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ESTIMATION OF THE POPULATION TOTAL
WHEN THE SAMPLE IS TAKEN FROM A LIST
CONTAINING AN UNKNOWN AMOUNT OF DUPLICATION

CHAPTER 1
INTRODUCTION

The problem considered here arose in connection with a sample sur-
vey of the owners of fishing licenses. The objective of the survey was
to estimate the total number of fish caught. A list of fishing Ticenses
was available from which to select a sample, but since it is possible
for one individual to buy more than one license, the same fisherman
could appear two or more times in the list. The presence of an unknown
amount of duplication causes much difficulty. Two distinct conditions
exist. One can either determine how many licenses each person in the
sample has, or this cannot be determined. ‘The estimate of the total
number of fish caught for the first condition was obtained by Rao [14].
We shall consider only the estimation of the total number of fish caught
for the second condition.

In an abstract setting, there is a list of a known number, N, of
units (licenses) which is subdivided into an unknown number, M, of dis-
tinct classes, Cj, j=1, 2, ..., M (each fisherman represenﬁs a class of
Ticenses). If the number of units in a class is Ry, thenji?i = N. The
class of a unit is readily identifiable when the unit is examined. To
each class, a measurement, Y3» (the number of fish caught by the fish-

erman) is associated. From a sample of size n, we wish to estimate the



. M
total of these measurements, T = Yjs without knowing the Rj values

'Y

J=1
for units in the sample. Several researchers have proposed methods for
estimating the total number M of distinct classes. In this thesis we
generalize five of these methods to obtain estimates of the population
total, T. Note that in the special case when yj = 1 for all j, the
total is simply M.
The statistical methods used in this study can be classified as
follows:
(A) Nonparametric models
(a) Samptling without replacement - Goodman's Method
Goodman offered an unbiased estimate of the total
number M of distinct classes. In this thesis we gener-
alize his estimate to find the unbiased estimate of the
population total, T.
(b) Sampling with replacement - Good and Toulmin's Method,
Harris' Method, and one of Efron and Thisted's Methods
Good, Toulmin, Efron, and Thisted obtained reason-
able estimates of the total number M of distinct classes.
Harris found approximations to the supremum and infimum
of these estimates. We generalize these results to find
estimates of the population total and approximations to
the supremum and infimum of the estimates.
(B) Parametric Models
Sampling with replacement - Good and Rao's Method and one of

Efron and Thisted's Methods
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Good, Rao, Efron, and Thisted found reasonable estimates of
the total number, M, of distinct classes by assuming gamma and/or
beta distribution. We generalize these estimates to obtain esti-

mates of the population total.

The performance of each method was tested on a set of simulated

Notation

We define the following notation:

N: the Tist size

M: the number of distinct classes of the list

Cj: the jth class (j=1, ... , M)

2K the measurement of the jth class

M

T = ji]YJ: the total of the measurements of all classes

Rj: the number of units in the jth class

q: the maximum number of units contained in any class,
i.e., g = max Rj

=1, ... , M

Jy: the collection of indices of all the classes consisting
of & elements, i.e., J; =‘{j:Rj=2}

Xj: the number of units in the jth class showing in the
sample ‘

z§r) = yjl{r}(xj) where I(.) is the indicator function

Yj if the jth class has r units in the sample

0 otherwise



M (r)
Hence I Zj is the total of the measurements of all the classes
31
having r units in the sample.

1 if the jth class shows in the sample

(SJ =

0 otherwise

y. if the jth class shows in the sample

e - J

Y3785%;

0 otherwise

M n M (r)
Ts=ZY:;=Z I Z:; : the total of the measurements of all classes
=1 % k=1 =1 |
that show in the sample
T': the total of the measurements of all the units of the
M
list, i.e., T' = I R;y:
j21 37
Té: the total of the measurements of the units of the
n M (r)
sample, i.e., T; = Ir :z Zj
r=1 \j=1

dj: unit i of the random sample for i=1, ... , n
Py the probability that the ith unit of the sample is

in the jth class, i.e., Pj = Pf{diecj} > 0 (not

depending on i)

We regard the random sample of size n as being the basic sample.
We imagine a second hypothetical sample of size tn. Since the esti-
mates of the population total based on Good and Toulmin's method,
‘Harris' method, and Efron and Thisted's method are the prediction of the
population total that will be observed in the second sample of size N

where t = —%— » we need the following notation:



X}t): the number of units of the jth class showing in the

second sample of size tn

(r) - (t)
zy o (tn) =yl G
yj if the jth class has r units in the sample of size
tn
0 otherwise
)
Hence = Zj (tn) 1is the total of the measurements of all the
J=1

classes having r units in the sample of size tn.

G(t) 1 if the jth class shows in sample of size tn

0 otherwise

(t) y:; 1f the jth class shows in the sample of
Y.(tn) = y.¢. = size tn
J J J
0 otherwise
M n M (r)
Hence = Y.(tn) = % 1 Z% '/ (tn) 1is the total of the measure-
j:] J r=1 j:] J

ments of all the classes in the second sampie.



CHAPTER 2

GOODMAN'S METHOD

2.1 Introduction

In this chapter the sampling is done without replacement.

n
Goodman [8] offered the unbiased estimator I A;f; of the total
i=1
i I -n+ -3
number M of distinct classes, where A; =1 - (-1) ) >

n

a(a-1) ... (a-t+1) for t >0

a(t) = and fi = the number of classes

1 fort =0
containing i units in the sample. Knott [13] showed that by considering
a second sample of size tn = N he got the same unbiased estimator of M.
We generalize their results to find an unbiased estimator of the total

M n M (r)
T = Y - The unbiased estimator is 1 Ap| Zj

j:] r=1 J:]

2.2 Derivations

M
In order to find the unbiased estimator of T = Z y5 we need:
J=1

Assumption: The sample size n is not less than the maximum number, q,
of individuals contained in any one class.

This assumption is reasonable for our practical problems.

)
o o [
Lemma 2.1: E{ % Z.r)} = g \rn-rj ( 5 yj)
ge=r

a7 N .
j=1 (n) J€J2



R.{[N-R,
Mo(0)] M ( f«)( n-f«)
Proof: E z L; = 3 ij{I{r}(Xj% = LY
J= Y

Using this Temma we obtain an unbiased estimator of T in the follow-

ing theorem.

(r)
Theorem 2.1: Let A, =1 - rN-ntr-1]7 s
P 1) n(r)

(t) a(a-1) ... (a-t+1) for t> 0
where a =
1 for t =0

n M ( ) M
Then E| = A T Z. = I Yj -
r=1 J=1 J j=
n M (r) n
Proof: E| = Ar T Z. = 3
r=1 "\j=1 J r=

i

1
™

hopffaf - or o]

=% 3y, =" y. by lenma 2 of [8].

2=1 jEJQ J J =] J
An alternative derivation of the result in Theorem 2.1 can be ob-

tained as follows:



Theorem 2.2: Suppose the statistics W], Wo, ... , W, are the solution

of the system of linear equations

N-2
oz, e gn lrliner W forr=1, 2, ...
=17 per *

Proof: The same proof as Theorem 4 of [8].

Therefore z WR is an unbiased estimator of T.

=1

There always exists a unique solution of the system of linear equa-
tions in Theorem 2.2 since the determinant of the coefficients of wz,
2=1, ... , n is not equal to zero. The following theorem shows that
) wz is an unbiased estimator of T', the sum of the measurements of
2=1
all the units of the 1list.
Theorem 2.3: If w1, e s wn are as in Theorem 2.2,

Then E{z" 2 Wy =T,
2=1

Proof: Recall Té, the sum of the measurements of the units of the

sample, and note that

(r)
s e (M 7]
r=1 |\ j=119

21 N-2
r=1 | 2=p N g

n

Ts



n
n «n
= — 2 W
N Ty
Thus =" ]z w2 = —%— Ts, so
2:

Elz" s W | =1".
(m “)

In some of the later chapters the problem of estimating the total
is considered as the prediction of the total of a second sample drawn
from the same infinite population. Here we give the similar result for
a second sample from a finite list. The following theorem gives an

unbiased estimator of

Hence E; T

L§=r

by lemma of [11]



Remark:

(3)

10

In other words, is an unbiased

estimator of = yj .
Jedp
M n M (r)

Note : Y:(tn) = ® £ Z. (tn). An unbiased estimator
5=1 9 r=1 j=

M n M (r)
of E|] £ Y.(tn)] = £ E| £ Z, (tn)
L=13 J r=1 L=1J }
‘n—tﬂ
2 - - Zs .
r=1 s=r (s =1~ (2) j£1 !

M
If tn = N, then an unbiased estimator of T = 3 g
J=1
NI
nl nsN M (s M M (s
is I tj- - AR = I Ayl 2 Z; L Thus, Theorem
s=1 (s) =1 s=1 \j=1 9

2.4 leads us to the same estimator of T as Theorem 2.1

does.

The following theorem shows the variance of the unbiased estimator

n M
A [z
p=1 " (

(r)
=)
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Theorem 2.5:
n M (r)
Varlriﬁr(ji]zj ﬂ:
n n q q \
1 515 e zi1cov(l{”}(x ) Tty ))(JEJhy)(iedz‘yk)
v€Jh
wedg

q
- z COV(I{r}(X )s {S}(X

)\’ y?-’\‘
5

h=1
vedy l ved,
W€Jh
M (r)\ n n M (r) M (s)
Proof: Var Z A T Z. [= I I AMAg CoviZ Z , L Z.
=1 "3 ] e e 19 e
n n
= T X AATIysy Covilen(X:), Te3(X)]
r=1 s=1 ijk {Y‘}J {S} k
where
0 Jj=k and r#s
, , - v oao =
Cov(I{r}(Xj), I{s}(Xk)) = Var(l{r}(xj’) j=k and r=s
\
COV( {P}( X:)s “{S}( ): J#k

2.3 Discussion

Since W =

n ( M (r)

negative, we consider other possible estimators of T.

M (r)
$ Z.

