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Transition phenomena commonly occur in nature. These arise

either due to structural or behavioral changes in the medium. Ex-

amples for these abound in all applied sciences and to mention a few

of these, we have, boundary layer, elastic-plastic deformation, and

shocks. The present work is devoted to the study of laminar

boundary layer transition. In this case, transition from the region

near the surface of the body to the main stream takes place within

a thin layer called the boundary layer. Although the basic pro erties

of the fluid remain the same its behavior changes appreciably fro:

the surface of the body to the main stream. Owing to the presence of

spin, rotation or vorticity effects, the transition phenomenon is non-

linear, irreversible and non-conservative and hence it cannot be

treated satisfactorily by superposition or perturbation techniques. In

this thesis an attempt is made to study the transition as an asymptotic

phenomenon from the boundary layer..
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The flow in the presence of any body is divided into two regions,

(a) boundary layer, (b) all the region excepting the boundary layer,

called the transition region. The classical boundary layer theory due

to Prandtl, is based on his main assumptions that (a) in the boundary

layer, the viscous and inertial forces are of the same order, (b) the

transverse velocity in the case of a flat plate is taken of the same

order as that of the transverse coordinate, (c) the variation of pres-

sure in the boundary layer is negligible. On careful examination, it

becomes clear that the above assumptions are not quite reasonable.

In the present investigation the boundary layer thickness is estimated

without making any of these assumptions since the ratio of the viscous

to the inertial forces varies continuously from infinity near the bound-

ary to zero at the outer edge of the boundary layer. Also the order of

the transverse velocity need not be the same as that of the transverse

coordinate and the continuity of pressure across the boundary layer

comes out from the transition analysis and therefore it is not neces-

sary to assume it.

By making an order of magnitude analysis, the boundary layer

thickness for two dimensional flow is estimated in terms of two pa-

rameters. One of these parameters depends upon the relative order

of magnitude of the viscous and inertia forces at the outer edge of the

boundary layer and the other depends upon the order of vorticity allow-

able at the outer edge of the boundary layer.



The transition phenomenon in boundary flow is treated as an

asymptotic phenomenon from the boundary layer. In order to study

the transition region, a limiting form of the Navier-Stokes equations

in three dimensions is obtained, which is called the transition equa-

tion. Owing to the importance of vorticity in the transition region,

the transition equation is solved for the vorticity. The form of vor-

ticity shows that in general the functions which govern the transition

region are either subharmonic or superharmonic functions.

In classical two dimensional flow the study of cylindrical vortex

is made by employing matching techniques. There does not exist any

mathematical treatment of the spiral formation which exists in case of

flow past a body at large Reynolds number. In the present thesis a

study of two dimensional flow past a body at large Reynolds number

is undertaken on the basis of transition analysis, thus obtaining a sat-

isfactory mathematical treatment of various phenomena that occur in

the boundary layer flow. The transition equations for axisymmetric

and two dimensional flow are also obtained. Besides other known re-

sults, transition equation in two dimensions gives the stagnation

points and the formation of spirals which is noticed in the flow of a

real fluid past any body at large Reynolds number. Transition equa-

tion also gives the formation of cylindrical vortices. These vortices

are given by the limiting form of the stream function and come out

from the transition equation itself without the use of any matching



process as is done in current literature. Hence it can be concluded

that the transition equation is a global representation of different phe-

nomena which exist in fluid flow past a body at large Reynolds number.

The transition concept is also extended to magnetohydro-

dynamics. A formula for the magnetohydrodynamic boundary layer

thickness is obtained in terms of two parameters on the basis of a

magnitude analysis. The transition equation for two dimensional mag-

netohydrodynamic case is also obtained, and its solution gives the

spiral formations.
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DEFINITIONS

In order to avoid the repetition of definitions of some of the

important terms in the thesis, we find it convenient to give the

definitions here for ready reference.

Reynolds Number

The term Reynolds number is used for the quantity , where

V = main stream velocity

= characteristic length

v = kinematic viscosity.

On the basis of dimensional analysis Reynolds number is the

ratio of inertia force to viscous forces. It is the characteristic

of the particular flow under consideration and it is a non-

dimensional number independent of space coordinates.

Vorticity

If V is the velocity vector at any point (x, y, z) then co = curl V

is called the vorticity vector or simply vorticity. The angular

velocity of an infinitesimal element is equal to half the velocity.

Boundary Layer Thickness

It is the thickness of the layer in the immediate neighborhood of

the body, which is characterized by the following two properties:

Relative order of magnitude of viscous and inertia forces at

the outer edge of the boundary layer.

Order of vorticity allowable at the outer edge of the boundary

layers.



BOUNDARY LAYER TRANSITION

I. INTRODUCTION

1.1 Preliminary Remarks

In the presence of a solid body at large Reynolds number the

flow field exhibits a variety of distinct phenomena, which apparently

seem to be unrelated. These phenomena include, boundary layer,

shock wave, vortices, spiral formation in wake and stagnation points.

Some of these phenomena have been studied mathematically as entities

in themselves. When a particular phenomenon is singled out for

study, it is done for mathematical simplicity. The splitting of the

field into a number of linear problems is hypothetical so that each

phenomenon can be studied by some mathematical technique. It

seems possible that all these phenomena which exist in different parts

of the flow field are part and parcel of one and the same field. As

such it should be possible to give a global representation to these

phenomena. Seth's (1962-1966) theory of transition phenomena is an

attempt to bridge the gulf between seemingly unrelated phenomena.

Later on it will be shown that most of the above mentioned phenomena

for flow past a body at large Reynolds number are described by the

transition equation and can be represented by subharmonic (superhar-

manic) functions.



1. 2 Transition Phenomena

In general transition phenomena can be explained as follows:

When a medium is subjected to internal and external stresses and

body forces, then a stage comes when the medium yields and two

states are obtained which are dovetailing into each other. If these

successive states be denoted by A and B and the transition or

the region of dovetailing by T, then A passes into B through

T. The region T is usually referred to as transition region.

An attempt has been made by Seth (1962-1966) to study the tran-

sition which arises from the changes in the properties of a medium,

for example, elastic-plastic deformation, creep, relaxation etc. If

the initial state is defined by a set of field equations, it should be pos-

sible to identify the transition to the next neighboring state with the

transition (critical) points of the differential system involved. An

asymptotic solution at these points should give the results without as-

suming semi-empirical laws or ad hoc conditions which are otherwise

found necessary to treat the transition. Seth has solved a number of

problems in elastic-plastic deformations by using transition theory,

and obtained a satisfactory scientific basis for explaining a number of

irreversible phenomena in continuum mechanics. His results can be

summarized as follows:

1. The transition points correspond either to infinite

2
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contraction or infinite extension of line elements in the de-

formed state.

The asymptotic solutions at the transition points show that

there exists a transition state, and the solutions for fully

plastic state can be obtained by a limiting process. Thus

the yield condition need not be assumed, it comes out of the

field equations.

The transition stresses are different in tension and com-

pression regions of the material. This idea has been car-

ried further by Purushotama (1965) and Hulsurhar (1967).

Purushotham has shown that plastic yielding can be identi-

fied with the degeneracy of the strain ellipsoids.

This treatment makes the assumption of yield conditions like that of

von-Mises and Tresca, creep strain laws like that of Norton, Odqvist

and Andrade and jump conditions for shock both unnecessary and re-

dundant. If they exist they should come out of the field equations

themselves.

In particular for fluid dynamics Lamb (1932, p. 684) has men-

tioned the following about transition region.

... the slightest observation is enough to show that the
transition from the velocity of the surface to that of the
fluid abreast of it is often affected within a very short
space. In fact when a solid of fair easy shape, such as
a sphere, or a cylinder or an aerofoil, moves through
a mobile fluid... vorticity appears to be confined almost
to a narrow band along the anterior portion of the surface



and to the wake. It is to the study, both dynamical and
experimental, of this transition region, that the efforts
of many investigators have for some time been directed.

Apparently the situation in the case of transition of flow from

boundary layer to main stream seems to be different from that of

elastic-plastic transition. But it can be visualized that basically a

similar type of phenomenon occurs even in the boundary layer transi-

tion. Although the fluid remains the same, its intrinsic behavior

changes appreciably from boundary layer to the main stream, where

flow can be approximated by a non-viscous flow. In the case of fluid

flow, the transition region is the entire region, excepting the bound-

ary layer region. It will be shown later on that the transition equa-

tion, which governs the transition region, contains a host of phenom-

ena, which are observed in different parts of the flow field.

In order to illustrate the treatment of transition phenomena,

shock wave transition (Seth, 1964c) is discussed here. In the case of

one dimensional steady viscous compressible flow, the equations of

motion are

au aP 4a (p, 211 ),
Pu = ax 3 ax ax

pu =m = constant.

4

Assuming p = f(p) and putting P fruc we get



or

du dpcia 4 d 4. dum dx dp dx dx "dx

czm du 4d du du
u2 41dx )

that is,

czm 4 dmP =
u2

P + P c/-17(4P),

c2 4 dmP(1--) =
u2 3 du

2 dpwhere .c the local sound velocity.dp.

Since P A 0, as otherwise u = 0. We have, if ti is taken as

constant,

or

dP 3m cz 3m 1

du 4p,( 2 4}1 Mz

dP1 3R 1=

dul 4 M2

(1. 2. 3)

(1. 2. 4)

5

P1, u1 being the non-dimensional values of P and u respective-

ly, R is the Reynolds number and M the Mach number. The

three critical points, which can be interpreted as the transition points,

are

1. R co, which corresponds to the boundary layer,



or
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R 0, gives Stokes slow viscous motion of highly viscous

fluids,

M ±1, which indicates the transition from subsonic to

supersonic. It is significant that p. has not been taken to

be zero and no particular specifying condition in the form

p = f(p) has been taken. Over the shock

M1,
m2 dpu2

1--> 2
aP

, m2
p - ,

a relation which can be expected to be true for weak shock

where the entropy change can be neglected.

From Equation (1. 2. 3) it is clear that if p. 0 and M ±1

dPsimultaneously becomes indeterminate. This shown that vis-du

cosity is significant on the shock transition and should not be taken

equal to zero. Again over the transition, M ±1,

therefore

dP
du

From Equation (1. 2. 1), we get



or

du_= -dx dx

m(u2-u1) = p1 - 132,

which is a momentum equation. This has been obtained without taking

p. = 0. Thus we see that shock transition becomes obvious in the state

plane of (P, U). This plane may not be the same in all cases.

Since all continuous transformations are topological, the transition

should come out explicitly in some state plane.

1. 3 Prandtl's Boundary Layer Equations

At the turn of the nineteenth century three major areas of inter-

est in fluid dynamics attracted the attention of many prominent re-

search workers. These areas are gas dynamics, boundary layer

flows and turbulence. Basically the problems involved in these three

areas are similar, that is, the transition. In the first case, the

transition is shock wave, in the other case from the boundary layer

to the main flow and in the third case from laminar to turbulent flow.

One of the major questions to be answered in the flow of real fluids

in the presence of a solid boundary was to account for the drag exper-

ienced by the body. The classical non-viscous (Euler's) equations of

motion could not account for the drag suffered by the body (Landau and

7
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Lifshitz, 1966, P. 34). This is well known as DIAlembert2s paradox.

Prandtl in an effort to answer this problem suggested that flow near

the boundary, where frictional forces dominate, is different from the

flow away from the boundary where the flow can be approximated to

non-viscous flow. Owing to viscous forces the velocity of the fluid at

the boundary is zero and attains the value of the main stream velocity

over a thin region. Thus the transition of flow from zero velocity at

the wall to its full magnitude at some distance from it takes place in

a very thin layer, the so called boundary layer. In this manner it was

thought of that there are two regions to consider, even though the di-

vision between them is not very sharp.

A very thin layer in the immediate neighborhood of the body

au
ay'

very large (boundary layer). In this region, however small

the viscosity of the fluid may be, it exerts an essential in-
aufluence in so far as the shearing stress T = may as-

sume very significant value.

In the remaining region no such large velocity gradients oc-

cur and the influence of viscosity is unimportant. In this

region the flow may be regarded as frictionless and poten-

tial.

Boundary layer flow has been studied extensively by Prandtl

(Schlichting, 1968). He illustrated his point of view by considering in

in which the velocity gradient normal to the wall is



detail the motion of an incompressible viscous fluid along a semi-

infinite plate. Taking the origin to coincide with the leading edge of

the plate and the x-axis along its length the Navier-Stokes equations in

non-dimensional form are

8u au au 5p 1 a2u 82u
+ + v - +ax ay ax R 2 2

5x ay

1 11 6

2 25v 5v 5v 5p 1 5 v av,
+ + v - + ,at ax ay ay R 2 2)ax ay

6 16 61 6

U.iwhere R = is the Reynolds number.

