)

TR11 = ((SM+SHM)/ZM) + ((SP+SHP)/ZP)
TR12 = ZI*(CHJ*SI+SHI*CJ) + ZJ*(CHI*SJ+SHJ*CI)
TR1 = RHLN*TR11 + ZLIJ*TR12

TR21 = ((SM-SHM)/ZM) + ((SHP-SP)/ZP)

TR22 = ZI*(CHI*SJ-SHJ*CI) + ZJ*(CHJ*SI-SHI*CJ)
TR2 = RHLN*TR21 + ZLIJ*TR22

TR31 = ((CHP-CP)/ZP) + ((CHM-CM)/ZM)
TR32 = ZI*(CHI*CJ-CHJ*CI) + ZJ*(SHI*SJ+SHJ*SI)

TR3 = RHLN*TR31 + ZLIJ*TR32
TR41 = ((CM-CHM)/ZM) + ((CHP-CP)/ZP)
TR42 = ZI*(SHI*SJ+SHJ*SI) + ZJ*(CHJ*CI-CHI*CJ)
TR4 = RHLN*TR41 + ZLIJ*TR42

RKIJ = (Al*TR1 + A2*TR2 - A3*TR3 A4*TR4) * REI

RETURN
END

SUBROUTINE INVERS(AINV,BINV,IDIM)
C

C Calculation of Inverse Matrix Using Gauss Elim. Method.
C

INTEGER IDIM,DIDIM,L

REAL*8 AINV(8,8),BINV(8,8),AAIN(8,8)
C

C SET THE IDENTITY MATRIX
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NP1 = IDIM + 1
DIDIM = 2*IDIM

DO 700 II = 1,IDIM
DO 710 JJ = NP1,DIDIM

L = JJ IDIM
AAIN(II,L) = AINV(II,L)
IF(L.EQ.II) THEN
AAIN(II,JJ) = 1.

ELSE

AAIN(II,JJ) = 0.
ENDIF

710 CONTINUE
700 CONTINUE

C

C CALCULATION OF INVERS
C

DETER = 1.
DO 720 K=1,IDIM
DETER = DETER*AAIN(K,K)
KP1 = K + 1
KPF = 2*IDIM

DO 730 J=KP1,KPF

AAIN(K,J) = AAIN(K,J) / AAIN(K,K)
730 CONTINUE

AAIN(K,K) = 1.

DO 740 I=1,IDIM

IF(I.EQ.K.OR.AAIN(I,K).EQ.0.) GOTO 740
DO 750 J=KP1,KPF

AAIN(I,J) = AAIN(I,J) AAIN(I,K) * AAIN(K,J)
750 CONTINUE

AAIN(I,K) = 0.
740 CONTINUE
720 CONTINUE

C

C INVERSE MATRIX IN "B"
C

DO 760 I=1,IDIM
DO 770 J=1,IDIM

N = J + IDIM
BINV(I,J) = AAIN(I,N)

770 CONTINUE
760 CONTINUE

RETURN
END
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SUBROUTINE MULTI(A,B,T,IM,IN,IP)
C

C Multiplication of Matrices [A(mxn)] & [B(nxp)].
C -- Output: "T" MATRIX
C

INTEGER IM,IN,IP

REAL*8 A(8,8),B(8,8),T(8,8),TT(8,8)
C

C TT(I,J) = 0.0
C

DO 780 I=1,IM
DO 790 J=1,IP
TT(I,J) = 0.

790 CONTINUE
780 CONTINUE

C

C MULTIPLICATION
C

DO 800 I=1,IM
DO 810 J=1,IP
DO 820 K=1,IN

TT(I,J) = A(I,K)*B(K,J) + TT(I,J)
820 CONTINUE

T(I,J) = TT(I,J)
810 CONTINUE
800 CONTINUE

RETURN
END

SUBROUTINE ADDI(A,B,T,IM,IN)
C

C Addition of Matrices [A(mxn)] & [B(mxn)].
C Output: "C" MATRIX --
C

INTEGER IM,IN
REAL*8 A(8,8),B(8,8),C(8,8)
DO 830 I=1,IM
DO 840 J=1,IN

C(I,J) = A(I,J) + B(I,J)
840 CONTINUE
830 CONTINUE

RETURN
END
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SUBROUTINE SUBT(A,B,C,IM,IN)
C

