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A frame contains a known number, N, of units, but the units are

grouped into an unknown number of M distinct classes. A measurement .Yj

is associated with each class, and, based on the information obtained from
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population total, EM
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y
j

, without knowing M. Several researchers

have proposed methods for estimating M based on a sample. In this thesis

five of these methods are generalized to obtain estimates of the population

total.
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ESTIMATION OF THE POPULATION TOTAL
WHEN THE SAMPLE IS TAKEN FROM A LIST

CONTAINING AN UNKNOWN AMOUNT OF DUPLICATION

CHAPTER 1

INTRODUCTION

The problem considered here arose in connection with a sample sur-

vey of the owners of fishing licenses. The objective of the survey was

to estimate the total number of fish caught. A list of fishing licenses

was available from which to select a sample, but since it is possible

for one individual to buy more than one license, the same fisherman

could appear two or more times in the list. The presence of an unknown

amount of duplication causes much difficulty. Two distinct conditions

exist. One can either determine how many licenses each person in the

sample has, or this cannot be determined. The estimate of the total

number of fish caught for the first condition was obtained by Rao [14].

We shall consider only the estimation of the total number of fish caught

for the second condition.

In an abstract setting, there is a list of a known number, N, of

units (licenses) which is subdivided into an unknown number, M, of dis-

tinct classes, Cj, j=1, 2, ..., M (each fisherman represents a class of
M

licenses). If the number of units in a class is Rj, then ERi = N. The
j=T

class of a unit is readily identifiable when the unit is examined. To

each class, a measurement, yj, (the number of fish caught by the fish-

erman) is associated. From a sample of size n, we wish to estimate the



M
total of these measurements, T = E yj, without knowing the Rj values

j=1

for units in the sample. Several researchers have proposed methods for

estimating the total number M of distinct classes. In this thesis we

generalize five of these methods to obtain estimates of the population

total, T. Note that in the special case when yj = 1 for all j, the

total is simply M.

The statistical methods used in this study can be classified as

follows:

(A) Nonparametric models

(a) Sampling without replacement - Goodman's Method

Goodman offered an unbiased estimate of the total

number M of distinct classes. In this thesis we gener-

alize his estimate to find the unbiased estimate of the

population total, T.

(b) Sampling with replacement Good and Toulmin's Method,

Harris' Method, and one of Efron and Thisted's Methods

Good, Toulmin, Efron, and Thisted obtained reason-

able estimates of the total number M of distinct classes.

Harris found approximations to the supremum and infimum

of these estimates. We generalize these results to find

estimates of the population total and approximations to

the supremum and infimum of the estimates.

(B) Parametric Models

Sampling with replacement - Good and Rao's Method and one of

Efron and Thisted's Methods



Good, Rao, Efron, and Thisted found reasonable estimates of

the total number, M, of distinct classes by assuming gamma and/or

beta distribution. We generalize these estimates to obtain esti-

mates of the population total.

The performance of each method was tested on a set of simulated

data.

1.1 Notation

We define the following notation:

N: the list size

M: the number of distinct classes of the list

C.. the jth class (j=1, , M)

yj: the measurement of the jth class

M

T = E the total of the measurements of all classes
j=1

RJ

q:

Jz:

Z.
(r) _

J

the number of units in the jth class

the maximum number of units contained in any class,

i.e., q = max Rj

j=1, ... , M

the collection of indices of all the classes consisting

of t elements, i.e., Jil, = {j:Rj=t}

the number of units in the jth class showing in the

sample

YjI{r}(Xj) where I(.) is the indicator function

{Yj if the jth class has r units in the sample

0 otherwise
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M (r)

Hence E Z. is the total of the measurements of all the classes

j=1 j

having r units in the sample.

1 if the jth class shows in the sample

0 otherwise

y. if the jth class shows in the sample

0 otherwise

oi =

Y=c3 -3/
J
-=

M n M (r)

Ts= E Y= E E Z. the total of the measurements of all classes
j=1 d r=1 j=1

that show in the sample

T': the total of the measurements of all the units of the

TS:

di

Pj

M

list, i.e., T' = E Rai
j1

the total of the measurements of the units of the

n M (r)

sample, i.e., TS = E r E Z.

r=1 j=1

unit i of the random sample for i=1, , n

the probability that the ith unit of the sample is

in the jth class, i.e., Pj = Prfdicy > 0 (not

depending on i)

We regard the random sample of size n as being the basic sample.

We imagine a second hypothetical sample of size tn. Since the esti-

mates of the population total based on Good and Toulmin's method,

Harris' method, and Efron and Thisted's method are the prediction of the

population total that will be observed in the second sample of size N

where t
N

, we need the following notation:
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Xj
(t)
. : the number of units of the jth class showing in the

second sample of size tn

Z. r)
. (tn) = y.I (X.

(t)
)

j

y. if the jth class has r units in the sample of size
tn

otherwise

M
Hence E Z. (tn) is the total of the measurements of all the

j=1

classes having r units in the sample of size tn.

(t) 1 if the jth class shows in sample of size tn
(sj

0 otherwise

(

Y (tn) = y
j j

t)
=

y. if the jth class shows in the sample of
size tn

otherwise

II n M

Hence E Y.(tn) = E E Zcr) (tn) is the total of the measure-

j=1 J r=1 j=1

ments of all the classes in the second sample.
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CHAPTER 2

GOODMAN'S METHOD

2.1 Introduction

In this chapter the sampling is done without replacement.

n

Goodman [8] offered the unbiased estimator E Aifi of the total
i=1

number M of distinct classes, where A. = 1 - (-1) 1
[N - n

n(i)

i 1](i)

a
(0

=

a(a-1) (a-t+1) for t > 0
and fi = the number of classes

1 for t = 0

containing i units in the sample. Knott [13] showed that by considering

a second sample of size to = N he got the same unbiased estimator of M.

We generalize their results to find an unbiased estimator of the total

M n M (r)

T = E y. . The unbiased estimator is E Ar E Z
j=1 r=1 j=1

2.2 Derivations
M

In order to find the unbiased estimator of T = E yi we need:

j=1
4

Assumption: The sample size n is not less than the maximum number, q,

of individuals contained in any one class.

This assumption is reasonable for our practical problems.

M (r)-

Lemma 2.1: E E Z.

j=1

q
(kl(N-k)
ri n-r= E E
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(Ril(N-Ri)

Proof: E E Z- E y.E
M M

3 J Os} J
(X . ) = E yi N

M
r n-r

j=1 j=1 j=1 '
n

I Rj1( N-Rj)

= E

J
R.=r

r ] n-r 1

N

n

E

jEjR.

Yj

J

Using this lemma we obtain an unbiased estimator of T in the follow-

ing theorem.

(_1)r [N - n + r - 1](r)Theorem 2.1: Let Ar = -

n(r)

ft.) a(a -1) ... (a -t +l) for t > 0
where "

1 for t = 0

Then E E A
r

E Z. = E y. .

n M (r))- M

r=1 j=1 j=1 J

Proof: E E Ar
r=1

n
= E

r=1

M (r) M (r)

E Z. E Z.
j=1 r =1 ..j=1

r[N - n + r 1](r)
1 - (-1)

n(r)

q E y.
= E . j

k=1Jed
2,

E (1 -

r =1

r
)

(r n-r)

k=r IN)
n

jJ

jEJk

r [N - n + r - 11(1'1:r)
n(r)

(Nd -

= Eq E Y- = EM y. by lemma 2 of [8].
k=1 jcJk j=1

An alternative derivation of the result in Theorem 2.1 can be ob-

tained as follows:
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Theorem 2.2: Suppose the statistics W1, W2, , Wn are the solution

of the system of linear equations

(r)
rM z. rn r

1(

n-r
W for r = 1,

j=1 k=r rn) t

Then E(Wz) = E yj.

jEJ2,

Proof: The same proof as Theorem 4 of [8].

Therefore En W is an unbiased estimator of T.
Q =1

There always exists a unique solution of the system of linear equa-

tions in Theorem 2.2 since the determinant of the coefficients of Wt,

Q =1, , n is not equal to zero. The following theorem shows that

n
t Wr, is an unbiased estimator of T', the sum of the measurements of

Q =1

all the units of the list.

Theorem 2.3: If W1, ... , Wn are as in Theorem 2.2,

lThen E En t Wo = T'.

( R =1 '
J

Proof: Recall
,

T'
s

the sum of the measurements of the units of the

sample, and note that

T' = En r (EM Z(6)
r=1 j.1

,n
L

r=1

r

_

-n
i,

2,

r

1

Nk
n-r

W
t=r N

n

k
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k) N-k

r n-r=E WE 1)
Q =1 r=1 I

N
.11

n n

N
E

k=1

k W
t

n

Thus E
n

W
Q n

T' so
s'

Q =1

E En Wk =T' .

Q =1

In some of the later chapters the problem of estimating the total

is considered as the prediction of the total of a second sample drawn

from the same infinite population. Here we give the similar result for

a second sample from a finite list. The following theorem gives an

unbiased estimator of

m (r)

E" Z. (tn) , for a second sample of size tn.
j=1

Theorem 2.4: E En
s=r

M (r)

Proof: Since E E Z. (tn)

j=1

EM
(S)

E Z. 1= E

j=1

(r)

= E

k=r (N
tni

(k)( N-2,1

r tn-ri

F n
(tn

s-r
n-tni

(s)
tn

Hence E; E E Z. E

Ls=r 5
j=1 s=r

(tn nlin-tn k)(N-k1
r, s-r s, n-s]

=

n k

E E
1z=r s=r Is

nl

by lemma of [11]

E y4
jcJ,

E yj
jeJk

E yj

jeJk



Remark:
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n I"( N-1
= r tn-r

y.

jcjk

= E
-6M (r)

E Z.

j71 j

(tn)E

k=r (tn)

(1) If tn = N (i e. we sample the whole population), then

M (r)

E E Z. (N) = E y.
J

j=1 360

(r)(2-41)( M
In other words, E E Z

n
- is an unbiased

)s=r j=1

estimator of E y. .

jar

M n M (r)

(2) Note E Yi(tn) = E E Z. (tn). An unbiased estimator
j=1 r=1 j=1

of

E[lM

E Y.(tn)
j=1

=Pe

um.

n M (r)

= E E E Z. (tn)

r=1 j=1

n n
(tn)(n-tn)

s-r (sr M
is E E E

)

r=1 s=r (2) [j=1

.11

n

1 -

S=1_ (2)

M
(3) If tn = N, then an unbiased estimator of T = E y.

j=1

M (s)

E Zj

r (n-N11- (sr M M (s

isEl siE Z.; = E As E Z. . Thus, Theorem
s= M j=1 '' s=1 j=1 '-'

2.4 leads us to the same estimator of T as Theorem 2.1

does.

