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time-domain evaluation cf that quantity.



From transfer furictions defined for transmission
elements, antennas, and propagation madia, corresponding
unit impulse responses are obtained for many typical
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electromagnetic carrier wave if sound judgement is used.
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THE USE OF ELECTRIONAGMNETIC WALSH WAVES IN RADAR
Chapter I Introducticn and COrientation

Since the end of ¥%crld War 77 the uses of radar have
grown to become impertant facets ¢f the military and civil
activities of most of the develicpzd countries of the world.
In addition to the well known military uses of radar, many
of which are primarily improved extensions of its World
War II uses, the modern applications of radar to the civil
sector and to space exploration have grown at an enormous
rate to become a significant portion of the total productive
effert of the electrenics industry in recent years.

The worldwide use of radar in air traffic contrel and
air navigation, its maritime counterpart in sea navigation
and safety, and its meteorclogical applications readily
establish the great importance of radar to the safe and
efficient transaction ¢f both dcmestic and international
trade and commerce.

The expected future growth of sea and air commerce,
the continued exploration of space, and metecrological and
environmental sensing indicate an associated growth in the
use of radar. This growth along with the discoveries of
new radar applications will surely lead, in time, to
intense crowding of the available radar freguency spectrum

while increasing air and sea traffic will likely create the

j$¥]

need for improvements in radar performance and capabilities



far exceeding those of the prssent radar arts and
technology.

Partial solution of thesz future problems may exist
in the recently suggested electronagnetic spectrum of
Walsh waves as a replacement for, or as a supplement to,
the existing sinusoidal electromagrietic spectrum.
Preliminary theoretical studies by Harmuth (1970) and
Pearlman (1970) indicate that radiating electromagnetic
energy in the form of Walsh functions can be generated and
also formed into the narrow directional bLeams required of
radar operations. MNany researchers also believe that
improved radar performance will result with their use as
the electromagnetic carrier waveform.

Although the family of bi-valued, orthogonal Walsh
functions was discoverzd and first reported by J.L. Walsh
(1923) as early as 19232, they received very little
attention until the early 1960's. Since then considerable
effort has bteen expended in applying them also to other
areas not directly related to the problems of radar and
radio communications.

It is surprising that the universal and almost
traditional practice of utilizing high freguency sinusoidal
electromagnetic carrier waves in radar and radio
communications has not teen sericusly qusstioned. This
fact is, no dcubt, explained by the past successes of this

technigue and by the well established techneclogy and the
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industrial base of vecources developed and availéble over
the years. The ease ¢f generzating, controlling, mcdulating,
radiating, amplifying, and filtering sinusoidally based
power and signals as well as the great body of knowledge
and the development c¢f oocwerful and sophisticated theories
for the analysis and synthesis of radar and radio systems
have undoubtedly helped channel the thinking of radar and
radio engineers along this line of development.

It is recognized that sinusoidal electromagnetic power
was not only highly compatible with, but was also necessary
for use with linear, lumped, and distributed circuits and
amplifiers of early radar and radio and their subsequent
developments. However, recent developments of time varying
linear semiconductor integrated circuits and the rising
use of high speed digital édmputersl to process and
interpret radar and radio signals makes 1t necessary to
guestion this universzl use of sinusoidal carrier waves in
radar and radio.

Although the findings of Harmuth (1970) and Pearliman
(1970) show that sinuss>idal time variation is not
requisite for directicnzl radiation of electromagnetic
eriergy, the usefullness or superiority of a nonsinusoidal
carrier suchas 2 Walsh function does not automatically
follow: 1In order to partially resolve this uncertainty

1) It is a well known fact that the digital computer is not
highly compatibie with sinusoidally bhased data,
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this study examines the Ifoundztions of radar theory in an
attempt to establish ihe functioral requirements that an
electromagnetic carrisr must ireet. From that study the
characteristics which a functicn rmust possess in order to
satisfactorily function as a carrier are deduced. An
examination of the ahstract and practical natures of Walsh
and similar type functions are then examined to see if any
of them meet the requirements of an electromagnetic carrier.

In order to be truly useful as a radar electromagnetic
carrier wave, a Walsh or a similar type function must
possess characteristics compatible with natural propagation
media, radiation and beam forming processes, and trans-
mission over waveguiding structures. These topics are
investigated in the later chapters of this thesis,

In order to limit the sccpe of the study to reasonable
proportions it is restricted tc the use of classical
electromagnetic theory and to the non-relativistic case.

In addition, attention to devices and hardware for radar

implementation is minimized with consideration given only
where there exists a guestion of feasible use with Walsh

functions.,

A knowledge of the rudiments and fundamentzls of radar
and communicatlorn theory on the part of the reader is also
assumed to limit the recessity of excessive background

material,
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The thesis is zlso written in three basic parts. The
first, Part I consisting of Chaptsrs I through V, is
primarily of a gquali*ative nature, It isolates the funda-

vs and sciences that must be

i
3

nental aspects of tne razdar =
considered in order to determine the suitability of Walsh
or other nonsinusoidal functicns as an electromagnetic
carrier wave, Also given is an indication of the problems
to be encountered if one were to proceed in a direct
transient analysis of nonsinusoidal propagation and
radiation phenomena necessary in the radar process.

Part II, consisting of Chapters VI and VII, proposes
and develops techniques and methods that utilize the known
and existing store of knowledge and theory based on the
sinusoidal operation and characterization of radar systems,
components, and the radaf wedium,

The third part, Chapters VIII through X, utilizes many
of the principles and %ools developed in the second part to
analyze and characterize in the time domain those basic
elements necessary for the implementation of the radar

principle using a nonsinusoidal electrcmagnetic carrier.



Chapter II The Catecory of Funoctizns Considered for
Nonsinusoidal Radar Carrisr licves

[y

The category of Zurnctions consldered as possible
functional forms feor z rzdar ronsinusoidal electro-
magnetic carrier wavs consists of those functions which
assume only twc values: those of equal magnitude and of
opposite polarity. Ideally the transitions from one
value to the other occur instantaneously in terms of their
independent variable which, in the case of a time varying
electrical waveform, is time, t. The transitions between
the two values, or the sign changes of the function, are
allowed only at a discrete set of values of the independent
variable within some characteristic interval of that
variable, T, hereafter called the time bvase of the time
varying waveform. It is aisc desirable for the purpose
of radiating such wavefsrms thet their average values over
the duration of the time base interval be zero.

For the purpose of irvestigating the abstract
mathematical properties of these bi-valued functions,
the independent variable x is treated as a dimensicnless,
normalized variable with the functions defined and
described on a unit interval cf x which correspends to
the time base T when the independent variable is time:
ises, a time varying electrical waveform with x = t/T.

The unit interval here corresponds to the interval of

27 radians of the sinusoidal functions. The two values
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that the abstract functions can assume are plus and minus
one.

The set of values at which *transitions are allowed
are those values of 2z saparating aset of uniform sub-
intervals into which +he unit interval (or T) has been
divided, and the ends of the unit interval., For the Walsh
functions the number of such uniform subintervals is an
integer power of two. It is important to note that the
functions in question need not undergo a transition between
each pair of the subintervals comprising +the unit interval
(of definition).

A one-to-one correspondence exists between a bi-valued
function, or waveform, and a binary sequence of ones and
zeroes. 1f either of the following transformations

1 — 0 1 — 1

or ,

-1 —> 1 -1 —> 0
are made, the sequence of new values assumed by the bi-
valued function in each subinterval, over which it remains
a constant value of plus or minus one, describes a sequence
of ocnes and zeroes whichk may te interpreted as a binary
sequence. The first transformation above is that often
used in practice.

Many families of such bi-valued functions {or binary
sequences) exist with each having diverse and useful

mathematical properties. Some of these functions are:



Barker sequences, groun error-correcting codes, Walsh
functions also known us the Reszc-lluller codes,
convolutional codes, orthogonal codes, simplex codes,

and cyclic codes.,



Walsh Functions

Although manv o the functions and binary sequences
mentioned above may have suitehle mathematical structure
for use as an electromaznetic carrier waveform, the Walsh
functions are unique irn that they possess analytical
properties similar to those of the sinusoids even though
having 1little direct similarity to them. In addition,
extensive recent research effort (Proceedings of Symposium
and Workshop on the Applications of Walsh Functions, 1970
through 1973) has produced many relatively simple means of
producing Walsh function waveforms as well as producing and
manipulating them in the enviromment of the digital computer,

The general character of the Walsh functions are best
illustrated by a graprical presentation of the first ten or
fifteen such functions as shown in Pigure 1. There it is
noticed that they are either odd or even functions with
respect to the center of the unit interval { i.e., the
origin) of -3 < x < +%. They are identified by the symbol
Wal({i,x) where Wal refers to the name of their discoverer,
J. Walsh, 1 is an integer index specifying that it is the
jth Walsh function, and x is it argument, or independent
variable,

Pegarding varity, notice that even values of index i

e o=

produce even functiens while odd values of i1 produce odd

ons. In order to simplify notation the forms sal(j,x)

By

[

funct

and cai{i,») were originated to indicate the odd and even
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cal0,x o~ Wal0o,x
sall, % . }« - wall,x
call,x § — wal2,x
sal2,x) ____*______WaKBoﬁ
call2,®) ——0 ] : wWal, )
sal(3,%) ——Wal5,%
cal(3,x _____Waxb,ﬂ
salls, —— Wal?7,¥
callt,y —Ff—— Wal8,®
sal5,% Wal9,x
cal(5,x — + Wal10,x
sal6,x é j—’ Walll,x
cal, 3 o T Cwauiz, »
sa)(7,%) e Wall3,%
cal7,%) — ———Wall4,x)
sal8,® — — ——Wall5,%)
calB,d -— S - —Wa116,%
sal9,x) i_ ‘f? % r.""’81(17.30
cal9,x — %}n ; - —L‘ __WaK18,ﬂ

) 4 4 ; § { =+ i —
S B 5 SR S A B

Figure 1.

The first nineteen Walcsh functions.
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Walsh functions respocrtively, sai{j,x) being analogous to
the odd sine functior. and calf{ji.x) corresponding to the
even cosine function of ccnventional harmonic analysis. In
terms of the index of %Walf{i,x)} notztion, j = %1 for even
iand j = 3(i + 1) for odd values of i.

Even though the Walsh functions are defined on the
unit interval centered on the origin, they may be extended
periodically beyond that interval to plus or minus infinity
forming periodic versions of the functions with basic
period T 1f they are time varying waveforms.

The index i in the Wal(i,x) notaticn and the index j
in the sal(j,x) and cal(j,x) notation are indicative of a
parameter of Walsh functions analogous to the frequency
variable of sinusoidal waveforms. An examination of the
Walsh functions shown iﬁ Fﬁégfe'l shows the following

relationship between the index i and the number of zero

crossings, or transiticns, in the unit interval:s

2ero crossings

P-

0

& NN

~ O W F W NN O+ O
xR N O
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Notice that when i iz esver the numbher of zero crossings is

also even and equal %o i
i = nuaber of zers crossings 1)
while for odd values of 1

iodd + 1 = number of zero crossings. 2)
Analogous to sinusoidal freguency we may define a

Walsh function frequency as 3(number of zero crossings).

This frequency-like quantity has been termed "sequency" by

Harmuth (1972):

Sequency = #* zero crossings = % i
quency = 3 gs = 3 1_ o 3)

or

&)

Sequency Lodd + 1}

From the equations defining the index j of the sal(j,x)

and cal(j,x) on the previous page, it is seen that

5)

0
Xjrs
"
e

Sequency even

and

-fl):j. 6)

il
Ol
—~

[

Sequency odd
<

The index of a Walsh function in the sal(j,x) or
cal{j,x) notation is then seen to be a measure of its
sequency, or 3(number of zero crossings) per unit interval,

This sequency for the abstract Walsh function is a
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normalized form of sequency. In the practical case of time
varying Walsh waveforms the aciuzl sequency is equal to the

normalized sequency S_ divided hy the time base T
il

n/T 4 ?)

4d

Absolute secuency = S

An important subset of the Walsh functions are those
sal(j,x) functions where j is an integer power of two: i.e.,
1, 2, 4, 8, 16, 32, 64,---,. In the context of pure
mathematics they are known as the Rademacher functions
(Walsh, 1923) of which more will be said shortly.

Although the Walsh functions shown in Figure 1 may
appear to undergo transitions in a random manner, they are
specified by strict mathematical definitions. A definition
due to Harmuth (1972), although mathematically clumsy and
difficult to use, 1is a rzcursion equation which exhibits
quite well the structure and scurce of Walsh functions. It

is
Wal(2i + p,x) =
(-1)p ¥ [%l] Ir_;fal(i,Z(x-‘f%)) + (~l)i+p Wal(i.Z(x-i‘)):i 8)

where i =0, 1, 2, 3, 4,---, Wai(0,x) = 1 for -3 € x < %,

N

wWal(0,x) = 0 for x < =%, x » %, ard p assumes the values of
zero and one for each value ¢of i. The symtol %J means
the largest integer less than or squal to 3i.

Equation 8 will yield a Walsh function for any value
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of index requiring only the value of Wal(0,x). However,
this relationship dcss have the dizadvantages that in order

3 N2 ~ 4 N ";h
to obtain the 2ith cr (% + 137

wWalsh functions, the ith
Walsh function and manv of trose vreceeding it must be known
or be stored in a ccmputer memory bhefore the desired Walsh
function can be determined.

The structure cof Wal(2i + p,x) is readily indicated by
equation 8., Notice that the arguments of both Walsh
functions on the right hand side of the equation are
multiplied by a factor of two indicating a reduction in
scale by one half. This fact means that these two functions
have been "squeezed" into an interval of one half with their
new values outside of that interval being zerc. The terms
+; and -z added to x serve to shift each of the component
functions respectively into the left and right halves of
the unit interval, each furncticn being zero ocutside those
half intervals., These two compressed and shifted versions
of Wal(i,x) are then added or subtracted according to the
factor (-—l)i+p and the cvarail polarity is set by the
leading coefficient Gl)p +'[%{E. Hence, the form of any
Walsh function, other than Wal{0,x), 1is determined by a
large portion of those Walsh functions preceeding it in
index seguence.

Another fcrm, or definition, much more in accerd with

the generation of Walsh function waveforms and their

evaluation fer any value of x and any index i, and their
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manipulation in a digitzl environment, is that of a product
of Rademacher functicns mentioned earlier. For a given

index, i, this form is given by

Wal(i,x) = Ril(x) Rig(x) Ri --— Rir(x) 9)

3

where the integer index i is expressed in dyadic form as a

sum of powers of twc:

. * e i
1=21 4232 413 4 42T 10)

where the ij are integers arranged in decending order such

that i, > i, > ig > === > i+ The R, (x) are the
r ij

o

1 2
Rademacher functions of index ij' In addition the set of

integers ij for any Ziven index 1 are unique to that value
of index. The Rademacher functions are simply the sal(n,x)
functions with n an integer power of two. The relationship

between the Rademacher notaticn index and that of the

sal(n,x) notation is
n, = 2%] 11)

so that a particular Walsh function in terms of the sal(n,x)

functions is
Wali{i,x) =
. . 3 i
sal(2'L,x) sa1(2*2,x) cal(2'3,x) --- sal(2'T,x) . 12)

The Rademacher functions are defined as
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+1 for @ < % < %
RO(x) = 1
-1 for -5 € x < Q
and for higher index
i v Al
Ri(x) = R0(2 x) = sz2l1(27,%x) . 13)

The form indicated by equations 9 or 12, however, has
the disadvantage that unit increases in the index i do not
produce Walsh functions of increasing sequency. In the
Walsh function form of harmonic analysis it is desirable to
have increasing index correspond to increasing sequency.
This need is easily accomplished by retaining equations 9
cr 12 to express a product of Rademacher functions, but now
express the index i1 in its Gray code eguivalent. The Gray

code of i is obtained by exprzezing 1 as a binary integer,

ib' and taking the bit-by-0it modulo 2 sum of ib and 3 ibz
I3 — » l__o — 13 2 I3 2
i, = lt»CDQIb =i i . -m i ig 14)

in which the fractional vpart of %ib has been rejected.

The sequency ordered Walzh function is then

=0 ]

e

e

r r i,
Wal(i,x) = .1 IR (x)] J 15)

whera ii is either one Or zZerd.
(L

Either

\

n
n
i)

\

e+ of equations 9 or 10 or equations 14 and

r

15 may now be used to evaluate any Walsh furction with only
the values of the Rademacher functions being required. For

use in a digital computer, memery requirements may be
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reduced by using the ifsllowirs relztionships to evaluate a
Rademacher function of any irndex a2t any value of X
+]l if m is even
R:(x) = 16)
-1 if m 1s odd
where m is a pesitive or negative integer, or zero,

selected for the valuz of x such that

2 € x < m*1
S+l Sitl 17)

A property of Walsh functions making them analytically
gimilar to the sinusoidal functions is their mutual
ortnogonality. Like the sinusoide the integral of the
product of two unlike Walsh functions is zero while that
for two like functions iz unity:

Cifm#n

Wal(m,x) Wal(n,x) dx = 18)
lifm=n

It is the above property that allows a Fourier type

expansion of a square intsgrable function over the unit

interval in terms of Walsh furctions in the form

F(x) =

te {5) eal(j,n) + as(j} sal(j.x%] 19)

:;,C\
20

for -4 € x < % where

ac(o) Wal(0,x) +
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.
LE
c = ; ¢ o 7 ' -
1C(O) y F{x) 4x 20a)
-2
3
re .
as(j) = J F{x) ecall(i,x) dx 20Y)
_% .
A |
a_(j) = j F(x) sal(j,x) dx . 20c)
1
-2

If F{x) is periodic with period T, then equation 19
holds for all x.