Equation of continuity is

au av
-57( + o.

(1. 3. 1)

(1. 3. 2)

(1. 3. 3)

9

In order to derive the boundary layer equation, Prandtl introduced

certain approximations in the Navier-Stokes equations by carrying out

an analysis of the order of magnitude of different terms. If 6 is

the boundary layer thickness then the orders of magnitude of different

quantities are taken as

1

T 1

6

1

6



x

6,

a

u 1' ax

v ay 5

The orders of magnitude of different terms in Equations (1. 3. 1) and

(1. 3. 2) are indicated below the respective terms. From the order

consideration it is found that Equation (1. 3. 1) is more important than

Equation (1. 3. 2) and the term

2u
2

aa u
>>

ay2 ax2

Therefore Equation (1. 3. 2) may be neglected in comparison with
2

a2u .
a u

Equation (1. 3. 1) and is neglected in comparison with
ax2 ay2

'

Thus PrandtP s boundary layer equations in non-dimensional form are

10

au au au ap 1 a2u
+ u +

at ax ay ax R '
ay

au au
+ o.

ax ay

(1. 3.4)

(1. 3. 5)

Prandtlt s consideration that viscous and inertia terms are of

the same order of magnitude in the boundary layer, it follows that

6 - R-112. From Equation (1. 3. 2) it is then clear that 1.2 6.
ay

That is, the variation of pressure along the normal to the wall within

the boundary layer may be neglected in considering boundary layer
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phenomena. Equations (1. 3.4) and (1. 3. 5) are then the equations to

be solved for the three unknown u, v and p. Thus mathematical-

ly speaking an indeterminacy enters into the problem. This is, how-

ever, overcome by taking the pressure distribution inside the bound-

ary layer the same as at its outer edge, where the flow is supposed

to be non-viscous.

Since very near the boundary the viscous effects are predomi-

nant and away from the boundary inertia terms are important, Prandtl

made the further assumption that inside the boundary layer the vis-

cous and inertia terms are of the same order of magnitude. This as-

sumption has led to the semi-empirical formula for the thickness of

the boundary layer as proportional to This assumption, as

we shall see later on, is not quite reasonable.

The mathematical indeterminacy caused by the Prandtlts order

considerations did not do any appreciable harm to the theory because

of the vast practical applicability of the theory and its close agree-

ment with observed phenomena. However, the characterization of

the boundary layer as an asymptotic phenomenon went a long way in

establishing confidence in this theory. As Friedrichs (1955) points

out, the approach to the boundary layer by characterizing it as an

asymptotic phenomenon leads to a definite clarification of the issue

but it does not yield a rigorous justifaication of this theory. Some of

the main defects of the classical boundary layer theory are:
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The truncated boundary layer equations provide a solution

holding good only in the thin region surrounding the bound-

ary. The smooth transition into the invisid flow away from

the boundary is not accomplished.

The number of equations fall short of number of unknowns

and this indeed is a mathematical indeterminacy. The bor-

rowing of the pressure distribution in the boundary layer

from the inviscid flow theory or from experiment, is an-

other hypothesis which has yielded some results.

The assumption that inside the boundary layer the viscous

and inertia forces are of the same order is not quite reason-

able [Pran.dt1 and Tietjen, p. 61]. In fact the viscous terms

as compared to inertia terms are predominant near the boun-

dary but are very small not very far from the boundary. Thus,

however thin the boundary layer region may be, the ratio of

the viscous to inertia terms is not uniformly equal to unity

inside the boundary layer, as assumed by Prandtl, but it is a

rapidly though continuously decreasing function. In fact the

ratio of viscous to inertia terms drops from an infinite value

at the boundary to a very small quantity much inside the

boundary layer, and becomes vanishingly small at the outer

edge of the layer.

The first application of Prandtr s boundary layer theory was

made by Blasius (1908) in discussing the boundary layer along a flat
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plate. The difficulty inherited by taking the simplified equations of

the boundary layer is evident in the solution obtained by Blasius.

Firstly, the transverse component of velocity does not vanish at in-

finity and secondly the solutions are not true at the stagnation point.

1. 4 Boundary Layer Thickness

As pointed out in the last section, the consideration that viscous

and inertia forces are of the same order of magnitude in the boundary

layer has yielded the boundary layer thickness of order

Proudman (1956) analyzed the flow between two rotating spheres

and speculated that the order of the boundary layer thickness lies be-

tween R
-1/3 and R-1/4. The difference between these two re-

sults is evident, because Prandtll s result does not take into account

the vorticity which exists in the main stream where as Proudmanis

does. From these considerations it is clear that boundary layer

thickness should depend upon two considerations:

The relative order of viscous and inertia forces at the outer

edge of the boundary layer.

The order of vorticity allowable at the outer edge of the

boundary layer.

Later on it will be shown in Chapter II, that in general, boundary layer

thickness is given by
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a
14-(3 (1.4. 1)

where

0 < a< 1 and p >l.

The parameter a depends upon the relative order of magnitude of

the viscous and inertia forces in the neighborhood of boundary layer

and the parameter p depends upon the vorticity allowable at the

outer edge of the boundary layer. Prandtlts boundary layer thickness

can be seen to be a limiting case of the above result when

a 1,
and

P 1.

In the next article we shall discuss briefly the mathematical

treatment of the occurrence of different types of vortices such as

cylindrical, spherical and corner eddies as exist in literature.

1. 5 Cylindrical Vortex, Spherical Vortex, Corner Eddies

The formation of various types of spirals or vortices during the

flow in the presence of solid boundaries is a well known phenomenon.

At large Reynolds number, due to boundary layer separation, these

vortices move down stream forming the well known Krrna'n Vortex

street. In the current literature these vortices are studied as isolat-

ed phenomena. It will be seen later on, in this thesis, that these



spiral formations are actually included in the solution of the transi-

tion equation. Before discussing the transition concept it will be

worthwhile to go through the existing treatment of these phenomena.

a. Cylindrical Vortex

is the Lagrangian stream function, then the equation

governing steady two dimensional flow of an inviscid fluid is

v zqi = f(0.

In particular choosing f(t.p) = kZip, we get

v 2ip = kzLP. (1. 5. 1)

The solution of Equation (1. 5. 1) is

cos
= cJs(kr) sin} sO,

where Js is the Bessel function of the first kind and of order s.

Choosing r = a as a fixed boundary, the possible values of k are

given by

Js (ka ) = 0.

Suppose

i= cJ1(kr) sin 0, (1. 5. 2)

15

inside r = a and outside (as usual for cylinder moving with velocity



2
a

LIJ = U - ) sin 0.

The values of ti as given by Equations (1. 5. 2) anand (1. 5. 3) will

agree on r = a if

J1
(ka) = 0.

Also the condition for continuity of tangential velocity gives

Hence if we impress on the system a velocity U opposite to the di-

rection of the main stream, we get a host of cylindrical vortices trav-

elling with velocity U, through a liquid which is at rest at infinity.

The stream lines inside the vortices as shown by Lamb (1932, p. 288)

are given in Figure 1.
1
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Figure 1. Stream lines inside a vortex.
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b. Spherical Vortex

Hill's Spherical vortices are studies by considering the equation

2 2 1/ 2and w = (y +z )

2
a2qJ a LIJ 1 P_Lk = wf(40,axz aw2 w aw

where ji is the Stokes stream function given by,

1 ail)
w aw

1v = w ax

is the distance of any point from the axis of

symmetry. In order to study formation of the spherical vortex two

forms of stream function ip are assumed as

1 222
LT, = Aw (a _r ),

2

for points inside the sphere r = a, where r2 = x2 + w2 and

1 2 a3
),=(1-

3

out side the sphere.

The two values of 4, agree when r = a. The condition for

the continuity of tangential velocity gives

A = - -2-3 a2.

17

(1. 5. 4)



18

So if we impress on the sytem a velocity U opposite the direction of

main stream, we get a spherical vortex advancing with constant veloc-

ity U through the liquid, which is at rest at infinity.

c. Corner Eddies

It is well known that for a viscous fluid flow in a channel or pipe

with an abrupt contraction, eddies occur at the corners immediately

preceding that contraction. Formation of corner eddies has been dis-

cussed by Yih (1959) in the case of steady, rotational flow of an invis-

cid fluid in a two dimensional channel. The equation governing steady

two dimensional flow of inviscid fluid is

2
a 4J

ax2 ay2

1 2
f(4J) = - Tr 1-P

(1. 5. 6)

The velocity distribution for upstream from the sink should be para-

bolic if it is the same as that for the laminar flow of a viscous fluid

in a long channel. However, a parabolic distribution of the upstream

velocity would make Equation (1.5. 6) non-linear, but a cosine distri-

bution, which is nearly parabolic makes Equation (1.5. 6) linear. This

choice of velocity distribution, boils down to the same thing as taking

(1.5.7)



With this value of f(4,), the solution of Equation (1. 5. 6) is

co

2
= ) sin Try +

cn sin niry exp {(n2- '1"
4 TrxTr 2

1

where

4 cos nr
)2fir 4n-1

The flow pattern for half of the channel is shown in Figure 2, in which

the corner eddies appear.

= 2/7

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0,4 -0.2

Figure 2. Corner eddies (Yihr 1959).

It has been pointed out by Yih (1959), that since the flow in the

eddies does not originate at infinity there is no a priori reason why

Equations (1. 5. 6) and (1. 5. 7) should govern the flow in the eddies.

But from the analysis developed in Chapter IV for two dimen-

sional flow it will be clear that Equation (1. 5. 6) is the transition

1,0

0. 8

0.6

0.4

0.2
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equation. This equation is true at all points of the region excepting
2the boundary. In fact v 11.1= f(q.i) is the global representation of dif-

ferent phenomena which occur in the flow past a body at large Rey-

nolds number R. As such, Equation (1. 5. 6) should give not only

eddies but other phenomena too.

Recently some attempts have also been made to study the nu-

merical solution of Karman Vortex Street for flow past a rectangle

(Francis and Jacob, 1965).

In the existing literature, each of the phenomena discussed

above is treated by itself independent of others. These phenomena

have not been studied as a continuous transition from the boundary

layer. In Figures 5 and 6 it is clear that the boundary of the vortex

is formed by the limiting form of the stream lines, which are ob-

structed by the presence of the body. It should be possible to study

them as a limiting form of the flow field without assuming two stream

functions and then matching them on the boundary.

It will be shown later on that the transition equation includes

these phenomena. In particular it will be shown that the transition

equation gives the formation of spirals, whose mathematical treat-

ment does not exist in literature. Moreover, the transition equation

will also include the main flow and the stagnation points. These

transition fields will be shown to be subharmonic or superharmonic

fields.
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1. 6 Objective of Present Study

A mathematical treatment of cylindrical vortex, spherical vor-

tex and corner eddies exist in literature. Recently (Francis and

Jacob, 1965) some attempts have also been made to study the numer-

ical solution to the problem of the KS,rma7n Vortex Street for flow past

a rectangle. Formation of spirals in wake is physically a well under-

stood phenomena (in two dimensions), but lacks a rigorous mathemat-

ical treatment. An attempt shall be made to give an analytical repre-

sentation to these phenomena, which exist in flow past a body at large

Reynolds number in terms of subharmonic (superharmonic) fields.

In particular it will be shown that this representation includes forma-

tion of spirals and stagnation points, which has not been treated,in

literature.

It will also be shown that the result on cylindrical vortex, in the

case of two dimensional flow of a non-viscous fluid is only a particu-

lar case of the transition equation, when the Reynolds number be-

comes large. This will also indicate that in general, spirals, vor-

tices and the wake can exist in a flow of a real fluid.

A general solution of transition equation in three dimensions

will be obtained in Chapter III, which will indicate that transition

fields are subharmonic or superharmonic fields. The three dimen-

sional transition equation will show why it is so difficult to deal with
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three dimensional boundary layer. The Beltrami flow in which vor-

ticity lines are parallel to stream lines is found to be again a particu-

lar case of the transition equation.

The result of Proudman on boundary layer thickness for rotat-

ing spheres shows that a lacuna exists in Prandtlis boundary layer

theory in which vortex motion in the main flow has not been taken into

consideration. The general treatment of boundary layer thickness

will include Prandtlis result as a limiting case, Proudman'S ?result

and those of turbulent flow as particular cases.



IL BOUNDARY LAYER THICKNESS

2. 1 Preliminary Remarks

The starting point of boundary layer theory was to resolve the

DIAlembert paradox of late 19th century. DIAlembert observed that

when a solid body moved through a fluid flow pattern based on the in-

viscid theory agreed with the experimental results almost everywhere

in the flow, but strangely enough the resistance experienced by the

body was found to be zero. Prandt1 (1904) in an attempt to resolve

this dilemma suggested that the resistance to the body was caused by

the viscosity of the fluid and the fluid flow near and away from the

body were different in character. This could have been suspected

since:

An inviscid fluid can slip along the wall, while the viscous

fluid sticks to it.

