
AN ABSTRACT OF THE THESIS OF

Doran K. Wilde

Computer Science

for the degree of Master of Science in

presented on December 6, 1993

Title: A Library for Doing Polyhedral Operations

Abstract approved.

Dr. Paul Cull

Polyhedra are geometric representations of linear systems of equations and

inequalities. Since polyhedra are used to represent the iteration domains of nested

loop programs, procedures for operating on polyhedra can be used for doing loop

transformations and other program restructuring transformations which are needed

in parallelizing compilers. Thus a need for a library of polyhedral operations has

recently been recognized in the parallelizing compiler community.

Polyhedra are also used in the definition of domains of variables in systems

of affine recurrence equations (SARE). ALPHA is a language which is based on

the SARE formalism in which all variables are declared over polyhedral domains

consisting of finite unions of polyhedra. This thesis describes a library of polyhe-

dral functions which was developed to support the ALPHA langauge environment,

and which is general enough to satisfy the needs of researchers doing parallelizing

compilers.

This thesis describes the data structures used to represent domains, gives the

motivations for the major design decisions that were made in creating the library,

and presents the algorithms used for doing polyhedral operations. A new algorithm

for recursively generating the face lattice of a polyhedron is also presented.

This library has been written and tested, and has be in use since the first

quarter of 1993. It is used by research facilities in Europe and Canada which do

research in parallelizing compilers and systolic array synthesis. The library is freely

distributed by ftp.

Redacted for privacy

A Library for Doing

Polyhedral Operations

by

Doran K. Wilde

A Thesis submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Master of Science

Completed December 6, 1993

Commencement June 1994

APPROVED:

Professor of Computer Science in charge of major

Chairman of Department of Computer Science

Dean of Grad 4 Schoolielks")

Date thesis presented December 6, 1993

Typed by Doran K. Wilde

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDGEMENTS

I would like to give my heartfelt thanks to the following individuals:

to Paul Cull for accepting to be my committee chairman and for being willing

to work with me under unusual circumstances;

to Dawn Peters for accepting to be the graduate representative on my com-

mittee and for the service she has rendered to me;

to Lawrence Crowl for accepting to be a member of my committee and for

the time he has spent in my behalf;

to Sanjay Rajopadhye for accepting to mentor me and teach me, for working

with me on a day to day basis, and for being a very good friend;

a Patrice Quinton pour avoir m'inviter a travailler avec lui dans son equipe,

pour son lecture de cette these et son commentaire, pour tout le confiance et

l'interesse qu'il m'a montre et pour etre un bon ami;

a Herve Le Verge pour son lecture attentif de cette these, et pour toutes les

discussions qu'il m'a fait;

a Zbi Chamski pour avoir bien travaille avec moi pendant le developement

de la bibliotheque decrise dans cette these;

a Fernando Rosa Do Nascimento pour m'avoir aide avec la conception de

cette bibliotheque, pour avoir bien travaille avec moi, et pour etre un bon ami;

to the IRISA research laboratory in Rennes, France for providing me a pleas-

ant work environment in which to do this research;

to my children Cameron, Brandon K., Ned, Rebecca, Desiree, and Shannon

for their sacrifice in following dad to France, for the tremendous effort they made

to learn the french language, and for adapting so well to a new way of life;

and finally to my dear Cathleen for her constant love and support.

Table of Contents

1 INTRODUCTION 1

1.1 Introduction to ALPHA 1

1.2 The Role of the Polyhedral Library 6

1.3 Construction of Face Lattices 7

1.4 Summary of Chapters 7

2 POLYHEDRA 9

2.1 Notation and Prerequisites 9

2.2 Sets 10

2.3 Hulls 13

2.4 The Polyhedron 14

2.4.1 The dual representations of polyhedra 15

2.5 The Polyhedral Cone 16

2.6 The structure of polyhedra 16

2.6.1 Decomposition 17

2.7 The faces and face lattice of a polyhedron 18

2.7.1 Supporting Hyperplanes 18

2.7.2 Faces 19

2.8 Duality of Polyhedra 20

2.8.1 Combinatorial Types of Polytopes 20

2.8.2 Polar mapping 21

REPRESENTATION OF POLYHEDRA 22

3.1 Equivalence of homogenous and inhomogenous systems 22

3.2

3.3

3.4

3.5

3.6

Dual representation of a polyhedron

Saturation and the incidence matrix

Expanding the model to unions of polyhedra

Data structure for unions of polyhedra

Validity rules

25

26

28

28

33

3.6.1 The Positivity Constraint 36

3.6.2 Empty Polyhedra 39

3.6.3 Universe Polyhedron 40

4 THE POLYHEDRAL LIBRARY 42

4.1 Description of Operations 42

4.2 Computation of Dual Forms 45

4.2.1 The general algorithm 48

4.2.2 Implementation 51

4.3 Producing a minimal representation 52

4.4 Conversion of rays/constraints to polyhedron 55

4.5 Intersection 55

4.6 Union 56

4.7 Difference 57

4.8 Simplify 58

4.9 Convex Union 59

4.10 Image 59

4.11 Preimage 62

4.12 The complexity of domain operations 63

4.13 The implementation of the polyhedral library 63

5 CONSTRUCTION OF THE FACE LATTICE 65

5.1 Foundation 65

5.2 The Face-Lattice 66

5.2.1 Lattices of dual polyhedra 68

5.3 Previous art 69

5.3.1 Seidel's method 70

5.4 The Inductive Face Lattice Algorithm 72

5.4.1 Data structure for face lattice 72

5.4.2 Modifications to the Dual procedure 73

5.4.3 AugmentR 74

5.4.4 ConstrainR 75

5.5 Example 80

5.6 Summary 82

6 CONCLUSION 83

BIBLIOGRAPHY 85

APPENDICES 87

A SYSTEMS OF AFFINE RECURRENCE EQUATIONS 87

B EXAMPLE C-PROGRAM 90

B.1 Program Code 90

B.2 Program Input 92

B.3 Program Output 93

List of Figures

1.1 Alpha System Environment 2

1.2 Alpha Program of a Convolution Filter 4

1.3 Alpha Program of a Convolution Filter 5

1.4 Comparison of Polyhedra, Domain, and Variable 6

2.1 Geometric Interpretations of the Combinations of Two Points . 10

3.1 Data Structure for Polyhedron 31

3.2 Example 1 33

3.3 Example 2 37

3.4 Example 3 37

3.5 Example 4 38

3.6 Example 5 38

3.7 Example 6 Empty Polyhedron 39

3.8 Example 7 Universe Polyhedron 41

4.1 Procedure to compute Dual(A) 49

4.2 Procedure to compute Combine(ri, r2, a) 50

4.3 Procedure to compute ConstrainL(L, a) 50

4.4 Procedure to compute AugmentR(R, a, rne.) 50

4.5 Procedure to compute ConstrainR(R, a) 51

4.6 Computation of Intersection 56

4.7 Application of Dom Simplify 58

4.8 Computation of Convex Union 60

4.9 Affine transformation of 7, to D' 61

4.10 Computation of Image 62

4.11 Computation of Preimage 63

5.1 Example of a Facial Graph 67

5.2 Face Lattice of Dual Polyhedra 68

5.3 Seidel's algorithm 71

5.4 Facial Graphs for a Face and its Facets 73

5.5 Facial Graphs for AugmentR Algorithm 74

5.6 Procedure to compute AugmentR(F, a, 75

5.7 Facial Graphs for ConstrainF Algorithm 76

5.8 Procedure for computing ConstrainR(R,a) 77

5.9 Procedure for computing Evaluate(F, a) 78

5.10 Procedure for computing ConstrainF(F, a) 79

List of Tables

2.1 Comparison of Containers 13

2.2 Table of Decompositions 18

3.1 Duality between Polyhedra and Cones 24

3.2 Dual Concepts 26

3.3 Closure of Operations 29

4.1 Compilation of results for bound on number of faces facets . . . 47

Chapter 1

INTRODUCTION

A large class of algorithms in linear algebra and digital signal processing

can be described in terms of systems of affine recurrence equations(SARE) (see ap-

pendix A). Much work has been done recently in the development of methods to do

synthesis, analysis and verification of systems of recurrence equations in order to

find equivalent parallel forms of these algorithms suitable for implementation. The

ultimate goal is to transform an algorithm from a mathematical type of description

into an equivalent form that can be implemented either with special purpose hard-

ware (with systolic arrays for instance) or implemented as a program which is able

to run on a multiprocessor system. The ALPHA language was invented to be able

to do just this kind of program transformation.

This thesis is not about ALPHA per se, however the work presented here was

done in connection with the implementation of an ALPHA environment based on the

commercially available MATHEMATICA system. This environment is illustrated in

figure 1.1. In the following section, an informal description of the ALPHA language

will be presented. It is not a complete description, but is intended only to give the

reader an introduction to the language, and to provide a context and motivation

for this work. A full understanding of the ALPHA language is not a prerequisite

to understanding this thesis. Complete descriptions of ALPHA may be found in

[Mau89, in French], and in [LMQ91, in English].

1.1 Introduction to ALPHA

The ALPHA language is based on the formalism of affine recurrence equations. It

was originally designed for systolic array research at IRISA in Rennes, France. Using

2

Alpha Source

Parser
Polyhedral

Library

Mathematica

Internal Data Transformation
Rules

Pretty Printer Static Analysis

-01 Visualization

Figure 1.1: Alpha System Environment

the ALPHA language, algorithms can be specified at a mathematical level due to

the expressive power of systems of recurrence equations. The ALPHA environment

then provides transformation tools which can be used to transform the algorithmic

program into an equivalent program suitable for implementation as a systolic array.

ALPHA is similar to the CRYSTAL language [Che86] which was also designed to

facilitate space-time transformations of programs, but ALPHA is more restrictive

than CRYSTAL. They both are based on the substitution principle which allows

program transformations to be done through syntactic rewriting. Data dependencies

between variables in ALPHA are restricted to be affine functions, in the sense of

affine recurrence equations defined in appendix A. ALPHA was designed to have

three important properties:

1. It has the expressive power needed to represent algorithms at many levels of

abstraction;

2. It is closed under a set of useful program transformations (such as Change

of Basis, Variable Splitting, Variable Merging, Substitution, Pipelining, Nor-

malization);

3. Data dependencies can be analyzed statically, since they are constant affine

functions of indices, and have no "data dependent" (dynamic) components.

Systems of affine recurrence equations such as ALPHAare referentially trans-

parent, meaning that an expression has the same meaning in every context and

evaluation of a recurrence equation has no side effects. This property is shared by

functional languages which makes describing algorithms with recurrence equations

very similar to programming in a functional language. An algorithm written in AL-

PHA is described in a mathematical notation well suited for describing algorithms at

a high level. Selection of an appropriate sequence of transformations will reformu-

late this description into a different but equivalent form which is more suitable for

implementation. The static analyzability of ALPHA helps one to be able to choose

which transformations to make.

Figure 1.2 shows an example ALPHA program for a simple convolution filter.

Given a sequence xi, where i > 1, and a set of coefficients af, where i = 1 4, the

convolution filter computes an output sequence yi = E.1=1 ajxi_j+i for i > 4. This

function is expressed as a simple set of recurrence equations in the ALPHA language.

Figure 1.3 shows the same program after having been transformed by the ALPHA

system into a form amenable for implementation as a systolic array. The following

4

system convolution (a : { i I 1<=i<=4 } of integer;

x } of integer)

returns (y:{iIi>=4 } of integer);

var

sum : { i,j I 0<=j<=4 ; i>=j of integer;.

let

sum = case

{ i,j I j=0 } : 0 .(i,j->);

i,j I 1 <=j<=4 } : sum .(i,j->i,j-1)

+ a .(i,j->j) * x .(i,j->i-j+1);

esac;

y = sum .(i->i,4);

tel;

Figure 1.2: Alpha Program of a Convolution Filter

transformations are performed on the program in figure 1.2 in order to derive the

program in figure 1.3:

1. The variable a is pipelined in the i-direction creating new local variable A.

2. The variable x is pipelined in the j-direction creating new local variable X.

3. The basis of variable A is changed according to the transformation function

(i, j) + (i j, j) and the indices are renamed (i, j) (t, p) representing time

and processor number.

4. The basis of variable X is changed using the same change of basis function.

5. The basis of variable sum is changed using the same change of basis function.

Even though the resulting program looks much more complicated, it is equivalent

to the original program because it was transformed from the original (proof by

construction). Furthermore, it is in a form which can be implemented using a

systolic array.

A change of basis of a program variable is an example of an ALPHA program

transformation. Transformations such as loop reindexing (e.g. index skewing, loop

system convolution (a : { i I 1<=i<=4 } of integer;

x : { i 1 i>=1 } of integer)

returns (y : { i I i>=4 } of integer);

var

X : { t,p I l<=p<=4; t>=2p } of integer;

A : { t,p I 1<=p<=4; t>=2p } of integer;

sum : { t,p I 0<=p<=4; t>=2p of integer;

let

A = case

{ t,p 1 t=2p } : a.(t,p->p);

{ t,p I t>=2p+1 } : A.(t,p- >t -1,p);

esac;

X = case

{ t,p I p=1 } : x.(t,p->t-2p+1);

{ t,p
I
p>=2 } : X.(t,p->t-1,p-1);

esac;

sum = case

{ t,p
I
p=0 } : 0.(t,p->);

{ t,p I p>=1 } : sum.(t,p->t-1,p-1) + A * X;

esac;

y = sum.(i->i+4,4);

tel;

Figure 1.3: Alpha Program of a Convolution Filter

exchanges), uniformalization of communication and space-time mapping are all ex-

amples of doing changes of bases of program variables. An execution schedule for a

variable may be found by solving a mixed linear programming problem [Dar93]. The

result is a function which maps each element of a variable to a time instant. The

schedule may be reflected back into the program by performing a change of basis

on program variables, transforming one (or more) of the variable indices into time

indices. To perform this transformation, there are certain computations involving

unions of polyhedral domains that have to be performed.

6

Union of Polyhedra

'4 4 - 4- -
- - - - 4- -4

Domain

X(1,7) X(3,1) X(4,3) X(6,3)

X(2,1) X(3,2) X(5,1) X(7,1)

X(2,2) X(3,3) X(5,2) X(7,2)

X(2,3) X(3,4) X(5,3) X(7,3)

X(2,4) X(4,1) X(6,1)
X(2,5) X(4,2) X(6,2)

Variable X

Figure 1.4: Comparison of Polyhedra, Domain, and Variable

1.2 The Role of the Polyhedral Library

In figure 1.1, there is a block labeled "Polyhedral Library". This is a library which

operates on objects called domains made of unions of polyhedra. When specifying

a system of affine recurrence equations, unions of polyhedra are used to describe

the domains of computation of system variables. Whereas a polyhedron is a region

containing an infinite number of rational' points, a domain, as the term is used

in this thesis, refers to the set of integral points which are inside a polyhedron (or

union of polyhedra). Figure 1.4 illustrates this difference.

Definition 1.1 A polyhedral domain of dimension n is defined as

D : {i I E Zn P} = Zn n P

where P is a union of polyhedra of dimension n.

In affine recurrence equations of the type considered here and in the ALPHA lan-

guage, every variable is declared over a domain. Elements of a variable are in a

one-to-one correspondence with points in a domain. Again, figure 1.4 illustrates

this. Here, we formalize the definition of a variable.

'Polyhedra may also be defined over the reals, however, only rationals are considered in this
thesis.

7

Definition 1.2 A variable X of type "datatype" declared over a domain D is

defined as

X { : Xt E datatype, i E D } (1.2)

where Xi is the element of X corresponding to the point i in domain D.

X can also be thought of as a function: X : i E D --4 X= E datatype.

In order to be able to manipulate ALPHA variables, a library of "domain

functions" is needed. This library is the geometric engine of the language and

provides the capabilities needed for programs to be analyzed and transformed. This

thesis presents the polyhedral library which was written to support the ALPHA

environment. Examples of domain operations which can be performed by the library

are: Image, Preimage, Intersection, Difference, Union, ConvexHull, and Simplify.

