Selecting a Dairy Waste Management System for Eastern Oregon

EC 1103 September 1982
Oregon State University Extension Service
As a dairy operator thinks about building a new facility or expanding or modifying an existing one, a number of factors influence that decision: rainfall, temperature, soil type, surface drainage, topography, water table depth, farm size, cropping and feeding practices, availability of cropland to receive manure, existing buildings and machinery—all are important to consider.

Herd size, availability of labor and capital, future expansion plans, and operator’s age also influence the selection of a waste management system.

Another very important factor in the selection of a waste management system is to recognize your own preference as the operator and your management capabilities. While this is extremely difficult to quantify and categorize, you must include it in any decisionmaking process.

Because of the number of influencing factors, there is no one “best” waste management system that can be recommended to a dairy operator. As with most decisionmaking, it is a series of trade-offs that offers choices, advantages, and disadvantages. We prepared this circular to help narrow the choices and provide an evaluation of possible alternatives. Its purpose is not to offer precise instructions, but rather to suggest areas for comparison that will be helpful to you as a dairy operator.

We attempted to assign costs to equipment and structures that are components of the six waste management systems compared here. These costs will vary widely; the availability of concrete, labor, lumber, and material will influence the total cost. When you can adjust these suggested costs, you will more accurately compare the various systems for your specific situation.

The six systems represent combinations of components that you can use successfully to handle and manage dairy waste. Each of the systems was adjusted for milking herd sizes of 100, 200, and 300 cows. The livestock waste you must manage is generated by milking cows, dry cows, replacement heifers, calves, and a cleanup bull (table 1). Multiply values in this table by two and three for herds of 200 and 300 milking cows.

Liquid wastes include rainfall on outside lots and holding area, milking parlor and milking house waste water for all systems. The outdoor lot area was assumed to be 15 square feet per milking cow. This includes open alleyways between buildings, outside feed areas, and other exposed lots where manure will contaminate rainwater. The rainfall for the 150-day storage period (Nov.-Mar.) averages 7.3 inches. Waste water was assumed to be generated at a rate of 0.79 cubic feet per milking cow day.

Other assumptions include a small tractor (figure 1) to scrape, store, and load manure mixed with bedding and a larger tractor to pull the box spreader for the solid manure and the tanker for the liquid manure. As the herd size increases, the solid- and liquid-storage units, box spreader, and liquid tanker all increase in size. Each of the systems is defined in additional detail, and the assumptions for each are stated, in the following sections.

SYSTEM 1, DRY STACK

This system assumes the daily use of 6 pounds of bedding per milking cow for the 5 months of the winter season, 3 pounds per cow-day for 3 months during the late fall and early spring, and 1 pound per cow-day for the remaining 4 months when the cows will

![Figure 1. A rear-mounted tractor-scaper is commonly used to collect manure on dairy operations.](image)

Table 1. Average manure production from a 100-milking-cow dairy

<table>
<thead>
<tr>
<th>Animal</th>
<th>Number of animals</th>
<th>Average wt./head</th>
<th>Per animal day</th>
<th>Per group year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pounds</td>
<td>Cubic feet</td>
<td>Gallons</td>
</tr>
<tr>
<td>Lactating cow1</td>
<td>100</td>
<td>1,400</td>
<td>115</td>
<td>1.85</td>
</tr>
<tr>
<td>Dry cow2</td>
<td>16</td>
<td>1,400</td>
<td>103</td>
<td>1.65</td>
</tr>
<tr>
<td>Replacement calves3</td>
<td>37</td>
<td>500</td>
<td>41</td>
<td>0.66</td>
</tr>
<tr>
<td>Replacement heifers4</td>
<td>37</td>
<td>1,000</td>
<td>82</td>
<td>1.32</td>
</tr>
<tr>
<td>Cleanup bull5</td>
<td>1</td>
<td>1,400</td>
<td>115</td>
<td>1.85</td>
</tr>
</tbody>
</table>

| Total, herd/yr | | | | | 3,259 | 104,576 | 786,064 |
| Total, herd/day | | | | | 8.9 | 288 | 2,154 |

1 The average cow is kept for 3 lactations. For Jerseys and other small cows (weighing about 1,000 pounds), multiply values in the table by 0.7 or 70%.

2 A calving interval-lactation cycle includes being dry for 60 days.

3 Sell bull calves the first week and lose 18 percent of heifers the first year.

4 This stock freshens at 27 months.

5 Artificial insemination is used for most dairy breeding. A single bull on premises will help identify and settle the heifers that did not conceive.
be on pasture during the summer season. Dry and young stock are bedded at 10% of the rate of the milking cows. The dry-stack storage has a paved, sloping floor. The storage unit is designed for 150-day capacity (figure 2). Seepage from the stack is directed to and collected, in a liquid holding tank. The seepage is generated at a rate of 1.3 gallons per cow-day. The liquid storage capacity of the holding tank is 75 days.

SYSTEM 2, EARTHEN STORAGE
A small tractor scrapes manure daily into an earthen storage facility. Bedding is used at a rate of 30% of the dry-stack system (#1), about 1.8 lbs. per milking cow daily for the winter season.