Shearing stresses are ignored in a perfect fluid, while they

vitally affect the motion of viscous flow.

Pra.ndt1 analyzed these fundamental differences and the behav-

ior of inviscid and viscous fluids and suggested that the entire flow

phenomena could be studied in two regions, one a very thin region

near the surface of the body called bounday layer and the other away

from the body where the inviscid fluid theory gives results with suffi-

cient accuracy. In this manner there are two regions to consider,
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even though the division between them is not very sharp.

A thin layer in the immediate neighborhood of the body in
au
ay'

and

which the velocity gradient normal to the wall,

very large. In this region the very small value of viscosity,

of the fluid exerts an essential influence in so far as the
aushearing stress T p.ay may assume large values.

In the remaining region, no such large velocity gradients oc-

cur and the influence of viscosity is unimportant. In this re-

gion, the flow is almost inviscid.

2. 2 Prandtlis Boundary Layer Theory

Prandlt illustrated his point of view by considering in detail the

motion of incompressible viscous fluid along a semi-infinite plate.

Taking the origin to coincide with the leading edge of the plate and

x-axis along its length, the Navier-Stokes equations are

Equation of continuity is

au a2u 02u
ax ay p ax V k 2 +

ax ay

av av av 1 ap 02v 82v
at " ax -

Y p ay 2 2
ax ay

au av 0
ax ay -

is

24

(2, 2. 1)

(2. 2. 2)

(2. 2. 3)
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Equations (2. 2. 1) to (2. 2. 3) are made dimensionless by referring all

velocities to the free stream velocity, V, and all linear dimensions
2to a characteristic length, L, of the body, the pressure by pV

and time by L/V. Under these assumptions and retaining the same

symbols for the dimensionless quantities as for their dimensional

counterpart, the Equations (2. 2. 1) to (2. 2. 3) take the form,

and

au au auap 1 02u a 2u
u = _

at ax 8y ax R 2 2
Ox ay

av av av Op 1 , a2v azv57- + u -57c + v ay _ ay + R
Ox ay

au av n

Ox + =ay

where

In order to study viscous effects attention must be focussed in the im-

mediate vicinity of the plate. If the dimensionless boundary layer

thickness is 8 /L, for which the symbol 8 is retained, then the

different quantities involved in the Equations (2. 2. 4) to (2. 2. 6) have

the following estimates for order of magnitudes.

x- 1, u 1,

y - 8, v

a
Ox

(2. 2. 4)

(2. 2. 5)

(2. 2. 6)

a 1

ay
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An estimate of order of magnitude of different terms in Equations

(2. 2. 4) and (2. 2, 5) is made in order to neglect some terms in com-

parison with others and to achieve a simplification of the equations of

motion. Orders of different terms are shown below each term in the

Equations (2. 2. 4) and (2. 2. 5). Order of magnitude of different terms

in Equation (2. 2. 5) is much smaller than Equation (2. 2. 4). There-

fore Equation (2. 2.5) is neglected in comparison with Equation (2.2.4).
2 2a u a 2u a uAgain in Equation (2. 2. 4) the term Therefore

2
a2u

ax ay2 8x
is neglected in comparison

witha
Therefore the simplified

Oy
boundary layer equations are

and

au av
-a-cc +57 .

au 8u ---u au ap
at ax v _ 4.

ax

Furthermore since very near the boundary the viscous effects are

predominant and away from the boundary inertia terms are more im-

portant, Prandtl made the further assumption that inside the boundary

layer the viscous and inertia terms are of the same order of magni-

tude. This assumption led to the semi-empirical formula for the

thickness of the boundary layer as proportional to R112.

Equations (2. 2. 7) and (2. 2. 8) are called Prandtlfs boundary lay-

er equations. These equations are to be solved for three unknowns

82u (2. 2. 7)2
ay

(2. 2. 8)
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u, v and p. Thus mathematically speaking an indeterminacy enters

into the problem. This is however overcome by taking the pressure

distribution inside the boundary layer the same as at its outer edge,

where the inviscid flow phenomenon is supposed to hold.

2. 3 Limitations of Prandtlls Boundary Layer Theory

The following are the limitations of the theory:

The order of the boundary layer equations is less than the

order of the complete Navier,Stokes equations and hence one

boundary condition has to be relaxed.

The number of boundary layer equations becomes less than

the number of unknown functions and hence the pressure dis-

tribution inside the boundary layer is taken from the non-

viscous fluid theory or from experiments.

The assumption that viscous and inertia forces are of the

same order of magnitude in the boundary layer fixes the

order of the boundary layer thickness as R-1/2 This as-

sumption does not seem to be justified, because the inertia

forces are zero on the surface of the body and become very

large on the outer edge of the

even though the boundary laye

of the viscous to inertia force

boundary layer. Therefore,

r is a very thin region the ratio

s change from a very large val-

ue near the outer edge of the boundary layer and does not
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remain uniformly equal to unity across the thickness of the

boundary layer.

d) The transverse velocity component v and the transverse

coordinate y, have both been assumed in the boundary layer

to be of order 5 which is not quite reasonable.

2. 4 Formula for Boundary Layer Thickness

In the present investigation, boundary layer thickness is deter-

mined by making use of the complete Navier-Stokes equations, without

making use of the Prandtl's boundary layer equations, which are a

truncated form of Navier-Stokes equations. According to Prandtl,

the boundary layer thickness is proportional to R1- /2 and Proud-

man (1956) while analyzing the flow between two rotating spheres

speculated that the order of the boundary layer thickness lies between

R-1/3 and R-1/4. This shows that there is a definite need to ex-

amine the concept of boundary layer thickness.

The edge of the boundary layer is an arbitrary line in the fluid

such that viscous effects (V) which are predominant near the bound-

ary die out rapidly as we proceed away from it. For flow past a fixed

obstacle large vorticity is present very near the boundary but vanishes

asymptotically away from it. The formula for the thickness of the

boundary layer should depend on what order of vorticity is regarded

as negligible outside the layer and not merely on the Reynolds number.
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It should also depend on the relative order of magnitude of the viscous

and inertia forces. As pointed out earlier that the ratio

V inertia forces
I viscous forces

changes from a very large value near the surface,

to a very small value outside the boundary layer. By taking this ratio

as one, the boundary layer thickness so obtained is much less than

what the actual boundary layer thickness should be.

As observed before in Prandtl's boundary layer theory, the

transverse velocity v and the transverse coordinate y are taken

to be of the same order of magnitude in the boundary layer. These

are small quantities but they need not be of the same order of magni-

tude. Therefore we start by assuming the relative order of magnitude

of different quantities involved at the outer edge of the boundary layer.

Let 5 be the boundary layer thickness, then

y6 and 0< 6<< 1

Since the y- component of velocity, v, is much smaller than Y,

let

v- 6 , 0< k< 1 .

Also, let

u sm, 0< m< 1.

From the equation of continuity (2.2. 3), it follows that

1
1 +rn--i-z

x - 5
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These are the orders of magnitude of different terms in the neighbor-

hood of the outer edge of the boundary layer, because 6, very near

the plate has no meaning. Orders of different terms in the Navier-

Stokes equation are as follows:

au au ap 1 82u a 2u ,u v ay ax R ax2 +
ay2

11

k-1+rn 1.7 rn-1 2-2-m 6m-2
6

av 8v ap 1 a2v a 2vu + v = +8x 8y ay R, 2
a y2ax

2 2 3 1- 2- 2m - 2
6 5 5 5

Each term on the left hand side of Equation (2.4. 1) is of order
1

m+i-z. -1
5 and terms on the right hand side are of the orders

2

61Z.
2-m 1 m-2and -ft 6 respectively. Obviously

2 - 2-m
1 m-2 1 k

6 >> 6

We have to calculate 6, in the neighborhood of the outer edge of the

boundary layer, because very near the surface 6 has no meaning.

At the outer edge of the boundary layer, inertia forces (I) are very

large compared to viscous forces (V). That is

(2.4. 1)

(2. 4. 2)



That is

1

8m m-2
8k >>6

1

k+1
R6 >> 1

1+1
R8k Rp

(2. 4. 4)

(2. 4. 5)

In view of the inequality (2. 4. 5), the latter can also be expressed as

(2. 4. 6)
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I>> V. (2.4. 3)

It may be mentioned here that Equation (2. 4. 3) is not an assumption,

but it arises from physical considerations.

Using Equation (2.4. 1), the inequality (2.4. 3) becomes

Since 6 > 0, therefore dividing throughout by 6 we have from

Equation (2. 4. 4)

1 1 -2
6 >> -f,t .

where < . The choice of p is restricted as in 0< p <

for if, p > 1, then Equation (2. 4. 6) gives

1

6k+1 Rp-
1

This would make 6 large, which is contrary to the actual physical

situation. It is also clear that the choice of p depends upon the
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relative order of magnitude of viscous and inertia forces. Therefore

Equation (2. 4. 6) gives,

1+16k - RP-1

or

6 - R-a/(1+P), (2. 4. 7)

where

a = 1 p < 1,

and

p= -k
> 1.

The result given by Equation (2. 4. 7) is obtained by considering the

Equation (2.4. 1). Now from Equation (2.4. 2), the order of magnitude

of inertia terms (I) is 617-1
2

1--,, 1+1k
9

is 6 As in inequality (2. 4. 3), we again have R6 k >> I,
R

which is the same as given by the inequality (2. 4. 5), Therefore this

inequality will also give the same result as given by the expression

(2. 4. 7).

Thus Equation (2. 4. 7) gives the boundary layer thickness in

terms of two parameters, a, and, p. From the above arguments

it is clear that the parameter a depends upon the relative order of

magnitude of the inertia and viscous forces in the neighborhood of the

outer edge of the boundary layer. In order to understand the physical

meaning of 3 consider the uniform flow in the direction of x-axis

and order of viscous terms (V)



and

Therefore
-nR 4--a/1ne

13

= Uy(1-e-nY).

For this choice of qi the vorticity r, is given by

ne-fly

At the outer edge of the boundary layer, we have

Y 6

As discussed above the parameter a is known once the relative or-

der of magnitude of viscous and inertia forces is fixed at the outer

edge of the boundary layer. Knowing the value of the parameter a

the Equation (2. 4. 8) then determines the value of the parameter p

by fixing the order of vorticity r, allowable at the outer edge of the

boundary layer.

So we conclude that Equation (2, 4. 7) gives a formula for the

boundary layer thickness in the case of viscous motion past a solid

body at large Reynolds number, R. This formula contains two

33

and velocity U. The stream function in this case will have the

form

(2. 4. 8)
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parameters, a and p. The choice of the parameter a depends

upon the relative order of magnitude of viscous and inertia forces al-

lowable at the outer edge of the boundary layer and the parameter p

depends upon the order of vorticity allowable at the outer edge of the

boundary layer.

It may be noticed here that the formula (2. 4. 7) for the boundary

layer thickness is obtained without making any reference to any parti-

cular body under consideration. The length, L, which is used to

make Navier-Stokes equations non-dimensional and which consequent-

ly enters in R is just the characteristic length of the body. Also

no reference is made to the flow pattern. Therefore Equation (2. 4. 7)

gives boundary layer thickness for flow past bodies of all shapes.

Since the only hypothesis involved is that R is large, formula

(2. 4. 8) for boundary layer thickness is also applicable in the case of

transition from laminar into turbulent flow.

The restrictions on the parameters a and p involved in the

formula (2. 4. 7) of boundary layer thickness is that a < 1 and p > 1.

Therefore the expression is always less than

This shows that in general the thickness of the boundary layer is

of order greater than R/2, that is the boundary layer thickness

is greater than that given by Prandtl. This is otherwise also clear,

because the consideration that viscous and inertia terms are of the

same order of magnitude, gives the value of 6 at some distance

a
1+13



35

from the surface of the body and not near the outer edge of the bound-

ary layer.

The strongly limiting case, a = 1 and p = 1, gives

- R-1/2,

which is the boundary layer thickness as given by Prandtl. If the val-

ues of parameters a and 13 are chosen as,

a = 12 '

and

3
P = -

then Equation (2.4. 7) gives

5

which is the well known boundary layer thickness in the case of turbu-

lent boundary layer. If the values of the parameter s a and 13 are

chosen as

and

then Equation (2.4. 7) gives

- R-1/3.



k and X, depending upon the vorticity, and the relative order of
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which is the boundary layer thickness as speculated by Proudman

(1956).