The implementation of these and other library functions are described in detail in

chapter 4.

Even though the library was written to support the ALPHA environment, it

is also general purpose enough to be used by other applications as well.

1.3 Construction of Face Lattices

Closely related to the functions in the polyhedral library, but not part of the library

are algorithms to generate the face lattice of a polyhedron. In this thesis, I present

algorithms that I developed to compute the face lattice of a polyhedron. The

computation of the face lattice is important for analyzing polyhedra which are

described parametrically.

1.4 Summary of Chapters

Chapter 2 is necessary background information and a review of the fundamental

definitions relating to polyhedra. Chapter 3 discusses issues relating to how a poly-

hedron is represented in memory, and the polyhedron data structure is developed

and presented in detail. Chapter 4 describes the polyhedral library itself, giving

the basic algorithms for all of the operations. Chapter 5 presents new algorithms

developed to construct the face lattice of a polyhedron. Chapter 6 is a conclusion

and summary of the thesis.

9

Chapter 2

POLYHEDRA

Polyhedra have been studied in several related fields: from the geometric point of

view by computational geometrists [Gru67], from the algebraic point of view by

the operations research and linear programming communities [Sch86], and from the

structural/lattice point of view by the combinatorics community [Ede87]. Each

community has a different view of polyhedra so the notation and terminology are

sometimes different between the different disciplines.

This chapter is a review of fundamental definitions relating to polyhedra and

cones. I have taken the majority of this summary from the works of Grunbaum,

"Convex Polytopes" [Gru67], and of Schrijver, "Theory of Linear and Integer Pro-

gramming" [Sch86], and of Edelsbrunner, "Algorithms in Combinatorial Geometry"

[Ede87]. Other references used are [Weh50, KT56].

2.1 Notation and Prerequisites

In this presentation, polyhedra are restricted to being in the n-dimensional rational

Cartesian space, represented by the symbol Qn. All matrices, vectors, and scalars

are thus assumed to be rational unless otherwise specified.

Definition 2.1 The scalar product a o b is defined as a o b = aTb = 1 a,bi

al bi

where a =) and b

an bn

aob= 0 iff vectors a, b are orthogonal.

10

Linear
Combination

Positive
Combination

Affine
Combination

Convex
Combination

Figure 2.1: Geometric Interpretations of the Combinations of Two Points

Definition 2.2 Given a vector x and a scalar coefficient vector A, the following

different combinations are defined:

A linear combination >2 A1x1

A positive' combination >2 Aixi where all Ai > 0

An affine combination >2 Aixi where >2 Ai = 1

A convex combination >2 Aixi where >2 Ai = 1 and all Ai > 0.

Figure 2.1 shows the geometries generated by the different combinations of two

points in 2-space (with origin marked `+').

2.2 Sets

A set, in this context, always refers to a set of points in space Qn. Most definitions

have meanings on any set of points (not necessarily polyhedral). These definitions

are introduced in this section.

Definition 2.3 Given a non-zero vector y and a constant a, the following objects

(sets of points) are defined:

A hyperplane = {xIxoy=a}

1Also called non-negative or conic combination

11

A open half-space 7.1 = {x I x o y > a}

A closed half-space H= Ixoy>a}

Definition 2.4 A vertex of a set IC is any point in IC which cannot be expressed

as a convex combination of any other distinct points in K.

Definition 2.5 A ray of k is a vector r, such that x E IC implies (x yr) E IC for

all p > 0.

A ray is not a set of points, but a direction in which k is infinite. A ray may be

considered as a point at infinity in the direction of r.

Definition 2.6 A ray of k is an extreme ray if and only if it cannot be expressed

as a positive combination of any other two distinct rays of K. The set of extreme

rays form a basis which describes all directions in which the convex set is open.

Extrema] rays are unique up to a multiplicative constant.

An extreme ray may be considered as a vertex at infinity in the direction of r.

Definition 2.7 A line (or bidirectional ray) of k is a vector 1, such that x E

implies (x E IC for all

Allowingµ to have both positive and negative values creates a bidirectional ray in

the direction of 1 and 1. Two rays in exactly opposite directions, therefore make

a line. The definition of line is very much like the definition of ray (2.5), however,

there is no such thing as an extreme line in general. Lines are used to describe

n-spaces which are described in definition 2.12 and property 2.3.

Definition 2.8 Given two points x, y, the closed (line) segment Seg(x, y) is de-

fined as the set of all convex combinations of x and y.

Definition 2.9 An affine transformation is a function T which maps a point x

to a point x.T = Ax b where A is a constant matrix and b is a constant vector.

12

Definition 2.10 A set K is convex iff every convex combination of any two points

in K is also a point in K.

Alternate definition:

A set K is convex iff for each pair of points a, b E K, the closed segment with

endpoints a,b is also included in set K.

Alternate definition:

A set K is convex iff its intersection with any line is either empty or a connected

set (line, half-line, line-segment).

The following are important closure properties held by convex sets.

Property 2.1 (Closure under intersection)

The intersection of convex sets is convex.

Property 2.2 (Closure under affine transformations)

Affine transformations of convex sets are convex.

Definition 2.11 A set of points are linearly independent iff no point in the set

can be expressed as an linear combination of any other points in the set. A set of

points are linearly dependent iff they are not linearly independent. A basis of

a set is a linearly independent subset such that all points in the original set can

be expressed as a linear combination of points in the basis. In general, the basis

is not unique. The rank of a set is the size of its basis. Similary definitions for

affinely independent and affinely dependent may be given in terms of affine

combinations.

Definition 2.12 A set K is called a linear subspace, (also subspace or space),

if it has the property: x, y E K implies all linear combinations of x, y are in K. The

dimension of a space is the rank of a set of lines which span the space. A space of

dimension n is called an n-space.

Property 2.3 Each n-space contains n linearly independent lines. Any n +1 mem-

bered set of lines in an n-space is linearly dependent.

13

type 1 Smallest Container Largest Contained Subset

Linear Linear Hull (definition 2.16) Linea lity Space (definition 2.22)

Positive Conic Hull (definition 2.17) Characteristic Cone (definition 2.21)

Affine Affine Hull (definition 2.15)

Convex Convex Hull (definition 2.14)

Table 2.1: Comparison of Containers

Definition 2.13 A set K is called a flat if it has the property: x, y E K implies

all affine combinations of x, y are in K. The dimension of a flat is the rank of a

set of lines which span the flat. A flat of dimension n is called an n-flat. A 0 -fiat,

1-flat, and 2-fiat are called respectively a point, line, and plane.

Property 2.4 Each n-fiat contains n affinely independent lines and n + 1 affinely

independent points. Any n + 2 membered set of points in an n-flat is affinely

dependent. Any n 1 membered set of lines in_an n-flat is affinely dependent.

2.3 Hulls

Table 2.1 summarizes the four kinds of hulls (containers) corresponding to the four

kinds of combinations. Also shown in the table are the largest contained subsets.

Definition 2.14 The convex hull of K is the convex combination of all points in

K. It is the smallest convex set which contains all of K.

Definition 2.15 The affine hull of K is the flat consisting of the affine combina-

tion of all points in K. It is the smallest dimensional Bat which contains all of K.

Definition 2.16 The linear hull of K is the subspace consisting of the linear

combination of all points in K. It is the smallest dimensional linear subspace which

contains all of K.

14

Definition 2.17 The conic hull of K is the cone consisting of the positive com-

bination of all points in K. It is the smallest cone which contains all of K.

Definition 2.18 A convex set C is a cone with apex 0 provided Ax is in C whenever

x is in C and A > 0. A set C is a cone with apex xo provided C {xo} is a cone

with apex 0. A cone with apex xo is pointed provided xo is a vertex of C.

Property 2.5 If a cone C is pointed, C is generated by a positive combination of

its extremal rays.

2.4 The Polyhedron

The following theorem was first published in 1894 by Farkas and has been sharp-

ened through the years. It provides us the basis upon which to build a theory for

polyhedra.

Theorem 2.1 Fundamental Theorem of Linear Inequalities

Let al, , am, b be vectors in n-dim space.

Then either:

1. b is a positive combination of linearly independent vectors al, , am; or,

2. there exists a hyperplane cx = 0}, containing t 1 linearly independent

vectors from among al, , am, such that cb < 0 and cal, ..., cam > 0, where t :=

rank {ai , , a. b}

For a proof, refer to [Sch86, page 861.

Stated in more familiar terms, given a cone generated by a set of rays

{al, , am}, then given another ray b, either

1. b is in the cone and is therefore a positive combination of rays {al, , am}, or

2. b is outside the cone, and there exists a hyperplane containing (t 1) extreme

rays from the set {al, am} which separates b from the cone.

15

2.4.1 The dual representations of polyhedra

Definition 2.19 A polyhedron, P is a subspace of Qn bounded by a finite number

of hyperplanes.

Alternate definition:

P = intersection of a finite family of closed linear halfspaces ax > c} where a

is a non-zero row vector, c is a scalar constant.

Property 2.6 All polyhedra are convex.

A result of the fundamental theorem is that a polyhedron P has a dual

representation, an implicit and a parametric representation. The set of solution

points which satisfy a mixed system of constraints form a polyhedron P and serve

as the implicit definition of the polyhedron

P = Ax = b, Cx > d} (2.3)

given in terms of equations (rows of A, b) and inequalities (rows of C, d), where A,

C are matrices, and b, d and x are vectors. The implicit definition corresponds defi-

nitionn 2.19 above, where the set of closed halfspaces are defined by the inequalities:

Ax > b, -Ax > b, and Cx > d.

P has an equivalent dual parametric representation also called the Minkowski

characterisation (after Minkowski 1896) [Sch86, Page 87]:

Ix I x = LA + Rit Vv, > o, E v . 1} (2.4)

in terms of a linear combination of lines (columns of matrix L), a convex combination

of vertices2 (columns of matrix V), and a positive combination of extreme rays

(columns of matrix R). The parametric representation shows that a polyhedron

can be generated from a set of lines, rays, and vertices. The fundamental theorem

implies that two forms (eq. 2.3 and eq. 2.4) are equivalent.

21 am taking liberty with the term vertices. Here I use the term to mean the vertices of P less
its lineality space.

16

Procedures exist to compute the dual representations of P, that is, given

A, b, C, d, compute L, V, R, and visa versa. Such a procedure is in the polyhedral

library and will be described later in section 4.2.

2.5 The Polyhedral Cone

Polyhedral cones are a special case of polyhedra which have only a single vertex.

(Without loss of generality, the vertex is at the origin.) A cone C (with apex at the

origin) is defined parametrically as

C = {x I x LA > 0} (2.5)

where L and R are matrices whose columns are the lines and extreme rays, respec-

tively, which specify the cone with rays {R, L, L} as defined in definition 2.18 and

property 2.5. If L is empty, then the cone is pointed.

Since the origin is always a solution point in Eq. 2.3, the implicit description

of a cone has the following form

C= Ax > 0, Bx = 0/ (2.6)

the solution of a mixed system of homogeneous inequalities and equations.

2.6 The structure of polyhedra

In this section, let P be a polyhedron as described in section 2.4.1.

Definition 2.20 A set is a (convex) polytope if it is the convex hull of finitely

many vertices. A set IC is a polytope iff IC is bounded (contains no rays or lines).

Definition 2.21 char.coneP, called the characteristic cone (or recession cone)

of P is the cone {y i x+yEP, Vx E 7,1 = 1 Ay 01.

The following theorem was given by Motzkin in 1936.

17

Theorem 2.2 Decomposition Theorem for Polyhedra A set P is a polyhe-

dron if P = V + C, where V is a polytope, and C = char.coneP is a polyhedral

cone.

The proof is in [Sch86, Page 88].

Definition 2.22 The lineality space of P is defined as

lin.spaceP := char.coneP fl char.coneP = {y I Ay = O }. The lineality space of a

polyhedron is the dimensionally largest linear subspace contained in the polyhedron.

If lineality space of P is empty then P is pointed.

A lineality space is represented as a fundamental set of lines which form a basis of

the subspace. The lineality space of a polyhedron is unique, although it may be

represented using any appropriate basis of lines. The dimension of a lineality space

is the rank of a set of lines which span the space (property 2.3).

2.6.1 Decomposition

In 1936, Motzkin gave the decomposition theorem (2.2) for polyhedra. Any poly-

hedron P could be uniquely decomposed into a polytope V = conv.hull{vi, , vm}

generated by convex combination of the extreme vertices of P, and a cone C =

char.coneP as follows3

P=V+C (2.7)

A non-pointed convex cone can in turn be partitioned into two parts,

C=L-1-1?, (2.8)

the combination of its lineality space L generated by a linear combination of the lines

(bidirectional-rays) of P, and a pointed cone R. generated by positive combination

of the extreme rays of P. Combining equations 2.7 and 2.8, a polyhedron may be

3The symbol `+' in the equation is called the Minkowski sum, and is defined: R-F S = {r +s :
R, s E S}.

fully decomposed into

18

P=V+R+G (2.9)

Decomposition implies that any polyhedron may be decomposed into its vertices,

rays (unidirectional rays) and lines (bidirectional rays) which can be clearly seen in

the parametric description in equation 2.4.

A decomposition of a polyhedron which has a practical application in the

polyhedron library, is the decomposition of a polyhedron into its lineality space

(definition 2.22) and its ray space of a polyhedron. This division separates lines

(bidirectional rays) from vertices and rays (unidirectional rays). In the alternate

conic form of a polyhedron, developed in section 3.1, both rays and vertices are

representable as unidirectional rays in the cone. In a cone, this decomposition

simply separates lines and rays (equation 2.8). Table 2.2 summarizes all of the

decompositions of a polyhedron.

Decomposition Description

V-V1Z+L P= {x = LA + RA +Vv, A,v > 0, E v = 11, (eq 2.4)

V polytope = {x = Vv, v > 0, i v = 11, (definition 2.20)

/?.. pointed cone = {x I x = RA, A > 0 }, (definition 2.18)

,C lineality space = {x I x = LA}, (definition 2.22)

V + R, ray space of P

V + .0 set of minimal faces of 2, (definition 2.26)

R. + C char.coneP, a non-pointed cone, (definition 2.21)

Table 2.2: Table of Decompositions

2.7 The faces and face lattice of a polyhedron

2.7.1 Supporting Hyperplanes

Definition 2.23 A hyperplane 1-t cuts a set 1C provided both open halfspaces

19

determined by contain points of IC, that is ?-1 = {x I x o u = a} cuts k if there

exists x1, x2 E 1C I (xi o u < a) and (x2 o u > a)

Definition 2.24 A supporting hyperplane is a plane which intersects the hull

of a polyhedron (close 2), but does not cut 2, or in other words, does not intersect

the interior of P.

Alternatively:

If c is a nonzero vector, and if S = ma)* o x I Ax < b} exists, then the affine

hyperplane = {x I cox= 5} is a supporting hyperplane of P.

The supporting hyperplane is a plane which just touches the surface of the poly-

hedron. The intersection of a supporting hyperplane and a polyhedron can be a

point, edge, plane, or so forth.

2.7.2 Faces

Definition 2.25 A subset .1 of P is called a face of P if either:

(i) .F is the intersection of P with a supporting hyperplane, or

(ii) .F = P , or

(iii) F = lineality.space(?).

Case (iii) is added to force closure of the set of faces under intersection. Faces

defined by cases (iii) and (ii) are called improper faces while faces defined by case

(i) are called proper faces.

Every face of P is also a polyhedron and is called a k-face if it is a k-

polyhedron. 0-faces are vertices. 1-faces are edges. The number of faces of a

polyhedron is finite.

Definition 2.26 The (n 1)-faces of a n-polyhedron are called facets and the

0-faces of a polyhedron are called vertices and rays. A facet of P is a maximal

face distinct from P (maximal relative to inclusion). A minimal face of P is a

nonempty face not containing any other face.