A PTO agitator/removal pump empties the storage unit. The storage unit is designed to hold the waste for 150 days. In addition to the lot area and milking parlor wastes, the unit is designed to hold the rain that falls into the storage unit. A tractor drives the pump and pulls the tank spreader to the field (figure 3).

SYSTEM 3, DAILY SPREAD
A small tractor scrapes and loads manure daily. It loads this semisolid waste into a flail spreader and spreads it on nearby cropland. Bedding is used at a rate of 40% of System 1 or 2.4 lbs. per milking cow daily in the winter season. The liquid wastes are channeled to a holding tank with a 75-day storage capacity.

A tractor powers the pump to load the liquids into the tanker and to pull both the solid and liquid waste to the field.

SYSTEM 4, ABOVEGROUND TANK
A small tractor with scraper daily collects the manure from the free-stall area and moves it to a collection sump. The waste water also is routed to this unit. After agitation, the slurry is pumped into an aboveground storage unit. An agitator in the storage unit mixes the manure slurry prior to withdrawal and loading into a tank spreader. A tractor provides the power for both agitation pumps and pulls the tanker to nearby cropland for land application. The storage unit has the capacity to store all liquid and solid wastes for 150 days. Bedding is used at a rate of 30% of System 1.

SYSTEM 5, LAGOON FLUSH
Manure is flushed twice a day into the nearby lagoon. Liquid from the far side of the lagoon is withdrawn and recycled as flushing water. While the other facilities have storage capacity of less than 6 months, the lagoon provides sufficient storage capacity for 1 year.

Bedding is used at 30% of the rate for the dry-stack system. A tractor is required in this system to power the irrigation pump for the annual land spreading operation. An electric motor drives the recycle pump. A complete irrigation system is charged against this system as a necessary component of waste handling.

COST COMPUTATIONS
The major components and equipment items for all systems are listed in tables 2, 3, and 4. The items stay the same for all systems; however, the sizes change for some units. We obtained the initial cost for the farm equipment from the Official Guide, Tractor and Farm Equipment 1981. This contains sizes and price information, and is distributed by the National Farm and Power Equipment Dealers' Association.
Table 2. Manure handling systems for 100-milking-cow herds

<table>
<thead>
<tr>
<th>System</th>
<th>Initial cost ($)</th>
<th>Insurance repair, taxes (%)</th>
<th>Life (yr)</th>
<th>% of time devoted to manure handling</th>
<th>Capital recovery ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial cost ($)</td>
<td>Insurance repair, taxes (%)</td>
<td>Life (yr)</td>
<td>% of time devoted to manure handling</td>
<td>Capital recovery ($/yr)</td>
</tr>
<tr>
<td>1) Dry stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pump PTO 1,000 gpm</td>
<td>3,000</td>
<td>3</td>
<td>90</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>storage structure ($2/ft²)</td>
<td>10,533</td>
<td>1</td>
<td>105</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>box spreader, 136 bu</td>
<td>4,000</td>
<td>3</td>
<td>120</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>tractor, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>81</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>liquids tank, 4,455 ft³</td>
<td>8,600</td>
<td>1</td>
<td>86</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>tanker for liquids (800 gal)</td>
<td>5,100</td>
<td>3</td>
<td>153</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>72,233</td>
<td></td>
<td>971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Earthen storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>earthen pond, 73,900 ft³</td>
<td>1,725</td>
<td></td>
<td>17</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>agitation/removal pump, 10 ft</td>
<td>4,800</td>
<td>3</td>
<td>144</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>tractor for agitating, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>162</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>tank spreader, 1,500 gal</td>
<td>8,150</td>
<td>3</td>
<td>245</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>55,675</td>
<td></td>
<td>904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Daily spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pump PTO 1,000 gpm</td>
<td>3,000</td>
<td>3</td>
<td>90</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>flail spreader, 177 bu</td>
<td>4,700</td>
<td>3</td>
<td>141</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>tractor for spreading, 130 hp</td>
<td>30,000</td>
<td>3</td>
<td>90</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>liquids tank, 3,936 ft³</td>
<td>8,000</td>
<td>1</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>liquid tanker, 800 gal</td>
<td>5,100</td>
<td>3</td>
<td>153</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>64,800</td>
<td></td>
<td>890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Aboveground storage tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>agitation pit</td>
<td>2,500</td>
<td>1</td>
<td>25</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>agitation transfer pump</td>
<td>4,800</td>
<td>3</td>
<td>144</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>aboveground tank, 73,000 ft³</td>
<td>74,400</td>
<td>1</td>
<td>744</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>tractor for agitating, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>162</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>tank spreader, 1,500 gal</td>
<td>8,150</td>
<td>3</td>
<td>245</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>130,850</td>
<td></td>
<td>1,656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Lagoon flush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>40</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>recycle pump, ½ hp, 5 hr day</td>
<td>250</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>flush tanks, manual gate</td>
<td>6,000</td>
<td>1</td>
<td>60</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>lagoon, 627,250 ft³</td>
<td>11,300</td>
<td>1</td>
<td>113</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>irrigation pump, 500 gpm, PTO</td>
<td>6,800</td>
<td>3</td>
<td>204</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>travelling big gun, 1,200-ft hose</td>
<td>17,000</td>
<td>3</td>
<td>510</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>mainline 6-inch PVC, 1,400 ft</td>
<td>2,440</td>
<td>1</td>
<td>24</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>70,790</td>
<td></td>
<td>958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Lagoon flush—separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>includes all in #5 above</td>
<td>70,790</td>
<td></td>
<td>958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collection sump</td>
<td>2,500</td>
<td>1</td>
<td>25</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>separator tower</td>
<td>6,000</td>
<td>1</td>
<td>60</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>separator</td>
<td>22,000</td>
<td>3</td>
<td>660</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>pump & motor (35 hp-150 gpm)</td>
<td>4,000</td>
<td>3</td>
<td>120</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>float control</td>
<td>800</td>
<td>3</td>
<td>24</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>106,090</td>
<td></td>
<td>1,847</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Manure handling systems for 200-milking-cow herds