In the above particular cases, it is clear that the formula for

boundary layer thickness as given by Prandtl does not hold good. The

reason is obvious, because Prandtl considered the flow along a flat

plate and did not take into account the general type of flow in the main

stream, which may have vorticity transported from the surface of the

body.

Therefore the formula (2. 4. 7) for the boundary layer thickness

is applicable for two dimensional flow past any body. The determina-

tion of thickness depends upon two considerations, firstly the relative

order of the viscous and inertia terms near the outer edge of the

boundary layer and secondly the order of vorticity allowable at the

outer edge of the boundary layer.

Seth (1960a) has also analyzed the boundary layer thickness for

flow along a flat plate. In this case the boundary layer thickness is

given by the formula

6 - R-k/2+X

where

0 < k < 1 and k > 1,

viscous and inertia forces allowable at the outer edge of the boundary



layer.

The result obtained in Equation (2. 4.7) is general and holds

good for the boundary layer over bodies of any shape whatsoever.
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III. TRANSITION CONCEPT AND GENERAL
TRANSITION EQUATION

3. 1 Preliminary Remarks

A large number of problems in fluid mechanics, elasticity,

plasticity involve quick transitions and non-uniformity. They have

been subjected to perturbation techniques which are not always satis-

factory. A number of examples can be mentioned in which the field

equations have been truncated or boundary conditions relaxed. This

is particularly true of non-linear problems, for example, boundary

layer, shock wave, stability problems, etc. In all of them an asymp-

totic phenomenon through transition can be notices. This asymptotic

aspect has an extensive literature on the subject. Exhaustive refer-

ences are given by Friedrichs (1955).

Physical problems also exhibit another type of transition, which

arises from the changes in the properties of the medium, for example,

elastic-plastic deformation, creep, relaxation, turbulence, boundary

layer, etc. In these cases, if the initial state is defined by a set of

field equations, it should be possible to identify the transition to the

next neighboring state with the critical points of the differential sys-

tem involved. An asymptotic solution at these points should give the

transition state without assuming semi-empirical laws, or ad-hoc

conditions which are otherwise found necessary to treat the change.
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This treatment as done by Seth (1962- 1966) makes the assumption of

yield conditions like that of von-Mises and Tresca, creep strain laws

like that of Norton and jump conditions for shock both unnecessary and

redundant.

At transition the fundamental structure of the medium undergoes

a change and gives rise to spin, rotation or vorticity effects. Non-

conservative nature of spin forces makes transition phenomena both

non-linear and irreversible. This also explains the existence of dif-

ferent types of spirals or vortex formation and wake at the boundary

layer transition. It will be shown in Chapter IV that the transition equa-

tion gives the spiral and vortex formation in the case of two dimen-

sional flow.

3. 2 Transition Concept

Every medium under the action of internal and external stresses

and body forces begins to yield and two states are obtained which

dovetail into each other. To be more explicit, if these successive

states be denoted by A and B, and the transition or mid-state,

or dovetailing state by T, then A passes into B through T.

This dovetailing region T, is usually referred to as the transition

region. But on a broader basis, every state in the region apart from

the initial state should be called transition state. It is in this broader

sense that the term transition will be used. In fluid mechanics,
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the whole of the region excepting the boundary layer region will be

called the transition region. In a transition state the whole of the

medium participates and the effect of a change is not confined to a

particular line or region, as is usually assumed.

In order to study the transition region and to obtain the transi-

tion condition it may first be observed that it is an asymptotic phe-

nomenon. Transition conditions should therefore be identified with

some type of limiting concept in the field. This will involve some in-

variance relations and these should be obtained in terms of the invar-

iance associated with the field. In other words some functional rela-

tion should exist between the invariants corresponding to the transi-

tion. In elastic-plastic transition this invariant relationship is known

as the yield condition (Erigen, 1962, p. 294).

In fluid dynamics, the equation of motion for study flow are:

(T..+pu.u.), . = 0
j 3

In the study of the boundary layer transition we consider the stress

invariants in the main flow which is one-dimensional and which can be

approximated to a non-viscous flow. In this case from the equations

of motion it follows that there exists only one invariant viz

I1 = -p + pq2 since T11 = -p and q is the main stream velocity.

Thus the invariance relation corresponding to the transition may be

taken as



-p + pq = const

Since q remains very nearly the same on either side of the

immediate vicinity of the outer edge of the boundary layer it follows

that p may be taken as continuous across this outer edge of the

boundary layer, a result which was assumed by Prandtl.

3. 3 Subharmonicity of Transition Fields

The flow of a viscous fluid in the immediate vicinity of a body

has a creeping motion known as Stokes flow and its stream function

satisfies a biharmonic equation. Flow away from the boundary can be

approximated to an inviscid flow and the stream function in this case

satisfies a harmonic equation. Heuristically, therefore it may be ex-

pected that dovetailing fields are subharmonic or superharmonic

fields, which reduce to harmonic and biharmonic fields as limiting

cases. Even slight deviation from the harmonic and biharmonic

fields should be in terms of allied subharmonic fields. These subhar-

monic or superharmonic fields are non-linear and hence it can be ex-

pected to explain the non-linear, non-conservative, and irreversible

phenomena like spiral formations, vortex flow, etc. It will be shown

in the next chapter that these fields do give the spiral formations,

which are observed experimentally and have received very little glob-

al analytic treatment.
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Owing to the existence of vast literature on harmonic functions,

they are easy to handle. Harmonic functions also have nearly all nice

properties like existence, uniqueness, superposability and a large

number of known solutions. Superharmonic functions are non-linear

and hence have not been so extensively explored as harmonic functions.

References for these may be found in (Greenspan and Yoke, 1963) and

recently some attempts have been made to solve these equations with

computers.

It will be useful for further reference, to include here a rigor-

ous definition and some known properties of subharmonic (superhar-

monic) functions.

Subharmonic Functions

Definition (Rado, 1949): Let U(x, y) be a function defined in

a domain G (connected open set), such that - co< U < 00 in G.

That is, -00 is an admissible value of U, while +00 is not.

Such a function is subharmonic in G if it satisfies the following

conditionst:

U is not identically equal to -00 in G.

U is upper semi-continuous in G. That is, for every

point ( 0' y0) in G and for every number X > u(x0 , y0)

there exists a 5 =
5(x0'

y0) > 0 such that u(x, y) < X for

21/2[(x-x0 )2 + (y-y0)]< b. Observe that for u(x0' y cc)= -
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this condition implies that u(x, y)-- -oo for (x,y) (x0,y0).

c) Let G' be any domain contained in G together with its

boundary B'. Let H(x, y) be harmonic in G', contin-

uous in G' B' and H > U on B'. Whenever these as-

sumptions are satisfied, we also have H > U in G'.

Superharmonic Function

A function V is superharmonic in a domain G if the func-

tion U = -V is subharmonic there.

It has been proved (Rado, 1949, p. 13) that if U(x, y) is of

class C2 (if its second derivative is continuous) and is a solution

of v2U = P when P is a function of x, y, u, ux, then Ti is

subharmonic in every domain G in which P> 0. Similarly it

is superharmonic in every domain G in which P < 0.

Under certain conditions the uniqueness of subharmonic solu-

tions can be proved. They can be expected to possess strong proper-

ties of smoothness provided the coefficients in the differential equa-

tion are sufficiently smooth. Subharm.onicity is only a local property.

The subharmonic functions obeys the maximum principle, that is, if

they are subharmonic in a domain G, and have a maximum point in

the interior of G, then they are only constant. Also if 4i's are

subharmonic and a s are non-negative constants then
"'nkn

is

also subharmonic in G.



Note. Since subharmonic functions automatically have super_

harmonic functions as their counterparts, it will be sufficient to use

just one of the terms only and the term subharmonic will be used in

the subsequent chapters.

In the next section, an equation governing the transition fields

in three dimensions is derived. The subharmonicity (superharmoni-

city) of the transition equation is established by using a rectangular

cartesian coordinate system.

3. 4 Three Dimensional Transition Equation

The Navier-Stokes equations for viscous, incompressible fluid

without any heat transfer are given by

Du

Making use of the identity,

2- vp + u (3. 4. 1)

where p is the density, p. the viscosity of the fluid and F the

external body forces per unit volume, being the operator,
Dt

The vorticity vector co is defined as

= vx u (3. 4. 2)
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and

1x (v x u ) = v ( u ) u. v u
2

In Equation (3. 4. I) we get

au-6-i--uxw=F-vpo+vv2u

where

2 = u eu,

1 2

p0 = p pq = stagnation pressure,
2

= kinematic viscosity.

In the case of steady flow and in the absence of any external body

force, Equation (3. 4. 4) becomes,

1 2

1 2--s--v x(ux(0)=-fiv w

45

(3. 4. 3)

(3. 4. 4)

Writing Equation (3. 3. 6) in non-dimensional form and retaining the

same symbols for the non-dimensional quantities as for their dimen-

sional counterparts, we get

(3. 3.7)

- u x = --vp0 + vv u
p

(3. 4. 5)

Taking curl of both sides of Equation (3. 4. 5), we get

2, 2-v x (u xw)= vv (v x u) = vv w. (3. 3. 6)
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Where R is the Reynolds number.

Equation (3. 3.7) is true at all points of the region. In the tran-

sition region, R is large. Since viscous effects are small com-

pared to the inertial effects in that region. In order to obtain the

transition equation we must take the limiting form of Equation (3. 3.7)

when R is large. Physically v 2w, can be interpreted as a meas-

ure of the difference between the value of w at a point and the aver-

age value of w in an infinitesimal neighborhood of this point (Hopf,

1948, p. 63). From the physical considerations it is obvious that in

the transition region vorticity is not changing abruptly from point to

point. Therefore V 2(A) is small. Since the transition region does

not include the boundary, the limiting form of Equation (3. 3.7) when

R is large yields

v x(uxw), O. (3. 3. 8)

The transition Equation (3. 3. 8) is a non-linear differential equation.

A solution of this non-linear differential Equation (3. 3. 8) in terms of

vorticity can be obtained as follows:

Let

u = curl T, (3. 3. 9)

where

u= iu+ jv+ kw



T=iF-F3G+kH,

where are unit vectors along x, y, z-axis respectively.

From Equation (3. 3. 9), we get

provided T is chosen such that

V = 0.

Making use of Equations (3. 3. 9) and (1 3. 10), Equation (3. 3. 8) re-

duces to

aH aou= ay az

a F 8Hv = - ,az ax

aG 8Fw =
ax ay

Making use of Equation (3. 3. 9) Equation (3. 3. 2) gives

2co=vxu=vx(vxT)-v T

2--v x [(v x T) x v T] = 0

Equation (3. 3. 11) shows that vorticity (0.) = -v T) plays a signifi-

cant role in the transition. A particular solution of Equation (3. 3. 11)

is
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(3. 3. 10)

(3. 3.11)

v T = (v x (3.3. 12)



v 2T x (v x T

= 2c(TiT)[-r(T,T)-(T. v)T+Sx(vxT)]
(3. 3. 14)

If we choose S, such that

+Sx(vxT), 0 (3. 3. 15)

then Equation (3. 3. 14) becomes,

v T x (v x T ) =(T T )[v ( Ts T )1,

v {2( T T )},

Therefore Equation (3. 3. 11) gives,
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where
1)1

is a scalar function. It will be shown in Chapter IV, that

the transition equation in two dimensions is v2 f(4,). This sug-

gests that the general solution should contain a particular solution of

the type

v T =c13.2T(T.T)T.

These considerations show that the solution of the transition equation

(3.3. 11) may be put in the form

2*v T = (c1)1)(v xT ) + 2c(Ti T )[ T+S] (3. 3. 13)

where the vector S is to be suitably chosen, so as to satisfy the

differential Equation (3. 3. 11). Now

1:1
T%T)[Tx(vxT)+Sx(vxT)]



v x [v 2T x (v x7)) = curl (grad (1)2(T.7f)) = 0.

Therefore the solution of Equation (3. 3. 11) is given by Equation (3. 3.