The following theorem shows the variance of the unbiased estimator

En
EM

z(r)1

r=1 r j=1
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Theorem 2.5:

Valrn M 0
E A E Z.
r=1 r j=1 J i

n n q q
N N

E EAA E E COV I
{r}

(x
v

)
,

I
{s}

X) E Y4EYk)
r=1 s=1

r s
h=1 z=1

jcJil ' ke4

Proof:

h=1

vEJh

wEjh

Var

E COV

n

E A

r=1 r

I {r}

j=1

vEJh

WEJfe,

(X ),v

M

E Z.

j

I
{

1=

}

n n

E E

r=1 s=1

jEJ )

ArAs Cov

/

q

+ 1E1 AI?, E Cot
{r}

(X 1 E

r=1 h=1 isJ
h

vEJ
h

M Cr) M (s)

E Z. E Z.

j=1 j=1

2}

n n

E ArAs Eyiyk Cov I{r}(Xj), I{
r=1 s=1 j k

where

Co+ . , I
{s}

(X
k))

=
j

2.3 Discussion

0 j=k and r#s

VarlI{r}(Xil j=k and r=s

Cov(IIrl(Xj), I{s}(Xk) j#k

n M (r)

SinceW=EA
r

j =1

negative,

, the unbiased estimator of T, can be
r=1 =1

negative, we consider other possible estimators of T.

M (r)

(1) In many practical problems E Z. is small for r > 3, and a
j=1
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M (1) M (2)

reasonable estimator is W' = Al
J

E Z- + A2 E Z.
j=1

2j=i

T. N(N - 1)

j

7(2)
n s n(n - 1)

1

n M (r)

(2) Another estimator sometimes used in W" =
N

n
T
s

N
= E E Z. .

n
r=1 j=1

J

It may be shown to overestimate when q # 1.

If the value of W is positive, then it is reasonable to use W as

the estimator of T. If the value of W is negative, then we might con-

sider W'. And if the value of W' is negative, we might prefer to use

W" as the estimator of T, which is always positive.

2.4 Example

Consider a list of size N = 14,115 with M = 12,000 distinct classes,

9,885 of them having 1 unit and 2,115 of them having 2 units. Suppose

the measurements yj, j = 1, , 12,000, are from a Poisson distribu-

tion with mean 15. We simulated a sample of size n = 1,000 without

replacement from such a population.

Let nl be the number of classes that occur once in the sample and

let n2 be the number of classes that occur twice in the sample. We

M (1) M (2)

obtained nl = 968, n2 = 16, E Z. = 14,669, E Zj = 56. The unbiased
j=1 j=1

N M (1)
estimate of T = E yi is W = E Z. +

j=1 " j=1 j

(N-n+1)(N-n)
1

n(n-1)

M (2)

E Z. =

j=1

163,652. In this example, the measurements of yj are actually random.
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The expected value of T is 12,000 x 15 = 180,000. Using the expected

value of the Poisson variables the variance of W is Var(W) = 89,166,177

and the standard deviation is 9,442.78. The relative standard deviation

is 0.0577.



14

CHAPTER 3

GOOD AND TOULMIN'S METHOD

3.1 Introduction

In this chapter the sampling is done with replacement.

Good and Toulmin [71 considered the problem of sampling an infinite

population and found an approximate relationship between E[fr(tn)] and

E[fr] where fr is the number of distinct classes which are represented

exactly r times in the basic sample and fr(tn) is the number of distinct

classes which are represented exactly r times in a second sample of size

tn:

E[fr(tn)] tr E (-1)T411(t-1)1 E(fr+i) .

i=o

They they define an estimator of E[fr(tn)] by

tr (_10 r+i
fr(tn) (t-1)ifr+i .

r
i=o

They use the approximation

ICov(fr, fs) = 6rsE(fr)
2

-r-s r+
r
s ftr+s (2n)

to obtain

Var(fr(tn)).- E (t-1)
2i(r+i

(fr

+i)
r+1

i =o

-
2r)

(2t) -2r E[f
2r

(2tn)

We generalize these derivations to obtain an approximate formula
41111,

M (r) M (r)

for E E Z.
j =1

(tn) in terms of E E Z.

j=1 j[ 4.0

. From this we obtain an
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[

M

approximate formula for E E Yi( ) , which lead us to an estimator of
j=1

M

T = z y4 We also derive an approximate expression for the variance
j=1 J

of this estimator.

3.2 Estimation of the Total Measurement T

unit of

i = 1, ...

M (r+i)

j=1 s'
110

the

, n

Suppose that CJ is the jth class and di is the ith

random sample. Hence

Pr{ i
6d = > 0 for j = 1, ... , M,C-j pj

M
and E P. = 1.

j=1

l'iTheorem 3.1: E Z. (t
) tr (-1)i(t-1)i(r+i4

E

j=1 J i=o
r

Where I is some integer such that I « n-r.

Proof: E E Z- (tn) =

M (r) 1 M
E ytn)pril )tn-r

j=1 J J.1 3 r J i

E Itni
-

p) n-r 1+
J tri J 1

j

J.1

P ) -(t-l)n

P

M

M
tn) r -r c° -(t-1)n Pi (l

Yi(r Pi 1 Pln E ( i Pill tiJ
J -1 i=o1

= 7 (tn)-(t-l)n M r+i )n-(r+i)

L r i E YiPi li Pj
o j=1

[tny-(t-i .1)n) m
r= E E E

(

Z3

i=o j =1ri j
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For i « n-r we have r+i « n, and i « (t -1 )n, so

(tn1(-(t-1)ni

r i ) (tn)r(-(t-l)n)i(r+i)! i r

n
r! i!

n

t (t-1)

Ir+il

Hence, retaining only terms with i « n-r, we obtain

4 l'(.6

M

(tn) = tr (-1)1(t-1)1(rlE E Z.
4

E E Z

[
j=1 J i=o

r
j=1

Corollary 3.1: E

j=1

ME (Z3(.6(tn)2], tr (- )i(t-1)iirlE
i=o

1 r
j=1

M (r+i) 2
E Z3.

Proof: The same as that of Theorem 3.1.

Remark 3.1: (1) We define an estimator of E

(2)

M (r)

E Z. (tn)

j=1

by

M (r) M (r+i)
Z. (tn) = t

r
E (-1) i(r+i l(t-1 E Z. .

j=1 j i=o j=1

M

E E

j =1

.(tn) =

M

E y.

j=1
-(1 - P .) n

J

)tn = E yi
j=1

M
E Yi(1 Pj

tn
= E yi for large t

j=1 j=1

(3) E E Y(tn
j=1 j

(4) Since E

=E
n M (r)

E E Z. (tn)

r=1 j=1
J

(r+i)
r j

j=1

n I

E tr E (-1)
r=1 i=o

M 0) 4

E Z. (tn) = E (-1)i(t-WE E Z.

j=1 j i=0 -j=1 j

M n M (r)

E E Y.(tn) = E E Zi (tn)
..j=1 r=1 j=1

4.4

M M (0)

= E y4-E E Z. (tn)

j=1 j=1
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M M 1 4 NM

= zy -E EZ.(0) - E (-1)14 (t-lrE E Z/(i

l

. '

j=1 i j=1 J i=1 j=1 J

n M
= E E [I E ZJ

r)

- E

I

(-1)i(t-niEr ZJi) .

r=1 1 i=1 j=1

(5) Therefore, we can estimate T = E y. by

j=1 j

I

EY.(tn) = T -
4

(-1)i(t-1)1 E Z. when t is
i=1

M ti)

j=1

large.

However, the factor (t-1)i increases rapidly

with i if t > 2 and attaches weight to terms for

M
which E Z.

(i)

is small. This is likely to produce
j=1

a large percentage error when estimated from the basic

sample. We follow Good and Toulmin in using a sum-

mation method to try to overcome this difficulty.

(6) In the case when the second sample is an enlarge-

ment of the basic one, the expectation of the new

total measurement is approximately

m (

(t-1) E - (t-1)2 Z(.2) + ..
J.1 J j=1

3.3 Variance of the Estimator of T

In this section we find the variance of

I M
Y.(tn) = T - E (-1)

i

(t-l)

it

E Z(i)4

j=1
s .

1=1 0=1



M (r) M (s)

First, we find Cov E Z. , E Z. .[
j=1 '' j=1 u

Theorem 3.2: For rs << n,

E[( I': Z

(r)

iv (E Z.

j=1 3 1 j=1 3
- _

M ((12 II (r) M (s)

= 8 E + E E Z.; E E Z.;
rs j

Z.
=1 3 _ j=1 `I ..j=1 '-

E(-1)11 (r+s+u)!
( (r-Fs+u))2]

r!s!u! E

_

M
ZE

i=1 3

M ( (r) M (r) M (s)

E Z. + E E Z. E E Z.
j=1 3 j=1 3 _j=1 3

- ,

2-r-s(r+s)!
Hs! E Zj(r+s)(2n)

)2

j=1 -

1
if r = s

otherwise

= 6 E
rs

where 6
rs

Proof: E Z. E Z. =

M (r) M (s)

j=1 J j=1

M M

/ M
Y

frl j)(
j
E

1

Y 1 (X r
/(

j 'l I i {s1 i i

_

= E E yiykE[I{r} {s}(Xk)]

j=1 k=1

= E y. 2 E[I
{r}

(X.)1
{s}

(X
k

) E Ey.y
k
E[I

{
-)I{s}0(k)]

j=k j#k

= (srs Y 2 E[I
{r} (X J.)]

E EyiykE{Iir}(Xj)i{s}(Xd
j=1 jft

where ,73

rs

1 if r=s

0 if r#s

18



Ep l(r) 2+
E .y

rs j
j=1,

j k r!s!(n-r-s)!
n!

Pj

= 6 E[E
/Z(Y)

2+ n!
E EY.Y P.rP

rs
j=1\

r!s!(n-r-s)!
[

kikj

-
Ey.2p.r+s( 2p) n-r-s

j J J
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- P
j

- Pk

Pj Pk) n-r-s

s (s) .11

6rsEF 4r) )1 r!s!(n-r-s)! ,Ej VSYkipj P u j
J -1 u=o

6rsE

= E
rs

)

n-r-u r r v n-s-v
(1 Pj) ( z ( v)Pk (1 Pk) )

v=o

J

(-1)u(n-r-s)pu(1
u j

p.)n-r-s-u)

(Z(r) 2

j=1

n!

r!s!(n-r-s)!