<table>
<thead>
<tr>
<th>System</th>
<th>Initial cost ($)</th>
<th>Initial repair, taxes (%)</th>
<th>Life (yr)</th>
<th>% of time devoted to manure handling</th>
<th>Capital recovery ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Dry stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pump PTO 1,000 gpm</td>
<td>3,000</td>
<td>3</td>
<td>90</td>
<td></td>
<td>669</td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td></td>
<td>3,175</td>
</tr>
<tr>
<td>storage structure (32/ft²)</td>
<td>21,066</td>
<td>1</td>
<td>211</td>
<td></td>
<td>5,366</td>
</tr>
<tr>
<td>box spreader, 275 bu</td>
<td>4,900</td>
<td>3</td>
<td>147</td>
<td></td>
<td>1,056</td>
</tr>
<tr>
<td>tractor, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>81</td>
<td></td>
<td>525</td>
</tr>
<tr>
<td>liquids tank, 7,870 ft³</td>
<td>12,400</td>
<td>1</td>
<td>124</td>
<td></td>
<td>1,981</td>
</tr>
<tr>
<td>tanker for liquids (1,500 gal)</td>
<td>7,200</td>
<td>3</td>
<td>216</td>
<td></td>
<td>1,552</td>
</tr>
<tr>
<td>Total</td>
<td>89,566</td>
<td></td>
<td>1,205</td>
<td></td>
<td>12,324</td>
</tr>
<tr>
<td>2) Earthen storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td></td>
<td>3,175</td>
</tr>
<tr>
<td>earthen pond, 147,800 ft³</td>
<td>3,274</td>
<td>1</td>
<td>216</td>
<td></td>
<td>523</td>
</tr>
<tr>
<td>agitation/removal pump, 10 ft</td>
<td>4,800</td>
<td>3</td>
<td>144</td>
<td></td>
<td>1,035</td>
</tr>
<tr>
<td>tractor for agitating, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>162</td>
<td></td>
<td>1,050</td>
</tr>
<tr>
<td>tank spreader, 2,220 gal</td>
<td>7,920</td>
<td>3</td>
<td>238</td>
<td></td>
<td>1,707</td>
</tr>
<tr>
<td>Total</td>
<td>56,994</td>
<td></td>
<td>913</td>
<td></td>
<td>7,490</td>
</tr>
<tr>
<td>3) Daily spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pump PTO 1,000 gpm</td>
<td>3,000</td>
<td>3</td>
<td>90</td>
<td></td>
<td>669</td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td></td>
<td>3,175</td>
</tr>
<tr>
<td>flail spreader, 360 bu</td>
<td>8,200</td>
<td>3</td>
<td>246</td>
<td></td>
<td>1,768</td>
</tr>
<tr>
<td>tractor for spreading, 130 hp</td>
<td>30,000</td>
<td>3</td>
<td>90</td>
<td></td>
<td>1,741</td>
</tr>
<tr>
<td>liquids tank 6,900 ft³</td>
<td>10,900</td>
<td>1</td>
<td>109</td>
<td></td>
<td>1,231</td>
</tr>
<tr>
<td>liquid tanker, 1,500 gal</td>
<td>7,200</td>
<td>3</td>
<td>216</td>
<td></td>
<td>1,552</td>
</tr>
<tr>
<td>Total</td>
<td>73,300</td>
<td></td>
<td>1,087</td>
<td></td>
<td>9,488</td>
</tr>
<tr>
<td>4) Aboveground storage tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td></td>
<td>3,175</td>
</tr>
<tr>
<td>agitation pit</td>
<td>2,500</td>
<td>1</td>
<td>25</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>agitation transfer pump</td>
<td>4,800</td>
<td>3</td>
<td>144</td>
<td></td>
<td>1,035</td>
</tr>
<tr>
<td>aboveground tank, 120,000 ft³</td>
<td>116,300</td>
<td>1</td>
<td>1,163</td>
<td></td>
<td>18,467</td>
</tr>
<tr>
<td>tractor for agitating, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>162</td>
<td></td>
<td>1,050</td>
</tr>
<tr>
<td>tank spreader, 2,220 gal</td>
<td>7,920</td>
<td>3</td>
<td>238</td>
<td></td>
<td>1,707</td>
</tr>
<tr>
<td>Total</td>
<td>172,520</td>
<td></td>
<td>2,068</td>
<td></td>
<td>25,734</td>
</tr>
<tr>
<td>5) Lagoon flush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>41</td>
<td></td>
<td>222</td>
</tr>
<tr>
<td>recycle pump, ½ hp, 10 hr day</td>
<td>250</td>
<td>3</td>
<td>7</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>flush tanks, manual gate</td>
<td>12,000</td>
<td>1</td>
<td>120</td>
<td></td>
<td>1,917</td>
</tr>
<tr>
<td>lagoon, 1,254,900 ft³</td>
<td>19,400</td>
<td>1</td>
<td>194</td>
<td></td>
<td>3,099</td>
</tr>
<tr>
<td>irrigation pump, 500 gpm, PTO</td>
<td>6,800</td>
<td>3</td>
<td>204</td>
<td></td>
<td>1,321</td>
</tr>
<tr>
<td>travelling big gun, 1,200-ft hose</td>
<td>17,000</td>
<td>3</td>
<td>510</td>
<td></td>
<td>3,387</td>
</tr>
<tr>
<td>mainline 6-inch PVC, 2,600 ft</td>
<td>4,880</td>
<td>1</td>
<td>49</td>
<td></td>
<td>834</td>
</tr>
<tr>
<td>Total</td>
<td>87,330</td>
<td></td>
<td>1,125</td>
<td></td>
<td>10,874</td>
</tr>
<tr>
<td>6) Lagoon flush—separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Includes all in #5 above</td>
<td>87,330</td>
<td></td>
<td>1,125</td>
<td></td>
<td>10,874</td>
</tr>
<tr>
<td>collection sump</td>
<td>2,500</td>
<td>1</td>
<td>25</td>
<td></td>
<td>399</td>
</tr>
<tr>
<td>separator tower</td>
<td>6,000</td>
<td>1</td>
<td>60</td>
<td></td>
<td>953</td>
</tr>
<tr>
<td>separator</td>
<td>22,000</td>
<td>3</td>
<td>660</td>
<td></td>
<td>4,275</td>
</tr>
<tr>
<td>pump & motor (35 hp-150 gpm)</td>
<td>4,000</td>
<td>3</td>
<td>120</td>
<td></td>
<td>891</td>
</tr>
<tr>
<td>float control</td>
<td>800</td>
<td>3</td>
<td>24</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>Total</td>
<td>122,630</td>
<td></td>
<td>2,014</td>
<td></td>
<td>17,631</td>
</tr>
<tr>
<td>System</td>
<td>Initial cost ($)</td>
<td>Insurance repair, taxes (%)</td>
<td>Life (yr)</td>
<td>% of time devoted to manure handling</td>
<td>Capital recovery ($/yr)</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Dry stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pump PTO 1,000 gpm</td>
<td>3,000</td>
<td>3</td>