The property of Walsh functions possibly making them
of greater value as an electromagnetic radar carrier wave
is their product property. Since any one Walsh function
is a product of Rademzcher functions, it follows that the
product of any two Walsh functions is also a product of
Rademacher functions, 2nd is tnen another Walsh function.
The resulting product of ivio or more Walsh functions is

an exceptionally simple relationship:
wWal(i,x) wWal(j,z) = wWal(i @® j,x) 21)

where i ® j is the bit-by-bit modulo 2 sum of i and j when

expressed as binary intezers. CZimilar relationships hold

%

A

[

for Walsh furction products in the sal{ ,») and cal(j,x)

notation:
cal(i,x) cal(j.x) = c3l(i @ i, x) 22a)

sal(i,x) cal(,x) = sal kj ® (i-1)) + 1, %J 22b)
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sal(i,x) sal(j.»,; = cal i(i - 1) ®(j-1), x] . 22¢)

Similar equations relate Walsh functions of the same

index, but with different argumen®s, x and X' 1
cal(i,x) cal(i,x*) = cal(i, x ®x') 23a)
sal(i,x) sal(i,x') = sal(i, x ®x'). 23b)

Note that the relationships expressed by equations
21, 22, and 23 hold only if there is exact synchronism
between the two product Walsh functions. The above product
properties of Walsh functions would be quite useful in
implementing a superhetrodyne Walsh receiving system.

+ is worthwhile +o note that subsequent work in this
study appiies not only to the Walsh functions, which have
been described in scme detail here, but alsc applies to
any bi-valued waveform making sudden transitions from one
level to the other. In this respect the study is general
and need not be restricted +to the Walsh functions alone.
The Walsh functions have been emphasized because of their
analytical similarity to the sinusolds which have been
applied so successfully to radar and communications

problems in the past.



The Questicn of Realizaitile Source Waveforms and Field
Variations

In the context ¢f radar apwiications, the sources of
radiating electromasretic fields having traveling waveforms

.ons discussed here (or some

-t
ate

related to the class of func
form of the functions derived therefrom such as time
derivatives or intesgrzls), must ultimately be time varying
currents or voltages related in some manner to the
functional forms of the radiating fields.

Because of the nature of the active devices that must
be used to generate or amplify such discrete and discon-
tinuous voltage or current waveforms, and because of the
unavoidable presence of parasitic inductance and capacitance
in the generating circuits and transmission elements, such
source quantities will always zanifest switching intervals
at each transition between discrete states of the waveform.
These parasitic elements also force any such generated
source current or voltage to he continuous and smoothly
varying: any sudden change in slope or level is
accompanied by rounding eifects tending to make variations
of the source quantity 2lwavs smoothly varying.’ As a result,
any radiating electromagnetic field generated by such
sources will also be continucus and smoothly varying in
time and space. Ir addition, antenna and medium effects may

mpart mere rounding to the radiated field which further

’_la

distort tre waves,
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For the purvoss oi this ansliyeis it is sufficient to
consider only the first order effects of generation or
filtering on a discrete time verying waveform. An
instantaneous changs hetween two constant values of the
idealized form of the gernerates waveform is realized as a
change occurring at a constant rate (i.e., constant slope
of di/dt or dv/dt) over the switching interval of the
generating device., It is further modified by the filtering
effects of its external circuit. Figures 2a, b, and ¢
illustrate the generation of an example Walsh waveform, its
first time derivative, and its first time integral, all
with their naturally occurring derivatives shown below each
generated waveform. This group of figures shows the
difference between time derivatives and integrals of a Walsh

waveform that might be purposeiy generated and those that
can occur due to the action of a propagation medium or some
transmission device.

ictions beccme clear in

~
e

Reasons for the ahove rest
Chapter X where it is shown thazt the time variation of the
far-field generated by arbitrarily varying sourdes are time
derivatives of the source time variation. Hence, in order
to obtain a certain field time variation, in either the near
or far-zones, the required source variations may be very
"different from those of the desired field. For instance,
it is shown in Chapter X that 2 simple short dipcle gives

rise to far-fields that have time varlation proportional
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to the first time derivative of =ie source current.

For practical interest, switching times currently
achievable (Cuccia, 1972) usinz transistors in the common
emitter mode have bteen ss low as 150 picoseconds while
step~recovery diodes have produced switching times as low

50 picoseconds.
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Chapter III Reduction of the Body of Radar Theory to
its Essential Featureas

In order to ascertzin the utility of electromagnetic
Walsh waves for use i radar not only is it necessary to
examine their nature &-¢ their radiation properties in
great detail, but it is also important to examine the
fundamental concepts, principles, and practices on which
the theory and arts of radar are founded. This examination
is necessary in order to determine not only the need of
using an electromagnetic carrier, but also the properties
it must possess in order to be truly useful in the radar
precess.,

This chapter is devoted tc 2 brief examination of the
body of radar theory in order that those features that may
have a bearing on, or 2 deperdsnce on, the nature of the
carrier waveform might be exposed.

A survey of classical and modern texts on radar,
topics and contents of several short courses on modern
radar offered at several American universities by
recognized radar authorities, and the numerous esoteric
journal papers on radar reveal 2 confusing profusion of
seemingly unrelated and diverse specialized teopics. To
offer substance to this contention the tables of cbntents
of several radar texts arnd the subject content c¢f several
recent short radar coursas are presented in detzil in

Appendix I. However, to give the reader a brief indication
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of the breadth of radar theory and practice a composite
listing of topics is presented in Table I. Even from this
brief listing it is spparent that there is great diversity
in the subject mat*ter as well 23 some overlap between many
of the subjects while meny constitute separate topics not
directly related to the principles of radar.

However, in reviewing the tables cf contents and the
short courses of Appendix I, the topics naturally subdivide
into several groupings. The first consists of those
concepts and principles peculiar to radar which might be
considered as the core of the principles essential to
radar. They are those listed one through five in Table I.

The second grouping consists of those broad disciplines
and physical theory which form what could be considered as
the basic mathematical framework and the language in which
the principles of radar are expressed and within which
specific radar applications are most often analyzed. This
is item six in the tatle.,

Items seven through thirteen comprise the third
category which describe the various modes of operation
and radar applications that are possible. ZEach of these
specific radar types are usually treated separately in the
literature as each has its own particular set of problems
to overcomne.

A fourth major category is that set of principles,

concerts, and theories from other highly szpecialized
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Table I. A Composite Listinz of Radar Theory Subject
Matter.

l. Radar Equation: antzrna 2o1ir and directivity; cross
sections 1sotrf§ir radiator, :

2. Extraction of radar infcrmaticn: interpretation of
the received sigral in lignt of a priori knowledge of
the transmitted signal; resclution and ambiguity; high

resolution waveform design; fundamental resolution
limitations; target parameter estimation.,

3. Ambiguity functions: resolution and optimum waveforms.

4, fTarget properties: scattering properties; rough surface
scattering; cross section density; reflectivity.

5. Principles of displaying radar information.

6. Signal analysis and representation of systems: system
theory; circuit theory; electromagnetic theory;
probability theory.

7. Continuous wave and phase/frequency modulation radar,

8. Bistatic and multistatic radar,

9, Moving target radar.

10, Pulse doppler technigues.

11. Tracking radar.

12. Synthetic aperture radar.

13. Special applications: sclid-state radar; marine radarg

airborne radar; space a““l1 ations; satellite
surveilance; laser radar; radar beacons.

14, Noise theory: detection of signals in noise; target
statlstics, sxgnal~to~noise ratio and false alarm ratey
automatic detection schemes,

15. Antenna principles: gain and directivity; noise
properties.

16. Array arntennds.
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Table I (cont.)

17.

18,

19.
20,

External envirormz:t and radio frequency (EM carrier)
considerations: srovagation effects; weather; clutter;
interference.,

nnigues: analog (electrical,

Si nal DI‘OL,eSSiI.: \.“’"C
g s T
= td.l []

optical, etc.); cigi

Communication theory.

Hardware and technology considerations: +transmitters;
high frequency receivers; amplifiers; low noise and high
frequency amplifiers and receivers; radio frequency
components; radomes; indicators; array phase shifters,
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disciplines which are nscessaryv *o refine radar performance
in the presence of ncise, or in ciher practical real world
applications. This set zonsists of items fourteen through
nineteen.

The last group, item twenty, considers the hardware and
technological aspects necessary *c¢ physically implement and
build operating racdar equipment. The specifications such
hardware must meet to allow a radar o reliably perform its
task, or mission, are determined by analysis based upon
application of those principles listed in the four
preceeding groups.

Underlying all of the items listed in Table I are
several implied assumptions of major proportions which form
the framework of most analyses of the radar problem as well
as the implementation of radar orinciples. Unfortunately,
these assumption have apparently never bteen examined for
their validity nor explored to discover any alternative
premises on which +o form the base of such a framework,

0f those assumpticns the most important is the
presupposed use of a sinuscidal high frequency carrier as
the vehicle for conveyirg the radar energy to and from the
target., This practice is certainly well fitted to the
traditional practice of descriting radar components,
systems, and the provagation medium by their steady~state
responeges 1o excitation by 2 sinusoidal waveform (of

infinite duration) and to the Fourier transform description
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of signals and systema. However, 2 sinusoidal carrier is
not an a priori recuirement fur successful implementation
of the radar princivle.

A second assumgtion is that most real targets of
interest form an ideal point tarzet which produces a signal
at the radar which is merely a delayed and attenuated
replica of the transmitted signal. This abstraction,
although applicable to the practical cases of the past
where target dimensions were small compared to the smallest
distance resolvable by the radar, but large with respect to
the illumination wavelength, is easily extended to the
gensral extended target which is large compared to the radar
resolution capability. In this case the ideal point %arget
1s considered to be the elemental building block of which
the general target consists.

A closer examination of Table I reveals two other major
groupings, both of which have g=neral applicability to all
of the possible forms cf radar operation making up the
original third group. These two new groupings appear to be
the two fundamental aspects of the radar problem whether of
the traditional sinusoidal form of radar or ¢f the non-
sinusoidal form with which this thesis is concerned.

The first group, consisting of items one, two, three,
five, and eighteen, can be considered as dealing with
operations within the radar after receivirg the wave

reflected from the target, or the signal processing
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of the information extrazted frem them. The second set,
consisting of items four, seven, {ifteen, sixteen, and also
one, concern the electromagnetic rhase of the radar

operation. It is to this electromagnetic aspect of a

nonsinusoidal radar tha’ the remainder of this thesis is

devoted.
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Chapter IV The Need for = High Freguency Sinusoidal
Carrier '

Discussions of radar and rsdar theory appearing in
print from the very early to the most modern, and from the
most basic to the mozt zdvanced and esoteric, presuppose the
use of a modulated, narrow-band sinusoidal carrier wave
which also applies to the communication case. Although the
advantages are self evident it is worthwhile to question
this well established practice as it can provide
considerable insight into some of the desirable properties
for a radar carrier wave to posseSs.

In the early days of radio and radar it was quickly
found that some kind of high frequency vehicle was necessary
to provide efficient radiation of an information bearing
signale Attempts to radiate the original (baseband) signal
with reasonable efficiency would have reguired radiating
structures (antennas) of unmanageable size as well as
resulting in extreme distortion of the radiated signal
through differential efficiercies in radiating the various
sinusoidal constituents of the baseband signal.

For the radar situation things were more complex. DNot
only was efficient radiation a requirement, but the need
to form and scan a narrow beam of electromagnetic energy
with mechanically scanned and alrtorne antenras of

ze necessitaved high frequency operation.

}_lo

reasonable s

However, there does exist another very good reason for
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using a high frequency carrier in radar. For example, if
it were possible to radizte a non-cscillating pulse of
electromagnetic energy snd to successfully detect the
energy reflected back t¢ the radar, then, in principle, the
presence of a reflectinz object cculd be detected and its
range measured. But, in order to realize the full
capability of radar, it must be sensitive to the motion of
a potential target and to its angular position. It is
doubtful if the baseband signal could be radiated in a
directional manner to achieve angular discrimination since
directional radiation depends upon the wave interference
principle of single frequency sinusoidal radiation. This
fact would make baseband signal radiation useless for many
forms of radar operation.

In addition, the Deppier effect, which, in reality, is
a compression or stretching of the time variable of a wave
reflected from a moving target, would surely manifest
itself on the non-osciliating pulse. However, even if the
reflected pulse should arrive at the radar unchanged by its
propagation through ths radar medium, the Doppler effect on
the duration of the pulse would be much too minute to be
measureable by presentliy known techniques. And, everi if the
Doppler effect were measureable, other efiects occurring
during propagation and amplificaticen at the receiver would
distort this wideband pulse to the point of completely

masking the small changes irduced by the Doppler effect.
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Similar effects could cecur withi @ wideband modulated
sinusoidal carrier wherein the pulse envelope can be
severely distorted duriri preopagation or during and after
detection at the radar receiver.

The conclusion te¢ ®e drawn is that with or without a
nigh frequency carrier, pulse shape can be distorted beyond
use for measuring target motion while the Doppler effect
on pulse duration, for most practical situations, is too
small to be measureable even without the presence of signal
distortion.

Then, in order to provide sensitivity to target motion
there must be some mechanism or parameter present in the
radiated electromagnetic wave which is insensitive to
waveform distortion yet which will respond to the Doppler
effects One property fiiling these needs is the rate of
zero crossings of a periodic waveform (lacking a d.c.
component). Many waveforms have this proverty, the
sinewave being that commonly used in radio and radar. The
zero crossings of a sinuscid are readily and accurately
measured as a frequency by filters, wavemeters, or by use
of electrcnic counter circuits. Hence, using present day
measurement techniques, electromagnetic energy of a high
repetition rate is required in order for radar to be
responsive to the motions of a target as well as to its
range.

From the above qualitative discussion the following
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may be concluded: a nigh freguzrcy carrier is required to

Ho

meet the very practinzl need of efficient radiation by
antenna structures of reasonzhlz sizey a periodic carrier
is also necessary in order tc realize the required

sensitivity to target angular vosition and to its motion!
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Chapter V Assessment of the Direct Transient Analysis
of Nonsinuscidal Pregzgztion and Kzdiation Phenonema

In Chapter I mention was made of Harmuth's (1970) and
Pearlman's (1970) emriy preliminary theoretical analyses of
the radiation problem due to nensinusoidal current sources.
Harmuth's 1972 analysics is reprcduced in Appendix II for
the reader's convenience,

In that analysis Harmuth (1972) made use of the vector
magnetic potential A and the electric scalar potential ﬂ to
evaluate éhe electric and magnetic field quantities in the
region surrounding a small localized current appearing on
a shert Hertzian dipole antenna element. The length of the
antenna element was aszsumed 16 be so shcrt that current
along its length did notvary with lccation while the current
at any point along the element was assumed to be equal tec
that supplied by an electronic source exciting the device
at a small gap near its center.

However, the power radiated frem a very short antenna
element is impractically small. In addition, those
assumptions abeove are not realistic for mechanically
realizable dipole elements nor for octher forms of conductor
arrangements necessary to effectively radiate the
nonsinusoidal waveforms under consideration here,

In Appendix II it is shown that the vector potential A
and the scalar potential £ are subject to the twc following

nonhomegeneous wave equations
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2
61?5 - ue 0O ¢? = w L oplx, vy 75%), 1)
£ o
§§K - e gZKZ = - 0 J{xiy,21t) 2)

under the Lorentz gauge condition

Vi + we o = 0. 3)
dt
In the above wave equations X and g are both functions
of position and time, p(x,y,z3;t) is the charge density, and
J(x,y,23t) is the current density distribution of a time
varying source. Both are functions of position and time

and are related by a continuity equation

V-5=-_39t_. )

In the case of infinite spuce with no boundary
conditions to be met, which is 2lso the case relevant to the
radar situation, the above two wave equations have the

following integral soliutions:
ﬂ(x.y,z:t) =

‘[yyn G(x',y'yz'ytix, ¥, 2, 0)pixt,y" 2, t')dx 'dy'dz'dt® 5)

over

E(xyyi23t) =

L[}JZfG(x y Yz ik, v,2,t) J(x',y',z',t)dx'dy*dz'dt'  6)

over
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in which G(x',y',2*,t"'sx,y,2.t) 1s a time dependent Green's
function relating the potential at an arbitrary observation
point, x, ¥y, 2z, at time t to 2n infinitesimal elément of
the source density distributicn located at x', y*, 2' and
activated at time t'. A

It can be shown (Jackson, 1967, pp 183-186) that
G(x',y'y2'yt'3X,y,2,t) reduces to the relatively simple

delta function expression

G(X'yy'ez'yt'sX,y,2,t) = 8(8" -t + [8 - 2'|/c)  n
hnlx - iq

in which X = ix + jy + kz, the position vector of the
observation point and X' is—the'position vector of an
element of the source distribution producing the
disturbance at X .

