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THE USE OF ELECTRUAGNETIC WALSH WAVES IN RADAR

Chapter I Introduction and Orientation

Since the end of World War TT the uses of radar have

grown to become important facets of; the military and civil

activities of most of the developed countries of the world.

In addition to the well known military uses of radar, many

of which are primarily improved extensions of its World

War II uses, the modern applications of radar to the civil

sector and to space exploration have grown at an enormous

rate to become a significant portion of the total productive

effort of the electronics industry in recent years.

The worldwide use of radar in air traffic control and

air navigation, its maritime counterpart in sea navigation

and safety, and its meteorological applications readily

establish the great imortence of radar to the safe and

efficient transaction of both domestic and international

trade and commerce.

The expected future growth of sea and air commerce,

the continued exploration of space, and meteorological and

environmental sensing indicate an associated growth in the

use of radar. This growth along with the discoveries of

new radar applications will surely lead, in time, to

intense crowding of the available radar frequency spectrum

while increasing air and sea traffic will likely create the

need for improvements in radar performance and capabilities
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far exceeding those of the preseLt radar arts and

technology.

Partial solution of these fl:ture problems may exist

in the recently suggested electron:74gnetic spectrum of

Walsh waves as a replacement for, or as a supplement to,

the existing sinusoidal electromagnetic spectrum.

Preliminary theoretical studies by Harmuth (1970) and

Pearlman (1970) indicate that radiating electromagnetic

energy in the form of Walsh functions can be generated and

also formed into the narrow directional beams required of

radar operations. Many researchers also believe that

improved radar performance will result with their use as

the electromagnetic carrier waveform.

Although the family of bivalued, orthogonal Walsh

functions was discovered and first reported by J.L. Walsh

(1923) as early as 1923, they received very little

attention until the early 1960's. Since then considerable

effort has been expended in applying them also to other

areas not directly related to the problems of radar and

radio communications.

It is surprising that the universal and almost

traditional practice of utilizing high frequency sinusoidal

electromagnetic carrier waves in radar and radio

communications has not been seriously questioned. This

fact is, no doubt, explained by the past successes of this

technique and by the well established technology and the
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industrial base of :, - -co rtes rl.veloped and available over

the years. The ease of generating, controlling, modulating,

radiating, amplifying, and filtering sinusoidally based

power and signals as well as the great body of knowledge

and the development of ocwerful and sophisticated theories

for the analysis and synthesis of radar and radio systems

have undoubtedly helped channel the thinking of radar and

radio engineers along this line of development.

It is recognized that sinusoidal electromagnetic power

was not only highly compatible with, but was also necessary

for use with linear, lumped, and distributed circuits and

amplifiers of early radar and radio and their subsequent

developments. However, recent developments of time varying

linear semiconductor integrated circuits and the rising

use of high speed digLtal cr,',m7ters1 to process and

interpret radar and radio signals makes it necessary to

question this universal use of sinusoidal carrier waves in

radar and radio.

Although the findings of }iarmuth (1970) and Pearlman

(1970) show that sinusoidal time variation is not a

requisite for directional radiation of electromagnetic

energy, the use.fullness or superiority of a nonsinusoidal

carrier suchas a Walsh function does not automatically

follow: In order to partially resolve this uncertainty

l) It is a well known fact that the digital computer is not
highly compatible with sinusoidally based data.
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this study examines the feundations of radar theory in an

attempt to establish the funetieal requirements that an

electromagnetic carrier must Meet. From that study the

characteristics which a function must possess in order to

satisfactorily function as a carrier are deduced. An

examination of the abstract and practical natures of Walsh

and similar type functions are then examined to see if any

of them meet the requirements of an electromagnetic carrier.

In order to be truly useful as a radar electromagnetic

carrier wave, a Walsh or a similar type function must

possess characteristics compatible with natural propagation

media, radiation and beam forming processes, and trans-

mission over waveguiding structures. These topics are

investigated in the later chapters of this thesis.

In order to limit the scope of the study to reasonable

proportions it is restricted to the use of classical

electromagnetic theory and to the non-relativistic case.

In addition, attention to devices and hardware for radar

implementation is minimized with consideration given only

where there exists a question of feasible use with Walsh

functions.

A knowledge of the rudiments and fundamentals of radar

and communication theory on the part of the reader is also

assumed to-limit the necessity of e:xessive background

material.
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The thesis is a: so written in three basic parts. The

first, Part I consis.tin5T of Chanters I through V, is

primarily of a quali*sativa nature. It isolates the funda-

mental aspects of the radar arts and sciences that must be

considered in order to determine the suitability of Walsh

or other nonsinusoidal functions as an electromagnetic

carrier wave. Also given is an indication of the problems

to be encountered if one were to proceed in a direct

transient analysis of nonsinusoidal propagation and

radiation phenomena necessary in the radar process.

Part II, consisting of Chapters VI and VII, proposes

and develops techniques and methods that utilize the known

and existing store cf knowledge and theory based on the

sinusoidal operation and characterization of radar systems,

components, and the radar medium.

The third part, Chapters VIII through X, utilizes many

of the principles and tools developed in the second part to

analyze and characterize in the time domain those basic

elements necessary for the implementation of the radar

principle using a nonsinusoidal electromagnetic carrier.
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Chapter II The Catery of FInctions Considered for
Nonsinusoidal Radar Carrer Via*.res

The category of funetions cc,-r2'idered as possible

functional forms for a radar nonsinusoidal electro-

magnetic carrier wave consists of those functions which

assume only two values: those of equal magnitude and of

opposite polarity. Ideally the transitions from one

value to the other occur instantaneously in terms of their

independent variable which, in the case of a time varying

electrical waveform, is time, t. The transitions between

the two values, or the sign changes of the function, are

allowed only at a discrete set of values of the independent

variable within some characteristic interval of that

variable, T, hereafter called the time base of the time

varying waveform. It is also desirable for the purpose

of radiating such waveforms that their average values over

the duration of the time base interval be zero.

For the purpose of investigating the abstract

mathematical properties of these bi-valued functions,

the independent variable x is treated as a dimensionless,

normalized variable with the functions defined and

described on a unit interval cf x which corresponds to

the time base T when the independent variable is time:

i.e., a time varying electrical waveform with x = t/T.

The unit interval here corresponds to the interval of

21T radians of the sinusoidal functions. The two values
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that the abstract functions can aFsume are plus and minus

one.

The set of values at which transitions are allowed

are those values of x separating aset of uniform sub-

intervals into which the unit interval (or T) has been

divided, and the ends of the unit interval. For the Walsh

functions the number of such uniform subintervals is an

integer power of two. It is important to note that the

functions in question need not undergo a transition between

each pair of the subintervals comprising the unit interval

(of definition).

A one-to-one correspondence exists between a bi-valued

function, or waveform, and a binary sequence of ones and

zeroes. If either of the following transformations

1 0 1
or

-1 1 -1 --> 0

are made, the sequence of new values assumed by the bi-

valued function in each subinterval, over which it remains

a constant value of plus or minus one, describes a sequence

of ones and zeroes which may be interpreted as a binary

sequence. The first transformation above is that often

used in practice.

Many families of such bi-valued functions (or binary

sequences) exist with each having diverse and useful

mathematical properties. Some of these functions are:
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Barker sequences, group error-correcting codes, Walsh

functions also known az tie ReEd-Muller codes,

convolutional codes, orthogonal codes, simplex codes,

and cyclic codes.
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Walsh Functions

Although many of 4%? functions and binary sequences

mentioned above may have suitPI:le mathematical structure

for use as an electromagnetic carrier waveform, the Walsh

functions are unique in that they possess analytical

properties similar to those of the sinusoids even though

having little direct similarity to them. In addition,

extensive recent research effort (Proceedings of Symposium

and Workshop on the Applications of Walsh Functions, 1970

through 1973) has produced many relatively simple means of

producing Walsh function waveforms as well as producing and

manipulating them in the environment of the digital computer.

The general character of the Walsh functions are best

illustrated by a grapl-ir!el presentation of the first ten or

fifteen such functions as shown in Figure 1. There it is

noticed that they are either odd or even functions with

respect to the center of the unit interval ( i.e., the

origin) of 4 < x < 4- They are identified by the symbol

Wal(i,x) where Wal refers to the name of their discoverer,

J. Walsh, i is an integer index specifying that it is the

th Walsh function, and x is it argument, or independent

variable.

Regarding Parity, notice that even values of index i

produce even functions while odd values of i produce odd

functions. In order to simplify notation the forms sal(j,x)

and cal (j,::) were originated to indicate the odd and even
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Figure 1. The first nineteen Walsh functions.
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Walsh functions resc,cc-cively, ss j,x) being analogous to

the odd sine function and cal(j,x) corresponding to the

even cosine function c,f ccmventional harmonic analysis. In

terms of the index of Wal(i,y.) notation, j = i for even

i and j = i(i + 1) for odd values of i.

Even though the Walsh functions are defined on the

unit interval centered on the origin, they may be extended

periodically beyond that interval to plus or minus infinity

forming periodic versions of the functions with basic

period T if they are time varying waveforms.

The index i in the Wal(i,x) notation and the index j

in the sal(j,x) and cal(j,x) notation are indicative of a

parameter of Walsh functions analogous to the frequency

variable of sinusoidal waveforms. An examination of the

Walsh functions shown in Figt,re 1 shows the following

relationship between the index i and the number of zero

crossings, or transitions, in the unit intervals

zero crossings

0 0

1 2

2 2

3 4

4 4

5 6

6 6

7 8
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Notice that when i is the numbr of zero crossings is

also even and equal to i!

ieven = nu, ber of zer,:J crossings 1)

while for odd values of i

iodd + 1 = number of zero crossings. 2

Analogous to sinusoidal frequency we may define a

Walsh function frequency as Enumber of zero crossings).

This frequency-like quantity has been termed "sequency" by

Harmuth (1972):

or

Sequency = zero crossings = 2 seven 3)

Sequency = Eiodd 1) . 4)

From the equations defining the index j of the sal(j,x)

and cal(j,x) on the previous page, it is seen that

and

Sequency =
ieven j

Sequency = i(iodd 1) j"

5)

6)

The index of a Walsh function in the sal(j,x) or

cal(j,x) notation is then seen to be a measure of its

sequency, or i(number of zero crossings) per unit interval.

This sequency for the abstract Walsh function is a
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normalized form of seqlJency. In the practical case of time

varying Walsh waveforms The actual sequency is equal to the

normalized sequency Sr. divided by the time base T:

Absolute sec:uency = SJT. 7)

An important subset of the Walsh functions are those

sal(j,x) functions where j is an integer power of two: i.e.,

1, 2, 4, 8, 16, 32, 64,---,. In the context of pure

mathematics they are known as the Rademacher functions

(Walsh, 1923) of which more will be said shortly.

Although the Walsh functions shown in Figure 1 may

appear to undergo transitions in a random manner, they are

specified by strict mathematical definitions. A definition

due to Harmuth (1972), although mathematically clumsy and

difficult to use, is a recursion equation which exhibits

quite well the structure and source of Walsh functions. It

is

Wal(2i + p,x) =

P
(-1)

where i = 0,

rtWal(i,2(x+i)) + (-1) i+p
Wal(i,2(x-4))

1, 2, 3, 4,---, Wal(0,x) = 1 for -1

8)

< x < it

Wal(0,x) = 0 for x < x a 1. and p assumes the values of

zero and one for each value of i. The symbol [2i1 means

the largest integer less than or equal to i.

Equation 8 will yield a Walsh function for any value
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of index requiring onli; the value of Wal(0,x). However,

this relationship does -,rave the ci!fadvantages that in order

nthto obtain the 2ith or (21 alsh functions, the ith

Walsh function and many of tlocze 1Teceeding it must be known

or be stored in a computer memory before the desired Walsh

function can be determined.

The structure of Wal(2i + p,',4) is readily indicated by

equation 8. Notice that the arguments of both Walsh

functions on the right hand side of the equation are

multiplied by a factor of two indicating a reduction in

scale by one half. This fact means that these two functions

have been "squeezed" into an interval of one half with their

new values outside of that interval being zero. The terms

+i and -i added to x serve to shift each of the component

functions respectively into trot left and right halves of

the unit interval, each function being zero outside those

half intervals. These two compressed and shifted versions

of Wal(i,x) are then added or subtracted according to the

factor (-1) 1
+p and the overall polarity is set by the

+leading coefficient (-1)P . Hence, the form of any

Walsh function, other than Wal(i,x), is determined by a

large portion of those Walsh functions preceeding it in

index sequence.

Another form, or definition, much more in accord with

the generation of Walsh function waveforms and their

evaluation for any value of x and any index i, and their
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manipulation in a dizital environment, is that of a product

of Rademacher functionF3 mentioned earlier. For a given

index, i, this form is given by

Wal(i,x) = R.
11

(x)
12

(x) fti --- Ri (x) 9)

where the integer index i is expressed in dyadic form as a

sum of powers of two:

i = 211 + 2i2 + 213 + + 2ir 10)

where the i. are integers arranged in decending order such

that it > i2 > i3 > > i
r

. The R. (x) are the
lj

Rademacher functions of index ij. In addition the set of

integers ij for any given index i are unique to that value

of index. The Rademacher functions are simply the sal(n,x)

functions with n an integer power of two. The relationship

between the Rademacher notation index and that of the

sal(n,x) notation is

= 21Jno 11)

so that a particular Walsh function in terms of the sal(n,x)

functions is

Wal(i,x) =

sa1(211,x) sal(212,x) sal(213,x) sal(21r,x) 12)

The Rademacher functions are defined as



+1 for 0 <

R
o
(x) =

-1 for -1 x < 0

and for higher index

R.(x) = R
o
(21x) sal(2-,x) .

16

13)

The form indicated by equations 9 or 12, however, has

the disadvantage that unit increases in the index i do not

produce Walsh functions of increasing sequency. In the

Walsh function form of harmonic analysis it is desirable to

have increasing index correspond to increasing sequency.

This need is easily accomplished by retaining equations 9

cr 12 to express a product of Rademacher functions, but now

express the index i in its Gray code equivalent. The Gray

code of i is obtained by expre:,sing i as a binary integer,

i
b'

and taking the bit-by-bit modulo 2 sum of ib and ibt

i
G b ® ?lb = , i

r r-1 2
it '0

in which the fractional part of li
b
has been rejected.

The sequency ordered Walsh function is then

iWal(i,x) = j0
. (X j

14)

15)

where i. is either one or zero.
3

Either set cf equations 9 or 10 or equations 14 and

15 may now be used to evaluate any Walsh function with only

the values of the Rademacher functions being required. For

use in a digital computer, memory requirements may be
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reduced by using the followirq relationships to evaluate a

Rademacher function of any index at any value of x:

+1 if m is even
R1(x) =

-1 if m is odd

where m is a positive or negative integer, or zero,

selected for the vale of x such that

in +I
<

2
1+1

x
2i+1

16)

17)

A property of Walsh functions making them analytically

similar to the sinusoidal functions is their mutual

orthogonality. Like the sinusoids the integral of the

product of two unlike Walsh functions is zero while that

for two like function:, is vnit

0 if min
Wal(m,x) Wal(n,x) dx =

1 if m = n
18)

It is the above property that allows a Fourier type

expansion of a square intgrable function over the unit

interval in terms of Walsh functions in the form

F(x) =

00

F
ac(0) Wal(0,x) + -"v ( Lc`) cal

3'

for -1 < x < 1 where

4)+ a (

sal(i,x) I
19)

S °'
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s.

2

a
c
(0) = F(x) dx 20a)

-2

ac(j) = j cal(j,x) dx 20b)

A
r

2

as(j) E(X) sal(j,x) ax . 20c)

-2

If F(x) is periodic with period T, then equation 19

holds for all x.

The property of Walsh functions possibly making them

of greater value as an electromagnetic radar carrier wave

is their product property. Since any one Walsh function

is a product of Rademacher functions, it follows that the

product of any two Walsh functions is also a product of

Rademacher functions, and is then another Walsh function.

The resulting product of two or more Walsh functions is

an exceptionally simple relationship:

Wal(i,x) Wal(j,x) Wal(i ej,x) 21)

where i ® j is the bit-by-bit modulo 2 sum of i,and j when

expressed as binary intei-Ters. Similar relationships hold

for Walsh function products in the sal(,x) and cal(j,x)

notation:

cal(i,x) cal(j,x) cl(i (-1)j ) 22a)

sal(i,x) cal(x) .z. &al (j (D(i -1)) 4- 1, xj
[

22b)



sal(i,x) sal(jo.) cal

19

- 1) E0(j-1), x] 22c)

Similar equation relate Walsh functions of the same

index, but with different aruments, x and x' :

cal(i,x) cal(i,x') = cal(i, x Ox') 23a)

sal(i,x) sal(i,x') = sal(i, x ex' ) 23b)

Note that the relationships expressed by equations

21, 22, and 23 hold only if there is exact synchronism

between the two product Walsh functions. The above product

properties of Walsh functions would be quite useful in

implementing a superhetrodyne Walsh receiving system.

It is worthwhile to note that subsequent work in this

study applies not only to the Walsh functions, which have

been described in some detail here, but also applies to

any bi-valued waveform making sudden transitions from one

level to the other. In this respect the study is general

and need not be restricted to the Walsh functions alone.

The Walsh functions have been emphasized because of their

analytical similarity to the sinusoids which have been

applied so successfully to radar and communications

problems in the past.
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The Question of Realizaele Source Waveforms and Field
Variations

In the context Gf radar ap ations, the sources of

radiating electroms etifs field having traveling waveforms

related to the class of functions discussed here (or some

form of the functions derived therefrom such as time

derivatives or interals), must ultimately be time varying

currents or voltages related in some manner to the

functional forms of the radiating fields.

Because of the nature of the active devices that must

be used to generate or amplify such discrete and discon-

tinuous voltage or current waveforms, and because of the

unavoidable presence of parasitic inductance and capacitance

in the generating circuits and transmission elements, such

source quantities will always manifest switching intervals

at each transition between discrete states of the waveform.

These parasitic elements also force any such generated

source current or voltage to he continuous and smoothly

varying: any sudden change in slope or level is

accompanied by rounding effects tending to make variations

of the source quantity slways smoothly varying. Asa result,

any radiating elecleromanetic field generated by such

sources will also be continuous and smoothly varying in

time and space. In addition, antenna and medium effects may

impart more rounding to the radiated field which further

distort the waves.
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For the purpose o his analysis it is sufficient to

consider only the first o,-der effects of generation or

filtering on a discrete t'_me varying waveform. An

instantaneous change between two constant values of the

idealized form of tit rzenerate waveform is realized as a

change occurring at a constant raze (i.e., constant slope

of di/dt or dv/dt) over the switching interval of the

generating device. It is further modified by the filtering

effects of its external circuit. Figures 2a, b, and c

illustrate the generation of an example Walsh waveform, its

first time derivative, and its first time integral, all

with their naturally occurring derivatives shown below each

generated waveform. This group of figures shows the

difference between time derivatives and integrals of a Walsh

waveform that might be purposely generated and those that

can occur due to the action of a propagation medium or some

transmission device.

Reasons for the above restrictions become clear in

Chapter X where it is shown that the time variation of the

far-field generated by arbitrarily varying sources are time

derivatives of the source tire variation. Hence, in order

to obtain a certain field time variation, in either the near

or far-zones, the required source variations may be very

different from those of the desired field. For instance,

it is shown in Chapter X that a simple short dipole gives

rise to far-fields that have time variation proportional
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to the first time derivative of ,:r:o source current.

For practical interest, switching times currently

achievable (Cuccia, 1972) using transistors in the common

emitter mode have been as low as 150 picoseconds while

step-recovery diodes have produced switching times as low

50 picoseconds.
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Chapter III Reduction ef the Body of Radar Theory to
its Essential Features

In order to ascertain the utility of electromagnetic

Walsh waves for use in radar not only is it necessary to

examine their nature and their radiation properties in

great detail, but it is also important to examine the

fundamental concepts, principles, and practices on which

the theory and arts of radar are founded. This examination

is necessary in order to determine not only the need of

using an electromagnetic carrier, but also the properties

it must possess in order to be truly useful in the radar

process.

This chapter is devoted to a brief examination of the

body of radar theory in order that those features that may

have a bearing on, or a dependence on, the nature of the

carrier waveform might be exposed.

A survey of classical and modern texts on radar,

topics and contents of several short courses on modern

radar offered at several American universities by

recognized radar authorities, and the numerous esoteric

journal papers on radar reveal a confusing profusion of

seemingly unrelated and diverse sl;ecialized topics. To

offer substance to this contention the tables of eontents

of several radar texts and the subject content of several

recent short radar courses are presented in detail in

Appendix I. However, to give the reader a brief indication



25

of the breadth of radar theory and practice a composite

listing of topics is presented in Table I. Even from this

brief listing it is apparent that there is great diversity

in the subject matter as well as some overlap between many

of the subjects while many constitute separate topics not

directly related to .the principles of radar.

However, in reviewing the tables of contents and the

short courses of Appendix I, the topics naturally subdivide

into several groupings. The first consists of those

concepts and principles peculiar to radar which might be

considered as the core of the principles essential to

radar. They are those listed one through five in Table I.

The second grouping consists of those broad disciplines

and physical theory which form what could be considered as

the basic mathematical framework and the language in which

the principles of radar are expressed and within which

specific radar applications are most often analyzed. This

is item six in the table.

Items seven through thirteen comprise the. third

category which describe the various modes of operation

and radar applications that are possible. Each of these

specific radar types are usually treated separately in the

literature as each has its own particular set of problems

to overcome.

A fourth major category is that set of principles,

concepts, and theories from other highly specialized
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Table I. A Composite Lie, ine; of "iadar Theory Subject
Matter.

1. Radar Equation: ;Interne, ,?e,ir and directivity; cross
section; isotrepIc ladiator.

2. Extraction of radar information: interpretation of
the received signal in light of a priori knowledge of
the transmitted signal; resolution and ambiguity; high
resolution waveform design; fundamental resolution
limitations; target parameter estimation.

3. Ambiguity functions: resolution and optimum waveforms.

4. Target properties: scattering properties; rough surface
scattering; cross section density; reflectivity.

5. Principles of displaying radar information.

6. Signal analysis and representation of systems: system
theory; circuit theory; electromagnetic theory;
probability theory.

7. Continuous wave and phase/frequency modulation radar.

8. Bistatic and multAsatic radar.

9. Moving target radar.

10. Pulse doppler techniques.

11. Tracking radar.

12. Synthetic aperture radar.

13. Special applications: solid-state radar; marine radar;
airborne radar; space applications; satellite
surveilance; laser radar; radar beacons.

14. Noise theory: detection of signals in noise; target
statistics, signal-to-noise ratio and false alarm rate;
automatic detection schemes.

15. Antenna principles: gain and directivity; noise
properties.

16. Array antennas.



Table I (cont.)

17. External environt and radio frequency (EM carrier)
considerations: :.)1.-opagaton effects; weather; clutter;
interference.

18. Signal processing tdcnniql;cis: analog (electrical,
optical, etc.); digital.

19. Communication theory'

20. Hardware and technology considerations: transmitters;
high frequency receivers; amplifiers; low noise and high
frequency amplifiers and receivers; radio frequency
components; radomes; indicators; array phase shifters.
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disciplines which are necessary to refine radar performance

in the presence of noise or in other practical real world

applications. This set consists of items fourteen through

nineteen.

The last group, itom twenty, considers the hardware and

technological aspects necessary to physically implement and

build operating radar equipment. The specifications such

hardware must meet to allow a radar to reliably perform its

task, or mission, are determined by analysis based upon

application of those principles listed in the four

preceeding groups.

Underlying all of the items listed in Table I are

several implied assumptions of major proportions which form

the framework of most analyses of the radar problem as well

as the implementation of radar principles. Unfortunately,

these assumption have apparently never been examined for

their validity nor explored to discover any alternative

Premises on which to fern the base of such a framework.

Of those assumptions the most important is the

presupposed use of a sinusoidal high frequency carrier as

the vehicle for conveying the radar energy to and from the

target. This practice is certainly well fitted to the

traditional practice of describing radar components,

systems, and the propagation medium by their steady-state

responses to excitation by a sinusoidal waveform (of

infinite duration) and to the Fourier transform description
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of signals and systems. However, 52 sinusoidal carrier is

not an a priori reqsylrenent for successful implementation

of the radar principle.

A second assumption is that mDst real targets of

interest form an ideal point tarEe7 which produces a signal

at the radar which is merely a delayed and attenuated

replica of the transmitted signal. This abstraction,

although applicable to the practical cases of the past

where target dimensions were small compared to the smallest

distance resolvable by the radar, but large with respect to

the illumination wavelength, is easily extended to the

general extended target which is large compared to the radar

resolution capability. In this case the ideal point target

is considered to be the elemental building block of which

the general target consists.

A closer examination of Table T. reveals two other major

groupings, both of which have general applicability to all

of the possible forms cf radar operation making up the

original third group, These two new groupings appear to be

the two fundamental aspects of the radar problem whether of

the traditional sinusoidal form of radar or of the non-

sinusoidal form with which this thesis is concerned.

The first group, consisting of items one, two, three,

five, and eighteen, can be considered as dealing with

operations within the radar after receiving the wave

reflected from the target, or the signal processing
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operations, interprfien of such signals, and presentation

of the information extra:ted fror2 them. The second set,

consisting of items fo seven, fifteen, sixteen, and also

one, concern the eleciromagnefic phase of the radar

operation. It is to thi electromagnetic aspect of a

nonsinusoidal radar that the remainder of this thesis is

devoted.
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Chapter IV The Need for a High Frequency Sinusoidal
Carrier

Discussions of radar and radar theory appearing in

print from the very ear2:c to the most modern, and from the

most basic to the moz7t er2,7anced and esoteric, presuppose the

use of a modulated, narrow-band sinusoidal carrier wave

which also applies to the communication case. Although the

advantages are self evident it is worthwhile to question

this well established practice as it can provide

considerable insight into some of the desirable properties

for a radar carrier wave to possess.

In the early days of radio and radar it was quickly

found that some kind of high frequency vehicle was necessary

to provide efficient radiation of an information bearing

signal. Attempts to radiate tne original (baseband) signal

with reasonable efficiency would have required radiating

structures (antennas) of unmanageable size as well as

resulting in extreme distortion of the radiated signal

through differential efficiencies in radiating the various

sinusoidal constituents of the baseband signal.

For the radar situation things were more complex. Not

only was efficient radiation a requirement, but the need

to form and scan a narrow beam of electromagnetic energy

with mechanically scanned and airborne Antennas of

reasonable size necessitated high frequency operation.

However, there does exist another very good reason for
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using a high frequency e,arrier in radar. For example, if

it were possible to re. :e a non-oscillating pulse of

electromagnetic energy r d to successfully detect the

energy reflected back to the radar, then, in principle, the

presence of a reflectinP. object could be detected and its

range measured. But, in order to realize the full

capability of radar, it must be sensitive to the motion of

a potential target and to its angular position. It is

doubtful if the baseband signal could be radiated in a

directional manner to achieve angular discrimination since

directional radiation depends upon the wave interference

principle of single frequency sinusoidal radiation. This

fact would make baseband signal radiation useless for many

forms of radar operation.

In addition, the Doppler effect, which, in reality, is

a compression or stretching of the time variable of a wave

reflected from a moving target, would surely manifest

itself on the non-oscil]atin pulse. However, even if the

reflected pulse should arrive at the radar unchanged by its

propagation through the radar medium, the Doppler effect on

the duration of the pulse would be much too minute to be

measureable by presently known techniques. And, even if the

Doppler effect were measureable, other effects occurring

during propagation and amplification at the receiver would

distort this wideband pulse to the point of completely

masking the small changes irduced by the Doppler effect.
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Similar effects could or;c:m" with a wideband modulated

sinusoidal carrier wneren pulse envelope can be

severely distorted dAAr3r-: propagation or during and after

detection at the radar receiver.

The conclusion to be drawn is that with or without a

high frequency carrier, pulse shape can be distorted beyond

use for measuring target motion while the Doppler effect

on pulse duration, for most practical situations, is too

small to be measureable even without the presence of signal

distortion.

Then, in order to provide sensitivity to target motion

there must be some mechanism or parameter present in the

radiated electromagnetic wave which is insensitive to

waveform distortion yet which will respond to the Doppler

effect. One property these needs is the rate of

zero crossings of a periodic waveform (lacking a d.c.

component). Many waveforms have this property, the

sinewave being that commonly used in radio and radar. The

zero crossings of a sinusoid are readily and accurately

measured as a frequency by filters, wavemeters, or by use

of electrcnic counter circuits. Hence, using present day

measurement techniques, electromagnetic energy of a high

repetition rate is required in order for radar to be

responsive to the motions of a target as well as to its

range.

From the above qualitative discussion the following
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may be concluded: a frecuency carrier is required to

meet the very practir;a1 need of efficient radiation by

antenna structures of 1-asonP_ble size: a periodic carrier

is also necessary in order tc rea]ize the required

sensitivity to target an;,'',ular position and to its motions
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Chapter V Assessment of the Direct Transient Analysis
of Nonsinusoidal Propagation and RS.diation Phenonema

In Chapter I mention was made of Harmuth's (1970) and

Pearlman's (1970) early preliminary theoretical analyses of

the radiation problem due to nonsinusoidal current sources.

Harmuth's 1972 analysis is reproduced in Appendix II for

the reader's convenience.

In that analysis Harmuth (1972) made use of the vector

magnetic potential A and the electric scalar potential % to

evaluate the electric and magnetic field quantities in the

region surrounding a small localized current appearing on

a short Hertzian dipole antenna element. The length of the

antenna element was assumed to be so short that current

along its length did not vary with location while the current

at any point along the element was assumed to be equal to

that supplied by an electronic source exciting the device

at a small gap near its center.

However, the power radiated from a very short antenna

element is impractically small. In addition, those

assumptions above are not realistic for mechanically

realizable dipole elements nor for other forms of conductor

arrangements necessary to effectively radiate the

nonsinusoidal waveforms under consideration here.