<td>90</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>736</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>storage structure ($2/ft²)</td>
<td>31,600</td>
<td>1</td>
<td>315</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>box spreader, 510 bu</td>
<td>13,100</td>
<td>1</td>
<td>392</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>tractor, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>81</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>liquids tank, 11,800 ft³</td>
<td>15,800</td>
<td>1</td>
<td>158</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>tanker for liquids (2,200 gal)</td>
<td>7,920</td>
<td>3</td>
<td>238</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>112,420</td>
<td></td>
<td>1,612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthen storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>earthen pond, 221,700 ft³</td>
<td>4,678</td>
<td>1</td>
<td>47</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>agitation/removal pump, 10 ft</td>
<td>4,800</td>
<td>3</td>
<td>144</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>tractor for agitating, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>162</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>tank spreader, 3,200 gal</td>
<td>9,820</td>
<td>3</td>
<td>295</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>60,298</td>
<td></td>
<td>984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pump PTO 1,000 gpm</td>
<td>3,000</td>
<td>3</td>
<td>90</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>736</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>flail spreader, 510 bu</td>
<td>13,200</td>
<td>3</td>
<td>396</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>tractor for spreading, 130 hp</td>
<td>30,000</td>
<td>3</td>
<td>90</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>liquids tank, 10,350 ft³</td>
<td>13,860</td>
<td>1</td>
<td>138</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>liquid tanker, 2,200 gal</td>
<td>7,920</td>
<td>3</td>
<td>238</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>81,980</td>
<td></td>
<td>1,288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aboveground storage tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scraper tractor, 37 hp</td>
<td>14,000</td>
<td>3</td>
<td>336</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>agitation pit</td>
<td>2,500</td>
<td>1</td>
<td>25</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>agitation transfer pump</td>
<td>4,800</td>
<td>3</td>
<td>144</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>aboveground tank, 186,000 ft³</td>
<td>144,300</td>
<td>1</td>
<td>1,443</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>tractor for agitating, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>162</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>tank spreader, 3,200 gal</td>
<td>9,820</td>
<td>3</td>
<td>295</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>202,420</td>
<td></td>
<td>2,405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagoon flush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor, 105 hp</td>
<td>27,000</td>
<td>3</td>
<td>40</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>recycle pump, ½ hp, 15 hr day</td>
<td>250</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>flush tanks, manual gate</td>
<td>18,000</td>
<td>1</td>
<td>180</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>lagoon, 188,240 ft³</td>
<td>26,300</td>
<td>1</td>
<td>263</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>irrigation pump, 500 gpm, PTO</td>
<td>6,800</td>
<td>3</td>
<td>204</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>travelling big gun, 1,200-ft hose</td>
<td>17,000</td>
<td>3</td>
<td>510</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>mainline 6-inch PVC, 3,800 ft</td>
<td>7,320</td>
<td>1</td>
<td>73</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>102,670</td>
<td></td>
<td>1,277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagoon flush—separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Includes all in #5 above</td>
<td>102,670</td>
<td>1</td>
<td>25</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>collection sump</td>
<td>2,500</td>
<td>1</td>
<td>60</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>separator tower</td>
<td>6,000</td>
<td>1</td>
<td>60</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>separator</td>
<td>22,000</td>
<td>3</td>
<td>660</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>pump & motor (35 hp-150 gpm)</td>
<td>4,000</td>
<td>3</td>
<td>120</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>float control</td>
<td>800</td>
<td>3</td>
<td>24</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>137,970</td>
<td></td>
<td>2,166</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We used the Washington State University Cooperative Extension publication, *Costs of Owning and Operating Farm Machinery in Washington*, in selecting values for the repair, maintenance, insurance, taxes, and years of life. The term capital recovery indicates the cost of annual ownership of a piece of equipment or structure and is explained in the 1980 edition of the Midwest Plan Services *Structures and Environment Handbook*. We used this formula to obtain the capital-recovery values in tables 2 to 4:

\[
CR = \frac{V_a - V_s}{SPWF} + V_s \cdot i
\]

where
- \(CR\) = capital recovery
- \(V_a\) = value when acquired ($)
- \(V_s\) = value when salvaged ($)
- \(SPWF\) = series present worth factor (uses the expected life and interest rate)
- \(i\) = interest rate, decimal fraction

A salvage value of 10% of initial cost was used for all machinery. The interest rate selected for this circular was 15%.

Energy costs are becoming a bigger item in most dairy budgets. One of the larger energy items for these six manure handling systems is the diesel fuel and lubrication costs. The magnitude of these is related to the fuel price, consumption per hour, and the number of hours the engine is operated. The fuel and lubricating costs were determined by using the following formula:

\[
FLC = \frac{PTO \text{ hp} \times \text{load factor} \times \text{price/gal}}{K} \times 1.15 \times \text{hrs of use}
\]

where
- \(FLC\) = fuel and lubrication costs
- \(K\) = constant for engine type (11.2 for diesel engine)
- load factor = 75% for tractors with a horsepower rating of 100 and above; 65% for ratings less than 100
- 1.15 includes 15% of fuel expenditures for lubrication costs

For this study, we set the value of diesel at $1.05 per gallon, since farmers receive a rebate for off-the-highway operation. We set electrical energy at 3 cents per kilowatt hour.

It was difficult to determine the hours needed to scrape, haul manure, agitate the tank, etc. These tasks will vary in time requirements with the farmstead layout, labor source, season, and personal preference—to name just a few variables. The following is an example of the level of calculations that were conducted to determine the time required to spread the manure.

First, what about the nutrient content of the manure and wastes after storage in each of the six different systems? (This will be discussed later, but the data are included in table 8.) We assumed that each of the operations would have some pastureland for the cattle and that this land would receive the manure. The application rate used was 60 lb of nitrogen per acre.

Dividing the total nitrogen available from each system by 60 lb/acre provided the total acreage needed to receive the annual manure generated. The farmstead was selected to sit on the edge of the square field. The average travel distance was calculated for the land-spreading operation and varied as the field size varied.

Recent research has furnished loading and emptying times for various sizes and types of manure spreaders. Using these values, and assuming a travel speed of 6 mph, the total time spent hauling and spreading manure was calculated. Similar calculations were made for systems milking 200 and 300 cows. The total waste volume (which is different for each system) then allows you to calculate the number of trips necessary to land-spread all the waste.

Using the total numbers of hours for the tasks listed in tables 5, 6, and 7 gives the total labor required. The labor costs can then be determined, using a $4.00/hour value, and this is totaled in the tables.

All of the agitating and pumping of manure slurries were done using tractors to power PTO-driven pumps. The one situation in which an electrical motor is necessary is the need to return lagoon recycle water to the flush tanks in Systems 5 and 6. The pumps were sized to operate at 20 gallons per minute. This then required that they be operated for 5, 10, and 15 hours per day for the three herd sizes. System 6 also uses an electric motor to pump the liquid slurry up to and over the separator.