E (-1)W

w=o

-
Ey.2p.r+s

j J J

n-r-sE
u=o

by (26), (27) of [8]

(-1)w(su)(v)(n-Y:s)
u,v,w

E p.r+1.1-1-W(1 p.)nti'Mp S+V+W(1

j k
n-r-s

(-1)
u (n-r-s

Ey
2
P
r+s+u(

1

u=0 u

E Z( r) 2 +

j=1 /

n!

r!s!(n-r-s)!

)n-r-s-1.1

u,v,w (-1)w(s)(1^v)(n-vl-s)

rjJ

r+ui-w(1
Ey

k
p
k 1 Pk

n-r-s
E (-1)u

u=o

2 r+s+u
1 - P

( n -r -s -u
Ey. P.

u jj j
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= 6 E-
rs

j=1

E

E

j=1

Z(r)

M

E Z(. 1-114-w)

-j=1

E (Z(ri-S -1 1)

n!

u,v,w

(-1)w(
s )(ry )(n-r-s)

r!s!(n-r-s)!

E E ZCs+v1-14

j=1 J

(r+u+w) (s+v+w)

n-r-s (_.)u
E

n-r-s)
(

-

u=o
(r+s+u)

= 6 E E z(r) 2 E (_flw (n-r-u-w)!(n-s-v-w)!(r+u+w)!(s+v+w)!
rs j=1 ! u,v,w

(n-r-s-w)!n!u!v!w!(s-u)!(r-v)!

Remark 3.2:

E E
-(r+u+w z(s+v+w)

j=1 i-1 J

E Zi

j=1

E(..1)u (r+s+urls!u)!

!

if u, v, w, r, s are all « n, then the coefficient in

the first sum is 0((rs/n)u
+v+w

) and when u=v=w=0, use

of Stirling's formula shows that it is 1+0(rs/n).

Hence if rs « n it is proved.

( M (

Cov( E Z.
r)

, E Z.
s)

j=1 j i=1 J
rsE

-
M
( Z(r) )2

j=1 j

(r+s+u)!
E E Z

(r+s+u) 2
r!s!u!

j=1 j

M
E (Zr-1-si (2n)

rs j=1 /

2-

\

)

j=1

2
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M t N

Theorem 3.3: Var E Z(r) (tn)

j=1 J

2r \ (2t)-2rE
r

E (t-1)2i r+12
E E

1=o r j=1

M
12r)

E Z. (2tn)

j=1

where I is an integer such than I « n-r.

I M ir)
Proof: Van E (tn)

Lj=1

= Var
, ,,+1

tr ; k-1)1
r*

r
1(t-1)

i=o

M .

(...0i+k(t_i)i+k(r+i) (r+k)
Coy E Z(.r+1

i,k=o r r j

M
E Zkr+1

j=1 J

21

1'1 E1 Z(r+k))

i'l J

,k=o

2r (
(-1)i+k(t1

)i+k(r+1Cri-k) 6
E (ZV+1) )2

r r ik j
j=1

2-2r-i-k (2r+i+11

E E Z.

(2r+i+k)
r+i L

J j

(2n)) 2

1

t-1 )
2i (r+i) 2 7

E E
M

lAr+i)
2

i=o
r J

k=0

i+k=k
(i+k)!

i!k!
i,k=o

E (t-1)
2i (12

E

10

M t'.) \

E Zk.`ri-ki (2n))2
j=1 J

-

M

Z(r+i) ) 2

J
=1

j

cc.

(- 1)"(t -1)Q2
2r (2r+z)!

11

E

k=o
k!r!r!

i=1

r+12
E ZCr+i

(2r+9,)!

k!r!r!

(2r+k)
(2n)

2



Remark 3.3:
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(2t)-
r 2r1 J M (2r)

)

(2tn)

r Li'z-A7i

M in\
SinceE(tn) = Ey. - (tn),Yj . E

j=1

( M m

, " ,.

(0)
Vad E Y.(tn = Var E Z. (tn)

i\, j j=1 J
i

= E (t-1)
2i

E

1=0

2.
= E (t-1) lE

i=0

91
= (t-1)-'E

i=1

M
E

j=1

F m
E

M
E

j=1

0)
Z.

J

( )

j

1

;

2-

2

_

i=0

-

i=1

E

j=1

E (-1)1(2t-WE

E (-1)1(2t-WE

\

°) (2tn)

;

4

2

j=1

m
E

M

E

(1)

(i)

3.4 Summation of the Series

Euler's transformation with parameter q, generally called the (E, q)

method, is a method of forcing series like

Co

(-1)1 (t-1)1E

i=1 j=1 J

M
(i) 2 r m ril

(t-1)
2i

, E (-1)i(2t-WE E , etc. to con-
1=1 j=1 J 1=1 j=1 j

verge rapidly. This is to transform the series E a. into E aq)
i=0 1 j=0 d

where a(q)

1 j

J
(q.i.pj+1

E (up-i
ai

j
i0 4

M
First consider E (-1) 1(t-1)1E E Z(1)

1=1 j=1

. In our example,

2
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[M

Z.E generally decreases slowly for r > 2 and so we will write

j=1

E (-1)i(t-1)1E E Z = - (t -i)E E Zi
1=1

. M (i)

j=1 j=1

M (1)

M (2)-
2 i i

+ E Z.

j=1 j
(t-1) E (-1) (t-1) . We apply the (E, q) method to

i=0

E (- 1)1(t -1) i. Define ai = (-1)'(t-1)i
i=0

a j 14,, (II cri-ia 1 (q_(tli

(q+1)''' i=0 1 cy' cril

(q)

E ai =
t

j=0

M
Hence E (- 1)1(t -1) 'E E Z

i =1 j=1

Remark 3.4:

[

m ] (t-1)
E, -(t-1)E E Z(1)i t

j=1

M (2)

E Z.

j=1

M

Recall the estimator z Y.(tn) in Remark 3.1.(5). The summation
j=1

in that expression has upper limit I. Let us, however, change the upper

limit to - and then use Euler's transformation to obtain

M n M M (1)

E E Y.(tn) =zEzZ. + (t-1)E[z
,j=1 r=1 j=1 j=1

(t-1)2 M
Z.
(2)

j=1

E

M

We previously argued that E Y.(tn) is a reasonable estimator of T
j=1

when t is large, say t = . We now see that another expression for



a reasonable estimator

M

E Y.(tn) =
j=1 r=1

M (r)
If E Zj = 0 for

j=1

M

E Y.(N) = E Y.(N)
j=1 j=1

population total when

To obtain an

M

E Y.(tn), now consider
j=1

In our examples, E

`°

E (t-1)2iE[ iv(
1=1 j=1

of T

n M (r)

E E Z.
j=1

r > 2 (this

T1

is

4.

is

"

m M (1)

- 1) E Z
j=1

true in

is the natural

for the

(i) 2
z Z-

j=1

constant

ME (Z(.1))2]

j=1 J

M(
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M (i) 2

E Zi

J=1

we write

(t-1)2i.

n
- 1)2 (2)

E
n

is nearly

which

no duplication.

expression

2i
IE

is nearly

(t-1)2E[

Z.
J

j=1

many examples), then

estimator of the

variance of

. ,

and E (-1)1(2t-WE
i=1

for r > 2, and so=

+ Ei. j'zi (Z(.212.1 cE°

J
j=1 i=2

=
n s

there

approximate

.

E (t-1)
. i=1

M( 0)
E z4

j=1 s'

(.1
ZJ

CO

Applying the (E, q) method to E (t-1)
27

, we obtain
i=2

E (t-1)2ii. (z(12] (t-1) 2 12

1=1 j=1

E E
M

Zi
(1

(t-1)2 Er l'Ell [z(2))2

.]1 (t-1)2 j=1\ i I

Also, we can write

.
i M ( (i) 9

ME (-1)1(2t-WE E Z. = -(2t-1)E E ZJ(-1) 2

i=1 j=1 3 j=1

[

M
+ E E Z. E (-1)1(2t-1)1 .

j=1 i i=2

.



Applying the (E, q) method to E (-1)i(2t-1)i, we obtain
i=2

E (-1)1(2t-1)iE
i=1

M (-0)2,1 M( (11
E Z. ] = -(2t-1)E[ E Z.

j=1 j=1

M

Z
(2t-1)

2

E E

(2) ,

. .

j=1

Remark 3.5:

Using Euler's transformation

M
2 M ( (1))2

Var E Y.(tn) = t E E Zj

_j=1

4t2-10t+5 MI (211
E E Z.

2(2-t)
j=

To obtain an approximate expression for variance of

ti
; M (2+1]

EY.W,nowconsiderE(-1)121(t-WE E Z. and

J 1=0
4

.j=1

1=0

(_.01(1+il
(t-1)1E E Z(141) 2

i=1 j

. In our example,

25

M

E

j=1

write

and

(r)

Z.

m
(-12;1

=i 0

`°

E (-1)i(T)(t-WE
i=0

2 (1+1
, ), and

(t_WEI

(2

M

..i71

(z

M

E (Z.

.j=1

generally

2

j

(1+i)

3

)2

= E

=E

decrease

M
E

j=1

M

E

.j=1

Z.

3

(1)

Z.

slowly

S.

and so we

CO

E (-1)
i
(t-1) 1

i=0

- 2(t-1
M

E

.j=1

,

(2))
Z. ' E

' i=0

(-1)1(t-1)1.

Applying the (E, q) method to E (- )i(t-1)i, we obtain
i=0



00

E (-1
i=0

i 2+2 i
M

(t-1)1E E Z(.2+1) 2

j=1

M (

E E Z2\)
9

` and
j=1 j
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1 1+1 1

. M (1+i) ,)

M (1) 2(t-l) M (2)E (-1) (t-1)E E Z. = E E Z.
1 t

E Z. .

i =0 j=1 j=1 j=1

Remark 3.6:

[

M '11

Var E Y.(tn)
j=1 J

= P Z(0) + (t-1)2Var[ Z(11 + (t-1)4Var Z.

j=1 j=1 j=1 J

(2)

M (0) M
(t-1)

2 M (0) M (2)

2(t-1)Cov E Z. , E Z. + 2 E Z. , E Z.

j=1 j=1j=1 j=1

M

3 Cov Z(1), Z(2)
(t-1)

- 2 t
j=1 j=1 J

Without considering Euler's transformation we obtain

Var 1;1 Z. - (-WI r))-
J=1 J=1

M M (1)),- (2+1)

Var = Z 2 cEe (-1 ).(21 I r'E l Z. )

j=1 j=1 i=0

Var E z. = E 2)Z(.
2 6 E

(_1) (4+1 1;1 z(. 4+i) 2M (2)

j=1 j=1 J i=0
4

j=1

M (0) M (1)-

[

Coy E Z. E Zi = -

CO

(-1)10+1)E
j=1 J j=1 ' 1 =0

Coy
M (0) M (2)

E Z. E Z.

j=0 J j=1

M (1) m (2)

Coy E Z. E Z.
.j=1 J j=1 J -

M

j=1

(Z(.i+1))
E

-M (2+i)1

E (-1)1(21 E E Z.
2

i=0 j=1 3

m
4 2A. M (3+1)

= - 3 E (-11'11)E Z.

i=0 ' j=1 '-'



With the use of Euler's transformation we obtain

M (0).'