In Appendix II it is shown that the vector potential A

and the scalar potential are subject to the two following

nonhomogeneous wave equations
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(xry,z;t), 1)

2
- ue 3

2
A- - - u J(x ylzrt) 2)

a t2

under the Lorentz gauge condition

+ ue 30 = 0.

at
3)

In the above wave equations A and 0 are both functions

of position and time, p(x,y,z;t) is the charge density, and

Y(x,y,z;t) is the current density distribution of a time

varying source. Both are functions of position and time

and are related by a continuity equation

= aP . 4)
at

In the case of infinite space with no boundary

conditions to be met, which is also the case relevant to the

radar situation, the above two wave equations have the

following integral solutions:

0(x,Y.z;t) =

farG(x',y',z',t'tx.yyzot)p(x'py',z',t1)ax'dyiaz'ats 5)
over Q

X(x,y,z;t) =

mfil5CG(x°,y',z'It';x,y,z,t) 3(xe,y1,7,',t')dxedy'dzidt. 6)

over j
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in which G(x',ys,z',t'oc,y,z,t) is a time dependent Green's

function relating the Potential at an arbitrary observation

point, x, y, z, at time t to an infinitesimal element of

the source density distribution located at x', y', z' and

activated at time t'.

It can be shown (Jackson, 1967, pp 183-186) that

G(x',y1,z1,t';x,y,z,t) reduces to the relatively simple

delta function expression

G(x',y',z',t';x,y,z,t) = - t + IR - $'t /c) 7)

4r IR - R1

in which g = ix + jy + kz, the position vector of the

observation point and g' is-the position vector of an

element of the source distribution producing the

disturbance at R.

Inserting the above Green's function into the two

potential integrals and carrying out the integrations with

respect to t' yields

and

0(x,yz;t) =

A(x,y,z;t) = ufff,T(x',y1,z' ;t -

41r -

K - Rl/c) dx'dy'dz'.9)

The electric and magnetic field quantities are then

obtained from these two potential quantites (which seem as
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artificial mathematical devices created as an intermediate

step to simplify evaluation of the field quantities) by the

following relationships:

and

n(X,Y,Z;t) =VPX X(XPY,Z;t) 10)

E(x,y,z;t) = -Vg(x,y,z;t) - aA(x,y,ztt) . 11)

If p(x,y,z;t) and 3(x,y,z;t) were both known accurately

throughout the volume of these density distributions the

integral expressions for equations 8 and 9 for 0(x,y,z;t)

and A(x,y,z;t), and the expressions for b.(x,y,z;t) and

E(x,y,z;t) of equations 10 and 11 would all be exact.

However, time varying charge and current density distri-

butions actually appearing on antennas used in radar or

radio communications usually result from highly localized

electronic generators of high frequency sinusoidal current

or voltage. It is presumed here that such will be the case

for the radiation of nonsinusoidal electromagnetic energy.

The exact values of p(x,y,z;t) and j(x,y,z:t) would then be

solutions to very complicated boundary value problems for

both sinusoidal and nonsinusoidal radiation:the latter

case would presumably be much more difficult than the

sinusoidal which, itself, is only solvable for certain

simple geometries of conducting or dielectric elements.

Rather than determine the radiation fields from
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realizable charge and current density distributions

exactly, it has been satisfactory in past antenna design

practices to assume (in the sinusoidal case) that the entire

source density distribution has the same sinusoidal time

variation throughout its whole volume. The charge and

current density distributions may then be written as

products of a space varying factor and a time varying

factor:

and

2(x,y,ztt) e(x,y,z) eiwt 12)

J(xty,zrt) = I(x,y,z )eiwt. 13)

The above simplifying assumption allows the

exponential factor to be written as

ejw(t - - VI/c)
= e

j co t
e

jcol5E - 'IA
14)

which allows the exponential time function to be removed

from under the integral signs of the solutions for 0 and A.

Even though such an assumption makes the radiation problem

tractable, it does place stringent limits on the maximum

spatial extent of the source density distributions in terms

of the operating (sinusoidal) frequency. In order that

there be little phase difference and little distortion of

the currents appearing on the antenna structure, the

distance d to the outer limits of the source distribution
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must meet the followin;7 inequality:

id << X or d << 2c/f. 15)

If a value of ten. percent of 2c/f is acceptable for

d and frequency is expressed in gigahertz, then

d
max

cs 0.6/f meters. 16)

The practical interpretation of the above constraint

is that pulse rise or fall times and pulse durations must

be much longer than the time needed for propagation across

the source distribution. This principle can be stated in

an inequality as

d << TI c or d << 2cT.2 17)

Here T is the time interval of interest in the waveform

(i.e., the rise or fall time or desired time resolution) to

be transmitted.

If a ten percent limit is again accepted and

a pulse rise time of 50 picoseconds is considered, then

dmax g!! 2 X 3 X 10
8
X 50 X 10

-12
= 0.03 meters

dmax gl 3.0 centimeters.

The above limit means that use of the simplifying

assumption on the first page of this chapter for Walsh or

similar type waveforms with transition times of 50 pico-
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seconds, or less, individual radiaT,ing elements must be of

the order of a few centimeters in extent.

The above approximation is suitable for singlefrequency-

or narrow band operation. However, the natures of the

sinusoidal and nonsinuscidal modes of operation are very

different. It would therefore be desirable in the analysis

or design of radiating elements or antennas for nonsinusoidal_

operation to be free of the aforementioned artificial

limitation on the spatial extent of the source distribution.

Accomplishment of such freedom in a direct and exact

transient analysis of the nonsinusoidal radiation phenomena

would, however, be very difficult and require much new

effort and research. This area of endeavor has seen little

activity in the past. Since the direct transient analysis

is so difficult much simpler m.?.ans and techniques are

developed in subsequent chapters. The methods developed

utilize existing knowledge and information on the sinusoidal

operation of radar system components and the radar

environment propagation media.
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Chapter VI Radar System Components and Propagation
Media Characterization

In order to adequately examine radar theory and

practice and to isolate their essential features, one

must also consider the means used to characterize radar

system devices and components. This action is imperative

to this study since many of the components and operating

principles will, no doubt, prove useful or necessary for

the implementation of a radar based upon a Walsh function

carrier.

In this study four categories of components are

examined: 1) transmission structures such as waveguides

and transmission lines; 2) antennas and their radiation

patterns; 3) amplifiers and/or filters; 4) the propagation

medium. It is felt that these four divisions represent

the indispensible components and elements that determine

the successful operation of a radar based upon a sinusoidal

carrier as well as a nonsinusoidal carrier wave. However,

for the purposes of this chapter a detailed study of these

four items is not necessary. Rather, it is important to

point out certain assumptions and principles underlying

their uses, specifications, and descriptions. The details

of their operation pertinent to use with Walsh functions

are discussed in later chapters as needed.

Although high power microwave transmitter tubes and

low power sinusoidal microwave oscillators also constitute
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essential elements of a sinusoidal radar, they are not

considered since they are unable to generate Walsh

functions and cannot contribute to the implementation of a

Walsh carrier radar. Knowledge of their characteristics

can contribute little in determining the suitability of the

four areas above for use with a Walsh carrier radar.
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Transmission Elements

The various forms taken by transmission devices such

as transmission lines and waveguides are characterized by

their effect upon the amplitude and phase delay along the

line of a hypothetical sinusoidal excitation of infinite

duration.

The main concern here is on the transmission line or

waveguide which is matched or else so long that reflections

don't occur within the time intervals of interest. This

examination is limited to these special and idealized cases'

since our interest is in the propagation properties of the

device.

The two conductor line, which includes the open line,

the coaxial cable, and stripline is described by a complex

traveling voltage (or current) wave

E -(a P)z = E
s
e-Yz volts 1)

z
= E

s
e

in which Es is the amplitude of the excitation voltage (or

current) at the sending end of the line, usually Es =

IE I

de; E
z

is the resulting phasor voltage at some point z

along the line; a is an attenuation factor; 0 is a phase

factor; and y is the symbol for the complex sum of a + j0.

For the simple transmission line a and are determined

by the constants of the line: its series resistance per-

unit-length, R; its series inductance per-unit-length, Li

its shunt conductance per-unit-length, G; and its shunt
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capacitance per-unit-length, C. The dependence of a + jo

on these quantities is

a + j0 = + jwi,)(G + jwC) = y 2)

which is also seen to be a function of the frequency of the

sinusoidal excitation voltage. In addition R, L, G, and C

are generally frequency dependent.

The transmission line is also described by a

characteristic impedance which is the ratio of the traveling

voltage wave to traveling current wave at any point on a

sinusoidally excited line having no reflections. This

quantity is also a function of the line constants and

frequency:

Z
o

R + ) G + jeaC ) . 3)

If a line of finite length is terminated in an

impedance, ZL, the impedance seen at the input end of the

line is

Zin = Z
o
(Z

L
+ Z

n
tanh(a + j0)x)

(z
0

+ Z L
tanh(a + j0)x)

4)

where x is the length of the line. The input impedance is

a function of frequency also through the quantities Zo, ZL,

a, and 0 which are all frequency dependent.

Further consideration of the traveling-wave solution

of the transmission line results in a useful relationship.



First, consider a line with excitation Esejwt at the

sending end and the response at a location zi:

e(t,zi) = Es e*-
iwt ,-yzi

5)

The response at a second location z2 (with z2 > z1) is

e(t,z2) = Es eiwt e-Yz2 . 6)

Now, with z2 = zi tLz,

e(t,z2) = (Es ejwt e-Yz1) . 7)

However, the factor in parentheses is just e(t,z1) so that

e(t,z2) = e(tpzi) 8)

Since the time variation is exponential (or sinusoidal

in terms of real functions) e(t,z) may be written as

e(t,z) = ejcut E(z) 9)

so that

E(z2) ejwt = E(z1) ejwt e-1(6'z . 10)

With t = 0 the above relationship becomes

E(z2) = E(zi) e- Az 11a)

or

E(z2)/E(zi) = e-YL\z 11b)

which is a form of transfer function relating the amplitudes
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and phases of the sinusoidal time variations at two points

on the line separated by a distance Qz.
Since E(z) = Es e

-y°
further simplification can result:

E(z2)/E(zi) = E(z2 z1) = 12)

so that e
-yZ\,z

becomes the transfer function relating

amplitudes and phases on the sinusoidal traveling wave at

any two points on the line separated by a distance Az, or

H(w ,Az) = e-YAz 13)

where y = a + jf3, a complex function of frequency.

The above concept of a transmission line transfer

function between two line locations separated by a distance

Lz is of great value in characterizing the line in terms

of Walsh function traveling waves.

The case of the single hollow metallic waveguide which

has complicated solutions for the electric and magnetic

fields within the guide as functions of time and position

also allows an interpretation identical to that for the two

conductor line. Consider for example, the rectangular guide

with TE and TM solutions (Ramo, Whinnery, and Van Duzer, pp

421-424) for exponential excitation ei4Iblisted in Table II.

Although the solutions in that table show no single

quantity which describes the waveguide it is seen that all

ten field quantities possess the same traveling-wave

characteristic: i.e., e(iwt Yz). Hence, they all
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Table II. Electric and. Yagnetic Field Solutions for a
Rectangular Waveguide with Propagation in the z Direction.

TM Solutions:

)

E
z
(x,y,z;t) = A e

(jc,tit yz
sin(x kx) sin(y k )

(juit - yz )
Hx(x,y,z;t) = jAkyf e sin(x kx) cos(y k )/k

c
fc Z

F t t I(x y z.t) =-jAk
xf e

( juit - yz) cos(x k
x
) sin(y k

y )/k
c
f
c
Z

2,,rEx(x,y,z;t) = -Nil
r

- fc/I Hy(x,y,zro Z

E (x,y,z;t) =-\/1
- f/f2 Hx(x,y,z;t) Z

Y c

TE Solutions

Hz(x,y,z;t) = B e
yz)

cos(x kx) cos(y ky)

Ex(x,y,z;t) = jBkyfZ e(jWt yz) cos(x kx) sin(y ky)/kcfc

E (x,y,z;t) =-jBk
x
fZ e

(jwt - yz)
sin(x kx) cos(y ky)/kcfc

Hx(x,y,z;t) = - f2 /f2 Ey(x,y,z;t)/Z

H (x,y,zst) = "V1 - fg/f2 Ex(x,y,z;t)/Z

Legend: a= guide width in the x direction; b= guide height
in the y direction; k

x= mr/a; ky= nr/b; m, n are integers;
kc
2 = kx

2
+ k 2

; Z= intrinsic wave impedance of the medium

which is frequency dependent for a lossy medium;
f= k/2rVrie, the waveguide cut-off frequency; y= a + j0;

=kc2 - k2; a and 13 are both complicated functions of
frequency depending upon the material making up the walls
of the waveguide and its filling dielec.tri ;1(A) = radian
operating frequency; and y = j W (1 - ).
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propagate along the guide as an ensemble, or set, unchanged

in their spatial relationships. As one might suspect, the

same principle applies to a waveguide of arbitrary lateral

cross section even though the lateral distribution (in the

x and y coordinates) of the field quantities may be

difficult, or even impossible, to determine analytically.

Hence, for any field component of the waveguide, an

equivalent transfer function relating its amplitudes and

phases for an exponential time variation at any two points

along the guide separated by a distance Qz may be defined

as

Hh (u) = e-Y' z He(wzz) = e-Y' 14)

as in the case for the two-conductor transmission line.

Since waveguides and transmission lines may often be

terminated in an unmatched condition in practice, or may

often possess discontinuities or irregularities in cross

sectional properties along the device, all will give rise

to reflections. Transmission and reflection coefficients

are then of interest.

For the transmission line with a non-matching

termination or some form of discontinuity, a reflected

voltage wave traveling in the opposite direction of the

incident wave is generated. If the amplitude of the

incident (sinusoidal) wave is and that of the reflected

wave E_, then a reflection coefficient e is defined as



so

e = E_ /E+ 15)

with the voltage across the terminating load impedance EL

EL = E+ + E_

so that, with some algebraic manipulation,

Q (ZL - zo) /(z, + Z0) = e(w) 17)

16)

which can be a complex quantity.

The portion of the incident voltage wave affecting

the load impedance ZL, or, in the case of a mismatching

discontinuity, the portion of the incident energy

transmitted beyond the discontinuity, is related to the

incident wave by a transmission coefficient Ts

T = EL /E+ = 2 ZL /(ZL + Z
o

) = T(Cu) 18)

which can also be a complex quantity.

The two quantities e and T are similar to the

relationship determined for the transmission line transfer

function H(w,Qz) relating amplitudes and phases of the

traveling-wave at two locations along the line. The

quantities e and T, which are both frequency dependent,

constitute transfer functions relating the incident and

reflected wave amplitudes and phases at the discontinuity

and relating those of the incident and transmitted waves

respectively. Similar quantities are used in Chapters IX
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and X to describe the reflection and transmission of

Walsh waves on transmission lines and in waveguides as well

as their reflection from objects in space.
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Antennas and Radiators

Radar antennas, whether of the parabolic aperture form

or a phased array, are dependent on the (monochromatic)

wave interference princinle for their operation and, like

transmission lines, are described in terms of their response

to a sinusoidal excitation of infinite duration.

Antennas for a radar application, in order to provide

a reasonable degree of directional resolution, must be able

to concentrate transmitted electromagnetic energy into a

narrow beam (in the far field) and to respond to received

energy from a very narrow solid angle in a given direction.

Its ability to do this is usually expressed as a relative

gain function in terms of either field strength or power

density transmitted or received as a function of two

orthogonal angular coordinates measured from the direction

of maximum response of the antenna. This gain function is

usually defined with respect to the field strength or power

density that would result using a hypothetical isotropic

radiator: i.e., a radiator that produces uniform power

density in all directions.

For work in later chapters it is essential to

determine the relative field strength or (instantaneous)

power density (i.e., the radiation pattern) in the space

surrounding the antenna as a function of frequency in

response to a sinusoidal voltage or current excitation at



53

some point in the antenna system. The electric field

radiation pattern as a function of the angular coordinates

of the radiation pattern also constitutes a form of antenna

system transfer function that relates the relative field

amplitudes and phases to the sinusoidally varying excitation

source.

For an arbitrary aperture with general illumination

distribution the Kirchhoff-Huygens diffraction integral can

provide a general expression for the frequency dependence:

E
far (e, %)

jE0 e-
jkR if A(x,y) ejk sin 9

(x cos 0 + y sin 0)
-dx dy

aperture
19)

(Skolnik, 1970) where A(x,y) is the relative amplitude and

phase distribution of the field in the aperture, E0 is a

reference value of the aperture field intensity, R the

distance from the antenna origin to the observation point,

k = 2crf /c the phase constant of the medium, 0 and 0 are the

angular coordinates of the standard spherical coordinate

system.

A(x,y), which is generally complex, may be considered

to consist of a real amplitude factor IA(x,y)I and a phase

factor e jX(xY) . It is also important to realize that

1A(x,y)land X(x,y)
2
may purposely be adjusted or varied to

2) Do not confuse X(x,y) with X lacking the parentheses.
The symbol X is the wavelength of sinusoidal excitation.
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produce some desired property in the antenna radiation

pattern. Since X(x,y) is an electrical angle, depending

on how it is produced, it can be dependent on frequency for

a fixed antenna system. It is also conceivable that A(x,y)

could be a controlled function of frequency for a given

antenna system. These two possibilities must be accounted

for in any analysis for a fixed antenna system as well as

in the design and development of new antenna systems.

With k = 2rrf /c and 1/X = f/c the general expression for

the far field strength becomes

E
far

(0, OM

[4311.(xcos 0+ ysinC-X(x7/ .V]
jEof e- j2TrfR / c fix dy A(XiV1 i2Trf

RC
perture

2 0 )

which can be an unwieldy integral to evaluate. Fortunately

the greatly simplified cases of uniform amplitude and phase

illumination for the rectangular and circular apertures suit

the purposes of this study.

For a simple rectangular aperture with dimensions a

and b with IA(x,y;f)I = 1 and X(x,y;f) = 0, the far field

strength becomes

Efar(9Ø/f)

jE
o
f e

-j2rfR/c
sin(raf sin A cos 0) sin(rbf sin e sin 0)

E
Re raf(sin 0 cos 0)rbf(sin e sin 0)

C C

21)
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while for the circular aperture of radius r, the far field

is

-j2rrifii/c f-
) e J1(2Trfr sin ) 22)

far
sin 0

The appropriate interpretation of the far field

quantities of equations 20, 21, and 22 above is critical to

this study. All are actually sinusoidal field quantities

occurring in response to sinusoidal excitation, or

illumination, of the aperture. Even though the amplitude

and phase of the aperture illumination may not be uniform,

they may ultimately be referenced to a sinusoidal voltage

or current source at some point in the antenna system which

has a specific amplitude and phase. Considering only this

reference source quantity and the far field quantity it

is seen that the sinusoidal far field constitutes the

response to the reference source: their relative amplitudes

and phases, as functions of frequency, must be related by a

transfer function. This transfer function, except for a

numerical scale factor, is just the final expression for

the far field strength as expressed by equations 21 and 22.

in order to eliminate confusion of a scale factor we may

consider the aperture field intensity E0, at zero phase, as

the excitation source yielding and antenna/far field

transfer function of

E 1.far "56±/E H
0 ant

(0,01f) 23)
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Of course, a similar expression may be derived for

the magnetic field quantity B
far

the magnitude of which is

related to that of the electric far field by the intrinsic

impedance of free spaces

iBfari lEfarl /no = 1E,iarl /120r 24)
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Array Antennas

The general situation with the array antenna (the

pattern of which may be approximated by the continuous

aperture if the element spacing is less that 2X and the

number of elements is large) is complicated by the fact

that the observation point field strength and associated

radiation pattern are expressed as a finite summation of

differently weighted and phased exponential terms.

Although the array antenna and its radiation pattern

can be approximated by the continuously illuminated

aperture, the fact that radiation of Walsh functions may

require an array of small radiating elements necessitates

consideration of the exact discrete approach. The general

expression for the far field for an array of arbitrarily

spaced,weighted, and phased radiating elements is

N j [217f( 'ne +
E
far

(8, 0;f) = A
n

e 25)

where N is the number of elements, f a unit vector in the

directions of 8 and 0 to the observation point,en the

vector denoting the location of the nth element with respect

to the origin, A
n

the relative amplitude due to the n
th

radiator, and bn the delay of the nth radiator. For a

given set of isotropic radiators which do not interact, the

above expression explicitly describes the frequency

dependence and the directional properties sinceqni... is
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dependent only upon 8 and 0 of the observation point.

However, the quantities eri, An, and on are usually

not entirely arbitrary as they are usually selected to

provide a prescribed radiation pattern.

The simple linear array of eauispaced, equal amplitude,

and uniformly phased elements suits our needs at this point.

The relative far field for this simple array is

E
far

(0;f) sin(NrfS(sin 8 - sin 8o)/c)

N sin(rfS(sin 8 - sin 0
o
)/c)

26)

(Skolnik, 1970, Chapter 11) where S is the element spacing,

f the frequency, 8 the direction of the observation point,

8o a selected scan angle, c the speed of light in the

medium, and N the number of elements.
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Amplifiers and Filters

In order to be most effective the receiver of a radar

based on Walsh functions must not only amplify the returned

signal, but it must do so in some optimum manner in the

presence of noise. It must also be able to select its own

returned signal from those emanating from other nearby

equipment operating on Walsh function carriers and to reject

unwanted interference.

The problems of filtering and selectivity properly

belong in the realm of Walsh filters which are not discussed

in this study. However, the function of amplification will

presumably be carried out by linear wide and/or narrow band

(sinusoidal) amplifiers as presently done in radar practice.

Filtering and signal processing would take place after the

initial amplification phase.

Amplifying devices suitable to Walsh functions can be

adequately described by their sensitivity and saturation

characteristics and their linear characteristics of gain

and phase as functions of frequency, their bandwidth, and

center frequency. These are The same characteristics

normally used to specify suitable pulse operation.

The linear characterization of the amplifier is

described completely by its sinusoidal transfer function

which can be obtained either from measurements or by

detailed analysis of circuits and active devices comprising
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the amplifier.

The sensitivity of the amplifier depends on the amount

of internal noise generated by the amplifier which is

expressed by its noise figure. This quantity is also

available by analysis or from measurement.

The saturation and nonlinear distortion properties of

the amplifier depend primarily on the active devices used

and the values of power supply voltages used. Although the

nonlinear properties of the amplifier may generate

sinusoidal components not present in the original input

signal, it is very important to note that the bi-valued

nature of the Walsh functions makes this property of the

amplifier unimportant for amplification of a pure Walsh

function waveform. For signals consisting of a super-

position of several Walsh functions the nonlinear

properties of the amplifier can only redistribute the

signal energy among the Walsh components originally present:

i.e., no extraneous Walsh components are generated.(Harmuth,

1972, pp 305-307).
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Propagation Media

In the electromagnatic phase of the radar operation

the radar energy propagates through the external

environment essentially as a plane wave. The propagation

medium, much like the transmission line and the waveguide,

is characterized by its effect on the amplitude and phase

of a sinusoidal plane wave as it progresses through the

medium. The effect of the medium is manifested through a

phase constant, k, which is analogous to the constant y

for the transmission line described earlier in this chapter.

In one dimension such a propagation constant gives

rise to equations for the field strength at different

locations along the propagation path identical to those for

the transmission line. If the field at a given location zle

due to a source wave at the origin, is

E(t;z1) = A e
juit

e
-jkzi

27)

and that at a second point z2 is

E(t;z2) = A eitute-
jkz2

The ratio

E(t;z2)/E(t;z1) = e

28)

-jk( z2 - z1) e-jkQz 29)

is also a transfer function relating the amplitude and

phase of the traveling-wave at point z2 to those at an
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earlier point zl. In this instancy the disturbance at zi

acts as the source, or cause, of the disturbance at z2 even

though that at z1 is not actually a source. Notice also

that since z
1

and z
2
are arbitrary the transfer function

depends only upon the separation of the two points

involved.

In order to characterize any propagation medium by its

point-to-point transfer function all that is necessary is

to determine the propagation constant k and form the

quantity e- jk z

If the medium is lossy, k has an imaginary part

leading to an exponential factor having a negative exponent

giving rise to amplitude attenuation. The phase constant k

is usually a function of frequency, the simplest being

k =4//6 for a vacuum. For material media k is also

expressible in terms of the index of refraction for the

materials

k(W) = n(44) ) /c 30)

where W is the radian frequency of the sinusoidal

excitation, c is the phase velocity in vacuum, and n(W )

is the index of refraction which, in general, is frequency

dependent and also complex. If there are changes in its

value along the path of propagation (in directions

perpendicular to that of propagation) the direction of

propagation will change.
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Analogous to the transmission line case the medium is

also described by an intrinsic impedance:

n = Ju /e = E./H. 31)

where u is the magnetic permeability of the medium, e its

permittivity (both of which may be complex functions of

frequency),andE.and H. are the electric and magnetic

field strengths which are perpendicular to each other and

to the direction of propagation.

Discontinuous changes in the impedance of the medium

in the direction of propagation also give rise to

reflection and transmission coefficients at the interface

between two regions of different impedance:

and

? Ereflected /Eincident (n2 - n1)/(n2 + n1) 32)

T = E = 2 /( +n2 n2 n1
transmitted /'incident 33)

which in general are complex functions of frequency and

n
1
and n

2
are intrinsic impedances of the two media.

The propagation constant k of the medium through which

sinusoidal electromagnetic energy is transmitted by a radar

to detect and measure a target's distance, is a very

important quantity since it determines signal attenuation

due to the losses of the medium, and the phase and group

velocities, which affect range accuracy.
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For a tenuous plasma such as the terrestrial ionosphere

k, neglecting the geomagnetic field, is (Ramo, Whinnery, and

Van Duzer, 1965)

k(W) =Vueo(U/2 -Cr) 34)

where (A) is a frequency characteristic of the electron

density of the plasma in which ionic motion has been

neglected and CO
2
= 4rn

o
e
2
/m in which n

o
is the number of

free electrons per cubic centimeter, e is the electronic

charge, and m is the electron mass. For radian frequencies

greater than (,up, k is real and the waves will propagate

with no attenuation while, if the frequency is less than

, k is imaginary giving a negative real exponent

producing extreme damping of the wave in the plasma.

The propagation constant for a medium consisting of a

lossy dielectric is

jk = japiu(e' je") = a + j(E1 35)

in which e' is the real part of the medium's permittivity

and e" an imaginary part which accounts for the dielectric

losses. In general both depend on frequency. The terms

a and 0 are found to be

=

=W

36)

+ e"2/e'2 + 1) . 37)
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For a low loss material where e" is much smaller than e'

a.., UINjUe' (e"/2e') 38)

P gloy'Nfi-j- (1 (e"/0)2/8)

while the intrinsic impedance is

n =-Vu/(e'(1 - je "/e'))

-VII/e' (1 - 2(e/e')
2

+ je"/2e') .

8

39)

40)

The intrinsic impedance of any material medium is

also a function of frequency which may also be interpreted

as a form of transfer function. It relates the amplitudes

and phases of the E and H fields at a given point in the

medium. Because of this frequency dependent transfer

function relationship nonsinusoidal E and H fields will

not be of the same time variation at a given point in the

medium.

Of course, any nonsinusoidal radar application

involving a planetary ionosphere must consider the planet's

magnetic field if it is of significant value. This case is

of much greater complexity than that for a plasma in which

the geomagnetic field is negligible.

The phenomena manifested in the terrestrial ionosphere

in the presence of the pervading geomagnetic field are of

obvious importance in modern radar applications in which

moving targets above or within the ionosphere must be
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detected and tracked by surface based radar equipment.

Radar mapping of the Earth and neighboring planets by

radar platforms orbiting the planets under scrutiny must

also consider the effects of the same phenomena.

A phenomenon of great importance in the use of linearly

polarized radar waves is the Faraday effect by which the

plane of polarization may be rotated thereby reducing

antenna sensitivity. However, of greater importance than

Faraday rotation is the possibility of waveform distortion

resulting from synergistic effects of the plasma and the

magnetic field which is investigated in greater detail in

Chapter VIII. Below the propagation functions for this

case are developed.

Using the geometry shown in Figure 3 for the most

general propagation arrangement with the geomagnetic field

and the propagation conditions as indicated, a general

solution for the propagation function from Kraus

= W-Vi-u0/ [(e11 - e33)sin20 + x

(ell e12 elle33)sin2 0 2 elle33

(1966) is

2 2 2 4,
cos20)1 41)

((ell e12 slle33) sin P 2 33

where 0 is the angle between the direction of propagation

and the static magnetic field B0 and the eij are the

components of the tensor permittivity corresponding to the

geometry shown. The tensor permittivity is
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Figure 3. Geometry of electromagnetic wave traversing a
plasma in a static magnetic field.
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Fell -je12 e131

1.-

g = je21 e22 e23

e
31 e

32
e33j
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42)

ell e22 = e0(1 +w2P /(w2 -W2))
43)

c

2

e12 e21 eoWpWc/W (C4) -W2) 44)

e33 = ec.(1 W 2/W2) 45)

e,,
J.)

= e
23

= e
31

= e34 = 0. 46)

In the above quantities W = Ne
2
/e

o
m = plasma

frequency, e0 = permittivity of free space, and cue =

e Bz/m = cyclotron frequency. In both equations e = the

electron charge and m its mass.

A case of interest for radar applications which

provides some mathematical tractability when the direction

of propagation of a linearly polarized wave is parallel, or

nearly so, to the static magnetic field such that 0 m 0

making Ez m 0. This is the quasi-longitudinal case with

= uoeo -/v42 +4/2) u/24y
c

cos 0) co 47)p C - p

(u) -f-toc)(tv (Ale)

For the purely longitudinal case with 0 = 0, dividing

the numerator under the radical by (UV + Wc) and then by

(W - We) yields



= -Vuoeo &Au (11 ) (CV W )

69

48)

Both equations above are double valued due to the plus and

minus signs. The interpretation of two values of 0 means

that the wave solution containc two solutions with each

having a different value of 0, one with the positive sign

and the other with the negative sign.

It can be shown (Ramo, Whinnery, and Van Duzer, 1965,

p. 516) that the only wave solutions satisfying Maxwell's

equations for the geometry shown in Figure 3 are circularly

polarized waves each with oppositely sensed rotation: one

corresponds to the positive sign of 0 while the other

corresponds to the negative sign.

A linearly polarized wave in which we are interested

may be considered as the superposition of two circularly

polarized waves of opposite sense of rotation. The clock-

wise rotating component corresponds to the positive sign

in a which yields

2+ = E0 (ax jay) e-i4z

and, for the negative sign,

2_ = E0 (ax +
e-is_z

49)

50)

where E
o

is the magnitude of the rotating field vector.

The linearly polarized wave in which we are interested is

then the linear superposition of two such rotating waves:
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70

O_
+ iE0(6x + jay)e

-j Z
51)

The effect of the plasma and the magnetic field on the

time domain unit impulse response is obtained, in principle,

by extracting the inverse Laplace transforms of e
j0

+
z

and

e-if3-z and making the appropriate vector operations in the

time domain.