20

Property 2.7 A face I of P is a minimal face iff .7" is an affine subspace. [Hoffman

and Kruskal, 1956. A set .F is a minimal face of P iff 00/CPand.F= {x =
1/} for some subsystem Aix > b' of Ax > b.

Property 2.8 Each minimal face of P is a translate of the lineality space of P,

and has the same dimension.

Property 2.9 The set of faces of a polyhedron form a lattice with respect to in-

clusion which is called the face lattice.

Definition 2.27 fk(P) is defined as the number of k-faces of polyhedron P.

2.8 Duality of Polyhedra

In this section, the concepts of combinatorial equivalence and duality are presented.

These two concepts are used in developing a memory representation of a polyhedron

in chapter 3. Then the idea of the polar mapping is presented along with its

properties which are used in chapter 4 of this thesis in the development of operations

on polyhedra.

2.8.1 Combinatorial Types of Polytopes

Definition 2.28 Two polyhedra, P and To are combinatorially equivalent (or

isomorphic) provided there exists a 1-1 mapping between the set F of all faces of

P, and the set F' of all faces of P', such that the mapping is inclusion preserving. In

other words, F1 is a face of F2 iffmap(Fi) is a face of map(F2). Equivalently, the face

lattices of P and P' are isomorphic. Combinatorial equivalence is an equivalence

relation.

Definition 2.29 Two d-polytopes, P and P* are said to be dual to each other

provided there exists a 1-1 mapping between the set F of all faces of 2, and the set

F* of all faces of 2*, such that the mapping is inclusion-reversing. in other words,

Fl is a face of F2 if map(F2) is a face of map(F1).

21

2.8.2 Polar mapping

Definition 2.30 (Polar)

Given a closed convex set P containing the point 0, then the polar P* is defined

as P* = {ylVxEP : xoy?0}.

Property 2.10 (duality of polars)

If P* is the polar of P, then P and P* are duals of each other.

t4Given P D 2* where P is a closed convex set containing 0, then the following

properties hold:

(i) if P = conv.hull{0, xi, , cone{yi, , yt} then 2* {z z

1 for i = 1- m} {z I zTyi < 0 for i = 1 t}

(ii) P has dimension k iff lin.space(P*) has dimension n k

(iii) P * * =

(iv) A* = B* iff A = B

(v) A* C B* A C B

(vi) (A U B)* = A * nB*

(vii) (A n .8)* = convex.hull(A * UB*)

(viii) if A is a face of 13 then 13* is a face of A*.

(ix) there is a 1-1 correspondance between k-faces of P and (n k)-faces of 2*.

The principle of duality is used in sections 3.2 and 3.3 when showing the duality

between the parametric and implicit definitions of a polyhedron and in chapter 5

when discussing the lattices of dual polyhedra.

22

Chapter 3

REPRESENTATION OF POLYHEDRA

3.1 Equivalence of homogenous and inhomogenous sys-

tems

We want to be able to represent a mixed inhomogeneous system of equations as given

in equations 2.3 and 2.4 and which is the most general type of constraint system.

A memory representation of an n dimensional mixed inhomogeneous system of

j equalities and k inequalities would require the storage of the following arrays:

A(j x n), b(j x 1), C(k x n), d(k x 1). The dual representation would require

the storage of R, V, and L, the arrays representing the rays, vertices, and lines.

The representation in memory can be simplified however, with a transformation

x > 0 that changes an inhomogeneous system P of dimension n into a
e

homogenous system C of dimension n 1, as shown here:

P = Ix I Ax = b, Cx > ci}

= Ix I Ax b = 0, Cx d > 0}

C = e ; I Ox V) = 0, Cx > 0, >01

(7) I (A I b) (4.x
C d

= (o
1 e

23

The transformed system C is now an (n + 1) dimensional cone which contains the

original n dimensional polyhedron. Goldman showed that the mapping x -4 7)(

is one to one and inclusion preserving [Go156] and thus by definition 2.28 the two

are combinatorially equivalent. The original polyhedron P is in fact the intersection

of the cone C with the hyperplane defined by the equality = 1. Given any P as

defined in equation 2.3, an unique homogeneous cone form exists defined as follows:

C = = o, Ci > o}

= homogoneous.cone P,

where (x) , A = b), a =
(co d

1

(3.10)

The storage requirement for the homogenous system is A(j x (n 1)), a ((k + 1) x

(n 1)) which is about the same amount of memory needed for the original system

(compare (j k)(n + 1) + n) words for the cone versus (j k)(n + 1) words for

the polyhedron) and the cone representation is simpler (two matrices versus two

matrices and two vectors). Likewise the dual representation of the cone is simpler.

The decomposition of a cone is R. + r, and thus only rays and lines have to be repre-

sented. During the transformation process from a polyhedron to a cone, vertices get

transformed into rays. The vertices and rays of an inhomogeneous polyhedron have

a unified and homogenous representation as rays in a polyhedral cone. Thus the

rays of the cone represent both the vertices and rays of the original polyhedron. As

before, the amount of memory needed to store the dual representation is the same,

however the representation itself is simpler (two matrices versus three matrices).

Table 3.1 shows the equivalent forms of inhomogenous and homogenous systems,

polyhedra and cones, along with their dual implicit and parametric representations.

The table highlights the fundamental relationships between the polyhedron and

cone.

Using the homogeneous cone form not only simplifies the data structure

used to represent the polyhedron, but also simplifies computation. From practical

24

Inhomogenous System Homogenous System

Structure Polydedron 2, dimension d Cone C, dimension d+ 1

Implicit Rep-

resentation using

Hyperplanes

P = {xIAx = b, Cx > d}

A

0 =

(7)

(A

C

Al = 0, Oi > 0}

1 b)

Parametric Rep-

resentation using

Vertices and Rays

'P = = LA + RIL + 171),

i.z,v > 0,Ev =1}

C = {x I 'i = LA + 141,

y _>. 0}

Vertices v=

v1

V2

vd

v E V i.', =

/ Av1

A V2

i

Avd

k A

, A > 0, E k

/

Rays r =

r1

r2
.

rd /

, r E R 7 7 =

/ r1 \
r2

i

rd

\ 0 I

, l'r E k

Lines 1=

11

id

1 E L 1=

1 11 \
/2

id

o i

1 E L

Table 3.1: Duality between Polyhedra and Cones

experience with the implementation of polyhedral operations, it is known that fewer

25

array references have to be done and fewer 'end cases' have to be handled when

computing with the homogeneous form. This results in slightly smaller and more

efficient procedures.

A mixed system may also be transformed to a non-mixed systems of con-

straints by using the the transformation: ax = 0 ax > 0 and ax < 0 along with

its dual: a line 1 can be represented as two rays 1 and 1. This reduces the entire

representation to a non-mixed set of homogeneous inequalities (no equalities) and

its dual to just an array of rays (no line or vertices). This simplification is tempt-

ing, however, it would increase the size of the memory representation (each equality

and line require twice the storage). There is another advantage of keeping equalities

and inequalities separate: there are different (and much more efficient polynomial

time) methods for solving equalities. Thus, by keeping equalities and inequalities

distinct and separate, the memory requirement is kept at a minimum, and equalities

can be treated specially using standard, efficient, and well loved methods such as

Gauss elimination.

3.2 Dual representation of a polyhedron

A polyhedron may be fully described as either a system of constraints or by its dual

form, a collection of rays and lines. Given either form, the other may be computed.

However, since the duality computation is an expensive operation (see section 4.2)

and since both forms are needed for computation of different operations, a decision

to represent polyhedra redundantly using both forms was made. Even though the

representation is redundant, keeping both forms in the data structure reduces the

number of duality computations that have to be made and improves the efficiency

of the polyhedral library. It is a basic memory / execution time tradeoff made in

favor of execution time.

26

Parametric Description Implicit Description

Lineality Space System of equalities

Ray Space System of inequalities

Ray r Homogeneous Inequality rTx > 0

Vertex rlk Inhomogeneous Inequality rTx+k> 0

Line r with Vertex at 0 Homogeneous Equality rTx = 0

Line r with Vertex not at 0 Inhomogeneous Equality rTx+k = 0

Convex union of rays Intersection of inequalities

Point at origin Positivity Constraint

Universe Polyhedron Empty set of Constraints

Empty Polyhedron Overconstrained system

Table 3.2: Dual Concepts

3.3 Saturation and the incidence matrix

After being transformed to a homogeneous coordinate system, a polyhedron is rep-

resented as a cone (equation 3.10). The dual representations of the cone are:

C = {x I Ax = 0, Cx > 0} (implicit form)

= x = LA+ Rp, µ > 0} (parametric form)

Substituting the equation for x in the parametric form into the equations involving

x in the implicit form, we obtain:

ALA + ARA = 0 AL =0, AR = 0
V(p> 0, A) :

CLA+CRp> 0 CL =0, CR> 0
(3.11)

where rows of A and C are equalities and inequalities, respectively, and where

columns of L and R are lines and rays, respectively.

27

Using the above, we can show the duality of a system of constraints with its

corresponding system of lines and rays. Let C be a cone and C* be another cone

created by reinterpreting the inequalities and equalities of C as the lines and rays,

respectively, of C*. Then the two cones are defined as:

C = {x I x = LA -I- RA, µ > 0}

C* = {y J y = ATa + CT-y, -y > 0}

then the inner product of a point x E C and a point y E C* is:

x o y = yTx = (AT a + CT-y)T x (LA + RA)

(aTA .TC) x (LA + RA)

aT(ALA + ARA) + 7T(CLA + CRA)

0 (by application of equation 3.11)

= {y 1\ixEC : xoy>0}

and thus C and C* are duals by property 2.10.

Before discussing the incidence matrix, the notion of saturation needs to be

defined.

Definition 3.1 A ray r is said to saturate an inequality aTx > 0 when aTr = 0, it

verifies the inequality when aTr > 0, and it does not verify the inequality when

aTr < 0. Likewise, a ray r is said to saturate an equality aTx = 0 when aTr = 0,

and it does not verify the equality when aTr # 0. Equalities and inequalities

are collectively called constraints. A constraint is satisfied by a ray if the ray

saturates or verifies the constraint.

The incidence matrix S is a boolean matrix which has a row for every con-

straint (rows of A and C) and a column for every line or ray (columns of L and R).

28

Each element si; in S is defined as follows:

sij =
1, otherwise, i.e. cTr; > 01

0, if constraint ci is saturated by ray(line) r3, i.e. cTr; = 0

From the demonstrations in equation 3.11 above, we know that all rows of the

S matrix associated with equations (A) are 0, and all columns of the S matrix

associated with lines (L) are also 0. Only entries associated with inequalities (C)

and rays (R) can have l's as well as 0's. This is illustrated in the following diagram

representing the saturation matrix S.

S L I

A (0) (0)

C (0) (0 or 1)

3.4 Expanding the model to unions of polyhedra

Polyhedra are closed under intersection (property 2.1), convex union (convex.hull(AU

B), definition 2.14), and affine transformation (property 2.2). However, they are

not closed under (simple) union since the union of any two polyhedra is not nec-

essarily convex. Likewise, polyhedra are not closed under the difference operation.

To obtain closure of these two operations (union and difference), it is necessary to

expand the model from a simple polyhedron to a finite union of polyhedra. The

table 3.3 shows the closures of different library operations. The polyhedral library

supports the extended model of a union of polyhedra. Thus, all operations in the

polyhedral library are closed.

3.5 Data structure for unions of polyhedra

In the previous sections, the motivations for the major design decisions made in

defining the data structure have been presented. The data structure should rep-

resent polyhedron in the homogeneous cone format (section 3.1), in the redundant

29

Operation 4, Polyhedra Finite Unions of Polyhedra

Intersection Closed Closed

Convex Union Closed Closed

Affine Transformation Closed Closed

Union Not Closed Closed

Difference Not Closed Closed

Table 3.3: Closure of Operations

form (both constraints and rays represented)(section 3.2), and support the repre-

sentation of a union of polyhedra (section 3.4). With these objectives in mind, a

C-structure for a polyhedron was defined. The term "Ray" , as used in the library,

needs some explaination. The term "Ray" is used to represent the vertices, rays,

and lines in a polyhedron. Indeed in the homogenous cone form, vertices and rays

are both representable as unidirectional rays and line is simply a bidirectional ray.

Since no other good term really exists for the ensemble of geometric features of a

polyhedron, the term "Ray" is used. The reader needs to differentiate it from a

simple ray (definition 2.5) by context. The C-structure for a polyhedron is defined

as:

typedef struct polyhedron

{ struct polyhedron *next;

unsigned Dimension, NbConstraints, NbRays, NbEqualities, NbLines;

int **Constraint;

int **Ray;

int *p_Init;

Polyhedron;

The fields of the Polyhedron structure are described as follows:

Dimension the dimension of the space in which the inhomogeneous polyhedron

resides.

30

NbConstraints the number of equalities (NbEqualities) and inequalities constrain-

ing the polyhedron.

NbRays the number of lines (NbLines), rays, and vertices in the geometry of the

polyhedron.

NbEqualities the number of equalities in the constraint list.

NbLines the number of lines in the ray list.

Constraint [i] the i-th constraint (equation or inequality).

Ray [i] the i-th geometric feature (ray, vertex, or line).

p_Init for library use to do memory management.

next a link to another polyhedron, supporting domains which are finite unions of

polyhedra.

The data structure is detailed in figure 3.1. Along with the main structure,

three other arrays need to be allocated: an array of constraint pointers, an array of

ray pointers, and finally the data array that holds the actual constraints and rays

themselves. This entire data structure is created by the library function:

Polyhedron *Polyhedron_Alloc- (unsigned Dimension,

unsigned NbConstraints,

unsigned NbRays)

and is replicated by the library function:

Polyhedron *Polyhedron_Copy (Polyhedron *p)

and is destroyed (and memory freed) by the library function:

void Polyhedron_Free (Polyhedron *p)

next

Dimension

NbConstraints

NbRays

NbEqualities

NbLines 0Constraint

Ray

pInit

0

Equality0

Equality0

Inequality1

1 Inequa litY

0 Line

0 Line

1 Ray

1 Ray

Ray1

Dimension+2

Figure 3.1: Data Structure for Polyhedron

31

Using the next pointer field, the several polyhedra whose union form a do-

main can be put into a single linked list structure. Thus the data structure works

equally well for domains as well as for a single polyhedron. Accordingly, the proce-

dures Polyhedron_Copy and Polyhedron Free described above have domain equiv-

alents which copy and free an entire linked list of polyhedra.

Polyhedron *DomainCopy (Polyhedron *d)

returns a copy of the linked list of polyhedra (domain) pointed to by d.

void Domain Free (Polyhedron *d)

frees memory allocated to the linked list of polyhedra (domain) pointed to by d.

Constraint Format

Each constraint (equality or inequality) consists of a vector ofDimension+2 elements

and has the format:

32

(5, X1, X2, , Xn, K) representing the constraint:

ifS=0: Xiii-X2i+-.+Xnk+K=0
if S = 1: X2j Xnk K > 0

which are defined over the n-space with coordinate system (i, j, , k).

The element S is a status word defined to be 0 for equalities and 1 for inequalities.

In an n dimensional system, the i-th constraint (0 < i < NbConstraints) is

referenced in the following manner:

Constraint [i] [0] = S

Constraint [i] [1] =

Constraint [i] [2] = X2

Constraint [i] [Dimension] = Xn

Constraint [i] [Dimension+1] = K

Ray Format

Each ray consists of a vector of Dimension+2 elements and has the format:

(5, X1, X2, , Xn, K) representing the geometric object:

if S = 0: line in direction ,(X1, X2, , Xn)

if S = 1: K 0: vertex ()it, II, , te--)

if S = 1: K = 0: ray in direction (Xi, X2, , Xn).

The element S is a status word defined to be 0 for lines and 1 for vertices and rays.