Var E Z. = E
j=1

M
Var E Z.

j=1

Var[ Z..2

Lj=1 j

E

M
E

j=1

M

E

(1) )2
Z.

Z.

- E

-E

M
E

j=1

E

j =1

(2)

Z.

(2 )

Z.E -

[

M (0) m (1)-
Cov E Z. E Z.

j=1 3 j=1

M (0) M (2)..

E Zi , E Z.

j=1 '' j=1 3

M ( M 2c
Coy E Z.

1)
, E Z.

(

j=1 3 j=1

Coy

.1

i=

1.3

n

(_1)i (44-41 E[ (z(.4+il

j=1 J

= - E

1) ;

+E
j 13

IA (

Z 2

(2)

j=1 3 -
E .

i 3
= - 3 E (-1) ( E

i=0

1
-

2
E

M j

j=1

Z
2

E

(3+i)) 2
Z.E

j=1

27

3.5 Example

Consider a list of size N = 14,115 with M = 12,000 distinct classes,

9,885 of them having 1 unit and 2,115 of them having 2 units. Suppose

the measurements yj, j = 1, , 12,000, are from a Poisson distribu-

tion with mean 15. We simulated a sample of size n = 1,000 with

replacement such a population.

Let nl be the number of classes that occur once in the sample,

let n2 be the number of classes that occur twice in the sample, and

let n3 be the number of classes that occur three times in the sample.

M (1) M (2)

We obtained nl = 900, n2 = 47, n3 = 2, E Z. = 13,461, E Z. =

j=1 j=1

M (3)

671, E Z. = 33, E

j=1 J j=1

)'
2

= 214,613, E

j=1

M (12
= 10,157, and
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M

Z(.3) 2 = 549. By remark 3.1.(5),
1\ 3

)

M

E Y.(tn) = 33t
3

- 770t
2
+ 14902t 66 (see Figure 3.1)

j=1

= 149,734 when t = / = 14.115.
n

M
Therefore, we obtain the estimate of T = E y. is 149,735 without

j=1

considering Euler's transformation. If its variance is obtained by

Remark 3.3 (i.e. without using Euler's transformation), then

Var E Y.(N)

j=1

= 3,138,255,014.82, its standard deviation is 56,020.13

and its relative standard deviation is .3741. If its variance is ob-

tained by Remark 3.5 (i.e. using Euler's transformation), then

Var
M
E Y.(N) = 42,481,045.82, its standard deviation is 6,517.75 and

j=1

its relative standard deviation is .0435. Using Remark 3.4 we obtain

M

Y.(tn) = 12,790t - 671/t + 2046 (see Figure 3.1)
j=1

= 182,529 when t =
N
/n = 14.115.

Therefore, we obtain the estimate of T = E y. is 182,529 with Euler's
j=1

transformation. Using Remark 3.6 without using Euler's transformation, we

find that the variance of the estimates is 41,158,599.42, its standard

deviation is 6,415.50, and its relative standard deviation is .0351. Using

Euler's transformation we find its variance is 42,645,357.32, its standard

deviation is 6530.34, and its relative standard deviation is .0358.
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Figure 3.1
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littitirmtriftrit
`2° RI 53 53 14`-* 93 33 VI

M M

E Y.(1000t) is the prediction of E Y.(1000t) without Euler's
j=1 3 j=1 transformation

M

E Y.(10000 is the prediction of E Y.(1000t) with Euler's
j=1 j=1 transformation

This figure shows the predicted population totals with and without
Euler's transformation based on a sample of size 1000 where the
Yj 's are from a Poisson distribution with mean 15.
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CHAPTER 4

HARRIS' METHOD

4.1 Introduction

In this chapter samples are taken with replacement.

M

In Chapter 3 we found that the estimator of E yj using Euler's
j=1

transformation gives a reasonably good answer in our examples. Harris

[10] gives us a check on the accuracy of this estimator. His approach

offers approximations of the supremum and infimum of E
M
E y.J (t0

j=1

.1

M

which for large t is approximately equal to T = z yj. If an estimate

j=1

of T falls wihtin these bounds, we can regard it as reasonable (from

this rather conservative viewpoint).

Define d to be the number of distinct classes observed in the

sample and d(tn) to be the number of distinct classes which would be

observed in a second sample of size tn. Harris [10] showed

E[d(tn)] = E(d) + E(fd c°1-e-(t-1)x
d G(x)

0

and
(r+1)!E(fr+1)

jixrdG(x)
E(fl)

where fr is as in Section 3.1 and G is a constructed cumulative distri-

bution function. Harris computed the supremum and infimum of E[d(tn)]
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taken over all cumulative distribution functions whose first k moments

are specified byjrxrdG(x).

Now we generalize his computations to obtain the supremum and

[

M
infimum of E z Yi(tn) .

j=1

4.2 Derivations

Lemma 4.1: For large n we have

(i) E[Ts] = yj

j=1

1 -(1 - P.

111.

=

1
and

M (r)" M
E[ E Z.

j=1 j j=1

-

Proof:

j=1 j
E Y[1 -(1 - n

E y.11 - e
j=1

E y.

j=1

E -

j1

-nP4
M (nP.)le

n-r

j1

-nP4

1 - e

-nPi

11Yte+1Pj
< sup

_ nPj]

Yj l - e

sup

By Harris' proof on p. 545 [10], we know

nPj

e - (1 - Pj111_

_

sup 0 as n ± ..

j
-nP.

1 - e
J



(ii) As stated by Harris,

( p) n-r

In

r

exp[-(n-r)P

Hence, we have

n

2n

r
r(r-1)

=
..

exp and
r. L

(n-r)P 2 j
for P < 1.

2
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r
-nP.

y.triPJ .) e In
P. 1 -

r pi)n-r

j=1 r!

J Yj Ir
j=1

-r(r-1)

Y nP
re J-nP* M

ire 2n -(n-r)Pi -(n-r)P42
.(.)
J - E y.

j=1 r! j=1 r!

-nP.
E y. (nP1 re J

t i

J=1 r!

1

/n2/3

r(r-1) (n-r) p2- ex pi rP.
j2n 2

, then

E

P.>
1
/ f3
n

yjtnPjir

r!
exp

-nP
e 1

{
-

}

y.(nP.) r -nP.
< J J

,

9/3 r!>
1,

as n .

r(r-1) (n-r) p.2
rP -

J 2n 2 J

r2
3

1,0

max
. y.)n e

-n

J

r!

÷ 0
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(b) If P < 1/n23 , then

e

Pj< /n2/3 r! p j 2n
1

yi[nP) -nPjr
1 - ex[rP -

r(r-1) (n-r) p.2 ..]
2 j

-nP .

E yi(nPi) re

p.J <
1 / /3 r!

n

-nP .

supi
/ rl

p{il - ex rP. r(r-1) (n-r)
j 2n 2 j -j Pj) n .2

Y (n re

P .<1 2/3
n -nP.

Y.inP 1 re
J J

Sup.,

P .< / 2/3j

9(1/ 23
= 1 - e n

- exp

r!

rP - r(r-1) (n-r) 2
3 2n 2 j

/MO

Now we have by lemma 4.1. (i )

}

E E Y .(tn)
j=1 J

= EY
j=1 j

1 1 - Jto ME

j =l

e-tnPi

which is

M M

E y.(1 e + E y.
j=1 j-1 Jl

e

-nP3.
- e

-tnP .
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= E(T ) +
S

= E(Ts) + E

M -nP.
E ye

j

E Z.(1)

j=1

-nP.

-(t-l)nPj
- e

]

E y. nP.
j=1 J J

-(t-l)nP]

e
nP.

-nP.
E Y.

J
(nP

.3.1 ej=1 /

E y.nP.e
nP.<c J J

Define F(c) = J=
-nP

. One readily observes that F(c)

E

.

y.nP.e
j=1 J J

is a cumulative distribution function, and it depends on the unknown

parameters (yl, y2, , ym, PI, P2, , Pm). We have just shown

that

Theorem 4.1:

Remark 4.1:

E
M 1)Y.(tn) E(Ts) + E E Z.

(

j=1 j j=1

-
e-(t-1)x

(1) We can follow the procedure of Harris to obtain upper

,0

1 - e-(t-1)xand lower bounds off d F(x) for any
0

cumulative distribution function F with given values

of the first k moments. By substituting those bounds

in the equation of Theorem 4.1, and also substituting

-

M 1 ) M (Ts for E(Ts) and E Z(. for E Z.
1)

, we obtain
j=1 J j=1



[

M

upper and lower bounds of E z Y(tn) .

j=1 '

(2) To apply the procedure of Harris (see Section 4 and

5 of [10]) we only need to specify the moments

Jr

.

ur x
r

d F(x). Since F(x) is unknown, we use the
0

approximation

M r+1
-nP

j

M (r+1) E y.(nP.1 e

(r+1)! E Z. _ j=1 J1 JIm =
r

because
j=1 J

ur
M -nPi

M (1) E y4nP.e '

Z. j=1 ' J

j=1 j

M (r+1)

(r+1)!E E Z.

(

E E

M
Z.

j=1

[

M

(3) The bounds for E E Y.(tn) can be used as bounds for

j=1

Theorem 4.2:
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T if t is large. As indicated in Remark 3.4, t =
N
/
n

seems to be a good choice for t. The following theorem

M

shows that the estimator E Yj(tn) in Chapter 3 is the
j=1

M

same as the E Y.(tn) above if we replace I by ..
j=1

M

)

M (1
e
-(t-1)x

E Y.(tn) = T
s

+ E Z. d F(x)

j=1 \j=1 0



Proof:

= T E (-1)i(t-1)i E Z(i)

i=1 j=1

Harris showed (see p. 540 of [1O])
a_l cc,

e-(t
- ji j

e
(

d F(x)
-tx

d F(x) dt
0 x 0 0

fwhere e
-tx

d F(x) is the moment generating function of (-X).

0

CO
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Since pr =

we have

M
(r+1)!E E Z

(.r+1

_j =1J ,

M (1)
E E Z.

j=1 j

M (r+1) r
(-1)r(r+1) E Z. tr _tx j=1 3e d F(x) = E

0 r=0 M (1)
E Z.

j=1 J

fUpon integrating e
-tx

d F(x) term by term, we get

0

CO

z(1)

j=1

- e-(t-1)xdF(x)=E (_1)r z(r+1)

r=0 j=1 J

. M
(1)

= E (-1)1(t-1)1 E Z.