A second case of some interest is that of transverse

propagation in which the direction of propagation is

perpendicular to that of the magnetic field. In this

situation the electric field vector may have components

both parallel and perpendicular to the magnetic field. In

the parallel case the effect is as if no external magnetic

field were present with 0 the same as equation 34. The

perpendicular component corresponding to 0 90° reduces to

(1 + 1) el2sin 0 /2e11

which is known as the extraordinary wave of the quasi-

transverse case which reduces to

= UTTuo sin 0/e,11

The purely transverse case with 0 = 90° reduces to

2

=U11/17C-Vell

52)

53)

54)

In terms of frequency, the plasma frequency, and the

cyclotron frequency equations 53 and 54 become



5 = -Vuoeo X

r 6 4 2 2 2 2 2 2 2 4
W - 2Gil (to + W + (4) tA " tv sinp c p

2 2 2 2

(tV-
--

WC ) (tij (4)P )

for the quasi-transverse case while for the purely

transverse case we have

= 1.-V-T-e
Xo o

4 2 2 2 2 2 2 2 4
L6 - 2tv (CV

c ) + et/ (tt/ + p c p
) - 1+1p c

(Fu2
2 2

-
c

2 2
-tOc WI) )

ow*
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55)

56)

A final case of particular interest in terrestrial

radar applications is the propagation factor describing

the Earth's atmosphere. For the frequencies of interest

the atmosphere is essentially nondispersive which also

applies to weather phenomena such as precipitation and

clouds which merely attenuates any electromagnetic sine-

wave traversing through the medium. The phase factor is

closely approximated by W/c. However, the attenuation

factor is a complicated function of frequency due to

absorption by atmospheric oxygen and water-vapor. Since

the quantities of oxygen and water-vapor are sensitive to

atmospheric pressure and temperature as well as the

absolute humidity, they are all dependent on altitude.

Bean, Dutton, and Warner (1970, p. 24- 13) have
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presented a summary of atmospheric attenuation factors

based upon a combination of theory and empirical data.

When converted to nepers per meter for a standard

atmosphere3 the oxygen attenuation factor is approximately

-6 2
Y° 39.08 x 10 W 0.018

W2 + (0.34 x 1010)2

0.05

57)

(w+ 37.7 x 1010 )

0.05

2
+ (0.94 x 1010)

2

10
(a/ - 37.7 x lo )

2
+ (0.94 x 10 )

10 2]

while that for water-vapor absorption is approximately

2
y
w

0.403 e W x 10
-6

(1 + 0.0046 Q) x

[(Ul+ 13.9 x 10
10 2 10 2 0 2

) + (1.71 x 10 ) (1 + 0.0046

0.0906

0.0906

(CU- 13.9 x 1010)2+ (1.71 x 1010)2(1 + 0.0046 Q) 2 J. 58)

A third attenuation factor which accounts for losses

3) Standard conditions: P = 1013,25 mb, T = 293° K.
Equations 57 and 58 have been corrected to these conditions
while equation 57 is independent of humidity e.
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above a frequency of 22 GHz is

2 -
y = 12.75 ew x 10

26
(1 + 0.0046 e) . 59)

In equations 58 and 59 e is the absolute humidity in gm/m3.

The total attenuation factor is then the sum of the

above three factors:

Y
t
=Y

o +Yw +Y 60)

The transfer function corresponding to the phase factor

W/c and the attenuation factor yt is

H( ) = e
-(y

°
+ y

w
+ y)z

e
-j4izA

61)

It will be useful in Chapter VIII when working with

the above attenuation factors to realize that they consist

of the four following basic forms:

AW2 /(W2 + B2) cw2/((lv-
.4. 2

D) + E
2

) FW2
e , e , e 62)

in which the alphabetical coefficients are constants. As

before the phase factor e
-j6./z/c

transforms into the time

domain as a time delay of z/c seconds and may be ignored

in the formal inverse transform operations.

The expressions for yo, yw, and y may easily be

modified for other than standard conditions by

incorporating corrective constants Co, Cw, C, C
1

, and C
2

for differing values of temperature, pressure, and

humidity. They are



Co = (293/T)2 P/1013.25

Cw = (293/T)
5/2

e
-644/T

= (293/T)

c
1

(293/T)
3/4

(P/1013.25)(1 + 0.0046 e)

C2 = (293/T)1 (P/1013.25)(1 + 0.0046 e)

C
3

= (293/T)
314

(P/1013.25)
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63)

where T is the temperature in degrees Kelvin, P is the

pressure in millibars, and e is the absolute humidity

in grams per cubic meter.

The above corrective constants are incorporated into

equations 57, 58, and 59 as follows

Yo
2 [ 0.018

. x
0
~C

0
C
1
x 39.08 10

10 2
G1/2 + (0.34gLx 10 )

0.05

(U1+ 37.7c 10
10 2

) + (0.94C x 10
10

)

2

3

2 1(Ca- 37.7c
3

x 1010) + (0.94c1 x 10
10

)

2

0.05

yw cwc2 x 3.66 e x 10
-6

LI)
2

x

[(U)- 13.9 x 1010) 2+ (1.71C2 x 1010)2

0.0906

64)
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0.0906

(W + 13.9 x 10
10 . 2

) + (1.71C2 x 10
10

)

2

-26
y = C C2 x 12.75 e w

2
x 10 .
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65)

66)

The ideas and concepts developed in this chapter are

utilized in Part III in the study of specific elements and

components essential to the implementation of a Walsh

function carrier radar.



76

Chapter VII Component and System Descriptions for Walsh
Wave Operation

From much of the foregoing it is apparent that direct

time domain analysis of antenna and electromagnetic

propagation problems for nonsinusoidal excitation would

require extensive new and difficult analytical effort.

Such effort, however, would necessarily ignore the great

wealth of theory and engineering data that exist for the

special case of sinusoidal excitation. In order to avoid

the former problem and yet take advantage of this existing

knowledge, sinusoidal performance concepts from the

disciplines of communication theory or systems theory are

utilized in this study to characterize radiation systems,

transmission systems, and propagation media in a manner

compatible with the bi-valued functions under study.
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The Unit Impulse Response

It was shown in Chapter VI that functions describing

the electric and magnetic fields of radiation structures

and transmission structures as well as those of propagation

media, may be interpreted as steady-state sinusoidal

transfer functions. If valid over a sufficiently wide band

of (sinusoidal) frequencies these transfer functions may be

transformed by use of the inverse Laplace or inverse

Fourier transforms to yield time domain unit impulse

responses which are functions of location as well as of

time and other pertinent parameters of the system. This

form of system description, when valid, can be more useful

with the discontinuous type of functions under consideration

than is the steady-state transfer function form of system

description.

The resulting unit impulse response could be used in

the superposition integral with the excitation waveform to

directly yield the field or voltage and current quantities

of interest. Or, if desired, the product of the system

transfer function and the excitation transform could be

inverted to yield the time domain response to a given

excitation. However, for the general Walsh function, or

any other bi-valued function, either approach is difficult.

For our purposes, neither operation is necessary to aquire

the information needed. The important factor in the
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potential use of discrete IA-valued functions is the

"spreading" of the signal at its transitions caused by the

finite duration of the unit impulse response of the system.

The nature of a bi-valued function is such that only its

transitions (i.e., its zero crossings) and/or its impulse-

like time derivatives or its integrals are of concern

since it is the spreading of these phenomena which limits

the rate at which the transitions may be generated.

The increases in the rise and fall times of the

transitions and the increase in the pulse width of the time

derivatives of the transitions caused by the system are of

primary concern rather than the detailed structure of the

resulting waveform. Hence, for bi-valued waveforms, the

unit impulse response is a more useful form of system

description than that of its sinusoidal steady-state

performance description.

Since our interest is primarily in the distortion that

a system or component imparts to a bi-valued waveform, it

would be convenient if the terms, or factors, in the impulse

response of the system causing the distortion could be

isolated in order to see which system parameters cause it.

If this could be done it is feasible that action could be

taken to reduce the distortion. In several cases, as shown

in Part III, quite often the transfer functions of many of

the systems and components examined may be separated into

several additive terms one of which is often a constant
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term. This constant term, when transformed to the time

domain, represents an ideal impulse which reproduces a

component of the signal having no distortion. The remaining

terms in this additive decomposition of the transfer

function (or equivalently, the impulse response) represent

distortion terms. If the effect of these distortion terms

are negligible compared to that of the ideal impulse term,

or if their temporal durations are very small compared to

the smallest time interval of interest in the excitation

waveform, their effects may be ignored. This method of

decomposing the unit impulse response in order to isolate

the distortion terms is utilized on several of the systems

and components examined in Part III.
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Waveform Parameters

Since the duration of the unit impulse response, or

that of the distortion terms that result when it is

decomposed, is so important in determining the distortion

caused by a system, it is important to define the term

"duration" more precisely, if possible. Because of the

variety of waveform shapes that are possible it is obvious

that any criterion selected to specify the duration of a

pulse-like waveform (of finite duration) may not be

applicable to all situations or waveforms. For example,

the duration of a signal could arbitrarily be defined as

that time interval containing a prespecified amount of the

total area under the waveform curve or a prespecified

amount of the energy contained in the waveform. Another

definition that might be suitable is that time interval

over which the magnitude of the waveform exceeds some

prespecified value.

Although many such definitions are possible and would

surely be of value, they require that the detailed temporal

structure of the waveform be known or be determined from

the readily available transfer function. With some of the

transfer functions encountered in Part III such evaluation

of the unit impulse responses can be very difficult. Quite

often the resulting impulse responses found in Part III are

very complicated functions of time from which evaluation
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of the above mentioned measures of signal duration could

also be very difficult.

Another useful measure of waveform duration is

possible which, in certain cases, may be calculated

directly from its Laplace or Fourier transforms. This

measure is the root-mean-square duration which is the square

root of the second time moment of the waveform about its

own average time which is also its first temporal moment

about the origin (t = 0). These average quantities are

defined quantitatively in following paragraphs by equations

1 and 2. The root-mean-square duration is preferable for

this study since the investigation of a system or component

starts most often with the Laplace or Fourier transform of

the waveforms involved.

Fortunately these mean value time quantities are easily

determined from the system transfer function without

resorting to time domain considerations. It is also shown

(at the end of this section) that a measure of the increase

in rise and fall times resulting with pulse excitation can

be estimated very easily from the root-mean-square duration

of the unit impulse response.

Borrowing techniques from probability theory
4

the mean

value of the temporal duration of a waveform h(t) and its

4) Since many of the waveforms considered may assume
positive and negative values, the theory developed departs
somewhat from probability theory. The analogy is exact for
waveforms of only one polarity.
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mean-square duration (or variance) about its mean value are

defined by the following expressions:

and

tave = T = t
o

=
o

h(t) dt

o
I h(t) dt

CO

a
2

=
o
f(t - t

o
)
2
h(t) dt = t

2
- t

o

2
.

0

,m
h(t) dt

1)

2

In the above equations h(t), when divided by the area

under its time graph (i.e., the integral in the above

denominators) is analogous to a probability density function

which allows a valid and suitable means of computing the

above moments.

In principle it is possible to substitute the impulse

response as determined from the system transfer function

into the above integrals to obtain the indicated averaged

quantities. However, the resulting impulse responses are

usually difficult functions to integrate or manipulate

mathematically. Fortunately Laplace transform theory allows

evaluation of the above quantities in many instances from

the original transfer function or from the terms in its

additive decomposition. For instance, the integral in the

denominators of equations 1 and 2 is a normalizing constant

which may be evaluated from the system transfer function

as follows:



L [h(t) = H(S) = rh(t) e-Stdt .

46)

Taking the limit as S approaches zero yields
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3)

Lim H(S) = h(t) dt 4)
s--*0

if such a limit exists. Hence, the normalizing constant

is equal to the original system transfer function in the

limit as S approaches zero.

In a similar manner the temporal moments of h(t) may

be evaluated from related transform domain quantities.

Again taking the Laplace transform of h(t), or using the

original system transfer function, differentiating with

respect to S and taking the limit as S approaches zero

yields to:
03 00

dH = d h(t) e
-St

dt = -it h(t) e
-St

dt 5)
dS dS

0

and as S approaches zero equation 5 becomes
co

Lim dH = h(t) dt = - to H(0)
dS

0

or

t = - Lim 1 dH
S--*0 TTS7 dS

Differentiating H(S) again with respect to S and

letting S approach zero yields the mean-square moment of

6)

7)



time as follows:

d
2
H = I t(t) e

-St
dt

dS2

and letting S approach zero
00

or

Lim d
2
H = t

2
h(t) dt = 7 H(0)

s--" dS2 0

2
t = Lim 1 d

2H
-->0 TT) dS2
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8)

9)

10)

is:

a
2

=

Using equation 2 the

Lim
S-->C

variance, or

1 dH -d2H

mean-square

i dH 2

duration,

11)
2

t
2 -to=

H(S) dS2 H(S) dS

Some simple algebraic manipulation and repeated

differentiation of the system transfer function yields the

following general form for the higher temporal moments of

the unit impulse response of the system:

t = Lim
_1)n dnH

12a)
S--*0 H(S) dSn

In Part III the simple relationships of equations 2

through 11 are used in several cases to evaluate these

important waveform parameters.

It is useful to note that similar techniques with the
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Fourier transform form of the system transfer function

yields a similar expression for the higher temporal moments

of a waveform:

7171 = Lim (-j)n dnH 12b)
H(c4) diA.7

Methods similar to those above may be applied to the

instantaneous power of a waveform to yield temporal moments

of that form of signal expression.

The conditions under which differentiation of the

definite integrals of equations 5, 7, 12a, and 12b (with

respect to S) is valid must be specified. Normally, in

order that the Laplace transform of h(t) exist, it is

sufficient that h(t) be piecewise continuous and of

exponential order; i.e., be Laplace transformable. Under

these conditions the Laplace transform integral is

uniformly convergent and may be differentiated under the

integral sign. However, in this situation we are starting

with a known Laplace transform of h(t) which requires that

the transfer functions with which we are dealing be

analytic in their regions of convergence.
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Impulse Response Effects on Rise and Fall Times

An upper bound on the increase in rise and fall times

of a unit step or linear ramp excitation which is followed

by a unit step may easily be found in terms of the variance

of the duration of the system unit impulse response. That

for an ideal unit step excitation is found first followed

by that for a ramp function of arbitrary duration T

followed by a unit step of infinite duration.

The unit step response of a system is merely the time

integral of its unit impulse response, or the area under

the unit impulse response as a function of time. From

equation 2 the variance of the duration of the impulse

response is
Co

2
a
2
= Lim (t - t

o
) h(t) dt

S-->0 o

H(S)

13)

If now a small arbitrary portion of the area under the unit

impulse response curve ka units on either side of to is

rejected, the following inequality is obtained*
rto-ka

a
2

Lim
717)

L(t - t
o

) h(t) dt
2

00

j)(t - to) h(t) dti
2

+Ica
'o

The smallest magnitude that (t - to) can assume in

equation 14 is ka so that substitution of this constant

14)
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value into the integrard will create an even stronger

inequality:
t
o
-ka eo

a
2
> k

2
a
2 [

h(t) dt + h(t) dt 15)

H(0)
t
o
+ka

The integrals in the brackets constitute the area under

the unit impulse response curve outside the interval of

ka centered on to. This area may also be viewed as (1 -

area within the region bounded by to ka). The area within

that bounded region also corresponds to the change in the

integral from to - ka to to + ka which in turn corresponds

to the change in the unit step response over the same

interval of time. We may then select any symmetrical

portion of the change in the amplitude of the unit step

response as a criterion to define its rise time. The

reference points usually selected are the 10% and 90%

levels on the waveform which will also be used in this

study. This change in amplitude corresponds to an overall

change of 80%, or equivalently, 80% of the area in the

center of the impulse response curve. This change in

amplitude results in the following inequality:

a
2

k
2
a
2

(1 - 0.8) = k
2
a
2
x 0.2 . 16)

Cancelling a
2
on either side of the inequality and solving

for k2 yields

k
2
< 1/0.2 = 5.0 17)
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k < 2.236 . 18)

The meaning of equation 18 is that the 10% to 90% rise

time of the unit step response of the system takes place

within ± 2.236 standard deviations of the system unit

impulse response from to. Hence,

10% to 90% rise time < 4.472a . 19)

The response of a system to a ramp of finite duration

followed by a unit step of infinite duration, as depicted

in Figure 4a, may easily be determined from the system's

response to a short pulse of arbitrary duration T shown in

part b of the same figure.

The transform domain response of the pulse r(t) (of

Figure 4b) is

G1(S) = R(S) H(S) = 1 (1 - e-ST) H(S) 20)

TS

while the response corresponding to the ramp is

G
2
(S) = R(S) H(S)

S

A simple modification of equation 21 yields

21)

G2(S) = 1 R(S) H(S) 22)

S

in which R(S) H(S) corresponds to an effective transfer



0

f(t) =
0

a)

r(t)

t

r(x) dx--- > F(S) = R(S)/S

b)

t to De

R(S) = 1 (1 - e-ST)
ST

Figure 4. Ramp and pulse excitation waveforms.

89

to Do



90

function and 1/S represents a unit step excitation.

R(S) H(S) may then be used as the effective transfer

function in equation 11 which establishes an effective

mean-square duration u2 for a fictitious unit impulse

response corresponding to R(S) H(S). This value of

variance may now be used in equation 19 to determine the

10% to 90% rise time which is equal to the overall rise

time in response to the linear ramp excitation of Figure

4a.

Since antenna and transmission systems often consist

of cascaded elements it is of interest to determine the

effects of component interaction. Recall that in the

transfer function domain that the cascading of elements

corresponds to multiplying the individual transfer functions

of the elements involved.

The principles inherent in equations 1, 2, 3, 4, 7,

10, and 11 may be applied to the product of two transfer

functions, H1(S) H2(S). By using some simple algebraic

manipulations it can be shown (Appendix III) that the

overall mean-square duration of the cascaded impulse

responses is

u
2

=
2

4- a
2

t 1 2
23)

From equation 23 it is seen that the overall duration

cannot be less than the sum of the individual variances of

the individual impulse responses.
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Another item of possible value in the analyses to

follow is the cumulative effects of adding, or super-

imposing, unit impulse responses that overlap in, time. It

is desired to have this effect expressed in terms of the

temporal moments of the individual impulse responses. As

above, the principles inherent in equations 1, 2, 3, 4, 7,

10, and 11 may be applied to a superposition of unit impulse

responses to yield the following expression for the overall

variance of the combined signal duration:

H.3. (0) E.

+ Tf(1 - Hi(o)/Ht(o)11

dH. dH.
dS dS

j

H
t
(0)

where H
t
(0) is the sum of the individual transforms

evaluated as S--*0: Hi(0) the individual transforms also

evaluatedas&>0;aFthe mean-square duration of each

24)

impulseresponseland.Ti the square of the mean-time of2

each impulse response. Of course, many other variations

of this expression may be obtained by further algebraic

manipulation. Derivation of equation 24 appears in Appendix

Iv.

A last topic of importance is evaluation of to (or I)



and a 2 of unit impulse responses for the special class of

transfer functions which consist of pure exponential

functions of the following form:

H(S) = A eF(S)

where A is a real or complex constant. The first and
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25)

second derivatives of the above form of transfer function

are

and

dH = A eF(S) dF = H(S) dF 26)
dS dS dS

d
2H = A eF(S) [12 + A eF(S) d

2
F

dS2 dS

= H(S) jd2F + IdF )2].
(dS

dS2

27)

The values of t
o
and a 2 from equations 7 and 11, in

terms of the above derivatives of H(S) are

and

to = Lim - dF
dS

2
a = Lim d2F

S---o Ts-2

Equations 28 and 29 are used in Chapter VIII to

estimate unit impulse duration for atmospheric and for

28)

29)
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ionospheric propagation media which have no easily obtained

inverse Laplace transforms.
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An Example of the Proposed Technique

The techniques described in this chapter are applied

in the following chapters to several elements and

components of importance not only to conventional radar,

but especially to those of probable importance to a non-

sinusoidal radar.

At this point in the development, however, it is felt

that an example of the transfer function/unit impulse

response technique applied to the short Hertzian dipole

would be useful. This example will not only illustrate

the method, but will also lend credence to it when

compared to the resul÷s of YarTuth's (1972) direct transient

analysis.

The instantaneous electric and magnetic fields

associated with the short dipole undergoing steady-state

sinusoidal excitation in standard spherical coordinates

and in conventional complex notation (Ramo, Whinnery, Van

Duzer, 1965) and in which the complex time factor eiCtitis

omitted, and with the amplitude of the driving current set

to unity, are shown

HOW) =

Er(w) =

below'

h sin 8 [00 + 1 ] e 30)

31)

err

h cos 0

r r`

- 2-

14,7T

[2n

r
2 ,

Oder)

and
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Ee(W) = h sin 0 pura n - j le-j/3r 32)

4n r r
2 Weril

In the above set of equations h is the dipole length,

0 the colatitude angle of the spherical coordinate system,

r the distance from the center of the antenna to the field

point, co the operating frequency, e the permittivity and

u the permeability of the medium, and n its intrinsic

impedance, and 0 = W /c, with c the speed of light in the

medium.

Equations 30, 31, and 32 are valid only over a range of

frequencies in which the length h is very small compared to

the shortest wavelength that will be present in any

excitation current. The condition leading to this

limitation is the fact that the antenna element is so

short that the instantaneous current along its length is

uniform and changing in time in unison. This situation

requires that the time needed for a disturbance at the

driving terminals to propagate to the ends of the antenna

and back is a very small portion of the shortest time

interval of interest in the excitation current.

Quantitatively, for a period of 50 pico seconds, which

appears to be the present lower limit on switching times,

the above limitation corresponds to a dipole length of

h << 2cT = 600 x 106 x 50 x 10
-12

= 3 cm. This fact means

that practical antenna elements would be limited to lengths
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of a fraction of a centimeter or less which could be

difficult to achieve mechanically. However, when

considered as an ideal element of current or current

density of infinitesimal dimensions, equations 30 through

32 are applicable since the length of the element can always

be made small enough to meet the above inequality. In this

abstract case, the inverse transform, which is integrated

from -m to +00 over the frequency variable will be valid.

In terms of the transfer functions discussed earlier

in Chapter VI , the field quantities of equations 30, 31,

and 32 may be considered as such functions. They relate

the sinusoidal amplitudes and phases of these field

quantities at an observation point to those of a sinusoidal

current exciting the dipole element.

Note also the exponential factor e-j". The $ factor

in the exponent is a function of frequency describing the

medium surrounding the antenna element. For a lossless,

nondispersive medium 0 = C&) /c. This is the case considered

in this example while the dispersive case is considered in

Part III. The effects of the medium are further reflected

in equations 31 and 32 through the intrinsic impedance of

the medium n, the permittivity e, and the permeability u.

It is also important to notice that extraction of the

inverse Fourier or Laplace transforms of equations 30, 31,

and 32 in no way affect the directional nature of these

field quantities. For a lossless and nondispersive medium
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(i.e., 0 = co/c and n is a constant) the only direct

involvement of the distance r in the inverse transform is

in the exponential factor ejWr/c. This factor transforms

to the time domain as a simple time retardation (t r/c)

of the wave due to the finite speed of the radiation.

Because the systems under consideration are causal

their impulse responses must vanish for negative time, hence

their Fourier and Laplace transforms are identical with S

substituted for jc4 The extensive tables of Laplace

transforms may then be used to evaluate the unit impulse

responses desired.

Equations 30, 31, and 32 may be written in terms of

the Laplace transform variable S. For the nondispersive

case with 0 = W/c they become

H0(S) = h sin A S+ 1 e
-Sr/c

33)
4TT rc

r2

E (S) = h cos e [ 2n + 2 e
S- r/c

34)
r

r2 Ser34/T

-Sr/c
E
e
(s) = h sin e + n + 1 e 35)[Su

41/ r r2 Ser3

Realizing that the exponential factors merely

represent a time retardation of -r/c in the time domain,

it is only necessary to look up the quantites in brackets

in a suitable table of Laplace transforms. This act yields,

for a unit impulse of current driving the dipole, the
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h0(t1) =

e
r
(t') =

e (t') =

h sin 9 r ) o(V)]
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36)

37)

11(11 38)

Orr L

h cos 0

re

5(t1)

r2

2 u(t')
4ff 2

[2:

h sin 0 6:(t')

er3

+ n .5(t') +[12

4v r r2 er3

where 61(t') indicates the time derivative of the unit

impulse o(t'), t' = retarded time argument = t - r/c, and

u(t') is the unit step function.

The response of the short dipole to any arbitrary

current excitation is provided by the superposition, or

convolution integral:
Co

ii(x) h(t' - x) dx = i(t' - x) h(x) dx 39)

.0

where i(t') is the arbitrary excitation current and h(t')

represents hd(t'), e (t'), or e8(t').
r

The limits of integration on the above superposition

integral may be modified to fit a causal system with the

excitation current starting at t' = 0:
t' rp

i(x) h(t' - x) dx = fi(tt - x) h(x) dx .f 40)

0 o`
Recall that t' is the retarded time variable t - r/c.

This extremely simple case is readily evaluated by the

use of the following relationships:
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(x) 6(x - a) dx = i(x) 6(a - x) dx = i(a), a>0, 41)

i(x) 6'(x - a) dx = i(x) 6'(a - x) dx = - dil, 42)
dx

and
t' to

Ii(x) u(t' - x) dx =J i(x) dx .

o o

The field quantities due to arbitrary current

43)

excitation become

H0(e) = h sin A [;1 di + i(e) 44)
4v c de r2

t'

E (t') = h cos 8 [2n i(t') + 2 i(x) dx 45)
r 4v -3

r2 er

E
e
(ts) = h sin 0 [u di + n i(e)

4v r dt' r2
t'

+ 1 oini(x) dx

era

46)

With slight manipulation equations 44, 45, and 46 may

be shown to be identical to the field quantities derived

by Harmuth (1972). Notice also that the dependence upon e

is identical to that for sinusoidal excitation and that it

is independent of the functional time variation of the

excitation current,

The presence of field components inversely

proportional to the distance r, its square, r2, and its

cube, r3 indicates the generation of near, intermediate,
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and far zones. It is of great importance also to notice

the relative absolute magnitudes between the near and far

zone components (1/r versus 1/r2 or 1/r3) depends also upon

the instantaneous values of the excitation current, its time

derivative, and its time integral, Hence, it is seen that

for arbitrary time variation, division of the space around

the dipole element into near, intermediate, and far zones

depends on the temporal partitioning of the waveform and its

related time derivatives and integrals. This fact is in

contrast to the frequency partitioning criterion when

sinusoidal excitation is used. The functional forms of the

field quantities resulting from a current having the time

variation of a Walsh function, one of its time derivatives,

or its time integral (or those of similar type bi-valued

waveforms) are then easily obtained by use of equations 44,

45, and 46.

From the practical view the short dipole has little

value except as an elemental portion, or building block,

for antenna structures of finite dimensions. The preceding

analysis has value in that the equivalence of its result to

that of Harmuth's (1972) direct analysis lends credence to

the method proposed.
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Chapter VIII Propagation Characteristics of Nonsinusoidal
Waves in Physical Media

A very important consideration in the application of

a nonsinusoidal carrier wave in radar is the effect of the

terrestrial atmospheric environment on its propagation.

Two general categories of media must be considered in

Earth-bound radar applications: the lower, unionized

regions5: and the upper ionosphere. The lower atmosphere,

although not ionized and essentially nondispersive in the

range of electronically generated (sinusoidal) frequencies,

does cause varying degrees of attenuation depending on

frequency, local pressure, temperature, and humidity.

Because of the extreme mathematical difficulty the impulse

response of the lower atmosphere is not determined in this

study. Rather, the techniques of Chapter VII are exploited

to estimate its root-mean-square duration.

The upper ionized regions of the atmosphere present

varying dispersive conditions which depend upon the

direction of propagation with respect to the direction and

strength of the local geomagnetic field, and the operating

frequency. Because of the extreme mathematical difficulty

the general case with the geomagnetic field is also not

considered here. The simplest case offerring mathematical

ease is that of the ionospheric plasma with the geomagnetic

5) Below approximately 50 kilometers.



field weak enough to have negligible effect. The

propagation constant corresponding to this case As that

of equation 34 of Chapter VII

j k(S) = I R7--04.),2
co Y
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1

in which c
o

is the free space speed of light and co is the

plasma radian frequency of the free electrons in the plasmak

In the MKS units 00.10 3,200 N in which N is the density of

the electrons per cubic meter.

The main interest here is in how the electric and

magnetic fields change as the wave progresses through the

medium from one point to another. In the sinusoidal steady-

state case this effect is described by

En (S) H4 H2(S) e-jkz e-z-N/S2 + Gip /c

El(S) H1(S)
2

The direct inverse Laplace transform (Roberts and Kaufman,

1966, Item 48, p. 251) yields for the unit impulse response

h(t) = 8(t z/co) z (,L4 u(t z/co) J14Vt2 - 22/02)
o

COP
o

3)

Fortunately equation 3 decomposes in a manner which

isolates the distortion terms from the ideal impulse term.

6) The motion of the positive ions has been neglected.
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This ideal term is a unit impulse delayed by the speed of

light (in vacuum) between any two points separated by a

distance z. It reproduces a nondistorted component of the

wave. The second term is a subtractive distortion

component accompanying the disturbance and, to a first

approximation, it is proportional to the separation z and

to the square of the plasma frequency.

A measure of the distortion caused by the second term

of equation 3 above is given by its total area as compared

to the unit area of the first ideal impulse term. The area

of the second term is

Area = Z W2
co P

z

wpvt2
/ 2
tv -

C'JP

z2/c20 ) dt

z2/c0

or, in terms of T _ z2/c(; , the area is

00

Area = z J (co T) dT
c
o

P
1

0 mr,r2
-

,2/,2
" /'o

Equation 5 above is a standard form (Abramowitz and

Stegun, 1965, item 11.4.48, p. 488) which yields

4)

5)

area = z iIi(zcop/c0) Ki(izcop/c0) = 1 - e -z WP' co 6)

0 P

where I*(x) = (2/Trd sinh(x) and Ki(x) = (n/2x}1 e
-x

are the

modified Bessel functions of half order of the first and

second kinds respectively.