(1) In many practical problems ;
j=1

) , the unbiased estimator of T, can be

is small for r > 3, and a
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M (1) M (2)
reasonable estimator is W = A, =z Z. + A, I Z
1.2.45 2.k
J=1 J=1
N o onn-1y M@
n TS “n{n -1 EZs.
=17
N y noM (r)
(2) Another estimator sometimes used in W' = — Tg = — 1 1 Z.
§ N op=1 =19

It may be shown to overestimate when q # 1.
If the value of W is positive, then it is reasonable to use W as
the estimator of T. If the value of W is negative, then we might con-
sider W'. And if the value of W' is negative, we might prefer to use

W" as the estimator of T, which is always positive.

2.4 Example

Consider a list of size N = 14,115 with M = 12,000 distinct classes,
9,885 of them having 1 unit and 2,115 of them havingbz units. Suppose
the measurements Yjs j=1, ... , 12,000, are from a Poisson distribu-
tion with mean 15. We simulated a sample of size n = 1,000 without
replacement from such a population.

Let ny be the number of classes that occur once in the sample and

let no be the number of classes that occur twice in the sample. We

Mo(1) Mo(2)
obtained ny = 968, ny = 16, £ Z. =14,669, £ Z: = 56. The unbiased
=17 =17
M Mo(1) M (2)
; - s W = N (N-n+1) (N-n) -
estimate of T jz]yJ is W " ji]zj + {] - n(n-1) ji]Zj

163,652. In this example, the measurements of ¥; are actually random.
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The expected value of T is 12,000 x 15 = 180,000. Using the expected
value of the Poisson variables the variance of W is Var(W) = 89,166,177
and the standard deviation is 9,442.78. The relative standard deviation

is 0.0577.
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- CHAPTER 3

GOOD AND TOULMIN'S METHOD

3.1 Introduction

In this chapter the sampling is done with replacement.

Good and Toulmin [7] considered the problem of sampling an infinite
population and found an approximate relationship between E[f.(tn)] and
E[fy] where f,. is the number of distinct classes which are represented
exactly r times in the basic sample and f,.(tn) is the number of distinct
classes which are represented exactly r times in a second sample of size
tn:

ELfn(tn)] = t"
;

I~ 8

r

(-1)"(”")&-1)" E(fm)

0

They they define an estimator of E[f.(tn)] by

~

fo(tn) = t"

™ 8

S CRIRA

i=0

They use the approximation
Cov(f,, fg) = 8.E(f,) - 2'”‘5(”:5)E[fr+s(2n)}

to obtain

. .22
(t-1)21(r+1) E(fr+4

p 2r
Var(fr(tn))z t r

i ™M 8

i=0

r

- (2”)(2t)‘2” E[fZF(Ztnﬂ

We generalize these derivations to obtain an approximate formula

M (r) M (r
for E| & Zj (tn)} in terms of E| z Zj . From this we obtain an
J=1 j=1
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M
approximate formula for E[ b Yj(tn% ,» which lead us to an estimator of
3=
M ‘
T= 1z Ys- We also derive an approximate expression for the variance
3=1

of this estimator.

3.2 Estimation of the Total Measurement T

Suppose that Cj is the jth class and d; is the ith unit of the

random sample. Hence

Pr{diECj}=P.>O fOY‘j=],...,M,‘i=],...,n

j
M
and © P: =1,
=1
M (r) . . M (r+i)
Theorem 3.1: E| T Z (tn)] =t 1 (-1)‘(t-1)‘(”’;‘)5{ T Z;
=1 i=0 =1

Where I is some integer such that I << n-r.

(r) M

b’jyj {tn) P§(1 - P.) “‘”(1 + _PJ__) ~(t-1)n

n ™M=z

Proof: E
J

j=] r J ] - PJ-

I
e =Z
—
<

ct
=
e e i

0
s
———————

—

[}

e
(&)
LS

3

H

-~
—e
N~ 8
o

1

—

P
-t 1

-—

~—

\_—?—-‘

0
Cdg
RS

-—

0
<a
D

1

—

1
—
[ e B3
o
————————
-3
+ =
—
——
[4
[
—_
[
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For i << n-r we have r+i << n, and i << (t-1)n, so
(tn)(-(t-])ﬁ , ;
r i L _(tn) (-(t-1)n) (r+i)! _ i,r ilr+i
= == (-1)'t (t-1)
‘ ; ’ rl il ' r
r+i : :

Hence, retaining only terms with i << n-r, we obtain

(r) , M (r+i)
J j=1

M R I . .
Corollary 3.1: E{ P (Z(.r)(tnch: t' 3z (-1)‘(1;-1)1(‘”:1)E{
=1 i=o j

Proof: The same as that of Theorem 3.1.

"MZ
B ™M o

(0 en [

1 i=0

M (r)
j=1

. M (r+i)
(-1)1( )(t 1) (j§1zj ) :

M
(2) E{ z YJ } {| } =
j=1 J

zY; for large t
j=1

M n M (r) n o I ;
(3) E| zY¥;(tn)| =€ £ z2Zy (tn) = 3t 3 (-1)
j= lr=1 j=1 r= =

. M (r+1)}
E 'E]Zj

Remark 3.1: (1) We define an estimator of E{

A

-
Il M

Y;

n M=

i

!
M=
‘<
r"‘%
—
1
-0
(S
g
o
-
|
=
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M M I . M .
e zy.-f 2249 g D' (t-1)"el = A1)
j=1" =13 1 = j=1 9
M ' I i Mg
= A N (-1 (te-1)"El z A
r=1 {j=1 " i=1 j=1 9

M
(5) Therefore, we can estimate T = % yj by
J=1

I
ij(tn) =T - 2

i{i) ) when t is
S 13

large.

However, the factor (t-1)' increases rapidly

with i if t > 2 and attaches weight to terms for

: Mo
which = Z§1) is small. This is likely to produce
J=1
a large percentage error when estimated from the basic
sample. We follow Good and Toulmin in using a sum-
mation method to try to overcome this difficulty.
(6) In the case when the second sample is an enlarge-

ment of the basic one, the expectation of the new

total measurement is approximately

M M
(1) 2 1 - en? z 2P

Jj=1 j=1

- ...

3.3 Variance of the Estimator of T

In this section we find the variance of
no . M .
il ¢ 24
] j=1 19

jE]YJ(tn) = Ts -

™M o~

3
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M (r) M (s)
First, we find Cov| ¢ Zj s Z .
j=1 j=

Theorem 3.2: For rs << n,

]
™
—~
1
—
o
[
|
=
-+
7
+
fond
m
[ !
W ~M=
—
e,
N
-
=
+
wn
+
[
—
3]
d

12
-
(%)
m
| grosmmmnmmaam |
[}
M=
—
——————
~N
. o~
-3
—
N
| S )
+
m
[ pusnme—— |
.
N M=
—
N
e o~
-
S”
) I—
m
[ S—]
[ 4]
n M=
—
N
Q. o~
[%2]
S
| W

- 27rs :__!:! E!:ji](zj n

1 ifr=s5s
where § =

rs 0 otherwise
M(r)
Proof: E = Z.
=19 A

« i [ M \
IR ji]yjl{r}(xj)( jilyjl{s}(xjv
M M

T % yay E{I (X )T, (X ﬂ
j=1 k=1 KT e 3 sk

n~M=

1l

2 B
i3 E[I{r}(xj)l{s}(xk)] * §¢iyjykE[I{r}(Xj)I{s}(xk)}

M

2
T Y.OE{ T (X-)] + I zy:y E{I (X)), (X J
rs 52173 { {ri‘hJ 32K JKE e 3 s Yk

1]
[og]

1 if r=s

0 if r#s
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[ ( '
r) |2 ni r, s n-r-s
B2 ) ] P Y risTnors)T "5 Pk (] - Py - Pk)

3k

? 2r) + n! R y.P "p. 31 ‘P | p n-r-s
g\ o rlsi{n-r-s)! 5 K ik’ "k TN T Tk

-3y 2p S _pp |n-r-s
J‘JJ J

") e ! : s
s E| £ {z. + n: oy PP S s [ S)pY
rs [:].=]( Jj ) r!s!(n-r-s)![:j Eyjyk J Pk uio u PJ

N ™S

' et ’ e n-r-s
(] ) Pj) )(v o(S)PkV(] ) Pk)n S V) ( wio (1Y

(-1)“(“'F'S)P.“(1 - pj)"”'s'“)] by (26), (27) of [8]

o E g (Z(r) )2 st NI (_i5W(§)(r)(n-r—1
rs 521\ risi(n-r-s)! U,V ujfiv W

SISy P_r‘+u+w _ p |N-r-u-w stv+w ; n-s-v-w
i kP 1 PJ Pk 1 Pk
J
n-r-s : -
o3 (_])u (n-:-ﬂZwﬁzpjr+s+u(] _ Pj)n-r-s-ﬂ
u=o0 j

s E g Z(r) 2 n! i'w é r\/n-r-s
L P T Y TsTn-r-s)! u 6 w(- ) (u)(v)( W ) ‘

r+utw : n-r-u-w S+V+W
Ty .P. - P. —Soy-
(ijPJ (] PJ) ) (iykpk (1 - Pk>" >V W)

n-r-s :
S (e (n-:-s)zyjzp_r+s+u(] ) Pj)n-r-s—e]
u=o jd i
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M
= GrsELz](Z?”’ H ) VR e

Mo
|z ogrrut) gl g glstvan) gy (ebstu)l
j= J j=1 J u ristul

if u, v, w, r, s are all << n, then the coefficient in

UV
) ) and when u=v=w=0, use

the first sum is 0((rs/n
of Stirling's formula shows that it is 1+0(rs/n).

Hence if rs << n it is proved.

Remark 3.2: :
M M M
=13 = j=n 9 u



21

i) 12
fol

nm~M=
N~ =

I ™M =

Theorem 3.3: Var Z(r) (tn)] = t2r- (t—])Zi (r:i)z c
j]J i=0 J

Mol
- (ir)(zt)'zrﬁ[ 5 (zgzr) (2tn)) Zjl§
J=1

where I is an integer such than I << n-r.