In an n dimensional system, the i-th ray (0 < i < NbRays) is referenced in

the following manner:

Ray [i] [0] = S

Ray [i] [1] =

Ray[i] [2] = X2

Ray [i] [Dimension] = Xn

Ray [i] [Dimension+1] = K

The example in figure 3.2 shows the internal representation for a polyhedron.

{i, j,k I 7k = 4; 2i + 3j <5}

Polyhedron

Dimension = 3

NbConstraints = 3

NbRays = 3

NbEqualities = 1

NbLines = 1

Constraint [0] (0 0 7 -4)
Constraint [1] = (-2 -3 0 5)
Constraint [2] = (0 0 0 1)

Ray [0] = (3 -2 0 0)
Ray [1] = 0 -1 0 0)

Ray [2] = (0 35 12 21)

3.6 Validity rules

33

Equality 7k = 4

Inequality 2i+3j <= 5

Inequality 1 >= 0

Line (3,-2, 0)

Ray (0,-1, 0)

Vertex (0, 35/21, 12/21)

= (0, 5/3, 4/7)

Figure 3.2: Example 1

All polyhedra (including empty and universe domains) generated by the polyhedral

library satisfy three general rules. In this section, the consistency rules which govern

the polyhedral data structure are described.

Given a polyhedron P = + V, the following meanings of the term

dimension are defined:

1. The dimension of a lineality space G is n where G is an n-space (see defini-

tion 2.12).

2. The dimension of the ray space is m where affine.hull(R. -I- V) is an m-flat

(see definition 2.13).

3. The dimension of the polyhedron P is p where affine.hull P is an p-flat.

Property 3.1 (Dimensionality Rule)

34

a. The dimension of the lineality space is the number of irredundant lines.

b. The dimension of the polyhedron is the dimension of the ray space plus the

dimension of the lineality space.

c. The dimension of the ray space is the dimension of the system minus the

number of irredundant lines minus the number of irredundant equalities.

Proof:

Part (a). The dimension of the lineality space is the rank of a set of lines which
span it (definition 2.12). The rank is the number of irredundant lines in a basis
for the space. Any additional line is necessarily redundant (property 2.3).

Part (b). The dimension of a polyhedron is the dimension of the smallest fiat
which contains it (definition of dimension). That flat can be partitioned as
follows:

convex.hull(P) = convex.hull(L R + V)
= convex.hull(G) convex.hull(R. + V)

= lineality.space(P) convex.hull(ray.space(P))

dimension(P) = dimension(lineality.space(P)) dimension(ray.space(P))

The dimensions of the lineality space and ray space are unique and separable
since no irredundant ray is equal to a linear combination of lines (else the ray
is redundant) and no line is a linear combination of rays (else the basis of ray
space is redundant). Thus, the lineality space and ray space of a polyhedron
are dimensionally distinct and the sum of their dimensions is the dimension
of the polyhedron.

Part (c). The set of equalities determine the flat in which P lies. Since each
irredundant equality restricts the flat which contains the polyhedron by one
dimension, thus

dimension(P) = (Dimension of system) (Number of equalities)

[from part b.] = dimension(lineality.space(P)) dimension(ray.space(P))

and from part a. we have:

dimension(lineality.space(P)) = Number of lines

and combining the above three statements:

dimension(ray.space(P)) = (Dimension of system)
(Number of equalities) (Number of lines)

35

and thus the dimension of the ray space is the dimension of the system less
the number of equalities and less the number of lines.

0

The dimension of the ray space is an important number and is used in the deter-

mination of redundant rays and inequalities. It is the key number n used in the

saturation rule, property 3.2. It is computed according to part-c of property 3.1,

which when written in the library (C-code) is:

p->Dimension p->NbLines - p->NbEqualities

Property 3.2 (Saturation Rule)

In an n-dimensional ray space,

a. Every inequality must be saturated by at least n vertices/rays.

b. Every vertex must saturate at least n inequalities and a ray must saturate

at least n 1 inequalities plus the positivity constraint.

c. Every equation must be saturated by all lines and vertices/rays.

d. Every line must saturate all equalities and inequalities.

Proof:
All parts rely on the definition of saturate 3.1.

Part (a). In general, every k-face is the convex union of a minimum of k + 1
vertices/rays since each k-face lies on a k-flat which is determined by any k +1
affinely independent points in the flat (property 2.4) and since vertices/rays
are affinely independent (property 2.6), a minimum of k 1 of them can be
used to determine a k-face. Since each inequality is associated with a (n 1)-

face (facet) of the polyhedron and each (n *face is saturated by n-1-1-1 = n
vertices/rays, each inequality is also saturated by at least n vertices/rays.

Part (b). Each vertex is the intersection of at least n facets, and therefore sat-
urates at least n inequalities. Each ray is the intersection of at least n 1

facets, and therefore saturates at least n 1 inequalities plus the positivity
constraint (described in section 3.6.1) which is saturated by all rays (property
3.4).

Part (c) and Part(d). Shown by the derivation of equation 3.11.
0

The independence rule is an invariant of library in which only a minimal

representation of a polyhedron is stored.

36

Property 3.3 (Independence Rule)

a. No inequality is a positive combination of any other two inequalities or

equalities.

b. No ray is a linear combination of any other two rays or lines.

c. The set of equalities must be linearly independent.

d. The set of lines must be linearly independent.

Proof:

Part (a). Assume a,. = aia a2/3, with a > 0, and)3 > 0. Given the inequalities
al'x > 0, and al' x > 0, then (aia a213)T > 0 and thus aT > 0, and a,. is a
redundant inequality and may be omitted from the system.

Part (b). By the definition of extreme ray 2.6.

Part (c) and (d). From definitions of flats (2.13) and subspaces (2.12), the dimen-
sion attribute is defined in terms of the basis of the lines, and by convention
redundant lines and equalities are removed to keep the basis at a minimum.
The number of lines and equalities are known and have be discussed in con-
nection with the dimensionality rule (property 3.1).

0

Definition 3.2 (Redundancy)

Inequalities that don't satisfy property 3.2.a or property 3.3.a are redundant.

Vertices/rays that don't satisfy property 3.2.b or property 3.3.b are redundant.

3.6.1 The Positivity Constraint

In the language of algebrists, the trivial constraint 1 > 0 is called the "positivity'

constraint". When true, you know that positive numbers are positive (a nice thing

to know). It was generated as a side effect of converting from an inhomogenous

polyhedron to a homogeneous cone representation as can be seen in equation 3.10.

'Also called the non-negativity constraint. Here the term positive is used in a non-strict way to
include zero.

{x, y I 1 < x < 3; 2 < y < 4}

x>=1 x<=3 y>=2 y<=4

vertex(1,2) sat sat

vertex(1,4) sat sat

vertex(3,2) sat sat

vertex(3,4) sat sat

37

I I I'
1 2 3

Every constraint saturates two vertices and every vertex saturates two inequalities.
This is a perfectly non redundant system.

Figure 3.3: Example 2

{x, y x 1; y > 2}
4 ____

x>=1 y>=2 1>=0 3

vertex(1,2) sat sat

ray(1,0) sat sat 2

ray(0,1) sat sat
1_

x

1 2 3
Here, every constraint saturates two vertices/rays and every vertex/ray saturates
two inequalities. This is also a non redundant system. However the positivity
constraint is also irredundant... it is needed to support the presence of the two
rays. Without it, the two rays are not supported and appear mistakenly to be
redundant.

Figure 3.4: Example 3

As stated earlier, rays may be thought of as points at infinity. In this vein of thought,

the positivity constraint generates the face that connects those points, creating a

face at infinity which "closes" unbounded polyhedra. The following property gives

the reasoning behind this.

Property 3.4 All rays are saturated by the positivity constraint and no vertex is

saturated by the positivity constraint.

__YIx x 1} 4

line(0,1)

vertex(1,2)

ray(1,0)

x>=1
sat

sat

1>=0

sat

sat

3_

1__

A halfplane.

Figure 3.5: Example 4

I Ix
1 2 3

38

{x, y x = 2; y 3}
Polyhedron consisting of a single point (2,3) is dimension 0. The dimension the
system is 2, there are two equalities, and the dimension of the lineality space is 0,
thus the dimension of the ray space is 2-2-0=0 (property 3.1).

Figure 3.6: Example 5

Proof: In the homogeneous form, the positivity constraint is A > 0 represented by
the vector a = (0, , 0,1), and rays are of the form r = (ri, , r, 0). Since
a o r = 0, for all rays, all rays saturate the positivity constraint. Vertices are
of the form v = (v1, , vn, d), d 0. Since aov=d0 0, for all vertices, no
vertex saturates the positivity constraint.

As surprising as it may seem, the positivity constraint is not always redundant, as

was shown in the examples in figures 3.4 and 3.5. The following property gives a

rule for when the positivity constraint will be needed.

Property 3.5 The positivity constraint will be irredundant if the size of the set

of rays is > n, the dimension of the ray space, and the rank of the ray set is n.

Proof: For the positivity constraint to be irredundant, it needs at least n ver-
tices/rays which saturate it (property 3.2). Since only rays saturate the posi-
tivity constraint, at least n rays are needed (property 3.4). Thus in a system
with n rays, the positivity constraint is irredundant.

Positivity constraints are included so there aren't invalid polyhedra floating around

(according to properties 3.1 and 3.2). There are different strategies involving the use

39

fx,Y1 1 =0)

Empty Polyhedron, Dimension 2

Constraints (3 equalities, 0 inequalities)

x = 0

y = 0

1 = 0

Lines/Rays (0 lines, 0 rays)

-none-

dim(ray space) = dimension numlines - numequalities

= 2 - 0 3

= -1

dim(lineality space) = numlines

= 0

Figure 3.7: Example 6 Empty Polyhedron

of this constraint. One strategy is to add the positivity constraint to all polyhedra

(even if it is redundant) before doing any operation and then filter it out of the

answer at the end. This works, but may not be very efficient. To add the positivity

constraint may require allocating memory and then copying the polyhedron plus

the positivity constraint for each polyhedral operand before doing any operation.

Another alternative is to keep the positivity constraint in polyhedra where it is

needed (according to property 3.5). This works well for the library. The only

problem is that it usually will have to be filtered out by the user when displaying

the constraints (by a pretty printer).

3.6.2 Empty Polyhedra

An empty domain is a polyhedron which includes no points. It is caused

by overcontraining a system such that no point can satisfy all of the constraints.

Empty polyhedra have the following properties:

Property 3.6 In an empty polyhedron

a. the dimension of the lineality space is 0.

b. the dimension of the ray space is -1.

40

c. there are no rays (vertices, to be more specific).

Proof:

Part a. Since there are no points in an empty polyhedron, there are no lines, and
the dimension of the lineality space is the number of lines = 0.

Part b. To overconstrain a system of dimension n requires n 1 equalities. From
property 3.1, the dimension of the ray space is (dimension of system)-(number
of equalities)-(number of lines) = n (n 1) 0 = 1

Part c. Since there are no points in an empty polyhedron, there are no vertices
as well.

0

A test for an empty polyhedron may be performed by either of the following C-

macros:

#define emptyQ(P) (P->NbEqualities==(P->Dimension+1))

*define emptyQ(P) (P->NbRays==0)

An empty polyhedron can be created by the library by a call to the procedure:

Polyhedron *EmptyPolyhedron (unsigned Dimension)

3.6.3 Universe Polyhedron

A universe polyhedron is one that encompasses all points within a certain

dimensional subspace. It is therefore unbounded in all directions. It is created by

not constraining a system at all (except with the positivity constraint). A universe

polyhedron has the following properties:

Property 3.7 In an universe polyhedron

a. the dimension of the lineality space is the dimension of the polyhedron,

b. the dimension of the ray space is 0,

c. there are no constraints, other that the positivity constraint.

{ ,y {1 2! 0}

Universe Polyhedron, Dimension 2

Constraints (0 equalities, 1 inequality)

1 >= 0

Lines/Rays (2 lines, 0 rays)

line (1,0) (x-axis)

line (0,1) (y-axis)

vertex (0,0) (origin)

dim(ray space) = dimension num_lines num_equalities

= 2 - 2 - 0

= 0

dim(lineality space) = num_lines

= 2

Figure 3.8: Example 7 Universe Polyhedron

41

Proof:

Part a. An unconstrained system of dimension n is a n-space with a basis of n
lines.

Part b. From property 3.1, the dimension of the ray space is (dimension of system)
(number of equalities)-(number of lines) = n 0 n = 0

Part c. Any constraint other that the positivity constraint would exclude points
from the system, and is therefore inadmissable.

0

A test for a universe polyhedron may be performed by the following C-macro:

#define universeQ(P) (P->Dimension==P->NbLines)

A universe polyhedron can be created using the library with a call to the procedure:

Polyhedron *UniversePolyhedron (unsigned Dimension)

42

Chapter 4

THE POLYHEDRAL LIBRARY

The polyhedral library creates, operates on, and frees objects called domains (de-

scribed in section 1.2) made up of unions of polyhedra. The data structure for

these domains was described in section 3.5 along with operations to create and free

the data structure. This chapter builds on chapter 3 and describes the operational

side of the library in detail. The algorithms used to operate on domains are fully

described as well.

4.1 Description of Operations

The polyhedral library contains a full set of operations as described in this section.

External interface with library

In many operations there is a parameter called NbMaxRays which sets the size of

a temporary work area. This work area is allocated by the library using a call to

malloc at the beginning of an operation and is deallocated at the end. If the work

area is not large enough, the operation will fail and a fault flag will be set. The

following external domain functions are supported:

Polyhedron *DomainIntersection (Polyhedron *dl, Polyhedron *d2,

unsigned NbMaxRays)

returns the domain intersection of domains dl and d2. The dimensions

of domains dl and d2 must be the same. Described in section 4.5.

43

Polyhedron *DomainUnion (Polyhedron *di, Polyhedron *d2,

unsigned NbMaxRays)

returns the domain union of domains dl and d2. The dimensions of

domains dl and d2 must be the same. Described in section 4.6.

Polyhedron *DomainDifference (Polyhedron *di, Polyhedron *d2,

unsigned NbMaxRays)

returns the domain difference, dl less d2. The dimensions of domains

dl and d2 must be the same. Described in section 4.7.

Polyhedron *DomainSimplify (Polyhedron *di, Polyhedron *d2,

unsigned NbMaxRays)

returns the domain equal to domain dl simplified in the context of d2,

i.e. all constraints in dl that are not redundant with the constraints of

d2. The dimensions of domains dl and d2 must be the same. Described

in section 4.8.

Polyhedron *DomainConvex (Polyhedron *d, unsigned NbMaxRays)

returns the minimum polyhedron which encloses domain d. Described

in section 4.9.

Polyhedron *DomainImage Polyhedron *d, Matrix *m,

unsigned NbMaxRays)

returns the image of domain d under affine transformation matrix m.

The number of rows of matrix m must be equal to the dimension of the

polyhedron plus one. Described in section 4.10.

Polyhedron *DomainPreimage (Polyhedron *d, Matrix *m,

unsigned NbMaxRays)

44

returns the preimage of domain d under affine transformation matrix m.

The number of columns of matrix m must be equal to the dimension of

the polyhedron plus one. Described in section 4.11.

Polyhedron *Constraints2Polyhedron (Matrix *m,

unsigned NbMaxRays)

returns the largest polyhedron which satisfies all of the constraints in

matrix m. Described in section 4.4.

Polyhedron *Rays2Polyhedron (Matrix *m, unsigned NbMaxRays)

returns the smallest polyhedron which includes all of the vertices, rays,

and lines in matrix m. Described in section 4.4.

Polyhedron *UniversePolyhedron (unsigned Dimension)

return the universal polyhedron of dimension n. Described in section

3.6.3.

Polyhedron *EmptyPolyhedron (unsigned Dimension)

return the empty polyhedron of dimension n. Described in section 3.6.2.

Polyhedron *Domain Copy (Polyhedron *d)

returns a copy of domain d. Described in section 3.5.

void Domain Free (Polyhedron *d)

frees the memory used for domain d. Described in section 3.5.