Inserting the above Green'’s function into the two
potential integrals and carrying out the integrations with

respect to t' yields

ﬁ(x,y,z:t) = z;aj;(x',y’,z';t -li - iq/c) dx'dy'dz’ 8)
ovei hre & - X' | |

and

A(xz,y,2:%) = udﬁ[yg(x',y',z';t -8 - XY/c) dx'dy'dz'.9)

wr|z - %

The electric and magnetic field quantities are then

obtained from these two potential quantites (which seem as
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artificial mathematical devices created as an intermediate
step to simplify evaluation of the field quantities) by the

following relationships:
B(x,y,2z3t) =\UX K(x,¥,2:t), 10)
and
E(x,y,21t) = -\8(x,y,2:t) - 9K(x,¥,211t) . 11)
o9t

If p(x,y,2:t) and J(x,y,2:;t) were both known accurately
throughout the volume of these density distributions the
integral expressions for equations 8 and 9 for #(x,y,z;t)
and K(x,y,2z3t), and the expressions for B(x,y,z;t) and
E(x,y,23t) of equations 10 and 11 would all be exact.
However, time varying charge and current density distri-
butions actually appearing on antennas used in radar or
radio communications usually result from highly localized
electronic generators of high frequency sinusoidal current
or voltage. It is presumed here that such will be the case
for the radiation of nonsinusoidal electromagnetic energy.
The exact values of g(x,y,z3t) and J(x,y,z1t) would then be
solutions to very complicated boundary value problems for
both sinusoidal and nonsinusoidal radiation: the latter
case would presumably be much more difficult than the
sinusoidal which, itself, is only solvable for certain
simple geometries of conducting or dielectric elements,

Rather than determine the radiation fields from
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realizable charge ard current density distributions
exactly, it has been saztisfactory in past antenna design
practices to assume (in the sinusoidal case) that the entire
source density distribution has the same sinusoidal time
variation throughout its whole volume. The charge and
current density distributions may then be written as

products of a space varying factor and a time varying

factor:

(xyy,y2z3t) = o(x,¥,2) eI Wt 12)
and

I(x,yy21t) = T(x,y2)ed¥t, 13)

The above simplifying assumption allows the

exponential factor to be written as

Jw(t- [z - 2le) | jwt —jufg - = n
which allows the exponential time function to be removed
from under the integral signs of the solutions for & and R,
Even though such an assumption makes the radiation problem
tractable, it does place stringent limits on the maximum
spatial extent of the source density distributions in terms
of the operating (sinusoidal) frequency. In order that
there be little phase difference and little distortion of
the currents appearirg on the antemma structure, the

distance 4d to the outer limits of the source distribution
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must meet the following inequality:
4d << A or @ << 2¢/f, 15)

If a value of ten percent of 2¢/f is acceptable for

d and frequency is expressed in gigahertz, then

d 8 0.6/f meters. 16)
max

The practical interpretation of the above constraint
is that pulse rise or fall times and pulse durations must
be much longer than the time needed for propagation across
the source distribution. This principle can be stated in

an inequality as
4d << cT or d << 2¢T. 17)

Here T is the time interval of interest in the waveform
(ises, the rise or fall time or desired time resolution) to
be transmitted,

If a ten percent limit is again accepted and

a pulse rise time of 50 picoseconds is considered, then

~12
dmax 2 X 3X lO8 X 50 X 10 = 0,03 meters

N entimeters
dmax 3.0 cen .

The above limit means that use of the simplifying
assumption on the first page of this chapter for Walsh or

similar type waveforms with transition times of 50 pico-
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seconds, or less, indivicdual radizting elements must be of
the order of a few centimeters in extent.

The above approximation is suitable for single frequency-
or narrow band operaticen. However, the natures of the
sinusoidal and nonsinuscidal modes of operation are very
different. It would therefore be desirable in the analysis
or design of radiating elements or antennas for nonsinusoidal.
operation to be free of the aforementioned artificial
limitation on the spatial extent of the source distributicn.
Accomplishment of such freedom in a direct and exact
transient analysis of the nonsinusoidal radiation phenomena
would, however, be very difficult and require nmuch new
effort and research. This area of endeavor has seen little
activity in the past. Since the direct transient analysis
is so difficult much zimpier mzans and techniques are
developed in subsequent chapters. The methods developed
utilize existing knowledge and information on the sinusoidal
operation of radar system components and the radar

enviromment propagaticn media.
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Chapter VI Radar System Components and Propagation
Media Characterization

In order to adequately examine radar theory and
practice and to isolate their essential features, one
must also consider the means used to characterize radar
system devices and components. This action is imperative
to this study since many of the components and operating
principles will, no doubt, prove useful or necessary for
the implementation of a radar based upon a Walsh function
carrier.

In this study four categories of components are
examined: 1) transmission structures such as waveguides
and transmission lines; 2) antennas and their radiation
patterns; 3) amplifiers and/or filters; 4) the propagation
mediume. It is felt that these four divisions represent
the indispensible components and elements that determine
the successful operation of a radar based upon a sinusoidal
carrier as well as a nonsinusoidal carrier wave., However,
for the purposes of this chapter a detailed study of these
four items is not necessary. Rather, it is important to
point out certain assumptions and principles underlying
their uses, specifications, and descriptions. The details
of their operation pertinent to use with Walsh functions
are discussed in later chapters as needed,

Although high power microwave transmitter tubes and

low power sinusocidal microwave oscillators also constitute
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essential elements of a sinuscidal radar, they are not
considered since they are urable to generate Walsh
functions and cannct contribute to the implementation of a
Walsh carrier radar. Knowledge of their characteristics
can contribute little ir determining the suitability of the

four areas above for use with a Walsh carrier radar.
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Transmission Elements

The various forms taken by transmission devices such
as transmission lines and waveguides are characterized by
their effect upon the amplitude and phase delay along the
line of a hypothetical sinusoidal excitation of infinite
duration.,

The main concern here is on the transmission line or
waveguide which is matched or else so long that reflections
don't occur within the time intervals of interest. This
examination is limited to these special and idealized cases
since our interest is in the propagation properties of the
device,

The two conductor line, which includes the open line,
the coaxial cable, and stripline is described by a complex

traveling voltage (or current) wave

_ ~-(a + jB)z _ -Y2z
E, = E e = Es e volts 1)

in which Eg is the amplitude of the excitation voltage (or
current) at the sending end of the line, usually E, =
'Eslejea E, is the resulting phasor voltage at some point z
along the line; a is an attenuation factor; B is a phase
factor: and ¥y is the symbol for the complex sum of a + jB.
For the simple transmission line a and B are determined
by the constants of the line: its series resistance per-
unit-length, R; its series inductance per-unit-length, Lj

its shunt conductznce per-unit-length, G; and its shunt
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capacitance per-unit-lenzth, C. 7The dependence of a + jB

on these quantities is

a + 38 = \J(R + jwL)(G + juC) =y 2)

which is also seen to te a function of the frequency of the
sinusoidal excitation voltage. In addition R, L, G, and C
are generally frequency dependent,

The transmission line is also described by a
characteristic impedance which is the ratio of the traveling
voltage wave to traveling current wave at any point on a
sinusoidally excited line having no reflections. This
quantity is also a function of the line constants and

frequency:

2o MR + joL}/ (G + juC) 3)

If a2 1ine of finite length is terminated in an

impedance, 2 the impedance seen at the input end of the

L’
line is

Z. = zo(zL + 2 tanh(a + jB)x) )

in ' :
(2, + Z tanh(a + jB)x)

where x is the length of the line. The input impedance is
a function of frequency alsoc through the quantities 25 ZL’
a, and B which are all freqﬁency dependent,

Further consideration of the traveling-wave solution

of the transmission line results in a useful relationship.
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First, consider a line with excitation EseJWt at the

sending end and the rassuvcnse at a location Zq3

Wt -z
e(t.zl) = Es e t e~ YEL | 5)

The response at a second location Z, (with Z, > zp) is

e(t,2,) = Eg R s (- 6)
Now, with Z, = 27 +/A\z,
e(ty2z,) = (ES e Juwt e~YZ1) e"Y‘Csz . 7)

However, the factor in parentheses is just e(t,zl) so that
e(t.ZZ) = e(t,Zl) e-YN . 8)

Since the time variation is exponential (or sinusoidal

in terms of real functions)} e(t,2) may be written as

jwt
e(t,z) = e ¥ E(z) 9)
so that
E(z5) ert = E(zl) ert e-Y‘csz . 10)

With t = 0 the above relationship becomes

B(z,) = E(zy) e 0¥ 11a)

or
B(z,)/B(z;) = ¢ ¥ 110)

which is a form of transfer function relating the amplitudes
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and phases ¢f the sinuscidal time variations at two points
on the line separated by a distance /\z.

Yz

Since E(z) = Eg € '° further simplification can result:

E(2,)/E(z)) = E(z, - 27) = e Y&¥ 12)

-v/\z
so that e AL becomes the transfer function relating
amplitudes and phases on the sinusoidal traveling wave at

any two points on the line separated by a distance /\z, or
-v/\z
Hw,a2) = ¢ YO 13)

where ¥y = a + jB, a complex function of frequency.

The above ccncept of a transmission line transfer
function between two line locations separated by a distance
Nz is of great value in characterizing the line in terms
of Walsh function traveling waves,

The case of the single hollow metallic waveguide which
has complicated solutions for the electric and magnetic
fields within the guide as functions of time and position
also allows an interpretation identical to that for the +two
conductor lire., Consider for example, the rectangular guide
with TE and TM solutions (Ramo, Whinnery, and Van Duzer, pp
421-424) for exponential excitation eIWE 1isted in Table 11,
Although the solutions in that table show no single
quantity which describes the waveguide it is seen that all
ten field quantities possess the same traveling-wave

(jwt - YZ).

characteristic: 1i.e.,, e Hence, they all
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Table II. Electric zand Magnetic Field Solutions for a
Rectangular Waveguide witn Propagation in the z Direction.

™ Solutions:

jwt - vz
Ez(x,y,z;t) = A e(J vz) gin(x ky) sin(y k )
T - vz
Hx(x,y,z;t) = jAkyf V(le vz) sin(x k) cos(y ky)/kcfcz
. (jwt - vz i
Hy(x,y,z;t) =-3Akxf et vz) cos(x kx) sin(y ky)/kchZ

VT - £2/57 H (x,¥,21t) 2

V1- fg/f2 Hx(x,y,z;t) yA

Ex(x,y,z:t)

Ey(x,y,z;t)

TE Solutions

Hz(x,y,z;t) = B (Jurt— vz) cos(x k ) cos(y k )

Ex(x,y,z;t) = JBK £z e(J"U't - ¥z) cos(x ky) s1n(y k )/k ofe
(jwt - vz)

Ey(x,y,z:t) =-jBk fZ e sin(x ky) cos(y ky)/kcfc

HX(X.y.zst)

- V1 - fg/f2 Ey(x,y,z;t)/Z
V1 - fg/f2 E {x,y,2:t)/2

Legend: a= guide width in the x direction; b= guide height
in the y direction; k = mr/a; ky= nT/bs m, n are integers;

kg =k, + k2. Z= intrinsic wave impedance of the medium

which is frequency dependent for a lossy medium;
f =x /Zﬂdue, the waveguide cut-off frequency; y= a + jB;

B%-kz - k2 a and B are both complicated functions of
frequency depending upon the material maklng up the walls
of the waveguide and its filling dlelectr .1%’= radian
operating frequency; and vy = j a) (1 - f ff

H (x z;t
y( ' Y223 )
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propagate along the guide as an ensemble, or set, unchanged
in their spatial relaticnships. As one might suspect, the
same principle applies to a wzveguide of arbitrary lateral
cross section even though the lateral distribution (in the
x and y coordinates) of the field quantities may be
difficult, or even impossible, to determine analytically.

Hence, for any field component of the waveguide, an
equivalent transfer function relating its amplitudes and
phases for an exponential time variation at any two points
along the guide separated by a distance /Az may be defined

as
Hh(w.Az) = TV ) Hy(w,Qz) = e"YAZ 14)

as in the case for the two-conductor transmission line.,

Since waveguides and transmission lines may often be
terminated in an ummatched condition in practice, or may
often possess discontinuities or irregularities in cross
sectional properties alonz the device, all will give rise
to0 reflections. Transmission and reflection coefficients
are then of interest.

For the transmission line with a non-matching
termination or some form of discontinuity, a reflected
voltage wave traveling in the opposite direction of the
incident wave is generated. If the amplitude of the
incident (sinusoidal) wave 1s E_ and that of the reflected

wave E_, then a2 reflection ccefficient ¢ is defined as
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P =ke_/E, 15)

with the voltage across the terminating load impedance EL

E, = E, +E_ 16)

L

so that, with some algebraic manipulation,
@ = E_/E, = (Zy - 25)/ (21 + Z,) =C(w) 17)

which can be a complex gquantity.

The portion of the incident voltage wave affecting
the load impedance ZL’ or, in the case of a mismatching
discontinuity, the portion of the incident energy
transmitted beyond the discontinuity, is related to the

incident wave by a transmission coefficient T:

which can also be a complex quantity.

The two quantities @ and T are similar to the
relationship determined for the transmission line transfer
function H(w,/\z) relating amplitudes and phases of the
traveling-wave at two locations along the line. The
quantities ¢ and T, which are both frequency dependent,
constitute transfer functions relating the incident and
reflected wave amplitudes and phases at the discontinuity
and relating those of the incident and transmitted waves

respectively. Similar quantities are used in Chapters IX
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and X to describe the reflection and transmission of
Walsh waves on transmission lines and in wavegulides as well

as their reflection from objects in space,
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Antennas and Radiators

Radar antennas, whether c¢f the parabolic aperture form
or a phased array, are dependent on the (monochromatic)
wave interference princircle for their operation and, like
transmission lines, are described in terms of their response
to a sinusoidal excitation of infinite duration.

Antennas for a radar application, in order to provide
a reasonable degree of directional resolution, must be able
to concentrate transmitted electromagnetic energy into a
narrow beam (in the far field) and to respond to received
energy from a very narrow solid angle in a given direction.
Its ability to do this is usually expressed as a relative
gain function in terms of either field strength or power
density transmitted or received as a function of two
orthogonal angular coordinates measured from the direction
of maximum response of the antenna. This gain function is
usually defined with respect to the field strength or power
density that would result using a hypothetical isotropic
radiator: i.e., 2 radiator that produces uniform power
density in all directions.

For work in later chapters it is essential to
determine the relative field strength or (instantaneous)
power density (i.e., the radiation pattern) in the space
surrounding the antenna as a function of frequency in

response to a sinusoidal voltage or current excitation at
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some point in the anienna system. The electric field
radiation pattern as a function of the angular coordinates
of the radiation patternr also constitutes a form of antenna
system transfer function that relates the relative field
amplitudes and phases to the sinusoidally varying excitation
source.

For an artitrary aperture with general illumination
distribution the Kirchhoff-Huygens diffraction integral can

provide a general expression for the frequency dependence:

Efar(e.ﬂ) ]

iE e-JkR jk sin @ (x cos g + y =in ﬂ)dx dy

N aper‘[u‘]r‘e 19)

(Skolnik, 1970) where A(x,y) is the relative amplitude and

A(x,y) e

phase distribution of the field in the aperture, E° is a

reference value of the aperture field intensity, R the
distance from the antennra origin to the observation point,
k = 2nf/c the phase constant of the medium, 6 and & are the

angular coordinates of the standard spherical coordinate

system,

A(x,y), which is generally complex, may be considered

to consist of a real amplitude factor ‘A(x,y)l and a phase

x(x,y)

factor e It is also important to realize that

2 .
iA(x,y) and A(x,y) may purposely be adjusted or varied to

2) Do not confuse A(x,y) with X lacking the parentheses,
The symbol A is the wavelength of sinusoidal excitation.
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produce some desired preperty in the antenna radiation
pattern. Since A(x,y; is an electrical angle, depending
on how it is produced, it can be dependent on frequency for
a fixed antenna system. It is also conceivable that A(x,y)
could be a controlled functicn of frequency for a given
antenna system. These two possibilities must be accounted
for in any analysis for a fixed antenna system as well as
in the design and development of new antenna systems,

With k¥ = 2nf/c and 1/ = f/c the general expression for

the far field strength becomes

Efar(e' git) =

JEoT e’JZ“fR/"[éix dy A{x,¥) eJZ“fES&m(X“SWysmﬁ)-xgmx])

Re erture
20)

which can be an unwieidy integral to evaluate. Fortunately
the greatly simplified cases of uniform amplitude and phase
illumination for the rectangular and circular apertures suit

the purposes of this study.