Mm @ : N
Proof: Var| 1 z\") (tn)] =varlt" z (-1)] r:1 (t-1)" z z{r+i)
LJ=] J i=o0 j=1"
2r) i+k itk fr+i} [r+k M (r+i) M (r+k)
=t o (-1)" " (t-1) (r( )Cov 7z , I 73\
1.,k=0 j:] j:] J
= 220y (1)) T r”)(”k) & E| 2 (zkrﬂ) )2
i,k=0 riLr j=1
| v Tm
_ pm2r-i-k 2::;+k)E A (Z(Zr+1+k) (2n))2
=it
2r] 21 [r+i} 2 o (r+i) ) 2
=t z (t-1) E| = (z }
i=0 r J:] J
> ) g -2r-g | M (2r+g) 21 (2r+g)!
SRR DAt BN b (2n)] %] 2eH]
2=0 J=1 o
TR (i)
Y
i,k=0
w M .
= 27 ¢ (t-1)2 (r+1 2 g g |z{r+1) ) %
i=o j=1\ 7
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ml (2 .
- (2t) 2‘"(”}5[ 5| zg r)(ztn))"}
sk
Remark 3.3: .
Since ZQ.(tn) = Iy, - g Z(O) (tn),
J I 55
M M
Var{ 2 Y.(tn) = Var| z ZQJ) (tn)
\5=1 =19
© .M . M
= 3 (t-1)% z A1) ﬂ - {.Z](Z(jo) (2tn))2
= = J=

"
nm™ 8
—
+
1
—
~—
m

I
N~ 8
o

~~
(—f.
]
—
o
N
—
rm
—
o
n~m=
—
T — Ty T —
N
LI.A
v v
<\./

——

[
1
-
N~ o8
o
~~
1
—
o
—
~~
N
(—f.
]
—
o
—
m
| 5N 1]
o
N~ =
—
— T —
N
L'/‘\
-—
o
— e
(LA |

3.4 Summation of the Series

Euler's transformation with parameter q, generally called the (E, q)

o

. .M .
method, is a method of forcing series like (-1)! (t-])%{ z (2(.1) M ,

i=1 j=1\
oM
(t—])m{ ; (z(.‘) H
1 =1y i

verge rapidly. This is to transform the series

o8
no 8

i 1

r
(-1)1(2t-1)1ELg (z(.i) H , etc. to con-

j=1
0]

09

™ 8

ai into
0 J

(4]
o8

;
1 Jlsy oo
(q) . ——= NAPRES
where aj = (q+1)J+] 130 A

o . . M .
First consider 3 (-1)](t-1)1E[ z Zg1) } . In our example,
i=1 i=1
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M (r
E[ I Zs } generally decreases slowly for r > 2 and so we will write
j=1 -

(-1)i(t-1)iE{ : z(i)} . -(t 1)5{ z(])J
L I UL R

J
M _(2) 2 %, i i
+ El = Zj (t-1)° = (-1)'(t-1)". We apply the (E, q) method to
j=1 =

n~M=

Remark 3.4: -

.(tn) in Remark 3.1.(5). The summation

Recall the estimator 3 YJ

J=1
in that expression has upper limit I. Let us, however, change. the upper
1imit to = and then use Euler's transformation to obtain

M n M (r) M (1)
E( T Y.(tn;’ ~ 3 E| 3 Z; + (t-1)E Z; .l
=19 1 pm j=1 J j=1

-~

.(tn) is a reasonable estimator of T

We previously argued that = YJ

J=1

when t is large, say t = —%— . We now see that another expression for
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a reasonable estimator of T.is

n

N
M n M (r) : M (1) ——-1" M (2)
EY.(tn)= £z 1z, +N _4q zgz C_LN z 7. .
j=1 r=1 j=1 4 3=1 =

]Yj(N) = —$}'T; , Which is the natural estimator of the

population total when there is no duplication.
To obtain an approximate expression for the variance of
M - i [ w0, o S 2
v Y.(tn), now consider 3 (t-1)°'Ef 1 |Z. and y (-1)'(2t-1) E| = Z; .
2 d - s B 2 .
= J=1 i=1 J=1
;

J=1 ;
In our examples, E{ Tz ?} is nearly constant for r > 2, and so we write

o M e Ml ) M (2)
z (t—1)21E{ 5 (z§1 Jz - (t—])ZE{ 7 (z§ )ZJ + E[ 7 (zj )%}
i=1 j=1 =1 =1 i

2i

(t-1)21.
2

ne g

, we obtain

[ ()
e H+

Applying the (E, q) method to : (t-1)
i=2

- ul G)
z (t-])Z]E[ z (2.1 )2] o (t-])zE{
i=1 j=1 J j
i )
1 - (t-1)° [g§1 I

Also, we can write

(-1)1(2t-1)1E{.
j

{1 B 4
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Applying the (E, q) method to I (-1)'(2t-1)7, we obtain

;
. Aml G ml
(-1)"(2t-1)'g| = (Z§1))2 = -(2t-1)E| I (zg ))2
1 j=1\ j=1 I

(2t-1)2 M (2))2
+ 2 f oz |z, .
’ L=1( :

Remark 3.5:

n o~ g

.i

Using Euler's transformation

Mo Ml (1) 2 Ml (2)
2 2 4t°-10t+5 2
"""'{jiﬁj(tn)} "t EL]{ZJ' )J M c=n EL.Z,(ZJ' ) J

To obtain an approximate expression for variance of

M" S foys 1 M (2+4)

Z Y.(tn), now consider = (-])T(Zi])(t-])15 z (Zj %} and
j=19 i=0 ¢ j=1

2 yif1+ i M2

z (-1) ] (t-1)'E} = Zj . In our example,

i=0 j=1

MI{ (r) _ .
Bl z|z; | s (];1), and ,2;11 generally decrease slowly and so we
j=1 J t |

- o M (2+9)) ) M [ (2+i e . :
5 (_])1(2;1 (t-1)1E{ : (Z( +1) 2| el 3 (ZS 1))2 5 (—1)1(t-1)1.
i=0 =Y ] Y i=0

Applying the (E, q) method to I (-1)'(t-1)', we obtain
i=0
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: (-0 ST (e : 7(2+1) 2
i=0 j=1
M
- —%—-E r 782) 2 Lng
=17
w© . Mo (1+i) Mo(1) M (2)
z (-1) ];‘ t-1'E 1 Z. 2 g gz, -2tV 54
1:0 J:] J j:] J t j:] J
Remark 3.6:
M n (0)] o [ ] et [ 1@
Var| z Yj(tn) = Var| T Z, + (t-1)Var] Z Zj + —=—Var Iz,
J:] j:] J J:] t j:] J
| M) M (1) 2 Mo(0) M (2)
- 2(t-1)Cov| 3 Z. , T Z. | + ZLEEll—-Cov 12 s I
j:] J j:] J j:] J:]
3 M (1) M (2)
- zii%ll— covl £ 2. , £ Z. |.
j:] J j:] J

Without considering Euler's transformation we obtain

[ M (o)]
Var| ¢ Z.

[m (1) 'M( (M, o ilowst [ M ((2+n)2
.| = E| 5|2y -2 g (-1 El 5 |Z.
Var ji]ZJ | jz] ; 120( ) ( 2) j§1 ;

R
1
—
M~ 8
—
~~
1
—
o
-y
m
ey
.
M=
——
p————— e
N
. —
-ty
S
'\__/
—_",

[

- .
w Y M (4+1)

Var Z. = E -6 I (-1)1(421}E T (Z. )2

j -I J - hj - -i=0 -Jz-l J

[m (0) M (1) w . M (i+1) 5
Cov| £ Z; » zZ; |=- x (-1)(i+DE x |7,

J:] J J:l i=0 J:]

M (0) M (2) @ a M (2+i)
Cov{ t Z. , = Z. ® - I -1)1(2;1 El | Z. 2

j=09  j=17 i=0 j=1 J

r .

M (1) M (2) © a Ml 3+ )

Covi t Z. , = 7. =3 3 (-1) 321 E| = Zj 2

=19 g=1 =0 j=1
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With the use of Euler's transformation we obtain

mo(0) [ (1))2 K ( (2)),)
Varl © Z. =~ El z]Z. - Ef © |Z,
j=1 " j=1 J [ §=1 J i

M) FM( (1))2 (1 @),
Var} ¢ Z. = Ef £ |Z., -El 12
j:] J J .‘J:] J J:]( J J

Var-jzlzj -~ E jz] Zj .J— 6 1.20(—1) ( 4 )E[;E] zj ) J
[ M 1)] M M| (2)
Cov] = ZSO), : zg . E| = ({]) % +E| z (Zj )2
U 5=1 5=
(M (0) M (2)] M
o129 1y 1l
J=1 j=17 i 5=1\ J

[ M M o .
Cov| I zg]), z zgzil .3 I (-1)‘{3*3:1 E[
=0 J

1

3.5 Example

Consider a list of size N = 14,115 with M = 12,000 distinct classes,
9,885 of them having 1 unit and 2,115 of them having 2 units. Suppose
the measurements‘yj, j=1, ..., 12,000, are from a Poisson distribu-
tion with mean 15. We simulated a sample of size n = 1,000 with
replacement such a population.

Let ny be the number of classes that occur once in the sample,

Tet ny be the number of classes that occur twice in the sample, and

let n3 be the number of classes that occur three times in the sample.