Depending on the distortion criterion selected the
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quantity zco /c
o
must be such that the right-hand side of

equation 6 be much less than unity. For example, if it is

desired that the distortion terms contribute no more than

10% area to the progressing wave, then

1 - ez Co.IPd
co z < 0.1 co/cop 7)

or

z < 5.0 x 105/ N

For typical ionospheric electron densitites of 1010

electrons per cubic meter the maximum allowable separation

would be

z 4 5.0 x 10
5/105 5 meters

8)

9)

which shows that low-distortion propagation of a very

short pulse or a sudden step through typical electron

densities will be limited to very short distances.

It is also important to realize that at a given single

point in the plasma that propagating electric and magnetic

fields do not have the same time variation because they are

related by the frequency dependent intrinsic impedance of

the medium. In Laplace operational form we have

,r"H(s)=L= vs2 + C4)
2 /S

E(S) n no

which yields for the unit impulse response relationship

10)



between the instantaneous values of the two fields

(Roberts and Kaufman, 1966, item 85, p. 215)

[h(t) = 1 8(t) + Wp u(t)

no

105

J1(COpx) dx 11)

Equation 11 shows clearly that there is a distortion

term in this situation also. The area of the integral term

has a maximum value of unity (Abramowitz and Stegun, 1965,

item 9.1.27, p. 361), hence, in order that the distortion

term have small effect the plasma frequency cap (or

equivalently, N) must be small.

It is also of interest to notice that after a time

interval of 4/ cop (the first zero of J1(x) is approximately

4) the integral is essentially unity. This has the effect

of producing a distortion component of the magnetic field

proportional to the time integral of the electric field.

Also of interest in airborne or space borne radar

applications is the effect of immersing a short dipole

antenna element in a plasma or in the terrestrial

ionosphere. Referring to equations 30 and 32 of Chapter

VII the steady-state sinusoidal far fields in spherical

coordinates are

= H
0

h sin e jk
jkr

12)

E = Ee de = ge uh sin e j we-jkr 13)
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Only the frequency sensitive portions of equations 12

and 13 need be considered. For a plasma jk(S) is given by

so that

and

jk(S) = 1 f S2 + W2

Co

14)

2

H0(S) = 1 S
2 +(4 e-rVS

2 + Cdp /co
15)

co

r V S2 + W-72/c
E (S) = S e p o

The inverse transforms of the above expressions are

(Roberts and Kaufman, 1966, item 48, p. 251 and item 39,

p. 172)

e
e
(t) = 8.(t - r/c

o
)

+ co4 r t J2(4 mit2 - r2/cg u(t - r/co)

co 602 -Nit2 - r2 /co

1 2
- Gj r b(t - rico)

co

16)

17)

t

+ u(t r/c0)02 (13V (t - r/co) T Ji((k-,)1t7-7P)dT

co dj CO \A? - T2
p 18)



or

h
0
(t) = 1 8'(t - r/c

o
c o

2

J1( /co
co -4 2

-
r2Wp t

/ o
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+ r COp
2 j

2
( co

p -\/t2 - r2/cg ) u(t - rico) 19)

co W2
[t2

r2/cg]
P

Fortunately equations 17 and 19 separate the distortion terms

from the ideal wave. The first terms each represent

undistorted propagation of the first time derivative of the

excitation source current as expected while the remaining

terms represent distortion terms propagating with the

original disturbance.

The distortion terms are all seen to increase with

the distance from the antenna and to increase sharply with

plasma frequency oap. In order to have little effect on

the propagating waves, the time derivative of the

excitation current must be such as to make the term

containing the derivative of the unit impulse the dominant

quantity when equations 17 and 19 are convolved with the

excitation current waveform to obtain the resultant fields.

It is obvious that satisfactory performance depends upon

the temporal form of the excitation current as well as upon
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the characteristics of the plasma. medium.



Lower Atmosphere Impulse Response

The propagation transfer function of the lower

atmosphere is discussed in the latter portion of Chapter

VI and is given by an exponential expression similar to

equation 29 of that chapters

H(W) = e-zY(W)

where y(W) consists of a component due to oxygen

absorption, one due to water vapor absorption, and one

due to high frequency losses giving

=
e-z(yo(C0) + yw(GO) + Y (60))

or, equivalently

H(C0) = ezY0(6° e-zYw(CO) e-zY(CO)

109

20)

21a)

21b)

The quantities yo(C0), yw(W), and y(W) are all

complicated functions of frequency, pressure, temperature,

and absolute humidity so that any detailed analysis of a

given situation must include these atmospheric parameters

along the path of propagation.

Unfortunately the three exponential factors above are

too complicated to easily invert either individually or as

a single exponential factor. However, we may still estimate

the root-mean-square duration of the unit impulse response

due to each factor. From these quantities we may then
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obtain the overall impulse response root-mean-square

duration by equation 23 of Chapter VII. Equation 29 of

that chapter provides the mean-square duration, a2,

contributed by each exponential factor in equation 21 above.

Note that yo(CO) and ?w(W) further decompose into

additive components yielding

Y o (CO) = y
ol

+ y
o2

y
o3

Yw((4) Ywi Yw2

22a)

22b)

Use of equations 57, 58, and 59 of Chapter VI then

gives for each component, each of which has been corrected

to a temperature of 293° K, an atmospheric pressure of

1013.25 millibars, and an absolute humidity of 7.5 grams

per cubic meter, in

-7
y
ol

= 0.781 x 10

= 0.217 x 10
-6

o2

Yo3
= 0.217 x 10

-6

Ywl
= 0.286 x 10

-6

operational form

[ s2

S
2 - (0.3517x101 )

S
2

(S + j 39.0 x 1010

s2

)2

(S j 39.0 x 10
10

2

)

2

[

(s - j 13.9 x 10
10

)

2

23a)

1- (0.972x1010)2

23b)

- (0,972x1010
)

23c)

- (1.79x10
10

)

2
]

23d)



Yw2 = 0.286 x 10
-6 S

2

(S+ j 13.9 x 101°)2- (1.79x1010)2

y = - 98.92 x 10
-26

x S
2
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23e)

23f)

Differentiating the above set of equations to obtain

the second derivatives as required by equation 29 of

Chapter VII yields

d
2
y 1 = 5.796 x 10

12 [S2 + (0.203 x 1010)2

ds2°-` - (0.351 x 1011 3

d
2
y
o2

= -j 5.281 x 10 5
x

ds2

S3 + j 5.854 x 1011 S2 + j 2.969 x 1034

[ (S + i 39.0 x 1010)2 - (0.972 x 1010)2 3

12203 = Al 5.281 x 105 x

dS2

[ S2

S3 - j 5.854 x 1011 - j 2.969 x 1034

(S j 39.0 x 1010)2 - (0.972 x 1010)13

d
2
y = +j 1.590 x 10

5
x

dS21-6

[ S3 - j 21.19 x 1010 j 1.388 x 1033]

(S - j 13.9 x 1010)2 - (1.79 x 1010)13

24a)

24b)

24c)

24d)



d
2
y = -j 1.590 x 105 x

dS2

[ 0 + j 21.19 x 1010 S2 + 1 1388 x 1033

ES + j 13.9 x 10)- - (1.79 x 10 10 )
213ln 2

d
2
y = - 1.980 x 10

-24
.

dS2
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24e)

24f)

As S approaches zero the six second derivatives above

become

lim = - 126.2 x 10-28
S--0

lim d
2
y = - 0.0445 x 10

-28

S--" dS2

-28
lim d

2
y = 0.0445 x 10

dS2°J

lim d
2 yw1 = - 0.2913 x 10

-28

dS2

-28
lim d

2yw2 = 0.2913 x 10

dS2

-28
lim d

2
y = - 19 800 x 10

S-->0
dS2

The mean-square durations due to each of the above

factors are

a
2

= 126r2 x 10
-28

z seconds
ol

25a)
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a o22
= 0.0445 x 10

-28
z seconds

2
25b)

-28
a
2 = 0.0445 x 10 z seconds

2
25c)

o3

a
2

l
= 0.2913 x 10

-28
z seconds

2
25d)

w

-28
a
2

w2
= 0.2913 x 10 z seconds

2
25e)

a
2

= 19 800 x 10
-28

z seconds
2

25f)

The total mean-square duration by equation 23 of

Chapter VII is the sum of the quantities in equations 25

above

or

a
total = 19 926.9 x 10

-28
z seconds

2

1a = 141.16 x 10 z2 seconds
total

26)

= 1.4116 z2 picoseconds. 27)

Two important facts are to be concluded from equations

25 and 26 above. First, the root-mean-square duration of

the response of the atmospheric medium to an ideal impulse

increases directly with the square root of the distance z

as the wave propagates through the medium. This fact puts

a limit on the maximum useful distance, z. If twenty

percent of the pulse width, Tw, of a propagating Walsh wave

is selected as the maximum permissible value of a total

below which suitable operation takes place, then



2
z
max

m (0.2)
2

Tw /(1.4116)
2

= 0.02 T2

where Tw is in picoseconds. As an example, for T
w

= 50

picoseco nds,

z 0.02 x 50
2
= 50 meters

max

while for T
m

= 10
-9

seconds yields

z
max

m 0.02 x 10
6

= 20 000 meters.
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28)

29a)

29b)

Equations 29 mean that operation of a Walsh wave radar in

the terrestrial atmosphere must be limited to sequencies

for which the increase of rise and fall times are negligible

portions of pulse duration Tw for the range performance

required of a particular radar application.

The second important observation, which comes from

equation 25, is that the major contribution to increases

in rise and fall times comes from the a term.

Contributions from the other terms may safely be ignored.

From equations 63, 64, 65, and 66 of Chapter VI it is

evident that the magnitude of atotal
depends upon

atmospheric pressure, temperature, and absolute humidity.

At higher altitudes remains the dominant contribution

to atotal . With correction factors C and C2, the value of

a
total

, to a good approximation, becomes



or

1/2
a
2

total
7s 1.98 z (293/T) P (1 + 0.00460

1013.25 x 10
2
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30)

*
a m 1.4116 z2 (293/T)3/2 P(1 + 0.00460
total 31)

10
12 1013.25

If temperature, pressure, and absolute humidity vary

with position along the propagation path equation 31 would

have to be applied and integrated over the entire path

with these three quantities expressed as functions of

location, or z.

The above discussion indicates that, since a? is the

dominant contributor to waveform distortion, the

operational form of the atmospheric medium transfer

function is essentially

H(S) e
0.989 z S

2
x 10-24

In the frequency domain of the Fourier transform it

becomes, with S = jOU.

e-0.989 z(.02 x 10-24

32)

33)

The inverse Fourier transform of equation 33 (Thomas,

1969), including the propagation delay z/c
o'

yields a good

approximation to the atmospheric unit impulse response:
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2
e
-2.53 x 1023(t - z/c0)2/z

h(t) Al 8.04 x 1 34)

z

The form of the above impulse response is that of a delayed

Gaussian waveform which stretches out and decreases in peak

amplitude as it propagates into the medium.
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Chapter IX Transmission Structures

A very important category of radar system element,

either for sinusoidal or nonsinusoidal operation, is that

consisting of the two-conductor transmission line and the

hollow, metallic waveguide. It is anticipated that these

elements will be required or useful in the implementation

of a nonsinusoidal radar much as they are in conventional

radar: i.e., to transmit energy or signals between

generating elements and transmitting elements (antennas),

or to signal processing elements within the radar system,

The specific transmission elements examined here are

the coaxial cable, microwave stripline, and the rectangular

and circular closed waveguides. The microwave stripline

is especially important since it also constitutes the

primary means of interconnecting the individual solid

state devices comprising integrated circuits. Such

integrated circuits surely will find extensive use in the

implementation of a nonsinusoidal (Walsh) radar.

In all cases only the traveling-wave transmission

characteristics of these devices are considered. The

termination problem and reflections are not treated here

as it is felt by the writer that distortion imparted by

the device to a signal as it propagates along the line or

guide is the more important problem to investigate in this

study.
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Transmission Lines

In this section general relationships for transmission

lines are developed and later specialized to the different

types under study.

The expressions relating sinusoidal voltage or current

at two different points along a transmission line and

separated by a distance z in the operational form of the

Laplace transform are

E
2

= e
zy

El

12 = e-vr

17
1

with y = (ZY)1 where Z = series impedance of the line per

unit length and Y = shunt admittance per unit length.

These impedance and admittance quantities are in turn

expressible in terms of the geometry of the line and the

electrical properties of the materials used to construct

the line.

In general the impedance and admittance functions in

complex and operational forms are:

Z(C0) = r + jCOL , Z(S) = r + SL

Y(W) = g + jC0C Y(s) = g + SC

where r, L, g, and C are all functions of geometry,

material characteristics, and operating frequency. In

addition, in a realizable system Z(S) and Y(S) must be

2)

3)
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analytic functions of S (Murakami and Corrington, 1948).

The voltage and current at any location along the

line are related by

E(z,S) = I(z,S) Z0(S) 4

where Zo(S) is the characteristic impedance of the line

which is a function independent of z for a uniform lines

%Cs) = (z/Y)1 5)

The conductance and susceptance quantities comprising

the line admittance Y may be expressed in terms of the

properties of the dielectric material separating the

conductors making up the line:

g = ad Fg , C = e' Fe 6)

In equation 6 above the quantity ad is the loss factor, or

conductivity of the dielectric usually expressed as

a
d
= We" . 7)

The quantities e' and e" are the real and imaginary parts

of the permittivity of the dielectric material in complex

form:

e = e' - j en 8)

In general e' and e" are frequency dependent and are

related by the Hilbert transform (Ramo, Whinnery, and Van
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Duzer, 1965). The quantities F and F
c

are dimensionless

quantities entirely dependent upon the line geometry and,

in the International System of units,

Fg = Fc 9)

The series impedance of the line is similar with the

exception that the geometric factors of the resistive and

inductive terms are not equal. The resistance due to the

bulk conductivity of the conductors and the external induc-

tance due to the flux linkages existing between the

conductors are both augmented by the skin effect. This

effect adds frequency dependent components. The general

form of the line series impedance is then

z = r + z
sk

SL

where z
sk
= high frequency asymptote of the skin effect

impedance,

zsk Fsk (Su/ac)

10)

11)

where u is the permeability of the conductor material, ac

is its conductivity, and Fsk is a skin effect geometric

factor.

The inductance term is

L = u FL 12)

where FL is a dimensionless geometric factor which, in the
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International System of units is the reciprocal of Fe:

FL = 1/F0. The resistive term in equation 10 is a static

d.c. resistance which would be included in z
sk if that

impedance term were exact. In approximate terms

r = Fr /ac

where F
r

is also a geometrical factor. However, for the

band of frequencies over which Walsh function pulse trains

are likely to be used the r term will be insignificant.

13)

Then

1 ,

z z
sk

+ SL = F
sk

S2(u/ae)12 + SL 14)

Also, for the purposes of this study the permeability of

all materials is assumed to be that of free space, or uo.

Before proceeding further it is necessary to examine

the properties of the conductor and insulating materials

normally used in the construction of transmission lines.

The conductivity of conductors normally used falls in

the range of 3.8 x 107 to 6.8 x 107 mhos per meter with

that for copper being 5.8 x 107. Conductivity is also

frequency dependent, its general frequency dependence

being given by Kittel (1968) as

ac(S) = a0 /(1 + Sive) 15)

in which ae is the low frequency, or d.c. value of the



122

conductance and ve is the collision frequency7 of the

electrons within the conductor material. For the family

of conductor materials used this frequency varies from

2.40 x 1013 radians per second for silver to 4.106 x 1013

radians per second for copper. These quantities and the

plasma frequency, gyp, are tabulated in Table III for

commonly used metallic conducting materials. The values

of plasma frequencies are from Sze (1969) while the

collision frequencies were calculated using methods

discussed in Appendix V.

Taking copper as the conducting material most likely

to be used, for a collision frequency of 4.106 x 1013

radians per second, little effect will be encountered for

operating frequencies up to one tenth of that value. This

condition corresponds to a useable frequency limit of about

653 GHz. If the shortest switching time to be expected in

operational systems is 50 picoseconds, the highest

frequency component to be found in such a wavefront is

approximately 1/50x1012 seconds cs 20 GHz. This value is

well below the 653 GHz limit at which the conductivity of

copper is no longer purely real. For the purposes of this

study, then, frequency dependence of the conductivity of

7) As used here, v, is the collision frequency which is
the reciprocal of the relaxation time T as used by Kittel.
A plus sign is also used for S/vc since in engineering
practice exp(jcot) is used rather than exp(-jcot) as used
in physics.



Table III. Conductance and Collision Frequencies of Typical
Transmission Line Conducting Materials.

Materials Conductivity, ao Collision Frequency, Plasma Frequency,
mhos/Meter Ire, radians/second cop, radians/second

Copper 5.80 x 107 4.106 x 10
13

1.64 x 0
16

1.38 x 101
6

Gold 4.15 x 10
7

4.063 x 10
13

Silver 6.80 x 10 7 2.444 x 10
13

1.37 x 10
16

2.40 x 10
16Aluminum 3.80 x 10

7
13.42 x 10

13
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typical metallic materials used (see Table III) may safely

be ignored. Also, in order to reduce computing effort, a

value of 6.0 x 107 mhos per meter is used for the

conductivity of copper in subsequent analyses.

Past measurements of the dielectric constants and loss

tangents of several commonly used dielectric materials have

been summarized recently by Breeden and Sheppard (1967)

and Balanis (1971). These investigators also presented

their own findings at frequencies of 60 GHz., 71 GHz, 90

GHz., and in the 250 to 450 GHz. band. Measurements by

earlier investigators range from 10 GHz. to 1000 GHz.

These data are summarized in Tables IV and V. In Table

IV it is apparent that, up to a frequency of 25 GHz., the

relative dielectric constants e' /e0 for all the materials

shown are constant, while the changes occurring up to

450 GHz. are all less than four percent.

The loss tangents, although varying much more over

the entire frequency range shown, change very little over

the 20 GHz. band expected for a 50 picosecond rise time.

In addition to their small variations, their values are

all less than 10-3 . Because of the small value of e" in

comparision with e', it will be ignored in the following

discussions.

Using equations 3, 12, and 11 the product of ZY

becomes



Table IV. Relative Dielectric Constant, e'/e0 = k'. Measurements at
71 GHz. and in the 250 to 450 GHz. band due to Breeden and Sheppard.

Material Frequency, GHz.

10 25 70 71 139 343 250- 890 % of change
450 up to 450 GHz.

Fiberglas 4.38 4.34 -0.9

Polyethylene 2.25 2.24 2.28 2.31 2.27 3.1

Polystyrene 2.54 2.54 2.53 2.57 2.53 2.57 2.48 -3.6

Rexolite 2.54 2.58 2.54 2.52 -2.3

Teflon 2.08 2.08 2.10 2.10 2.07 2.07 1.99 1.94 -2.5



Table V. Loss Tangent, 1 03 x e " /e' for Typical
Transmission Line Dielectric Materials

Material Frequency, GHz.

10 25 70 139 400 600 1000

Teflon 0.37 0.60 < 2 < 2 1.0 2.0 2.0

Rexolite 0.47 1.0 3.0 5.0

Polystyrene 0.30 0.53 0.90 2 to 3.0 5.0 7.0
4
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ZY (SI Fs10J-----
uo/cro + SL)(-jSe" Fg + Se' Fc) 16)

= (SuOFL + SFsijic-57) SFoe' (1 - je"/e') 17)

m S(S + SlF,kThdr/u0ao) FcFL e' uo . 18)

FL

Recalling that Fc = 1/FL the above yields

ZY m S(S + S* Fsk 'N/l/ucac ) e' u0 18a)

FL

and

e' u
o

= 1/c2 = k' /co

where c is the speed of light in the dielectric medium

while c
o

is the speed of light in free space and k' is the

relative dielectric constant of the medium. Then

= 'VET= ,p7170 O.-Vs + S* F
sk

/(FL o c

Y m 1 (k')*
c o

+ S2 F
sk

/(F
L
Neo T

c
)

Y m 1 (10) S-N4/1 + F
sk

)

c
o

and

19)

20)

21)

Z
o
=VZ/Y m

o/c:re
+ S u

0
F
L

22)

F
a____

e' S

1 1 *
1 + u2 Fsk/(u0FLS2 o ) . 23)

o
Nill

0
F L/ F

c
e
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But FL = 1/F
c

so that

Zo FL V;Te7 V1 Fsk /( FL N57; ) 24)

and 1"\F77 = n', the intrinsic impedance of the dielectric

medium. Therefore,

Zo m FL n' V1 + F
sk

/(S* Fi,\57;
)

25)

Zo mFL no l-V7ics-V1 + F
sk

/(S2 FL -N5o 7c -) 26)

Expressions for the quantities Fsk, FL, and Fc are

tabulated in Table VI for the various transmission line

configurations that might be encountered. Table VII lists

the same quantities for several commercially available

coaxial transmission lines.

The quantity of primary concern is the transfer

function for a section of transmission line which is

H(S) = V2(S)/V1(S)

-
= e

,
- f\1177 S + Fsk /(S2FT-N/1710 7c ) ,-o

m e 27)

Since large values of. S will have the dominant effect

in expected applications, the following approximation may

be used for the radical in the exponent:

+ F
sk

FL-41170 3c
L

) m 1 + Fsk /( 2S F 4710 3c ). 28)



Table VI. Transmission Line Geometric Factors.

Line Type

Coaxial

Twin Lead

Parallel
slab

Stripline,
1 gnd plane

Stripline,
2 gnd planes

Fsk, meter-1 FL F
c

F k, meter-1

FL

1 [1 +1 ]
2v r r. 2v --51

1 ln r
ln(r /r)

2v (1/r + (1/r

o 1 r In ro )

1 o 1

28 __,-....... cosh-1s/d IT 2s/d
vd2-VP/dz - 1 IT cosh-ls/d

2/b a/b b/a

1/2b a/b b/a

1/4b a/2b 2b/a

(s2-d2)*cosh-ls/d

2/a

1/2a

1/2a

Legend; All dimensions in meters. s= spacing; d= diameter of twin lead
conductor; re inner radius of coaxial outer conductor; ri= radius of
coaxial inner conductor; b= conductor width; a= conductor spacing.
For the parallel slab and stripline configurations Fsk, FL, and F

c are
approximations that ignore fringing effects at conductor edges. For
a typical integrated circuit am 0.001 inch.



Table VII.

Line Type

Coaxial Transmission Line Geometric Factors.

Outside F
sk

, F
L

F /F
sk L'diameter, in.

meter-1 meter-1

RG-55A/U 0.116 233 0.193 1 210

RG-63B/U 0.285 269 0.386 698

RG-62A/U 0.146 290 0.279 1 040

RG-59A/U 0.146 316 0.294 1 075

RG-141/U 0.116 230 0.185 1 240

Mini coax 0.0042 6 700 0.200 33 500



Then

k,

H(S) e
-zS(10)-ic'

-c e
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(k')1/c0FL(uoac)i

In accordance with the -31-,iftin.P; tPcorem, the first factor

of equation 29 has the effect of introducing a uniform

delay of z(k')2/co in the time domain. With

t' = t z(10)2/60

the delayed unit impulse response corresponding to the

30)

remaining

p. 246)

-1

factor is (Roberts and Kaufman, 1966,

-a2/4t'

item 14,

L e a e = h(t') 31)

2 n* (t')57

where

a = * z F
sk

(10) /c
o
FL (uo

a
c

) = z a' 32)

The function h(t') may be rearranged to make its time

behavior stand out more clearly:

h(t') = 4 (a2/4t')3/2
e-a2/4.0

33)

a2 ni

which is a continuous function having a value of zero for

t' 0 and a single maximum, or peak value at t' = a2/6.

These conclusions are easily arrived at by examination of

the function

(1/T3/2) e-1/T



132

in which T is substituted for 4t.,/,12. It is plotted in

Figure 5.

Unfortunately, vle principie; discussed in Chapter

VII which allow evaluation of the temporal parameters of

a waveform from the frequency domain transfer function do

not apply to the above unit impulse response. It must

then be considered in the time domain. Writing equation

33 in terms of a normalized variable T = 4t'/a2 yields

h(T) = 4 (1/T3/2)
e-1/T

34)

a2 Tr'

The factor a2/4 is a scale factor which stretches or

shrinks the normalized function proportional to a.2/4.

Hence, the smaller a2 may be made, the shorter will be the

duration of the unit impulse response and the greater will

be its amplitude making it approach an ideal impulse.

It is obvious from equation 32 that better performance

with a transmission line is obtained with a medium having

low dielectric constant IC, a geometric form or structure

providing a large inductance factor F
L

(or equivalently, a

low capacitance factor Fe), high conductivity conductor

material, and a low value of skin effect resistance

geometric factor, Fsk, Making the permeability of the

conductor material greater will also improve performance

if it can be done without increasing losses.

The plot in Figure 5 shows what can be considered to



0.41-

0.3+

h(T)I

0.2

Total area .ur,
-3/2

e
-1/T

dT = 11'1' = 1.7725

64% of area representing the time integral is contained in T < 10

75% of area representing the time integral is contained in T < 20

90% of area representing the time integral is contained in T < 126

e-1/T/T3/2 = 0,00386 at T = 40

(e-1 /T/T/23 )

max
= 0.4099

0 4 1 12 14
T. dimensionless

Figure 5. Plot of (1/T3/2)
-1/T
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be a universal impvize response of a transmission line in

terms of the normalize:1 time variable T = 4t'/a-.

The quantity a2/4 also linearly dependent on z2,

the effect of which is to stretch the time scale of the

impulse response as it Propagates along the transmission

line. The overall effect of this phenomenon is that at

some particular distance the duration of the impulse

response can become great enough to cause excessive

distortion of a waveform that may be transmitted along the

line. The distance beyond which the distortion is

considered excessive depends upon the particular waveform

and the minimum time interval associated with it over which

such distortion can be tolerated.

Examination of Figure 5 shows that the impulse

response of a line he fal2?r, to about seven percent of

its peak value by the normalized instant of time T = 10.

Hence, if the value of t' which corresponds to that value

of T is considerably smaller than the minimum time

interval, Tm, associated with the transmitted waveform,

acceptable distortion occurs for

t' = 10 (a')2 z2/4 << Tm .

The useable length of the line becomes

z << 2 (Tr1/10)'

a'

If Tm is expressed in nanoseconds the above inequality

becomes, in terms of the quantity (a')2 in the fifth

35)

36)



column of Table VIII,

z « niTM x 10a 'a/(10(a')-) 2 x 10- 5.-\fr

a'
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37)

which puts an upper iir:it on the useable length of a

transmission line. Arbitrarily accepting a maximum value

for z as one tenth of the quantity on the right hand side

of equation 37, the maximum useable length of transmission

line is

z
max At 2 x 10 6'

a'

2in which a' = F
sk

/(4c
o
2 uo ac FL) . Values for z

max

are also listed in Table VIII for several commercial

coaxial lines and for several stripline configurations.

Equations 32 and 34 also indicate that the amplitude

of the impulse response varies inversely as z
2

. This fact

38)

means that the magnitude of the waveform decreases very

quickly with distance.

The remaining quantity necessary in the description

of a transmission line is its characteristic impedance, Zo,

of equations 22 through 26. In the frequency domain Zo

relates the amplitude and phase of the sinusoidal traveling-

wave voltage on the line at a given point to those of the

accompanying sinusoidal current at the same point. In

this respect Zo can he considered as a transfer function

relating these two quantities, its inverse transform will
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Table VIII. Commerclal Transmission Line Time Domain
Propagation Characteristics.

Line Type Insulating
Material

(Coaxial
cable)

RG-55A/U Polyethylene

RG-59A/U Polyethylene

RG-141/U Teflon

Minicoax FEP Teflon

Stripline

MPC-062-2 Polyethylene
a=0.0564"

MPC-125-2 Polyethylene
a=0.1194"

MPC-187-2 Polyethylene
a=0.1814"

MPC-250-2 Polyethylene
a=0.2444"

Integrated Silicon
circuits

k' F
sk
/F

14:

meter-1

2.3 1210

2,3 1070

2.1 1240

2.1 33500

2.3 350

2.3 165

2.3 108.5

2.3 80.9

11.7 19700

a'=

3.536x10-7

3.098x10

3.450x10

93.00x10

1.015x10

0.477x10

0.33.5x10

0.235x10-7

128.8x10

sk

z
max

f meters,
Tm in
nano-
seconds

5.661f;

6.464T

5.804;

0.224Y-

19.74T

41.094T11

63.54F
-m

35.14c

4c2u a F2ooci

-7

7

-7

-7

-7

-7

-7 0.164 T
M

a=0.001"
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represent the unit impulz,e resocnss of the voltage to an

ideal unit impulse of current in the time domain.

As shown above, the unit imn-olse response relating

arbitrary voltage an'i current cn a lossy transmission line

is not an ideal impulse function. This fact means that a

traveling-wave voltage and accompanying current on a line

do not have the same time variation. The same principle

applies to the reciprocal of the the characteristic

impedance, Yo = 1/Z0 also.

From equation 26

and

Z = F
O IJ1 + F

sk
/(S2 FL-N110 3c ) 39)

Y
o

L noV7+-Fsk /(S FL uoaC
) 40)

both of which, for the high frequency case wherein the

second term under the radical is very small, reduce to

and

PZ F n (1 -1- / -Nicg;))
O

FL 2 s k
O Ft

NriFr

1 __
Y $3.-\/7"-.0 ( 1 '"' A. F

fc2 p ,j7n.
_ /k, I, *

O sk id 'Aeon 6
FLno

The unit impulse responses corresponding to Zo and

Yo are

43.)

42)



and
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zo(t)
z112.22

Ls(t)
1?Ir

u(t)] 43)

5E L 8F ra u )t
L-i' c o

yo(t) E(t) _ Fsk (t-1)3u(t) 44)
F n
L o F

L
(no u

0
)2

both of which exhibit distortion terms. It is obvious also

that distortion due to these quantities may be reduced by

minimizing the Fsk/FL ratio as well as using conducting

materials having higher conductivity, ac.
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Closed, Hollow Metallic Waveg.uide.

Much like the two .:')nductor transmission line, the

closed single conductor waveguide has potential use in a

nonsinusoidal carrier radar just a:, in radar of the

conventional type. The properties of circular and

rectangular waveguide are investigated in this section

for the lossless case (i.e., an air filled space with

ideally conducting walls) which is mathematically

tractable. Because of the mathematical complexity, the

effect due to conductor wall loss is not considered.