For a simple rectangular aperture with dimensions a
and b with |A(x,y3f)] =1 and A(x,yif) = 0, the far field

strength becomes

Epap(0y £1£) =

JE,T e-JZWfR/C [sin(ﬂai sin 8 cos @) sin(nbf sin 6 sin #)
C c
Re

naf(sin 8 cos #)
c

oL

bf(sin 6 sin #)
(o4
21)
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while for the circular aperture ¢f radius r, the far field

is

(9 gif) = JE_: e Jl(ggig sin 8 )]. 22)
K L sin 6

The appropriate interpretation of the far field
gquantities of equations 20, 21, and 22 above is critical to
this study. All are actually sinusoidal field quantities
occurring in response to sinusoidal excitation, or
illumination, of the aperture. Even though the amplitude
and phase of the aperture illumination may not be uniform,
they may ultimately be referenced to a sinusoidal voltage
or current source at some point in the antenna system which
has a specific amplitude and phase« Considering only this
reference source quantity and the far field quantity it
is seen that the sinusoidal far field constitutes the
response to the reference source: their relative amplitudes
and phases, as functions of frequency, must be related by a
transfer function. This transfer function, except for a
numerical scale factor, is just the final expression for
the far field strength as expressed by equations 21 and 22,
In order to eliminate confusion of a scale factor we may
consider the aperture field intensity Eo' at zero phase, as
the excitation source yielding and antenna/far field

transfer function of

Brar (8 BiEVE, = H_ (0, fhf) . 23)
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Of course, a sgimilar expression may be derived for
the magnetic field quantity Bfar the magnitude of which is

related to that of the electric far field by the intrinsic

impedance of free space:

IBfar‘ = |Efarl /n, = ‘Efarl /1zom . 2k)
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Array Antennas

The general situation with the array antenna (the
pattern of which mav bte approximated by the continuous
aperture if the element spacing is less that 4\ and the
number of elements is large) is complicated by the fact
that the observation point field strength and associated
radiation pattern are expressed as a finite summation of
differently weighted and phased exponential terms.

Although the array antenna and its radiation pattern
can be approximated by the continuously illuminated
aperture, the fact that radiation of Walsh functions may
require an array of small radiating elements necessitates
consideration of the exact discrete approach., The general
expression for the far field for an array of arbitrarily

spaced,weighted, and phased radiating elements is

N ' [ o I
n=

where N is the number of elements, ¥ a2 unit vector in the

25)

directions of 6 and f to the observation point, @, the

th element with respect

th

vector denoting the location of the n

to the origin, An the relative amplitude due to the n

radiator, and &6  the delay of the nth ragiator. For a

given set of isotropic radiators which do not interact, the
above expression explicitly describes the frequency

dependence and the directional properties since %TOE is
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dependent only upon 6 and g of *the observation point.

However, the guantities én’ Ay and 6, are usually

not entirely arbitrary as they are usually selected to
provide a prescribed radiation pattern.

The simple linear array cf ecuispaced, equal amplitude,
and uniformly phased elements suits our needs at this point.

The relative far field for this simple array is

Efar(e;f) ~ sin(NvmfS(sin 8 - sin 90)/0) 26)

N sin(mfS(sin 6 - sin 90)/b)

(Skolnik, 1970, Chapter 11) where S is the element spacing,
f the frequency, 6 the direction of the observation point,

8 a selected scan angle, ¢ the speed of light in the

medium, and N the number of elements.,
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Amplifiers and Filters

In order to be most effective the receiver of a radar
based on Walsh functionz must not only amplify the returned
signal, but it must do so in some optimum manner in the
presence of noise. It must also be able to select its own
returned signal from those emanating from other nearby
equipment operating on Walsh function carriers and to reject
unwanted interference.

The problems of filtering and selectivity properly
belong in the realm of Walsh filters which are not discussed
in this study. However, the function of amplification will
presumably be carried out by linear wide and/or narrow band
(sinusoidal) amplifiers as presently done in radar practice.
Filtering and signal processing would take place after the
initial amplification phase.

Amplifying devices suitable to Walsh functions can be
adequately described by their sensitivity and saturation
characteristics and their linear characteristics of gain
and phase as functions of frequency, their bandwidth, and
center frequency. These are the same characteristics
normally used to specify suitable pulse operation.

The linear characterization of the amplifier is
described completely by its sinuscidal transfer function
which can be obtained either from measurements or by

detailed aralysis of circuits and active devices comprising
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the amplifier.

The sensitivity of the zmplifier depends on the amount
of internal noise generated by the amplifier which is
expressed by its noise figure. This quantity is also
available by analysies or from measurement.

The saturation and nonlinear distortion properties of
the amplifier depend primarily on the active devices used
and the values of power supply voltages used. Although the
nonlinear properties of the amplifier may generate
sinusoidal components not present in the original input
signal, it is very important to note that the bi-valued
nature of the Walsh functions makes this property of the
amplifier unimportant for amplification of a pure Walsh
function waveform. For signals consisting of a super-
position of several Walsh functions the nonlinear
properties of the amplifier can only redistribute the
signal energy among the Walsh components originally present:

jees, NO extraneous Walsh components are generated.(Harmuth,

1972, pp 305-307).
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Propagation Media

In the electromagriztic phase of the radar operation
the radar energy propagates through the external
environment essentially as a plane wave. The propagation
medium, much like the transmission line and the waveguide.
is characterized by its effect on the amplitude and phase
of a sinusoidal plane wave as it progresses through the
medium. The effect of the medium is manifested through a
phase constant, k, which is analogous to the constant ¥y
for the transmission line described earlier in this chapter.

In one dimension such a propagation constant gives
rise to equations for the field strength at different
locations along the propagation path identical to those for
the transmission line. If the field at a given location zy

due to a source wave at the origin, is

i -jkz
E(t;zl) = A eY t e JF4L 27)

and that at 2 second point z, is

E(tizy) = A eIWt gmik22 28)

The ratio
~3k (2o - 27) s
E(t32,)/E(t52;) = e Jelzz - 21) _ -jkQz 29)

is also a transfer function relating the amplitude and

phase of the traveling-wave at point Z, to those at an
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earlier point z7. In this instance the disturbance at z,
acts as the source, ¢r cause, of the disturbance at z, even
though that at Zq is not actualiy a source. Notice also

that since z., and 2, are arbitrary the transfer function

1
depends only upon the separation of the two points
involved.

In order to characterize any propagation medium by its
point-to-point transfer function all that is necessary 1is
to determine the propagation constant k and form the
quantity e-jk[lz

If the medium is lossy, k has an imaginary part
leading to an exponential factor having a negative exponent
giving rise to amplitude attenuation. The phase constant k
is usually a function of frequency, the simplest being
k =W for a vacuum., For material media k is also

expressible in terms of the index of refraction for the

materials
k(W) = w n(w )/c 30)

where W is the radian frequency of the sinusoidal
excitation, ¢ is the phase velocity in vacuum, and n(W )

is the index of refraction which, in general, is frequency
dependent and also complex. If there are changes in its
value along the path of propagation (in directions
perpendicular to that of propagation) the direction of

propagation will change.
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Analogous to the transmiscicn line case the medium is

algo described by an intrinsic impedance:

n =\Ju/e = E-l/Hj 31)

where u is the magnetic permeability of the medium, e its
permittivity (both of which ma2y be complex functions of
frequency), and E.l and Hj are the electric and magnetic
field strengths which are perpendicular to each other and
to the direction of propagation.

Discontinuous changes in the impedance of the medium
in the direction of propagation also give rise to
reflection and transmission coefficients at the interface

between two regions of different impedance:

~idant © (1’12 - nl)/(n.?, + nl) 32)

0
1
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and

T = Eiransmitted /Eincident = 2np /(ny +nq) 33)

which in general are complex functions of frequency and
ny and n, are intrinsic impedances of the two media,

The propagation constant k of the medium through which
sinusoidal electromagnetic energy is transmitted by a radar
to detect and measure a targe+t's distance, is a very
important quantity since it determines signal attenuation

due to the losses of the medium, and the phase and group

velocities, which affect range accuracy.
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For a tenuous plasma such as the terrestrial ionosphere
k, neglecting the geomagnetic fielid, is (Ramo, Whinnery, and

Van Duzer, 1965)

k(W) S\ Jfue, (W ° -w) )

where u/p is a frequency characteristic of the electron

density of the plasma in which ionic motion has been
2
P

free electrons per cubic centimeter, e is the electronic

neglected and W . = 4ﬂnoe2/m in which nj is the number of
charge, and m is the electron mass. For radian frequencies
greater than Lup. k is real and the waves will propagate
with no attenuation while, if the frequency is less than
ajp. k is imaginary giving a negative real exponent
producing extreme damping of the wave in the plasma,

The propagation constant for a medium consisting of a

lossy dielectric 1is

jk = junNu(e' - je") =a + jB 35)

in which e' is the real part of the medium's permittivity
and e" an imaginary part which accounts for the dielectric
losses.s In general bcth depend on frequency. The terms

o and B8 are found to be

a =W %ue'(“J17+ e"z/’e'2 - 1) 36)

B =W \/3ue’ (V1 + e"%/e'? +1) . 37)
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For a lowloss material whare 2" is much smaller than e'

a ~N\Jue' (e"/2e") 38)
B s \fue' (1 + (e"/e*)?/8) 39)

while the intrinsic impedance is

n=Vvuw(e' (1 - je"/e'))
= \Ju/e' (1 - %(e"/e')2 + je"/2e') . 40)

The intrinsic impedance of any material medium is
also a function of frequency which may also be interpreted
as a form of transfer function. It relates the amplitudes
and phases of the E and H fields at a given point in the
medium.A Because of this frequency dependent transfer
functioﬁ relationship nonsinusoidal E and H fields will
not be of the same time variation at a given point in the
mediﬁm.

of éourse. any nonsinusoidal radar application
involving a planetary ionosphere must consider the planet's
magnetic field if it is of significant value. This case is
of much greater complexity than that for a plasma in which
the geomagnetic field is negligible.,

The phenomena manifested in the terrestrial ionosphere
in the presence of the pervading geomagnetic field are of
obvious importance in modern radar applications in which

moving targets above or within the ionosphere must be
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detected and tracked bty surface based radar equipment.
Radar mapping of the Earth and neighboring planets by
radar platforms orbiting the planets under scrutiny must
also consider the effects of the same phenomena.

A phenomenon of great importance in the use of linearly
polarized radar waves is the Faraday effect by which the
plane of polarization may be rotated thereby reducing
antenna sensitivity. However, of greater importance than
Faraday rotation is the possibility of waveform distortion
resulting from synergistic effects of the plasma and the
magnetic field which is investigated in greater detail in
Chapter VIII. Below the propagation functions for this
case are developed.

Using the geometry shown in Figure 3 for the most
general propagation arrangement with the geomagnetic field
and the propagation cornditions as indicated, a general

solution for the propagation function from Kraus (1966) is

B =u/\/§-uo/ [(ell - e33)sin2¢ + e33J X

Eeil - eiz - elle33)sin2 g+ 2 elle33 +

((eil - eiz - elleBB)zsinuﬁ + 4e§2e§3 coszﬁ){]% 41)
where @ is the angle between the direction of propagation
and the static magnetic field §o and the ejj are the

components of the tensor permittivity corresponding to the

geometry shown. The tensor permittivity is
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Direction of
propagation
in X~z
plane

Figure 3. Geometry of electromagnetic wave traversing a
plasma in a static magnetic field.,
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11 -ieyz ©15

°31 %32 33
with
011 = e = &1 +wi/ W2 -w?)) 43)
2 2

12 = - ®21 T eowpwc/w (wcz; -w") L)
- 22

€33 e (1 wp/w ) 4s)
= e = e = e = O. 46)

°13 T %23 T %31 T ®32
s 2 2
In the above quantities W, = Ne /eom = plasma

frequency, e, = permittivity of free space, and w, =

()
e B,/m = cyclotron frequency. In both equations e = the
electron charge and m its mass.,

A case of interest for radar applications which
provides some mathematical tractability when the direction
of propagation of a linearly polarized wave is parallel, or

nearly so, to the static magnetic field such that g s 0

making E, » C. This is the quasi-longitudinal case with

8 =m_\/l’(w3 _w(u/}z) +Lu§) + w;wc cos Flw 47)
(W +Luc)(a/-£ub)

For the purely longitudinal case with g = 0, dividing
the numerator under the radical by (W + W,) and then by

(W - w,) yields
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0 R @
b = \/iEs MW twy - AW ) 48)

Both equations above are double valued due to the plus and

minus signs. The interpretation of two values of B means
that the wave soluticn ccntains two solutions with each
having a different value of B, one with the positive sign
and the other with the negative sign.

It can be shown (Ramo, Whinnery, and Van Duzer, 1965,
pe. S516) that the only wave solutions satisfying Maxwell’s
equations for the geometry shown in Figure 3 are circularly
polarized waves each with oppositely sensed rotation: one
corresponds to the positive sign of B while the other

corresponds to the negative signe.

A linearly polarized wave in which we are interested
may be considered as the superposition of two circularly
polarized waves of opposite sense of rotation. The clock=-
wise rotating component corresponds to the positive sign

in B which yields

- - - ~3jB.2z

E+=Eo (ax-;]ay)e']'*' 49)
and, for the negative sign,

E_ =5, (5, + &) ¢ - 50)

where Eo is the magnitude orf the rotating field vector.
The linearly polarized wave in which we are interested is

then the linear superposition of two such rotating waves:
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Biyp = 3B,(5, - 33,) o + 35_(a, + 3 e PR, a1
y

The effect of the plasma and the magnetic field on the
time domain unit impulse response is obtained, in principle,
by extracting the inverse Lanlace itransforms of e-j8+z and
e-'jE;‘z and making the appropriate vector operations in the
time domain,

A second case of some interest is that of transverse
propagation inwhich the direction of propagation is
perpendicular to that of the magnetic field. In this
situation the electric field vector may have components
both parallel and perpendicular to the magnetic field., In
the parallel case the effect is as if no external magnetic

field were present with 8 the same as equation 34, The

perpendicular component corresyonding to g = 900 reduces to

B =w\/§-\/all - (1 +1) eZ sin g /2e)) 52)

which is known as the extraordinary wave of the quasi-

transverse case which reduces to

8 =LUW/G;'\V/ell - eizsin g/eq1 o 53)

The purely transverse case with g = 90o reduces to

2
B =(y VT, '\/{l - elz/ell . 54)

In terms of frequency, the plasma freguency, and the

cyclotron frequency equations 53 and 5% become
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8 = \Juoeo X
2
6 s 2 2 22 22 34
w - 2W (wc +wp) + G (CUC + p) - wcwp sin & 55)
2 2., 2 2 2
W - W)W - -
( (,oc)(/ W, Wp)
for the quasi-transverse case while for the purely
transverse case we have
B=\/uoeo X
2
6 24 2 2 /2 2 6(/22 2 4 56
- + + - .
W’ - Wty W W, W) -l W )

2 2 2 2 2
Wo-w)w -u- )

A final case of particular interest in terrestrial
radar applications is the propzgation factor describing
the Earth's atmosphere. For the frequencies of interest
the atmosphere is ecssentially nondispersive which also
applies to weather phenomena such as precipitation and
clouds which merely attenuates any electromagnetic sine-
wave traversing through the medium. The phase factor is
closely approximated by a//c. However, the attenuation
factor is a complicated function of frequency due to
absorption by atmospheric oxygen and water-vapor. Since
the quantities of oxygen and water-vapor are csensitive to
atmospheric pressure and temperature as well as the
absolute humidity, they are all devendent on altitude.,

Bean, Duttcn, and Warner (197¢, pe. 24- 13) have
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presented a summary of atmospheric attenuation factors
based upon a combiration of theory and empirical data.

When converted to nerers per meter for a standard

atmosphere3 the oxygen attenuation factor is approximately
-6 >
Y, ¥ 39.08 x 10 W 0.018 +
74,2 10, 2
W 4+ (0,34 x 107 7)
0.05
+

(W+ 37,7 x lOlo)2 + (0.94 x lOlo)2

0.05
10 2 10 2
(W-37.7x 10 ) + (0.94 x 10 ) ]

57)

while that for water-vapor absorption is approximately

2 -6
Y, ¥ 0.403 pW x 10 (L + 0.0046 ¢) x

0.0906

+
[(u/+ 13.9 x 10°0) %+ (1.71 x 1070) %1 + 0.0046 @)°

0.0906

(- 13,9 x 1010)2 + (1.71 x 1010)2(1 + 0.0046 @)2]. 58)

A third attenuation factor which accounts for losses

3) Standard conditions: P = 1013.25 mb, T = 293° K,
Equations 57 and 58 have been corrected to these conditions
while equation 57 is independent of humidity Q.