Mo(1) M (2)
We obtained ny = 900, np = 47, n3 = 2, I L. = 13,461, = Zj =
j=1 J j=1
M (3) M (1) 5 M| (2) 2
671, © Z. =233, : Zj = 214,613, = Zj = 10,157, and
j=11 j=1 j=1
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fl &1

M (3) 2
I Zj = 549. By remark 3.1.(5),
J

-~

33t3 - 770t% + 14902t - 66 (see Figure 3.1)

il

M
LY.
z J(tn)

j=1

149,734 when t = N/n = 14.115.

il

M
Therefore, we obtain the estimate of T = 3 yj is 149,735 without
J=1

considering Euler's transformation. If its variance is obtained by

Remark 3.3 (i.e. without using Euler's transformation), then

~

~ 1 M
Var{ T Yj(N{} = 3,138,255,014.82, its standard deviation is 56,020.13
j=1

and its relative standard deviation is .3741. If its variance is ob-

tained by Remark 3.5 (i.e. using Euler's transformation), then

~

~ M
Var{ X Yj(N)} = 42,481,045.82, its standard deviation is 6,517.75 and
j=1

its relative standard deviation is .0435. Using Remark 3.4 we obtain

M"u
5 Yj(tn) = 12,790t - 671/t + 2046 (see Figure 3.1)
j=1
= 182,529 when t = '/ = 14.115.
M
Therefore, we obtain the estimate of T = Y3 is 182,529 with Euler's
J=1

transformation. Using Remark 3.6 without using Euler's transformation, we
find that the variance of the estimates is 41,158,599.42, its standard

deviation is 6,415.50, and its relative standard deviation is .0351. Using
Euler's transformation we find its variance is 42,645,357.32, its standard

deviation is 6530.34, and its relative standard deviation is .0358.
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Figure 3.1
3080808 _
2320008 |
530808 |
-+
1588808 |
’/
L /
1690980 | /,/
o ’/
’/
’/
Soaese ,/’/,
’/
//
|
By —+— ——t—+—+— t
= = 8|8 ® 2? =®B B =2 8 8B 8=
M
—— £ Y.(1000t) is the prediction of £ Y.(1000t) without Euler's
Jj=1 J j=19 transformation
MY M
— £ Y.(1000t) is the prediction of = Y.(1000t) with Euler's
j=1 J j=1 J transformation

This figure shows the predicted population totals with and without
Euler's transformation based on a sample of size 1000 where the
Yj's are from a Poisson distribution with mean 15.
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CHAPTER 4

HARRIS' METHOD

4.1 Introduction

In this chapter samples are taken with replacement.

M
In Chapter 3 we found that the estimator of %

Y3 using Euler's
j=1

transformation gives a reasonably good answer in our examples. Harris

[10] gives us a check on the accuracy of this estimator. His approach

M
offers approximations of the supremum and infimum of E{ pX Yj(tnﬂ
) Jj=1

which for large t is approximately equal to T = Y- If an estimate

T

j=1
of T falls wihtin these bounds, we can regard it as reasonable (from
this rather conservative viewpoint).

Define d to be the number of distinct classes observed in the
sample and d(tn) to be the number of distinct classes which would be

observed in a second sample of size tn. Harris [10] showed

oy = (t-1
E[d(tn)] = E(d) + E(f]?/(; ]__e_(—bi

X
(r+1)1E(F. 1)
r r+1
J[¥ dG(x) = {62

where f.. is as in Section 3.1 and G is a constructed cumulative distri-

d G(x)

and

bution function. Harris computed the supremum and infimum of E[d(tn)]
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taken over all cumulative distribution functions whose first k moments
are specified by'[;rdG(x).
Now we generalize his computations to obtain the supremum and

M
infimum of E[ T Y-(tnﬂ
j=1"

4.2 Derivations

Lemma 4.1: For large n we have

. M M iy

and

Proof: M [ ﬂ
ZYsil -{1 - P, -
X7 i
(i), |37

nA
n
[ =
o
<
s
"
0]
1
=]
o)
e
1
e,
—
1
)
[
| Y
| S

-nP. ( J
J _ AL
Sup e 1 P;

J

By Harris' proof on p. 545 [10], we know

-nP.
sup € ~- h . ?Jlf- -~ 0 asn-+w

-nP
J 1-e J
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r
(i1) As stated by Harris, (2} = DT'EXP [- Eﬁ%ﬁll} and

(1-p"" - exp{-(n-r)P - iﬂ%ﬁlﬂ—} for P < 1.

Hence, we have

M r, o J
s eyl © oy (n P -p
j=1 r jepd ) i)
p -r{r-1) )
= g Y-(nP.)re_n J M e 2N Pg e-(n—r)Pj -(n~r,Pj
J=1 S J - 2 yJ
Y‘! J:] r’
M -nP.
- y.{nP,)r J ,
z e _
L 1 - expipp. - Xlr=1) _ (n-r) , 2
J=7 r expL Y‘PJ o > PJ
o)
(a) If P Z ]/n2/3 s then
r
Z] Ziiﬂsii— e_nPJ 1 - exp[rP - r(£‘1) _ (nér) PJZ
r: J n
P'IZ /n2/3
r+2
= _o 13
) y (nP,Jr -npP {qu y.}n 3.n
=0 e <2 + 0
P>= /n2/3 " r!
J

as n - «
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1
(b) If P < /n2/3, then

T r 'npj
1 : yj[nPJ e r(r-1)  (n-r 2
PJ.< /213 o 1 - exp rPJ.— o '\Z)Pj - ...
-nP.
r J
z yJ{nPJ'} €
g
-nP.
r J
yJ.{nPJ.] € 1 r(r-1) (n-r), 2
- expirP,. - P, - ...
] r!
< Pj< /%/3 -np
r.oJ
yj("Pj} e
r!
‘ =
sup ) _r(r-1) (n-r) , 2
RUF AL exp[rpj Zn 2 %y T
O(]/n%) I
=1-e L

Now we have by lemma 4.7.(i)

M M M ~tnP.
_ N _ ]
EL’E]YJ(U@ 'Elyj[] (] PJ) ] j= 3[] ) ]

J

12
™
<

which is

M —nPJ. M -nP. -tnP.
zoysll - e + ryle Joe I
J=1 J
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M nP.
(1) J
= E(T.) + E| z 2\ M -npP.
S Jj=1 J z y.[nP.)e J
i=1 J J
-nP.
I y.nP.e J
np.sc 3
Define F(c) = & P . One readily observes that F(c)
"L y.nP.e
j=1 J J

is a cumulative distribution function, and it depends on the unknown

parameters (Y1, Yo, ««. » Yy» P1s P2y wnn s PM)' We have just shown

that

| Theorem 4.1:

M M ® -(t-1
El = Y.(tnﬂ = E(T.) + E| = (}) ’/r 1-e (t-1x dF(x).
=1 J S (=1 J 0

X
J=

Remark 4.1:

(1) We can follow the procedure of Harris to obtain upper

0

and lower bounds of/_ 1-e
0 X

-(t-1)x

d F(x) for any

cumulative distribution function F with given values

of the first k moments. By substituting those bounds

in the equation of Theorem 4.1, and also substituting
M M

1 1
T. for E(T.) and 3 Z( ) for E| £ Z. , we obtain
s s 55179 2179




Theorem 4.2:

M
z
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M
upper and lower bounds of E[ g Yj(tn% .
J=1

To apply the procedure of Harris (see Section 4 and

5 of [10]) we only need to specify the moments

Uy i/; X' ¢ F(x). "Since F(x) is unknown, we use the

approximation
M r1 P
oyt 1) zyj(nPj) e
r+1)! 1 Z, - J=1
m, = j=1 3 because w,. = M -nP,
M (1) Z y.nP.e
% Zj 3=
J=1
M (r+1)
(r+1)IEl = Z
~ j=1
Mo_(1)
El ¢ Z,
j=1"

M

The bounds for E[ z Yj(tni] can be used as bounds for
j=1

T if t is large. As indicated in Remark 3.4, t = N/n

seems to be a good choice for t. The following theorem
M
shows that the estimator = Yj(tn) in Chapter 3 is the
j=1
" -
same as the =& Yj(tn) above if we replace I by .
j=1

A

M (.I N -
T Y (tn) =T +| 17, f = d F(x)
J:'I \] j=] \] O
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Harris showed (see p. 540 of [10])

0]

J[a} - e (e d F(x) = J[ JC‘tX d F(x) dt

0 X 0 0

whereJ/—e"tX d F(x) is the moment generating function of (-X).

0
M
(r+])!4j.z Zgr+])}
Since u, * MJ=] ,
(1)
E| = Z,
=1
we have
M +'l
o L D) (1) x AT
Jr e tX g4 F(x) = x y J=1
0 r=0 c %1)
=17

Upon 1ntegrat1ng'J/ﬁe'tx d F(x) term by term, we get
0

., 0

( e
j=1 1 X r=0 j
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4.3 Example

This is the same example as that in the last chapter. By Remark

4.1.(2) we get

M (21///

m 21 ¢ Z.
1 . ,
j=1" J

S 2) 0147092
m 31z Z. Z. .
SRS

When we do not consider the addition of any moment constraint

(1)
3

n~m=

.0996954

1
1]

I =

(i.e., k=0), we have

M M (1) ] - e-(t-])x
sup X Y.(tn) = T, +| 3 Z; T9m
=1 J=1 J X0 X
M M
= I Y.+ (t-1) 2z,
=17 =17
= 14165 + 13461(t-1)
= 190,706 when t = N/n = 14.115
M Mo(1) | _e-(t-1b M
inf x Y.(tn) =T +| z Z. 1im 5 = 5 Yj
j=19 S 13=19 b =1

= 14165.

The lower bound 14,165 seems quite conservative because, as
noted in Section.2.4, the (expected) value of T is 180,000. If we
add the first moment constraint my, then using Theorem 9 in [10], we
conclude that

M

inf ¢
5=

¥;(tn) = 149186.2748 - 135021, 2748¢ ™~ 0996956 (t-1)

=112,663.8231 when t = 14.115.
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If we add the second moment constraint m,, then using Theorem 9 in

[10], we conclude that

M v (tn) my, - mlz y 1 - e-(t—])x P m12
sup = Y.(tn) = { ———
P j=19 My X_:mo X mo
mz

-(t-)my | M M

1 em PA LU R B
2 =1 =1
my

71448.54382 + 4365.250075t - 61648.79308

119,795 - when t = 14.115,

From Theorem 9 of [1G] the extremum which is attained for any moment
constraint (m;, ... , mr) is not improved by the addition of the

-~ N

M M
(rt1)st moment constraint. Since % Yj(N) = 149,734 and : Yj(N) =

3= 3=1
182,529 are between 14,165 and 190,706, the bounds for k=0 make our
estimator appear reasonable. But this is not true if we use the upper

bound for k=2. Our feeling is that the bounds for k > 1 involve too

many approximations to be accurate.
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= = 8 ®8 =2 @B B8 2 =

Approximat&ons of the supremum and infimum of I Yj(1000t)
j=1
sup I Y.(1000t) without moment constraint
j=1
M
inf : Yj(IOOOt) without moment constraint
j=1
M
inf ¢ Yj(1000t) with the first moment constraint
J=1

This figure shows the approximations of the supremum and i

3

[ e ey = = - -
+ — ¥ + = ¥ ¥ - F##.;q t

-

nfimum

of population total based on a sample of size 1000 where yj's are

from a Poisson distribution with mean 15.