C Subtraction of Matrices [A(mxn)] [ gmxn)].
C -- Output: "C" MATRIX --
C

INTEGER IM,IN
REAL*8 A(8,8),B(8,8),C(8,8)
DO 850 I=1,IM

DO 860 J=1,IN
C(I,J) = A(I,J) - B(I,J)

860 CONTINUE
850 CONTINUE

RETURN
END

SUBROUTINE TRANPS(A,AT,IM,IN)
C

C Transpose Matrix [A] into [AT]
C

INTEGER IM,IN
REAL*8 A(8,8),AT(8,8)
DO 870 I=1,IM
DO 880 J=1,IN

AT(J,I) = A(I,J)
880 CONTINUE
870 CONTINUE

RETURN
END

SUBROUTINE THETA(TT,THTT)
C

C THETA(t) = PHI*D+SIN(1.5*PHI+t)
C THETA(t)" = PHI*SIN(1.5*PHI+t)
C Input : TT(time)
C Output: THTT(2nd derivative of THETA(t))
C

REAL*8 TT,THTT,PHI,THAR

PHI = 3.1415927
THAR = 1.5*PHI + TT
THTT = PHI*DSIN(THAR)
RETURN
END
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SUBROUTINE PRNTM(PRMT,IPDM)
C

C Print Matrix [PRMT]:
C

INTEGER IPDM,IPTM,JPTM
REAL*8 PRMT(8,8)

WRITE(*,*) '

DO 900 IPTM = 1,IPDM
WRITE(*,*) ' ',(PRMT(IPTM,JPTM),JPTM=1,IPDM)

910 FORMAT(' ',3D20.5)
900 CONTINUE

WRITE(*,*) '

WRITE(*,*) '

RETURN
END

SUBROUTINE PRNTV(PRVE,IPDV)
C

C Print Vector (PRMT):
C

INTEGER IPDV,IPTV
REAL*8 PRVE(8)

WRITE(*,*) '

WRITE(*,*) '

910 FORMAT('
WRITE(*,*) '

WRITE(*,*) '

RETURN
END

',PRVE(1),PRVE(2),PRVE(3)
',3D20.5)

SUBROUTINE R°0T(RTMS,PRRT)
C

C Calculation of Roots of Chacteristic Equation.
C

INTEGER SIZE1,FLAG1,FLAG2,I,J
REAL*8 RLAA(8),PRRT(8),RBCOF(8),RTX,RTDX

REAL*8 RCA,RTK,RTF,RLEN,YXT,RTDL,RTXL,RTXA,RTXB,XXX,RTT
REAL*8 RTMS,RHOL
RLEN = 2000.
RHOL = 80.0D-3
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C

C DEFINE PARAMETERS
C

SIZE1 = 8
NN = 1

RTX = 0.

RTDX = 0.1
VI = 1000.
RCA = SQRT(1.8D+8* 315. * 2000. / 0.08)
RTK = RTMS / RHOL
RTF = CHREQN(RTX,RTK)
IF (RTF.LT.0.) THEN

FLAG1 = 1

ELSE

IF (RTF.GT.0.) FLAG1 = 2
ENDIF

920 FORMAT( ",D15.8,",D15.8)
930 RTX = RTX + RTDX

RTF = CHREQN(RTX,RTK)

IF (RTF.LE.0.) FLAG2 = 1

IF (RTF.GT.0.) FLAG2 = 2

IF (FLAG1.EQ.FLAG2) THEN
NN = NN

ELSE

XXX = RTX
RTXA = RTX - RTDX
CALL NEWTON(XXX,RTT,RTXA,RTK)
PRRT(NN) = RTT
RLAA(NN) = RCA * RTT*RTT / (RLEN*RLEN)
NN = NN + 1

ENDIF
FLAG1 = FLAG2

IF (NN.LE.SIZE1) GOTO 930
RETURN
END

REAL*8 FUNCTION CHREQN(CHZ,CHRK)
C

C Computation of Characteristic Equation.
C

REAL*8 CHZ,CHRK,CHTM
CHTM = DCOS(CHZ)*DSINH(CHZ) DSIN(CHZ)*DCOSH(CHZ)
CHREQN = DCOS(CHZ)*DCOSH(CHZ) + CHRK*CHZ*CHTM + 1

RETURN
END
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SUBROUTINE CHRDER(CDZD,CHRD,CDRK)
C

C Computation of Derivative of Characteristic Equation.
C

REAL*8 CDZD,CDRK,ZZ,ZX,CHRD
ZZ = DCOS(CDZD)*DSINH(CDZD) - DSIN(CDZD)*DCOSH(CDZD)
ZX = -OSIN(CDZD)*DCOSH(CDZD) + DCOS(CDZD)*DSINH(CDZD)
CHRD = ZX + CDRK*ZZ 2.0*CDRK*CDZD*DSIN(CDZD)*DSINH(CDZD)
RETURN
END