73

above a frequency of 22 GHz is
2 . =26
Yy = 12,75 o) x 1C (1 + 0.0046 p) . 59)

In equations 58 and 59 ¢ is the absolute humidity in gm/mB.
The total attenuation factor 1s then the sum of the

above three factors:

Y, =¥, tY, tY o 60)

t

The transfer function corresponding to the phase factor

W/c and the attenuation factor v, is

Hw ) = e-(yo + Yy + Y)2Z e-ja/z/c . 61)

It will be useful in Chapter VIII when working with
the above attenuation factors to realize that they consist

of the four following basic forms:

cw?/(wt* D)2 + E°) FW?
e

2 /w2 + B2
eAw‘A + B<) e 62)

in which the alphabetical coefficients are constants, As

before the phase factor e~uuz/ctransforms into the time

domain as a time delay of z/c seconds and may be ignored
in the formal inverse transform operations.
The expressions for Yor Yy and y may easily be

modified for other than standard conditions by

incorporating corrective constants Co' C C, Cl' and 02

for differing values of temperature, pressure, and

w'

humidity. They are
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c, = (293/1)% ©/1013.25
z -6kl
c, = (293/T)5/‘ B/ T
¢ = (293/7)
63)
S7L B
C, = (293/1) (P/1013.25)(1 + 0.0046 o)
i
C, = (293/T)* (P/1013.25)(1 + 0.0046 )
I
Cy = (293/T)3/ (P/1013.25)

where T is the temperature in degrees Kelvin, P is the
pressure in millibars, and ¢ is the absolute humidity
in grams per cubic meter.

The above corrective constants are incorporated into

equations 57, 58, and 59 as followss

Y % C.Cix 39.08 x 10 %w? 0.018 +
0 0”1 2 10, 2
We + (0.34Gx 107 )
0.05
10 2 10_2 +
(W + 37.7C4 % 1077) " + (0.94C, x 107 )
0.05 J
1 2 ’
(W= 37.7C5 x 10 0)+—(o.9ucl x 10°7) 64 )
-6,,.2
Yo ¥ C,Co X 3.66 p x 10 "W" x
[ 0.0906
+
(W- 13,9 x 10" %+ (1.71¢, x 10192
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0.0906 } )
(W + 13.9 x lOlG)2 + (le71C,. x 1010)2

and
2 -26
Yy =C C2 x 12.75 pw x 10 . 66)
The ideas and concepts developed in this chapter are
utilized in Part III in the study of specific elements and
components essential to the implementation of a Walsh

function carrier radar.
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Chapter VII Component and System Descriptions for Walsh
wWave Operation

From much of the foregoing it is apparent that direct
time domain analysis of anterna and electromagnetic
propagation problems for nonsinusoidal excitation would
require extensive new and difficult analytical effort.
Such effort, however, would necessarily ignore the great
wealth of theory and engineering data that exist for the
special case of sinusoidal excitation. In order to avoid
the former problem and yet take advantage of this existing
knowledge, sinusoidal performance concepts from the
disciplines of communication theory or systems theory are
utilized in this study to characterize radiation systems,
transmission systems, and propagation media in a manner

compatible with the bi-valued functions under study.
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The Unit Impulse Resronse

It was shown in Chapter VI that functions describing
the electric and magnetic fields of radiation structures
and transmission structures as well as those of propagation
media, may be interpreted as steady-state sinusoidal
transfer functions. If valid over a sufficiently wide band
of (sinusoidal) frequencies these transfer functions may be
transformed by use of the inverse laplace or inverse
Fourier transforms to yield time domain unit impulse
responses which are functions of location as well as of
time and other pertinent parameters of the system. This
form of system description, when valid, can be more useful
with the discontinuous type of functions under consideration
than is the steady-state transfer function form of system
description.

The resulting unit impulse response could be used in
the superposition integral with the excitation waveform to
directly yield the field or voltage and current quantities
of interest., Or, if desired, the product of the system
transfer function and the excitation transform could be
inverted to yield the time domain response to a given
excitation. However, for the general Walsh function, or
any other bi-valued function, either approach is difficult.
For our purposes, neither operation is necessary to aquire

the information needed. The important factor in the
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potential use of discrete bi-valued functions is the
"spreading” of the signal at its transitions caused by the
finite duration of the unit impulse response of the system.
The nature of a bi-valued function is such that only its
transitions (i.e., its zero crossings) and/or its impulse=-
like time derivatives or its integrals are of concern
since it is the spreading of these phenomena which limits
the rate at which the transitions may be generated.

The increases in the rise and fall times of the
transitions and the increase in the pulse width of the time
derivatives of the transitions caused by the system are of
primary concern rather than the detailed structure of the
resulting waveform. Hence, for bi-valued waveforms, the
unit impulse response is a more useful form of system
description than that of its sinusoidal steady-state
performance description.

Since our interest is primarily in the distortion that
a system or component imparts to a bi-valued waveform, it
would be convenient if the terms, or factors, in the impulse
response of the system causing the distortion could be
isolated in order to see which system parameters cause it,.
If this could bte done it is feasible that action could be
taken to reduce the distortion. In several cases, as shown
in Part III, quite often the transfer functions of many of
the systems and components examired may be separated into

several additive terms one of which is often a constant
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term. This constant term, when transformed tc the time
domain, represents an ideal impulse which reproduces a
component of the signal having no distortion. The remaining
terms in this additive decomposition of the transfer
function (or equivalently, the impulse response) represent
distortion terms. If the effect of these distortion terms
are negligible compared to that of the ideal impulse term,
or if their temporal durations are very small compared to
the smallest time interval of interest in the excitation
waveform, their effects may be ignored. This method of
decomposing the unit impulse response in order to isolate
the distortion terms is utilized on several of the systems

and components examined in Part III.
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Waveform Parameters

Since the duration of the unit impulse response, or
that of the distortion terms that result when it is
decomposed, is so important in determining the distortion
caused by a system, it is important to define the term
"duration” more precisely, if possible. Because of the
variety of waveform shapes that are possible it is obvious
that any criterion selected to specify the duration of a
pulse-like waveform (of finite duration) may not be
applicable to all situations or waveforms. For example,
the duration of a signal could arbitrarily be defined as
that time interval containing a prespecified amount of the
total area under the waveform curve or a prespecified
amount of the energy contained in the waveform. Another
definition that might be suitable is that time interval
over which the magnitude of the waveform exceeds some
prespecified value.,

Although many such definitions are possible and would
surely be of value, they require that the detailed temporal
structure of the waveform be known or be determined from
the readily available transfer function. With some of the
transfer functions encountered in Part III such evaluation
of the unit impulse responses can be very difficult. Quite
often the resulting impulse responses found in Part III are

very complicated functions of time from which evaluation
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of the above mentioned measures cof signal duration could
also be very difficult.

Another useful measure of waveform duration is
possible which, in certain cases, may be calculated
directly from its Laplace or Fourier transforms. This
measure is the root-mean-square duration which is the square
root of the second time moment of the waveform about its
own average time which is also its first temporal moment
about the origin (t = 0). These average quantities are
defined quantitatively in following paragraphs by equations
1l and 2, The root-mean-square duration is preferable for
this study since the investigation of a system or component
starts most often with the Laplace or Fourier transform of
+the waveforms involved.,

Fortunately these mean value time guantities are easily
determined from the system transfer function without
resorting to time domain considerations. It is also shown
(at the end of this section) that a measure of the increase
in rise and fall times resulting with pulse excitation can
be estimated very easily from the root-mean-square duration
of the unit impulse response,

Borrowing techniques from probability theoryu the mean
value of the temporal duration of a waveform h(t) and its
k) Since many of the waveforms considered may assume
positive and negative values, the theory developed departs

somewhat from probability theorye. The analogy is exact for
waveforms of only one polarity.
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mean-square duration (or variance) about its mean value are

defined by the following expressions:

o0

tayve =T = t, = of't”h(t) dt 1)
[n(e) at

ov
and
co
2 _ f 2 T2 2
o = J(t =t )" h(t) dt = t7 -t . 2)

OJ h(t) dt

In the above equations h(t), when divided by the area
under its time graph (i.e., the integral in the above
denominators) is analogous to a probability density function
which allows a valid and suitable means of computing the
above moments,

In principle it is possible to substitute the impulse
response as determined from the system transfer function
into the above integrals to obtain the indicated averaged
quantities. However, the resulting impulse responses are
usually difficult functions to integrate or manipulate
mathematically. Fortunately laplace transform theory allows
evaluation of the above quantities in many instances from
the original transfer function or from the terms in its
additive decomposition. For instance, the integral in the
denominators of equations 1 and 2 is a normalizing constant
which may be evaluated from the system transfer function

as followss
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oe
L[h(t):] = H(S} =éjfh(t) e Stat . | 3)
Taking the limit as S approaches zero yields
oD
Lim H(S) = | h(t) 4t )
S—>0 _

if such a 1limit exists. Hence, the normalizing constant
is equal to the original system transfer function in the
limit as S approaches zero.

In a similar manner the temporal mcments of h(t) may
be evaluated from related transform domain quantities.
Again taking the Laplace transform of h(t), or using the
original system transfer function, differentiating with

respect to S and taking the limit as S approaches zero

yields t_
o o o
, -St -St
dH= d h(t) e dt = - | t h(t) e dt 5)
S das
0 o
and as S approaches zero equation 5 becomes
[ -]
Lim dH = - r‘t h(t) dt = - t_ H(0) 6)
S—>0 dS ocj
or
t = - Lin 1 _d_}_{_ [} ?)
° S—>0 H(S) dS

Differentiating H(S) again with resvect to S and

letting S approach zere vields the mean-square moment of
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time as follows:
o

a°H = [t’? n(t) % at | 8)
d

ds?

and letting S appreach zero
00

Lim d°H = ftz h(t) dt = t2 H(0) 9)
S—>0 dsz o
or
"2 = Lim 1 a?H . 10)
Using equation 2 the variance, or mean-square duration,
iss

o2 = —t—z.-t§= Lim l};__ aH -[1 d_H]z]. 11)
S—0 | H(S) ag2 H(S) ds
Some simple algebraic manipulation and repeated
differentiation of the system transfer function yields the
following general form for the higher temporal moments of
the unit impulse response of the system:

t" = Lim (-1)7 g%y 12a)
S—>0 H(S) 4sn

In Part ITI the simple relationships of equations 2
through 11 are used in several cases to evaluate these
important waveform parameters.

It is useful tc note that similar techniques with the
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Fourier transform form of the system transfer function
yields a similar expression for the higher temporal moments
of a waveform:

= 1im  (-5)" a™H . 12h)
wW—>0 () aw"

Methods similar to those above may be appiied to the
instantaneous power of a waveform to yield temporal moments
of that form of signal expression,

The conditions under which differentiation of the
definite integrals of equations 5, 7, 12a, and 12b (with
respect to S) is valid must be specified. Normally, in
order that the Laplace transform of h(t) exist, it is
sufficient that h(t) be piecewise continuous and of
exponential order; i.e., be Laniace transformable. Under
these conditions the Laplace transform integral is
uniformly convergent and may be differentiated under the
integral sign. However, in this situation we are starting
with a known Laplace transform of h(t) which requires that
the transfer functions with which we are dealing be

analytic in their regions of convergence.



86

Impulse Response Effects on Rise and Fall Times

An upper bound zn the increase in rise and fall times
of a unit step or linear ramp excitation which is followed
by a unit step may easily be found in terms of the variance
of the duration of the system unit impulse response, That
for an ideal unit step excitation is found first followed
by that for a ramp function of arbitrary duration T
followed by a unit step of infinite duration.

The unit step response of a system is merely the time
integral of its unit impulse response, or the area under
the unit impulse response as a fundtion of time. From
equation 2 the variance of the duration of the impulse

response 1is
©0

2 ) 2
0 = Lim f(t - t,) h(t) dt
S—>»0 o o’ 13)
H(S)

If now a small arbitrary portion of the area under the unit
impulse response curve kKo units on either side of to is

rejected, the following in%?uality is obtained:
to~ko

2 # 2
0?2 > Lim 1 J(t - t,)" n(t) at
S—=>0 HZS}
. ]
2
+ (t - ‘to) h{t) dt] . 14)
to+ko

The smallest magnitude that (t - to) can assume in

equation 14 is ko so that substitution of this constant
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value into the integrand will create an even stronger

inequality:
t _-ko Y
o
0% k2c? [ nit) dt + fh(t) dt:l . 15)
H(0)
to+ko

The integrals in the brackets constitute the area under
the unit impulse response curve outside the interval of
¥ ko centered on to. This area may also be viewed as (1 =~
area within the region bounded by t, I ko). The area within
that bounded region also corresponds to the change in the
integral from t, - ko to t, + ko which in turn corresponds
to the change in the unit step response over the same
interval of timee. We may then select any symmetrical
portion of the change in the amplitude of the unit step
response as a criterion to defirne its rise time. The
reference points usually selected are the 10% and 90%
levels on the waveform which will also be used in this
study. This change in amplitude corresponds to an overall
change of 80%, or equivalently, 80% of the area in the
center of the impulse response curve. This change in

amplitude results in the following inequality:
2
02 2 k202 (1 - 008) = k20 X 0.2 . 16)

2
Cancelling 6 on either side of the inequality and solving

for k2 yields

k2< 1/0.2 = 5.0 17)
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or
k € 2,236 18)

The meaning of equation 18 is that the 10% to 90% rise
time of the unit step response of the system takes place
within ¥ 2,236 standard deviations of the system unit

impulse response from to' Hence,
10% to 90% rise time < 4.,4720 , 19)

The response of a system to a ramp of finite duration
followed by a unit step of infinite duration, as depicted
in Figure b4a, may easily be determined from the system’s
response to a short pulse of arbitrary duration T shown in
part b of the same figure.,

The transform domzain response of the pulse r(t) (of

Figure 4b) is

Gy(S) = R(S) H(S) = _1 (1 - e3T) H(s) 20)

L
TS
while the response corresponding to the ramp is

GZ(S) = R(S) H(S) . 21)
S

A simple modification of equation 21 yields

G,(S) = _1 R(S) H(S) 22)
S

in which R(S) H(S) corresponds to an effective transfer
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Figure 4. Ramp and pulse excitation waveforms.
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function and 1/S represents & unit step excitation.
R(S) H(S) may then vte used as the effective transfer
function in equation 11 which establishes an effective

2 for a fictitious unit impulse

mean-square duration ¢
response corresponding to R(S} H(S). This value of
variance may now be used in equation 19 to determine the
10% to 90% rise time which is equal to the overall rise
time in response to the linear ramp excitation of Figure
ha,

Since antenna and transmission systems often consist
of cascaded elements it is of interest to determine the
effects of component interaction. Recall that in the
transfer function domain that the cascading of elements
corresponds to multiplying the individual transfer functions
of the elements involved.

The principles inherent in equations 1, 2, 3, 4, 7,
10, and 11 may be applied to the product of two transfer
functions, Hl(S) HZ(S)‘ By using some simple algebraic
manipulations it can be shown (Appendix III) that the

overall mean-square duration of the cascaded impulse

responses 1is
23)

From equation 23 it is seen that the overall duration
cannot be less than the sum of the individual variances of

the individual impulse responses,
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Another item of possible value in the analyses to
follow is the cumulative effects of adding, or super-
imposing, unit impulse responses that overlap in time. It
is desired to have this effect expressed in terms of the
temporal moments of the individual impulse responses. As
above, the principles inherent in equations 1, 2, 3, 4, 7,
10, and 11 may be applied to a superposition of unit impulse
responses to yield the following expression for the overall

variance of the combined signal durations

n
2 2
o° = 1 [:H-(O) |}'
Ht(o); 1 1

+ Q- Hi(o)/Ht(Oi]]

dH, dH,
j;: H, dH 2
- as. ds° “)
s ~ H.(0)

where Ht(O) is the sum of the individual transfofms
evaluated as S—>0; Hi(o) the individual transforms also
evaluated as S—>0; oi the mean-square duration of each
impulse response; and %i the square of the mean-time of
each impulse response. Of course, many other variations

of this expression may be ebtained by further algebraic
manipulation. Derivation ¢f equation 24 appears in Appendix
IV,

A last topic of importance is evaluation of t, (or %)
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and 0% of unit impulse responses for the special class of
transfer functions which consist of pure exponential

functions of the following form:
H(S) = A eF(3) 25)

where A is a real or complex constant. The first and
second derivatives of the above form of transfer function

are

aH = A F(5) gp = n(s) ar 26)
as as as

and

ds2 ds ds
, 2
= H(S) f&?F + lar ]. 27)
las? ds

The values of t, and 02 from equations 7 and 11, in

terms of the above derivatives of H(S) are

t, = Lim - dF 28)
S—>0 das
and
02 = Lim sz
S—>0 4s2 29)

Equations 28 and 25 are used in Chavter VIII to

estimate unit impulse duration for atmospheric and for
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iornospheric propagation media which have no easily obtained

inverse Laplace transforms,



94

An Example of the Preposed Technique

The techniques described in this chapter are applied
in the following chapters to several elements and
components of importance not only to conventional radar,
but especially to those of probable importance to a non-
sinusoidal radar.

At this point in the development, however, it is felt
that an example of the transfer function/unit impulse
response technique applied to the short Hertzian dipole
would be useful. This example will not only illustrate
the method, but will also lend credence to it when
compared to the resul*s of Harmuth'’s (1972) direct transient
analysis.