The electrical and magnetic fields in a waveguide

due to sinusoidal excitation are available in any number

of texts on the topic. In Table IX are listed the TM and

TE fields in circular and rectangular waveguide from

Ramo, Whinnery, and Van Duzer (3965, pp 421, 422, 430,

and 431). The quantity of principle interest related to

these fields is the waveguide transfer function relating

the amplitudes and phases of a field component at two

places along the guide. This function is the same for all

components of a given mode of the TM or TE type. It is

H( S ,z) = e-zY 45)

Once y is found the waveguide transfer function is known.

Another quantity of interest is that relating the

transverse magnetic and transverse electric fields in the



Table IX. Electric and Magnetic Field Expressions in Circular and
Rectangular Waveguide.

Cross Section

Circular

Circular

Circular

Circular

Rectangular

Rectangular

Rectangular

Rectangular

Mode

TM

E =AJ (k ,-zy s nO
z n cr si nO

Hr=-nSAJn(kcr)e
zy

COQ rn11

kcnorWc
-zy, cos ins9

..16(k r)e
c sin ;n0

noub

E =-1i Z 0 ; Z
P "

cb
/

kc' P /a

TE

Hz=AJn(kcr) e
-zy cos ng

sin rip

-zy cos nO
Ern noSA Jn(ker)e sin Ya

k
c
r We

_zy cos nP
ErnoSA J:1(k r) e sin rIX

GOc

H0= Er/Zte, Hr=-E0/Zte

kc = p' /a
A= arRitrary amplitude factor

nl

E
z
=A sin kxx sin kY'

ezY

H
x
=SA k sin k

x
x cos k ye

-zy

k nc o c
-zy

H =-SA k
2
cos k

x
x sin k ye-

keno(A)c

1?,=H , E =H Z
4j- y tm y

-
tm

Hz=A cos kxx cos k y e-zy

E =n SA k cos kxx sin k ye
zy

x _Q y.

k
- zy

E =-n SA kxsin kxx cos k ye

c

H =-E Z H /Z
x Y' tel y r te

kx=mn/a, k =nn/b, k 2=k2 + k2 , k
x
=mr/a, k =nn/bcx y



waveguide. This ciLant! is

and

Er/H0 =

ErH0 zte
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or g' 1/Ztm 46a)/

or H/E
r

= 1/z
te

46b)

or the wave impedances of the waveguide and their

reciprocals.

The inverse Laplace transform of the waveguide

transfer function H(S,z) yields the unit impulse response

of a section of the waveguide which shows explicitly the

form of the distortion produced as a function of distance

along the guide.

The inverse transforms of the wave impedances and

their reciprocals (i.e., admittances) likewise show that

the transverse electric and magnetic fields at a given

transverse plane do not retain the same temporal form.

For the ideal lossiess conductor case it can be shown

(Ramo, Whinnery, and Van Duzer, 1965, p. 421) that a

waveguide propagation constant in operational form is

v 47)

where oje is the waveguice cut-off frequency (in radians

per second) determind by the waveguide cross section,

size, and mode of the fields propagating down the guide.



It turns out that noninusoidl = lds are described by

the same modal descr tions as ar2 the sinusoidal waves.

The waveguide Aave '_rIpecii.ne: in operational form

(Ramo, Whinnery, and Vaz1 Duzor,1c65) are

and

Z = n +CO2
tm c

Z
te

= n S (S2 + 002)-1

Y =S (S2 + (42
)
-/

,

tm no

Y,_
te

= 1 -VS2 + (.02
---7
no S
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48a)

48b)

49a)

49b)

where n
o

is the wave -r.cdam:e free space. The cut-

off frequencies for the two waveguide cross section types

are shown in Table X.

The inverse transforms of the quantities in equaJ-ions

45, 48, and 49 are readily available in Roberts and

Kaufman (1966, items 48, p. 251; 35, p. 225; and 56, p.

212 respectively) as

I,

_ R ct3 e oY =

1.11,'
o(t - z/c

o
) - z u(t - z/e

o
) J1 ((l) -Nrt - z / c oMW

), 50)

c -Vt2 - z2/c2
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Table X. Radian Cut-off Frequencies of
Rectangular and Circular Waveguides

Cross Section Wave Cut-off Frequency, c0,,,
Mode radians per second

Circular TM Pnl /r

Circular TE p' co /r
nl

Rectangular TM r c
o

rir277 + n2/b2

Rectangular TE " e o

,/m2/a2
n2 /b2v

Legend: r= inner radius, moters; co= speed of
light in free space, meters per second; p_, =
ltn root of Besse' function Jn (x)=0; p' =n-1.n1
lth root of J'(x) = 0; a = x dimension in
meters; b= y dimension in meters; m, n =
integers describing the transverse wave
modal structure.



r
L-1 LZ

tm
= L r. S COc i=

t

n
o

[S(t) + c o
c

u( g ;.7.1 0, d7 = z
tm

(t) , 51)jc

ti

and

L1 = S rN/P-7-01 =
1

° cJ

no [8(t) + We u(t) J1(COot)1
zte(t)

52)

Equation 50 is the unit impulse response of the

waveguide. This equation is very revealing in that the

first term, the ideal impulse, reproduces the transmitted

field with no distortion while the second terms is an error

term. Its effect in conv31-L:tion integral is dependent

upon its area with respect to the unit area of the ideal

impulse term. The net area of the error term is

Area = coc2 z

co
(CO -"\ t - z2/C2 ) dt .

1 c

coo -\.i t -2---77c7Q--
z /co

/c0
o

The above integral is evaluated by making the

following change of variables'

T =Nrt2:7zf772or t =-47? dt = T dT

and

t = z/c
o
--3 T = O.

53)

-\172+ z2/02
o



The area is then

Area = 032 z
co

(
°"3

T) OTC'
-;J/C2"C 0

= We z J(T) dT

co + z2c02/c2
o

where the change of variable T --->T We has been made.

From Abramowitz and Stegun (1965, item 11.4.48, p.488)

the above area is

Area8= 03 z Ii (W z/2c
o 2
) K(CO

e
z/2c

o
)tc

co

Fortunately equation 55 reduces to a very simple form:

Area = 1 - e-cocz/co

For values of z and cue such that

-CO
- e C z/c0 << 1
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54)

55)

56)

57)

the error term should produce little distortion in the

propagating nonsinusoidal field. This fact suggests a

maximum value of distance z which, for a given cut-off

frequency, distortion would be negligible. Depending upon

the particular waveform transmitted, an acceptable level

8) Ii(x) = (2/11x)- sinh(x) and K1(x) (Tr/x)4 e
-x

are the

half order Bessel functions of t4.. first and second kinds
respectively.



of distortion might be 3iit when (1 - e- (, < 0.2.

This inequality yields a maximum value of z for a given

waveguide mode:

z
max

= 0.223 co/coc

For a circular waveguide this relationship becomes

and

(z
max

)

tm
= 0.223 r/p

n1

(zmax)te 0.223 r/P1-11

while for rectangular waveguide the maximum useable

length is

z = 0.22 ita 2 )
(n2 /b2)max ---T57-

0.071 --4(m2/8.2) + (n2;;2)

146

58)

59a)

59b)

60)

The largest value of z occurs for a circular
max

waveguide at the minimum values of p
nl

and p' which are
nl

P
nl

(min) = p
01

= 2.405 and pn1' (min) = p11= 1.841

producing values of z of
max

and

(z
max

)

01
= 0.0927 r meters

(z
max

)

11
= 0.1211 r meters .
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The largest value fcr the rectangular wave-

guide occurs for the nirimum value of m and n which

correspond to the TE0 mode:

(z = 0.071 b teterz
max 01

Equations 59 and 60 indicate that the useable length

of a waveguide is much less than its cross sectional

dimensions: This observation will limit the use of a

waveguide to impractically short lengths. The validity

of this finding, of course, depends greatly upon the

particular waveform to be transmitted and its intended

application. Detailed study of the individual case would

be necessary.

Equation 51 implicitly shows the time domain

relationship between the transverse electric and magnetic

fields in the TM mode at any point in the waveguide. The

electric field correspuilJing TO a given magnetic field

results from convolving it with z
tm

(t). That operation

yields

e
tm

(t) = h
tm

(t) * z (t) 61a)
tm

n
o

h
tm

(t) * 6(t)

1+ cor,htm(t) * u(t) ti(cocx) dX]

0 --i-------

61b)



e (t) = n [11
tm tm.

1,"
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The first termn of equatn 'plc produces an undistorted

component of the electric field having the same time,

variation as the magnetic field. The integrand in the

integral of the second term is a pulse-like function

having an initial value of Wc/2 and quickly diminishes to

zero at the first zero of the Bessel function in the

numerator. From that instant it undergoes negative and

positive excursions of rapidly decreasing amplitude. The

end of the first main pulse occurs at Curt 3.83, the first

zero of the first orde-7ne'T-function (of the first kind).

For practical purposes the tira integral of Ji(ojcx)/x

then appears as a step-like function that reaches its

maximum and final value at the first zero of Ji(x). This

zero yields an interval of

t
0

secon ds.= 3.83 /Ca` se '4--.
For magnetic waves having lfolse durations or transition

times much greater than 3.81/wr, seconds, the ccnvolution

of the integral of the second term with the magnetic

field is approximately

W tTh(t) * u(t) 1 J1( 00x) dx os Wc., 1 htm(x) dx . 62)

o x o-

The total field is then
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e
tm

(t) '3

no
h
tm

t + h
tm

(x) dx . 63)

From equation 63 it is seen that if
t

f00c ht , ' dx Pt hfm( ) 64)

o

the electric field will have a sizable component that is

proportional to the time integral of the magnetic field

resulting in a badly distorted version of the electric

field. Conversely, if the time variation of the magnetic

field is such that

0L)
c fh

tm
(x) dx >> h (t) 65)tm

o

then the resulting electric field is

r;t

e
tm
(t) m n (--hT--(x dx . 66)0 7,4 trn i

o
J

The relationship bt-tween tne electric and magnetic

fields in the TE mode is implied by z
te

(t) of equation 52.

As with equation 51 the electric field is the result of

convolving the magnetic field h
te

(t) with z
te

(t). The

electric field is then

e
te

(t) = h
te

(t) *
zte(t)

=
no

h
te

(t) *

n
0
co h

te
(t) * (u(t) J1( co t)) 67b)

c



e
te

(t) = n
o

h
te
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(u(t) 3.1(Wetncky 67c)

As in the TM mode -zh'a elecTr field consists of a

nondistorted component nc, hte(t) arid a distorted component

resulting from the ccmvoiution of the magnetic field and

and 00c u(t) Ji(coct). The magnitude of the contribution

of the second term is approximately equal to the total

time integral of We u(t) Ji(wct). The value of that

integral is
oe 00

We fu(t) J
1
(co t) dt = J (CO

c
t) d(CO

c
t) = 1. 68)

The contribution of the second term is then

comparable to the ideal term, hence the electric field is

a distorted version of the magnetic field. However, the

duration of we u(t) approximately equal to the

first zero of J
1
(x) which is 3.83. Therefore, if the time

scale of interest, T, is much less than 3.83/60c seconds,

the Bessel function Ji(coct) will appear as an ideal impulse

to the magnetic field. The resultant electric field in

that case is

e
te

RI 2 no h
te

(t)
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Chapter X. Radiation and Reflection Considerations of
Nonsinusoidal Elecieroagnetie: We_ves

An aspect of great importance in the operation of a

nonsinusoidal radar :s the characteristic of nonsinusoidal

radiation from charge and current distributions on

mechanically realizable arrangements of conducting elements.

The charge and current distributions under consideration

are those generated by localized electronic power sources.

Accordingly, this chapter investigates the radiation of

nonsinusoidal carrier waveforms from several radiating

and antenna systems used so successfully in the past.

Traditionally antennas have been characterized by

their directional responses to a single frequency

sinusoidal excitation. Frequency is also often a variable,

or controllable, systell Parameter. These responses to

single frequency excitation are often slowly varying

functions of operating frequeney such that use of the

antenna over a band of frequencies (i.e., resulting from

modulation of a high frequency sinusoidal carrier) is

fairly uniform.

Quantities most often used in describing antenna

performance have been: 1) the steady-state impedance

presented at the excitation terminals of the device;

2) its polarization properties; 3) its radiation

resistance which is a measure of how effectively the

antenna converts the power available at its terminals
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into radiating electromejnetie energy: 4) the

directional properties of the antenna which are

characterized by the relative intensities of the electric

and magnetic fields 3s functions cf direction with respect

to a suitable reference direction associated with the

antenna. These quantites are all expressed in terms of a

response to a single frequency excitation. The

directional property of the device is often expressed in

terms of the relative time averaged power density of the

radiated sinusoidal electromagnetic field at one frequency

as a function of direction. This quantity, often termed

the radiation pattern of the device, is also a frequency

dependent quantity.

Of the above quantities, the more important for radar

applications is the directional property of the antenna

which is utilized to pro-vide tare:et direction information.

It is this property which is emphasized in this study.

In order to establish the suitability of a family of

nonsinusoidal functions as the electromagnetic carrier

waveform in radar applications it is necessary to determine

their radiation characteristics when launched into a

propagation medium by various antenna structures. It is

also desirable, where possible, to determine principles

and criteria by which more effective and more directive

arrays of radiating elements may be devised: i.e.,

solution of the synthesis, or design, problem as well as
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the analysis problem.

The family of ronc3.rusoidzil f-,;.nctions under study are

such that the directien. tlme a' ,,raged power radiation

patterns now used to cl-a acterLze antennas having

sinusoidal excitation constitute unsatisfactory means of

describing an antenna response to general excitation. In

the sinusoidal case the field components arising from

different portions of the radiating system merely

superimpose to form sinusoidal traveling waves throughout

the surrounding propagation medium. These fields have the

same temporal form and frequency as the generating

sinusoidal source with their amplitudes and phases being

functions of location with respect to the antenna system.

The only distortion the propagating field can suffer

from the differential time delays is in the modulation

that might be imposed ut'on it. Fowever, for the narrow

band modulation usually- used in radar (and communication)

applications, the distortion arising from this cause is

insignificant and undetectable.

In the general nonsinusoidal and wideband case,

however, the situation is much different. In the following

sections it is shown that superposition of the field

components resulting from different portions of the antenna

system generally give rise to field time variations which

are greatly distorted versions of the original source time

function. In some cases they are completely different



154

functions of time. ' ;his is the principal factor which

distinguishes most nonsinusoidal caves from purely

sinusoidal waves. Because of distinction this chapter

is devoted to developi means of establishing the

radiation and directional characteristics of the class of

discrete functions under study.

Because of the distortion that a nonsinusoidal wave

can suffer it is readily apparent that the instantaneous

values of the electric and magnetic field or the

instantaneous power density are the quantities of primary

concern. In the sinusoidal case time-averaged power

density radiation patterns are the significant factors.

The transmitted electric and magnetic fields undergo

various transformations, or distortions, during propagation

through the radar medium and on reflection from the radar

target. The voltage or current waveforms that the

reflected fields subsequently generate at the receiving

antenna are ultimately the quantities of primary concern.

Although the distortion of the instantaneous values

of the fields seems a detrimental feature of their

propagation, the distortion is predictable and, most often,

is angle dependent. This fact may allow this distortion

to be used as an added (and perhaps the only) measure of

the directional position of a radar target.

Rather than attack the problem of nonsinusoidal waves

directly as done by Harmuth (1970) and Pearlman (1970), an
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indirect technique utilis existing sinusoidal

antenna theory and vast stoe :)±' engineering data on

antenna system perforroln:::e is in the following study.

The linear dipole of arbitrary .1ngth is also investigated

to determine its suitability as a basic radiating element.

Such an antenna element might be used in larger arrays to

form antenna systems or to illuminate large parabolic

reflectors. The parbolic reflector is studied through

examination of the aperture diffraction integral model of

such antennas when illuminated by an ideal source of

nonsinusoidal radiation.

Since successful use of the parabolic reflector as an

antenna depends upon the reflection properties of the

nonsinusoidal electromagnetic wave from a smooth and

highly conductive metallic surface, the parbolic antenna

study is prefaced by an araly-s:: s of the general reflection

process.
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The Long Dipole Antenna

The field quantities of t e long dipole antenna (of

finite length), being of great Importance to conventional

radar and communications, may also prove useful with

nonsinusoidal waves. It is important, then, to investigate

it to determine its suitability for use with bi-valued

waveforms.

By analysis which is almost traditional (Ramo,

Whinnery, and Van Duzer, 1965, pp. 644-647) the differential

elements of the field quantites of a long dipole can be

shown to be

-jOr.
dH0(W) = I(z) dz pC0 + 1 je sin A'

4n
cr ri-1

1)

dE
r
(CO) = I(z)dz 2n - 2j 1 e -jF1r cos (0 2)

4n ---7;
L rte.. Wer'qj

dE
e
(co) = I(z) dz [jcuu

n r2

j ]e-i5re sin 0'

Wer'3
3)

where 0' is the angle between the z axis and the radius

vector from the current element at z to the field

observation point, and r' is the distance from the same

current element to the observation point. Since the

dimensional extent of the antenna is much smaller than

the distance r from the origin to the observation point,
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the quantity r' in 4%': eeno7linaor of the above equations

1, 2, and 3 may he re, aced thc. distance r from the

origin to the obsel-vatin point with little error while 8'

may be replaced by the a.:1,71,: 1,etween ? and the z axis.

These quantities are illustrated in Figure 6.

In order to account for the phase differences from

various portions of the antenna, (r - z cos 8) is

substituted for r' in the exponential term which is

sufficiently accurate for r >> z.

The total field quantities at point 0 of Figure 6 are

obtained by summing contributions due to all current

elements by integration over z from -IL to +11, which gives

H,30 (CO) e.-,' sin A

-77--
jco + 1

t2L

e-jr. I(z) e
jz cos e

dz

--IL

4)

cr
. r2

E
r
(CO) PI cos A 2n - 2i,

47 2- ---'----,,-I
r wer-

e
-jar

I(z)I(z) e
ji3z cos Adz

5)

- 2L

sin O0r

r-
2

00er)
e-jar XE ( CO) ce in A ju + n - j

I(z)
i,97. cos 8

dz

With sinusoidal time variation the distribution of

the current along the antenna is very close to being

sinusoidally distributed in z (Ramo, Whinnery, and Van

Duzer, 1965). For antennas greater than one half of a

wavelength in length the maximum standing wave current

6)
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Figure 6. Arrangement of the long dipole with the
standard spherical coordinate system.
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amplitude (Im) attained is not that at the input terminals.

The terminal current may be expressed in terms of the

maximum current amplitude Im as

I = I
m

sin(60L/2c) , fnr 60 /2c > n
ter

from which

7)

I = I / sin(WL /2c) . 8)
m ter

It is important to realize that Im is the maximum current

amplitude occurring on an antenna longer than one half of

a wavelength of the excitation frequency.

The current amplitude distribution along the antenna

is now expressed as

I(± z) = Im sin [ AO:T- i z)1 . 0S z 4 iL 9)

Substitution of equation9 into the integrals of equations

4 through 6 yields for those integrals

ri(z) ej0z cosO

2 Im c [Cos(iCeL cos 0) - cos(i(oL/c)] 10)
Tr-

si.n2e

Equation 10 may be substituted directly into equations

4 through 6 to yield the phasor forms of the field

quantities. Although this step is valid the equations are

not in the form of the transfer functions discussed in
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Chapter VI. In order to satisfy this criterion the field

quantities must be :,,xprc:ssed in terms of the terminal

current I
ter

7vThis a effected by replacing I(z) in

equations 4 through 6 13-4 the side of equation 8.

The field quantities are now in terms of an independent

sinusoidal input current. This step is necessary since a

constant value of the terminal current amplitude will

produce different values of Im at different frequencies.

The inverse transforms of the field quantities will now

yield valid impulse responses.

Making the above mentioned substitutions and

converting to the Laplace transform variable gives

HP (S) =

[I
ter

e-Sr/c - cosh(S L cos r) - cosh(- SL/c)

2r sine r sinh(iSL/c)

[

- c coshCiai, cos - cosh(iSL/c)
_a__
r2 3 sinh(rS/c)

Er(S) =

11)

cot e e
-Sr/c

I
ter

Icr4Cosh( S L cos e)- cosh(in/c)
c

2r sin e r2 S sinh(1SL/c)

cosh(iS L cos e) - cosh(SL /c)
c

e r) S2 sinh(SL /c)

12)



Ee(S) =

I
ter

e
-Sr /c

Luc coshrj,t3 L cos - cosh(iSL/c)

2n sin e r sinh(iSL/c)

[

+ nc cosh(IS L cos e) - cosh(13L/c)
Q____
r2 S sinh(iSL/c)

+ c [Cosh(1.11s2124) - cosh(*SL/1 .

e r3 S2 sinh(iSL/c)
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13)

On first sight the above equations appear to be very

cumbersome transform expressions to invert, but writing

the hyperbolic functions in terms of exponentials and

factoring sinh(ISL/c) i-r-the denominator as

sinh(1SL
eiSL/c(1

e -SL/c)/c) 14)

simplifies them greatly. The term in parentheses in

equation 14 produces periodic time functions of period

L/c in the time domain The numerators of equations 11,

12, and 13 become sums of exponential terms such as e-Sx

producing delayed, or -.,7starded, time arguments in the

corresponding time functions. The only inverse Laplace

transforms to be determined are those for a constant, and

those for such terms as 1/Srand 1/S2. The inverse

transforms are, respectively, 6(t), u(t), and t u(t),
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Applying these inver,ze co equations 11, 12, and
13 yields the following fie1:3 q-x3ntities all of which are
periodic with period LA

00 ...

H0(t)
=21T1sin e

!6(t r TEL)
Li-

n=

- 6(t-b+a-r-nIL)- 6(t-b-a-r-nL)
c c

+ 6 ( t 2b r nL)1+ c -u(t - r - ILL)
c r2 c c

+ u(t-b+a-r-nL)+u(t-b-a-r-LLW
c c c c

- u(t - 2b - r - ,
c c

E (t) = cot 8r 2rsin 0

and

co

+ u(t-b+a- -nL)+u(t-b-a-r-nL)
- u(t 2b - r nL)]

c c

+ 1 [-(t - r - au, u ( t - r - n_L )
7- c c c

+ (t-b+a-r-nL)u(t-b+a-r-JiL)
c e c c

+ (t b - a r u(t b - a- r - nL)
C C C C

15)

(t - 2b nij u(t - ,2b-fir 1nLl-- 16)
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CO

E9(t) = 1 In i- (-5(t.
r

2r sin 9 L
n= 'u L

- nL)
c

+ b(t -b+a- nL)
c c

- 6(t - 2b - r cn -u(t r -.nt)
c c

r2

+ u(t -b+a-r- nL) + u(t -b-a-r- nL)
c c c c

- u(t - 2b - r - nL) +
c c

+ c [E (t - r nL) u(t - r

er3 c c c

+ ( t - b + a - r - nL) u(t -b+a-r- nL)
C c c

+ (t-b-a-r-nL)u(t-b-a-r-nL)
c c

- (t - 2b r nL) u(t - 2b - r 17)
7F- c c

where a= 2 L (cos 9) /c and b= L /c.

A surprising feature of the above field quantities is

their periodicity even though excited by a single impulse.

The analysis, however, was based upon an ideal situation

wherein the ohmic resistance of the dipole was neglected.

In actual circumstances the resistive losses of the dipole

element would cause the periodic variations to dampen out

with time and would also cause broadening of the individual

impulses comprising the periodic response.

The form of the far field impulses (those terms
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proportional to 1/f , :!;1(?ven In 1-'(7,ure 7, indicates that

the long dipole anterr.2 would likely be unsatisfactory for

use with any carrier w.aveform except that of a sinusoidal

carrier. Substitution of the this series of impulses

into the superposition, or convolution, integral would

show that, in general, the temporal form of the far field

would consist of the superposition of progressively

delayed replicas of the excitation current waveform,

although not all of the same polarity. The resulting

field variations would definitely not be a duplication

of the excitation waveform: Rather, it would be a greatly

distorted version of the excitation current waveform. A

steady-state, unmodulated sinusoid is the only waveform

that would he reproduced in the far field without

distortion.

At small angles of the delay between the first and

second impulses and that between the third and fourth

impulses becomes small enough tnat these two pairs of

impulses both approach ideal unit doublets. In the

convolution integral they would produce delayed replicas

of the time derivative of the excitation waveform with each

of opposite polarity. In theory the transverse field would

vanish at 0 = 0: the far as well as the intermediate and

near fields. These facts are evident from equations 11,

12, and 13. In equations 11 and 13 the only angle dependent
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factor is

F(e) = cosh(tpL cos a )cosh(sL/c) 18)
CZ

sin 9

Application of l'H spital's rule yields

lim F(8)
0-->0

lim -1(SL/c) sin 8 sinh(igcos A) = 0 .

cos 9

19)

Therefore, H0(S) and Ee(S), and hence Ho(t) and E8(t)

vanish at 0 = 0 . Also in equation 12 the angle dependent

factor is

G(e) = cos e
[ cosh(1,51_

sin29 c
rash (2 SL/c) .

]
20)

At angles near e = 0 the cos e factor is approximately

unity and can be ignored. The rule of l'Hospital can be

applied to the remaining factor to yield

lim G(8) = lim (SL/C) sin 0 sinhaSI2 cos e)
0->0

2 sin cos0

21)

= lim *(SL/c sinh( SL cos A) # 0 22)
9-->0

Hence, E
r
(S) and ;(t) don't vanish at A = O. That H0(t)

and E0(t) vanish at 9 = 0 is also heuristically obvious

in the time domains as the relative delay between two ideal
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impulses of equal s-47ength bvt of opposite polarity

approaches zero, tI,E, two impulses will cancel.

The near and irterliediate components produce

equally distorted versinns of th excitation current

waveform. They would consist of the superposition of

of progressively delayed replicas of the first and second

time integrals of the excitation current waveform except

near A = 0 where they form the superposition of components

proportional to the excitation current and its first time

integral.
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Reflection off a Smooth, Flat, Lossy Conducting Plane

Another phenomc,nc)n of great importance to the

suitability of nonsinusodal, hi-valued functions and

related functions (tLme derivatives and integrals) to

radar applications is their reflection from smooth metallic

surfaces. The importance stems from the fact that many

radar targets of interest consist of structures of smooth

metallic surfaces of a planar nature or having a fairly

large radius of curvature, approaching a plane surface

over small portions of the surface.

The reflection process is also part of the antenna

problem if it is desired to use an appropriately shaped

metallic surface to either focus or to for:

beams of nonsinusoidal electro:r.agnetic waves.

The reflection process is similar to the terminated

transmission line problem in that a similar reflection

coefficient completely describes the process. In order

to establish the reflection properties of nonsinusoidal

waves at arbitrary angles of incidence and at arbitrary

polarization with respect to the plane of incidence, it

is only necessary to study two special cases: polarization

of the electric vector perpendicular to the plane of

incidence and that parallel to it. Any other case of

general linear polarization may be treated as a linear

superposition of these two special cases.
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As discussed in (Master VI the quantity that

describes, or characterizes, tine reflection properties of

nonsinusoidal waves is a form of impulse response derived

from a form of reflection transfer function which turns

out to be the sinusoidal reflection coefficient of the

reflecting surface. This fact is established in the

ensuing development.

In both cases of polarization the frequency dependence

of the conductance of the metallic reflecting surface is

included since this still yields a mathematically

tractable situation even though adding considerable

complexity to the analysis. In both cases of polarization

that factor could have been ignored in order to arrive at

a solution of more reasonable proportions. However, the

more complex solution does lend greater insight into the

limiting factors of the reflection process.

The conventional textbook approach to the (sinusoidal)

reflection problem is to deteredne the total electric and

magnetic field consisting of the superposition of the

incident and reflected fields outside of the reflecting

surface. The interest here, however, lies in the effect

of the reflection process at the surface on the reflected

portion of an incident nonsinusoidal wave. It is shown

that the reflection coefficient q is the desired surface

sinusoidal transfer function which relates the amplitudes

and phases of the incident and reflected plane sinusoidal
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waves. The inverse .?'or er or Laplace transforms then

yield analogous quantlties in the time domain.
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Polarization of 2 Pzrpell6icular t the Plane of Incidence

Fortunately elelreery stn.ndard techniques may

be used to attack the proble71 ol the nonsinusoidal

reflection process. Te of Chapter 6 of Ramo, Whinnery,

and Van Duzer (1965) are utilized in this section.

Figure 8 depicts the geometrical situation of interest.

The vector quantities Ri and Rr represent the propagation

vectors of the incident and reflected waves respectively.

Both lie in the xz plane forming the plane of incidence.

The angle of incidence, 8, is eaual to the angle of

reflection, e'. The incident electric field vector is Ai

while the reflected quantity is Er. Both are perpendicular

to the plane of incidence,

The quantity of int:Nre.9.t 5..! the ratio Er/Ei at the

surface with z = 0. This ratio is the surface sinusoidal

transfer function. It may be expressed in terms of the

angle of incidence e, the operating (sinusoidal) freiency,

and the parameters of the conducting interface, and by

examining the electric field equation that results from

equation 22, page 361 of Ramo, Whinnery, and Van Duzer

(1965). There the only f5.eld component is in the y

direction which yields fcr the tangential (to the surface)

component
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Medium 1, air

+z

-- metallic reflecting
surface

Medium 2, metal

Figure 8. Geometry of the reflection process.

+x



[ay
1

E. e-jkx sin 6 - jkz co 0

]+ lEi. e
- `k x sin 9 1 jkz cos 0

where e is the ratio E
r
/E. which is defined in terms of

the parameters of the system by

with

and

= (Z
L

- Z
zl

)/(Z
L

+ Z
zl

)

Z
zl

= n
1

sec
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23)

24)

25)

26)

The quantites n
1
and n2 are the intrinsic wave impedances

of media one and two respectively and el and e2 are their

respective permittivities. As simple as these equations

appear, n and e represent complex functions of frequency

which greatly complicate the analysis.

Examination of equation 23 shows that the first term

represents the incident wave while the second term

represents the reflected wave. Hence

Er/E = e E e-
jkx sin 0+ jkz cos 6

l ___1
E
i
e-jkx sin 6 - jkz cos 0

j2kz cos e

27)

28)



Our interest is in ,'tis wzacIt ty at the surface at

z = 0 so that e is indee6 the required surface transfer

function.

Since medium o,le s airs is essentially the

intrinsic wave impedance of free space:

ni no =
0 o
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29)

where u
o

is the permeability of vacuum and e
o

permittivity,

both being independent of frequency.