‘ CHAPTER 5

GOOD AND RAQ'S METHOD

5.1 Introduction

In this chapter sampling is done with replacement.

From Chapter 3 we have the model

(M1) y ) 1 | F oy
M1 Ef = Z. P., j=1, 2, ... , M |= Zy(
j='| J J j:] Jir

r n-r
. - P.
2 (1 J)
and

. M n ]
E[Tsle, i=1, 2, ... ,h4]= jf]yj{ -(1 - Pj) ,

or when n is large enough from Chapter 4 we have
-As. T
M NP
Y,o=1, 2, ., M.]: s &l
J:

=

{ (r)
(M2) E| 1 Z,
j=11

where Aj = nPj. Also

M As
E{Tsl*j, i=1, 2, ..., M‘}z 5 ij1 - e JJ .

§=1

As prior distributions for Py, Pp, ... , Py and Ays Ao, ... , Ay We

take beta distribution and gamma distributions respectively. We cal-
M (r)

culate the posterior means of ji]zj and Ts’ which involve the

parameters of the prior distribution. In dealing with the model M2

(with y; = 1 for all j)» Rao [13] offered the pseudo method of moments

to estimate the parameters of the gamma distribution. We extend this
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method to model M1 and to arbitrary yj' The expression for the poste-

rior mean leads to an estimator of T.

5.2 Derivations for Ml

Let f(P;a,8) = ETElES'Pa-1(]'P)B—]’ 0 < P <1, be the density

f a beta distribution such that 9§§-= M.
Therefore
M (r) M 1
EoEl =z, IP., 3=1, 2, ... o ml= 2y ™ PT(1-P)"Tf(pse,B)dp
| J ._"Jir
.J_] J_] 0

.
~ [ Bt (J-i 1}

M 1
EE|T lp., §=1, 2, .. WM |= Iy, 1 - (1-P)"} £(Pse,8)dp
P St J J.__]J
0

If we can estimate o and B, then we can form the following estimators

M
of Iy,
j=1?
M (r)
. T Zj
T (M1,r) = J=1 - for all r (5.1)
(n) B(atr, gtn-r
B(a,8)
T
or TZ(M1) = S (5.2)
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Let f.. be the frequency of the classes represented by r individuals,

M

E ﬁ}

EPE[fr

i.e., T Then

M=

nip r n-r
j ](r)Pj (] - Pj) , SO

Pis 3715 2, oo M] = (Q) B(“E%&’E““T‘Ll

P., 3=1, 2, ... , M] =
J

5.2.1 Pseudo Method of Moments for Estimating « and 8

Let S denote the number of classes observed and R the number of

individuals observed. Then

n n
S= I fr s R= % rfr
r=1 r=1
n
- n| B(otr, g+n-r) (5.3
and EPE(S) ril(r) B(os B) (5.3)
n
- n\ B(atr, g+n-r) 4
£ ER) rif('”) e Bter) (5.4)

Consider the equations obtained by equating the observed values of
S and R to their expectations. If these equations can be solved, we

use the solutions as estimates & and é of o and B.
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' M
5.2.2 Variances of the estimators of & yj
(I) Find the variance of %1(M1, r) :
The variance of %1(M1, r) is
M (r)
Var{T](M1, r)}z ag Var(S) + bg var(R) + cg Var{ T Z. )
=1
Mo (r)
+ 2a.b,. Cov (S, R) + 2a.c. Cov|S, ji]zj
M (r)
+ Zbrcr Cov|R, .é Zj . (5.5)
Jj=1
M (r)
Since R = n, Var(R) = Cov(S, R) = CoviR, Zj =0
j=1
, M (r) M (r) ,
To find Var(S), Var _z]Zj , and Covks, x7., , we use the following
j= i=1"

formulas.

From Remark 3.2 we have
M (r) M (s) M [ (r) M| (r+s)
Covi 2 2. , 3 Z. |=8.cE 2|74 2| _ 2'“‘S(r:j B xlZ. (2m)| 2|,
=1y = i=1 =1

From (30) of [7]

Cov(f fs) 2§

Y\’

M (r) M) e | M _(r+s)
Cov(ji]zj , fs}: GVSE{jE Z. -2 E jz Zj (2n)| . (5.8)



The following is to derive it.

CUB(CX, B)
(2)B(a+r, B+n-r)

Define gr(“’ B, w) =

and note that

dg

. A a ~ M (r)
T(M1,r)=gr(a, B, w) where w = I Zj Then
J=1
3g 3g g
. _r _r _=r
dg,. = 55 do + - de + 7 dy
B (¢, 8)B(atr, g+n-r) - B (atr, g+tn-r)B(o, B)
- i) [0 o doc
n 2
(r) [B(atr, g+n-r)]
B, (o, B)B(at+r, g+n-r) - B_(at+r, g+n-r)B(a, 8)
s 0 B B
n 2
r [B(atr, gtn-r)]
+ B((X, B) d(.l) .
‘:) B(atr, g+n-r)
Define
n
- n} B(atr, g+n-r)
S(o, B) = YE](Y.) Bla, 8)
n
_ n{ B(atr, g+n-r)
M“’B)_Yiﬁr) B(a, B)

~ A

and note that S(&, g) = S and R(&, B) =

R.

44
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We have

ds = 1 (n) B, (atr, g+n-r)B(a, 8) - B (o, 8)B(atr, gin-r)

‘ ! [B(a, 6)12
+ g (rr]-) BB(OH'Y‘s B'*'n-Y')B(OL, B) - BB(O": B)B(O"'H"s B“+n'r) dB
1 ! [B(a, 8)1°
dR = 2 r‘_.(n) B, (a+r, B+n-r)B(a, B) - B, (a, B)B(atr, g+n-r) da
- r| —
a [B(a, 8)12
+ g]r( ?‘) BB(OL'H", B'*'n-l")B(OL, 8) = BB(O": B)B(O"HA: B+n'r) dB .
r‘:

[B(a, 8)1°

In other words, we get

) |

n n
x (C) w§r>(a, 8)

-~ r=l r=1
where J =
n
_'”E]r(?) v, p) r;r(?) wér)(a, )
'Q(r)(u, g) = Bu(d+r, g+n-r)B(a, B) - Ba(u, B)B(;+r, g+n-r)

[B(a, 8)1°

J ér)(a’ 8) = BB(u+r, g+n-r)B(a, B) - BB(a, g8)B(atr, g+n-r)
[8(a, 6)1°

Solving for do and dg in terms of dS and dR we obtain

dgr = ardS + brdR + Crdw‘

Where A br and Cr are suitable functions of o« and B. Then the
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~ A

asymptotic variance of g(&, 8, w), using the formula (6a.2.9) on page
322 in [12], is obtained as stated.
(II) Find the variance of T2 M1

)
In order to get Var( T2 (M1))we need for formulas (5.6), (5.7), and (5.2)
® ; (i \
and Var(T,) = - 1g}(-] [ & ' }

The approach to find Var(fé(M]))is the same as that of (I)

except w = Tg and
- 9. U)B(OL'*']& @)
ll}u(ot, B) - 9B B o 8+n
_ 5 _B(atl,
e 8 = 3 B aend

5.3 Example of Ml

For the example of Section 3.5, the equations of the pseudo method

of moments estimators for o and g are

gqg = [1000] B(at1, £+999) . [1000] B(o+2, £+998) , [1000] B(e+3, £+997)
1 B(a, B) 2 B(a, B) 3 B(a, B)
_ {1000} B(a+1, 8+999) 1000{ B(o+2, £+998)
1,000 = ( 1 ) Bla, 6] C ( 2 ) Blo, 8]

+ 3 [1000] B(e*3, §+997)
3 B(a, B) )

Unfortunately, there do not exist solutions for o and g. That is,

the method of moments does not work in this example.
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5.4 Derivations for M2

We have
i M M Ao
SIEAA) VR U RPN | AR
J=1 J §=1 9 T
and _
M M -\
ElzY.a., §=1, 2, LM o2 syl -e Y
=1 NN j=1 9
Suppose that Ay, Ap, ... , and Ay can be approximated by a gamma
distribution with density
A
/8
1 - e dx
r{a)8

M r
: (r) - _TI'{atr) 1 R ‘
EEl 2 ZY 7., 351, 2, ... , =
A L] i " TR e | FE

EET}A. i=1, 2 fpo= {1 - — ]l;]y
by Sl j? y Ly cee oy (]+B)(xj J=_l j

If we can estimate o and g, then we can form the following estimators

M
Ly
=1

M
of ¥
= [; Z{r)
5219
T, (M2 - 5.9
T](MZ,r) F(a+r) : 2 for all r (5.9)
rir(a) (143)% 148
or
. s
12(M2,r)=] ) 1 o (5.10)
(1+p)°

Since
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. _ o Dlatr) 1 / g\
Ext[frlxj, =2, ..., m} M e i

_ o Tlatr) 1 [ |7 -
T P {a) (HB)OL(HB ) where 7 = Ma ,

we can find estimators of o , 8, and t in terms of the fr'

5.4.1 Pseudo Method of Moments for Estimating «, 8, and t

n n n o,
Define S = fr , R T rfr and U= tr fr . Then
r=1 r=1 r=1

A B o (5.11)
E\E(R) = <8 (5.12)
E,E(U) = 18(1 + 8 + aB) . (5.13)

Equating observed values of S, R, and U to their expectations, we

obtain estimates a, 8, and < (if the solutions exist) of o, B, and t.