The instantaneous electric and magnetic fields
associated with the short dipole undergoing steady-state
sinusoidal excitation in standard spherical coordinates
and in conventional complex notation (Ramo, Whinnery, Van
Duzer, 1965) and in which the complex time factor ej“ﬁ:is
omitted, and with the amplitude of the driving current set

to unity, are shown below:

He(w)= hsiné [38 + 1 |e 3fF 30)
ﬂ ""{ET —_— “:'2' ’
E(w)= hecos6{2n - 23 ]e"JBr 31)
r ’
b er wer3

and
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Eg(W) = h_sin 8 [jwu +n - ]e-jBr. 32)
L r 2 wer3

In the above set of equations h is the dipole length,
® the colatitude angle of the spherical coordinate system,
r the distance from the center of the antenna to the field
point, ¢y the operating frequency, e the permittivity and
u the permeability of the medium, and n its intrinsic
impedance, and B = W/c, with ¢ the speed of light in the
mediume.

Equations 30, 31, and 32 are valid only over a range of
frequencies in which the length h is very small compared to
the shortest wavelength that will be present in any
excitation current. The condition leading to this
limitation is the fact that th: antenna element is so
short that the instantaneous current along its length is
uniform and changing in time in unison. This situation
requires that the time needed for a disturbance at the
driving terminals to propagate to the ernds of the antenna
and back is a very small portion of the shortest time
interval of interest in the excitation current.
Quantitatively, for a period of 50 pico seconds, which
appears to be the present lower limit on switching times,
the above limitation corresponds to a dipole length of

12

h << 2¢T = 600 x 106 X 50 x 10° = 3 cm, This fact means

that practical antenna elements would be limited to lengths
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of a fraction of a centimeter or less which could be
difficult to achieve mechanically. However, when
considered as an ideal element of current or current
density of infinitesimal dimersions, equations 30 through
32 are applicable since the length of the element can always
be made small enough to meet the above inequality. In this
abstract case, the inverse transferm, which is integrated
from ~» to 4 over the frequency variable will be valid.

In terms of the transfer functions discussed earlier
in Chapter VI , the field quantities of equations 30, 31,
and 32 may be considered as such functions. They relate
the sinusoidal amplitudes and phases of these field
gquantities at an observation point to those of a sinusoidal
current exciting the dipole element. |

Note also the exponential factor e-jBr. The B factor
in the exponent is a function of frequency describing the
medium surrounding the antenna element. For a lossless,
nondispersive medium B = w/ec. This is the case considered
in this example while the dispersive case is considered in
Part III. The effects of the medium are further reflected
in equations 31 and 32 through the intrinsic impedance of
the medium n, the permittivity e, and the permeability u.

It is also important to notice that extraction of the
inverse Fourier or Laplace transforms of equations 30, 31,
and 32 in no way affect the directional nature of these

field quantities., For a lossless and nondispersive medium
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(ieeey, B = W/c and n is a constant) the only direct
involvement of the distance r in the inverse transform is

Jﬁﬂr/c, This factor transforms

in the exponential factor e
to the time domain as & simple time retardation (t - r/c)
of the wave due to the finite speed of the radiation.
Because the systems under consideration are causal
their impulse responses must vanish for negative time, hence
their Fourier and Laplace‘transforms are identical with S
substituted for j¢) » The extensive tables of lLaplace
transforms may then be used to evaluate the unit impulse
responses desired.
Equations 30, 31, and 32 may be written in terms of

the Laplace transform variable S. For the nondispersive

case with 8 = W/c they become

Hy(S) = hsine [S + _;_] o~St/c 33)
L [Fc 2
[ -
E(S) = hcoso | 2n + 2 ] o-St/e 34)
T b - r2 Ser3
Eg(S) = h sin @ ([Su + n + _1 ] e's'r/c 35)
b T r2 ser?

Realizing that the exponential factors merely
represent a time retardation of -r/c in the time domain,
it is only necessary to look up the quantites in brackets
in a suitable table of Laplace transforms. This act yields,

for a unit impulse of current driving the dipole, the
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following:
r
ngt) = msine 87+ acen)] 36)
b L re 2
r
e (t') = hcos 8 [2n8(t') + 2 u(t") 37)
r b 2 erd
eq(t’') = h sin® fus°(t') +nos(t') + u(t') 38)
b r , r2 er3

where 6'(t') indicates the time derivative of the unit
impulse 6(t'), t' = retarded time argument = t - r/c, and
u(t') is the unit step function.

The response of the short dipole to any arbitrary
current excitation is provided by the superposition, or

convolution integral:
- o0

&j;(x) h(t® - x) dx = [i{t' - x) h(x) dx 39)

where i(t') is the arbitrary excitation current and h(t')
represents hﬂ(t'). e (t*'), or ee(t').
r
The limits of integration on the above superposition
integral may be modified to fit a2 causal system with the

excitation current starting at t* = 0:
t' t'

U[?(x) h(t® - x) dx = U,{,i(t' - x) h(x) dx 4o)

) o
Recall that t' is the retarded time variable t - r/c.

This extremely simple case is readily evaluated by the

use of the following relationships:
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J;(x) 8§(x - a) dx =ﬁ.(x) 8(a - x) dx = i(a), a>0, 41)

i(x) 6'(x - a) dx =} i(x) &¢'(2a = x) dx = = giL . L2)

dxl _,

and
t? t*

fi(x) u(t® - x) dx = fi(x) dx . . 43)
0

The field gquantities due to arbitrary current

o

excitation become

Hy(t') = h sin Ll di  + i(t’ ] ity
c dt' r
t'

Er(t') = h cos 8 [2 i(s') + _23 d[l(x) d%] Ls)
r? er

h sin @ [:u di + n i(t")
bmr r dt' r2
t'

+_;L__Ji(x) dx:]. 46)
er3

With slight manipulation equations 44, 45, and 46 may

Eg(t")

be shown to be identical to the field quantities derived
by Harmuth (1972)., Notice also that the dependence upon @
is identical to that for sinusoidal excitation and that it
is independent of the functional time variation of the
excitation current,

The presence of field components inversely

2

proportional to the distance r, its square, r<, and its

3

cube, r” indicates the generation of near, intermediate,
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and far zones. It is of great importance also to notice
the relative absolutce magnitudes between the near and far
zone components (1/r versus 1/r? or 1/r3) depends also upon
the instantaneous values of the excitation current, its time
derivative, and its time integral. Hence, it is seen that
for arbitrary time variation, division of the space around
the dipole element into near, intermediate, and far zones
depends on the temporal partitioning of the waveform and its
related time derivatives and integrals. This fact is in
contrast to the frequency partitioning criterion when
sinusoidal excitation is used. The functional forms of the
field quantities resulting from a current having the time
variation of a Walsh function, one of its time derivatives,
or its time integral (or those of similar type bi-valued
waveforms) are then easily obtained by use of equations 44,
45, and 46.

From the practical view the short dipole has little
value except as an elemental portion, or building block,
for antenna structures of finite dimensions. The preceding
analysis has value in that the equivalence of its result to
that of Harmuth's (1972) direct analysis lends credence to

the method proposed,
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Chapter VIII Propagation Characteristics of Nonsinusoidal
Waves in Physical Media

A very important consideration in the application of
a nonsinusoidal carrier wave in radar is the effect of the
terrestrial atmospheric environment on its propagation.

Two general categories of media must be considered in
Earth-bound radar applications: the lower, unionized
regionssz and the upper ionosphere., The lower atmosphere,
although not ionized and essentially nondispersive in the
range of electronically generated (sinusoidal) frequencies,
does cause varying degrees of attenuation depending on
frequency, local pressure, temperature, and humidity.
Because of the extreme mathematical difficulty the impulse
response of the lower atmosphere is not determined in this
study. Rather, the techniques of Chapter VII are exploited
to estimate its root-mean-square duration.

The upper ionized regions of the atmosphere present
varying dispersive conditions which depend upon the
direction of propagation with respect to the direction and
strength of the local geomagnetic field, and the operating
frequency. Because of the extreme mathematical difficulty
the general case with the geomagnetic field is also not
considered here. The simplest case offerring mathematical

ease is that of the ionospheric plasma with the geomagnetic

5) Below approximately 50 kilometers.
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field weak enough to have negligible effect. The
propagation constant corresponding to this case .is that

of equation 34 of Chapter VI

T

Jr(S) = 17\ /s? + WP | 1)
'5; V p

in which c, is the free space speed of light and cgp is the

6

plasma radian frequency of the free electrons in the plasma™
In the MKS units wg ~ 3,200 N in which N is the density of
the electrons per cubic meter.

The main interest here is in how the electric and
magnetic fields change as the wave progresses thfough the

medium from cne point *o another., In the sinusoidal steady=-

state case this effect ig described by

, 2
Ep(S) _ Hy(S) _ _-jkz _ e-z—\/s + wj /e, . 2)

E;(S) Hl(S)

The direct inverse lLaplace transform (Roberts and Kaufman,

1966, Item 48, pe. 251) vields for the unit impulse response

h(t) = &(t - z/c,) - z cug ul(t - 2/c,) Jlkug\/t - 22/c% )

%o 0Jp“J% -2 /b

3)
Fortunately equation 3 decomposes in 2 manner which

isolates the distortion terms from the ideal impulse term.

6) The motion of the positive ions has been neglected,
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This ideal term is a unit impulse delayed by the speed of
light (in vacuum) between any two points separated by a
distance z., It reproduces a ncndistorted component of the
wave., The second term is a subtractive distortion
component accompanying the disturbance and, to a fi;st
approximation, it is proportional to the separation z and
to the square of the plasma frequency.

A measure of the distortion caused by the second term
of equation 3 above is given by its total area as compared
to the unit area of the first ideal impulse term. The area

of the second term is

00
Area = __g_wg Jq( %’\/tz - 22/3_92_—_.)- dt 4)
° z/c, (uthz - 22 Cg
or, in terms of T =‘N[t2 - zz/cg , the area is
o0
Area = %owpf Jj(wp™dr 5)
) \JTZ - zz/cg

Equation 5 above is a standard form (Abramowitz and

Stegun, 1965, item 1l.4.48, p. 488) which yields
area = 2 I1,(32w,./c,) Ki(3z. /c,) =1 = e-zoup/co 6)

0
where I%(x) = (2/ﬂx%'sinh(x) and K%(x) = (ﬂ/2x%'e'x are the

modified Bessel functions of half order of the first and

second kinds respectively.

Depending o¢n the distortion criterien selected the
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quantity ZCUp/Co must be such that the right-hand side of
equation 6 be much lezs than unity. For example, if it is
desired that the distcrtion terms contribute no more than

10% area to the progressing wave, then
-2z Wy,/c
l -e P/ 0 £ 0l—> 2z <« 0.1 co/wp 7)
or

z € 5.0 x 105/ N% . 8)

For typical ionospheric electron densitites of 10lo

electrons per cubic meter the maximum allowable separation

would be
57105
2z < 5.0 x 10°/10° = 5 meters 9)

which shows that low-distortion propagation of a very
short pulse or a sudden step through typical electron
densities will be limited to very short distances.,

It is also important to realize that at a given single
point in the plasma that propagating electric and magnetic
fields do not have the same time variation because they are
related by the frequency dependent intrinsic impedance of

the medium. In Laplace operational form we have

=1-= __1_.\/:32+c,.)2 /S . 10)
n no P

which yields for the unit impulse response relationship
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between the instantaneous values of the two fields

(Roberts and Kaufman, 1966, item 85, p. 215)

h(t):_&_ [}(t) + W, u(t) Jl(oupx) dx ] . 11)

Ng o X

Equation 11 shows clearly that there is a distortion
term in this situation also. The area of the integral term
has a maximum value of unity (Abramowitz and Stegun, 1965,
item 9,1.27, p. 361), hence, in order that the distortion
term have small effect the plasma frequency gop (or
equivalently, N) must be small.

It is also of interest to notice that after a time
interval of u/CUp (the first zero of J1(x) is approximately
4) the integral is essentially unity. This has the effect
of producing a distortion component of the magnetic field
proportional to the time integral of the electric field.

Also of interest in airborne or space borne radar
applications is the effect of immersing a short dipole
antenna element in a plasma or in the terrestrial
ionosphere, Referring to equations 30 and 32 of Chapter
VII the steady-state sinusoidal far fields in spherical
coordinates are

- jkr
R=H, 3,=42, hsin® jke " 12)
5o =g hzine

E=E,8, =3, vh sin 6 jwe J . 13)
0 € I T
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Only the frequency sensitive portions of equations 12

and 13 need be considered. For a plasma jk(S) is given by

k(s) = 1 Vs 4 w? 14)
Co -
so that
N
- 524 c
Hy(s) = 1 Vs +wf, i Wp 7o 15)
Co-
and

/<2 2
-T S + (Up Co 16)

EO(S)

The inverse transforms of the above expressions are
(Roberts and Kaufman, 1966, item 48, p. 251 and item 39,

pP. 172)

e, (t) = 8°(t - r/cy)

+ wurt J(wp\/t-rc)u(t-r/co)
°0 cuZ Vi2 - rz/c

o N

2
- % W, r 8(t - r/c,) 17)
Co
and
h (t) = _1 68'(t = r/c,)
g s

+ u('t:-'r'/r‘ )w (’6 (t-r/c ) T Jy % V2 -T)dT
0¢j w'\/—_.?

18)
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or

hﬂ(t) = _(133 5'(t = r/e,)

) _S_[J (wp V¥ - rf/ef)
Co wp\/t - rz/cg

+ rl T (w, Vi - rf/el >] u(t = r/ey) 19)

Co wg [tz - rz/cg)

Fortunately equations 17 and 19 separate the distortion terms
from the ideal wave. The first terms each represent
undistorted propagation of the first time derivative of the
excitation source current as expected while the remaining
terms represent distortion terms propagating with the
original disturbance.

The distortion terms are all seen to increase with
the distance from the antenna and to increase sharply with
plasma frequency (up. In order to have little effect on
the propagating waves, the time derivative of the
excitation current must be such as to make the term
containing the derivative of the unit impulse the dominant
quantity when equations 17 and 19 are convolved with the
excitation current waveform to obtain the resultant fields.
It is obvious that satisfactory performance depends upon

the temporal form of the excitation current as well as upon
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the characteristics of the pliasma medium.



109

Lower Atmosphere Impulse Response

The propagation transfer function of the lower
atmosphere is discussed in the latter portion of Chapter
VI and is given by an exponential expression similar to

equation 29 of that chapter:

~z2y(W)

H(W) = e 20)
where Y(W) consists of a component due to oxygen
absorption, one due to water vapor absorption, and one
due to high frequency losses giving

2la)
- +

or, equivalently

H((A)) - e-z'{o(w) e“‘zYw((A)) e"zY((A)) . 21b)

The quantities y (w), v,(W), and v(w) are all
complicated functions of frequency, pressure, temperature,
and absolute humidity so that any detailed analysis of a
given situation must include these atmospheric parameters
along the path of propagation.

Unfortunately the three exponential factors above are
too complicated to easily invert either individually or as
a single exponential factor., However, we may still estimate
the root-mean-square duration of the unit impulse response

due to each factor. From these quantities we may then



110
obtain the overall impulse response root-mean-square
duration by equation 23 of Chapter VII. Equation 29 of
that chapter provides the mean~square duration, 02,
contributed by each expenential factor in equation 21 above.
Note that yo(cu) and yw(cu) further decompose into

additive components yielding
Yo (W) =¥, + ¥, + Y5 22a)
Tw(W) = v, + Y, o 22b)

Use of equations 57, 58, and 59 of Chapter VI then
gives for each componént. each of which has been corrected
to a temperature of 293°Ig an atmospheric pressure of
1013.25 millibars, and an absolute humidity of 7.5 grams

per cubic meter, in operatioral form

Yo, = 0.781 x 10"7[ s 2:] 23a)
s? - (0.3517x1010)
-6 52 ]
Yy . = 0.217 x 10
0z | (s + 3 39.0 x 1019)?% - (0.972x1019)2
23b)
r 2
. =6 S
Y = 0,217 x 10
o3 (s - § 39.0 x 10°0)% - (0.972x1010)2:l
23¢c)
Y . = 0.286 x 1070 s°
wl (S - 3 13.9 x 10%9)2 - (1.79x10%%)?