45

4.2 Computation of Dual Forms

A important problem in computing with polyhedral domains is being able to convert

from a domain described implicitly in terms of linear equalities and inequalities

(equation 2.3), to a parametric description (equation 2.4) given in terms of the

geometric features of the polyhedron (lines, rays, and vertices). Inequalities and

equalities are referred to collectively as constraints. An equivalent problem is called

the convex hull problem which computes the facets of the convex hull surrounding

given a set of points,

The algorithms to solve this problem are categorized into one of two general

classes of algorithms, the pivoting and non-pivoting methods. [MR80] The pivoting

methods are derivatives of the simplex method which finds new vertices located

adjacent to known vertices using simplex pivot operations.

The algorithm used by the library belongs to the other class, that of the of

nonpivoting methods. For convenience, the nonpivoting methods are usually stated

in terms of finding the extreme rays of polyhedral cones. These methods rely on

the principle that polyhedral cones, like polyhedra, have two dual representations,

the implicit form (equation 2.6) and the parametric form (equation 2.5). These

methods find a solution by first setting up a tableau in which an initial polyhedron

(such as the universe or the positive orthant) is simultaneously represented in both

forms. The algorithm then iterates by adding one new inequality or equality at a

time and computing the new polyhedron at each step by modifying the polyhedron

from the previous step. The order in which constraints are selected does not change

the final solution, but may have an effect on the run time of the procedure as a

whole. The complexity of this problem is known to be 0(n), where n is the

number of constraints and d is the dimension. This is the best that can be done,

since the size of the output (i.e. the number of rays) is of the same order.

The nonpivoting methods are based on an algorithm called the double de-

scription method invented by Motzkin et al. in 1953 [MRTT53]. Motzkin described

a general algorithm which solves the dual-computation problem in terms of convert-

46

ing a mixed linear system of constraints into a non-pointed cone. In each iteration,

a new constraint is added to the current cone in the tableau. Rays in the cone

are divided into three groups, R+ the rays which verify the constraint, R° the rays

which saturate the constraint, and R- the rays which do not verify the constraint.

A new cone is then constructed from the ray sets R +, R°, plus the convex combina-

tions of pairs of rays, one each from sets R+ and R. The main problem with the

nonpivoting methods is that they can generate a non-minimal set of rays by creat-

ing non-extreme or redundant rays. If allowed to stay, the number of rays would

grow exponentially and would seriously test the memory capacity of the hardware

as well as degrade the performance of the procedure. Motzkin proposed a simple

and rather elegant test to solve this problem. He showed that a convex combination

of a pair of rays (r- E R-, r+ E R+) will result in an extreme ray in the new cone

if and only if the minimum face which contains them both: 1) is dimension one

greater than r- and r+, and 2) only contains the two rays r and r+. This test

inhibits the production of unwanted rays and keeps the solution in a minimal form.

Chernikova [Che65, Rub75] described a similar algorithm to solve the re-

stricted case of the mixed constraint problem with the additional constraint that

variables are all non-negative (x > 0). Chernikova's method was the same as

Motzkin's method, except that she used a slightly smaller and improved tableau.

Fernandez and Quinton [FQ88] extended the Chernikova method by removing the

restriction that x > 0 and adding a heuristic to improve speed by ordering the con-

straints. A large portion of the computation time is spent doing the adjacency test.

Le Verge [Le 92] improved the speed of the redundancy checking procedure used

in [FQ88], which is the most time consuming part of the algorithm. Seidel has an

algorithm for the equivalent convex hull problem [Sei9l] which executes in 0(niti)

expected running time where n is the number of points and d is the dimension. This

is provably the best one can do, since the output of the procedure is of the same

order. He solves the adjacent ray problem (the adjacent facet problem in his case)

by creating and maintaining a facet graph in which facets are vertices and adjacent

facets are connected by edges. It takes a little extra code to maintain the graph,

47

Polyheron Type Bound

d-Simplex fk =
d +1

k +1

d-Simplex
d

E fk = 20+1)
k=-1

Simplicial d-polytope [MR80]
n d

fd-i (n d
Simplicial d-polytope [Gru67] fd_i > (d 1)n (d 2)(d 1)

Cyclic d-polytope [Gru67] 1k =
n

, 0 < k < ldi
k + 1 2

Cyclic d-polytope [Gru67]
n (d mod 2Icn k 2)

1k = n k 1

1.1.1 n 1 j n k 1xE
J=o k+1j 2jk 1 +dmod 2

= 0(11!n1.1J)

Cyclic d-polytope [K1e66] fd-i =

= 0(n1.41)

2n
, d even

d
2

(n LI] I
, d odd

Lil

Table 4.1: Compilation of results for bound on number of faces facets

but then he does not need to do the Motzkin adjacency test on all pairs of vertices

(facets).

McMullen [McM70, MS71] showed that for any d-polytope with n vertices,

the number of k-faces, fk is upper bounded by the number of k-faces of a cyclic

d-polytope with the same number of vertices. One of the implications of this is that

the number of facets, fd_1 = 0(n11-1). The bound on the number of faces, facets,

vertices, etc. in a polyhedron is a difficult and well studied problem. Table 4.1

summarizes some of the work that has been done.

48

4.2.1 The general algorithm

The nonpivoting solvers successively refine their solution by adding one constraint

at a time and modifying the solution polyhedron from the previous step to reflect

the new constraint. An inequality aT x > 0 is co-represented by the closed halfspace

H+ which is the set of points {x (aTx > 0}. Likewise the equality aTx = 0 is

co-represented by the hyperplane H which is the set of points { x aTx = 0}. At

each step of the algorithm, a new inequality or equality represented by either H+ or

H, respectively, is intersected with the cone C represented by C = L+ R (equation

2.8), the combination of its lineality space and ray space, to produce a modified cone

C' = L'+ R'. The algorithm Dual in figure 4.1 gives the generalized algorithm given

by Motzkin.

In the algorithm Dual, there are three procedures which alter the polyhe-

dron. They are ConstrainL which constrains the lineality space, AugmentR

which augments the dimension of the ray space, and finally ConstrainR which

constrains the ray space. These procedures are discussed below in greater detail.

The ConstrainL procedure shown in figure 4.3 constrains the lineality space

L by slicing it with a new constraint, and if the new constraint cuts L, then L's

dimension is reduced by one and a new ray rnew is generated which is added to

the ray space. It is fairly straightforward and runs in 0(n) time where n is the

dimension of the lineality space.

There are two procedures which perform transformations on the ray space.

The first one is AugmentR shown in figure 4.4 which adds a new ray rneu, created

by ConstrainL to the ray space. When rnew is added to the ray space R, it increases

the dimension of R by one. It is of complexity 0(r) time, where r is the number of

rays.

The second operation ConstrainR shown in figure 4.5 constrains the ray

space by slicing it with the hyperplane H, discarding the part of the ray space which

lies outside of constraint. For inequalities, the part of the polyhedron which lies

outside of the halfspace H+ is removed. For equalities, the part of the polyhedron

which lies outside of the hyperplane H is removed. In either case, the new face

49

lying on the cutting hyperplane surface needs to be computed.

The two functions AugmentR and ConstrainR follow Motzkin's algorithm

closely. ConstrainR computes a new pointed cone by adding a new constraint.

Rays which verify and saturate the constraint are added. Rays which do not verify

the constraint are combined with adjacent rays which verify the constraint to create

new rays which saturate the constraint. Motzkins adjacency test is used to find

adjacent pairs of rays. The Motzkin adjacency test is used to test every pair of rays

to determine if that pair will combine to produce an extreme ray or not. This is

done by computing what constraints the pair of rays have in common and making

sure that no other ray also saturates that same set of constraints. Thus the list

of rays produced by ConstrainR is always extreme (non-redundant). The entire

ConstrainR procedure has an O(n3k) complexity where n is the number of rays

and k is the number of constraints. Much of this time is spent in performing the

adjacency tests.

The procedure Combine shown in figure 4.2 is where all of the actual com-

putation takes place. It uses as input two rays, r+ and r-, as well as a constraint

a. It then computes the ray r= which firstly is a linear combination of r+ and r-

(r= = Air+ + A2r-), and secondly, saturates constraint a, (aTr= = 0).

Procedure Dual(A), returns L, R

L := basis for d-dimensional lineality space.
R := point at the origin.
For each constraint a E A Do

New := ConstrainL (L, a)
If Neu, 0 0 Then AugmentR (R, a, rne.

End
Return L and R.

Else ConstrainR (R, a)

Figure 4.1: Procedure to compute Dual(A)

50

Procedure Combine(ri, r2, a), returns r3

D = GCD(aTri,aTr2)
Ai = aTr2ID
"2 = aTri/D
r3 = A1r1 A2r2

Figure 4.2: Procedure to compute Combine r2, a)

Procedure ConstrainL (L, a), modifies L, returns rne.

Find an 11 E L such that aTli 0 0, does not saturate constraint a)
If 11 does not exist Then (L n H is L itself and rne, is empty) Return 0.
L' := empty.
For each line /2 E L such that 12 0 11 Do

L' := L' + Combine 12, a)
End
If aTli > 0, (11 verifies constraint a) Then Create ray r,, equal to /1
Else (aTli < 0) Create ray rfle, equal to 11
L := L'
Return rne.

Figure 4.3: Procedure to compute ConstrainL(L, a)

Procedure AugmentR (R, a, r,,), modifies R

Set R' := empty.
For each ray r E R do

If aTr = 0 Then R' := R1 + r
If aTr > 0 Then R' := + Combine (r, rn, a)
If aTr < 0 Then R' := R' + Combine (r, r,, a)

End
If a is an inequality Then R' := rne.
R := R'

Figure 4.4: Procedure to compute AugmentR(R, a, rnew)

51

Procedure ConstrainR (R, a), modifies R

Partition R = R+ R°
:= {r I r E R, aTr = 0), the rays which saturate constraint a.

R+ := {r I r E R, aTr > 01, the rays which verify constraint a.
:= {r I r E R, aTr < 01, the rays which do not verify constraint a.

If constraint a is an inequality, Then set R' := R+ R°.
Else (constraint a is an equality) set R' := R°.
For each ray r+ E R+ do

For each ray r- E R- do
Adjacency test on (r+,r-)
c := set of common constraints saturated by both (r+, r-)
For each ray r E I r r+, r 7-- Do

If r also saturates all of the contraints in set c Then
(r+ and r- are not adjacent.) Continue to next ray r-.

End
(r+ and 7-- are adjacent.) R' := -I- Combine (r+, r', a)

End
End
R := R'

Figure 4.5: Procedure to compute ConstrainR(R, a)

4.2.2 Implementation

The procedure Dual is implemented in the polyhedral library as the procedure:

static int Chernikova (Matrix *Constraints,

Matrix *Rays,

Matrix *Sat,

unsigned NbLines,

unsigned NbMaxRays,

unsigned FirstConstraint)

It is named "Chernikova" for historical reasons, however, a more suitable name

would have been "Motzkin", since the procedure is primarily due to him. It is

52

somewhat different than the basic one described in section 4.2.1 in that it allows

a new set of constraints to be added to an already existing polyhedron (there may

be preexisting constraints and rays). The entire list of constraints (both the old

and the new) is passed as the parameter Matrix *Constraints, with the param-

eter unsigned First Constraint indicating which is the first "new" constraint.

The preexisting lines and rays are passed in as the parameter Matrix *Rays. The

lines must be grouped together at the beginning of the matrix, and the parameter

unsigned NbLines indicates how many lines are in the Rays matrix. The parame-

ter unsigned NbMaxRays is the allocated dimension of the Rays matrix and limits

the number of lines and rays that can be stored at any one time. And finally,

the parameter Matrix *Sat contains the incidence matrix (defined in section 3.3)

between the original constraints and rays of the input polyhedron. The procedure

adds the new constraints to the polyhedron, updating the Rays and Sat matrices.

The updated matrices are returned by the procedure. This procedure has been

benchmarked and times published in [Le 92].

4.3 Producing a minimal representation

After computing the dual of a set of constraints, the set of rays produced is guaran-

teed to be non-redundant, by virtue of the adjacency test which is done when each

ray was produced. However, the constraints are still possibly redundant. There

remain a number of simplifications which can still be done on the resulting polyhe-

dron, among which are:

1. Detection of implicit lines such as line(1,2) given that there exist rays (1,2)

and (-1,-2).

2. Finding a reduced basis for the lines.

3. Removing redundant positivity constraints 1 > 0.

4. Detection of trivial redundant inequalities such as y > 4 given y > 3, or x > 2

given x = 1.

53

5. Detection of redundant inequalities such as x y > 5 given x > 3 and y > 2.

6. Solving the system of equalities and eliminating as many variables as possible.

The algorithm to do all of these reductions is sketched out below. In the

procedure, each constraint and each ray needs a status word which is provided for

in the polyhedron structure (see section 3.5).

Reduce(Constraints, Rays, Sat), returns a Polyhedron structure.

Step 0 Count the number of vertices among the rays while initializing the ray status
counts to 0. If no vertices are found, quit the prodedure and return an empty
polyhedron as the result.

Step 1 Compute status counts for both rays and inequalities. For each constraint,
count the number of vertices/rays saturated by that constraint, and put the
result in the status words. At the same time, for each vertex/ray, count the
number of constaints saturated by it.
Delete any positivity constraints, but give rays credit in their status counts
for saturating the positivity constraint.

Step 2 Sort equalities out from among the constraints, leaving only inequalities.
Equalities are constraints which saturate all of the rays. (Status count =
number of rays)

Step 3 Perform gaussian elimination on the list of equalities. Obtain a minimal basis
by solving for as many variables as possible. Use this solution to reduce the
inequalities by elimating as many variables as possible. Set NbEq2 to the
rank of the system of equalities.

Step 4 Sort lines out from among the rays, leaving only unidirectional rays. Lines are
rays which saturate all of the constraints (status count = numberof constraints

1(for positivity constraint)).

Step 5 Perform gaussian elimination of on the lineality space to obtain a minimal
basis of lines.
Use this basis to reduce the representation of the unidirectional rays. Set
NbBid2 to the rank of the system of lines.

Step 6 Do a first pass filter of inequalities and equality identification.
New positivity constraints may have been created by step 3. Check for and
elimate them.
Count the irredundant inequalities and store count in NbIneq.
if (Status==0) Constraint is redundant.
else if (Status<Dim) Constraint is redundant.

54

else if (Status==NbRays) Constraint is an equality.
else Constraint is a irredundant inequality.

Step 7 Do first pass filter of rays and identification of lines.
Count the irredundant Rays and store count in NbUni.
if (Status<Dim) Ray is redundant.
else if (Status==(NbConstraints+1)) Ray is a line.
else Ray is an irredundant unidirectional ray.

Step 8 Create the polyhedron. Allocate the polyhedron (using approximate sizes).
Number of constraints = NbIneq-I-NbEq2+1
Number of rays = NbUni+NbBid2
Partially fill the Polyhedron structure with the lines computed in step 3 and
the equalities computed in step 5.

Step 9 Final pass filter of inequalities.
Every 'good' inequality must saturate at least Dimension rays and be unique.
The final list of inequalities is written to polyhedron.

Step 10 Final pass filter of rays and detection of redundants rays.
The final list of rays is written to polyhedron.

Step 11 Return polyhedron.

In the polyhedral library, the Reduce algorithm described above is implemented

as an internal library procedure defined as:

static Polyhedron *Remove_Redundants (Matrix *Constraints,

Matrix *Rays,

Matrix *Sat,

unsigned *Filter)

It takes the list of constraints and rays as generated by the Chernikova procedure,

as well as the incidence matrix Sat relating the two. It assumes that either the

unidirectional rays are non redundant, or that the inequalities are non redundant.

This is guaranteed by the Chernikova procedure. The procedure performs the

reductions on the lists of constraints and rays, then builds a Polyhedron structure

from the results. The parameter unsigned *Filter, if non-zero, points to a bit

vector with one bit for each ray. The Remove_Redundants procedure sets the bits

corresponding to the rays which it finds non-redundant. The Filter vector is used

in the implementation of the Dom Simplify function.