13) provided satisfies the Equation (3. 3. 15). In order to find

the vector S. let

-g-=is1+ Ts2 + rs3,

Hence

(71. v)T= (Ts1+Ts2+1783) x (v

From (3. 3. 15b), it follows that

OF = s2w - s3v,

OG = s3u - siw,

OH = s1v - s2u,

where the operator 0 is given by

a a0= F+G+H2-.ax ay az

Multiplying Equations (3. 3. 16), (3. 3. 17) and (3. 3. 18) by u, v and

respectively and adding, we get

u0F + vOG + wOH = 0;

or

(v xri).[(7.v )7f1 = 0 (3. 3. 19)
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(3. 3. 15b)

(3.3. 16)

(3.3. 17)

(3.3. 18)



or

[(T. v )71 = 0 (3. 3. 20)

From the two independent Equations (3. 3. 19) and (3.3. 20), s2 and

s3
can be expressed in terms of sl. The values of sz and s3

in terms of s are as follows:
1

s = 1(s v-OH)
2 u 1

153 = u s w+OG)

Making use of these values of sz and s3, the general solution of

Equation (3. 3. 11) may be written in the form

2 7", 1v T = (4) )(v x T ) + 24) (7.1 )[ T+-1-1 {s1(v x T )_j 0H+ k OG}] (3.3. 21)
1

Since 4)1 is an arbitrary function, the terms (4)1)(v ) and

1(v xT) can be combined together, and the Equation (3. 3. 21) then

becomes

2-4-v T =
(/1
) )(v x 7f) +

24)2
(T- 'T"')[7+-1-(-70H+COG)].
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Again, multiplying Equations (3. 3. 16), (3. 3. 17) and (3. 3. 18) by si,

S2 and respectively and adding, we get

siOF + szOG + s3OH = 0;

(3. 3. 22)



or

The right-hand-side of Equation (3. 3. 22) contains T and its

first order partial derivatives. Hence the transition field given by T

are subharmonic or superharmonic, according as

2-4-v T > 0,

v T < 0.

This establishes that the transition fields are subharmonic (or

superharmonic).

The transition equation as given by Equation (3. 3. 22) is obvious-

ly a very complicated equation and hence in general, not very many

conclusions can be drawn. But it does give some interesting results.

Firstly the Equation (3. 3. 22) contains the solution

v T = (41) t)(V xi")

as a particular case, which shows that stream lines are parralel to

the vortex lines. This type of flow is known as Beltrami flows.

Secondly, boundary layer separation in two dimensional flows is

a well understood phenomenon. This has been explained as being

caused by back flow of the fluid. But this explanation for the phenom-

enon of boundary layer separation in three dimensional flow is not

valid. From the foregoing transition analysis, it is possible to ex-

plain in general all transition phenomena including three dimensional

boundary layer separation as arising from the subharmonicity (super-

harmonicity) of the transition fields.
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IV. TWO DIMENSIONAL BOUNDARY LAYER TRANSITION

4.1 Preliminary Remarks

In nature, as time passes almost all fields steady themselves

out and thus remain solenoidal fields. When these fields come in con-

tact with some obstacle, their solenoidal character is changed. Par-

ticularly in fluid dynamics when a fluid comes in contact with some

obstruction at large velocity, the solenoidal character of the field is

destroyed. Two types of flow patterns are observed. One very near

the boundary, called the boundary layer and the other away from the

boundary that is from boundary layer to infinity. In the first region

vorticity is being rapidly diffused from a large value near the bound-

ary to zero at large distances from the boundary. As has been point-

ed out in the last chapter, this second region will be referred to as

the transition region. To be specific if the whole region is denoted by

W and the boundary layer region by B, then W - B is the tran-

sition region. A study of the transition region will be made by identi-

fying it as an asymptotic phenomenon from the boundary.

The transition equation which will be obtained in Section 4. 3 will

have the same limitations as pointed out by Reid (1965). These can

be summarized as follows:

a) In this approach one tries to express the solution of the given

equation asymptotically in terms of the solutions of a similar

52



53

but simpler comparison equation. The success of this meth-

od depends to a large extent on the particular form chosen

for the comparison equation. If for example, too simple a

form is chosen for the comparison equation, the resulting

approximation to the solutions of the given equation may be

inadequate. More precisely the domains of validity of the

approximate solutions may not contain the boundary points.

b) Approximations obtained in this way to a particular solution

of the given equation are usually valid only in limited domain.

Here we shall be considering exclusively steady two dimensional

flow pattern. In case of two dimensional steady motion of fluid without

heat transfer and in the absence of external force, the Navier-Stokes

equations (3.4.1) take the form

au au 1 ap au 82uu -+= p ax R (2+2)ax ay _

ax ay

ay ay lap ia2va2v
u + v = +ax ay pay R ax ay

(4. 1. 1)

(4. 1. 2)

where Equations (4. 1. 1) and (4. 1. 2) are in non-dimensional form

and the velocity vector q = (u, v, 0). Eliminating p from Equations

(4. 1. 1) and (4. 1. 2) by cross differentiation and using the stream func-

tion (Lagrangian steam function), given by



at:u
U = , v = - ,

ay ax

one obtains a fourth order non-linear differential equation for 4, as

where

J(.1), v 2qi) =

aLp aqJ

ax ay

av 2 av
2

ax ay

54

The motion of the liquid depends upon the non-dimensional Reynolds

number R, which is the flow characteristic of the particular fluid

under consideration, When R changes, which can be affected either

by changing the velocity or by any other factor, the flow pattern

changes. When R exceeds approximately 105, the flow becomes

turbulent.

Thus the two dimensional, incompressible viscous flow in the

absence of external forces is governed by Equation (4.1. 3). When a

body is brought into the field, the flow pattern changes. Although the

flow away from the body remains nearly uniform, near the body it

changes and vortices, spiral formations and wake are observed in the

flow field. The formation of vortex spirals in two dimensional cases

is physically a well understood phenomenon and will be explained in

the next section. In current literature this phenomenon lacks a

v4Lp + RJ(Lp, v2) = 0, (4.1. 3)
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rigorous mathematical treatment. In Section 4. 4 an attempt is made

to give a mathematical treatment of this phenomenon.

4. 2 Physical Interpretation of Vortex Formations

In order to explain the formation of vortices, consider the flow

about a circular cylinder as shown in Figure 3.

Figure 3a. Vortex formation about a circular cylinder
(Streeter, 1961).

Figure 3b. Pressure diagram referred to in Figure (3a).

In frictionless flow, the fluid particles are accelerated on the

upstream half from D to E and decelerated on the downstream

half from E to F. Hence the pressure decreases from D to E

and increases from E to F. When the flow is started up the motion in

the first instant it is nearly frictionless, and remains so as long as the



boundary layer remains thin. Outside the boundary layer there is a

transformation of pressure into kinetic energy along DE, the re-

verse taking place along EF, so that a particle arrives at F with

the same velocity as it had at D. A fluid particle which moves in

the immediate vicinity of the wall in the boundary layer remains under

the influence of the same pressure field as that existing outside, be-

cause the external pressure is impressed on the boundary layer. Ow-

ing to the large frictional forces in the thin boundary layer such a

particle consumes so much of its kinetic energy on its path from D

to E that the remainder is too small to surmount the "pressure

hill" from E to F. Such a particle cannot move far into the re-

gion of increasing pressure between E and F and its motion is,

eventually, arrested. The external pressure causes it then to move

in the opposite direction. This reverse motion gives rise to vortex

formation. The vortex becomes separated shortly afterwards and

moves downstream in the fluid. This phenomenon is usually referred

to as "boundary layer separation. " At large distances from the body

it is possible to distinguish a regular pattern of vortices which move

alternately clockwise and counter clockwise, and which is known as a

Kg.rmgn Vortex Street.

But in three dimensional flows which occur in real situations,

separation of the flow can occur without the usual flow reversal and

reduction of the wall shear stress to zero. Two-dimensional
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definitions of separation which commonly depend on these occurrences,

are useless in three dimensional flow (Streeter, 1961). In order to

eliminate confusions, a much more rigorous and general definition of

separation is required. Such a definition has been developed by

Eichelbrenner and Outdart (1954, 1955) and Maskell (1955).

4. 3 Transition Equation

As indicated in Equation (4. 1. 3), the two-dimensional, steady,

incompressible, viscous flow in the absence of external forces, is

governed by

v4Lp + RJ(Lp, v 2Li)) = 0 (4. 3. 1)

where R is the Reynolds number and i, the Lagrangian stream

function.

Two critical points of the Equation (4. 3. 1) which can be inter-

preted as transition points are,

1. When R is small.

z. When 4 is large.

Case 1: When R is small which corresponds to the physical sit-

uation wherein viscous forces are large as compared to inertia for-

ces, the limiting form of Equation (4. 3. 1) is

= 0 (4. 3. 2)



2
v4 4i v 2(.0. Physically v co, can be interpreted as a measure of

58

This corresponds to the slow viscous motion, which is usually re-

ferred to as creeping motion. In this case the fluid just creeps over

the surface and no boundary layer separation takes place. Clearly

Equation (4. 3. 2) contains both harmonic and biharmonic solutions.

The harmonic part gives irrotational solution and the biharmonic gives

the drag suffered by the body. As a smooth body can be made as

small as we like, the biharmonic part should correspond to the solu-

tion for a concentrated force acting at a suitable point in the infinite

liquid (Seth, 1958). Thus, a slow viscous motion can be expected to

be a linear superposition of two solutions,

1. An irrotational solution.

and 2. Solution for a concentrated force acting at a point in an in-

finite liquid in the direction of motion of the body.

Case 2: When R i.6 large. Physically this corresponds to the re-

gion in which inertia forces are large as compared to viscous forces.

In this case Equation (4. 3. 1) takes the form

J(11), vLIJ) = 0 (4. 3. 3)

Provided v4 does n.ot become large, when R is large. In order

to understand the implication of v4LI), it may be noted that

the difference between the value of the co at a point and the average



59

value of co in an infinitesimal neighborhood of this point (Hopf, 1948,

p. 63). From physical considerations it is clear that the distribution

of vorticity is uniform, that is, vorticity is not changing abruptly from

point to point. Hence V4 = v2co is small. Also as we shall see

later on, the solution of Equation (4. 3. ) is v24, = f(tp) and a particu-
1 mplar form chosen for f(i) will be e , where n is an integer.

Therefore for this choice of f(4,),

2 1
V = -1.7e

atii z4)a
2

(v 2LIJ) = ne )2 + e
8xax 3x2

or

4 ad,
v = ne {( )2 Ha-,. I2 en yv 4.4

ax ay

nkt, 2 1 2nkli= ne (q) + e .

where q is the velocity vector. Therefore .7 y is finite at each

point.

From the above two considerations it is clear that

4

7R '0
when R is large.

Roo.

Therefore when R is large, which is either due to V being large or 11



is small or both, the limiting form of Equation (4. 3.1) is

J(LIJ, v 24J) = 0 (4. 3. 5)

The following two points may be noticed.

When II -4- 0, this makes R large and Equation (4. 3. 1)

takes the form J(11J, viji) = 0 which holds throughout the

region including the region near the surface of the im-

mersed body. And this is the exact form of the differential

system.

But in general when R is large, p. may or may not be small.

The limiting form of Equation (4. 3. 1) is again J(Iii,vz(p) = 0,

which may be called the transition equation. This holds

good at all points of the field, excepting the region very

near the boundary, because near the boundary, viscous

lorces dominate the inertia forces.
We shall be viewing Equation (4. 3. 5) from this point of

view, that is, Equation (4. 3. 5) holds good everywhere ex-

cept in a very thin layer near the body. But it is clear that

in both cases away from the boundary, the fluid behavior

may be approximated to that of a nonviscous fluid, which is

also a justification for the Prand.tlis assumption.

Therefore the transition equation is
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or

2
(LP, v iP) =

f(LIJ)< 0

This again confirms the previous result that transition fields

are either subharmonic or superharmonic fields.

4. 4 Solution of Two Dimensional Transition Equation--
Spiral Formation
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(4. 3. 6)

In cartesian coordinates transition Equation (4. 3. 7) becomes

Evidently Equation (4. 3. 6) is satisfied when

v
2

= f(0, (4. 3.7)

where f(LIJ) is an arbitrary function of LI., and also at all those re-

gions where the velocity is zero. Since points of zero velocity are

called stagnation points, the solution of transition equation contains

the solution at stagnation points also.

Equation (4. 3. 7) is true in transition region, where f(Lli) is

any arbitrary function of qi. The only restriction on f(i) is that

If(441 should be finite. As has been pointed out in Section 3. 3,

Equation (4. 3.7) represents subharmonic or superha.rmonic functions

according as

f(4,) > 0



2x axax
2 - f(ii)

ax2 ay

a 2qi
aza7 - 41)614

Where 440(4i) = f(4i) and prime denotes differentiation with respect

to the variable qi. Let

= F(az + bz+ c) = F(X),

be a solution of Equation (4. 4. 2), then

d2Fab (1)1(F),
dX2

2dFmultiplying both sides by and integrating, we get
dX

dF 2ab() = 2c(F) + 2c
dX

where
c1

is a constant,

or

dF = 2 1/2
dX lab) [(1)(F)+11/2cl

Again on integrating Equation (4. 4. 3), we get
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(4. 4. 1)

(4. 4. 2)

(4. 4. 3)

Putting z = x + iy and z= - iy, Equation (4. 4. 1) reduces to



az + b z c = (zab)
1 1/2S chp

[(4))+c1]1/2

which corresponds to the Boltzmann distribution and in which n is

a constant, is of great physical interest. Weyrnann (1961) has used

the corresponding equation to discuss the electron density distribution

from argon plasma in shock tubes.