The intrinsic wave impedance of the second medium, the

metal, is

n2 = Vu2/e2 . 30)

Since only a non-permeable conductor is being considered

n
2

mju
o
le

2

It now remains to establish the nature of e2, the

permittivity of the conducting material. The general

expression for a dielectric with high conductance, or a

metal, is

e = e
m

=(e' + a/jC0) = 0(1 + a/jCoe')
2

31)

32)

with e' the dielectric of the metal and a its

conductivity. For all frequencies of interest the second

term in equation 32 normally far exceeds the first

which could be neglected without greatly affecting the
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outcome. However, leav;ng the expression yields a

tractable solution.

The value of the psrmitti-v1 y, e', for metals is not

measurable, but it is felt by m4ny authorities (Adler,

Chu, and Fano, 1960 and Bromwell and Beam, 1947).to be of

the same order as that for free space, hence

e2 m eo + a/j60= e0(1 + a/j60e0) 33)

which, in terms of the Laplace transform variable, becomes

e2 m e0(1 + a/ Seo) 34)

The conductivity of a metal is also known to be

frequency dependent. In terms of the Laplace transform

variable it is given by Kittel (1968) as

a(s) = ao/(1 + S/vc) = ao vo/(S + vo) 35)

where a0 is the low frequency conductivity and vc is the

collision frequency of the free electron gas within the

conducting material. Table III of Chapter IX lists these

parameters and the plasma frequency of four widely used

conducting materials.

Substituting equation j5 into equation 34 yields an

expression for the detailed frequency dependence of the

complex permittivity of a metal. Then, substituting that

modified form of equation 34 into 31 and 26 then 30 into

26 and 24 gives the operational expression for the



surface transfer funr.,,tibn by the fallowing sequence of

steps:

e
2

= e
o
(1 + ao v

c
/(e0S(S + v

= eo S(S + vc ) + oa vc/e
§rs + ver

In2 = 110 s(s + vc)[
o(s(s + vc) + a v /e )o c o

= no S vc)

1S(S + v
c

) + a() vc /e°

ZL = S(S +vim) 2 1 "' sin
2
9 S(S + vc,)

S(S + v
c

) + a° vc/e0 113 S(S + vc) +
o

eon

r- nc[S(S + vr,)

S(S + vc) cos-

and

Z
L

= n
o

(A/B)*

ip
Si ?*/ 0

where A = S(S + v
c c
) and B = S(S + v ) cos

28 + a v /e .o c
Also

Z
zl

= n
o

sec 9 = n
o
/ cos 0

and

Q(S) = ZL - zz1 = n A2 - x B2 /cos

ZziZL + no A2 + nod/cos
or

176

36)

37)

38)

39)

40a )



e(s) = A2 - B'Lcos

JO + B/cos 0

where Z
zl

is n
1

see A. T,..quation 40b then reduces to

177

40b)

e(S) = (S(S + vd2- (S(S + vc) + crovc/s0 cos 20)21 41)

(S(S + Vd2 + (S(S + vc) + CoVc/eo cos 2
0)

The direct inverse transform of equation 41 is not

available in published tables. This fact, however, is of

no great consequence since our interest lies in a form

that will isolate, or show, the distortion effects of the

reflection process. By the expedient of clearing the

denominator of radicals by multiplying both numerator

and denominator by (S(S + v
c
))2 - (S(S + v

c
) + a)2 a

form results which clearly shows the distorting effect:

'?(S) = - 1 - 2S2 - 2 veS

a a

+ 2 [..!(S + v
c
)(S(S + v

c
) + a)

a

42)

where a has been substituted for aove/e0 cos28 in order

to clarify and facilitate notation.

The corresponding time domain unit impulse response is

q(t) = - 8(t) 2vc _2_8"(t)

a a

+ 2 L-1 [S(S + v )(S(S + v
c

) + a) 1.21 43)
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Equation 43 is a .ry interesting and meaningful

result. Examining each term individually we see that the

first, -6(t), when convolved with a given nonsinusoidal

incident wave yields an exact, h-a inverted, replica of

the incident wave on reflection while the remaining terms

produce additive distortion components.

The first time derivative of the impulse function in

the second term, and the second time derivative in the

third, respectively yield the first and second time

derivatives of the incident wave as additive distortion

terms. However, notice the numerical values of their

multiplying coefficients. That of the first, for copper,

is

2v
c
/a = 2e

o
cos 2 0/a

o
2x8.85 os2A x 10 -12/6x10 7

m 0.3 x 10-18 cos
2
0

while that for the second is

2/a = 2e
o

cos
2 / a

o
v
a

2x8.85x10-12cos 2 /6x4x10
20

RI 0.74 x 10
-32

cos
2
0 .

Corresponding values for gold and silver are close to

those above.

The relative magnitudes of the reflected components

corresponding to the terms of equation 43 depend upon the

the temporal form of the incident wave, EAt), and its
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first and second time viva times. These quantities are

relatively easy to e:::timate for a M.-valued wave such as

a Walsh function or one of time derivatives. The

relevant parameters of Dias like waveforms are,

for the first term, the peak value attained, Ei. The

relevant parameter in the second term is the peak of its

time derivative which is approximately 2E/Trwhere Tr is

the transition time changing from -Ei to +Ei. For the

third term the peak of the second time derivative which

is 2E./aT2 is the important parameter and the factor a is
r

the fractional part of the transition time, Tr, required

for the first time derivative to reach its peak value.

The value of the quantity (a) might vary from one tenth

to slightly less than one half for typical applications.

The above quantities applied to equation 43 yield

relative magnitudes of reflection components corresponding

to the first three terms. For the fastest rise times that

might be electronically produced in the near future, say

ten picoseconds, we have

first terms E.

second term: 6 x 10 cos
2
0

thirdterms1.48x10-8E.cos20 with a = 0.01.

The above estimates indicate that the distortion

components due to the second and third terms of equation

43 are negligible for the bi-valued waveforms under study.
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Notice also that as the angle of incidence increases,

cos
2
0 decreases causing the megmitudes of all the

distortion terms to decrease also It is obvious that

normal incidence is the wctrst case. Also note that all

distortion terms would vanish if the conductivity of the

reflecting material were infinite.

The last term is also extremely small although ate

detailed nature is not known. Although the inverse

transform of the last term of equation 42 is not easily

obtained, some information about it can be obtained by

factoring it as follows:

[(S + vc)(S(S + vc) + a)]1 =

(S(S + vc))1 x r(S(S + vc) + a)r =

(S(S + v ))21 xr(S + a)(S + 44)

where a and b result froxi factoring (S(S + vc) + a). The

corresponding time domain quantities may be convolved to

form the resultant component of the overall unit impulee

response of equation 43.

Applying the transform domain shifting theorem to

item 15 of page 246 of Roberts and Kaufman (1966) and

setting a2 = 0 in that item gives

[
L-1 (S + a)(S + b)11.

J j

e-at
e
-bt

45)
1 3/2 71-,

t3/22 n2 t- 2 r' t
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Direct convolution 1.1' the twti facors above (developed in

Appendix VI) yields

[L-1 (S + a)(S + b)-1 =

4 -4(1. b)t
(a - b) e Ji(t(a b)t)

for (a - b) imaginary or, for (a - b) real,

L -1 (S + a)(S +

L
i (a - b) e

+ b)t
(2(a - b)t)

46)

47)

which are both finite, pulse-like functions having decay

time constants of the order of 2/(a + b) or less due to

the Bessel function factors. Similar expressions result

for (S(S + v
c
))2 of equation 44 with b set to zero and

a = ve.

In terms of the constants of equation 44, its time

domain equivalent is the convolution of two quantities

similar to those of equation 46. Making the appropriate

substitutions, the last term of equation 43 becomes

I
4
= v

c
2(a - b)2 e vct I

1(lye
t) fe,k u8)"

ct2a Svc L v

Numerically the multiplying coefficient is very large

being on the order of 3 x 10
27

Substituting the quantities

of equation 47 into a convolution integral with (a + b) =

ve and for copper as the conducting material, 14 becomes



14 = 3.46 x 10
27

cos 0 e
-2,08x1013t

0

182

t
I (2.08710

13
x J,(3,30x10

16
(t-x)/cos 0) dx

J"

1

(2.08x10-- x) (3.
30x101 6(t

49)

Because of the large difference between the

coefficients in the arguments of the two Bessel functions,

the following approximation may be made:

I
4

m 3.46 x 1027 cos e

3.3o x
16

3.30x10
16

t

e
-2.08x1013 t

I1(2.08 x 10
11't) p

1
(X) dX

0' X

50)

(2.08 x 1013 t)

which applies for t > 10
-16

seconds. For these values of

time the value of the integral factor approaches a constant

value near unity. The value of 14 is governed princinally

by the time functions outside of the integral sign. For

smaller values of time, the time functions preceding the

integral are close to the constant value of 0.5 with the

value of 14 then determined by the integral. Since for

this case the value of X in the integrand is small,

J
1
(X)/X m 0.5 - X

2/16 the integral of which is 0.5X -

X3/48. For values of t << 10-16 seconds the integral is

a linear function of time t. Its amplLtuds, therefore,
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starts at zero and increases very rapidly tp larger values.

However, the peak. 3-1.olitude ;if the quantity in

either equation 48 or ') is Or*T of great significance.

Since all of the qbantiiies discused here are components

of a system unit impulse response, it is their relative

areas that are of significance when convolved with an

appropriate excitation function.

The area of the quantity in equation 48 or 49 is

approximated by

A
4

3.46 x 10
27

cos 9 e
-T

I
1
(T) dT = 5.04x10-3cos 9

3.30x2,08x10
29

since the value of the integral is unity. Therefore, when

convolved with a suitable excitation function, or wave,

this term contributes less than one half of one percent to

the resulting wave. Also note that this error term becomes

less as the angle of incidence is increased.

It is then concluded that a typical smooth conducting

surface will reflect nonsinusoidal electromagnetic waves

when polarized normal to the plane of incidence as long as

its first and second time derivatives are small enough to

make the second and third terms of equation 43 much less

than unity. Specific conditions on excitation time

derivatives are

1 dEi/dt
<< a/2v

c
= 1019 x 0.328/ cos20
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2
d . << 1*36 x 1032icos20

Notice also that all the disto:-tifiln components are maximum

at normal incidence.
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Reflection off a Socth.. Flat, boFsy Conducting Plane
with Polarization in Pla: of incidence

As in the case pf.lartin normal to the plane

of incidence the same. elemertPry Lechniques may be used

in the case of polarization in the plane of incidence.

The reflection process in this case is also completely

described by a reflection coefficient, e . This fact is

established by equations 14 and 16, page 360 of Ramo,

Whinnery, and Van Duzer (1965) which yield for the

incident and reflected waves

Ei = E+(axcos 0 - azsin 8)e-jk(x
in 9 + z cos 0)

51a)

E
r

= E e(ffxcos 0 azsin 8)e-
jk(x sin 8 - z cos 0)

51b)

where the factors in r)rentbsse5, are vector quantities of

unity magnitude. Taking the ratio of
r(/'

lEilat the

surface z = 0 yields

IF:r I/ I Ed
52)

In this case the reflection coefficient is also

described in terms of frequency and the parameters of the

conductor as

where

(S) = (Z - Z )/(Z + Z
L zl L zl) 53)

Z = n cos 0 = n
o

ccs 8 54)
zi 1



and

It
Z
L
= n

2
cos 8

e,4

and n
2

is the intrinsit wave impedance of the metallic

medium and A" = angle of refraction:

186

55)

n2 = (uo/e2)4. m (uo/e0(1 + acyc/e0S(S + vc)) )1 56)

n2 m no /(1 + a
o
v
c
/e

o
S(S + v

c
))1. 57)

where the relationship e2 tt ec + aovc/S(S + vc) has been

used for the permittivity of the metallic medium.

Rearranging equation 53 yields

(S) =

E(S + vc)(S(S + vc) + A/cos* - (S(S + vc) + A)

[S(S + vc)(S(S + vc) + A/cosV + (S(S + vc) + A)

where A has been substituted for aovc/e0 to simplify

notation. The value of v
c

for copper is

v = 4.16 x 10
13 and A = 2.725 x 1032

59)

Equation 59 may be decomposed in many ways to reveal

the distortion components explicitly. Techniques similar

to those in the case of normal polarization are used in

the following by adding and subtracting the quantity

[S(S + vc)(S(S + vc) +A/cos2e) ` to and from the numerator
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of equation. 59 to yield

e(s) =

-1 + 2 [S(S + vc)(S(S + A/cos2OP 60)

(S + vc)(S(S + arc) + A/cos28 I (S(S + vc) + A)

Equation 60 clearly separates the ideal term, -1, from

the second distortion term. The second term may be

further simplified by clearing the denominator of radicals

e(S) - 1

+ 2 [S(S + v
c
)(S(S + vc) + A/cos2e)]2

X
A [S(S + ve)(1 - 2 cos28) A]

cos28

[S(S + vc)(S(S + vc) + A/cos
-11

12 2 - (S(S + v
c

) + 61a)

Carrying out the indicated multiplication in equation 61a

and noting that (1 - 2 cos28)/cos20 = -2 + sec2O = -2 + 1

+ tan2 = tan2 e 1 by use of standard trigonometric

identities, the equation reduces to

Q(S) = -1 + 2 S(S + v )(S(S + vc) + AAos2e)

A(tan 1)(S(S + yr) - A/(tan2111 - 1))

2(S(S + v
c

) + A)
F.3(S + VC ) (S(S + VC) f- COAST-e )

A(tan 8 - 1)(S(S + ve) A /(tan2e - 1))

61b)



Notation may be greatly sim lified by factoring

the quadratic quantities above giving

and

where
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S
2 + Svc + A/cos-a ,:- (S + c)( + d) 61c)

S2S + Svc A /(tan28 - 1) = (S + a)(S + b)

a = ivc + j L 4vC + A/(1 - tan28)] i

b =
c

- j Eltv2 + A/(1 tan28
'J
*

c = iv
c

+ j Elv2 A/cos
2
c] os iv

C
+ A2 /cos e

4 C

d iv
c

j A2 /cos 0

After considerable algebraic manipulation equation

61b (see Appendix VII) may be reduced to

Q(S) = - 1 + 2vc S

A(tan20 - 1)

+ 2 S2

A(tan - 1)

2 S(S + vc)

(1 - cot(' )2(S + a)(S + b)

- 2 PS + vr.)(S + c)(S + 012
-A(tan2 0 - 1)

i tan
2 (4e)i(s Nrc)(s c)(S d

(S + a)(S + b)

61d)

62)
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Notice that tw cj or tic1 vLies of 8 appear to exist

for the quantities ,ialbabo.re, Fir.3t, the term

A/(1 - tan2(i) under rad!al je positive for 8 less

than 45 °, and it ir greta-r- 'than making the4 C

radical term completcls imaginary. At 8 = 45
o
a and b are

both imaginary and of infinite magnitude. However, for

angles 45° < e < 90°, A/(1 - tan28) changes sign and

starts decreasing in magnitude and the radical is also

real so that

and

2
a ivc + j Fi/(tan

2e - l)] 63a)

0 < e < 45°

b Svc - j El(tan2e - 63b)

a iv
c

+ p(tan ill
2

9
b - [ /(tan 9 - 2

45° < 8 < 89.5°.

Also, for 8 between about 72° and 89.5
o
the denominator

(tan28 - 1) may be approximated by tan28 so that

a Al lv
c

+ A2/tan e
2

b ivc - A2/tan e

72° < a < 89.5° .

63c)

63d)

63e)

63f)

Another special condition, although of no particular

interest in the study of the reflection process, is the

case where the angle of incidence is very near 90°. In

this case 1
2

- >> A/tan20, SG thatve
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a su v
c

A/(v
c

tan
2
6)

b A/(v
c

tan20)

c j A2/cos A

j A2/cos

Taking the direct inverse transform of equation 62

would provide the desired unit impulse response of this

reflection process. However, it is not necessary to

obtain the complete inversion of that equation in order to

gain useful information about this impulse response. The

following suffices:

Q(t) = - 6(t) + 2 v
AL___ 6'(t) 2 6"(t)

(tan'e - 1)A (tan20 - 1)A

2 e-bte-at
b(b-vc) u(t)

(1 - cot20)2 a-b)( (a-b)

2 L-irs(S vc)(S + c)(S + d)]

(tan2e - 1)A

tan
2(20)

e
-at

* e
-bt

* L-1 [S(S + ve)(S + c)(S + ci) ]

64)

As in the case for normal polarization, the first

term of equation 64 above represents the distortion-free

reflected component while all the remaining terms

represent distortion components. The second and third
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terms again represent first and second derivative

distortion components which are small for all angles of

incidence except these near 450 If the time derivatives

are sufficiently smell. As 8 approaches 45° both terms

approach infinity and can badly distort the reflected wave.

For 0 greater than 45°, but less than 90°, both terms again

become small and also change sign.

The remaining terms also suffer similar amplitude

increases as 0 appoaches 45O. They undergo changes in

form because of the dependence of a, b, c, and d on 0

shown explitly in the equations preceding equation 62.

Those cases are examined individually below.

For the case that 0 is less than 45° the fourth term

in equation 64 is

T4 = 2
X

(1 - cot20)2

[

.-

[111/2 + A/(1 - tan2 0)] e c sin(t A/(1 - tan2 )
*

)

c

i t---v

(A/(1 - tan20)*

- u(t)1 65)

The above expression has large values near t = 0

and is of very short duration. However, it is the total

time integral that is of importance when used in the

convolution integral with a given excitation function.



The integral of the bracketed term in equation 65 is

area = -bre + A/(1 - tan2e)

A/(1 - tan20)

in

e-ive _ tan2e)/y

0

since the value of the integral is the reciprocal of its

multiplying coefficient. Note that the unit step function

term has been neglected for the moment.

Taking into account the coefficient 2/(1 - cot20)2.

the integral of the fourth term becomes simply
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sin(T) dT = 1 66)

I
4
= 2/(1 - cot

2
0)

2
.

The fourth term has negligible effect only for those

values of 8 for which 12/(1 - cot20)21.<< 1. If ten percent

is selected as a criterion, angles of incidence such that

2/(1 - cot 28)2 < 0.1,

then angles of incidence of 100 or greater will produce

noticible distortion of the reflected wave. The same

argument applies to the unit step function term since it

it multiplied by the same coefficient. Its effect is to

produce the time integral of the incident wave.

For the case where 0 is greater than 450 but less

than about 89.50, the sign of A/(1 tan29) changes to

negative which changes equation 65 to



T4 2

(1 cot20)2
X

[Pi-v - A/(tan2e - 11.1 sinh(t[A/(tan20 - 1)14)

FOtan2e - 2
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67)

A curious phenomenon occurs over the range of

such that JA/(tan28 - 1)1> iv which corresponds to 45° to

about 89.9°. Recall the exponential form of the hyperbolic

sine:

Iv t 2e2 c sinh(t(AY(tan e ) 2)

iet((A/(tan2e 1)* - ivc)

-t(W(tan2e - l) Ivo)
".2' 68)

WhenIA/(tan20 - 1)1> iv: notice that the first term in

equation 68 has a positive exponent producing a component

of the impulse response which grows exponentially with

time Considering the energy required for such growth,

it is obvious that some important energy limiting process

has been neglected in the analysis. However, it must be

expected that severe distortion occurs over this range of 8.

For angles of incidence between 89.9° and 90° both

exponential terms are well behaved: i.e. a pulse-like
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waveform of unit area. Kowever, for that condition the

.

coefficient 2/(1 - cot-E1)
2

is qlickly approaching zero

so that both terms in ecuaticn 65 become negligibly small.

The fifth term in ec uati on 64, except for becoming

infinite at 8 = 45°, is identical to the radical term in

equation 43 for the normally polarized case. It is well

behaved except near 45°.

The last term in equation 64 is similar to the fifth

term in that its coefficient also becomes infinite as 0

approaches 45°. Except for its angular behavior it is the

result of convolving e
-at

*e
-bt with the inverse transform

of the radical factor. The convolution of e-at and e- `'

is

e-at * e-bt = (e-at e-bt)/(b
- a)

The total area of this convolution function is

Area =1/kb1

The convolution of e-at and e-bt is also very

dependent on the angle of incidence, 0. For 0< e< 45°

e
-at * e-bt

69)

70)

- [1 - tan2001 e-Ivct sin (t riv(i - tan20)11) 71)

which is well behaved. When convolved with



195

L-1
2

it produces a convolut_ r quantitr on the order of

EA/(1 - tan2q. For s such. that 2/(1 - cot2P)2 is small,

this term can be neglected. However, for 45 °< e< 890°

the convolution of e -at and e
-bt

becomes

e
-at

* e-bt

-vt
[tan2e

iesinh
(t[A/(tan28 ) 72)

which grows exponentially with time as does the fourth

term of equation 64. For angles of incidence between 89.9°

and 90° it is again well behaved being exponentially

damped with time.

It may be conclucled that f r polarization in the

plane of incidence, reflection of nonsinusoidal waves will

occur with sever distortion at angles of incidence of 450

or more, but will reflect with little distortion for

angles less than 45°.
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Reflection from Lossy Dielectric Materials

A case of reflection of great interest in radar

mapping is the reflection of elec romagnetic waves off

of imperfect dielectric materials near normal incidence.

Reflection back in the direction of the incident wave would

be the situation of primary interest to the monostatic

radar case. Although not studied in detail, the general

form of the solution is briefly outlined.

The reflection coefficient at normal incidence off a

lossy dielectric is especially simple being

?(s) = n2 - n1 = e; -

+ ni e 2 e2
2

1

which may be modified to yield a form which explicitly

73 )

reveals the distortion characteristics as additive terms:

A
e(s) . -1 2e2 (e2

2
- e2)

0

e2 - e
0

74 )

The above reflection coefficient may also be expressed

in terms of a relative dielectric constant, k' = e2 /e0 and

a relative loss factor k" = en2 ie
o

as follows:

e(s) = - 1 + 2((k' - 1)

k' - jka - 1
75)

e(s) - 1 - 2 + 2(k' - jk") * 76)
k' - jk" - 1 k' jk" 1



where e2 = ez - jet .

In the time domain equation 76 is

?(t) - 8(t) _ 2 L jk" 1)

+ 2 L-1 [k' jk")1]

k' - jk" -1
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77)

which also explicitly reveals the second and third terms

as additive distortion terms. In order to use equation 77

the frequency dependence of k' and k" must be known.

Since these two quantities are complicated functions of

frequency which are different for each dielectric material,

this case does not lead to a generalized form of analysis

as do the metallic conductors. Because of this added

complexity each dielectric is a special case which must

be analyzed individually. Therefore, it will be discussed

no further in this work.
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General Considerations of Nonsinusoidal Electromagnetic
Fields Generated by Aperture Devices

Because of the 3mrc,tance of such devices and systems

as parabolic antennas, phased arrays, horns, slots, and

open waveguides, etc., to conventional radar, the

question of their suitability for use with nonsinusoidal

excitation is naturally of interest.

In the sinusoidal case, under certain conditions

specified in later sections, the active areas of such

devices may be treated as if they were illuminated openings,

or apertures, in a highly conductive screen of infinite

extent. In these cases the field in the aperture, by

Huygen's principle, is a source of radiated fields. As

such the aperture field is equivalent to a distributed

current source.

If the smallest dimension of the aperture is

considerably larger than the wavelength of the source

excitation, then the vector form of Kirchhoff's diffraction

integral may be applied to determine the intermediate and

far zone fields produced by the excited aperture. At

distances within a few wavelengths from the aperture, or

for aperture dimensions on the order of a few wavelengths

or less, the assumed boundary conditions on the conducting

screen break down badly. This fact makes use of the

diffraction integral invalid under those conditions.

However, for the high frequency case in which the aperture
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dimensions are larga c: cared tc the operating wavelength,

the diffraction integral produces accurate results.

As with the otil'.?r '-stems examined so far, the

expressions for the radiating electric and magnetic

fields produced by an aperture type device constitutes a

form of steady-state transfer function. It describes the

amplitudes and phases of the fields at various points in

the space around the device in terms of the amplitude and

phase of the steady-state sinusoidal excitation.
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Examination of the Diffraction integral

Before evaluating the unit impulse responses of

apertures (parabolic antennas) from their far field

transfer functions, it is first necessary to consider any

limitations that may result from the ultimate source of

those functions. Such transfer functions are derived

from the sinusoidal far field quantities expressed by the

vector diffraction integral of the fields existing over

an aperture.

For sinusoidal operation (at a single frequency) the

far field (Fraunhofer) diffraction integral is an

approximation which is only valid for distances much

greater than the dimensions of the aperture and at

frequencies where the -,.peratinp wavelength is much less

than the aperture size a, or the conditions

X << a << r.

The second limitation, a << r, offers no great

difficulty since most conceivable radar situations,

whether using a conventional sinusoidal carrier waveform

or using a nonsinusoidal waveform, correspond to distances

much greater than the aperture.

The first limitation, X << a, however, stems from the

fact that the (approximate) Kirchhoff boundary conditions

used to evaluate the diffraction integral break down for
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wavelengths close to, or greater than, the aperture

dimensions.

The second limitation may offer difficulties or even

render invalid the evaluation of the unit impulse response

which requires integration of the transfer function with

respect to the frequency variable from - m to + m. The

path of integration necessarily passes through the low

frequency, or long wavelength, region where the Kirchhoff

boundary condition approximation breaks down. This fact

makes it necessary to examine the transfer function for

each aperture shape and each field distribution considered.

It is shown in subsequent sections that neglecting the

long wavelength breakdown of the boundary conditions

contribute little error to the resulting impulse response

functions.

The classical Kirchhoff diffraction integral may be

derived for an opening, or aperture, in a sheet of

conducting material of infinite extent and of infinitesimal

thickness as illustrated in Figure 9. This arrangement of

conducting sheet and aperture with a propagating sinusoidal

field progressing from left to right in the general

direction of the positive z axis represents the aperture

presented by a large parabolic reflector antenna, or

array, as used in modern radar applications.

The E and S fields at an arbitrary observation point

xo, yo, and zo, may be expressed as an integral of the



Aperture
Sa

/
SC 1^1 ri/
Zi

e 1
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xoy0,zo,
observation
point

Figure 9. Details of the Kirchhoff-Huygens Diffraction
integral.
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fields appearing in the aperture and on the surface of the

conducting screen. The classical diffraction integral

expressing the far electric fleld due to one rectangular
ON.

component of the E (in this case the x component) field

in the aperture from Silver (1963) is

E
x
(x

0
vy

o
,z

o
) =

1 if Ex(x'or', 0 ) (Ajr/c +
-47

Sa+Sc

+ dx' dy' 78)
r

where the quantities involved are depicted in Figure 9

with the following definitions.

= unit vector perpendicular to differential
area, dA'.

F'= position vector of dA' in aperture Sa.

? = unit vector in the direction of r'.

= unit vector in the direction of propagation
at each point in the aperture = n in the cases
to follow.

Re= position vector of the observation point
(xe,y0,z0) with respect to the origin.

= unit vector in the direction of R o .

Notice that the field Ex(x.00,0) on Sa and Sc includes

not only the amplitude distribution of the field over that

surface, but also any phase distribution that may be

associated with it. In normal practice the third term
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in the brackets of tlie 5ntegrand is usually dropped as

being negligible compared to the crher two terms. For

our case it is advisable to retain that term and determine

its contribution after the impulse responses have been

determined.

To obtain the entire field at the observation point

such an integral must be evaluated for each rectangular

component of the field in the aperture and on the

conducting surface.

Evaluation of these diffraction integrals is made

mathematically tractable by use of the Kirchhoff

approximations for the fields on the right side of the

conducting screen: the field components and their

derivatives normal to the conductor surface are assumed to

vanish on the screen and the fields and their normal

derivatives in the aperture are assumed to be unchanged

from their values in the absence of the screen.

Although the above Kirchhoff approximations to the

conditions on the screen and in the aperture are actually

inconsistent? the diffraction integral gives satisfactory

solutions to the far fields when the wavelength is much

smaller than the aperture dimensions. For the purposes

here the diffraction integral may then he evaluated only

over the field in the aperture.

9) Since both Ex and dEx/dn cannot both be specified on
the surface Sa S

0.
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For the special case to be considered, many

simplifications may be imposed on the diffraction

integral. Only aperture fields that lie entirely in the

plane of the aperture and that are linearly polarized in

the x or y directions are considered. This restriction

reduces the effort to the evaluation of only one such

diffraction integral. This restriction also causes the

unit vector g, which is a vector in the direction of

propagation of the field at each point in the aperture, to

be the normal direction (i.e., over the entire aperture.

Note also the decomposition of thethe distance

vector from the origin to the observation point, and E,

the vector from the area element in the aperture to the

observation point, into products of a scalar magnitude

and a unit vector in the direction of the corresponding

vector. The following simplifications and approximations

then ensue:

cos 0 .

For the condition that Ro is much greater than the

aperture size, the distance r in the denominator may

readily be approximated by Ro. This quantity may be

removed from under the integral sign since it is not a

function of the aperture coordinates. This approximation

reduces the diffraction integral to



(x y z ) =
-'x o' o' o

if
S

0) eiwr/c (cos 8 + i) j
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+ 1 cos 8 dx. dy' 79)
R
o

The value for r in the exponent is not so easily

managed. Values of Ro much greater than the aperture size,

however, allow suitable approximations to be made. The

following expression for r result:

r = [z + (x
o

- x')
2

+ (y
o

- y1)211

z
o
[1 + (x0 - x')2 (yo - y1)21i

n2 z2"o

which may be approximated by

r zo + (x0 - x')
2

+ (y0 - y')
2

2 zo 2 zo

z
o
- x' x

o
- y' yo + (xo2 + yo2 + zo2 ) - z 2

zo zo 2 zo 2z o

+ (xl)
2

+ (y' )2

2. z o

+ IOW OD

80a)

80b)

81a)

81b)

It is convenient to express the subscripted quantities

in spherical coordinates Ro, 80, and 00. With



xo = Ro sin e
o

cos 0 0 R a

yo = Ro sir. E sinfrio = Ro 0

zo = Ro cos e0

the expression for r becomes

r Ro cos 80 + 111
o
(-cos + 1/cos )

- (ax' + Sy') + (x')2 + (y')2 + - --

cos 80 2R cos 9
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82)

For R >> lxl and R
o
>> 151 the last term containing

(x')
2

and (y')2 is negligible while the first two terms

with R0 and cos 0 may be combined by trigonometric

identities and series representations of the trigonometric

functions to give

R
o
(cos 0 - cos 80 + * sec

o
) n

6
R
o

- 4 02 +.94 -
o

+
4

+ * + e
0

-47g 1440

+ 5 4 + 61 0
6

+

48 ° 1440°

so that

r Pts R 0(1 + e
4

+ e
6

) (ax' + Oy')
o o

8 2417 cos eo

83a)

83b)

Since the angles for which an antenna pattern are of

of interest are usually less than 100, or 0.2 radian, the



higher powers of 80 in the first parentheses may be

neglected leaving

r a R
o - (ax' + Oy')

cos

The diffraction integral then reduces to

E
x
(x

ot
y
o'

z
o

) = Ex (R 0te 0' 00 ) =
X

4n Ro

(cos 00 + 1)jcof

+ cos 8o
J

Ro
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84)

E (x' ' 0) e
jC0(ax'+ey')/c cos 90

x y dx' dy'

x(x',5rto)
eico(ax'+0y. )/c cos 80

dx dy .