1=1 0=1 j

(t-1)r+1
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4.3 Example

This is the same example as that in the last chapter. By Remark

4.1.(2) we get

M (2) M (1)

ml = 2! E Z. E Z. = .0996954
j=1 j=1

M (3)

m2 = 3! E Zi

j=1

M (2)

E Z. = .0147092

j=1

When we do not consider the addition of any moment constraint

(i.e., k=0), we have

M
M (1)

1 - e
-(t-1)x

sup E Ntn) = Ts + E Z. liM

j=1 x 0

M M

= Yi + (t-1) E Z.
j=1 d j=1

= 14165 + 13461(t-1)

= 190,706 when t =
N
/
n

= 14.115

M M (1) M

inf E Y.(tn) = T + E Z. ) liM
1 - e

b
E Y.

j=1
s

j
J

=1 b j=1

= 14165.

The lower bound 14,165 seems quite conservative because, as

noted in Section 2.4, the (expected) value of T is 180,000. If we

add the first moment constraint m1, then using Theorem 9 in [10], we

conclude that

M
inf E Y.(tn) = 149186.2748 - 135021.2748e

-.0996956(t-1)

j=1

=112,663.8231 when t = 14.115.



If we add the second moment constraint m2, then using Theorem 9 in

[10], we conclude that

M2 -m12
1 -sup z Y.(tn lim

j=1
1112

0
X

1112_

1 - e-(t-1 M
Z. I) E Y.

m2 j=1 j=1
ml

= 71448.54382 + 4365.250075t - 61648.79308

= 119,795 when t = 14.115.

t -1)x mi
2

+
m2

38

From Theorem 9 of [10] the extremum which is attained for any moment

constraint (mi, , mr) is not improved by the addition of the

\'

(r*1)st moment constraint. Since z Y.(N) = 149,734 and E Y.(N) =
j=1 j=1

182,529 are between 14,165 and 190,706, the bounds for k=0 make our

estimator appear reasonable. But this is not true if we use the upper

bound for k=2. Our feeling is that the bounds for k 1 involve too

many approximations to be accurate.
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! 1 gt ER M BA 93 NI

Approximations of the supremum and infimum of E y.(l000t)
j=1

sup E Y4(1000t) without moment constraint
j =l

M

inf z Y4(1000t) without moment constraint
j =l

M

inf E Y4(10000 with the first moment constraint
j=1

This figure shows the approximations of the supremum and infimum

of population total based on a sample of size 1000 where are
from a Poisson distribution with mean 15.

Yj



CHAPTER 5

GOOD AND RAO'S METHOD

5.1 Introduction

In this chapter sampling is done with replacement.

From Chapter 3 we have the model

M (r)

(M1) E E Z.

j=1

and

M
Pi, j=1, 2, ... ,M =

1

yjWI

J

rnIp.ril

1n-r

J=1

EIT
s j IP'

j=1, 2, ... , M]= E y [1 - j(1 - P)111
J .1

J

or when n is large enough from Chapter 4 we have
E.

M (r)

(M2) E[..E Z. Aj, j=1, 2, ... M
j=1

where x. = nP.. Also
J J

r
m

ELT IAJ, j=1, 2, ... , M ]==. E yi

j=1 d

-x. r

e j

j=
E

1
Yj r!

1 -e

411.4

40

As prior distributions for P1, P2, . . Pm and Al, A2, , AM we

take beta distribution and gamma distributions respectively. We cal-

M (r)

culate the posterior means of Z Z. and T
s

, which involve the
j=1

parameters of the prior distribution. In dealing with the model M2

(with yj = 1 for all j), Rao [13] offered the pseudo method of moments

to estimate the parameters of the gamma distribution. We extend this
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method to model M1 and to arbitrary yj. The expression for the poste-

rior mean leads to an estimator of T.

5.2 Derivations for M1

-
Let f(P;a,fl = B(B(a16) p

a1 1..p)-1, 0 < P < 1, be the density

f a beta distribution such that (140-,3 = M.

Therefore

M (r)

E Z.EpE

j=1

P., j=1, 2, ... , M
M

E
1
Yi (r)j=

M
(nr(a+r, 3 +n -r)

Y
j'

and
r B(a,f3)

0=1

E
P
ElT

s "IP. i-1 2,
'

M ]= E y.
'

j=1

pr(1...p)n-rf(p;aMdp

0

- (1-P)n)f(P;c4,B)dp

If we can estimate a and 13, then we can form the following estimators

M

of E y.

J -1 M (r)

E Z.

T1(M1,r) = j=1 J for all r
(n) B(a+r, (3+n-r)

r

T
sor T

2
(M1) =

BC,c,

B(;+1,

(5.1)

(5.2)
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Let fr be the frequency of the classes represented by r individuals,

i.e., f
r

= E I
frl j

(X.). Then
.

J=1

1[

M
E fr Pi, j=1

r
... , M = E

n p.r n-r
, v

3
rj 3

I.,

[
r j

_ (n) B(a+r, 13+n-r)
r Bca, )

E,E f P., j1, 2, ...
13

5.2.1 Pseudo Method of Moments for Estimating a and 13

Let S denote the number of classes observed and R the number of

individuals observed. Then

n n

S = E fr R = E rfr
r=1 r=1

(n B(a+r, 3+n-r)
and E,E(S) =

F r B(a,

E E(R) = E

r=1

r(
r) B(a, 0
n B(a+r, 3+n-r)

(5.3)

(5.4)

Consider the equations obtained by equating the observed values of

S and R to their expectations. If these equations can be solved, we

use the solutions as estimates a and 3 of a and B.



M

5.2.2 Variances of the estimators of E y4

j=1

(I) Find the variance of T1(M1, r) :

The variance of T.
1
(M1 r) is

/ M (r)

VarlyM1, Var(S) + br Var(R) + c;", Var E Z.

j=1

M (r)

+ 2a b Coy (S, R) + 2a c Cov S, Z.
r r r r

j=1

M (r)

+ 2b
r
c
r

Cov R,

j

Z .

j=1

I M (r)\

Since R = n, Var(R) = Cov(S, R) = Cov R, E Z. = 0.

j=1

M (r) I M (r)
To find Var(S), Var Z. and CoviS. EZ4

j=1 j j=1-'

formulas.

From Remark 3.2 we have

43

(5.5)

, we use the following

M

j =1 j=1
6rsE Zi

j=1

M (r)
2-r-s( r+ 1 E

(2n)

M (r+s)

Cov Z. , Z.

(r) M (S)

From (30) of [7]

Cov(fr, f
s

) =
rs

E(f
r

) - 2-r-srS E(f (20)
r r+s

and by the same proof we get

M (r)
Coy( E Z. ,

b rsE
j=1 3

M Cr) -r-
M (r+s)

Z. 2 sE E Z. (2n)

j=1 3 j=1

(5.6)

(5.7)

(5.8)



The following is to derive it.

Define gr(a, 13, wB(a,
= and note that

B (a+r, R+n-r)

M (r)

T(M1,6=g
r
(a, R, w) where w = E Z. . Then

j=1

dgr
3a

3g
r

da +
313

g
+ Dgr dww

B (a, OB(a+r, R+n-r) - B (a+r, 1341-6B(a, 0
w a a

da

r [B(a+r, R+n-r)]2

w '

B
R
(a R)B(a+r, 13+n-r) B

f3,

(a+r
'

R+n-r)B(

(11
[B(a+r, R+n-r)]2

B(a, dw .

B(a+r, R+n-r)

Define

S(a,
(n) B(a+r, R+n-r)

r=1 r B(a,

R(a, =
Err) D(a+r, R+n-r)

r=1 r B(a, 13)

and note that S(a, = S and R(a, 13) = R.

)

dR

44
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We have

dS = E

=

In) B (a+r, 0+n-r)B(a, -

1

n

n)

n
dR = r'

=1 ()r

n

+ E r(

r=1

Bala, 0)B(a+r, 0+n-r)

[B(a, 072

B (a+r, 13 +n- r)B(a, 0) 0)B(a+r,

da

[B(a, )]2

B a r, (3+n-r)B(a, 13) B (a, 0)B(a+r, 13+n-r)a a

Na, o]2
da

n) B a r, 011-6B(a, - OB(a+r, 0+n-r)

In other words, we get

dS

dR

where J

E
(n

r

(r)(a, ( n

Na, 072

==1 r

(r)
(a, 0

1
a

r

r=1

E r ( (r) (a, 13) r
n

r a
r=1 ('

fir)
(r)

(a' 13)

%sr

(r),
la, = '

B (a+r (3 +n-r)B(a, - Bab, OB(a+r, 13+n-r)
Y
a

(r)(a

[B(a, 0J2

B13(a +r, 0+n-r)B(a, 13)B(a +r, t3+n-r)

[B(a, 0)]2

Solving for da and 0 in terms of dS and dR we obtain

dgr = ardS + brdR + crdw

Where a
r

, b
r
and Cr are suitable functions of a and S. Then the
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asymptotic variance of g(a, 3, w), using the formula (6a.2.9) on page

322 in [12], is obtained as stated.

(II) Find the variance of 1-2(M1) :

In order to get Var(T2(M1))we need for formulas (5.6 (5.7), and (5.P)

(i))2-
and Var(Ts) = - E (-1)1E E z.

i=1 j=1 I

The approach to find Var(T2(M1))is the same as that of (I)

except w = Ts and

VR(a, )

aR B(c" fon)

5.3 Example of M1

For the example of Section 3.5, the equations of the pseudo method

of moments estimators for a and 13 are

(1000) B(a +l, R+999) (10001 B(a+2, +998) (1000) B(a+3, R+997)

1 B(a, 2 B(a, 3 B(a,

(1000) B(a +l, 13+999) (1000) B(a+2, f3+998)
1,000 = + 2

1 B(a, 0) 2 B(a, 0)

+ 3 (1000) B(a+3, 0+997)
3 B(a, 0)

Unfortunately, there do not exist solutions for a and R. That is,

the method of moments does not work in this example.