In the present case gip) is the vorticity which plays an impor-

tant role in the transition. Its distribution may be expected to ap-

proach the form given by Equation (4. 4.5) after a sufficient lapse of

time.

The transition equation in this particular case becomes,
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(4. 4. 4)

(4. 4. 5)

where c3 = c + c2. The solution of Equation (4. 4. 1) as given by

Equation (4. 4. 4) depends on the particular form of function f(iP).

Solutions to Equation (4. 4. 1) when f(qi) is either a constant

or a linear function of iii, exists in literature. Numerical integra-

tion has also been carried out on digital computers (Greenspan and

Yohe, 1963). This reference contains an extensive bibliography in

this field. We shall consider here a non-linear form for f(4,). The

particular case of



Let

Let

= F[A(z )+B(-z-)] + C (z) + D(z) (4. 4.7)

be a solution of Equation (4. 4. 6), where A, C and B, D are ar-

bitrary functions of z and z respectively. Making use of the

Writing in full, from Equation (4. 4. 9) we get

d2F 1 nF(X)
_ e

dX2
n

a 24i 1 r_4,e.aza-z n

Then Equation (4. 4. 9) takes the form
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(4. 4. 6)

value of 4i, as given by Equation (4. 4.7) in Equation (4. 4. 6), we

get

1 n[F(X)+C(z)+D(zF"(X) A'( z) B'(z) =-n- e (4. 4. 8)

From Equation (4. 4. 8), we get

F"(X) enF(X) (4. 4. 9)

Ar(z) = nC (z)
e (4. 4. 10)

B1(z), enDIZ ) (4. 4. 11)



where C is an arbitrary constant. Hence

dFnF+Cn22
dx = n e

or

dF
SdX + C,nF

e +C 2n2

pdp = I enF(X)dF n

On integrating Equation (4. 4. 12), we get

p2 1 nF 22 = e ±

n dF± X + - nF 2 -2
tV e n

Nrf , -1sin h (Cne-nF/ 2).-nC

Since X is the sum of two arbitrary functions, sign in front of

X does not carry much sense. Thus we have

Cne-nF/2 = sin h nC
+C1

)}.

Making use of Equation (4. 4.7), we get from the above equation

65

(4.4. 12)

(4. 4. 13)

n2 s

or



66

_12.{
nC 2sin h (X+C

1
= Cne

nC
sin h {--Nr2-(X+C )}

Cne tjAqz)B"(7)

nCsin h {(X)}
n- qzCne

Taking the case where C is zero, we get

rup
e - 2A'(z)B'(z )

{A(z)+B( )12

n n
2C(z)D(z)= Cne

Making use of Equations (4.4. 10) and (4.4. 11), we get

Since A(z) and B(z-) are arbitrary functions, the constant C

can be absorbed in any one of them. Then we obtain

N/At(z)Btr-Z)

-C(z)-D(z)} ,

(4. 4. 14)

(4.4. 15)

(4.4. 16)

Thus Equations (4. 4. 14) and (4. 4. 15) are the solutions to the differ-

ential equation (4. 4. 6). The result given by Equation (4. 4. 16) is es-

sentially the samedue to Liouville (Forsyth, 1914, P. 555).

An infinite number of particular cases pertaining to different

choices of the functions A(z) and B(z ) can be built up. Some of

them may be found to explain natural phenomena for which a number



of ad hoc assumptions have to be made if only linear form was taken

for f(4)). We shall now take some particular cases of these func-

tions.

Case 1: Let

A(z) = ln z and B(z ) = - ln z .

In this case Equation (4. 4. 16) becomes

in Figure 4.

1ln z- ln

Now let

z = rei0,

ln z = in r + i0,

in z = in r - i0.

z 7

Hence Equation (4. 4. 17) becomes

ntl, -2/r2 1
e -

The stream lines are now given by

22r 0 = constant, (4. 4. 18)

which are hyperbolic or reciprocal spirals. These spirals are shown

(210)2 2r202
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(4.4. 17)



Y

Figure 4. Hyperbolic spiral. (r0 = a)

A
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These types of spirals are noticed in the wake of two dimension-

al flow past any body at large Reynolds number. In particular these

spirals are clearly visible in case of flow past a circular cylinder

(Prandtl and Tietjen).

Case 2: Let

±m
A(z) = z

BC-z.) = (z)±m,

where m is an integer. The stream lines in this case are found

to be

r cos m0 = a

r sin m0 = a, (4.4.19)

where a is a constant. These are Cote's spirals and are shown

in Figure 5.

These types of spirals are also noticed in the wake of two

dimensional flow past a body. In particular these can be noticed in

the neighborhood of an oscillating circular cylinder (Schlichting,

p. 414).



Figure 5. Cotes spiral. (r sin me = a)
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Case 3: Let us choose

Cne

2

A(z) U(z +a),2i z

,-- aB(z) = 2i

Then we have

a2
A(z) + B( z) = U(r sin 0 -- sin 0), (4.4.20)

where

z = rei0 .

Also

U2 4
A(z) 131(z) = (r4 22-2arcos 20 +a ). (4.4.21)

4r4

Substituting these values as given by Equations (4.4.20) and (4.4.21)

in Equation (4.4.15), we get

2

a22r2 sin hnC [U(r--) sin 0]
Nr2

4 1/ 2
U(

2r4-2ar2 cos 20+a )
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(4.4.22)



In Equation (4.4. 22), C is an arbitrary constant, we can take it

as ic, then Equation (4.4. 22) becomes

--2
Cne

LP

2
2 nC a2r sin { U(r--) sin 0)

4 22 4 1/ 2U(r-2arcos 20+a )

In particular, taking the limiting case when 4, assumes large

positive values, we get (because n is a fixed number)

2
anC U(r- ) sin 0 = k Tr,

4-2

where k is an integer;

or

U (r a2-) sin 0 = Nr2kTr

nC
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(4.4.23)

(4. 4. 24)

The stream line pattern is the same as shown in Figure 1. Thus we

see that the limiting values of the stream function Lp gives the

vortex formation. The above result corresponds to the existing "cy-

lindrical vortex motion" discussed in Section 1. 5. The way "cylindri-

cal vortex" discussed here is new and different from what exists in

literature. Usually two stream functions are assumed, one specifying



the flow inside and the other outside. The constants involved are so

chosen as to match on the boundary. But here it has been shown that

such a treatment is not necessary but these phenomena can be studied

with the help of the transition equation and correspond to the limiting

value of the stream function.

From Equation (4, 4, 23) it is clear that the stream line pattern,

in general, is given by

2
2 nC aZr sin U (r --- ) sin 01

N/2

when 4, takes different values. Once again we take the limiting

case when LI) assumes large negative values. In this case Equation

(4.4. 25) gives

r4 - 2a 22 4rcos 20 + a = 0,

or

-= Cne 2 4) U(r4- 2a 2r2cos 20 - a4),

r2 = a2(cos 20 ± Nicos220 - 1).

(4. 4. 25)

Hence r is real only when 0 = 0. Thus in this case we get just
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Using Equation (4. 5.1)

nkp 2A'(z)131( z ) 1c - , 9

{A(z)+B(Z)r 2r282
(4. 5.1)

The vorticity is given by vLIJ and from Equation (4. 4. 6), we get

2 4 n4)
= e .
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two points and (-a, 0). Further if we refer to Figure 3

these points correspond to the points D and F, and these are

stagnation points. Therefore we conclude that stagnation points are

also given by the transition equation and correspond to the limiting

value of the stream function tp.

4. 5 Vorticity Distribution

In this section we shall try to analyze the vorticity distribution

as given by the transition equation. Particular forms of functions

A(z) and B(z ), which have given spiral formations are

A(z) = ln z,

B ( ) = -lnz.

With this choice of functions A(z) and B(z ), Equation (4. 4.16)

gives



V
2 2

n(r202)

From Equation (4. 5. 2), it is clear that

v4, 0 as

Therefore at large distances from the boundary, vorticity dies out.

But near the surface it becomes large and hence indicates the forma-

tion of the boundary layer. This is clear from physical considerations

also because the presence of a body generates the vorticity which is

large in the boundary layer. Mostly the flow outside the boundary

layer is considered to be non-viscous and irrotational. Fluid may be-

have like non-viscous and irrotational but vorticity is still present due

to non-viscous nature of the fluid. Therefore the vorticity distribu-

tion outside the boundary layer may be regarded as given by Equation

(4. 5. 2). This result also agrees with the physical considerations,

because near the surface vorticity becomes large and dies out rapidly

away from boundary.

4. 6 Conclusion
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(4. 5. 2)

From the above considerations it is clear that fluid flow in the

presence of a body at large Reynolds number R can be divided into

two regimes.

1. Boundary Layer Region: This is a thin layer in the
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immediate neighborhood of the body in which viscous forces

dominate inertia forces and large vorticity is present in

this region.

2. Transition Region: This is the whole region excepting the

boundary layer region. The equation satisfied by the

stream function Lti in this region is

Besides other known results, this equation yields

Spiral formation.

Stagnation points.

These two results are not given by existing boundary layer the-

ory. It has also been shown that the non linear vortex formation,

which is observed at separation and in the wake of real fluids is given

by subharmonic fields. These subharmonic fields also include stagna-

tion points, solenoidal fields, spiral fields and vortex formation. The

transition equation also explains the formation of "cylindrical vortex".

The way this is obtained here, is new and different from the existing

treatment. Usually two stream functions are assumed, one specify-

ing the flow inside and the other outside the boundary. Then they are

matched on the boundary. But here it has been shown that there is no

need for this type of matching but these come out from the transition

equation itself. In fact these phenomena are given by the limiting



values of the stream function

In current literature most of these phenomena are treated as

individual phenomenon and it is made out that a global representation

is not possible. But it is clear from the analysis in this chapter that

such a global representation is possible and for two dimensional flow

it is given by the equation v 24, = f(qi).

77



78

V. AXISYMMETRIC BOUNDARY LAYER TRANSITION

5.1 Preliminary Remarks

The transition equations for three dimensional and two dimen-

sional flows have been obtained in the preceding two chapters. In this

chapter we shall analyze the transition of steady axially symmetric

flow from the boundary layer to the main stream. Axisymmetric

flow has been treated separately, because the boundary layer which

occurs in the case of flow past axi- symmetric bodies has practical

importance such as in aerodynamics.

5. 2 Axisymmetric Transition Equation

In order to obtain the transition equation, consider the non-

dimensional form of Navier-Stokes equations for steady, incompres-

sible flow with constant viscosity and no external force in non-

dimensional cylindrical polar coordinates (r, 0, z).

2au u au aur u ap 1 2 2 Due
u

0 r
+ + u - (v u- 2- ae r2ur ar r ae z az 2 ar R r

(5. 2. 1)
au u au au uu0 au ulap 1 2 2 r0 0 0 () r

ur ar r ae z az 4
+ + u ae tv r2 ae r2 '

(5. 2, 2)



where (Air' u uz) are the components of velocity in radial, tangen-

tial and axial directions respectively. Assuming that the quantities

involved are independent of 0, and also that u 0, the above

equations of motion become

auz u0 Duz Du ap 1 2
u + + - +r Dr r ao z az az R z

and

aur aur ap 1 , u ----)2

ur Dr + uz az - - R r 2'

auz auz ap 1 2

ur ar uz az - - .az R

The equation of continuity is

(rur) (ruz)a ,

If we choose the velocity components as,

atii laqiU--, u = -r r az z r ar '
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(5. 2. 3)

(5. 2. 4)

(5. 2. 5)

(5. 2. 6)

(5. 2. 7)

where 4i, is the Stokes stream function, Equation (5. 2. 6) is auto-

matically satisfied. Eliminating p from Equations (5. 2. 4) and

(5. 2. 5), we get



where

. a
a z

Du au Du Duaur r, a z
Dr

uz z a r Dr
u z az

1r 2, ur, a r 2=[{v v u - _ uzr 2 ar

The left hand side of Equation (5. 2. 8) can be further simplified by

substituting the values of ur and uz from the Equation (5. 2. 7)

and carrying out the indicated differentiations. Then by rearranging

the terms we obtain for the left hand side of Equation (5. 2. 8) the ex-

pression

J(D2

where
la la la2

r2 ar2 - r3 ar r2 az2

akp

Dr az

Also the right hand side of Equation (5. 2. 8) can be simplified by using

the values of ur and uz from Equation (5. 2. 7) and we obtain the

expression

rv 2(D244
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(5. 2. 8)

(5. 2. 9)

and

J(D2 =

a 2(D2ip) a 2(D2,4J)

Dr az



Making use of the above simplifications the Equation (5. 2. 8) may be

written as

2 a
2 18 82

=
+8r 0z2

T +ar az2

1J(D2 qi) = yi[rv
2

(D2 ]

This equation is true at all points of the region. In order to obtain the

equation governing the transition region, we have to take the limiting

form of Equation (5. 2. 11), when R is large, because in the transi-

tion region viscous effects are small as compared to inertial effects.