M
5.4.2 Variances of the estimators of I y

j=1"

(I) Find the variance of fj(Mz,F)= - 1 s \"
T'{atr) |
riv{a) (1+8)% \1+g

w

Define gr(u, Bs T, w) = T (atr

rit(a) (1+8
N M
x

( 8 )r and note that

%ﬂMZ,r):g (&, é, %, w) where o = Z§r) . Then

r
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99 a9 a9 ag :
= __I __r _r __r
dgr 5o do + T dg + Y dr + ™ dw (5.14)
where
r ' '
39 . wr!0+8)a(]+ﬁ ) r{e)fatr) - T (etr)r(a) 4 i(i)) In(1+g)
o B [T(OL'H")] T'tatr

)

/ -1
39 _ rir(e) gegye-1{1+ \"7Y) f148 ) r
3 = “T(atr) (78 ( B ) “( B ) T2 (+2)

99 -
9T 0

ig;_ - Y‘!I‘(OL) OL(H_B)OL-](:L-{_-—B—)Y' .

w f?&iFT B
Define '
[lA- 0+B)_GJ
S(as By T) = 7 o

R(a, B T) = 18
U(a, B, 1) = t8(HB + aB)

and note that S(a, 8, ) = S, R(a, B, 7) = R, and U(a, B, 1) = U. We

have
ds ] da
dR{ =0 | ds
| dU dt
where .
. oY
iz(-l + 050) "0+ Tog) 1) ce) ™! 1L
a
Jp = 0 T B
a2 T(428+2a8) B(Hatap) | .
L J




Solving for da, d8, and dr in terms of dS, dR, and dU we obtain

dgr é ardS + brdR + crdU + drdm
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where ap, by, Cp, and d, are suitable functions of o, B8, 1, and w.

Then the asymptotic variance of g(a, 8, T, w), using the formula

(6a.2.9) on page 322 in [12], is

A

Var (Ty(M2, r))= a&Var(S)

j=1

5 M
+ dpVar Zj

+ 2ardrCov(S,

(r)

W™=

J

A -~ A~ A

+ bEVar(R) + c&Var(U)

M (r)
+ 2crdrCov u, I Z, .

From [13] on page 136

J:] J

we get

S
Covi Rl= | t8(1+8)™%"
U
t8(1+6) """
Remark 5.1:

]

2 (2+at)

[ cL(146)™ -(266)™ g y0)70]

T8

tR[1+28(a+1)]

(_1)1(\"*‘1} (t_-l )'I

r

J

) + 2a,b.Cov(S, R) + 2a,.c.Cov (S, U)

=0

8 (1+8)

(r)
]zj + 2b,c,Cov(R, U) + 2b.d.Cov|R,

-2

(2+a+B)

8[ 1428 (a41)]

T8[4+38 (at1)+48

(r+i)\

]

2

1) (a+2)]

) Zj { by Remark 3.1

(5.16)



(3)

(4)
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M
If we consider Euler's transformation assuming that = Z§r)
J=1

decreases slowly after the first term, then

M M M
2 2y ~ vz 2N - o(e1) £ 202 (5.17)
j=1 J 3=1 J 3=1 J
and
M M
Z Z(r)(tn) " 220 hen v > 2. (5.18)
J:] j=T J
. A mor)
Since Cov|S, & 7 = Covi{M - fO’ T Z = -Cov fO’
J=1 j=1
M M
AL P 24" (2n),
j=11 i=1
. M ® . A M .
Cov|S, le(r) = 3 (_])1(r+1) ) Z<r+1) without Euler's
Jj=1 J i=0 r J=1 J transformation
. M ( M M
or CoviS, = Z(r) = b Z(l) - I 2(2) when r=1 with Euler's
j=19 <j=] J j=1 4 transformation
M
%— z Z(r) when r > 2.
j=1"
M \
Cov(R, z Z§rﬁ =0 for all r since R = n.
J=1
M ( n M
Since Cov U, = Z(r) = Covl szfs, b ?§rﬁ =
j=1 9 \s=0 =1

n M \ n M
£ s2Cov foo I z(r); Y drsE{-Z () pr-s
5=0 =13 | = j=1 9

M
E[ ) Z§r+s)(2nﬂ » we have
J=1



Tz

!
( M",(r+s+i)
=1

i

) without Euler's transformation

~ ]
or Cov(U;‘

n~M=E

iér)) = r2 g Z(r) -
J=1

52 g Z(r+s)\
j=19 s=1  {j=1 9 )

. with Euler's-transformation.

From Remark 3.2(1) we have

V;r(g z(r)) - /z(r))z - 2'2r(2r) :
j=1 4 j =1

|3

M w s
-y (Z§r))2 _{er) : (_])1(22-:1

nm~Mm=

3=1 i=0
without Euler's transformation.

M M M/
~ (M) _ T im)2  1fer (2r)) 2
or Var(jE]Zj ) jE]\Zj ) A r)jzlﬁzj )

M .
with Euler's transformation assuming that = (Z§r))2
j=1

decreases slowly after the first term.

Y
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. T
(I1) Find the variance of T,(M2) = 51
1 - —
(1+8)o
Define glas 85 75 w) = m1 and note that
] -
(1+g)*

A ~ ~ A A

Ty(M2) = gla, 8, ©» w) Where w = Tg. Then

=99 99 99 g
dg == do + 38 dg + 3% dr + = du (5.19)
where

3g _ —w(1+g)* 1n(1+p)
() -1

29 _ -aw(1+g)*]
8 [(14g) - 172

39 .
oT 0
ag . _(1+e)*

ow (-H_B)oc -1

Using the same approach as (I) we get
9g = adS + baR + cal + dao (5.20)
where a, b, ¢ and d are suitable functions of o, 8, 7, and w and

Var (T,(M2)) = a%ar(s) + b2Var(R) + cPVar(u) + dVar(T)
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+ 2abCov(S, R) + 2acCov(S, U) + 2adCov(S, TS) + 2bcCov

(R, U) + 2bdCov(R, TS) + 2cdCov (U, TS)

where
n M
Cov(S, T.) = =z Covls, z z{"
> lg & R
r=1 j=1
Cov(R, T) = 0
n M
Cov(U, T,) = I Cov{U, Z(r)}
r=1 j=1 9

5.5 Example of M2

We now apply this method to the example in Section 3.5. We have

~

- - A—Ct
P L= (8) ] gg9

o

A A

8

1,000 , and

A AN

18{1+g+aB)

1,106.

The solutions are
( /7
& 8.78268266064 & -.00000057585 (not
reasonable)
< 8 .01083547363 or .10600006104

>

™w
I

~ ~

t = 92287.45906 9433.956832 .

& =snam
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I
e
I

for r=2, T,(M2, r=2) = — - 149,431, and
r(at2) 82

21T(a)  (148)
(3)

Z.
13

a+?

II.MZ

for r=3, T,(M2, r=3) = J 190,747.
T(at+3) 83

3ir(a)  (148)%*°

Also, Yj
1

M=

}

T,(M2) = 156,847

(1+8)a

Now let us consider the variance V;r(f1(M2, r))

9536.16 899,92 9609.16
S
Cov{:R} = 899.92 999.98 1211.97
U
9609.16 1211.97 4367.23
~.0109521933736 .016007251633 -,005069705794336
J]'1 = .00001213084646318 -.0001307821596695 .000107839046779
~103.3903909322 1206.182399682 -018.4826883093
when r=1
a; = 19.936073931 by = 1438.915688
¢ = -1318.114736 d1 = 101.45170575
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12,218 without Euler's transformation

- M (1)
Cov|S, I Z.
=1

12,790 with Euler's transformation

o
o
<
c

w
™M =R
N
e
—r
————
]

13,059.5 with Euler's transformation

197,593 without Euler’s transformation

{ 11,822 ‘without Euler's transformation

A!’M (1))
Var<.z Z.

\J=1 J 204,456 with Euler's transformation

Therefore

3.532533918 x 109 without Euler's transformation
9

Var(%](MZ, r=1)
3.274515433 x 10

with Euler's transformafion
The relative standard error is

.38 without Euler's transformation

.36 with Euler's transformation

when r=2
ap = 20.754798748 b2 = 2907.842194
Co = -2646.960626 d2 = 1934.924667
n M (2) 572 without Euler's transformation
Cov!lS, = Zj =
J=1 335.5 with Euler's transformation
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R M (2) 2,585 without Euler's transformation
CoviU, = Z =
j=1 2,667.5 with Euler's transformation
~ M (2)
‘ Var{ = Zj = 10,157 with and without Euler's transformation
| =1
Therefore

10

3.104794347 x 10 without Euler's transformation

vér(%](Mz, r=2) "0
3.018387282 x 10 with Euler's transformation .
The relative standard error is
1.18 without Euler's transformation

1.16 with Euler's transformation

" when r=3
ag = 8.967069573 by = 5706.407682
c3 = -5167.194706 d3 = 50,221.67689

Cov T Z.

R M (3) 33 without Euler's transformation
S,
j=1"

16.5 with Euler's transformation
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. M (3) ,
Cov(U, .Z Zj E = 297 with and without Euler's transformation
J

549 with and without Euler's transformation

(ap]
(@
<
.
=
N
w
g g i
1t

Therefore

12

- 1.307477378 x 10 without Euler's transformation

Var(T](MZ, r=3)})

12

1.307376523 x 10 with Euler's transformation

The relative standard error is
5.99 without Euler's transformation

5.99 with Euler's transformation

Now let us consider Var(%z(MZ))

19.961152284 b

Since a 1522.798549

-1393.979799 d = 11.072835296

c

N 12,823 without Euler's transformation
and Cov(S, Ts) =
13,142 with Euler's transformation

- 14,704 without Euler's transformation
Cov(U, Ts) =
16,024 with Euler's transformation
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208,299 without Euler's transformation

Cov(T)
215,162 with Euler's transformation

9

4.76078734 x 107 without Euler's transformation

Var(T,(M2)) 5
4.721020597 x 107 with Euler's transformation

The relative standard error is

.44 without Euler's transformation

.44 with Euler's transformation

These calculations are summarized in Table 5.1.

M
From the information above 1in this case we would choose the estimate of I Yj

Jj=1
t0 be %](Mz, r=1) = 157,177

with the relative standard error is .36.



estimated variance

relative standard error

estimated
population without Euler's with Euler's without Euler's with Euler's
total transformation transformation transformation transformation

T, (M2,r=1) 157,177 | 3.532533918x10° | 3.274515443x10° .38 .36
T1(M2,r=2) 149,431 | 3.104794347x10'0 | 3.018387282x10'C 1.18 1.16
%1(M2,r=3) 190,747 1.307477378X1012 1.307376523x1012 5.99 5.99
%Z(MZ) 156,847 4.76078734x109 4.721020597x109 .44 .44
Table 5.1: Estimated population total, estimated variance, and relative standard error.