55

4.4 Conversion of rays/constraints to polyhedron

Given a set of rays, the corresponding polyhedron is computed by simply run-

ning the Chernikova procedure to get the dual list of constraints and then the

Remove_Redundants procedure to reduce the ray/constraint lists and create a poly-

hedron.

Likewise, starting from a list of constraints, the corresponding polyhedron is

computed by running the Chernikova procedure to get the dual list of rays, and then

the Remove_Redundants procedure to reduce the ray/constraint lists and create a

polyhedron. The conversion of a list of rays or a list of contraints to a polyhedron is

the most basic application of the Chernikova and Remove_Redundants procedures.

4.5 Intersection

Intersection is performed by concatenating the lists of constraints from two (or

more) polyhedra into one list, and finding the polyhedron which satisfies all of the

combined constraints. This is done by finding the extremal rays which satisfy the

combined constraints, (finding the dual of the list of constraints), and then reducing

both the constraints and rays into one polyhedron. This procedure is illustrated in

figure 4.6.

To intersect two domains, A and B, which are unions of polyhedra, A =

UiAi and B = U; B;, the pairwise intersection of the component polyhedra from A

and B must be computed, and the union of the results is the resulting domain of

intersection, as shown below:

A. n B = (uiAi) n (uji3;)

= n B;)

Equalities

Inequalities

Lines

Rays

Polyhedron A

Equalities

Inequalities

Lines

Rays

Polyhedron B

4.6 Union

Compute

Dual

56

24,

Constraints

.-31.

Reduce

Rays

Figure 4.6: Computation of Intersection

Equalities

Inequalities

Lines

Rays

Polyhedron C

The domain (non-convex) union operation simply combines two domains into one.

The lists of polyhedra associated with the domains are combined into a single list.

However, combining the two lists blindly may create non-minimal representations.

For instance, if in forming the union of domains A = {i i > 1} and B = {i i > 2},

the fact that A D B is taken into consideration, then the union can be reduced to

simply A. The algorithm used in the library performs this kind of simplification

during the union operation. Before adding any new polyhedron to an existing list

of polyhedra, it first checks to see if that polyhedron is covered by some polyhedron

already in the domain. If it is covered, then the new polyhedron is not added to the

domain. Likewise, polyhedra in the existing list may be deleted if they are covered

by the new polyhedron. In the new combined list, no polyhedron is a subset of any

57

other polyhedron.

The test for when one polyhedron covers another is performed by the library

procedure:

int Polyhedronlncludes(pl, p2)

Polyhedron *pl;

Polyhedron *p2;

which returns a 1 if pl J p2, (polyhedron p1 includes (covers) polyhedron p2), and

returns a 0 otherwise. The test for when a polyhedron pl covers or includes another

polyhedron p2 is straight forward using the dual representation of polyhedra in

the library: pl. D p2 if all of the rays of p2 satisfy (see definition 3.1) all of the

constraints of pl. This is a case in point of when the dual representation comes

in handy. The constraint representation of pl and the dual ray representation of

p2 are used to determine pl D p2. Since both representations are kept in the data

structure, the dual does not need to be (re)computed in order to do this test.

4.7 Difference

Domain difference A B computes the domain which is part of A but not part of

B. It is equivalent to A n B, where B is the complement domain of B. If B is

the intersection of a set of hyperplanes (representing the equalities) and halfspaces

(representing the inequalities), then the inverse of B is computed as follows:

B = (niHi)
= ui(Hi)

where

1 {x I aTx < 01 when Hi = {x I aTx > 0}
,-, Hi -,--

{x1 (aTx < 0 U aTx > On when Hi = I aT x = 01

and normalizing for integer lattice domains :

{{x I aT x +1 > 0}

Ix I (aTx +1> 0 U

when Hi = {x I aT x > 0}

1> 0)} when H, = {x aT x 0}

58

The ALPHA program fragment:

var A: {t,p I 0<=t; l<=p<=4};

A = case

{t,p I t=0; 1 <=p<=41

{t,p I t>0; i<=p<=31 ;

{t,p I t>0; p =4}

esac;

is operationally equivalent to the following fragment:

var A: {t,p I 0<=t; 1<=p<=41;

A = case

{t,p 1 t=0}

{t,p I t>0; p< =3} ;

{t,p I t>0; p =4} ;

esac;

which has simplified case conditions on the domain A. The above simplifications
can be found using the simplify operation using the domain of A as the context,
and simplifying the case condition domains.

Figure 4.7: Application of Dom Simplify

The computation of difference is the same as the computation of intersection after

taking the inverse of B. Since the inverse of B is a union of polyhedra, the difference

of two polyhedra can be a union of polyhedra. Thus, polyhedra are not closed

under the operation difference, where as unions of polyhedra are closed under this

operation.

4.8 Simplify

The operation simplify is defined as follows:

Given domains A and B, then Simplify(A, B) = C, when Cn B = An B,

C D A and there does not exist any other domain C' C such that

C'nB = AnB.

The domain B is called the context. The simplify operation therefore finds the

59

largest domain set (or smallest list of constraints) that, when intersected with the

context B is equal to A fl B. This operation is used in ALPHA to simplify case

statements, as shown in the example in figure 4.7.

The simplify operation is done by computing the intersection A fl B and

while doing the Remove_Redundants procedure, recording which constraints of A

are "redundant" with the intersection. The result of the simplify operation is then

the domain A with the "redundant" constraints removed.

An interesting subproblem in the simplify operation occurs when the inter-

section of A and its context B are empty. In this case, simplify should find the

minimal set of constraints of A which contradict all of the constraints of B. This

is believed to be an NP-hard problem and a heuristic is employed to solve it in the

library.

4.9 Convex Union

Convex union is performed by concatenating the lists of rays and lines of the two

(or more) polyhedra in a domain into one combined list, and finding the set of

constraints which tightly bound all of those objects. This is done by finding the

dual of the list of rays and lines, and then reducing both the constraints and rays into

one polyhedron. This procedure is illustrated in figure 4.8. This procedure is very

similar to the intersection procedure which has already be described in section 4.5.

Convex union finds the polyhedron generated from the union of the lines and rays

of the two input polyhedra. Intersection finds the polyhedron generated from the

union of the equalities and inequalities of the inputs.

4.10 Image

The function image transforms a domain 1) into another domain TY according to

a given affine mapping function, Tx t (see definition 2.9 and property 2.2). The

Equalities

Inequalities

Lines

Rays

Polyhedron A

Equalities

Inequalities

Lines

Rays

Polyhedron B

Du
Compute

Dual

Constraints

Reduce

Rays

Figure 4.8: Computation of Convex Union

resulting domain lY is defined as:

= fx I xi= Tx +t, xED}

In homogeneous terms, the transformation is expressed as

(s') (T

0

60

Equalities

Inequalities

Lines

Rays

Polyhedron C

Thus in the homogeneous representation, an affine transfer function becomes a

linear transfer function (no constant added in). In the analysis that follows, we

will treat the transfer function from the linear point of view. The transformation

function

61

T

0

t

1

T

Figure 4.9: Affine transformation of 1) to V'

is a matrix dimensioned by (n -I- 1) x (m + 1), where n and m are

the dimensions of x and x', respectively. This transformation matrix is passed as a

parameter to the image procedure. If n = m, x and x' are the same dimension. If

n # m, the transformed space is of a larger (or smaller) dimension. The transforma-

tion does not have to be one-to-one, and therefore may not be invertable. Also, if

det T # 1, then the volume of the domain (the number of points in the domain) will

be scaled by the determinant. To compute an image of D, given the full redundant

representation:

D {x I Ax > 0, pR, AR> 0, > 0}

and given the transformation x' = Tx, the result D' is

= {x' I A'x' > 0, x' = T A'T R> 0, > 0}

= {x' I A'x' > 0, x' = R' A' R' > 0, > 0}

A' can be computed as the dual of R'. Thus, R' = TR and A' = dual(R'). This

computation is illustrated in figure 4.10 The image of a domain is simply the union

of the images of the component polyhedra contained in the domain, as follows:

T.7) = T.(UiPi)

62

Equalities

Inequalities

Lines

Rays

Compute
Dual

Dual
Constraints

Reduce

Rays

Equalities

Inequalities

Lines

Rays

14

0
,4_,
cn

T

Polyhedron A
Polyhedron C

Figure 4.10: Computation of Image

= Ui(T.Pi)

4.11 Preimage

Preimage is the inverse operation of image. That is given a domain D' defined as

D'= A'x' > , x' p, R' > 0, > 0}

and a transformation T, find the domain D which when transformed by T gives

D'. The relation x = Tx' still holds. (Refer again to figure 4.9.) The result D is

D = I A'Tx> 0, x A'TR > 0 1.1 > 0}

= {x I Ax > 0, x = RA, AR> 0, > 0}

In the result, A = A'T and R dual(A). This procedure is illustrated in figure 4.11.

The preimage of a domain is simply the union of the preimages of the component

polyhedra contained in the domain, as follows:

T' .D = T-1 .(UiPi)

63

Equalities

Inequalities Constraints

Lines

Rays

8'4

ag

Equalities

Inequalities

Polyhedron A Compute Reduce Lines
Dual

Du
Rays

Rays

Figure 4.11: Computation of Preimage

= Ui(T-1.Pi)

Polyhedron C

T-1 here is simple a notation for the preimage operation and does not mean to

imply that T is invertable.

4.12 The complexity of domain operations

Each of the domain operations described in this chapter make a call to the Dual

procedure. That procedure dominates both the time and space complexity of each

operation to be of order 0(01-1) where k is the number of constraints and d is the

dimension.

4.13 The implementation of the polyhedral library

The polyhedral library has been implemented in the C-language and is currently

in use in the ALPHA environment, as well as at other sites. The library code is

composed of five files: three headers and two code files as follows:

64

types .h The header file defining the data structures used in the library.

vector .h The header file containing the forward definitions of the external vector

operation procedures.

vector. c The code file containing the code for vector operations.

polyhedron.h The header file containing the forward definitions of the external

vector polyhedral and domain procedures.

polyhedron .c The code file containing the code for polyhedral and domain oper-

ations.

The code itself is too large to be included as part of this thesis, but is available

by ftp at host ftp. irisa.fr . It has been nicknamed the Chernikova library by its

users.

65

Chapter 5

CONSTRUCTION OF THE FACE LATTICE

In this chapter, a new algorithm to construct the full face lattice of a polyhedron is

presented. Throughout this chapter, I take advantage of the simplifications afforded

by work in previous chapters:

1. Conversion to homogenous systems (section 3.1). Polyhedra are given in their

"cone form", and all constraints are homogeneous. The cone form preserves

incidences between faces and therefore the lattice structure of the polyhedron.

2. Decomposition (section 2.6.1). The polyhedron is decomposed and separated

into its lineality and ray spaces. The lineality space has no effect on the lattice

structure other than a 'dimensional displacement' of the entire lattice. The

structure of the lattice is exclusively contained in the ray space.

Thus even though we are talking about polyhedra, we are really computing with the

pointed cones derived from the polyhedra. We will also use the notation "fk(P)"

to mean the number of k-faces of a polyhedron (definition 2.27) [Gru67].

5.1 Foundation

Given a polyhedron P = I Ax > 0, B x = 0}, there is a one-to-one correspon-

dance between each nonredundant inequality aix > 0 that bounds the polyhedron

and the corresponding facet ,Fi which is formed by intersecting the hyperplane

xi = {x I aix = 0} and p as stated in the following theorem:

Theorem 5.1 (relating non redundant inequalities and facets)

There is a one to one correspondance between the facets of a polyhedron P and the

66

irredundant inequalities of P. Given P = {x I Ax < 0, Bx = 0}, facet = E

P j aix = 0} (where a is the ith row of A) is in one-to-one correspondance with the

inequality aix < 0. The constraint aix < 0 defines or determines facet

Proof: Given a ai, row i of matrix A, define hyperplane xi = aix = 0}. xi
does not cut P since no x E P exists such that aix < 0 (definition 2.23). Since
ai is a non-redundant row, some point in 1-1 is also in P, thus is a supporting
hyperplane (definition 2.24) and Pn 'Hi is a face of P (definition 2.25). Calling
that face we have:

=
= Ix E P} n aix = 0}

= E P I aix = 0}

Since is the result of the intersection of P with a non-redundant equality,
the face is a polyhedron of dimension one less than P and is thus a facet of P
(definition 2.26).

0

Assuming A does not contain any redundant constraints (rows), the number of facets

is equal to the number of rows in A since each facet of P is defined or determined

by a unique row of A.

In general, any face .F of polyhedron P can be determined by a unique subset

of rows of A. For each face .1, there exists a row submatrix A' of A, such that

can be described as:

= {xE I x = 0}

5.2 The Face-Lattice

The relation f H g, "f is a subface of g", is transitive and anti-symmetric and hence

can be used to define a partial order among the faces of a polyhedron.

Property 5.1 (Transitive Property of I- relation)

If f g and g h then f I- h.

67

ray (1, 0)

A
Polyhedron

C

vertex (3,3)

vertex (0,0)

2-face (P itself)

Facial Graph A
is C 1-faces (facets)

ver(0,0) ver(3,3) 0-faces (vertices/rays)

1-face (empty face)

Figure 5.1: Example of a Facial Graph

Property 5.2 (Anti-symmetry property of F- relation)

If f g and f gthenglf f.

The H relation, along with the partially ordered set of all of the faces of a polyhedron,

form a lattice called the face lattice with the n-dimensional polyhedron at the top,

and the empty set (called the 1-face) at the bottom (figure 5.1).

This lattice induces a directed graph called the facial graph in which the

nodes are the faces of P and a directed edge exists between nodes f and g if and

only if g is a facet of f. The size of the facial graph of P is the number of nodes

and arcs and is denoted by L(P). The number of vertices and extremal rays of a

polyhedron (the 0-faces) is written as fo(P). Furthermore, since there is a one to one

correspondance between the non-redundant constraints in the implicit description

of a polyhedron and the facets of that polyhedron (theorem 5.1), the number of

non-redundant constraints which is the number of facets can be written as fd_i (2).

It has been shown that for a d-polyhedron P that both L(P) and the number of

68

Figure 5.2: Face Lattice of Dual Polyhedra

vertices and rays fo(P) are 0(k1-1-1) where k = fd_1(2), the number of constraints

[Ede87].

5.2.1 Lattices of dual polyhedra

The definition of dual polyhedra (definition 2.29) stated that two polyhedra are

dual to each other when there is a 1-1 mapping from faces of one to the faces of the

other which is inclusion reversing. Let M be such a mapping between polyhedra P

69

and Q. then

(i) for each face f in P, M(f) is a face of Q.

(ii) for each incidence f g in 7), M(g) F- M(f) is an incidence in Q.

This implies that the face lattice of P and Q are exact inversions of each other.

Figure 5.2 shows two such polyhedra. The face graph interpreted from top to

bottom represents the face lattice of the polyhedron on the top. The face graph

interpreted from bottom to top represents the polyhedron on the bottom. There is

a 1-1 correspondance between facets of one polyhedron and vertices of the other,

and visa versa. The reason that duality is important is that (for instance) every

thing proven for facets, by duality, is proven for rays. Duality can be looked at

from the point of view of two dual polyhedra, or from the point of view of the

dual representation (constraint representation vs. ray representation) of a single

polyhedron. The two points of view were proved equivalent in section 3.3. Here, we

make the most advantage of the second point of view.

5.3 Previous art

Grunbaum stated the basic theorem which, given a set of vertices, generates all faces

of the minimal polytope containing those vertices. He did this in an iterative fashion,

adding one vertex at a time to an existing polyhedron P, and computing the faces

of the new polyhedron P* given the new point and the faces of the old polyhedron

P. This generates the faces of the facial graph but not the arcs (incidences) between

the faces.