Therefore the axisymmetric transition equation becomes

J(D2 LIJ) = 0 (5. 2. 12)

This equation has the same limitations as pointed out in Chap-

ters III and IV.

5. 3 Solutions of the Axisymmetric Transition Equation

A solution of Equation (5. 2. 12) is

D2LI.) = f(kli) (5. 3.1)

where f is an arbitrary function of

Now we discuss a particular form of the function f(LIJ) which
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(5. 2. 11 )
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is of interest as depicted by many natural phenomena. As in Section

4. 5 choose

f(11,) = entli .

With this choice of the arbitrary function f(Lii), the transition equa.-

tion becomes

D2qi = enqj . (5. 3. 2)

In order to study different types of flow patterns which can exist in an

axisyrnmetric flow we look for some solutions of the transition Equa-

tion (5. 3. 2).

Case 1: Firstly, we study the solution of the transition Equation

(5. 3. 2) which is independent of z. In this case (5. 3. 2) becomes

1 8 , 1 a LIJ
= emp .ar r ar n

Setting r2 = x, and 2-Lij = L, Equation (5. 3. 3) reduces toax

dL 1 qi
= en

Integrating Equation (5. 3. 4) twice, yields

sin h-1(C e
2

1

C 1x+C 2

Nr2-

where C1 and C2 are constants of integration.

(5. 3. 3)

(5. 3. 4)

(5. 3. 5)



Now replacing x by r2 and rewriting (5. 3. 5) we obtain

C
1

e = sin h
C r2

12
+ C2)) .

Now we can determine the velocity components from (5. 3. 6). By dif-

ferentiating Equation (5. 3. 6) with respect to r, and with the help

of (5. 3. 6) we obtain

2

Cr11
u =

1 .L 1- cot h { (
z r ar NTT 2

+ C2)) ,

which at large distances from the body becomes

r2
z3/2

Nr2C
1 Also a

83

(5. 3. 6)

(5. 3. 7)

case of particular interest arises when we choose C1 = C2 = 0, then

Equation (5. 3. 6) gives

(5. 3. 8)

In this limiting case the stream lines are circles given by

r = constant.

Thus the solution of the transition Equation (5. 3, 2) independent of z

predicts a flow pattern for which the velocity at infinity becomes uni-

form and the stream lines are circles r const, in particular

case when the constants of integration are set equal to zero. This

type of stream line pattern has been observed by some workers



(Batchelor, 1967).

Case 2: Another particular solution of the transition Equation

(5. 3. 2) which is of interest may be obtained by starting from the

equation

z a a Ili I 114
D TTI:(7ar) r2 3z2 T.; e

and setting

= ruti + 2 in T.

Then Equation (5. 3. 9) then becomes

2
a a

LIJ1
qia 1 2, `Pi 1r -e .ar r arr) +

az2

A solution of Equation (5. 3. 10), which is independent of r, is given

by the equation

C e
1

2
d

dz2
= e1 .

This equation can be treated exactly in the same manner as Equation

(5. 3. 3). Therefore a solution of Equation (5. 3. 11) is

±1= sin h { (C1 z+C2 )}
t\f-T

where CI and C2 are arbitrary constants.
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(5. 3. 9)

(5.3. 10)

(5.3. 11)

(5. 3. 12)



Putting the value of 4)1 interm of i and taking C2 = 0, we get

The limiting form of the stream lines, when Cl 0 is given by

e
iqj ±rz

that is in this case the stream lines are given by

rz = constant.

This type of stream line pattern is observed (Schlichting, 1968) for

the laminar circular jet, which leaves a small circular opening and

mixes with the surrounding fluid.

1- nip
C e 2

1
= r sin h{4-2-(C1z)}.
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VL EXTENSION OF TRANSITION CONCEPT TO
MAGNETOHYDRODYNAMICS

6. 1 Preliminary Remarks

Magnetohydrodynamics is a branch of continuum mechanics

which deal with the motion of an electrically conducting fluid in the

presence of a magnetic field. The motion of a conducting material

across the magnetic lines of force creates potential differences which,

in general, causes electric currents to flow. The magnetic fields

associated with these currents modify the magnetic field which cre-

ates them. Thus there are two consequences:

An induced magnetic field associated with these currents

appear, perturbing the original magnetic field.

An electromagnetic force due to the interaction of current

and field appears, perturbing the original motion.

These are two basic effects of importance in magnetohydrody-

namics. These two effects can be examined individually in any parti-

cular problem. In this chapter we shall be concerned with the two

dimensional flow of a conducting fluid in the presence of any arbitrary

magnetic field and extend the transition concepts developed so far to

magnetohydrodynarnics. In particular the following two aspects shall

be examined;

1. Boundary layer thickness in magnetohydrodynamics.
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2. Global representation of phenomena which exist in case of

transition from boundary to main flow, when Re (the

Reynolds number) and R (the Magnetic Reynolds num-

ber) are large.

Note: In this chapter the symbol 1MHDI will be used for mag-

netohydrodynamics.

6. 2 Magnetohydrodynamical Boundary Layer Thickness

The earliest known published works treating a problem in the

flow of an electrically conducting fluid through a magnetic field are

those of Hartmann (1937) and of Hartmann and Lazarus (1937). Since

then a number of publications both theoretical and experimental have

appeared. These publications include the following categories:

Flow past bodies of various shapes (Chandrasekhar, 1953;

Michael, 1954; Stewartson, 1956; Rossow, 1958; Stewart-

son, 1960; Chawla, 1968;) etc.

Flow in channels (Chandrasekhar, 1951; Shercliff, 1953;

Stuart, 1954) etc.

Astrophysical aspects of magnetohydrodynamics (Batchelor,

1950; Elasser, 1954) etc.

Magnetohydrodynamic waves (Alfven, 1943; Lundquist,

1949; Banos, 1955) etc.

In the present investigation we shall discuss how the
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magnetohyd.rod.ynamic boundary layer thickness is to be obtained on

the basis of the new ideas concerning the boundary layer itself dis-

cussed in Chapter II.

The formation of the boundary layer is intimately connected

with the process of diffusion and convection. As an illustration con-

sider a fluid motion past a hot body. If the motion is slow or the con-

ductivity high enough, diffusion is dominant and convection can be ig-

nored, but if the motion is fast or the conductivity low, the heat dif-

fuses with difficulty out into the main stream as it passes and the

thermal disturbance is confined to a boundary layer and wake, called

thermal boundary layer. More precisely, the conditions for these ex-

tremes to occur are respectively small or large values of the thermal

Reynolds number, commonly known as the Peclet number, VL /a,

where V is a typical velocity, L a typical length scale and a

the thermal diffusivity.

The term "Reynolds number" refers to the quantities of the

form {VL/(d.iffusivity)}, which measures the extent to which a con-

vection process prevails over a diffusion one. Besides thermal Rey-

nolds number, there are two other commonly used Reynolds numbers;

they are

R= VL/v (ordinary Reynolds number),

Rm = VL/X. (magnetic Reynolds number),
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at
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1where v is kinematic viscosity and X = = magnetic diffusivity.
1-"T

In viscous flow the viscosity causes vorticity to diffuse in the

face of convection, and the ordinary Reynolds number measures the

power of convection over diffusion of vorticity.

The equation for vorticity is given by

a() 1 2-*= curl (V x0))+ w,a t Re

where 0, is the vorticity.

In the above equation the first term on the right hand side is the

convection term and the last term is the diffusion term. When con-

vection dominates, that is when Re is large, we may expect vis-

cous boundary layer outside which the inviscid approximation will

apply.

In MHD the equations for the motion of magnetic field corres-

ponding to the vorticity equation mentioned above is

--.. -4. 1 2 -...
- curl (V x B) +m v B,

where B is the magnetic field.

As before, if convection dominates diffusion that is when R

is large, magnetic boundary layers near sources of field are to be

expected; elsewhere the approximation of perfect conductivity would

be valid. On a broader basis Zhigulev (1959) defines a magnetic
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boundary layer in the immediate vicinity of the plate a layer such that

magnetic field disappears in the basic flow and remains only in a thin

layer adjoining the surface of the plate. The magnetic Prandtl num-

ber is R /R . When it is small, as it is in liquid metals and lowm e

temperature plasmas, magnetic fields diffuse much more rapidly than

vorticity and magnetic boundary layers are much thicker than viscous

ones.

From the above two considerations it is clear that if R is

large as compared to one, then convection dominates over diffusion

and viscous boundary layer forms. Similarly if R is large as

compared to one, then convection of magnetic field prevails over dif-

fusion and a magnetic boundary layer is formed. Thus if both Re

and R are large as compared to one, then both the magnetic and

viscous effects will be predominant near the boundary. Thus it will

be of interest to consider the MHD boundary layer, which is the

viscous boundary layer as affected by magnetic effects. To be speci-

fic, MHD boundary layer is the viscous boundary layer in case of

a conducting fluid in the presence of a magnetic field. This magneto-

hydrodynamic boundary layer is definitely different from viscous

boundary layer because due to finite conductivity of the fluid, the in-

duced currents within the boundary layer tend to spread away from

the wall, pushing the vorticity out of the magnetic boundary layer.

This results in the thickening of the boundary layer (Chawla, 1967).



We shall estimate the MHD boundary layer thickness on the basis

of magnitude analysis as discussed in Chapter IL In order to do that,

we sum up the basic differential equations in the case of incompres-

sible MHD flow. Under the usual MHD approximations the equa-

tions are (Shercliff, 1965, p. 24)

---- a Bcurl E = - (Faraday's law),at

curl B =1.1,j (Ampere's law),

B = 0,

div j = 0 (Kirchhoff's first law),

j = o-(E+VxB) (Ohm's law, without

Hall effect),

d iv ( p 7-17 ) = (continuity equation),at

2 1
p + grad p= j xB+ v V + grad (divV),Dt

where

V = velocity vector,

p = density of the material,

cr = electrical conductivity of the material,

B = magnetic field,

= the electric field,

j = current density vector,

= permeability of the material,

= viscosity of the fluid.
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(6. 2. 2)

(6. 2. 3)

(6. 2. 4)

(6. 2. 5)

(6. 2. 6)

(6. 2.7)
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After some simplifications, the equations governing the vectors

and B can be obtained from the equation (6. 2. 1) to (6. 2. 7) as

div = 0 and div = 0, (6. 2. 8)

and

aTS + (V, grad)E - 2= ( grad)V. + Xv -1-3,at

V. grad)V) + grad p = (f3- 0 grad )13' v 2-17-

In order to estimate the magnetohydrodynamic boundary layer

thickness for a two dimensional flow, consider a two dimensional

problem then the components of the vectors V and H may be

taken in rectangular cartesian coordinates as

V = (u, v, 0)

and

= (H , H , 0).x y

With this choice of vectors V and H the Equations (6. 2. 8) to

(6. 2. 9)

(6. 2. 10)

where

(6. 2.10) for a steady case may be written in non-dimensional form as



OH OH Z
Hau au 1 a 2u a 2u

u + v - R (H +H ) = 2---(P+R ) + (-2-+-7)Ox ay H x ax y ay ax H 2 Re ax ay

(6. 2. 11)

av , av OH OH
, 1 82v a 2v1u + v v-- -F

Ox ay (H ---L-'7. Hylay ) - - aay (p +RH H22 / + Re x ax2+ ay2 /x ax

(6. 2. 12)

aFix
OH 82H2

2

+ v - (H +H ) = (a Hx ,

8 H

2
au aux)u

1

Ox ay x ax y ay R 2 ' (6. 2. 13)
m ax ay

OH OH

1

82}1 82H
u + v - (H 1924 H ) = ( Y+ Y)

Ox ay xax y ay2 2
Rm ax ay

au av
Ox ay

arix OH
_ o

Ox ay

where the same symbols have been retained for the non-dimensional

variables as for their dimensional counterparts and

VL
R (Reynolds number).

e v

VL
Rm - = (magnetic Reynold number).

X

p.H

pV2
(magnetic pressure number).