234)



111
2

Yw2

-6 S
= 00286 X 10 .
[(s ¥ j 13.9 x 1080)°. (1.79x1010)2]

’ 23e)
Yy = - 98,92 x 10'26x s? . | 23f)

Differentiating the above set of equations to obtain
the second derivatives as required by equation 29 of

Chapter VII yields

2 10,2
By . = 5.796 x 1012 [:s + (0,203 x 10°°) ] 2ha)

4 Y5
as2’ [sz - (0.351 x 1010)2] 3
23102 = =j 5.281 x 105 x
ds?
[:53 + 3 5.854 x 1001 5% + 5 2,969 x 103% ] o
24b
Es + 35 39.0 x 10192 - (0.972 x 1010){]3
d®y = +§ 5.281 x 10° x
ds?
r c
Es - 5 39.0 x 10092 - (0.972 x 1010)2]3
a®y . = +j 1.590 x 10° x
ds?
s3 - j 21,19 x 1049 s - j 1.388 x 10°°
244)

Es - 5 13.9 x 10192 - (1.79 x 1010)2]3
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2 s 5
d Y2 = =3 1,590 x 10~ x
ds?
[is3 + 521,19 x 1070 5% + 3 1,388 x 1073 ]
0.2 2ke)
Es +513.9 x 1007)° - (1.79 x 1010)2]3
-24
dZY =~ 1,980 x 10 ‘ 24¢)
ds?
As S approaches zero the six second derivatives above
become
lim vy = - 12642 x 10728
1lim szcz = - OQOL}L"S X 10-28
~-28
1lim dzyoo = - 0,045 x 10
$—0 452~
-28
lim afy . = - 0.2913 x 10
. 2 -28
lim d Yw2z = ~ 0.2913 x 10
. 2 . ~-28
lim a%y = « 15 800 x 10 .
S—>0 d82

The mean-squarc duratiens due to each of the above

factors are

o2, = 126.2 x 16”28 2 seconds? 25a)

ol



113

-2
052 = 0,0445 x 10 8 A seconds2 25b)
=25
053 = 0.,0445 % 10 2 seconds2 25¢)
2 -28 2
Oyl = 0.2913% x 10 7z seconds 25d4)
2 -28 2
°w2 = 0,2913 x 10 2z seconds 25e)
2 -28
oy =19 800 x 10 2 seconds2 . 25f)

The total mean-square duration by equation 23 of

Chapter VII is the sum of the quantities in equations 25

above:
-28 2
oiotal = 19 926,9 x 10 z seconds 26)
or
~14 %
o = 141,16 x 1¢ z° seconds
total

i
1.4116 z% picoseconds. 27)

Two important facts are to be concluded from equations
25 and 26 above, First, the root-mean-square duration of
the response of the atmospheric medium to an ideal impulse
increases directly with the square root of the distance z
as the wave propagates through the mediume This fact puts
a limit on the maximum useful distance, z. If twenty
percent of the pulse width, T,, of a propagating Walsh wave

is selected as the maximum permissible value of Ciotal

below which suitable operation takes place, then
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2 2 2
z T 41 =
z ™ (0.2)7 T, /(1.4116)% = 0.02 T2 28)

where Tw is in picoseconds. Ais an example, for Tw = 50

picoseconds,

z s 0,02 x 502 = 50 meters 29a)
max

while for Tm = 10 ° seconds ylelds

A # 0.02 x 106 = 20 000 meters. 29b)
max

Equations 29 mean that operation of a Walsh wave radar in
the terrestrial atmosphere must be limited to sequencies
for which the increase of rise and fall times are negligible
portions of pulse duration Ty for the range performance
required of a particular radar application.
The second important observatibn. which comes from
equation 25, is that the major contribution to increases
in rise and fall times comes from the oy term.
Contributions from the other terms may safely be ignored,
From equations 63, 64, 65, and 66 of Chapter VI it is

evident that the magnitude of ¢ +al depends upon

to
atmospheric pressure, temperature, and absolute humidity.

At higher altitudes GY remains the dominant contribution

t0 © With correction factors C and C2' the value of

total®

Gtotal' to a good approximation, becomes



115

2 3/2
o % 1.98 z (293/T)” P (1 + 0.,00460) 30)
tOtal >h
1013.25 x 10

or

0, g = Lebll6 z%[3293/T)3/2 P(1 + 0.00460|% 31
ota 1032 1013.25

If temperature, pressure, and absolute humidity vary
with position along the propagation path equation 31 would
have to be applied and integrated over the entire path
with these three quantities expressed as functions of
location, or z.

The above discussion indicates that, since oY is the
dominant contributor to waveform distortion, the
operational form of the atmosvrheric medium transfer

function is essentially

2 -24
H(S) = e0.989 z S x 10 . 32)

In the frequency dcmain of the Fourier transform it

becomes, with S = jWw,

0. 2 x 10-24
H(W) = o 00989 2007 X . 33)

The inverse Fourier transform of equation 33 (Thomas,
1969), including the propagation delay z/co, yields a good

approximation to the atmospheric unit impulse responses
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h(t) » 8.0k x 1022 ~2¢33 X 1023(t - 2/00)2/2.

Z

34)

The form of the above impulse response is that of a delayed
Gaussian waveform which stretches out and decreases in peak

amplitude as it propagates into the medium,
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Chapter IX Transmission Structures

A very important category of radar system element,
either for sinusoidal or nonsinusoidal operation, is that
consisting of the two-conductor transmission line and the
hollow, metallic waveguide. It is anticipated that these
elements will be required or useful in the implementation
of a nonsinusoidal radar much as they are in conventional
radar: i.e., to transmit energy or signals between
generating elements and transmitting elements (antennas),
or to signal processing elements within the radar system,

The specific transmission elements examined here are
the coaxial cable, microwave stripline, and the rectangular
and circular closed waveguides. The microwave stripline
is especially important since it also constitutes the
primary means of interconnecting the individual solid
state devices comprising integrated circuits. Such
integrated circuits surely will find extensive use in the
implementation of a nonsinusoidal (Walsh) radar.

In all cases only the traveling-wave transmission
characteristics of these devices are considered. The
termination problem and reflections are not treated here
as it is felt by the writer that distortion imparted by
the device to a signal as it propagates along the line or

guide is the more important problem to investigate in this

study.
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Transmission Lines

In this section gensral relationships for transmission
lines are developed and later specialized to the different
types under study.

The expressions relating sinusoidal voltage or current
at two different points along a transmission line and
separated by a distance z in the operational form of the

Laplace transform are

By =Y, I =7 1)

Eq 1
with vy = (ZY)% where Z = series impedance of the line per
unit length and Y = shunt admittance per unit length.
These impedance and admittance quantities are in turn
expressible in terms of the geometry of the line and the
electrical properties of the materials used to construct
the line.

In general the impedance and admittance functions in

complex and cperational forms ares

r + SL 2)

L
fi

Z(w) =r + WL, 2(3)

Y(W) =g + jwC 4 Y(S) =g + SC 3)

where ry, L, g and C are all functions of geometry,
material characteristics, ard operating frequency. 1In

addition, in a realizable system Z(S) and Y(S) must be
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analytic functions of S {Murakami and Corrington, 1948).
The voltage and current 2t any location along the

line are related by
E(z,S) = I(z,5) 2,(S) 4)

where ZO(S) is the characteristic impedance of the line

which is a function independent of 2 for a uniform line;
z (s) = (Z/Y)% . 5)

The conductance and susceptance quantities comprising
the line admittance Y may be expressed in terms of the
properties of the dielectric material separating the

conductors making up the line:

- — 1
g = 04 Fg , C=c¢ Fc . 6)

In equation 6 above the quantity o4 is the loss factor, or

conductivity of the dielectric usually expressed as

oy = we” . 7)

The quantities e’ and e” are the real and imaginary parts
of the permittivity of the dielectric material in complex
form:

e=¢e' - Jje" ., 8)

In general e' and e" are frequency dependent and are

related by the Hilbert transform (Ramo, Whinnery, and Van
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Duzer, 1965). The quartities ¥_ and F, are dimensionless

8
quantities entirely dependent upon the line geometry and,

in the International System c¢f units,
F = F . 9)

The series impedance of the line is similar with the
exception that the geometric factors of the resistive and
inductive terms are not equal. The resistance due to the
bulk conductivity of the conductors and the external induc-
tance due to the flux linkages existing between the
conductors are both augmented by the skin effect., This
effect adds frequency dependent components. The general

form of the line series impedance is then

= s
z r+z o+ L 10)

where zsk= high frequency asymptote of the skin effect

impedance,

3

2.k = Fsk (Su/bc) 11)

where u is the permeability of the conductor material, o

c
is its conductivity, and Fsk is a2 skin effect geometric
factor,

The inductance term is
L=UFL 12)

where FL is a dimensionless geometric factor which, in the
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International System of units is the reciprocal of Fg:
Fp = 1/F,+ The resistive term in equation 10 is a static
decs resistance which would be included in Zsk if that

impedance term were exact. In approximate terms
r = Fr/ac | 13)

where Fr is also a geometrical factor. However, for the
band of frequencies over which Walsh function pulse trains
are likely to be used the r term will be insignificant.

Then

z 8 2z +SL=F S%(u/o )é + SL ' 14)
sk sk c *

Also, for the purposes of this study the permeability of
a2ll materials is assumed to be that of free space, or Uqe
Before proceeding further it is necessary to examine
the properties of the conductor and insulating materials
normally used in the construction of transmission lines.
The conductivity of conductors normally used falls in
the range of 3.8 x 107 to 6.8 x 107 mhos per meter with
that for copper being 5.8 x 107. Conductivity is also
frequency dependent, its general frequency dependence

being given by Kittel (1968) as

0, (S) = 0,/(1 + S/v,) 15)

of

in which o, is the low frequency, or d.c. value of the
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conductance and v, ig the collision frequency7 of the
electrons within the conductor material., For the family
of conductor materials used this frequency varies from
2,40 x 1013 radians rer second for silver to 4,106 x 1013
radians per second for ccpper. These guantities and the
plasma frequency, Wp? are tabulated in Table III for
commonly used metallic conducting materials., The values
of plasma frequencies are from Sze (1969) while the
collision frequencies were calculated using methods
discussed in Appendix V.

Taking copper as the conducting material most likely
to be used, for a collision frequency of 4,106 x 1013
radians per second, little effect will be encountered for
operating frequencies up to one tenth of that value. This
condition corresponds %o & useable freguency limit of about
653 GHz. If the shortest switching time to be expected in
operational systems is 50 picoseconds, the highest
frequency component to be found in such a wavefront is
approximately 1/50x10'12 seconds = 20 GHz, This value is
well below the 653 GHz limit at which the conductivity of
copper is no longer purely real. For the purposes of this

study, then, frequency dependence of the conductivity of

7) As used here, v, is the collision frequency which is
the reciprocal of the relaxation time T as used by Kittel,
A plus sign is also used for S/v, since in engineering
practice exp{(;wt) is used rather than exp(-jwt) as used
in physics.



Table IIT,

Transmission Line Conducting Materials.

Materials

Copper

Gold

Silver

Aluminum

Conductivity, o, Collision PFrequency,
radians/second

mhos/meter

5,80 x 107

b,15 x 107

6080 X 107

3080 X 107

c'

4.106_x lO13

4.063 X 1013
2,444 x 1032

13.42 x 1013

Conductance and Collision Frequencies of Typical

Plasma Frequency,
Wp* radiansg/second

1.64 x 1036

1038 X 1016

1.37 x 1016

2.40 x 1016

€21
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typical metallic materiais used {(ssze Table III) may safely
be ignored. Also, in order to reduce computing effort, a
valué of 6.0 x 107 mnos per meter is used for the
conductivity of copper in subseguent analyses.

Past measurements of the dielectric constants and loss
tangents of several commonly used dielectric materials have
been summarized recently by Breeden and Sheppard (1967)
and Balanis (1971). These investigators also presented
their own findings at frequencies of 60 GHz., 71 GHz, 90
GHz., and in the 250 to 450 GHz. band. Measurements by
earlier investigators range from 10 GHz. to 1000 GHz.

These data are summarized in Tables IV and V. In Table
IV it is apparent that, up to a frequency of 25 GHz., the
relative dielectric constants e’/eo for all the materials
shown are constant, while the changes occurring up to

450 GHz. are all less than four percent.

The loss tangents, although varying much more over

the entire frequency range shown, change very little over
the 20 GHz. band expvected for a 50 picosecond rise time,
In addition to their small variations, their values are
all less than 10-3. Because of the small value of e” in
comparision wifh e’, it will he ignored in the following
discussions.

Using equations 3, 12, and 14 the product of 2Y

becomes



Table IV. Relative Dielectric Constant, e'/e
71 GHz. and in the 250 to 450 GHz. band due t6 Breeden and Sheppard.

Material

Fiverglas

Polyethylene

Polystyrene

Rexolite

Teflon

10

2.25

2,54

2.54

2,08

Frequency, GHz.

25 70

2.24

2.54 2.53

2,08 2,10

71

2.58

2,10

139

2.53

= k.o

343

2,31

2.57

2.54

2,07

Measurements at

250- 890
430

o 3h

1.99 1.94

% of change
up to 450 GHz.

"’009

Get



Table V. Loss Tangent, 10

3

Transmission Line Dielectric Materials

Material

Teflon

Rexolite

Polystyrene

Frequency, GHz.
10 25 70 139 400

0.37 0.60 < 2 <2 1.0
O.47 1.0

0.30 0.53 0.90 ﬁ to 3.0

x e"/e' for Typical

600

2.0

3.0

5.0

1000

5.0

7.0

921
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ZY = (S% FSk uo/crc + SL)(=-jSe" Fg + Se' Fc) 16)
= (SupFy + S%Fsg.v/uo/cc ) SFee* (1 - je"/e") 17)
=% S(S + S%b yTJ~7u O ) F.F Fr © uo . 18)

FL

Recalling that F_ = l/FL the above yields

2Y = S(S + S% Fsk'\/l/uooc ) e’ u 18a)
FL,
and
e' u, = 1/c? = k'/'c2
o o

where ¢ is the speesd of light in the dielectric medium

while ¢, is the speed of light in free space and k' is the

o)
relative dielectric constant of the medium., Then

vy = \Vzx = ey, sP\fs + s? P /(Fnfiye0) 19)

vy = _él_(k')% s%“\ﬁ+ s% Py /(FL\/uoac) 20)
(o]

. 3
vy = %;(k ) s\/l + Fsk /(s FL'\/uooc ) 21)

and

= 5 ;
=\/2/Y “-Wv/s F oy Lo/bc +S u P 22)

e’ S
z'\/quL/ Fc e’ “\V/l + u2 F k/(u F 32 of) . 23)
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But F. = 1/1?c so that

L
2 =~ P \Ju /e’ ’\/1 + F /(s% FAfu o, ) 24)
o L 0 sk L o C

and'\/uo/é' = n', the intrinsic impedance of the dielectric

medium. Therefore,

z, = Py, n'_\v/l + Py /(Sé Fﬁ\/“ooc) . 25)

no'\/l/k'\/l +F /(s? Fr\ug0. ) 26)

Expressions for the quantities Foxe F{, and Fc are
tabulated in Table VI for the various transmission line
configurations that might be encountered. Table VII lists
the same quantities for several commercially available
coaxial transmission lines.,

The quantity of primary ccencern is the transfer

furniction for a section of transmission line which is

H(S) = V,(S)/V,(S)
= e-zY
L TV s V1 + Fep ASEPrnfugoe) /e, 2

Since large values of S will have the dominant effect
in expvected applications, the following approximation may

be used for the radical in the exponent:

“\/1 +F /(s FL\/u a. )= 1+ Fg /( zs% L\/uooc). 28)




Table VI. Transmission Line Geometric Factors.

Line Type Fopo meter—1 Fo F, J meter™t
Fy

Coaxial 1 [_;_ +_1_] 11lnr, __2m (1/r,) + (1/r;)

2m |t T3 2m T In(r /ry) In(ry/rs)
T™win Lead 25 cosh™ts/d i 2s/d

2 2 /32 - -

nd“\/s</d 1 m cosh-1s/d (s2-d2)3cosh~ls/d
Parallel
ity 2/v a/b b/a 2/a
Stripline, ’
1l gnd plane 1/2b a/v v/a 1/2a

2 gnd planes

Legend: All dimensions in meters. s= spacings; d= diameter of twin lead
conductor; r,= inner radius of coaxial outer conductor; r;= radius of
coaxial inner conductor; b= conductor width; a= conductor spacing.

For the parallel slab and stripline configurations F_,, F., and F, are

approximations that ignore fringing effects at conductor édges. For
a typical integrated circuit a= 0,001 inch.

621



Table VII,

Line Type

RG-55A/U
RG-63B/U
RG-62A/U
RG-59A/U
RG-141/U

Mini coax

Qutside
diameter, in.

0,116

0.285

0.146

0.146

0,116

0.0042

Fsk'
meter'l

233
269
290
316
230

6 700

0.193

0.386

0.279

0,294

0.185

0.200

Coaxial Transmission Line Geometric Factorse.

Fsk/?L.
meter-1

1 210

698
1 040
1075
1 240

33 500

0€T
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Then

i, T 1 %
e—zS(k'}‘/cc e-ﬁzS? rﬁk(k')z/coFL(uocc{

H(S) = 29)

In accordance with thz shifting trhcorem, the first factor
of equation 29 has the effect of introducing a uniform

1
delay of z(k')e/co in the time domain. With
i
t'=-t-z(w)a@o 30)

the delayed unit impulse response corresponding to the
remaining factor is (Roberts and Kaufman, 1966, item 14,
Pe 246)

2 /1y i
Lal [e-asi] - o2 /4t = n(t*) 31)
2wk (£0)/?

where
a=3%z Fsk(k')%/boFL(uooc)% =3z a' , 32)

The function h(t') may be rearranged tc make its time
behavior stand out more clearly:s

h(t') = __ 4 (az/u»t')B/2 e

2w

-a2 ’
al/bt 33)

wp

a

which is a2 continucus function having a value of zero for
. . : 2

t' £ ¢ and a single maximum, or peak value at t' = a“/6.