As energy costs increase, the cost of fertilizer for croplands goes up proportionately. One of the ways to reduce out-of-pocket costs is to use manure as a fertilizer to the greatest extent possible. See the O.S.U. Extension publication, *Calculating the Fertilizer Value of Manure from Livestock Operations* (EC 1094, January 1982).
Table 5. Annual energy and labor costs, 100-cow dairy

<table>
<thead>
<tr>
<th>System</th>
<th>Task (Hrs)</th>
<th>Labor cost ($4.00/hr)</th>
<th>Fuel and lubrication (Cost)</th>
<th>Electricity ($0.03/kWh)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>145</td>
<td></td>
<td>376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (hauling)</td>
<td>98</td>
<td></td>
<td>832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (loading solids)</td>
<td>16</td>
<td></td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (loading liquids)</td>
<td>4</td>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>263</td>
<td>1052</td>
<td>1377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthen storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>145</td>
<td></td>
<td>376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (agitation & loading)</td>
<td>35</td>
<td></td>
<td>297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>133</td>
<td></td>
<td>1129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>313</td>
<td>1252</td>
<td>1802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>145</td>
<td></td>
<td>376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>91</td>
<td></td>
<td>957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (loading liquids)</td>
<td>4</td>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
<td>960</td>
<td>1367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aboveground tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>145</td>
<td></td>
<td>376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (agitation/transfer)</td>
<td>27</td>
<td></td>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>113</td>
<td></td>
<td>960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>285</td>
<td>1140</td>
<td>1565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagoon flush</td>
<td></td>
<td></td>
<td></td>
<td>680</td>
<td>20</td>
</tr>
<tr>
<td>recycle pump</td>
<td>64</td>
<td></td>
<td>543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (irrigation pump)</td>
<td>30</td>
<td></td>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flushing alleys</td>
<td>16</td>
<td></td>
<td>960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>moving big gun</td>
<td></td>
<td></td>
<td></td>
<td>6342</td>
<td>190</td>
</tr>
<tr>
<td>Total</td>
<td>110</td>
<td>440</td>
<td>543</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Lagoon flush—separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all of lagoon flush</td>
<td>110</td>
<td></td>
<td>543</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>pumping over separator</td>
<td>91</td>
<td></td>
<td>364</td>
<td></td>
<td>6342</td>
</tr>
<tr>
<td>solids handling & screen maintenance</td>
<td>364</td>
<td></td>
<td>41</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>Total</td>
<td>201</td>
<td>804</td>
<td>584</td>
<td></td>
<td>210</td>
</tr>
</tbody>
</table>

The annual value of nitrogen, phosphorus, and potassium in the manure from a dairy of 100 milking cows is shown in table 8. A range of the percentages of each of the three nutrients retained through collection and storage is also shown. Using summer 1981 values for these nutrients, the annual worth of manure is shown for each of the six systems.

Bedding is the one major operational cost item evaluated for each system. The amounts used are explained in the system descriptions. The bedding most commonly used in Oregon is shavings or sawdust. Availability and price vary widely by area, and you can substitute local costs when you know specific values.

For this circular, a value of $100.00 for the purchase and delivery of a five-unit load makes bedding cost 1 cent per pound. The lagoon flush separator system uses half the recovered solids as bedding in the dairy. An equal amount is sold. This may go to another dairy as bedding, to a nursery as a soil amendment, or even used as feed.

NET ANNUAL COSTS

The net annual system costs are summarized in table 9 for herd sizes of 100, 200, and 300 head. For the 100-cow dairy, systems 1, 2, 3, and 5 have low annual fixed costs (capital recovery) and correspondingly low repair, taxes, and insurance costs. Without the high bedding cost for the dry-stack system, it would be the second cheapest system. The earthen storage system has the highest energy and labor costs, but it still is the least expensive system on an annual basis. The lagoon-flush systems are not as economical, partly because of the small manure-return value.

When one looks at the data for the 200-cow herds, the earthen storage system is quite appealing, being about $5,000 cheaper than the next least expensive system. The low investment cost is primarily responsible for its ranking. The costs of the aboveground storage unit and the two lagoon systems drop slightly; the daily-spreading system's costs decreases significantly.
Table 6. Annual energy and labor costs, 200-cow dairy