85)

The integrals in both terms of equation 85 above are

identical which reduces the task of determining the field

transfer function to the simple evaluation of the following

integral for any aperture shape and field distribution:

I(00. 0o. W) =

If
Sa

E x y ' 0 ) ei W(axe +
Sy' )/c cos 80

x '
. 86)

Recall that a = sin 00 cos 00 and $ = sin 90 sin 00 .

In order to keep this study of aperture antennas to

reasonable proportions it is limited to the rectangular

and the circular apertures having uniform intensity and
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phase distributions. These two forms of aperture are basic

to the sinusoidal steady-state mode of operation. Other

intensity and phase distributions have been used in the

past (Skolnik, 1970) in order to optimize performance in

some manner such as maximizing gain, increasing directivity,

or reducing side lobe levels. Any change from uniform

intensity and/or phase distributions usually degrades

antenna performance in some other manner.
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Rectangular Aperture with Uniform Intensity and Phase
Distributions

For a rectangular aperture of dimensions 2a and 2b

in the x and y directions respectively, the integral

i(e 00,(0) becomes

Ve0,00,c0) =

a

Ee jGOax'/c cos eo jCOOY'/C cos
dx' o dy,

o

-a -b

4ab E
o

sin(WAa) sin(00Bb) 87)

CJAa OJBb

where A = a/(c cos 80),B = 0/(c cos es), and E0 is the

peak value of the electric field in the aperture. In terms

of the Laplace transform variable, S, the above integral is

I(80,0, s ) = 4 ab E0 sinh(SAa) sinh(SBb) 88)

SAa SBb

or, in terms of exponentials,

Ve0,00, s ) =

4 ab E0
e
S(Aa + Bb)

- e
s(Aa - Bb)

SABab

-S(Aa - Bb)
- e

-S(Aa + Bb)
- e

S

89)

The first term in the diffraction integral of equation
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85 is multiplied by j W = S which cancels the first S in

the denominator of equation 89 above. The inverse Laplace

transforms required are

L-1 [S i(80,00, S )i =

4 E
o

+ Aa + Bb)

u(t - Aa + Bb)

-

+

u(t + Aa -

u(t - Aa -

Bb)

Bb)] 90)

AB

-

and

Heo,00,s =

= Ve0,0, t)

4 Eo + Aa + Bb) u(t + Aa + Bb)

AB

- (t + Aa - Bb) u(t + Aa Bb)

- (t - Aa + Bb) u(t Aa + Bb)

f+ (t - Aa - Bb) u(t - Aa - Bb)] = Ve0,00,T) dT .

91)

Inserting the above transformed quantities into the

diffraction integral of equation 85 yields the overall

unit impulse response of a rectangular aperture. The

exponential factor e
-SRO/c merely represents a time delay

of -R o/c in the time domain.
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The total unit irtnulse responoe is

Ex (Ro' 8
0-
.0

0
t - Ro/c)

E
° (cos 00 + X

cABR
o
n

+ Aa + Bb - Ro/c) - u(t + Aa - Bb - Ro/c)

- u(t - Aa + Bb - R0 /c) + u(t - Aa - Bb Ro/c)]

+ E
o
cos 9

X
AB R2 n

Et + Aa + Bb - R0 /c) u(t + Aa + Bb - R0 /c)

- (t + Aa - Bb - R0/c) u(t + Aa - Bb - Ro/c)

(t

+ (t -

- Aa + Bb

Aa - Bb

- Ric) u(t - Aa + Bb - R0/0)

R0 /c) u(t - Aa - Bb - Ro/c) 92)

where A and B are functions of 80.

Pictorially the far and intermediate field impulse

responses are as shown in Figure 10. This result has some

very interesting interpretations. First, the ratio of the

absolute magnitudes of the intermediate field and the far

field is

2 b sin 0
0
sin 0

Ro (cos 00 +



"E__2(Aa +Bb

-tel

-(Aa+Bb) -(Aa-Bb)
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a) Far Field Impulse
Response

Aa > Bb

2E oc(1 + cos 0 o)

r TaTTsin 20o
(Aa-Bb) (Aa+8b)

0

t =R ofc

ti

0....m..
k_ 2Bb

Ex b) Intermediate
Field Impulse
Response

A

- (Aa+Bb)

-Bb)
0

t =R
ofc

2Eocb cos
2

o

IT R2sin o cos 0o

(Aa-Bb)

(Aa+Bb)

Figure 10. Rectangular aperture unit impulse response.
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which shows that the intermediate field is negligible for

R >> b. In addition, at e
o

= 0, on the z axis, the ratio

is zero.

Next, the form of the dominant far field is such that

for waveforms for which the time interval of interest is

much greater than the duration of this impulse response,

2(Aa + Bb), it appears as a unit doublet, or the first time

derivative of the ideal impulse function. Therefore, for

such excitation waveforms, the far field of the rectangular

aperture will be the first time derivative of the fields

in the aperture. This relationship may be put on a more

quantitative basis:

t1
. >> 2(Aa + Bb) = tan eo (a2 + b2)1 cos(00 - Op)

93)

where t. is the time interval of interest of the field in

the aperture and 0 = tan-1(b/a)

Further study of the far field impulse response shows

more interesting features. For instance, the duration of

one of the pulses is

2Bb = 2b tan 00 sin 010 94)

The above relationship shows that near the z axis

where tan eo approaches zero, the duration of the pulse

also approaches zero. In addition, the separation



between the positive and negative portions is

2(Aa - Bb) = tan 0 (a
2

+ cos(00 + Op)
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95)

which is smaller than the pulse duration and which also

approaches zero on the z axis. The amplitude of the pulse

is

2 E
o

(cos 0 + 1) c

r R0 tan280 sin(20 0)

which approaches infinity as 030 approaches zero. All of

the preceding discussion means that on and near the z axis

the impulse response approaches an ideal doublet which

produces a far field proportional to the first time

derivative of the field in the aperture. At locations off

the z axis poorer replicas of the time derivative are

formed.

The above result is very significant. It was

mentioned earlier that other indicators of target angular

location might exist. This means that if an aperture is

excited by a very short duration impulse-like field, a far

field response similar to Figure 10a is produced at a

given angular location. A small point target at that

location will reflect a doublet-like waveform peculiar to

the coordinates 80 and 00 having a fixed relationship to

signal duration, pulse separation, and pulse duration.

For example,
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Total signal duration = K = a cos 00 + b sin 00 96)

Pulse separation a7;77o - b sin 0;--

from which

tan 00 = a(K - 1) 97)

b(K + 1)

where K is a measurable quantity from which 00, one

coordinate of the angular location of the target, could

be surmised. Once 0
o

is known the value of e
o
may be

calculated from the pulse duration:

or

Td
= pulse duration = 2 b tan e

o
sin 0

0
98a)

tan eo = c Td 98b)

2 b sin 00

The above technique would be very important for

measuring the angular position of a target since the

relative amplitudes of the signal with respect to direction

does not provide nonambiguous indications of the two

angular coordinates. Recall that the far field amplitude

is proportional to

(cos eo 1)

tan2 e o sin(20o )

99)

It is also of interest to note that the intermediate

field pulse approximates an ideal impulse function near
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the z axis, but its contribution is insignificant.

As mentioned earlier it is also necessary to determine

if the long wavelength (1.e., /ow frequency) breakdown of

the Kirchhoff boundary conditions can safely be ignored in

this analysis. it is shown in Jackson (1967, Section 9.9

and problems 9.10 and 9.11) that in the long wavelength

limit, where

2 a (de << 1 or W<< c/2a

that the far field varies as (Wa/c) 2 for a small circular

aperture. This fact indicates that for frequencies

satisfying the above inequality, the aperture transfer

function may be considered to be zero at these lower

frequencies. The physical aperture then appears as the

ideal aperture we have considered here in cascade with a

high-pass filter which rejects the lower band of

frequencies. We may then determine the overall effect of

rejecting the low frequency band by recalculating the

impulse response from the transfer function cascaded with

a suitable high-pass filter. A suitable high-pass filter

offering mathematical tractability is the traditional RC

high-pass filter with the following transfer function:

Hhp
(S) = S/(S + 64) 100)

with 600 m c/2a.

Applying the above transfer function to that of the



rectangular aperture (equation 89 or 90) yields

I(e0,00

S +Wo

4 E e[ e
S(Aa + Bb) S(Aa Bb)

AB S + GJo s.+ Wo

+ e
-S(Aa +

e
-S(Aa - Bb)

S + Wo S + (A)0
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101)

The inverse transform of equation 101 is a summation of

appropriately delayed exponential functions. Neglecting

propagation delay this is

L-1[ s s '(a0,00,$) =

[4E0 u(t + Aa + Bb) e
-00o(t + Aa + Bb)

S

AB

- u(t + Aa - Bb)

u(t - Aa + Bb)

+ u(t - Aa - Bb)

e
-CO (t + Aa - Bb)

e
-G00(t - Aa + Bb)

e
-000(t Aa - Bb)

102)

The corrected waveform of equation 102 is shown in

Figure 11. The amounts of droop, Ql and LS2, can be

calculated from



2Bb

2(Aa -Bb'

t = R
o
/c
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Figure 11. Distortion of a rectangular aperture unit
impulse response due to low frequency attenuation
effects of the aperture.



-b(tan 90 sin 00)/a
1 1 e

= 1 - e-(a
(tan N) cos(00 + Op)/2a
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103a)

103b)

Typical worst case considerations for eo m 5°, sin 0
o

= 1,

a b, Op m 45° yields

A e-0.1
1 0.9 = 0.1

4-11

and e-0.1/22
2

ft 1 - 0.93 = 0.07 .

The above approximate values of droop show that the

far field impulse response may be distorted by as much as

10% droop in the individual pulses. The droop would have

little effect when convolved with a field appearing in

the aperture: the relative durations, pulse separations,

amplitudes, and areas of the pulses would be changed very

little by this distortion. As an approximation to the unit

doublet, the exact shape of the two separated pulses is of

no great concern.
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Circular Aperture with Uniform intensity and Phase
Distributions

The diffraction integral may be evaluated for a

circular aperture by changing the variables x' and y' to

polar coordinates in the aperture. In terms of polar

coordinates x' and y' are

1x = r' cos 0'

y' = r' sin 0'

while the area element is

dA = dx' dy' = r' dr' d0'

Substituting the above expressions into the integral

of equation 87 gives, with a = radius of aperture,

I(80,00, 00) =

E
x

2n

dr' red cos 0'+ 0 sin 0')r./(c cos e )op

O

The exponent in the integrand may be written as

j to r' (a2 + 02)* cos(0' - 0;) =

c cos 90

j F cos(' 0; )

where

104)

105)



0p = tan
-1

(0/a) = tan (tan 0
o ) = 0

o
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106)

The integral in terms of 0' is a standard form for

the zero order Bessel function of the first kind so that

e
j F cos(%' -

d0' = 2 J (F) .
o

107)

Since (a2 + $2).i = sin 0
o , the quantity F simplifies to

F = wr' tan eo . 108)

The second integration with respect to r' is

a

I
re

= Eo 2 r' Jo ( (Jr' tan 9 /c) dr'

a Wtan 00/c

= 2 E
o

c
2 erRe J

o
(R') dR'

f.,2 2
ruv tan 80

= 2 E0 c2 a co tan 8o J
1
(aCO tan 0 o /c)

IT c 0J2 tan290

= 2 a Eo c J1 (a wtan o /c) 109)

IT W tan 00

The far field transfer function then becomes

Ex(00,00,W) =

-jC0110/C
j e (cos 0 + 1) E a J

1
(aW tan e

o
/c) 110)

2
2 TT R0 tan 90



which in operational form is

Ex(00,00,S) =

e
-S110/c

(cos 80 + 1) E0 a I,(aS tan 80 /c) .

2
2 r R

o
tan 0

If equation 111 is written in the form

E (e o4o ,$) = Eo a2 (cos e
o

+ 1) e-SR0/cx X

2 n2 Ro c

I
1
(aS tan 0 /c)

a tan e
o
/c

the portion of equation 112 which is a function of S is
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112 )

e-S110/c
I
1
(A S)

A

where A = a tan

The exponential factor just contributes an overall delay

term of R0 /c to the corresponding time domain quantity and

may be ignored in inverting the factor I1(A S) to the time

domain. From Roberts and Kaufman ( item 12.3-1, page 297,

1966) the inverse Laplace transform of the modified

Bessel function is

1[Ii(A =

A r A2(A2 t2)

-t for -A< t< A. 113)

Recall that t actually incorporates a delay of Ro/c. The
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form of the above function of time is illustrated in

Figure 12.

As A approaches zero, or as eo approaches zero, the

waveform approaches an ideal doublet. For angles away from

the z axis the impulse response appears as if it were an

ideal unit doublet to an aperture field for which the

interval of interest of the waveform is much greater than

the value of A.

The above fact is verified and made clear by a series

expansion of I1(A S) /As

I1(A S) S + S3 A2 + S5 A4 +

A
2
4

3 x 2
6

CO

114)

Taking the inverse Laplace transform of this series form

of I1(A S) /A gives the following

[I (A s)] =

A

+ A
2

6 "(t) + A
4

6(5)(t) +

2
4 63x2

115)

where 6 (5) (t) indicates the fifth derivative of the impulse

function. Since A = a tan 0
o

and useful values of 0 are

on the order of 100 or less, it is seen that all terms after
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A = a tan 80

t = R
o
ic

to

Figure 12. Idealized unit impulse response for a
circular aperture.
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the first diminish inversely with increasing even powers

of c (= 3 x 108 meters per second) so that they are

negligible. It is wife to assume that a circular aperture

produces far fields that are the first time derivative of

the field in the aperture.

The complete impulse response of the circular aperture

is

E (e ,0 ,t) =x 0 0

E
o

c (cos 0 + 1) (t R0 /c)

2 n3 R
o

tan2e
o
[a2 tan2e0 - (t - Ro/c)2

c2

or, as an approximation from equation 115,

E
x
(8

o
,0

o
,t)

Eo a2 c (cos 0 + 1) 6(t - R
o
/c)

2
2

n R

116)

117)

The above equations 116 and 117 are interesting in

that there is very little angular variation of the far

field amplitude and it is completely independent of 00:

This fact indicates that some phenomenon other than

amplitude variation with angle is required to indicate

target direction.

The effect of the low frequency cut-off can be
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estimated by subtracting the low frequency components

contributed by this analysis. This is done in the

frequency domain using the transfer function of the

aperture. The frequency dependent portion of the transfer

function is

j J (aco tan eo /c)

a tan eo /c

For (A) = (,00 c/2a the argument of the transfer function

is 2 tan eo . For small angles the Bessel function can be

j J1(a coo tan eo /c) st$ j coo 118)

a tan eo /c

The contribution to the impulse response by these low

frequency components is
00o

jfejUldC0 = d
o

dt

coo cos co of - sin coot .

t2

119)

The overall time dependent factor of the impulse response

is

f(t) = - t [u(t 4- A) - u(t - - drsin wotl. 120)

A2 (A2 dtL t

The form that this corrected impulse response might take is
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sketched in Figure i3. It is obvious from this figure

that some distortion can occur.
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2 a tan e=..
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2
<----

TT

Wo
>

00

Figure 13. Form of the corrected impulse response
for the circular aperture.
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Array Antennas

The general effect of an array of several radiating

elements may be quickly demonstrated by use of the

fundamental relationship of equation 25 of Chapter VI. It

is repeated here for the reader's conveniences

E (0, O,
far

N

A ejW(7nric 6n)
n

n=1

or, in terms of the Laplace transform variable,

E
far

(e, 0, s)
n

eS(P;16 fic 5n)

n=1
with A

n the relative strength of the nth radiator, b
n the

relative delay of the excitation for the nth radiator, CI

121)

122)

n
a vector denoting its location with respect to the origin,

and F a unit vector in the direction of the observation

point.

Inverting equation 122 to the time domain yields
N

E (8, 0, t) = 71A
n

b(t - F/c - 6
n

) 123)
far

n=

Since the overall far field. transform domain response

is simply the product of the aperture, or array, response

and that of the radiating elements making up the array, the

overall time domain unit impulse response is obtained from

the convolution of equation 123 with the impulse response

of the radiating element. If the far field unit impulse

response of the radiating element is h(t), then the overall

unit impulse response in terms of h(t) is simply



E
far

(e, 0, t) =

N 231

h(8, 0, t .F/c - n ) 124)

n=1
which is nothing more than the linear superposition of

the several relatively delayed impulse responses due to

the individual radiating elements.

As an example of the effect of an array, consider a

one dimensional linear array having N evenly spaced

elements with uniform amplitude and phase distributions.

Its normalized response is

Efar
= sinh(N S B) 125)

N sinh(S B)

where B = d cos 8 and d= element spacing, and 8 is the

direction measured from a direction perpendicular to the

array. The above equation may be written as

E
far

= 1 (1 + e
SB

+ e
2SB

+ e
3SB

+ + e
(N-1)SB

).

N

126)

Assuming ideal isotropic radiating elements, equation 126

constitutes the overall response of the array.

Equation 11 of Chapter VII provides the value of

a
2 of the overall unit impulse response of the array. In

order to exploit that equation the first and second

derivatives of E
far

with respect to S are required:



dEfar
dS =

232

2SB (N-1)SB
B ( eSB + 2e + 3e3SB + + (N - ) , 127)

N

dS
dEfar

=0

B (1 + 2 + 3 + 4 + + (N - 1)) = 2 B(N - 1) , 128)

N

d2Efar =

dS2

2, SB
e
2SB

+ 9eB + 14. + + (N - 1)2
,

e
2 (N-1)SB)

, 129)

N

d
2E

far
dS2 S=0

B2B (1 + 4 + 9 + + (N - 1)2) = B
2(N

- 1)(2N - 1).130)

N 6

Then

-
a
2

= t2 - t
2

B2(N - 1)(2N - 1) - 4 B
2(N

- 1)
2

131)

6

With B = d sin we have
2e



and for N 4,

N + 1) d2 sin2 0

48 c2

2 2
- 1) sin 0

a N d sin 0

3 x 108 (48)

4802
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132)

= 0.48 N d sin e nanoseconds.

133)

The value of a is also the amount by which the mean-

square duration of a pulse-like excitation is increased:

= (a
2 + a 2 )a

far field signal
134)

Equation 19 of Chapter VII may be used to estimate

the rise time in response to an ideal unit step function.

That equation yields, for the 10% to 90% rise time

or

T
r

4.472 x 0.48 N d sin e

T
r

2.14 N d sin e nanoseconds .

135)

136)

It is obvious from equation 136 that closer element

spacing and a smaller number of elements will improve

the time domain unit impulse response of an array antenna.
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Two-way Antenna Performance

To this point discussion has centered on the electric

intensity of the far ff_elds prodyced by various antenna

configurations. However, the ultimate concern in radar

(or communications) applications is the form of, and the

distortion impressed on a signal after it has been

transmitted, reflected, then received by the antenna

system of the radar. The two-way time domain response is

quite easily established by considering the two-way

frequency domain response which is just the square of the

complex antenna one-way response (Harger, 1970, page 63).

Note that this assumption neglects any effects induced by

the radar target or the intervening radar medium. This

being the case, the effect in the time domain is then

simply the convolution of the antenna unit impulse response

with itself. This fact is highly significant. It means

for those combinations of excitation time scale and aperture

which produce far fields proportional to the first time

derivative of the aperture source field, that the final

received signal will appear as the second time derivative

of the aperture source field.

For those combinations of excitation source time scale

and aperture size not producing the time derivative of the

source, the self convolution of the antenna unit impulse

response must be accounted for in conjunction with the
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excitation waveform,
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Chapter XI Summary and Conclusions

Before stating the conclusions to be drawn from this

study it is worthwhile to restate the original aims and

purposes in making it.

As stated in Chapter I crowding of the available radar

electromagnetic spectrum is likely to occur in the future

making the possible availability of another form of

electromagnetic spectrum for radar applications very

attractive. It was also noted in Chapter III that radar

theory and its applications consists of two major divisions:

the electronic and signal processing aspects of the radar

operation; the electromagnetic and propagation principles

on which the radar operation itself depends. Since a great

deal is already known about the electronic processing and

amplifying of bi-valued and pulse-like wave trains it was

felt that little contribution could be made in that area.

However, little investigative effort has apparently been

made into the nature of the transmission, radiation, and

propagation characteristics of bi-valued waveforms such as

Walsh waves. The aim of this thesis, then, is to answer

the question of the compatibility of the radar environment

and several standard high frequency (sinusoidal) electro-

magnetic devices with bi-valued waveforms and whether

useful radar information (target direction, velocity, etc.)

might be provided by their use as a carrier waveform. No
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consideration is given regarding gains to be made in signal

processing using a Walsh carrier wave rather than a

sinusoidal carriers
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Contributions and Findings

In Part I several qualitative conclusions were made

regarding the nature of the problems to be encountered in

using Walsh wave carriers in radar operations. First it

was concluded that detectable and useable target speed and

direction information can only be provided by an electro-

magnetic wave possessing a high periodic rate of one of its

fundamental parameters such as its rate of zero crossings.

This property is inherent in the bi-valued functions

considered here.

Another important conclusion is that direct transient

analysis of transmission, radiation, and propagation

phenomena would be very difficult and would require much

new research effort. In addition, within the body of

knowledge of such phenomena the properties of devices and

materials have traditionally been described in terms of

their responses to steady-state sinusoidal excitation: i.e.,

suitable time domain descriptions of the items and materials

relevant to the problem are lacking.
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Contributions of Part II

Part II offers concepts and techniques by which the

desired transient or pulse-like responses may be obtained

by other means. In Chapter VI it is pointed out that

transmission elements, radiating devices, and propagation

media may all be described by effective transfer functions

which relate the relative amplitudes and phases of steady-

state sinusoidal electromagnetic fields at two different

locations either along a transmission device or in free

space.

In Chapter VII the argument is made that the unit

impulse responses associated with transmission and radiation

devices and propagation media are sufficient to

characterize them when responding to bi-valued waves such

as Walsh functions. If this is true then such impulse

responses are readily available from the aforementioned

transfer function descriptions of these elements if valid

over a sufficiently wide band of (sinusoidal) frequencies.

However, in Chapter VII it is also shown that the

effect of the three classes of elements considered upon a

bi-valued wave is only of interest at its transition points

in either affecting rise and fall times or in increasing

the duration of and changing the shape of a pulse-like

waveform. A direct measure of these effects is the root-

mean-square duration of the related unit impulse response,

a, which was shown to be easily obtainable from the



240

transform domain transfer function of an element or device.

It is then not 1.cessary to resort to time domain

evaluation of the root-mean-scuarc: duration, a, quite a

difficult task for many of the complicated unit impulse

responses obtained in Part III. The increase in rise or

fall time in response to a waveform having a finite rise

time is also established in Chapter VII. It is felt that

the simple but fundamental concepts introduced in that

chapter constitute a major contribution of this thesis.

Another important contribution arose in the work for

Part III in which the ideas of Chapter VII are applied to

actual transmission and radiation devices and antennas.

In this work it was noticed that very often a transfer

function can be decomposed into a set of additive terms of

which one is a constant. In the time domain the

corresponding unit impulse response then contains an ideal

impulse term plus others that are functions of time. The

ideal impulse term reproduces the original excitation

without distortion (other than an amplitude or delay

change) while the remaining terms describe the distortion

that the device or medium imparts to a signal or waveform

passing through it. The distortion terms are then isolated

and explicitly expose the parameters of the system

responsible for distortion as well as their relationships

to each other. Their effects can be minimized by keeping

their amplitudes or areas small with respect to the weight

of the ideal impulse term.
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Findings of Part III

Chapters VIII, IX, and X provide the quantitative

results of the study pertinent to the aims stated earlier

while the material of Chapters VI and VII provide the

mathematical framework within which the analyses of Part

III are carried out and interpreted. Chapter VIII deals

principally with the radar environment. Its major

conclusions are few, but clears

A planetary ionosphere can reduce useable

transmission distances to only a few meters. The

electric and magnetic fields are also found to

undergo relative distortion as they progress through

a plasma, meaning that they don't possess the same

temporal functional form. Because of this fact,

care must be taken in devising circuits that extract

energy from the fields.

The lower atmosphere is found to produce rather

low distortion, allowing useful transmission

distances of several thousands of meters. These

distances are proportional to the square of the

smallest time interval of interest in the progressing

wave: i.e., the time resolution desired.

In Chapter IX it was found that closed, hollow

metallic waveguide appear to be useless for transmitting

nonsinusoidal waveforms within the radar system or over
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any considerable distance from the electronic signal

processing units to antenna units. The useable trans-

mission distances are found to of the same order as the

lateral dimensions of the waveguiae. Since this is the

case, it appears that a more detailed analysis which takes

wall and dielectric losses into account is unnecessary.

Coaxial and strip transmission lines are found to

operate with useable transmission distances with the

following breakdown by the classes of transmission line

considered:

Coaxial line: 0.2-Vc

Strip line: 20VT;

Integrated circuit

to

to

to

6.5-NgIT

85-VT-1;

0.2-VIT

meters

meters

metersinterconnection: 0.1Vr.m

where Tm is the smallest time interval of interest in the

transmitted waveform in nanoseconds.

In addition a simple criterion was established as

a by product of the analysis in that the transmission

distance may be maximized for a given amount of distortion,

or pulse distortion may be minimized by maximizing the

quantity

F.1]).57

Fsid7c7-
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in the design of a transmission line. It is also found

that the current and voltage on a transmission line don't

retain the same temporal forms as they progress along the

line.

Chapter X provided many interesting results. As

expected it is shown that a dipole antenna of finite

length is unsatisfactory as a radiating element if its

length is comparable to the product of the speed of light

and the duration of one Walsh function pulse interval.

Reflection yielded to analysis showing that for angles

of incidence much smaller than 45 degrees waveforms suffer

little distortion on reflection. This fact means that for

angles of incidence much less than 45 degrees parabolic

reflectors would be suitable to focus bi-valued waves.

When considering apertures (or parabolic reflectors)

as means of forming beams of Walsh waves it is found that

the far radiation field takes the form of the first time

derivative of the field within the aperture. In addition,

little unambiguous amplitude (or power) variation with

direction occurs in the far fields. However, a detectable

change in the shape of the impulse response occurs for

variations in direction.

In addition, a qualitative analysis shows the two-way

performance of an aperture antenna produces a received

voltage or current which has the temporal form of the

second time derivative of the field in the aperture.
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General Conclusion

Walsh functions or similar type functions and their

time derivatives and integrals may be used as a radar

carrier waveform while conventional coaxial or strip

transmission line may be used to interconnect the elements

comprising the system. The lower atmosphere will offer

little hindrance while applications involving a planetary

ionosphere must be approached with some caution. Parabolic

reflectors are suitable for producing angle sensitive

parameters in the far field and target reflected fields,

although it appears that they don't produce a high

concentration of electromagnetic energy in a small solid

angle as is done in the sinusoidal case. Beam forming

properties of bi-valued waveforms do not allow the same

interpretation as found in the sinusoidal steady-state

response.
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Areas for Further Resee:rch and COnsideration

This work is admittedly just the start of research in

a very neglected area of study. Because of the breadth of

the work, it was often limited to approximate or lossless

cases while the more mathematically difficult topics had to

be neglected. However, several topics for further, or more

intensive, research are apparent. Some of these are: 1) a

more exact analysis of the transmission line and its

termination problem; 2) inclusion of the effect of the

geomagnetic field with the ionosphere, or plasma; 3) obtain

the time domain unit impulse response of the lower

atmosphere; 4) obtain a more exact analysis of the low

frequency response of an aperture. These problems and the

general area of pulse, or transient, responses of

propagation media and transmission and radiation devices

offers not only the promise of an interesting and fruitful

area of research, but should also become very useful -s the

pulsed mode, or bi-valued waveforms, come into greater use.
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Appendix I: Subject Content of Classical Radar Text
Books and Specialized Short Courses in Modern Radar Theory
and Applications.

Below are listed the tables of contents of several

recent text books and the generalized subject matter of

several specialized short courses offered in recent years

by several universities and recognized authorities in the

field of modern radar.

Text Books

"Radar System Engineering". Volume I of the Massachusetts

Institute of Technology Radiation Laboratory Series.

Edited by Louis N. Ridenour, 1963.

Chapter Topic

1 Introduction

2 Radar Equation

3 Properties of Radar Targets

4 Limitations of Pulse Radar

5 CW Radar

6 The Gathering and Presentation of Radar
Data

7 The Employment of Radar Data

8 Radar Beacons

9 Antennas, Scanners, and Stabilization

10 The Magnetron and the Pulser

11 RF Components
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12 The Receiving System- Radar Receivers

13 The Receiving System- Indicators

14 Prime Power .Supplies for Radar

15 Examples of Radar System Design

16 Moving Target Indication

17 Radar Relay

"Introduction to Radar Systems" by M. I. Skolnik,
McGraw-Hill, 1962.