5.4 Derivations for M2

We have

M r

E E Z
(r)

A., j=1, 2, ... , M E y e

J.1 J J
j=1 r!

and

E E
1

Y. A., j=1, 2, ... M
4= J

NO,

-A

E y. l - e 3] .

j=1 j

47

Suppose that Al, A2, ... , and Am can be approximated by a gamma

distribution with density
A

/1

A
a-1

e dx .

r(a)0a

Hence

E
A
E

and

Ni

Z(r)

j=1 J
X.,j=1, 2, M

E E[T Ix., j=1, 2, , h
S J

(

r!r(a)
(1

+0a 1-1- ) j=1 i
E y

r Mr(ar) 1 (

1 _ 1 1( E y )
(14.)".]0=1 JI

If we can estimate a and 0, then we can form the following estimators

of E Y.:
j=1 J

or

Ti (112,r

M /
E ZY^)

j=1 , 1

r(a+r) I

r!r(a) (1+ )a 1 -1-13 4

T
s

T
2
(M2,r).

1

1 -
(-!+01

Since

r for all r (5.9)

(5.10)



ExL[f -, j=1, 2, N = M
r!

r(a+r) ) 1

r(a
0+o Y

r(!r(aa+r) 1

a 1+
( y

T
r

where T = Ma
)

0+0

we can find estimators of a , (3, and T in terms of the fr.

5.4.1 Pseudo Method of Moments for Estimating a, a, and T

Define S = E fr , R = E rf
r
and U = E r2fr . Then

r=1 r=1 r=1

[1 (1 OH]E E(S) = T
A a

E E(R) = T(3

E
A
E(U) = T(3(1 + R +

Equating observed values of S, R, and U to their expectations, we

48

(5.11)

(5.12)

(5.13)

obtain estimates a, f3, and I (if the solutions exist) of a, (3, and T.

M
5.4.2 Variances of the estimators of E yj

j=1

(

E Z
r)

j=1
(I) Find the variance of 'F4m ,r = [ r :

r(a+r)

rir(a) (14-0a

Define g
r
(a, R, T, w) =

rk/ a+r
1 r and note that

r!r(a) (1+0a t1 +

M

T1(M2,r)=gr(a, 13, T, W) where w = E ZCr) . Then

j=1



dgr
ag

r
ag ag ag

r

as
du +

DT
dT +

aco
dw

aR
(5.14)

where

nwa(1+ r (a)r(a+r) - r (a+r)r (a) r (a)

3a ' r(a+r) 1n (1.413)

[r(et+r)]
2

Define

aR r(a+r )

=0
DT

(-1+

act r! r (a) an+, )a-1 (1+13

aw r (a+r) v

S(a, T
[1 (i+Wc]

a

49

R(a, R, T) = 713

U(a, R, T) = Tgl+ + afl

and note that S(a, 13, T) = S, R(a, (3, T) = R, and U(a, T) = U. We

have

where

dS da

dR = J1 dR

IdU dT

2 + (1+0-cTI+1090+q TO+0-a-1
a

0

1-0+-a
`i

13

a

T a

2 T (1 +2+204S) 13 (1 +13+0413 )
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Solving for da, df2., and dT in terms of dS, dR, and dU we obtain

dgr = ardS + brdR + crdU + drdw

where ar, br, cr, and dr are suitable functions of a, (3, -r, and w.

A A A A

Then the asymptotic variance of g(a, T, 0, using the formula

(6a.2.9) on page 322 in [12], is

Var(T1(M2, r))= 4Var(S) + 4Var(R) + 4Var(U)

/ M (r)

+ dr2Var E Z. + 2a
r
brCov(S R) + 2a c

r
Coy (S, U)

kj=1 j

M (r) M (r)

+ 2a
r
d
r
Cov(S, E Z. ) + 2brcrCov(R, U) + 2brdrCov(R, E Z4

j=1 j=1 j

M (r)A

+ 2c
r
d
r '

Cov U E Z.
j

(

From [13] on page 136 we get

T[(1+fl-a -(2+0-a] TWi-f3
a

Cov[ R =

U_

Remark 5.1:

-a-1

(5.15)

Tf3(1+0-a-1 TS Tql+2R(a+1)]

Tg11-0-a-2(2+a+0 T[1 +2R(a+1)] 13[4+3ga+1)+02(a+1 )(a+2)]

M (r) M (r+i)1
(1) E Z. (t = tr E (-1)i(r+1 (t-1)' E Z. by Remark 3.1

j=1 i=0 j=1

(5.16)
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(2)

If we consider Euler's

decreases slowly after

(1)
E Z. (tn) = t E Z

(1)

j=1 J j=1 j

and

E Z
(r)

(tn) = t
r-1

E

j=1 J j=1

(

( )

Since Cov S, E n I
j=1 J

transformation assuming that

the first term, then

(

- 2(t-1) E Z. (5.17)

j=1 J

(
Z.

r)
when r > 2. (5.18)

( )

0' .

M

j
= Cov M - f0, E Z`ri = -Cov

J =1

E Z
(r)

j=1 j

f0'

M

E Z. = 2
-r

E

j=1 J

M

E Z
(r)

(2n)

j=1 J

Gov S, E. Zj
r)

= E (-1)ir+i ZCr+i) without Euler's(

1 =

)

j 3 =1 transformation

( M ( M (

or COviS, E Z(r) =
1)

- E
(9)

when r=1 with Euler's

j=1 j
j=1 U j=1 j

(3) Cov
M

R,

j=1

(r)
77 E Z.

transformation

when r > 2.

= 0 for all r since R = n.

M
(4) Since Cov U, E

(,)

j=1 J

= Cov( E s2f E Z
(r)

s=0 s' j=1

n 9 f M (v-l\ n
s"Co f, E = E S

S 0
s

j=1
j

j s=1

E
(r+s)

E Z. (2n

j=1 j

we have

rsE

M

Z(r) 2
-r-s

j=1 j



(5)

Cbv
M

(r)
\

2
M

(r)
U, E2. 1=rEZ.

j=1 3 / 1=1 3

n
2

n

- ES E(
s=1 i=0

(

M
-z(r+s+i)

k1=1 3

i ri-s+i
1)
..()

r

without Euler's transformation

or CovIc 'E Z
(r)

j=1 3

n

= r2EM ZCr) -I Es
j 2

s=1

Z
(r+s)\

=1 3 j

with Euler's-transformation.

From Remark 3.2(1) we have

Var
(

E Z.
r)

j=1

m /
z(r)

1
2 2-2r(2r

M
) z(2r

.3

/

r 3

, co
F IA

(_1)i(2,1:-1

i= j0 4 L=1

withOut Euler's transformation.

m
or Var E Zr C) = E IZY^)

J=1 j j

2 1121
M(2r) 2

it1\1-3

M

with Euler's transformation assuming that E

j=1

decreases slowly after the first term.

(r) 2

52
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T
(II) Find the variance of T2(M2) =

Define g(a, R, T, w)

1-
(1+001

1
1

(1+fla

and note that

T
2
(M2) = g(a, 6, T5 w) where w = Ts. Then

dg =Fog- da + 9 dR + dT + dw (5.19)

where

-w(1+0a ln(1+0)
3a

[(1+8)a - 1]2

aR
[(11-0 1]2

22-= 0
OT

("1")a

Bw (1+0a 1

Using the same approach as (I) we get

ag = aaS + baR + caU + chw (5.20)

where a, b, c and d are suitable functions of a T5 and w and

Var (T2(M2)) = a2Var(S) + b2Var(R) + c2Var(U) + d2Var(Ts)
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+ 2abCov(S, R) + 2acCov(S, U) + 2adCov(S, Ts) + 2bcCov

(R, U) + 2bdCov(R, Ts) + 2cdCov(U, Ts)

where

n M (r)
Cov(S, Ts E Cov

r=1

S,

j=1

I

Cov(R, Ts) = 0

n M
Cov(U, T,) =

'

E Cov
r=1

U, E

j=1

.

5.5 Example of M2

We now apply this method to the example in Section 3.5. We have

Nl^ [1 - (1+13)
-a.1

... 949
,

a

Tg = 1,000 , and

A A A

11-3ta0 = 1,106.

The solutions are

a = 8.78268266064 a = -.00000057585 (not

reasonable)

= .01083547363 or = .10600006104

= 92287.45906 T = 9433.956832 .

E
(1)

j=1

For r=1, (M2,r=1)'1,(a
+1)

(a) (14)a+1

= 157,177
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for r=2, i1(M2, r=2)

for r=3, t1(M2, r=3)

Also,

T2(M2)

M (2)

E Z.

j=1

r(a+2)
^2

2!r(a) (14)642

M (3)
E Z.

j=1

^
r(a+3) a

3!r(a) (1+8)a+3

M
E Y.

j=1 j

1- 1

(1+0a

149,431, and

= 190,747.

= 156,847

Now let us consider the variance Var(T1(M2, r))

- 9536.16 899.92 9609.10

Cov R 899.92 999.98 1211.97

U

9609.16 1211.97 4367.23

when r=1

-.0109521933736

.00001213084646318

-103.3903909322

a
1
= 19.936073931

cl = -1318.114736

.016007251633 -.005069705794336

-.0001307821596695 .000107839046779

1206.182399682 -918.4826883093

b, = 1438.915688

d
1

= 101.45170575



(

M (1)\ 12,218 without Euler's transformation
Cov S, E Z. =

j=1 3 12,790 with Euler's transformation

I M (1) 11,822 without Euler's transformation
Covp, E Z. =

j=1 13,059.5 with Euler's transformation

I M (1) 197,593 without Euler's transformation
Var1 E Z. =

j=1 204,456 with Euler's transformation

Therefore

Var(T1(M2, r=1) =

56

3.532533918 x 109 without Euler's transformation

3.274515433 x 10
9

with Euler's transformation

The relative standard error is

when r=2

.38 without Euler's transformation

.36 with Euler's transformation

a2 = 20.754798748

c2 = -2646.960626

b2 = 2907.842194

d2 = 1934.924667

M (2) 572 without Euler's transformation
Cov S, E Z. =

j=1 335.5 with Euler's transformation
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M (2) 2,585 without Euler's transformation
Coy U, E Z.

j=1 2,667.5 with Euler's transformation

M (2)

Var E Z.
j=1

10,157 with and without Euler's transformation

Therefore

Var(T1(M2, r=2) =

The relative standard error

when r=3

a3 = 8.967069573

3.104794347 x 1010 without Euler's transformation

3.018387282 x 10
10

with Euler's transformation

is

1.18 without Euler's transformation

1.16 with Euler's transformation

b3 = 5706.407682

c3 . -5167.194706 d3 = 50,221.67689

M (3) 33 without Euler's transformation
Gov S, E Z.

j=1 16.5 with Euler's transformation
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M (3)\

Cov U, E Z. i = 297 with and without Euler's transformation

i=1 J I

M (3)
Cov E Z. = 549 with and without Euler's transformation

j=1

Therefore

Var(T1(M2, r=3))=

1.307477378 x 1012 without Euler's transformation

1.307376523 x 1012 with Euler's transformation

The relative standard error is

5.99 without Euler's transformation

5.99 with Euler's transformation .