09
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CHAPTER 6
EFRON AND THISTED'S METHOD

6.1 Introduction

In this chapter we still consider sampling with replacement.
Efron and Thisted [2] tried to find a reasonable estimator of d(«)

e-)x X

supposing that E(fr) = H-——;%— dG(x) for some distribution G. If

G(r) is a gamma distribution with parameters o, 8, then an estimator

of d(tn) is
f | .
%' 1 - '——7 if o > 0
AL 4..."{ .
d(tn) = (1+7¢)
i
— log (HYt) ifa=20
- B
where Y Tig

He also found other possible estimators.

(-1)X+]f tX , or

(1) dien) = 5 N

ne 8

X

if Euler's transformation is considered, then

N Xo y x+1

: -1 (-1) __u

d(tn) = I ¢ u¥ where £ = % (y_) f,and t = 5—
y=1 Yy Yo e X 1 oY X 2 u.

® x+12 . x P T (x+a) x-1
z (-1) f t" where f, f ey

x=1

e
(g
o
O >
P
(—*.
>
o
It
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= £yt ; ( ])x+] T (x+a) (Yt)x-]

=1 - xIt(1+a)

which can also be modified by Euler's transformation.

M
We generalize their derivationsto estimate T = & Y; by using
J=1

M -\ -t .
A(=) where A(tn) = E| & Z(] e "(1-e "")dG(x)

=19 fe‘%de(x)

the biases of these estimators to measure their precision.

>,and we also derive

6.2 Nonparametric Model

From Chapter 4, lemma 4.1, we know

M M AL WX
EZZ§X)>\_. = Iy S
j=1 J j=1 J .

Suppose that M is large and the frequency distribution of values A,
- > Ay can be approximated by a continuous distribution G(A).

Then,

M M M A X
E[Z z(.X)J = E,E ZZ§X)>\.,j=], ,M} =( 2y | [S4- d6(h).
; - .

j=1 J i=1 J j=1 J
Define
y. if the jth class shows in the second
= - - sample of size tn but does not show
Yj(tn) yjéj(tn) the basic sample
0 otherwise
where
1 1if the jth class shows in the second sample of
s (tn) = size tn but does not show in the basic sample
J

0 otherwise
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and

>
P
(-*
g
]
r1ﬁ£2‘—\
N =
—
&
[
————
—
1
vl
[
ST,
>
¥ ¥
—
1
p———
—
1
vl
(=
[ ——
>
L_—..St.J

= nP.
J J

n
m
>
.PIZ
<
(S
(12
|
>
(]
———
—
L}
(2
1
>
(&)
(—1.
e
=
=
]
i
1%
>

(6.1)

n
—————
[N
nm~=x
—
<
’\‘_'_.'_./
\_7;~%\
|
>
———
—_
1
]
]
>
—ct
Q.
o
—
>
~—

=1 J

E[ZI z(.”} -[e_xh - e_xt)dG('\) . (6.2)
J f e *AdG(1)

We wish to estimate A(t). Substituting the expansion

kztz + X3t3
21t 3

1-e =t - + ...

into (6.1), we obtain

M M
A(t) = E| z Z(])}t- E[z 2(2)Jt2+E[ZIZ€3)Jt3 -+ ... . (6.3)
j:] J j=] J j=] J

This result appears in Remark 3.1.(5) in Chapter 3. The right-hand
side need not converge, but assuming 1t_does, this suggests an estimator
for a(t)

. M M
a(t) = (zz(”)t ( 3 2(2)) t? +( : 2(3)) A (6.4)
. j= j='l \]
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The estimator &(t) is a function of the data only through the statistics

;1 7¢4%).

=17

-

Unfortunately A(t) is useless for values of t larger than 1.

The geometrically increasing magnitude of t* produces wild oscillations

in A(t) as the number of terms increases.

6.3 Parametric Model with a Gamma Distribution for G(A)

The c.d.f. G(A) is approximated by a gamma distribution with

density,

(6.5)

(6.6)

0]
™
4} J
[T e
—_
N
.
—_
| S
x
—[+4
=1 l—~
x
—| ¥
+ (R
R e
=<
x
+
—_

M=

E[ ng) is proportional to the negative binomial distribution with
J=1

parameters o and Y. Integrating (6.2) we obtain

( E[“ézm
N N N N :]1'fa> 0
aY (1+vt)®
a(t) = { - (6.7)
E[?zm
=17 ] Tog(1+vt) ifa =0 .
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Hence

y 2(0)

£ 4 )

J 1,\ 1 - %1: ifa>0
~ oY (]+’Yt)0‘
Ae) =

Moy

E z§])

\3ZLT 10g (1471) ifa=0

6.3.1 Example

From Section 5.5 we obtained

o = 8.78268266064 é = ,01083547363 Y = 01071932467

1
(1+.01071932467t)

so A(t) = 142,982.4414 {1 - 8 78268266064}

(see Figure 6.1). Hence we can claim T = Z(w) = 142,982. Using

the same approach as that of the last chapter, we can find the

asymptotic variance of K(t)

1.\ ) 4.29237317 x 10°  without Euler's transformation
Var(A(w))z 9
4.,258910831 x 10 with Euler's transformation
The relative standard error is
.46 without Euler's transformation

.46 with Euler's transformation



PREDICTED TOTAL OF SECOND SAMPLE

162248 |

165278 |

Figure 6.1

By +—t—t+—+—+
=8 = B 82 8B 8§ 2 B B
bi
z A1)
A(t) _ J= J o 1 X
A ~>— L1 = —=— where & = 8.73268266064,
@y (T+yt)
R Mo
Y = 01071930467 and 1 Z;'/ = 13,401

j=1
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6.4 Euler's Transformation

Euler's transformation is a method of forcing osci]Tating series

o M
like a(t) = = (-1)X+]n t*, where n_ = E| z Z(X) , to converge rapidly.
x=1 X X j=11

Efron and Thisted showed

A(t) = = (-1)X+]ﬂ t* = 5 ¢4 where t = ?gi , 0 cug2,
X=] X y:'l y
Y vy x+1
and ¢ Z(. ]) i—l%———-nx .
x=1 2

6.4.1 Nonparametric Estimator for a(t)

Define
Ac(u) = 5 g W
E y=1 y
PO(e) = 5o (1)¥T o
x=1
AEO(U) = 2w
y=17

Good and Toulmin suggest estimating a(t) by

R . X0 A
AXO(U) = 3¢ Y where u = fﬂ% and
y=17

- y X+l -
g = I Y“ LN n. . The n_ is taken to be the nonpara-
Yo x=pi%l 2y X X

)

metric estimator Z(X .
=17
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6.4.2 Parametric Estimator for a(t)

From (6.3) and (6.6) we know

A(t) = mt - npt? + ngtS o L.

T (x+o x-1
n o =n
X L xIr(T+a) ¥ .

We obtain a(t) = mt & (-1)%] ;1,112-’(‘%5 (v£)*!

x=1
which diverges for Yt > 1. If we estimate n;, a, and Y, we obtain

an estimator of A(t). According to Efron and Thisted, for -1 < a < 1,

the series I ayky converges in the nicest possible way, having
y=1

gy > 0 for all y. Using Euler's transformation we obtain the esti-

mator

- X0 A

X0(,\ = v A

Ap (u) E gyuy where u = 17

y=1

R Y [uo Xl "V Ayl
and £ = Z(y”(n fIlwa) el

y X:i X- 2y X!I‘(H’ot)

6.4.3 Example

Initially let us consider the parametric estimator BEO(U) with
Euler's transformation. The values of éy are in Table 6.1. One way

M

to choose xy, is to require ZXOG) = I Yj = 14,165. This gives xq = 38,
j=1
- 38
and so we do not consider £ , y > 39. Since £ g = .00000522259,
y = y=29 Y

we decide to choose xg = 29. Let us choose t = 100. From Figure
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y ty y ty
1 6730.5 26 .00003380035
2 3188.80362999268 27 .00001514092
3 1509. 57766569919 28 .00000673407
4 714.02261275796 29 .00000296968
5 337.42502726722 30 .00000129620
6 159. 30509997155 31 .00000055862
7 75.13553619057 32 .00000023690
8 35.39960803598 33 .00000009839
9 16.65943914926 34 .00000003968
10 7.83068586624 35 .00000001535
1 3.67605589976 36 .00000000556
12 1.72333189187 37 .00000000178
13 .80671026984 38 .00000000042
14 .37703393043 39 -.00000000001
15 17591546659 40 -.00000000011
16 .08192720133 4 00000000010
17 .03807890877 42 -.00000000007
18 .01766019281 43 00000000005
19 .00817093799 44 -.00000000003
20 .00377060640 45 -.00000000002
2] .00173497792 46 -.00000000001
22 ,00079575682 47 .00000000001
23 .00036366811 48 -0
24 .00016552792 49 and more
25 .00007499638
Table 6.1
£, = Xg](i:}} illi;—l- n1 §§§+ﬁla ¥ %1 where ny = 13,461, n, = 8.78268266

and v = .01071932467
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6.1 this seems large enough and if we suppose that Aj =

]000/]4,]]5, the expected fraction of distinct units observed in the
second sample is
-100x .
1-e 3= 9991621419 .

We calculate

AN

/ ~29 (¢

¥‘yj = & (200/101) - 167,493
j=] i

~381{-
and AE(ZOO/IOI) = 172,129 .
(see Figure 6.2).