<table>
<thead>
<tr>
<th>System</th>
<th>Task (Hrs)</th>
<th>Labor cost ($4.00/hr)</th>
<th>Fuel and lubrication (Cost)</th>
<th>Electricity ($0.03/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>290</td>
<td></td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>tractor (hauling)</td>
<td>149</td>
<td></td>
<td>1265</td>
<td></td>
</tr>
<tr>
<td>tractor (loading solids)</td>
<td>32</td>
<td></td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>tractor (loading liquids)</td>
<td>8</td>
<td></td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>479</td>
<td>1916</td>
<td>2357</td>
<td></td>
</tr>
<tr>
<td>Earthen storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>290</td>
<td></td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>tractor (agitation & loading)</td>
<td>61</td>
<td></td>
<td>518</td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>271</td>
<td></td>
<td>2301</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>622</td>
<td>2488</td>
<td>3571</td>
<td></td>
</tr>
<tr>
<td>Daily spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>290</td>
<td></td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>149</td>
<td></td>
<td>1566</td>
<td></td>
</tr>
<tr>
<td>tractor (loading liquids)</td>
<td>7</td>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>446</td>
<td>1784</td>
<td>2377</td>
<td></td>
</tr>
<tr>
<td>Aboveground tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>290</td>
<td></td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>tractor (agitation/transfer)</td>
<td>48</td>
<td></td>
<td>408</td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>228</td>
<td></td>
<td>1936</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>566</td>
<td>2264</td>
<td>3096</td>
<td></td>
</tr>
<tr>
<td>Lagoon flush</td>
<td>recycle pump</td>
<td></td>
<td>1087</td>
<td>1360</td>
</tr>
<tr>
<td>tractor (irrigation pump)</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flushing alleys</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moving big gun</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>220</td>
<td>880</td>
<td>1087</td>
<td>41</td>
</tr>
<tr>
<td>Lagoon flush—separator</td>
<td>all of lagoon flush</td>
<td></td>
<td>1087</td>
<td></td>
</tr>
<tr>
<td>pumping over separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solids handling & screen maintenance</td>
<td>182</td>
<td></td>
<td>82</td>
<td>12682</td>
</tr>
<tr>
<td>Total</td>
<td>402</td>
<td>1608</td>
<td>1169</td>
<td>421</td>
</tr>
</tbody>
</table>

A similar pattern is followed with the data for the 300-cow herds. The annual costs of the dry-stack, earthen-storage and daily-spreading options continue to decrease as herd size increases. The other three systems decrease slightly in net annual cost. Even by staying the same, the cost per cow will decrease sharply as herd size doubles and triples.

The addition of a separator does not appear to be economically justified. However, other factors not considered in this circular make the addition of a separator to a lagoon-flush system more appealing. These include a constant and known supply of bedding (which will likely become more expensive in the future), a reduction of maintenance and plugging problems when the lagoon effluent is spread on the field, and a slightly reduced organic loading to the lagoon-treatment unit.

Economics is only one factor to consider when you select a dairy waste management system. Safety is an item that is difficult to translate into dollars — yet it is very important. Daily haul has no storage unit to serve as a potential hazard, which is an advantage. However, the dry-storage unit offers little potential as a safety problem. The aboveground storage unit is difficult to get to, which reduces its hazard potential. While all earthen storage units and lagoons should be fenced, you should still consider them as hazards.

Pollution control is another factor to consider when you evaluate waste management systems. All systems have a storage component except daily haul, which increases the pollution potential for that system. A storage unit provides the operator flexibility to put the manure on when the crop can use the nutrients and minimize runoff and escape. The two lagoon systems might have a slight advantage since they have 12 months' storage versus 150 days' for systems 1, 2, and 4.
Table 7. Annual energy and labor costs, 300-cow dairy

<table>
<thead>
<tr>
<th>System</th>
<th>Task</th>
<th>Labor cost ($4.00/hr)</th>
<th>Fuel and lubrication (Cost)</th>
<th>Electricity ($0.03/kWh)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Hrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>435</td>
<td></td>
<td>1128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (hauling)</td>
<td>180</td>
<td></td>
<td>1528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (loading solids)</td>
<td>49</td>
<td></td>
<td>416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (loading liquids)</td>
<td>12</td>
<td></td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>676</td>
<td>2704</td>
<td>3174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthen storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>435</td>
<td></td>
<td>1128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (agitation & loading)</td>
<td>92</td>
<td></td>
<td>781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>355</td>
<td></td>
<td>3014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>882</td>
<td>3528</td>
<td>4923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>435</td>
<td></td>
<td>1128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>210</td>
<td></td>
<td>2207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (loading liquids)</td>
<td>11</td>
<td></td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>656</td>
<td>2624</td>
<td>3428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aboveground tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small scrape tractor</td>
<td>435</td>
<td></td>
<td>1128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (agitation/transfer)</td>
<td>71</td>
<td></td>
<td>603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor (spreader)</td>
<td>298</td>
<td></td>
<td>2530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>804</td>
<td>3216</td>
<td>4261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagoon flush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recycle pump</td>
<td></td>
<td></td>
<td>2040</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>tractor (irrigation pump)</td>
<td>192</td>
<td></td>
<td>1622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flushing alleys</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moving big gun</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>330</td>
<td>1320</td>
<td>1622</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Lagoon flush—separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all of lagoon flush</td>
<td>330</td>
<td></td>
<td>1622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pumping over separator</td>
<td></td>
<td></td>
<td>19026</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>solids handling & screen maintenance</td>
<td>273</td>
<td></td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>603</td>
<td>2412</td>
<td>1745</td>
<td>631</td>
<td></td>
</tr>
</tbody>
</table>

The nearness and availability of cropland was assumed in determining spreading costs. However, land may not always be nearby, and its location is very important in influencing the labor and equipment costs in land-spreading operations. While retaining nutrients is beneficial and the system is credited with a fertilizer savings, it does take more land to receive the manure from a nutrient-conservative system.