Before giving the theorem, two definitions are needed. Letting P be a n-

polytope, H be a hyperplane such that H does not cut P, and V be a point, then

the following definitions are given:

Definition 5.1 V is beneath H (with respect to P) provided V belongs to the

open halfspace determined by H which contains internal P. [inside]

70

Definition 5.2 V is beyond H (with respect to P) provided V belongs to the open

halfspace determined by H which does not meet P. [outside]

Definition 5.3 V is on H provided V belongs to the hyperplane H. [on]

The relation between the set of faces of a polytope P and that of the convex

hull of P and one additional point V is given by the following theorem:

Theorem 5.2 (Theorem by Grunbaum)

Let P and P* be two n-polytopes in Cr, and let V be a vertex of P* but
not of P, such that P* = convex.hull(V U P). Then,

(i) a face F of P is also a face of P* if there exists a facet F' of P such that F
in F' and V is beneath F';

(ii) if F is a face of P then F* = conv(V U F) is a face of P* iff either

(a) V is in affine.hull F, or
(b) among the facets of P containing F, there is at least one such that
V is beneath it and at least one such that V is beyond it.

(iii) each face of P* is generated by either rule (i) or (ii) above.

5.3.1 Seidel's method

Seidel added the generation of incidences to the procedure of Grunbaum, and thus

was able to generate the full face lattice (faces and incidences) of a polytope sur-

rounding a given set of points. Like the Grunbaum procedure, the Seidel procedure

adds one point p at a time to P to get P', iteratively building up the lattice. The

procedure Add Point which updates a list of faces and incidences, given a new

point, is presented on the next page.

When adding a new point to an existing polytope, the algorithm differentiates

two cases:

(1) the point is not in the affine hull of P, and

(2) the point is in the affine hull of P.

In the first case, the polytope will grow a dimension. In the second case, the

(
dimension of the polytope stays the same.

71

Procedure AddPoint(P, p), Returns P' = convex.hull(P U p)

If p not in affine.hull(P) Then
(P' is created in which dim(P') = dim(P)+1).
For every face f of P Do

(Find faces of P' when p is not in affine.hull(P))
f' = f is a face of P
f" = convex.hull(f U {p}) is a face of P

For pairs of faces f and g of P Do
(Find incidences of P' when p is not in affine.hull(P))
Let f',f",g',g" be faces of P induced by faces f and g in P
f' g' in P' iff f g in P.
f" F- g" in P' iff f g in P.
f' I f" in P' iff f in P.

Else (p is in affine.hull(P))
(P is created in which dim(P') = dim(P)).
Classification of facets of P

For each facet f of P Do
Let hyperplane h = affine.hull(f).
f is [out] if p is beyond h.
f is [on] if p is contained in h.
f is [in] if p is beneath h.

End
Classification of other faces of P

For each k-face e of P which is not a facet (k <dim(P) 1) Do
e is [out,on] if e is bounded by [out] and [on] faces.
e is [in,on] if e is bounded by [in] and [on] faces.
e is [in,out] if e is bounded by [in] and [out] faces.
e is [in,on,out] if e is bounded by [in], [on], and [out] faces.

End
For every face f of P Do

(Find faces of P' when p is in affine.hull(P))
f' = f is a face of P' if f has a [in] component.
f" =convex.hull(f U {p}) is a face of P' if f has [in] and [out] components.
f"' =convex.hull(f U {p}) is a face of P' if f is [on] or if f = P

For all pairs of faces f and g of P Do
(Find incidences of P' when p is in affine.hull(P))
Let f', f", f"1, g', g", g"' be faces induced in P' by faces f and g in P
f' g' iff f g
ff gfl iff f

H glil iff f H
iff f

f" g"' iff there exists subface x of g where f I- x I- g
fm if f

End
End

72

5.4 The Inductive Face Lattice Algorithm

A modification of Motzkin's Dual algorithm (presented in section 4.2.1) can be used

to produce the entire face lattice of a polyhedron using an inductive constructive

method.

The algorithm presented here constructs the face lattice of the ray space

partition of a polyhedron from a list of constraints. A polyhedron P is stored as a

homogenous cone represented by the union of the lineality space L and the ray space

R with an added data structure to represent the lattice. The lattice is represented

by a hierarchy of faces with incident faces connected with pointers. The top of the

face lattice is the whole polyhedron and at the bottom are the extreme rays of R.

Each face in the lattice has a dimension corresponding to its level in the lattice.

Thus, a lattice for a d-dimensional ray space would have d 1 levels, the levels

having dimensions d, d 1, , 0, from top to bottom. The computation of the

lattice is not directly a function of the lineality space. Thus the Motzkin procedure

to constrain the lineality space (i.e. to compute ConstrainL) can remain the same.

The differences in the method presented here over previous methods are found in

the computation on the ray space R by procedures AugmentR and ConstrainR.

5.4.1 Data structure for face lattice

A k-face is composed of a set of (k 1)- facets (subfaces of dimension k 1) as

shown in figure 5.4.
Fk flrl)

A facial graph consists of nodes representing faces and edges representing incidences

from a face to its facets. Each face is a node in the face lattice and is represented

by a data structure with the following fields

dimension The dimension of this face.

flags A set of attributes of this face in the context of the current constraint. At-

tributes defined are:

73

fid-1 f1-1 fd-1

Figure 5.4: Facial Graphs for a Face and its Facets

in: set when this face verifies the constraint,

on: set when this face saturates the constraint,

out: set when this face does not verify the constraint. A face can have any

non-empty combination of these attributes in its flag set.

facets The set of facets (of dimension one less than the dimension of this face) that

are incident to this face. This field is the head of a linked list of pointers to

subface nodes in the face lattice (figure 5.4).

ray (Only used for dimension 0 faces). The extreme ray in R corresponding to this

face.

Using a standard "dot notation", these fields will be referred to as F.dim,

F.flags, F.facets, F.ray in the remainder of this chapter.

5.4.2 Modifications to the Dual procedure

The main procedure for converting constraints to lines, vertices and rays, is the

same as the procedure Dual given in section 4.2.1. However, the subprocedures

AugmentR and ConstrainR which determine the way ray space R is constrained

and augmented, have been rewritten in order to generate the lattice. The proce-

dure to compute ConstrainL is not changed and is given in section 4.2.1. The

procedures AugmentR and ConstrainF which recursively construct the lattice

are the primary contributions of this chapter. The procedure AugmentR adds a

new basis ray rnew which is not in the affine hull of R to the lattice increasing the

74

fl -1
.14-1
J 2

a.

fd-1
n

Fd+1

f2 -1
fnd-i

b.

Figure 5.5: Facial Graphs for AugmentR Algorithm

dimension of the lattice by one. The procedure ConstrainF (which is called by

ConstrainR) recursively constrains the lattice by slicing it with a new constraint.

The resulting lattice is of the same dimension, however parts of the lattice outside

the new constraint are removed and replaced with new faces created by the cut.

5.4.3 AugmentR

The procedure AugmentR adds a ray rnew which is not in the affine hull of R to

the lattice Fd representing a face of dimension d, and returns an augmented face

Fd+1 of dimension d +1. It is computed recursively as follows:

Given Fd = { ft ,hi-1, , f;1:1}

then Fd+1 = convex.hull(Fd U {r,,}) = {Fd, f 11, Ai, , f di }

where f1 = convex.hull(fid-1 U rr,(,)

= convex.hull(ft1 U rnei)

convex.hull(fid-1 U rnew).

Figure 5.5a. shows a piece of the Hasse diagram of the lattice Fd. Figure 5.5b.

shows the same piece of the, diagram after it has been augmented by adding a

new basis ray using this procedure. A new face Fd+1 is created and assigned the

following subfaces: (1) Fd (the original face) and (2) the new faces Al, , fd

which are computed by recursively calling this procedure on ft-1,- ,

respectively (the facets of the original face Fd). This procedure is given below.

75

AugmentR(F, a, rnew), Modifies F, returns Fnew =convex.hull(F U rnew)

If Fnew =AugmentR(F, a, rnew) has already been computed
Then return Fnew

Fnew := null
If F.dim == 0 Then (face F is a ray)

If aTFray # 0 Then (constraint not saturated)
Allocate a new face 7.1
If aTFray > 0 ri.ray =Combine(F.ray, rnew.ray I a)
Else (aTF.ray < 0) rl.ray =Combine (Fray rnew.ray, a)
If constraint a is an inequality Then Create Fnew with subfaces {F, r1}

Else (Fdim > 0)
For each facet f of face F Do

g=AugmentR(f, a, rnew) (recursive call)
If g is not null

If Fnew is null
Create new face Fnew (with no facets)
Add F as a facet to augmented face Fnew

Add face g as a facet to augmented face Fnew
End

Return augmented face Fnew

Figure 5.6: Procedure to compute AugmentR(F, a rnew)

5.4.4 ConstrainR

A recursive procedure Evaluate is first called which evaluates constraint a on each

of the faces of polyhedron R and marks status flags in each face, saying whether

each face verifies, saturates, or does not verify the constraint, or a combination of

the three for non trivial faces. After evaluating the faces in light of the constraint,

ConstrainR either returns an empty lattice if none of the polyhedron verifies or

saturates the constraint, or returns the saturating faces if only a part of the poly-

hedron saturates the constraint, or returns the constrained lattice if the polyhedron

partially verifies and partially does not verify the constraint. The last two cases are

done by calling the SelectF and ConstrainF procedures respectively.

1 d 1
f1-1

a.

/11-2 frd 2

b.

fdi
new

Figure 5.7: Facial Graphs for ConstrainF Algorithm

Evaluate

76

The procedure to evalute a constraint a on a face lattice F is also a recursive

procedure, setting the flags of a face F as follows:

Fflags

U:1(fi).flage Fdim > 0, F = /2, , fn}

{in} Fdim = 0 and aTF.ray > 0

{ on} Fdiun = 0 and aTF.ray = 0

{out} Fdim = 0 and aTF.ray < 0

The procedure performs a depth first traversal of the face lattice. Details of this

procedure are presented at the end of this section.

SelectF

The procedure SelectF is simply a breadth first search of the face lattice looking for

the highest dimensioned face in the lattice which entirely saturates the constraint a,

or in other words, the highest dimensioned face with Fflags ={on}. This procedure

is straightforward and its details are not presented here.

ConstrainF

The procedure ConstrainF constrains the lattice F by cutting it with the con-

straint a represented by the halfspace H+ = {x aTx > 0}. The the resulting

lattice will be of the same dimension, however the parts of the lattice outside of

77

the slicing hyperplane will be removed and a new face created by the cut plane

will be added. The procedure builds the new face het, which consists of the new

faces of dimension (d 2) created by cutting each of the original facets of Fd:

11-1, , RI,' and which lies on the cutting hyperplane. The procedure

then links f as a new subface to F, and then returns the new face hew to the

caller. When procedure ConstrainF is called, face Fd is modified to be Fd n H +,

which is computed as follows:
Fd f fd-i fd--1Given 1J1 ,J7 J

H+ = {xI aT x > 0} , H° = {x aT x = 0}

then Fd n H+ = n H +, ft-' n H+ ft1 n H- ftwi}

F d Ho fnd_21

n H°

g-2 = n

fnd-2 fnd-i n Ho

Figure 5.7a. shows a piece of the Hasse diagram of the lattice Fd. Figure 5.7b.

shows the same piece of the diagram after it has been constrained by this proce-

dure. This procedure is presented in detail below.

ConstrainR(R,a) Modifies R

Call Evaluate(R, a)
If R.flags = { in, on } or { in } or { on } then no change.
Else if Kflags = { out } then set R := null ray space.
Else if R.flags = { on, out } then set R := SelectF(R, a)
Else (R.flags = { in, out } or { in, out, on }) set R := ConstrainF(R, a)

Figure 5.8: Procedure for computing ConstrainR(R,a)

78

Evaluate(F, a) Modifies the flags in F

If F.din, = 0 then
x aTF.ray
If x = 0 then Filags := { on}.
Else if x > 0 then Fflags := {in }.
Else (x < 0) Fgags := {out }.

Else (Fain, > 0)
F.flags {}
For each subface f of F, do

Call Evaluate(f, a); (recursive call)
Fflags := Flags U fflags

End

Figure 5.9: Procedure for computing Evaluate(F, a)

79

ConstrainF(F, a) Modifies F, returns facet f,y = Fr1H°
Invariant: Fflags is either {in,out}, {in,on,out }, or {in,on }.

If hew .ConstrainF(F,a) has already been computed Then return fnew
If Fdim = 1 Then (F is an edge with endpoints fi and 12)

Let F == subfaces{ fi, f2} s.t. f1.fla = {in} and f2.ange = {out} or {on}
If Fangs = {in,on} Then Return 12
Else (Films = {in,out })

Allocate a new face fnew (of dimension 0)
fnew.ray =Combine(a, f1.ray, f2.ray)
Remove 12 from subfaces of F
Add hew to subfaces of F

Else (F.dim > 1)
If Fflags ={in,out}, or {in,on,out} Then

Allocate a new face fnew
For each facet f of face F Do

If fflage={in} Then (do nothing f continues to be a subface)
Else if fangs={out} or {on,out} Then Remove f from subfaces of F
Else (flings = {in,on }, {in,out },or {in,on,out })

g = ConstrainF(f, a) (recursive call)
If g null Then Add g to subfaces of hew

End
Add fnew to subfaces of F

Else (Flap = {in,on })
For each facet f of face F Do

If flags = {in} or {in,on} Then (do nothing f continues to be a subface)
Else if fangs = {on} Then fnew = f (f continues to be a subface)

End
Return he

Figure 5.10: Procedure for computing ConstrainF(F, a)

80

5.5 Example

This algorithm has been implemented in C and an example is shown here. The

lattice shown in figure 5.2 was generated from the system of constraints

{ i, j, k I 0 < i < 1; 0 < j < 1; 0 < k < 1 }. The following is a printed

representation of the data structure which was created by the algorithm.

face(3) ed30

+-- face(2) ebbe,

+-- face(1) eb10

I +-- face(0) ca90 = point[0] [0,0,0]

I +-- face(0) eeb0 = point[4] [1,0,0]

+-- face(1) eb70

+-- face(0) ca90 = point[0] [0,0,0] (LINK)

I +-- face(0) ebf0 = point[1] [0,1,0]

+-- face(1) ee90

+-- face(0) eeb0 = point[4] [1,0,0] (LINK)
I

I +-- face(0) ee10 = point[5] [1,1,0]

+-- face(1) ed00

+-- face(0) ebf0 = point[1] [0,1,0] (LINK)

+-- face(0) ee10 = point[5] [1,1,0] (LINK)

face(2) eca0

+-- face(1) eb10 (LINK)

+-- face(1) ec60

+-- face(0) ca90 = point[0] [0,0,0] (LINK)

+-- face(0) f010 = point[2] [0,0,1]

face(1) ef00

+-- face(0) eeb0 = point[4] [1,0,0] (LINK)

+-- face(0) f040 = point[6] [1,0,1]

+-- face(1) eff0

+-- face(0) f010 = point[2] [0,0,1] (LINK)

+-- face(0) f040 = point[6] [1,0,1] (LINK)

+ --

81

+-- face(2) ed70

+-- face(1) eb70 (LINK)

+-- face(1) ec60 (LINK)

+-- face(1) ef60
1

I +-- face(0) ebf° = point[1] [0,1,0] (LINK)
1

I +-- face(0) f0c0 = point[7] [0,1,1]

+-- face(1) f090

+-- face(0) f010 = point[2] [0,0,1] (LINK)

+-- face(0) f0c0 = point[7] [0,1,1] (LINK)

face(2) ee70

+-- face(1) ee90 (LINK)

+-- face(1) ef00 (LINK)

+-- face(1) efb0
1

I +-- face(0) eel() = point[5] [1,1,0] (LINK)

1 I

I +-- face(0) f140 = point[8] [1,1,1]

+-- face(1) f110
1

+-- face(0) f040 = point[6] [1,0,1] (LINK)

+-- face(0) f140 = point[8] [1,1,1] (LINK)

face(2)ece°
1

+-- face(1) ed00 (LINK)
1

+-- face(1) ef60 (LINK)
1

+-- face(1) efb0 (LINK)
1

+-- face(1) f180

+-- face(0) f0c0 = point[7] [0,1,1] (LINK)

1

+-- face(0) f140 = point[8] [1,1,1] (LINK)

+-- face(2) edc0

+-- face(1) eff0 (LINK)
1

+-- face(1) f090 (LINK)
1

+-- face(1) f110 (LINK)

+-- face(1) f180 (LINK)

82

5.6 Summary

The inductive method for constructing the face lattice which has been presented

in this chapter differs from the Seidel method in its inductive approach but shares

the same order of execution time. The inductive approach is a natural consequence

of the recursive structure of the face lattice and is an extension of the Motzkin

algorithm to compute the dual of a polyhedron. The procedure starts with a mixed

system of constraints and produces an interlinked data structure representing the

lattice.