A A.

Now let us consider Var(T2(M2))

Since a = 19.961152284 b = 1522.798549

c = -1393.979799 d = 11.072835296

and Cov(S, Ts)

Cov(U, Ts)

{12,823 without Euler's transformation

13,142 with Euler's transformation

14,704 without Euler's transformation

16,024 with Euler's transformation



Cov (T
s

)

Var(T2(M2))
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208,299 without Euler's transformation

215,162 with Euler's transformation

4.76078734 x 109 without Euler's transformation

4.721020597 x 10
9

with Euler's transformation

The relative standard error is

{

.44 without Euler's transformation

.44 with Euler's transformation

These calculations are summarized in Table 5.1.

M

From the information above in this case we would choose the estimate of E yj

j=1

to be Ti (M2, r=1) = 157,177

with the relative standard error is .36.



estimated
population

total

estimated variance relative standard error

without Euler's
transformation

with Euler's
transformation

without Euler's
transformation

with Euler's
transformation

1"
1
(M2

,
r=1)

T1(M2,r=2)

T1(M2,r =3)

T
2
(M2)

157,177

149,431

190,747

156,847

3.532533918x109

3.104794347x1010

1.307477378X10
12

4.76078734x10
9

3.274515443x10
9

3.018387282x1010

1.307376523x10
12

4.721020597x10
9

.38

1.18

5.99

.44

.36

1.16

5.99

.44

Table 5.1: Estimated population total, estimated variance, and relative standard error.



CHAPTER 6

EFRON AND THISTED'S METHOD

6.1 Introduction

In this chapter we still consider sampling with replacement.

Efron and Thisted [2] tried to find a reasonable estimator of d(..)

X

supposing that E(fr) I

xx

dG(x) for some distribution G. If

G(x) is a gamma distribution with parameters a, B, then an estimator

of d(tn) is

d(tn)

where I =
+ts

fi

Ya

{-1
-

1

(1-1-Y-W

log (l+Yt)

if a > 0

if a = 0

He also found other possible estimators.

(1) d(tn) = E
x
e , or

x=1

( 2 )

if Euler's transformation is considered, then

X0 [ 1Nx+1

d(tn) = E Cull"' where = J-' '-') f and t u

Y=1 j Y x=1 x-1 2Y
2-u

CO

X+1A X A r(x +a)
f
x
t where

x
= f

1 x!r(l+a)

61



CO

= fit E (-1)
X+1 r(X+a)

t)
X-1

x=1
X!r(l+a)

whiel can also be modified by Euler's transformation.

M

We generalize their derivationsto estimate T = ,E yi by using
j=1

r

(co)A where A(tn) = E z(111:-X(1-e-xt)dG(X)
,and we also derive

j=1 d jre-AxdG(A)

the biases of these estimators to measure their precision.

6.2 Nonparametric Model

From Chapter 4, lemma 4.1, we know

M

E E Z'x'
j=1 J

M -A. x
e JX4

E y.

j=1 X.

Suppose that M is large and the frequency distribution of values Ai,

, AM can be approximated by a continuous distribution G(A).

Then,

M M
E E ZCx) = E

A
E E ZCx)

j=1 J j=1 J

Define

where

Y7(tn) = y.6.(tn) =
J J

j'
j=1, M Ey.

j=1

62

e-
A
x
x

x!
dG(x).

y. if the jth class shows in the second
sample of size tn but does not show
the basic sample

0 otherwise

1 if the jth class shows in the second sample of

6(tn) = size tn but does not show in the basic sample

0 otherwise



and

A(t) =EE EY7(tn)
j=1

We have

4

A(t) = E E y.
=1

x.

J

( i
- Pi

nt
)

)

J -1

M -n
P

E y.J
Je 1 - e

M - -A.t
E y.e J - e J

=1 J

=E

1".

-X(1
e-at

)
dG(x)

where A. = nP.

z(l) - e- t)dG(A)

j=1
ji-A
e AdG(X)

We wish to estimate A(t). Substituting the expansion

22
1 - e-

At t A
3 3

At -
2! 3!

t
+

into (6.1), we obtain

63

6.1)

(6.2)

A(t) = E E ZjO) t- E E ZC2) t
2

+ E E 2C3) t
3

-+ . (6.3)

j=1 -j=1 J j=1 j

This result appears in Remark 3.1.(5) in Chapter 3. The right-hand

side need not converge, but assuming it does, this suggests an estimator

for A(t)

A(t) = FizOlt
M

ZV)
j=1 I

t
2

+ E ZC3) t3 -+ . (6.4)

j=1 J
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The estimator A(t) is a function of the data only through the statistics

(
E Z.

x)
. Unfortunately o(t) is useless for values of t larger than 1.

j=1

The geometrically increasing magnitude of tx produces wild oscillations

in A(t) as the number of terms increases.

6.3 Parametric Model with a Gamma Distribution for G(A)

The c.d.f. G(X) is approximated by a gamma distribution with

density,

g(x) xa-le7A4

Therefore

(6.5)

E E ZCX)

j=1 J -

=
M

E y
0=1 J

A

x

dG(x) =
, 1

x y. 1 xal-x-le-Akl+T) dx
X.

j=1 J r(a)f3a x!

M

= E Y. 1 r(x+a) where Y =
j=1 J yi Y

a+x
lf3

ir(a)e

(1)=E EZ.
j=1

r(x+a) ,x+1
x!r(l+a)

-
M

E E ZCX) is proportional to the negative binomial distribution with
j=1 J

(6.6)

parameters a and Y.

A(t)

Integrating

E

.

M

E Z(.1)

-j=1 J

log(1+10

(6.2)

1

-

we obtain

1 ] if a_ > 0

(6.7)

E

a l

,

M
z Z(.1)

...j=1 J -

- (1+Yt)a

if a = 0 .
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Hence

(1)
E Z.

j=1

al

1

(1-Fyt)a

E Z.

j=1 log (1 +'y t)

6.3.1 Example

From Section 5.5 we obtained

if et > 0

if et = 0

a = 8.78268266064 0 = .01083547363 Y = .01071932467

so A(t) = 142,982.4414 1
1

1+.01071932467t)
8.78268266064

A A

(see Figure 6.1). Hence we can claim T = (co)A = 142,982. Using

the same approach as that of the last chapter, we can find the

asymptotic variance of A(t)

Var(

4.29237317 x 109

4.258910831 x 10
9

without Euler's transformation

with Euler's transformation

The relative standard error is

without Euler's transformation

.46 with Euler's transformation



14 Ni_

OM_

Figure 6.1

1-f 1 I MIlt FS MI eig

Z.
(1)

E

A(t) =
j =1 J 1

where a = 8.7d268266064,
a y (1+yt)u

M
y = .01071930467 and E

(1)

= 13,461

j=1 j
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6.4 Euler's Transformation

Euler's transformation is a method of forcing oscillating series

M I

like A(t) =
(..TX+1 X

) fIxt , where n
x

= E nxi , to converge rapidly.
x=1 j=1 j

Efron and Thisted showed

co co

A(t) = E ( -1)
x +1fl

xe = E ay where t
211u

0 < u < 2,
3 = =

x=1 Y=1 Y

and c = E ( 1) (-1)

x+1

y x-1 2y

6.4.1 Nonparametric Estimator for A(t)

Define

CO

of (u) = E C UY

Y=1

Cy

00(0 °(-1)x+1

X
t
X

X=1

xo

E
"Axordl = Ey

y=1 Y

Good and Toulmin suggest estimating A(t) by

xo,
x t

A CI(U) = E 1Y where u
+t

and
l

Y=1

YE (1 (-1)
+1

n
x

. The n
x

is taken to be the nonpara-
Y x=1 -1 2Y

M
metric estimator E nxI.

j=1 J



6.4.2 Parametric Estimator for A(t)

From (6.3) and (6.6) we know

A(t) = nit - n2t
2

+ n3t
3

-+

r(X+a) -1
nX = n1

Xl.r(i+a) 7

We obtain A(t) = nit z (-1)
x+1

x=1

r

x!r

(yt)X".1

68

which diverges for It > 1. If we estimate n1, a, and I, we obtain

an estimator of A(t). According to Efron and Thisted, for -1 < a < 1,

the series z converges in the nicest possible way, having

y=1 Y

Y
> 0 for all y. Using Euler's transformation we obtain the esti-

mator
xo,

2t
?°(u) = E U/ where u = lt

Y=1 Y

and 5 = E CY-1) (-1)x+1
r(x+a) "x-1

Y X=
1 x-1 v ni y

24 x1r(1+04)

6.4.3 Example

Initially let us consider the parametric estimator :q ( ) with

Euler's transformation. The values of are in Table 6.1. One way

Nl

to choose xo is to require A (1) = E Y. = 14,165. This gives xo = 38,

j=1

38

and so we do not consider g , y > 39. Since E = .00000522259,
Y y=29 Y

we decide to choose xo = 29. Let us choose t = 100. From Figure
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y y

1 6730.5 26 .00003380035

2 3188.80362999268 27 .00001514092

3 1509.57766569919 28 .00000673407

4 714.02261275796 29 .00000296968

5 337.42502726722 30 .00000129620

6 159.30509997155 31 .00000055862

7 75.13553619057 32 .00000023690

8 35.39960803598 33 .00000009839

9 16.65943914926 34 .00000003968

10 7.83068586624 35 .00000001535

11 3.67605589976 36 .00000000556

12 1.72333189187 37 .00000000178

13 .80671026984 38 .00000000042

14 .37703393043 39 -.00000000001

15 .17591546659 40 -.00000000011

16 .08192720133 41 -.00000000010

17 .03807890877 42 -.00000000007

18 .01766019281 43 -.00000000005

19 .00817093799 44 -.00000000003

20 .00377060640 45 -.00000000002

21 .00173497792 46 -.00000000001

22 .00079575682 47 -.00000000001

23 .00036366811 48 -0

24 .00016552792 49 and more

25 .00007499638

Table 6.1

y
=

Y
E

x=1

(-1)
x+1

r(x+a) x-1
= 13,461, n2 = 8.78268266

(y-1)

x-1 v n1 x!r(1+&) 1
where hi

2-

and y = .01071932467
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6.1 this seems large enough and if we suppose that A. =

1000/14,115, the expected fraction of distinct units observed in the

second sample is

-100x.

1 e = .9991621419 .

We calculate

j(1

9 200/101
= 167,493

and 43E8r 200/101

(see Figure 6.2).

= 172,129

If we consider the nonparametric estimator A(t) without Euler's

transformation

A(t) = - 112t
2

Ibt = 13461t - 671t
2

+ 33t
3

= 149,118 when t = 14.115

The reasons we consider t = 14.115 are that t =
N
/n and, if

there do not exist duplicated cases, then Ey.--1\r1.-7.i..1Yi where

j=1

(1)E Y. = E Z. .