In some locations, the lagoon systems are desirable; additional water for crop production will be important and valuable. In other settings or years, the additional water volume may be detrimental.

The most important factor, and one of the most difficult to assign a value, is level and amount of management required. Because of its complexity, we made no attempt here to assign a value; however, each dairy operator should try to evaluate this factor. Another companion item is operator preference. This also should be objectively evaluated when expanding or selecting a waste management system.
<table>
<thead>
<tr>
<th>System</th>
<th>Percent retained through collection and storage</th>
<th>Average value</th>
<th>Total value ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>100-cow dairy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry stack</td>
<td>60-80</td>
<td>80-95</td>
<td>80-95</td>
</tr>
<tr>
<td>Earthen storage</td>
<td>60-80</td>
<td>80-95</td>
<td>80-95</td>
</tr>
<tr>
<td>Daily haul</td>
<td>70-85</td>
<td>85-95</td>
<td>85-95</td>
</tr>
<tr>
<td>Aboveground tank</td>
<td>70-85</td>
<td>85-95</td>
<td>85-95</td>
</tr>
<tr>
<td>Lagoon flush</td>
<td>20-35</td>
<td>30-50</td>
<td>40-70</td>
</tr>
<tr>
<td>Lagoon flush—separator</td>
<td>20-35</td>
<td>30-50</td>
<td>40-70</td>
</tr>
</tbody>
</table>

a Losses occurring after storage and before crop uptake were assumed to be 20% for N and zero for P and K, for all systems except daily haul, which experiences a 40% loss of N.

b Price per pound: N = $.27, P = $.67, K = $.18.

<table>
<thead>
<tr>
<th>System</th>
<th>Capital recovery + and insurance ± Bedding +</th>
<th>Energy</th>
<th>Labor</th>
<th>Manure Value</th>
<th>Net Annual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-cow dairy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry stack</td>
<td>9,387</td>
<td>1,420</td>
<td>1,377</td>
<td>1,052</td>
<td>11,207</td>
</tr>
<tr>
<td>Earthen storage</td>
<td>7,268</td>
<td>426</td>
<td>1,802</td>
<td>1,252</td>
<td>11,207</td>
</tr>
<tr>
<td>Daily spread</td>
<td>7,817</td>
<td>568</td>
<td>1,367</td>
<td>968</td>
<td>9,096</td>
</tr>
<tr>
<td>Aboveground tank</td>
<td>18,822</td>
<td>426</td>
<td>1,565</td>
<td>1,140</td>
<td>12,128</td>
</tr>
<tr>
<td>Lagoon flush</td>
<td>8,205</td>
<td>426</td>
<td>563</td>
<td>440</td>
<td>11,481</td>
</tr>
<tr>
<td>Lagoon flush—separator</td>
<td>14,962</td>
<td>-426</td>
<td>794</td>
<td>804</td>
<td>5,450</td>
</tr>
</tbody>
</table>

200-cow dairy					
Dry stack	12,324	2,840	2,357	1,916	22,414
Earthen storage	7,490	852	3,571	2,488	22,414
Daily spread	9,488	1,136	2,377	1,784	18,192
Aboveground tank	25,734	852	3,096	2,264	24,256
Lagoon flush	10,874	852	1,128	880	10,900
Lagoon flush—separator	17,631	-852	1,590	1,608	11,091

300-cow dairy					
Dry stack	16,482	4,260	3,174	2,704	33,621
Earthen storage	8,124	1,278	4,923	3,528	33,621
Daily spread	11,194	1,704	3,428	2,624	27,288
Aboveground tank	30,689	1,278	4,261	3,216	36,384
Lagoon flush	13,354	1,278	1,683	1,316	16,350
Lagoon flush—separator	20,111	-1,278	2,376	2,412	16,350

Table 8. Annual value of nitrogen (N), phosphorus (P), and potassium (K) in the manure from a dairy of 100 milking cows

Table 9. Net annual system cost
The Oregon State University Extension Service provides education and information based on timely research to help Oregonians solve problems and develop skills related to youth, family, community, farm, forest, energy, and marine resources.

Extension's agriculture program provides education, training, and technical assistance to people with agriculturally related needs and interests. Major program emphasis is on food and fiber production, farm business management, marketing and processing of agricultural products, and resource use and conservation.

This publication was prepared by James A. Moore, Extension agricultural engineer, and Ted L. Willrich, professor emeritus, Agricultural Engineering Department, Oregon State University. Partial support was provided by Federal funds from the Oregon Department of Environmental Quality and the Oregon Soil and Water Conservation Commission for the Confined Animal Feeding Operations project, conducted by Agri-Check, Inc.

Extension Service, Oregon State University, Corvallis, Henry A. Wadsworth, director. This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon counties.

Oregon State University Extension Service offers educational programs, activities, and materials without regard to race, color, national origin, or sex as required by Title VI of the Civil Rights Act of 1964 and Title IX of the Education Amendments of 1972. Oregon State University Extension Service is an Equal Opportunity Employer.