If we consider the nonparametric estimator g(t) without Euler's
transformation

g(t) 3 2 3

= 13461t - 671t~ + 33t

]

mt - mpt? + ngt

149,118 when t = 14.115

The reasons we consider t = 14.115 are that t = N/n and, if

A

M

there do not exist duplicated cases, then = yj = —%—
j=1

no™m-

Yi where

i=1

N~ >
-

1

[ne}

™~

If we consider the nonparametric estimate of Zéo(u) with Euler's
transformation, we get

~ 13,461

°y 15y = 6T1(y=1)/y + 33(y-1){y-2)/ 41

and the table of values of éy is in Table 6.2. From this table we
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2

y ty y Sy

1 6730.5 27 0.00005021691
2 3197.5 28 0.00002580509
3 1519.0 29 0.00001331232
4 721.6875 30 0.00000689179
5 342.96875 31 0.00000357907
6 163.0625 32 0.00000186381
7 77.578125 33 0.0000097288
8 36.94140625 34 0.00000050885
9 17.611328125 35 0.00000026659
10 8.408203125 36 0.00000013986
11 4.021484375 37 0.00000007345
12 1.92749023438 38 0.00000003861
13 0.92614746094 39 0.00000002030
14 0.4462890625 40 0.00000001068
15 0.21575927734 41 0.00000000562
16 0.10469055176 42 0.00000000296
17 0.05100250244 43 0.00000000156
18 0.02495574951 44 0.00000000082
19 0.01226806641 45 0.00000000043
20 0.00606060028 46 0.00000000023
21 0.00300931931 47 0.00000000012
22 0.00150203705 48 0.00000000006
23 0.00075364113 49 0.00000000003
24 0.00038009882 50 0.00000000002
25 0.00019267201 51 0.00000000001
26 0.00009813905 52 and more 0

Table 6.2
£y = ;]37 Ny - (y{]) 2]—3' n, + (yél)]—y ;13 where n I\g J(X) and

ny = 13.461, ny = 671, ny = 33
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Accumy1ative Accumulative

y Ly Yy ty

1 12823.0 27 0.00010371208
2 6092.5 28 0.00005349517
3 2895.0 29 0.00002769008
4 1376.0 30 0.00001437776
5 654.3125 31 0.00000748597
6 311.34375 32 0.00000390690
7 143.28125 33 0.00000204309
8 70.703125 34 0.00000107021
9 33.76171875 35 0.00000056135
10 16.150390625 36 0.00000029476
11 7.7421875 37 0.00000015491
12 3.720703125 38 0.00000008145
13 1.79321289064 39 0.00000004285
14 0.86706542968 40 0.00000002254
15 0.42077636719 41 0.00000001186
16 0.20501708984 42 0.00000000624
17 0.10032653809 43 0.00000000328
18 0.04932403564 44 0.00000000173
19 0.02436828613 45 0.00000000091
20 0.01210021973 46 0.00000000048
21 0.00603961945 47 0.00000000025
22 0.00303030014 43 0.00000000013
23 0.00152826309 49 0.00000000007
24 0.00077462196 50 0.00000000004
25 0.00039452314 51 0.00000000002
26 0.00020185113 52 0.00000000001

53 and more 0

Table 6.3: Accumulative iy from Table 6.2.
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Figure 6.2

24558 |
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Aéo(u), where u = j%%-, in Section 6.4.2

means A%g(u).

— =~ nmeans A%S’(u)

73




74

know we can choose xy = 31 since I éy < .00001 (see Table 6.3). We
x =31
~311200 _ .. . .
calculate AE /]O] = 221,314. This is the value we claim for the estimate of

A
1 E

M ~29
% y. (see Figure 6.3). Note (200/]0]) = 210,177.
=1

6.5 The Bias of A(t)

From the expressions for A(t) and &XO(t) in Section 6.4, we see
that it would be difficult to find their variances. In this section
we try to find their biases. Using Euler's transformation and sub-

. . _ 2t
stituting u = T3¢ 2 We have

- X0 - X0 [y
o) = R 2]

X='I y=x X-]
Define
X X y-X
Xo x+lox X0[y-1) 1 V¥ ¢
e = T (x-] | (]
y=x
_ 1,x y-1 1 X[ ¢ |YX
ho = (-1)%1X 5 )-——)'f——) ,
X y=x x-Th1+t ] 1+t
so that
X0 N
A%0(t) = z n¥on
x=1 X
and
- o - M (x)
A(t) = =z h.,n, wheren, = 1 Z!}
x=1 % % X 5=11
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Figure 6.3

X0 = 2t
Np (u), where u = i

——— means ggl(u)

— - — means X%J(u)

, in Section 6.4.1
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Define H(1) = 2 h "/x! where 0 < A < =
x=1

0 X

X
and H0(x) = 3 h:OA /x!

x=1

Then

(o) (o) M
E[A(t)Ez hon = zh |3y,
a1 XX 1 X|gerd )

M A
=| 3z y.l | e "H(x)dG(Ar)
=17
0
~ . M N At
E{a(t)-a(t)y = | z y.[ e [H(A) - (1 - e dG(x)
3=

which, for t = », becomes
: IRV,
E{A(w)-A(x) = (;y.) é-lH(A) - q dG(nr) .
=P

It is convenient to rewrite this in a form which depends on

o M
n, = In rather than I y. . Define
Tox=l j=11

P=J[(1—éﬁd60)
0
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P M
= ( z y)fe‘A[H(A) - (1 - e-At”dG(A)
IStAL y 0
P
= n.j( e” [H(A) - (1 - e'xt)}dﬁ(x)
1 -e"
and -
~ -A o
E{A(x)-A(»)} = n+,[ __9__:X[H(A) - 1}dG(A) .
o1 -e
Similarly
EQAX0(t)-a(t)} = n+f e_}\_A[HXO_(X) - (1 - e'“ﬂ di(x)
§ 1 -e

and for t = »

E{a%0(w)-a(=)} = ”+f e—l_l [HXO(A) - 1]d&'m .
0

We use the integrands

B, () = e_A_A H(A) - (1 - e’kt)}

b

50(2) = — 110 - (1 . e'“ﬂ

to measure the bias of A for any G(a).
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6.5.1 Example

Xo

We compute Bt

(A) in Table 6.4 and Figures 6.4, 6.5 and 6.6. The

maximum bias of BE°(= n,{ Max Bio(x) ) is .00000694085 for x, = 29,
A

4

t=1; .00000198310 for x, = 31, t=1; 1,062,375 for x, = 29, t=100;

1,034,045 for x, = 31, t=100; and the relative bias(= Bias/ﬁxo(tg is:

.54 x 1072

for xo = 29, t=1 and the parametric model with the gamma
distribution; .15 x 10'9 for xo = 31, t=1, and the nonparametric model;
6.34 for x;= 29, t=100, and the parametric model with the gamma distri-

bution; 4.67 for xo = 31, t=100, and the nonparametric model.



x - 1000 2000 3000 4000 2000 6000 2000 2000 2000
BL0(\) 1x10711 141715 14115 13175 4715 T4T15 14115 4115 14715 14775
Bf2(») 0 - .45x1079 1x10711 .3x1079 .23x1079 .7x10710 -.4x10710 -.8x10710 -.11x1079 -.9x10710
BEL(x) 0 - X710 -.5x10710 -.14x1079 .8x10710 .3x10710 -.2x10710 0 -.2x10710 -.1x10710
Brdy(r) -74.99999999930 1.25010387654 2.08045834322 0.7447105037  ~.13549066111 -.49577148252 -.52078000274 -.38115206215 -.19140356295 -.01734212806
-.49916822146 -.30762042606 -.09824700846 .06921067045

L3 (x)-72.99999999930 1.65324757369 1.99291149494 0.55014339244 -.28611353371 -.55553788581
100

Table 6.4

The Bias Function Bio(x); in Section 6.5, for Axo(t), at xg = 29 or

Xo =3land t =1o0rt=100

6/
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Figure 6.4
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The Bias Function B$2(x), in Section 6.5, for &29(1).
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Figure 6.5 for B3l(»)

o, eeananatd

AAAM#‘;.L_.L
=Vzg o o 2 2 = 5 3 3 =

-4 E2P05a18 |

The Bias Function B31(x), in Section 6.5, for a31(1).
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Figure 6.6

?

14T
&SF
a8

L7,
B8y
B8
L84

81,
B2,
83

The Bias Function B%3,(x) and Bf}o(xr), in Section 6.5, for

B2do(x) and B3}o ().



83

CHAPTER 7

SUMMARY

In the literature there are five methods for estimating the popula-

~ tion size when sampling from a 1ist that contains duplication and when

the extent of duplication cannot be determined. In this thesis these
methods are generalized to estimate population totals when a measurement
is associated with each member of the population. Also, the variances
of those estimates are estimated.

The five estimators are illustrated and compared for a population of
size N = 14,115 with M = 12,000 distinct classes, 9,885 of them having 1
unit and 2,115 of them having 2 units. The measurements y;, j=1, 2, ...
12,000, are assumed to be Poisson distributed with mean 15. In other
words, the expected population total is 180,000. We simulate tWo samp]es
of size n = 1,000, the first sampling without replacement (Goodman's
method) and the second sampling with replacement for the other methods.
The five sampling methods compared as follows: |

(1) By Goodman's method we have an unbiased estimate

A

M
z
5=

N L
Y5 = Zr=]Arzj=]zj = 163,652, where A,

(r) ,
=1 - (-1 [N-n+%;%] , with relative standard
n .

error .058.

(2) By Good and Toulmin's method we have



(4)

(5)

M "N
M n M
Ty, =13 =3 T,
-=1yJ J=1 J(N) r=1"j=
J
(_ﬂ_ _ ]2 (2)
L Mg
J=17j

= 182,529

with relative standard error .036.

84

By Harris' method for obtaining the upper and lower bounds of

a population

M
sup = Y.(N)
j=1"
M
inf 2 Y.(N)
=17

total we have

: (
= © Y, + (t-
3=1"
M
= Y, *= ]49
=17

=

1)z ZS])
i21 J

j=1

165.

By Good and Rao's method we have

A g z(1)
g y. = j=1J
J=1 J T(a+1) B
T(a) (]+8)a+]
error .36.

= 190,706

By Efron and Thisted's method we have

r .45.

M
M T 7.
Zy: = =
j=1" oy
standard erro
Mo
LY. = Aég
j=1"

bias 6.34.

= 157,177 with relative standard

] = 142,982 with relative

(u) = 167,493 1in Section 6.4.2, with relative
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~

]yj = Zg](u) = 221,314, 1in Section.6.4.1, with relative

W =

J

bias 4.67.

Goodman's method does not involve any approximation. Good and Toul-
min's method is based on some approximation but less than the other
methods. Furthermore the relative standard deviations of these two esti-
mators are small. Since Good and Toulmin's method and Efron and Thisted's
method are to find the prediction of population total, they can be applied
for the growing population. Since the pfecision of Good and Rao's method
is Tow and Efron and Thisted's method even lower, extreme care should be

exercised if either of these methods is employed.
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