Execution time for this algorithm is lower bounded by the size of the output,

which is 0(k) where k is the number of inequalities and d is the dimension.

83

Chapter 6

CONCLUSION

The polyhedral library described in this thesis implements basic geometrical opera-

tions on stuctures called domains which consist of finite unions of convex polyhedra.

The domains are described in a dual representation consisting of:

1. a set of constraints inequalities and equalities, and

2. a set of geometric features lines, rays, and vertices.

It is convenient to represent polyhedra in their pointed cone form, which results

(xfrom the transformation x ---÷ . This transformation maps inhomogeneous

constraints to homogeneous constraints and maps both the vertices and rays of a

polyhedron to rays in a pointed cone. The pointed cone is thus stored as a list of

rays, and the lineality space as a list of basis lines.

Domains can be created starting with a list of constraints or a list of geometric

features. Given one representation, the other is computed by the procedure Dual

which has been described in section 4.2.1. The library is written in the Clanguage

and may be linked in with an application to provide capability for doing geometric

operations, such as union, intersection, difference, and simplification, on domains.

The library was originally written to support the ALPHA environment in

which all variables are based on domains. Subsequently, the library was placed in

the public domain (ftp.irisa.fr) and has been used by several other research

groups. For example, one group which is doing parallel code generation, uses it

to simplify loop bounds and other expressions involving loop variables [CFR93].

Other groups have also found it useful in removing redundant inequalities from a

84

system of constraints. The algorithms in the library work very well for problems

with relatively small dimension and a small number of constraints. Such problems

occur in the generation of loop bound expressions.

In the ALPHA environment, the library is used extensively in carrying out

program transformations and in doing static analysis of ALPHA programs. To sup-

port ALPHA development, the library has been interfaced to the MATHEMATICA

symbolic mathematics package.

The library is easy to interface to and use. Appendix B contains an example

Cprogram which demonstrates the use of the library. This sample program was

written to show how a Cprogram may be interfaced with the library.

The library code is composed of five files: three headers and two code files

as follows:

types .h The header file defining the data structures used in the

library.

vector .h The header file containing the forward definitions of the

external vector operation procedures.

vector .c The code file containing the code for vector operations.

polyhedron.h The header file containing the forward definitions of the

external vector polyhedral and domain procedures.

polyhedron .c The code file containing the code for polyhedral and

domain operations.

The library is made available by ftp from ftp.irisa.fr.

85

Bibliography

[CFR93] J.-F. Collard, P. Feautrier, and T. Risset. Construction of DO loops
from systems of affine constraints. Technical Report ENSMP-LIP-93-
15, Ecole Nationale Superieure des Mines de Paris, May 1993.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-
negative solutions of a system of linear inequalities. U.S.S.R. Compu-
tational Mathematics and Mathematical Physics, 5(2):228-133, 1965.

[Che86] M.C. Chen. Transformations of parallel programs in crystal. Technical
Report YALEU/DCS/RR-469, Yale University, 1986.

[Dar93] Alain Darte. Techniques de parallaisation automatique de nids de
boucles. PhD thesis, Laboratoire LIP-IMAG, Ecole Norma le Superieure
de Lyon, Lyon, France, Mar 1993.

[D186] J. M. Delosme and I. C. F. Ipsen. Systolic array synthesis: Computabil-
ity and time cones. Parallel Algorithms and Architectures Conference,

pages 295-312, 1986.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin,

1987.

[FQ88] F. Fernandez and P. Quinton. Extension of chernikova's algorithm for
solving general mixed linear programming problems. Technical Report

437, IRISA, Rennes,Fr, Oct 1988.

[Go156] A. J. Goldman. Resolution and separation theorems for polyhedral con-

vex sets. In H. W. Kuhn and A. W. Tucker, editors, Linear inequali-
ties and related systems, number 38 in Annals of Mathematics Studies.

Princeton University, Princeton,NJ, 1956.

[Gru67] B. Grunbaum. Convex Polytopes, volume 16 of Pure and Applied Math-

ematics. John Wiley & Sons, London, 1967.

[K1e66] V. Klee. Convex polytopes and linear programming. Proceedings IBM
Scientific Computation Symposium: Combinational Problems, pages
123-158, 1966.

[KT56] H. W. Kuhn and A. W. Tucker. Linear inequalities and related systems.
Number 38 in Annals of Mathematics Studies. Princeton University,
Princeton,NJ, 1956.

86

[Le 92] H. Le Verge. A note on chernikova's algorithm. Technical Report 635,
IRISA, Feb 1992.

[LMQ91] H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its
use for the design of systolic arrays. Journal of VLSI Signal Processing,
3(3):173-182, September 1991.

[Mau89] Christophe Mauras. Alpha, un langage equationnel pour la conception
et la programmation d'architectures paralleles synchrones. PhD thesis,
Universite de Rennes I, Rennes, France, Dec 1989.

[McM70] P. McMullen. The maximum number of faces of a convex polytope.
Mathematica, XVII:179-184, 1970.

[MR80] T. H. Mattheiss and D. Rubin. A survey and comparison of methods for
finding all vertices of convex polyhedral sets. Mathematics of Operations
Research, 5(2):167-185, May 1980.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double
description method. Theodore S. Motzkin: Selected Papers, 1953.

[MS71] P. McMullen and G. C. Shepard. Convex polytopes and the upper
bound conjecture. In London Mathematical Society Lecture Notes Series,
volume 3. Cambridge University Press, London, 1971.

[QV89] Patrice Quinton and Vincent Van Dongen. The mapping of linear recur-
rence equations on regular arrays. Journal of VLSI Signal Processing,
1(2):95-113, 1989.

[RF90] S. V. Rajopandye and R. M. Fujimoto. Synthesizing systolic arrays from
recurrence equations. Parallel Computing, 14:163-189, 1990.

[Rub75] D. Rubin. Vertex generation and cardinality constrained linear pro-
grams. Operations Research, 23(3):555-565, May 1975.

[Sch86] A. Schrijver. Theory of linear and integer programming. John Wiley
and Sons, NY, 1986.

[Sei91] R. Seidel. Small-dimensional linear programming and convex hulls made
easy. Discrete & Computational Geometry, 6:423-434, 1991.

[Weh50] H. Wehl. The elementary theory of convex polyhedra. In Annals
of Mathematics Studies, Number 24, pages 3-18. Princeton University
Press, Princeton,NJ, 1950. written in 1933, originally published in Ger-
man in 1935.

[YC89] Yoav Yaacoby and Peter R. Cappello. Scheduling a system of nonsingu-
lar affine recurrence equations onto a processor array. Journal of VLSI
Signal Processing, 1(2):115 -125, 1989.

APPENDICES

87

Appendix A

SYSTEMS OF AFFINE RECURRENCE

EQUATIONS

11 he definitions in this appendix review the basic concepts of systems of affine re-

currence equations and are taken primarily from the works of [RF90], Yaacoby and

appello [YC89], Delosme and Ipsen [DI86], Quinton and Van Dongen [QV89].

Pefinition A.1 (Recurrence Equation)

Recurrence Equation over a domain D is defined to be an equation of the form

f (z) = g(11(11(z)), 12(12(z)), , fk(Ik(z)))

Nivhere

f(z) is a variable indexed by z and the left hand side of the equation.

z E D

7) is the (possibly parameterized) domain of variable f .

It are index mapping functions which map z E D to /;(z) E Di.

DI, Dk are the (possibly parameterized) domains of variables

respectively.

g is a strict single-valued function whose complexity is 0(1) defining the right

hand side of the equation.

88

A variation of an equation allows f to be defined in a finite number of disjoint "cases"

consisting of convex subdomains each having its own left hand side as follows:

f(z).----

z E Di

z E D2

= gi(... fi(li(z)) .)

= 92(- - f2(h(z)) .) (A.12)

where the domain of variable f is V = UiDi and (i j) (Di n Di = {})

Definition A.2 (Affine Recurrence Equation)

A recurrence equation of the form defined above is called a Uniform Recurrence

Equation (URE) if all of the index mapping functions h are of the form 1(z) = z+b,

where b is a (possibly parameterized) constant n-dimensional vector. It is called

an Affine Recurrence Equation (ARE) if 1(z) = Az + b, where A is a constant

matrix, and b is a (possibly parameterized) constant n-vector.

Definition A.3 (System of Affine Recurrence Equations, or SARE)

A system of recurrence equations is a set of m such equations, defining the func-

tions fi fn, over domains 7,1 Dn, respectively. The equations may be mutually

recursive, self recursive, or combinations of the two. Variables are designated as ei-

ther input, output, or local variables of the system. Each variable (which is not

a system input) appears on the left hand side of an equation once and only once.

Variables may appear on the right hand sides of equations as often as needed.

Since there is a one to one correspondance between (non-input) variables and equa-

tions, the two terms are often used interchangeably.

Such equations serve as a purely functional definition of a computation, and

are usually in the form of a static program a program whose dependency graph

can be determined and analyzed statically (for any given instance of the parame-

ters). Static programs require that all gi be strict functions and that any conditional

expressions be limited to linear inequalities involving the indices of the left hand

side variable. By convention, it is assumed that, boundary values (or input values)

are all specified whenever needed for any function evaluation.

89

Definition A.4 (Dependency)

For a system of recurrences, we say that a variable fi at a point p E Di (directly)

depends on variable fi at q, (denoted by pi 1- qi), whenever fi(q) occurs on the

right hand side of the equation defining fi(p). The transitive closure of this is called

the dependency relation, denoted by pi --+

Definition A.5 (Schedule)

For any system of recurrence equations, fi fin, defined over (possibly parame-

terized) domains D1 D a schedule is a set of m (non-negative) integer valued

functions ti : Z H Ar, which satisfy the condition that ti(p) > t; (q) > 0, whenever

pi --+ qi

Definition A.6 (Affine Schedule)

An affine schedule is of the form t(p) = irp -I- a, where r is a n-vector and a is a

scalar.

ti(p) may be interpreted as the time instant at which fi(p) is computed, under the

assumption that each of the functions gi take a unit time to compute.

90

Appendix B

EXAMPLE C-PRO GRAM

The following is an example program written to demonstrate how the library is

called from a C-program. The first section has the code itself, the second section

has the input for the program, and the last section has the output.

B.1 Program Code
/* main.c

This file along with polyhedron.c and vector.c do the following functions:
Extraction of a minimal set of constraints from some set of constraints
Intersection of two convexes
Application of a linear function to some convex
Verification that a convex is included in some other convex */

#include "types . h"

#include "vector .h"

#include "polyhedron.h"

int main()
{ Matrix *a, *b, *t;

Polyhedron *A, *B, *C, *D;

/* read in a matrix containing your equations */
/* for example, run this program and type in these five lines:

44
1 0 1 1
1 1 0 6
1 0 1 7
1 1 0 2
This is a matrix for the following inequalities
1 = inequality, Ox + ly 1 >0 --> y> 1
1 = inequality, lx + Oy +6">0 --> x < 6
1 = inequality, Ox + ly +750 --> y < 7
1 = inequality, lx + Oy 2 >0 --> x > 2
If the first number is a 0 instead of a 1, then that constraint

is an equality' instead of an ' inequality'.

91

a = Matrix_ Read();

/* read in a second matrix containing a second set of constraints:
for example :
44
1 1 0 1
1 1 0 3
1 0 1 5
1 0 1 2

b = Matrix_Read();

/* Convert the constraints to a Polyhedron.
This operation 1. Computes the dual ray/vertex form of the
system, and 2. Eliminates redundant constraints and reduces
them to a minimal form. */
A = Constraints2Polyhedron(a, 200);
B = Constraints2Polyhedron(b, 200);

/* the 200 is the size of the working space (in terms of number
of rays) that is allocated temporarily
-- you can enlarge or reduce it as needed */

/* There is likewise a rays to polyhedron procedure */

/* Since you are done with the matrices a and b, be a good citizen
and clean up your garbage */
MatrixSree(a);
MatrixYree(b);

/* If you want the the reduced set of equations back, you can
get the matrix back in the same format it started in... */
a = Polyhedron2Constraints(A);
b = Polyhedron2Constraints(B);

/* Take a look at them if you want */
printf(" \nau="); Matrix_Print("%4d", a);
printf(" \nbu="); Matrix_Print("'/.4d", b);

/* To intersect the two systems, use the polyhedron formats...
Again, the 200 is the size of the working space. */

C = Domainlntersection(A, B, 200);

/* This time, lets look a the polyhedron itself... */
printf(" \nCu=uAuanduBu="); Polyhedron_Print("%4d", C);

/* The operations Domain Union, DomainDifference, Domain Convex,
and DomainSimplify are also available */

/* read in a third matrix containing a transformation matrix,

92

this one swaps the indices (x,y --> y,x
33
0 1 0
1 0 0
0 0 1

t = Matrix_Read();

/* Take the preimage (transform the equations) of the domain C to
get D. */
D = PolyhedronYreimage(C, t, 200);

/* cleanup 41
Matrix_Free(t);

printg" \nDu=utransformeduCu=");
Polyhedron_Print("Vid", D); Domain_Free(D);

/* in a similar way, Polyhedron_Image(dom, mat, 200), takes the image
of dom under matrix mat (transforms the vertices/rays) */

/* The function PolyhedronIncludes(Poll, Pol2) returns 1 if Poll
includes (covers) Po12, and a 0 otherwise */

if (PolyhedronIncludes(A,C))
printf("\ nWeuexpecteduAutoucoveruCusinceuCu= uAuintersectuB \n ")

if (!PolyhedronIncludes(C,B))
printg"anduCudoesunotucoveruB. \n");

DomainYree(A);
Domain_Free(B);
DomainYree(C);

return 0;
}

B.2

4 4

Program Input

1 0 1 -1
1 -1 0 6
1 0 -1 7
1 1 0 -2
4 4
1 1 0 -1
1 -1 0 3
1 0 -1 5
1 0 1 -2
3 3
0 1 0

93

1 0 0
0 o 1

B.3

a =4 4

Program Output

1 0 1 -1
1 -1 0 6

1 0 -1 7
1 1 0 -2

b =4 4
1 1 0 -1
1 -1 0 3

1 0 -1 5

1 0 1 -2

C = A and B =POLYHEDRON Dimension:2
Constraints:4

Constraints 4 4
Equations:0 Rays:4 Lines:0

Inequality: [1 0 -2]

Inequality: [-1 0 3]

Inequality: [0 -1 5]

Inequality: [0 1 -2]

Rays 44
Vertex: [3 5]/1
Vertex: [2 5]/1
Vertex: [2 2]/1
Vertex: [3 2]/1

D = transformed C =POLYHEDRON Dimension:2
Constraints:4 Equations:0 Rays:4 Lines:0

Constraints 4 4
Inequality: [0 1 -2]

Inequality: [0 -1 3]

Inequality: [-1 0 5]

Inequality: [1 0 -2]

Rays 4 4
Vertex: [5 3]//
Vertex: [5 2]/1
Vertex: [2 2] /1

Vertex: [2 3]/1

We expected A to cover C since C = A intersect B
and C does not cover B...