1 The Nature of Radar

2 The Radar Equation

3 CW and Frequency Modulated Radar

4 MTI and Pulse Doppler Radar

5 Tracking Radar

6 Radar Transmitters

7 Antennas

8 Receivers

9 Detection of Radar Signals in Noise

10 Extraction of Information from Radar
Signals

11 Propagation of Radar Waves

12 Clutter, Weather, and Interference

13 Systems Engineering and Design

14 Radar Detection of Extraterrestrial
Objects

"Modern Radar- Analysis, Evaluation and System Design" by
R. S. Berkowitz (ed.), John Wiley & Sons, 1965.
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Part I Radar Basics

1 Basic Radar Colicetrts

2 The Radar Equation

Part II Basic Signal. Analysis Techniques

1 Linear System Analysis Fundamentals

2 Theory of Noise

3 Response of Devices to Noise

4 Noise Plus Signal Situations in Radar

5 Complex Signal Analysis Concepts

Part III Radar Target Detection and Parameter
Estimation

1 Statistical Decision Theory and Detection
of Signals in Noise

2 Target Parameter Estimation

3 Probability Density and Distribution
Functions

Part IV Resolution, Ambiguity, Pulse Compression
Techniques

1 Ambiguity and Resolution

2 Linear FM Pulse Compression

3 Optical Correlation

4 Pseudo-random Binary Coded Waveforms

Part V Radio Frequency Considerations
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1 Atmospheric Effects on Radio Wave
Propagation

2 Factors in Antenna Design

3 Radar System Sensitivity

4 Modern Low Noise Devices

Part VI Radar System Analysis and Design
Techniques

1 Target, Clutter, and Noise Spectra

2 MTI Radar Filters

3 Radar Feedback Filters

4 Predetection Integration

5 Radar Cross Section Target Models

6 Illustrative Problems in Radar Detection
Analysis

7 Tracking Radars

8 Satellite Tracking

"Principles of High Resolution-Radar" by A. W. Rihaczek,
McGraw-Hill, 1969.

1 Introduction

2 Fundamentals of Waveform Analysis

3 Single Target Measurements

4 Resolution in a Matched Filter Radar

5 Resolution Theory for Targets with
Constant Range Rate

6 Pulse Compression Waveforms

7 Linear FM Waveforms

8 Coherent Pulse Trains
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9 Radar Mapping of Distributed Targets

10 Target Detection in Clutter

11 Extensions of Resolution Theory

12 Waveforms for Simplified Doppler
Processing

13 Synthetic Aperture Radar

"Radar Design Principles: Signal Processing and the
Environment" by F. E. Nathanson, McGraw-Hill, 1969.

1

2

3

Radar and Its Composite Environment

Review of Radar Range Performance
Computations

Statistical Relationships for Various
Detection Processes

4 Automatic Detection by Nonlinear,
Sequential, and Adaptive Processes

5 Radar Targets

6 Atmospheric Effects, Weather, and Chaff

7 Sea and Land Backscatter

8 Signal Processing Concepts and Waveform
Design

9 Moving Target Indicators

10 Environmental Limitations of CW Radar

11 Pulse Doppler and Burst Waveforms

12 Phase Coding Techniques

13 Linear Frequency Mcdulation and
Frequency Coding

14 Hybrid Processors, Correlators, and
Incoherent Technioues
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"Radar Handbook" by M. Skolnik (ed.), McGraw-Hill, 1970.

1 An Introduction to Radar

2 Prediction of Radar Range

3 Waveform Design

4 Radar Measurement Accuracy

5 Receivers

6 Radar Indicators and Displays

7 Transmitters

8 Transmission Lines, Components, Devices

9 Aperture Antenna Analysis

10 Reflectors and Lenses

11 Array Antennas

12 Phase Shifters for Arrays

13 Frequency Scanned Arrays

14 Radomes

15 Automatic Detection Theory

16 CW and FM Radar

17 MTI Radar

18 Airborne MTI

19 Pulse-doppler Radar

20 Pulse-compression Radar

21 Tracking Radar

22 Radar Height Finding

23 Synthetic Aperture Radar

24 Weather Effects on Radar
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25 Ground Echo

26 Sea Echo

27 Radar Cross Section of Targets

28 Target Noise

29 Electromagnetic Compatibility

30 Solid-state Radar

31 Civil Marine Radar

32 Satellite Surveillance Radar

33 Radar Astronomy

34 Spaceborne-radar Applications

35 Digital Signal Processing

36 Bistatic and Monostatic Radar

37 Laser Radars

38 Beacons

39 Passive Detection



Radar Short Courses

"Principles of Modern Radar" - Georgia Institute of
Technology, Atlanta, Georgia, October 21-25, 1974.

1

2

3

4

5

6

7

8

9

10

11
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Radar System Fundamentals- Range Equation

Radar Cross Section

Propagation Effects

Radar Detection Problem

Elements of Radar Systems

Mechanical Aspect of Radar Design

Radar Measurement and Tracking

Special Signal Processing Techniques

Electronic Countermeasures

Basic Systems Analysis Approach

Laboratory Demonstration

"Radar Systems and Technology" - The George Washington
University, Washington, D.C., May 20-24, 1974.

1 Introduction to Radar; Performance and
Capabilities

2 Detection of Targets in Clutter; MTI
Radar

3 Signal Processing; Pulse Compression

4 Data Processing; Computer Control

5 Phased Array Radar; Solid-state Devices
in Array Radar; Adaptive Antennas

6 3-D Radar; Low Angle Tracking; Frequency
Agility

7 System Design Considerations



8

9

10

11
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Synthetic Aperture Radar; Optical
Processing and Holcgraphy

Remote Sensing of the Environment; Ice
Detection; Earth Resources Detection

Clear Air Turbulence; Over-the-horizon
Radar

Millimeter Wave Radar; Future Trends

"Introduction to Radar" - University of Missouri-Rolla,
Missouri, May 25-29, 1970 and repeated January 11-15, 1971.

1

2

3

4

Introduction to Pulse Radar, Search Radar
Coverage, and Radar Range Equation

Radar Measurement Problem, Classification
of Radars, Ambiguities

Minimum Detectable Signal, Probability
Density Functions, S/N, False Alarm
Rates, Pulse Integration

System Losses

5 Tracking Losses, Monopulse, Angular
Glint, Multiple Targets

6 MTI and Pulse Radar

7 Radar Transmitters

8 Antennas

9 Phased Array Antennas

10 Antenna Temperature, Noise Figure, Effect
on Radar Range

11 Estimation of Signal Parameters

12 Digital Signal Processing

13 Ambiguities, Pulse Compression

14 Propagation, Refractivity, Effect on
Range and Elevation Data
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15 Weather Effects

16 Radar Astronomy

"Radar Systems Design" - University of Southern California,
July 24 to August 4, 1972.

1 Introduction, Radar Equation

2 Matched Filters

3 Radar Detection

4 Antennas

5 Nonfluctuating and Fluctuating Target
Detection

6 Target Characteristics and the Radar
Channel

7 Transmitter and RF Hardware Constraints

8 Receivers and Noise Sources

9 Ambiguity Functions and Radar Signal
Design

10 Pulse Compression

11 Scan-to-scan Performance

12 Fast Fourier Transform

13 Clutter Rejection

14 Binary Coded Waveforms

15 Electronic Scanning and Phased Arrays

16 Angle Tracking

17 Synthetic Arrays

18 Range and Doppler Trackers

19 Digital Signal Processing

20 Radar Astronomy
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21 Countermeasures

"Advanced Methods of Modern Radar Systems" - Technology
Service Corporation (Santa, Monica, California), Los
Angeles, California, June 27-30, 1972 and at Washington,
D.C., June 5-8, 1973.

1 Course Overview

2 Target Detection and Target Models in
Modern Radar Systems

3 High Resolution Waveform Design

4 Adaptive Antenna Processing and MTI
Techniques

5 Technology Advances in Radar Transmitter-
Receiver and Array Antennas

6 Advanced Signal Processing Techniques

7 Environmental Modeling

"Radar Signal Processing and Clutter" - Technology Service
Corporation (Santa Monica, California), Silver Spring,
Maryland, October 18-22, 1971 and October 16-20, 1972.

1

2

3

4

5

6

Introduction and Types of Radar

Principles of Waveform Design

Radar Equation Review, Clutter and
Jamming Equations

Probability and Detection Theory,
Minimum Detectable Signal

Effects of Limiting, Pulse Integration
in Noise and Clutter, Automatic Detection

Fourier Analysis and Power Spectral
Density, Correlation Processes, Matched
Filter Design, and Quadrature Detection

7 Radar Target Properties, Amplitude
Distributions, Fluctuation Spectrum,
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8

9
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Weather and Chaff Clutter-Reflectivity
and Spectrum, Frequency Decorrelation
Effect

Land and Sea Clutter, Amplitude and
Spatial Distributions, Grazing Angle
Effects, Doppler Spectrum, Short
Pulse Effects

Ambiguity Functions, Pulse Compression,
Choosing Optimum Waveforms, Subclutter
Visibility, Airborne Pulse Doppler (ICW)

10 Pulse Doppler Techniques, FFT Techniques,
Phase Coding Techniques, Digital
Implementations, Quantization Noise

11 MTI, Variable Interpulse Period,I and Q
Implementation, Scanning Losses, Linear
FM and Chirp

12 Comparision of Processing Techniques,
Equipment Limitations, Pulse Compression
and MTI Hybrids, Adaptive Techniques

"Prediction of Radar Detection Range" - Technology Service
Corporation (Santa Monica, California), Silver Spring,
Maryland, October 23-25, 1973.

1 Introduction, Range Equations

2 Signal/Noise Relationships

3 Wave Propagation Phenomena

4 System Losses; Range Calculation
Techniques

"Applied Theory of Radar Resolution" - Technology Service
Corporation (Santa Monica, California), Los Angeles,
California, November 6-10, 1972.

2

3

The Problem of Resolution

Signal Notation and Waveform Analysis

Single Target Measurements



4 The Role of Resolution

5
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Basic Theory of Resolution and Waveform
Design

6 Radar Waveforms

7 The Linear FM Signal

8 Coherent Pulse Trains

"Radar Meteorology" - Technology Service Corporation
(Santa Monica, California), Silver Spring, Maryland,
November 9-12, 1971.

1 Fundamentals of Radar

2 Attenuation and Fluctuation of
Precipitation Echoes

3 Weather Radar Equations

4 Doppler Radar

5 The Relationship of Radar Reflectivity
Factor, Z, to Other Meteorological
Parameters

6 Clear-air Radar Echoes

7 Calibration, Measurements, and Data
Handling Techniques

"Microwave Sensing of the Earth" - Technology Service
Corporation (Santa Monica, California), Silver Spring,
Maryland, September 11-14, 1973.

1 Introduction and Overview

2 Environmental Considerations

3 Spatial and Temporal Resolution

4 Radar Mapping

5 Synthetic Aperture Radar (SAR)



6 Satellite Radiometry

7 Radar Satellite Altimetry

"Radar Simulation" - Technology SF.rvice Corporation
(Santa Monica, California), Silver Spring, Maryland,
September 26-29, 1972.

1

2

3

4

5

6

7

8

Introduction and Overview

Signals, Filters, and Noise

Radar Receiver Response

Radar Environment Models

Video Signal Simulation Techniques

Functional Simulation Examples

Video Signal Simulation Examples

Real-time Applications

"Radar Simulation" - Technology Service Corporation,
(Santa Monica, California), Los Angeles, California,
May 8-11, 1973.

1

2

3

4

5

6

7

8

Introduction

Functional Simulation Examples

Radar Data Processing and Real-time
Simulation

Signals, Filters, and Noise

Radar Receiver Responses

Radar Environment Models

Video Signal simulation Techniques

Video Signal Simulation Examples
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Appendix II: Derivation of the R and. 1; Fields for the
Short Hertzian Dipole wiT Arbitrary; Excitation Using
Harmuth's Direct Technique

Analysis of two simplified, but fundamental,cases as

done by Harmuth, do much to expose the nature of the

radiation of electromagnetic waves produced by sources

having arbitrary (i.e., nonsinusoidal) time variation.

These cases are the short Hertzian dipole and the small

magnetic moment dipole radiating elements. However, the

radiation characteristic of the magnetic dipole is the dual

of that of the short electric dipole so that only the latter

need be considered in great detail.

In both cases the spatial dimensions of the source

distribution is considered to be so small that at any

instant of time the current density distribution due to

any electronically produced localized current or voltage

source is constant over its entire extent and proportional,

or equal, to the electronically produced quantity. Under

these conditions the current density distribution over a

short dipole element oriented along the z axis at the origin

of a rectangular coordinate system is

J(x,y,z;t) = R i(t), -is < z < +is 1)

with s the length of the short dipole element. Substituting

this quantity into equation 6 of Chapter V and using the

Lorentz gauge condition, both 0 and A. may easily be

determined. The integral for A becomes



A(x,y,z;t) =

00 00

f f
s

R u
2si(t

- s1 /c) dz 2)

4n Li - Rzi
-is

Since IX' > z', the denominator of the integrand may be set

equal to IRI and since isA << (the time interval over which

significant changes in i(t) occur) we have

2s
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u i(t - IR - 21/c) E(x') o(y') dx'dy'dz' =
4n 1R-:-1711

A(x,y,z:t) =

u i(t -17cl/c) dz' = k u s i(t IRE/c). . 3)

4n lx1 4n 15i1

Since A and i(t) are vectors in the same direction,

may be expressed in terms of current vectors having

arbitrary orientation:

A(x,y,z;t) = g u i(t 15:(/c) 4)

4r 1311

in which g is a fixed vector in the direction of the current

element and of magnitude equal to the length of the dipole

element.

The magnetic induction p is obtained as the curl of

A which reduces to

T3(x,y,ztt) = VXX= u R(x,y,z:t)

or
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D(x,y,z1t) =

us di(t g X 7. us i(t -151/e) g X R . 5)
4n1Ric dt s xf

4TrIRI sixi

Notice that both terms of E are perpendicular to g and

R. The first term is normally called the far zone component

as it is inversely proportional to the distance IRI while

the second, inversely proportional to IR12, is the near

zone component since it will dominate at distances close to

the antenna. However, the relative significance of either

term at a given distance 'RI depends also upon the

instantaneous relative magnitudes of the excitation current

and its time derivatives.

The scalar potential, in principle, is easily obtained

from the Lorentz gauge condition:

+ ue a O = 0. 6)

Tf
From this equation we obtain

t

%(x,y,z;t) = - 1 cX(x,y,z;T) dT
ueo

t

= - lv(fi(T - RI/c) dT .

e 41i
0

The electric field E is much more difficult to obtain

from

7)

2(x,y,zrt) = - dA - W
at rt

- aA + v(v.6 0,j i(T - IRIA) dT). 8

477.171
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After considerable manipulation the above equation may

be reduced to the following complicated expression

E(x,y,zIt) di(t -171/c) X (5E X g)
4/./. IR' dt

s 15(12

I
1.1
2 t 1 / C ) [3

4Tr eilR1
F14

-1371/c) dT [3 ,o7 -

I

A

9)

which consists of three basic components. The first is

usually termed the far zone component inversely proportional

to distance lid from the dipole to the point of observation.

The third, inversely proportional to the cube of 1371 , is

normally termed the near field since it predominates at

distances close to the antenna. The second term, inversely

proportional to the square of IR' , is intermediate to the

near and far zone components. Notice that the far zone

component is perpendicular to both S and R.

As in the case with S(x,y,z;t) the relative

significance of the three terms in S(x,y,z;t) depends also

upon the instantaneous magnitudes of the excitation current,

its time derivative, and its time integral.

The small loop antenna element has been treated by

Harmuth (1972) by making use of Babinet's duality principle

which states that if r and E are solutions to Maxwell's

equations in a charge and current free region then the
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transformed quantities

E --* R.1 11/e = R 240, 11-4- -EN/71/e = -E/Z0 10)

are also solutions since they also satisfy Maxwell's

equations. If the expressions for E and H contain source

quantities they must also be transformed to their dual

quantities by the following transformation

it(t) = i(t) g M.FiTe= i(t) a v1177. Wzo 11)

where ;(t) is the original electric dipole source, and R

the magnetic moment of a current i(t) flowing around a loop

of area a with its normal in the direction of the original

dipole.

Applying these principles to Harmuth's short electric

dipole element yields the dual solution for a small loop

antenna element:

E(x,y,zIt) = u A X )7 + M x )7

kir Zo IR' -IT- 4i1Zo X I2 -TT-

= 1 di ( t - IR IA ) g. x X
10,1ile dt

1171

+ 1 i(t -(21/c) g X R

471i1 11T-

while for the magnetic induction we have the following

expression

12)
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B(x,y,z4t) = u RXFU4
4fr zoc

u 3[ ijOR -

4v Zok r ifl2

rt
u pi:i .01 51 dT 13)

Z° ix! iRl

The magnetic induction may also be written in terms of the

excitation current and its time derivative and integral:

t(x,y,zit) = 1 di(t -1)71/c) iiiILLAL
411. c21371 dt 1,112

+ 1 i ( t - IX 1/c ) [21LEE_ -

4v c(R12
12 12

+ 1 vfi'( T - IR 1/c ) dT [ R - 1 . 14)

c 15E 13

As expected from the electric dipole soutions, the

far field terms for the current loop element are found to

be proportional to the time derivative of the excitation

current in this case also.
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Appendix III: Derivation of the Mean-square Duration of the
Unit Impulse Response of Cascaded Elements

The effect of cascading two or more elements, each

being individually characterized by its unit impulse

response or by its transfer function, is easily determined.

Let F(S) and G(S) be the individual transfer functions of

two cascaded elements such that the overall transfer

function, H(S), is their product:

H(S) = F(S) G(S)

By use of Equation 11 of Chapter VII, the mean-square

duration of the pair of cascaded elements is

a
2

= t
2

-
2

= lim 1 d
2
H - ( dH2)2

h h h S-->0 H(S) dS2 H(S) dS2

From Equation 1 above

dH = F dG + G dF,
dS dS dS

so that

1 dH = 1 dG + 1 dF ,

175 dS G(S) dS F(S) dS

and

d
2H =F1 +Gd2

F + 2 dG x dF .

dS2 dS dS2 dS dS

Then,

.

1)

3)

4 )

5)
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1 d2H = 1.d2r;. + 1 d'F + 2 dF x dG 6)
171(§) G dS' F ,T17 FG dS dS

Considering the eauations above the overall mean-square

duration of the cascade is then

a
2 =

[

lim 1 d2G + 1 d2F 2 dF x dG + 1 ,(F dG + G dF
S-->0 G d52 F d52 FG dS dS (FG)2 dS dS

7a)

Completing the indicated multiplication and combining

terms gives

2
h = lim

S-->0

or

1 d
2G + _Id 2F - (dG) - _12(

gG d52 F G4 dS

a2 = lim d2G - /G)
2

+ 1 d2F -(dF 1
h dS2 dS F dS2 dS '

7b)

7c)

It is noted in equation 7c above that the first two

terms constitute the mean-square duration, 02gt of the unit

impulse response of the element G(S) while the second pair

2
of terms constitute of of element F(S). Then,

2 = 2 2
ah of 13g

By simple mathematical induction, the mean-square

duration of the unit impulse response of an arbitrary

number of elements is simply

8)



0
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Appendix IV: The Mean-square Duration of a Signal Consisting
of the Superposition of an Arbitrary Number of Individual
Signals

First note that the Laplace transform of a signal

consisting of the superposition of several terms is

Ht(S) = H1(S) + H2(S) + H3(S) + + HN(S)

N
=.E H.(S)
1=1 1

The overall average duration, T, is then

N
T = lira -1 dHt= lim -1 .E 2)

773 dS H
t
(S) 1=1 dS-

The square of T is

N N
T
2

= lim E E dH
dsjS-->o 1=1 j=1 dS1

N N
E E H (S) H (S)

m=1 n=1 m n

The mean-square value of tt is

N
= lim 1 d

2
w = lim E d2H .

S-->0 H
t
(S) dS 1)=J- 7E7-

N
E H (S)

q=1 q

The mean-square duration is then

02 = lim (R. - T2)
t S-->0 u

Making the appropriate substitutions in equation 5

gives

3)

5)



N N N
2

a
t
= lim E ,E. ;L.111. cni.
s --*o P1

d.c/-
j--1

dS

Ht(S) H (S)

which may be factored to give

and

/ N
a2 = lim 1 c E, d

2
H

117§1- r)=-LHt dS

N N
1 .E dll. dH.)

H
t
(S) 1=1j=1 dS1 dS3

Notice that d2Hp/dS2 may be written as

d
2H = H (S) ( 1

2 2
H = Hp(S) t

P
d

H (S) ds2P

1

dS

H
2

(S) t = Hr(S) (t2 - I
2

) + Hr(S) T
2

.
P
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6)

7)

8a)

8b)

Substituting equations 8a and 8b into equation 7 and

combining summation indices in the first and second terms

yields

2 .

N -2 -2a
t
= 11m 1 (E

1
[H.(5)(t. - t.) + Hi(S) t.

H (S) 1=

2 N N
- 1 (dH.)-1 - 1 E E dH. dH. ) . 9)

H
t
(S) --d-E1 Ht(S) S ) i # j err "c1T3

If now (dH./dS)
2
/H

t
(S) is written as

2 2
1 (d1=2(S)(11-1/0(S) T./H (S) . 10)1 L. -r-,i 1 1 tH
t
(S) dS

Ht(S) db
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Equation 9 then becomes

2 -2
ut = lim 1 PI(H.S;(t.-t.)

S--*0 TM -L 1
7

,

+ Hi(S) Ti(12 - Hi(S)/H(S)) - f ,e dH. au, . 11)
H
t
(s) 11J E71

With t. - T.
2

= a.
2 equation 11 becomes

N
a
2 = lim 1 [ E

1

(H.(S) a?
S-->0 Ht i=1

-2
+ Hi(S) ti (1 - Hi(S)/Ht(S))

- 1 N N
E, .E dH. dH.
1rJ CiT? ds3

which may be factored to yield

a
2 lim 1 Vi H.(S)(a
t S--*0 H (S) 1

+ t.2 (1 - Hi2 (S)/Ht(S))

N N
1 dH. dH.

H
t
(S) 1#0 av

12)

13)

Due to the complexity of equation 13 it is obvious that

it could be manipulated into many different forms.
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Appendix V: Calculation of Collision Frequency, vc, for
Metallic Conducting Materials

Values of collision frequency for Chapter IX are

calculated from the frequency dependent form of

conductivity given by (Kittel, 1968)

a(S) = N e2 /m(S + vc) 1)

where N = electron density per cubic meter, e the electron

charge in coulombs, m the electron mass in kilograms, and

v
c

= 1/1" of Kittel's development of 1968. Setting S=0

yields the known static value of conductivity, ac, in mhos

per meter. Then

vc = N e2 /M a
o

.

The quantity vc may also be expressed in terms of plasma

frequency, given by Kittlel (1968) as

(.4)2 = N e
2
/e

o
m

from which

eowp = N e
2
/M .

Setting e0(44 for Ne2/m in equation 2 gives

2evc = - WP / 00

2)

3)

4)

5)

The quantity cop is the free electron plasma frequency in

radians per second and ec is the permittivity of free space
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which is equal to 8.85 x 10
-12

farads per meter.
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Appendix VI: Convolution of e
-at

and e
-bt

It is shown below that the following convolution

relationship holds:

-1
L ,/(S(S + a)(S + b)] = e-at * ebt

2rit 2rri t

= (a - b)2 e-i(a+b)t Ji(i(a-b)t) I)

i(a-b)t

or

1 e-i(a+b)t -L + a)(S + = (a - b)2 (i(a-b)t) 2)
4 *(a -b)t

as (a - b) is real or imaginary.

Substitution of the exponential functions into the

convolution integral yields

-bt -(a - b)x
IC dx

x3/2 (t - x)3/
o

Making the following change of variable

yields

= e-bt
1

t e
-t(a - b)y

dy

1'7772(1 - Y)3/.2-
o

or

3)
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1-bt e-t(a - b)y dvlc = e
-.: . 5)

- y)3/44v t2
0

Next add and subtrac t i to y to obtain

e-bt
Ic

4v t2

-t(a - b)(Y -1 + i) d(y - 1 + 6)

(Y - 1 + I)572(17:(Y - 2))3/2

and change the variable y - 2 to Y to obtain

-t(b + ib)
I
c

= e

4v t2

or

IC

e
-1t(a - b)2Y

dY

(2 +
y)3/2 (1 - Y)3/2

Making another change of variable Y--> iz provides

-it(a + b)
I
c

=

vt2
e-it(a

b)z
dz

(1 - z2)577----

7)

8)

-it(a + b) Tri

1
e 2 (a-b)(-3/2):

t 4 x it 0-(a-b)((-3/2):)
e
-it(a-b)z

dz
9)

(1-7)3 7
0

where (-3/2): = 2v2 . Collecting all factors outside of

the brackets gives

1
-1t(a + b) r r-Wa - b)z

I
c

= e (a - 10)

2t Li (1 - z2)3 2
0

The factor in brackets is a standard form for J
1
(1t(a - b))

if (a - b) is imaginary or Il(it(a - b)) if (a - b) is real.
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Therefore

2 --It(a + b)
Io

4
= 1(a - b) e 2 - b))

jt(a - b)

when (a - b) is imaginary and

Ie
b)2 a-it(a + b) u,1 t(a - b))

it(a - b)

when (a - b) is real.

11)

12)
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Appendix VII: Derivation of Equation 62 of Chapter X
from Equation 61 b

It is shown that equation 61 b,

e(S) = - 1

A/e"2"
V;72TEr-715i-; v0) - A/(tan20 - 1))

- 2(s(s+v ) +A) Vs(s+vc)(s(s+vc) +A/cos e

- 1))

may be decomposed into the following additive components

shown below:

e(S) - 1 2 vc S

A(tan'O - 1) A(tan'O - 1)

where

+ 2 S
2

+ 2 S(S + vc)

(1 - cct2e)2 (S + a)(S + b)

- 2-VS(S + v )(S + c)(S + d)

A (tan20 - 1)

- tan2(28)-VS(S + vc)(S + c)(S + d)

(S + a)(S + b)

a = iv
c

+ j-F-34v 2 + A/(1 - tan2 e)

b = Ivc 2 + A/(1 - tan2e)

2



c = bre + + A/cos2e ,

d= Ivc - j-\/-iv2 + A/cos28 .
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3)

First consider the second term of equation 1 above.

Add and subtract A/(tan28 - 1) to the numerator factor

(S(S + vc) + A/cos2e). This procedure yields for the second

term

A A
2S(S + vc)(S(S + vc) - tan2e - 1 tan20

+ A/cos
2
e

A(tan28 - 1)(S(S + vc) - A/(tan28 - 1))

2S(S + vc) S(S + vc) - A/(tan20 - 1)

A(tan28 - 1) S(S + vc) - A/(tan28 - 1)[

A cc7);72-il - 1)

S(S + vc) - A/(tan28 - 1)

2S(S + vc) 2S(S + vc) 7771
tan20 - 1 4)cos

A(tan28 - 1) (S + a)(S + b

1

tan2 - 1

The trigonometric factor of the second term in

equation 4 may be reduced to 1/(1 - cot 8)2 by use of

standard trigonometric identities as follows:

[ 1 1 1

cos28 tan2e - 1 tan20 - 1

tan28 1 + cos 2 e ten
2
e - sin2e

cos
2
e(tan20 - 1)

2
cos 2 e tan

4
e(1 cot

2
e)

2



tan2e singee 1

[

x =
2 4-,

cos
2
e cos tan'ekl - cot

2
9)

2
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(tan2e/cos20) - tan2e cos
2
0(-1 + 1/cos

2
e)

tan
4
e(1 - cot

2
e)-

1 - cos
2
e

2sin e(1 - cot28

Equation 4 is then

2(S
2
+ Svc)

2
sin 8(1 cot

2
e)

2

sin2e

sin2e(1 - cot

2S(S + vc)

A(tan20 - 1) (1 - cot20)2(S + a)(S + b)

2 S2 2 S v

A(tan28 - 1) A(tan28 - 1)

2 S(S + v )

(1 - cot
2
e)

2 (S + a)(S + b)

1

(1 - cot
2
8)
2' 5)

6)

The third term of equation 1 is treated also by adding

and subtracting A/(tan20 1) to the factor (S(S + v0) +A).

This operation yields

A A
-2 S(S + v

c
)-

tan2 e - 1 tan 0 - 1
+ 2 + )(S+c)(S+F)

A(tan20 - 1) (S(S + vc) - A/(tan2e 1))

-2 [1 + A + A/(tan e -1)
2 VS(S+vc)(S+c)(S+d)=

(S+a)(S+b) A(tan28 - 1)



-2-Vs(s + vc)(S + c)(S + d)

A(tan28 - 1)

2(tan20 - 1 + 1)-VS(S + vc)(S + c)(S + d)

(tan28 - 1)(S + a)(S + b)
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7)

The trigonometric coefficient of the second term above is

2(tan2 e - 1 + 1) 4 tan2 e 2 tan 9
2

*
(tan2 - 1)

2
(tan

2
8 - 1)

2
tan

2
e - 11

= * tan2(28)

The third term of equation 1 is then

2"N/S(S + vc) (S + c)(S + d)

A(tan20 - 1)

* tan2(2e)-\,(s(s + vc)(S + c)(S + d)

(S + a)(S + b)

8)

9)

Substituting equation 6 and expression 9 into equation

1 yields equation 2.

It is noted that equation 2 appears to possess

singularities at 9 = 45° whereby the second, third, fourth,

fifth, and sixth terms become infinite. The overall

behavior of '(S) as 9 approaches 45° is easily determined

by setting x = tan29 - 1, (x + 1)2/x2 = 1/(1 - cot2e)2, and

2(x + 1)/x2 = tan2(2e) and then taking the limit of c(S)
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as x approaches zero. Making the above substitutions gives

e(s) - 1 2 S(S + vc) + 2 S(S + vc)(x + 1) 2

A x x2 (S(S + vc) - A/x)

- 2 Vs(§ + vc)(S + c)(S + d)

A x

(x + 1)-VS(S + vc)(S + c)(S + d)

x2(S(S + v
c

) - A/x)

[

e(S) = - 1 + 2 S(S + vc) 1 + (x + 1)
2

Ax x(S(S + vc)x -

2-'S(S + vc)(S + c)(S + d) 1

(S + a)(S + b) A x

(x + 1)

x(S(S + vc)x - A)]
10)

As x approaches zero (or equivalently, as A approaches

45°) the limits of the two bracketed factors are as

follows: the first is

lim S(S + v )x- A + A(x2 + 2x + 1) .
--->0 Ax(S(S + v )x - A)

lim x(S(S + vc) + Ax + 2A) = S(S + vn) + 2A
x A(S(S + vc)x - A) - A2

while the second bracketed term is

lim S(S + v )x - A + Ax + A=lim S(S + Arc) + A
x--->0 Ax S S + v x A) x---*0 A2

11)
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= S(S v,) A 12)

-AD

The above equations 11 and 12 show that the entire

expression for e(S) remains finite as e approaches 45°

even though the individual terms in the decomposition

of equation 2 tend to infinity.