SUBROUTINE NEWTON(NTX,NTY,NTA,NTK)
C

C Computation of Roots of Characteristic Equation
C Using Newton Method.
C

INTEGER II, FL1, WHAT,ITT

REAL*8 NTX,NTY,NTA,SMLST,NTF1,NTF2,NTFT,NTFM
REAL*8 NTFA,NTFB,CHECK,NTB,FLA,FLB
REAL*8 NTZ,NTCD,NTK,NTXM,NTXN
NTB = NTX
FL1 = 0
II = 0
ITT = 10
SMLST = .0000005

940 NTZ = NTX
CALL CHRDER(NTZ,NTCD,NTK)
NTF2 = NTCD
NTF1 = CHREQN(NTX,NTK)
NTXN = NTX - NTF1/NTF2
CHECK = CHREQN(NTXN,NTK)

IF (ABS(CHECK).LE.SMLST) THEN
NTY = NTXN
NTFT = CHREQN(NTY,NTK)
FL1 = 1

ELSE
NTX = NTXN
IF (II.GT.ITT) THEN

FL1 = 1

WRITE(*,*) ' CHECK =',CHECK,' ACCURACY NOT IMPROVED!'
WRITE(*,*) ' ** TYPE FOLLOWING NUMBER TO CONTINUE**'
WRITE(*,*) ---> "1" TO CONTINUE IN NEWTON.

'

WRITE(*,*) ' ---> "2" TO USE BI-SECTION METHOD.'
WRITE(*,*) ' "0" TO EXIT THE ITERATION.'

950 WHAT = 0

IF(WHAT.EQ.1) GOTO 960
IF(WHAT.EQ.2) GOTO 970
IF(WHAT.EQ.0) GOTO 980
WRITE(*,*)' RETYPE THE NUMBER, PLEASE!!'
GOTO 950
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960 ITT = ITT 1

FL1 = 0
GOTO 990

C

C TO COMPUTE THE ROOTS BY BI-SECTION METHOD.
C

970 NTFA = CHREQN(NTA,NTK)
NTFB = CHREQN(NTB,NTK)
IF (NTFA.LT.0.0) THEN

FLA = 0.
ELSE

FLA = 1.

ENDIF

IF (NTFB.LT.0.0) THEN
FLB = 0.

ELSE
FLB = 1.

ENDIF
C

C TO CALCULATE THE ROOTS.
C

IF (FLA.EQ.FLB) THEN
WRITE(*,*) ' ROOT DOES NOT EXIT BETWEEN',NTA,

' AND',NTB
FL1 = 1

ELSE

NTXM = (NTA+NTB) / 2.
NTFM = CHREQN(NTXM,NTK)
WRITE(*,*) ' *** NTXM =',NTXM,' NTFM =',NTFM
IF (NTFM.LT.0.0) THEN

FLM = 0.
ELSE

FLM = 1.
ENDIF

IF (FLM.NE.FLA) THEN
NTB = NTXM
NTFB = NTFM

ELSE
NTA = NTXM
NTFA = NTFM

ENDIF

IF (ABS(NTFM).LT.SMLST) THEN
NTXN = NTXM
NTFT = NTFM
FL1 = 1

ELSE

FL1 = 1

ENDIF

ENDIF

WRITE(*,*)' NTA =',NTA,' NTFA =',NTFA
WRITE(*,*)' NTB =',NTB,' NTFB =',NTFB
WRITE(*,*)' TYPE ANY TO CONTINUE (90 TO EXIT!).'
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IF (ANY.EQ.90) FL1 = 1

IF (FL1.EQ.0) GOTO 970
NTY = NTXN
NTFT = CHREQN(NTY,NTK)
GOTO 990

C

C END OF BI-SECTION METHOD.
C

980 FL1 = 1

NTY = NTXN
NTFT = CHREQN(NTY,NTK)

990 FL1 = FL1

ELSE

FL1 = 0
ENDIF

ENDIF
II = II 1

IF(FL1.EQ.0) GOTO 940
RETURN
END