1=1 1 j=1

If we consider the nonparametric estimate of 0(u) with Euler's

transformation, we get

zy 13,461/2y
671(y-1)/2y + 33(y-1)(y-2)/2y+1

and the table of values of c is in Table 6.2. From this table we
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y y

1 6730.5 27 0.00005021691

2 3197.5 28 0.00002580509

3 1519.0 29 0.00001331232

4 721.6875 30 0.00000689179

5 342.96875 31 0.00000357907

6 163.0625 32 0.00000186381

7 77.578125 33 0.0000097288

8 36.94140625 34 0.00000050885

9 17.611328125 35 0.00000026659

10 8.408203125 36 0.00000013986

11 4.021484375 37 0.00000007345

12 1.92749023438 38 0.00000003861

13 0.92614746094 39 0.00000002030

14 0.4462890625 40 0.00000001068

15 0.21575927734 41 0.00000000562

16 0.10469055176 42 0.00000000296

17 0.05100250244 43 0.00000000156

18 0.02495574951 44 0.00000000082

19 0.01226806641 45 0.00000000043

20 0.00606060028 46 0.00000000023

21 0.00300931931 47 0.00000000012

22 0.00150203705 48 0.00000000006

23 0.00075364113 49 0.00000000003

24 0.00038009882 50 0.00000000002

25 0.00019267201 51 0.00000000001

26 0.00009813905 52 and more 0

Table 6.2

1

(y-111 1 ;12 + (31-1)
M (X)

y = ni 2 2y n3 where n E Z. and
x j

2J 2Y

ni = 13.461, n2 = 671, n3 = 33
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Accumulative Accumulative

1 12823.0 27 0.00010371208

2 6092.5 28 0.00005349517

3 2895.0 29 0.00002769008

4 1376.0 30 0.00001437776

5 654.3125 31 0.00000748597

6 311.34375 32 0.00000390690

7 143.28125 33 0.00000204309

8 70.703125 34 0.00000107021

9 33.76171875 35 0.00000056135

10 16.150390625 36 0.00000029476

11 7.7421875 37 0.00000015491

12 3.720703125 38 0.00000008145

13 1.79321289064 39 0.00000004285

14 0.86706542968 40 0.00000002254

15 0.42077636719 41 0.00000001186

16 0.20501708984 42 0.00000000624

17 0.10032653809 43 0.00000000328

18 0.04932403564 44 0.00000000173

19 0.02436828613 45 0.00000000091

20 0.01210021973 46 0.00000000048

21 0.00603961945 47 0.00000000025

22 0.00303030014 48 0.00000000013

23 0.00152826309 49 0.00000000007

24 0.00077462196 50 0.00000000004

25 0.00039452314 51 0.00000000002

26 0.00020185113 52 0.00000000001

53 and more 0

Table 6.3: Accumulative from Table 6.2.
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Figure 6.2

2
( ), where u

t
i, in Section 6.4.2

, =Immo

means 038(u).

means A29(u)
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know we can choose xo = 31 since E C < .00001 (see Table 6.3). We

x =31 Y

-3(calculate A
E

1 200/101
= 221,314. This is the value we claim for the estimate of

M -2(
y. (see Figure 6.3). Note A

E

9 200/101
= 210,177.

j=1

6.5 The Bias of AM
A

-
From the expressions for A(t) and A

x
°(t) in Section 6.4, we see

that it would be difficult to find their variances. In this section

we try to find their biases. Using Euler's transformation and sub-

stitutingstituting u = , we have

x°(t) =
(..1)x+11

_171j( t ly-xxo x_

x=1
x-1 1+t) 1+t

Define

00 = (..1)x-fltx
X X-1

, and

y=x

hx = (-1)x+I, tx E (Y1 1 t 1Y-x
x-1 1-1-t l+ti

y=x

so that

and

Xo
Xof

A (t) = E hx 0
x

x=1
x

M
o(t) t) = Ehq where = EZr Y(I

x1 x x x
j=1



Figure 6.3

1111 t t IIIIIII
M

I II
A
E

o
(u), where u

2t
, in Section 6.4.1

means A31(u)

-- means A29.(u)

t-*

75



00

Define H(x) = E h xx /x! where 0 < A < c°
x=1 x

xo

and Hx°(x) = E h"°x^/x!
x=1 x

Then

CO CO

E[a(t)]=E h = E h

x=1 x x=1

M
E y.

j=1

A ,X

E y. e dG(x)

j=1
x!
"

e x1-1(x)dG(x)

= ( E y.

j=1
0

e-x[H(x) - - e-at )] dG(x)

which, for t = 0., becomes
00

E{b.(-)-A(-) } = lEy.)

.j-P
e
x

- dG(x) .

It is convenient to rewrite this in a form which depends on

00 M
E r)x rather than E y. . Define

x=1 j=1

eldG(x)

dG(x)

Since

1 - e-x
dG(x)

E y
j=1x=1 A

=E
x=1

.

"j71 j)0

e
X

X
X

dG(x) E y. - e
x.

dG(x)

76
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and

Nl

E {A(t)-Aq = E y
j0=1

1 - e-x
P

)

1 - e-x 0=E1

y

j

P

co

E{A(..)-A(.)} = J

0 1

Similarly

ECAx°(-0-A(t)} =

and for t =

0

x

e

[H(X)

-x[H(x)

[H(x)

(1

-
(1

elia(x)

-

- e-At )] dG(x)

-xt)idG(x)

.

e

[Hx0(x) - (1 - e-21 4x)

ECAx°H-A(-)1 =
e

- e_x
[Hx0(x) - ] 4x) .

We use the integrands

e-x
B

t

(a)

1 - e-x
H(x) 1 - e

1- e
Bt (X) e

H
x(x)

1 -
oxo

to measure the bias of A for any G(X).
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6.5.1 Example

We compute 14°(A) in Table 6.4 and Figures 6.4, 6.5 and 6.6. The

1

maximum bias of 'i,x° = Max Bxo( ) is .00000694085 for xo = 29,

t=1; .00000198310 for xo = 31, t=1; 1,062,375 for xo = 29, t=100;

(

1

1,034,045 for xo = 31, t=100; and the relative bias = Bias/Asx°(t) is:

.54 x 10
-9

for x0 = 29, t=1 and the parametric model with the gamma

distribution; .15 x 10
-9

for x0 = 31, t=1, and the nonparametric model;

6.34 for X0= 29, t=100, and the parametric model with the gamma distri-

bution; 4.67 for x0 = 31, t=100, and the nonparametric model.



bx00) 1x10 11
1000 2000

-171-11-6'

3000

14-1-ff

4000 5000

14115
6000

14115
7000

14115
8000
14115

9000
14115 14115

BP(A) 0 - .49x10-9 1x10-11 .3x10-9 .23x10-9 .7x10-10 -.4x10-10 -.8x10-1° -.11x10-9 -.9x10-10

bil(k) 0 .Lxio-lo - .5x10 -10 -.14x109 .8x10-10 .3x10-10 -.2x10-10 0 -.2x10-10 -.1x10-1°

8 rd11(A) -74.99999999930 1.290J0307654 2.08045834322 0.7447105037 -.13649066111 -.49577148252 -.52078000274 -.38115206215 -.19140356295 -.01734218806

L11 (x)-72.99999999930 1.65334757369 1.99291149494 0.55014339244 -.28611353371 -.55553788581 -.49916822146 -.30762042606 -.09824700846 .06921067045IOU

Table 6.4

The Bias Function Bxt 0(x).
'

in Section 6.5, for ax0(t), at x0 = 29 or x0 = 31 and t = 1 or t = 100
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Figure 6.4

The Bias Function Bi9(x), in Section 6.5, for 029(1).
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Figure 6.5 for 131(,),)

The Bias Function Bil(x), in Section 6.5, for 031(1).
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Figure 6.6

The Bias Function Bi80( ) and Bi6 ( ), in Section 6.5, for

Bi20W and Bno(A)
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CHAPTER 7

SUMMARY

In the literature there are five methods for estimating the popula-

tion size when sampling from a list that contains duplication and when

the extent of duplication cannot be determined. In this thesis these

methods are generalized to estimate population totals when a measurement

is associated with each member of the population. Also, the variances

of those estimates are estimated.

The five estimators are illustrated and compared for a population of

size N = 14,115 with M = 12,000 distinct classes, 9,885 of them having 1

unit and 2,115 of them having 2 units. The measurements yj, j=1, 2, ... ,

12,000, are assumed to be Poisson distributed with mean 15. In other

words, the expected population total is 180,000. We simulate two samples

of size n = 1,000, the first sampling without replacement (Goodman's

method) and the second sampling with replacement for the other methods.

The five sampling methods compared as follows:

(1) By Goodman's method we have an unbiased estimate

M
Y. = En A E ,(r)

=1 J r=1 r j=1Li
= 163,652, where Ar

J

=
(_1)r [N-n+r-l]( r)

, with relative standard
(r)

n

error .058.

(2) By Good and Toulmin's method we have



M
y. = EM Y.(N) = En Ell Z(r) +

j=1 3=1 J
r=1 j=1 j

N

1)2

M
(2)

E. Z. = 182,529
j=1 j

n

(1)

1)E.
J

Z.
J=1

84

with relative standard error .036.

(3) By Harris' method for obtaining the upper and lower bounds of

a population total we have

m (1)M
sup z Y.(N) = E Y. + (t-1) E Z. = 190,706

j=1 J j=1 j=1

inf E Y.(N) = E Y. = 14,165.

j=1 J j=1

(4) By Good and Rao's method we have

(5)

M (1)
N E Z.

E Y.
j=1

j=1 J r(a+1)

r(a) (14)&41

- 157,177 with relative standard

error .36.

By Efron and Thisted's method we have

N (1)
E Z.

j=1:1 1
= 142,982 with relative

j=1 J al (1+yt)

standard error .45.

M

E Y. = A
29

(u) = 167,493 in Section 6.4.2, with relative
j=1 J E

bias 6.34.
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A
Y. A (u) = 221,314, in Section 6.4.1, with relative

J =1 E

bias 4.67.

Goodman's method does not involve any approximation. Good and Toul-

min's method is based on some approximation but less than the other

methods. Furthermore the relative standard deviations of these two esti-

mators are small. Since Good and Toulmin's method and Efron and Thisted's

method are to find the prediction of population total, they can be applied

for the growing population. Since the precision of Good and Rao's method

is low and Efron and Thisted's method even lower, extreme care should be

exercised if either of these methods is employed.
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