Rh = 0L(2r
)1

/ 2 (Hartmann number).
ri
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(6. 2.14)

(6. 2. 15)

(6. 2.16)
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Here V, L, Ho are some characteristic velocity, length and mag-

netic field. The order of magnitude of different terms involved may

be taken as

and

y- 8, v - 6 , u 1,

Also the Hartmann number is

cr 1
1\1

magnetic forces tvTR R R (6. 2. 16)Rh = I.LF1 Li(0 ri viscous forces e H m

In view of Equation (6. 2. 16), Equation (6. 2. 15) may be rewritten as

- 1, H , where 0 < k < 1.

With the help of these estimates, the orders of magnitudes of differ-

ent terms in Equations (6. 2. 11) and (6. 2. 12) can be estimated as dis-

cussed in Chapter II, Section 4. From Equation (6. 2. 11) the order of

the ratio of the magnitude of viscous forces and magnetic forces is

1

1
6RR

1

viscous forces 1
5magnetic forces ReRH

(6. 2.15)

(6. 2. 17)

where p is some rational number. The last estimate in (6. 2. 17)



follows from the consideration that the ratio of viscous to magnetic

forces is of the order of some power of the Hartmann number which

characterizes the MHD flow. On simplification Equation (6. 2. 17)

gives

RS St5 - Rrn Rh

where

-k+1s and p - 2 t.

Equation (6. 2.18) gives the magnetohydrodynamic boundary lay-

er thickness in terms of two parameters s and t. These two

parameters are, however, to be determined in an actual physical sit-

uation by experiments.

6. 3 Two Dimensional Transition Equation in
Magnetohydrodynamics

In the MHD case, the idea of transition and transition region

is basically the same as discussed in Chapter IV for two dimensional

ordinary hydrodynamic flow, the only difference being that in MHD

two non-dimensional numbers Re and R are involved instead

of one (Re). Here the transition equation will be the limiting form

of the governing differential system for large values of Re and R

and the transition region will be the whole of the region excluding the

MHD boundary layer.
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Two dimensional, incompressible, steady MHD flow is gov-

erned by Equations (6. 2. 11) to (6. 2. 16). If we write

and

aLp
u

ay
aqiv ax

acp aci)
Hay' y ax

then the Equations (6. 2. 15) and (6. 2. 16) are automatically satisfied.

Eliminating the pressure term from Equations (6. 2. 11) and

(6. 2. 12) and making use of Equations (6. 3. 1) and (6. 3. 2), we get

1 4J (v
2

LP) - R J (v2ci), (1)) = v ,
xy Hxy Re

where

J (v
2

xy

Therefore the transition equation is

(v 24J, tp) - R J (v 2,1), ,1) = 0,
xy H xy

which may be rewritten as

J (v 24J, - RH J (v 2(1), ci)) O.
(Hi cOLIJ

a 2 a 2
(v 4J) 57 (v IP)

aqi akti

ax ay

(6. 3. 1)

(6. 3. 2)

(6. 3. 3)

(6. 3. 4)

(6. 3. 5)

A solution of the transition Equation (6. 3. 5) can be readily written as



and

where k is a constant.

2
v f(c1),

a
79T (Jxy(tli, 0,

ac (Jxy(44,1))) = 0.

Obviously Equations (6. 3. 9) and (6. 3. 10) will be satisfied if

J ,4)) = k, (6.3. 11)xy
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(6. 3. 6)

(6. 3. 9)

(6.3. 10)

and

v
R1 f(c0,4J), (6. 3. 7)

where f is an arbitrary function,

af af
I and f

aLP (I) acl)

Similarly, the transition equation for large values of the magnetic

Reynolds number Rm can be obtained from Equations (6. 2. 12) and

(6. 2. 13) in vector form as

curl (V x H ) = 0. (6. 3. 8)

Making use of the values of V and H as given by Equations (6.3.1)

and (6. 3. 2) in Equation (6. 3. 8) and after some simplification, we get
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A general solution of the differential Equation (6. 3. 11) can be written

as

= OP.) + Cx + Dy, (6. 3. 12)

where C and D are constants and cl) satisfies the differential

equation

The solution of the differential Equation (6. 3. 13) is

(1)1(kx+ Doi), ky- = 0,

where is an arbitrary function.

Making use of Equations (6. 3. 12) and (6. 3. 13), a solution of the dif-

ferential Equation (6. 3. 11) may be written as

= g(Ax + By+ E) + Cx + Dy, (6.3. 14)

where

BC AD = k.

In like manner ot) can be obtained as a function of x and y.

With this choice of solutions for .01) and 11.1, it is clear that

interaction between H and V may be neglected in the transition

C 214)- - D kay ax (6. 3. 13)

region as can be expected. With this in mind, the solution of Equation



(6. 3. 5) as given by (6. 3. 6) and (6. 3. 7) becomes,

and

2
v LP = f (LP),

2
v (4)).

(1)
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(6. 3. 15)

(6. 3. 16)

It is clear from the above analysis that in the case of MHD

the transition equations are given by Equations (6. 3.5) and (6. 3. 8)

and our object is to find solutions for these equations. These equa-

tions will be satisfied if qi and ci) have forms similar to the one

given by Equation (6. 3. 14) and are solutions of Equations (6. 3. 15) an

(6. 3. 16) respectively. In the remainder of this chapter, we shall dis-

cuss some cases of special interest.

As discussed in Chapter IV, Section 4, the function f(ti) may
LP

be chosen as

By making the substitutions

z = x + iy,

z = x - iy,

Equation (6. 3. 15), with the help of Equation (6. 3. 17) becomes

f emp .
14J n

2
a Lp 1

en4i

(6. 3, 17)

(6. 3. 18)



and qi may now be taken as

= F[A(z)+ B(-z- )+ E] + C ( z ) + )

where A, C and B, D are arbitrary function of z and z

respectively and E is a constant.

Equation (6. 3. 18) is exactly of the same form as Equation

(4. 4. 6) and hence its solution may be written down readily from Equa-

tion (4. 4. 16), that is

e
ZAI(z)Bt( z )

{A(z)+B(-z- )}2

Here A(z) and B(z ) are arbitrary functions, therefore an infi-

nite number of particular solutions can be built up for different

choices of these functions. In particular the following two choices of

A(z) and B(z")

A(z) = ln z, B(Z) = - ln

and

A(z) = B(7) = (7)±ni

give spiral formation, as discussed in Chapter 4, Section 4.

From the above analysis it is clear that, in general, spiral for-

mation can exist in MHD cases also. Besides spirals, all those

phenomena which are discussed in Chapter 4, for ordinary viscous
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flow can also take place in MHD, because in these two cases the

transition equation is the same. But it should be clear in our minds

that it is not necessary that these spirals should exist in each MHD

case, because they depend on the type of the magnetic field affecting

the flow (Sears, 1960). In some cases the effect of the MHD forces

produce vorticity and in other cases they may supress the vorticity

depending upon the nature of the magnetic field.

A similar analysis can be carried out for the case of the func-

tion cl) also.



VII. SUMMARY, DISCUSSION AND SCOPE OF
FURTHER RESEARCH

7.1 Summary and Discussion

The problem involved is the investigation of interaction or bor-

der fields, which may be called the transition fields, without assum-

ing the ad-hoc laws. The presence of spin, rotation or vorticity in

the transition makes it a non-linear, irreversible and non-conserva-

tive phenomenon and hence cannot be treated satisfactorily by pertur-

bation techniques. It seems very possible that while the basic mech-

anisms may differ greatly in their nature, the properties of the aggre-

gate take only restricted forms. Thus, though the formulation and

explanation of isolated processes is very important, a full interpreta-

tion makes the study of combining these processes in terms of aggre-

gate structures no less urgent. An attempt has been made in this

thesis, to reexamine the underlying concepts in the case of transition

from a boundary layer flow to the main stream, where a laminar flow

exists. The classical boundary layer theory due to Prandtl is based

on his main assumptions that (1) in the boundary layer the viscous

and inertial forces are of the same order, (2) the transverse velocity

in the case of a flat plate is taken of the same order as that of the

transverse coordinate, (3) the variation of pressure in the boundary

layer is negligible. On careful examination, it becomes clear that
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the above assumptions are not quite reasonable. In the present inves-

tigation the boundary layer thickness is estimated without making any

of these assumptions since the ratio of the viscous to the inertial

forces varies continuously from infinity near the boundary to zero at

the outer edge of the boundary layer. Also the order of the transverse

velocity need not be the same as that of the transverse coordinate and

the continuity of the pressure across the boundary layer comes out

from the transition analysis and therefore it is not necessary to as-

sume it.

By an order of magnitude analysis of different terms in the

Navier-Stokes equation, an estimation of the boundary layer thickness

for two dimensional flow is obtained in terms of two parameters. One

of these parameters depends upon the relative order of magnitude of

viscous and inertia forces at the outer edge of the boundary layer and

the second depends upon the order of vorticity allowable at the outer

edge of the boundary layer. This general result includes all the

known estimations for boundary layer thickness as particular cases,

and Pra.ndtlis result as a very strong limiting case. This result

shows that usually the boundary layer thickness is greater than that

given by Prandtl. This is otherwise also clear, because Prandtlts

result does not take into account the vorticity which may exist outside

the boundary layer, whereas our result includes this effect. Also the

ratio of the viscous to the inertia forces varies from infinity near the
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boundary to zero at the outer edge of the boundary layer, it assumes

the value unity somewhere within the boundary layer. Thus Prandtl's

boundary layer thickness is much smaller than what the actual thick-

ness should be.

In order to study the transition region, limiting form of the

Navier-Stokes equations is obtained for the large values of the Rey-

nolds number. The equation so obtained is called the transition equa-

tion. This equation holds good at all points of the region excepting

the boundary layer and thus includes the main flow and the stagnation

points. Owing to the importance of the vorticity in the transition re-

gion, the transition equation is solved for the vorticity. The form of

the vorticity shows that, in general, the transition functions are ei-

ther subharmonic or superharmonic functions. Heuristically this is

otherwise also clear, since any transition in harmonic or biharmonic

fields, which permeates the natural phenomenon, may be expected to

exhibit itself in terms of the allied subharmonic or superharmonic

fields. The transition equation in three dimensions is very compli-

cated, but its general solution in terms of vorticity, includes the

Beltrami's flow, which can occur in three dimensional flows.

In particular the transition equation for the axisyrnmetric and

two dimensional flow is also obtained. Some particular solutions of

axisymmetric transition equation are obtained including as special

cases the flow patterns obtained by earlier workers. The prime
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object of obtaining the transition equation in this case is to give a

global representation to the different phenomena which exist in an

axisymmetric flow.

As has been pointed out earlier that the vorticity plays a domi-

nant role in the transition, therefore the transition equation for two

dimensional flow is solved for vorticity. The form of vorticity again

confirms the previous general result that the transition fields are ei-

ther subharmonic or superharmonic fields. The transition equation

so obtained is solved by noting that the vorticity in the transition re-

gion may take the Gaussian distribution form after sufficient lapse of

time as is evidenced by available informations concerning natural

phenomena. This solution is obtained in terms of two arbitrary func-

tions. An infinite number of solutions can be built up for different

choices of these arbitrary functions. One particular choice of this

function has given the spiral formations which exists for a real flow

past any body, and for which no treatment exists in current literature.

Another choice of these functions has given the formation of "cylindri-

cal vortices. " This indicates that it is not necessary to study the

cylindrical vortices by assuming two stream functions and then match-

ing them on the bounday, as is currently done. But these can be stud-

ied with the help of transition equations without any such matching

technique. These cylindrical vortices correspond to the limiting val-

ues of the stream function. The two dimensional transition equation
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also includes the main flow and the stagnation points. Therefore it

can be summed up that the transition equation is a global representa-

tion of all the phenomena which exist in the transition region for flow

past a body at large Reynolds number.

The transition concept has been extended for the MHD case.

In this case, the MHD boundary layer is defined as the viscous

boundary layer in the case of a conducting fluid in the presence of a

magnetic field. The MUD boundary layer thickness is also ob-

tained on the basis of a magnitude analysis, in terms of two param-

eters, which can be obtained for any particular flow on experimental

basis. Also the transition equations have been obtained for MUD

case, which are the limiting forms of the usual MHD equations,

for large values of the Reynold and magnetic Reynold numbers. The

solutions of these equations shows that in general, spirals can exist

in MHD cases also.

7. 2 Scope of Further Research

An example of shockwave transition for one dimensional com-

pressible flow as done by Seth is discussed in Chapter I. This result

can be extended on the basis of transition concept to two and three

dimensions and for various types of shocks.

As has been pointed out earlier, non-linear vortex formation

which is observed at the separation and in the wake of the real fluid
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is represented by superharmonic or subharmonic functions. This is

a theoretical result and this result could be identified with experimen-

tal data.

The present concept of transition analysis of boundary layer can

be extended to wake, separation and turbulence and the results so ob-

tained can be confirmed with experimental results.
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