These conclusions are eagily arrived at by ezamination of

the function
) ] - m
(1/13/2) ¢~1/7
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in which T is substituted for 4%’!52. It is plofted in
Figure 5, .

Unfortunately, the principies discussed infChapter
VII which allow evaivation of the temporal parameters of
a waveform from the freguency domain transfer function do
not apply to the abeve unit impulse response. It must

then be considered in the time domain. Writing equation

33 in terms of a normalized variable T = brt'/a2 yields

h(T) = (1/’:3/2) e~1/T . 34)

L

a2 n?
The factor az/h is a scale factor which sitretches or

shrinks the normalized function proportional to az/h.

2 may be made, the shorter will be ‘the

Hence, the smaller a
duration of the unit impuise response and the greater will
be its amplitude making it approach an ideal impulse,

It is obvious from equation 32 that better performance
with 2 transmigsion line is obtained with a medium having
low dielectric constant k®, a geometric form or structure
providing a large inductance factor FL (or equivalently, a2
low capacitance factor Fc), hign sonductivity conductor
material, and a low vzlus of skin effect resistance
geometric factor, Fskd Making the permeability of the
conductor material greater will 21lso improve performance
if it can te done without increasing losses.

The plot in Pigure 5 shews what can be considered to
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0:51 Total area =‘[E’3/2 e YT ap = of = 1.7725
64% of area orepresenting the time integral is contained in T < 10
75% of area representing the time integral is contained in T < 20
0ak 3 \ 90% of area representing the time integral is contained in T < 126
e~/ T/3/2 - 0,00386 at T = 40
\ (e™*/T/n3/2y = 0.4099
0.34 max
hi{T) \
0.21
AN

Oelt \

| O— o Ut
0 } z! 7 g 8 10 i ' Eg
) /2 -1/T T, dimensionless
Figure 5. Plot of (1/17°%) o™/ 7T,

€eT



134
be a universzal impulse response cf a transmission line in
terms of the normalizad time wvariable T = ht'/az.

The quantity ag/# is alsc linearly deperndent on zz,
the effect of which is to siretch the time scale of the
impulse response as it propagates along the trapsmission
line. The overall effect of this phenomenon ic that at
some particular distance the duration of the impulse
response can become great enough to cause excessive
distortion of a waveform that may be transmitted along the
line. The distance beyond which the distortion is
considered excessive depends upon the particular waveform
and the minimum time interval associated with it over which
such distortion can be tolerated.

Examination of Figure 5 shows that the impulse
response of a line has fzilzsr to about seven percent of
its peak value by the normalized instant of time T = 10.
Hence, if the value of t' which corresponds to that value
of T is considerably smaller than the minimum time
interval, To? associated with the transmitted waveform,

acceptable distortion occurs for
t' = 10 (a')2 zz/u < T . 35)
The useabls length of th2 line becomes

.
s << 2 (7 /10)° . 36)
FUR
If T, is expressed in nanoseconds the adbove inequality

becomes, in terms of the quantizty (a‘)2 in the fifth
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column of Table VIII,

e

o “‘—:"' / [ 2 3 e -5 -
z << Z“J&m x 16 - /{19(a*)}") =2 x'lo w/Tm 37)
a
which puts an upper 1limi‘t on the useable length of a
transmission line. Arkbitrarily zccepting a maximum value
for z as one tenth of the quantity on the right hand side

of equation 357, the maximum useable length of transmission

line is
7 % 2 x 10'6\/'1' 38)
'maX ——-'—— m
a

in which a' ﬁ“\/&° ng /(4c§ u, oc Fi) « Values for zmax
are also listed in Table VIII for several commercial
coaxial lines and fer several stripline configurations.

Equations 32 and 3% alsc indicate that the amplitude
of the impulse response varies inversely as zz. This fact
means that the magnitude of the waveform decreases very
quickly with distance.

The remaining quantity necessary in the description
of a transmission line is its characteristic impedance, Zo,
of equations 22 through 26, In the frequency domain Zo
relates the amplituda and‘phase of the sinusoidal traveling=
wave voltage on the line a2t 2 given point to those of the
accompanying sinusoidal current at the same point. In
this respect Zo can Te considersd zas & transfer function

relating these two quantities. It3 inverse trarnsform will



Table VIII,

Line Type

(Coaxial
cable)

RG=55A/U
RG-59A/U
RG-141/U

Minicoax

Stripline

MPC=-062-2
a=0, 0564 "

MPC-125-2
a=0, 1194 "

MPC-187-2
a=0, 1814”

MPC-250-2
a=0, 2Lk "

Integrated
circuits
a=0.001"
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Commerczial Transmission Line Time Domain
Propagaticn Characteristics.,

Insulating
Material

Polyethylene

Polyethylene

Teflon

FEP Teflon

Polyethylene

Polyethylene

Polyethylene

Polyethylene

Silicon

LA VA
meter™+

2,3 1210

2,3 1070
1240

33500

350
2.3 165
2.3 108.5
2.3 80.9

11.7 19700

a'=s

E(O F2
hczuooch

3.536x10" 7

3.098x10'7

-7
3.450x10 '
93+00%10™7
1.015x10'7
0.477x10"7

0.315x10"7

0.,235x10“7

128,8x10" 7

z ’
max

% meters
[ ]

Tm in
nano-
seconds

5.664T
6. 46JT

O.ZZJTh
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represent the unit impulze resovcnsz of the veltage to an
ideal unit impulse of current irn the time domain.

As shown above, *thz unit imrnulse response relating
arbitrary voltage and current ¢n a lossy transmission line
is not an ideal impulsc functien., This fact means that a
traveling-wave voltage and accompanying current on a line
do not have the same time variation. The same principle
applies to the reciprocal of the the characteristic
impedance, Y, = l/Zo also,

From equation 26

i
2o = Fp A1 + P, /(S? Fnjiges) 39)
Vr'

and

Yo =\k* /(FL né"\vl + Fsk /(S% Fﬁ\/uooc ) ) 4o)

both of which, for the high frequency case wherein the

second term under the radical is very small; reduce to

zZ, = FI n, (1 -'%Fsk /(S% FL\/U.OOC)) 41)
\/k'
and
i —_—
Y, Vet (1 - & Py /(5% Pafuy0e)) o 42)

FLno
The unit impulse responses ccrresponding to 4, and

fo are
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z2,(t) = Fy n4 f&(t) + uiﬂ,w_(t‘%)ju(t)] k3)
N3 L BFL(ﬂdcuo)%

and

¥, (t) w';/f'_ E,(t) - P (t'%)Bu(t)] 4l4)
L Mo 8FL(nacuo)%

beth of which exhibit distortion terms, It is obvious also
that distortion due to these quantities may be reduced by

minimizing the Fsk/FL ration as well as using conducting

materials having higher conductivity, Cpo
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Closed, Hollow Metallic Waveguide.

Much like the twwo conductsr *ransmission line, the
closed single conductor waveguide has potential use in a
nonsinusoidal carrier radar just 3¢ in radar of the
conventional type. The properties of circular and
rectangular waveguide are investigated in this section
for the lossless case (i.e., an air filled space with
ideally conducting walls) which is mathematically
tractable. Because of the mathematical complexity, the
effect due to cenductor wall loss is not considered.

The electrical and magnetic fields in a waveguide
due to sinusoidal excitation are available in any number
of texts on the topic. 1In Table IX are listed the TM and
TE fields in circular and rectangular waveguidz from
Ramo, Whinnery, and Van Duzer (1965, pp 421, 422, 430,
and 431). The quantity of principle interest related to
these fields is the waveguide transfer function relating
the amplitudes and phases of a field component at two
places along the guides. This function is the same for all

components of a given node of the ™ or TE type. It is
-2Y .
H(S,2) = e . 45)

Once vy is found the waveguide transfer funciion is known.
Another guantity of interest is that relating the

transverse magnetic and transverse electric fields in the



Table IX.

Rectangular Waveguide.

Cross Section

Circular

Circular

Circular

Circular

Ragctangular

Rectangular

Rectangular

Rectanguiar

Electric and Magnetic Field Expressions in Circular and

Mode
™ TE
. -Z2Y cOS n _ ~-2Y cos ng
E,=AJ_(kor) e™2Y 895 1 H,=AJ,(ker) e”2Y 895
e -2y cos ng _ -zy cOoS n@
Hr”f?bA“n(kcr)e sin nd Er'§E22§£_Jn(kcr)e sin n¥
KcnOI‘{A}C ‘rﬁ cT £9) Py
e O v N oY cer Wi -zy CDB i".fe"’l
Hg==S4 _J(korle sin.nd Eg=ngySA Tnlker) e sin of
Holuk We
E =eH ¢ 2 =H. 2 f o R /e
ko= Pr/® ko= Py/2
A= arbltrary amplitude factor
= i X si =2y = I, -2y
EZ A sin kxk sin kyy e H, A cos k,x cos kyy e
H =SA_k sin k.x cos k ye °' E =n SA k, K,x sin k.ye Y
< n k, W x=To cos kyx sin kgye

NA
kond

= -2y
Hy—-SA kxcos kxx sin kyye
KengW,
E.= S y.
< Hy 2, By=oHy 2o
k, =am/a, k =nm/b, k§=

A
Ey=-n SA kysin kyx cos kyye

Hx=—E Hy=Ex/Z

te

2 2
kx + ky. k,=mm/a, kyznn/b

oHt
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waveguide. This quantity is

E r/H@, =2, °r Ky/E. = /2, 462)
and
Er/}{ﬁ( =2, or Hﬁ/Er = 1/zte . 46o)

or the wave impedances of the waveguide and their
reciprocals.,

The inverse Laplace transform of the waveguide
transfer function H(S,z) yields the unit impulse response
of a section of the waveguide which shows explicitly the
form of the distortion produced as a function of distance
along the guide.

The inverse transforms of the wave impedances and
their reciprocals (i.e., admittances) likewise show that
the transverse electric and magnetic fields at a given
transverse plane do not retain the same temporal form,.

For the ideal lossless conductor case it can be shown
(Ramo, Whinnery, and Van Duzer, 1965, p. 421) that a

waveguide propagation constant in operational form is
- 5D <
v o= 1 NS WP 47)
where W, is the wavegulde cut-ct¥f frequency (in radians

per second) determined by the waveguide cross section,

size, and mecde of the fislde vpropesgating down the guide,
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It turns out that nernsinusoidsl {izlds are described by
the same modal descriurions ae &rs the sinusoidai waves,
The waveguide wave impedernces in operational form

(Ramo, Whinnery, andi Van Duzor,1¢65) are

z, = no'\/'sz +w§ ,  u48a)
N
72 =n3S (s? + wz)'% 43b)
te o c '
and
Y =5 (s?+ w?)t, 49a)
tm n c
0
Yoo =_1 Vs2 + 2 49Db)
e 'E‘g C
0

where n, is the wave Iinedance »f free space. The cut-
off frequencies for the two waveguide cross section types
are shown in Table X,

The inverse transforms of the quantities in equa*ions
45, 48, and 49 are readilv available in Roberts and

Kaufman (1966, items 48, p. 251; 35, p. 225; and 56, b.

212 respectively) as
. 2 . w2 /
1t L% 2 NS + Wy fe

6(t - z/co) - w.z ult - z/c_) J](cuc“dgz - zgfcg), 50)




Table X. Radianrn Cut-of{ Frequencies of
Rectangular and Circular Waveguides

Cross Section Wave

Mode
Circular ™
Circular TE
Rectangular ™
Rectangular TE

Cut=cff Frequency,cuc.
radians per second

Pn1 co/r

p' c,/r

nl

me, _\/mz/; + n2 /b2

’) 2,
™ co'\/;é/a“i-nz/bz

Legend: r= inner radiuvs, metersy c,= speed
liﬁht in free space, meters per second; p
1th root of Bessel function Jn(x)=0; p'l=
1th root of Jﬁ(x) = 0; a = n
meters; b= y dimension in meters; m, n =
integers describing the transverse wave

modal structure.

X dimension in

of

143
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o ' frge e
11 |_z J I RN I
tm i 1
E ]
[ A S
o/
Q
and
e ] - vt ns NFTRE -
te L (o] C_l
n, [é(t) + oy ut) Jl(wct)] =z, () . 52)

Equation 50 is the unit impulse response of the
waveguide., This equation is very revealing in that the
first term, the ideal impulse, reproduces the transmitted
field with no distertion while the second terms is an error
terms, Its effect in the convolution integral is dependent
upon its area with respect tc the unit area of the ideal

impulse term. The net area of the error term is

ot

Area = cug z Jlﬁcun 1j£2 - zz/cg ) dt . 53)
Co nr il . J27.2
z/¢C, We V1 z /bo

The above integral is evaluated by making the

following change of variables:

T =V1% - 2%/ or t =~/ ¥ + 2%/cZ, at =_1 a1
V12 + zz/bg

and

t = z/cd--—) T = Q.
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The area is then

oG
Area = cug z TJ{r; T) 4T
Co - /—“'“”?7"—"_
C AC
g
= W, z/‘ J,(T) aT 54)

~[/mé . 2,.2/.2

1+ g ws/cq

where the change of variable T—-—)Tcuc has been made.
From Abramowitz and Stegun (1965, item 11.4.48, p.488)

the above area is

8_
Area"= () =z I%(wcz/Zco) K%(wcz/Zco) . 55)
Co

Fortunately equation 55 reduces to a very simple forms
Area = 1 - e~ WeZ/Co | 56)

For values of z and W, such that

1 - e-(ucz/c0 <« 1 57)

the error term should produce little distortion in the
propagating nonsinusoidal field. This fact suggests a
maximum value of distance z which, for a given cut-off
frequency, distortion would be negligible. Depending upon
the particular waveform transmitted, an acceptable level
8) Iix) = (Z/hx)' sinh(x) and K;(x) = 'ﬂ/ZX)% e™* are the

half order Bessel functions of tne firet and second kinds
respectively.
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of distortion might te wat when {1 - e'(UCz/°°) < 0.2,
Tnis 1inequality yielids 2 maximum value of z for a given

waveguide mode:

Zmax = 00223 Co/wc s 58)

For a circular waveguide this relationship becomes

(zmam),cm = 0.223 r/p_; 59a)
and
(Zpax)ge = 04223 r/p}, 59b)

while for rectangular waveguide the maximum useable

length is
= .22‘},‘.\“/(;:2/&12\ -+ 2 2
2 ax 0 23 m“/ac) (n“/b“)
= 0,071 \/(n?/2%) + (n2/b%) . 60)
The largest value of Z ax OCCULS for a circular

waveguide at the minimum values of pnl and p'l which are
n

p .(min) = p . = 2,405 and Pél(mi“) = pil= 1.841

nl 01
producing values of 2 of
max
z ) = 0,0927 r meters
max’ 01 927
and
= 23
(zmax)ll 0.1211 r meters .
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"

The largest value of Zmay fer the rectangular wave-
guide occurs for the mirimum value: of m and n which

correspond to the TE5¢ modes

Equations 59 and 60 indicate that the useable length
of a waveguide is much less than its cross sectional
dimensions: This observation will limit the use of a
waveguide to impractically short lengths. The validity
of this finding, of course, depends greatly upon the
particular waveform to be transmitted and its intended
application. Detailed study of the individual case would
be necessary.

Equation 51 implicitly shows the time domain
relationship between the transverse electric and magnetic
fields in the T™ mode =% any psint in the waveguide. The
electric field correspurding o a given magnetic field

results from convolving it with ztm(t). That operation

yields
etm(t) = htm(t) * ztm(t) 6la)
no[%tm(t) * 5(%)
+ wchtm(t) * [u(t) }ft‘-f_lifwx] 61b)

ov X



The first term ¢f rouation #lc produces an un&is%orted
component of the electiric field naving the same time
variation as the magnetic field. The integrand in thé
integral of the second term is a pulse-like function
having an initial valusz of a£/2 and quickly diminishes to
zero at the first zero of the Bessel function in the
numerator., From that instant it undergoes negative and

positive excursions of rapidly decreasing amplitude., The

i

end of the first main vulse cccurs at(@kt 3.83, the first
zero of the first order " T¥s<el function {of the first kind).
For practical purposes the time integral of Jl(Och)/x

then appears as a step-iike function that reaches its

maximum and final value 2% the first zero of:Il(x). Tnis

zero yields an interval of
383/ ¢, seconds.

For magnetic waves having pulse durations or transition
times much greater than 3.53/ys. seconds, the cenvolution
of the integral of the secend term with the magretic

field is approzximatel

i
. ¢ v R A } ; &
W, hlh(t) # uxt)/ ul(ud x) dx = OJr'htm(x) dx . A2)

The total field is then
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etm(t) s ng htm{t} + N htm(x) dx . 63)
0
From equation 63 it ig zeen that if
t
wcftm(x')dxa h‘f'm(‘t) a - 64)
0

the electric field will have a sizable component that is
proportional to the time integral of the magnetic field
resulting in a badly distorted version of the electric
field. Conversely, if the time variation of the magnetic

field is such that

We i, (x) dx > hep (1) 6s)
o
then the resulting electric field is
[;
Lors . VoA
etm(t) ~ noiwshh%m(XJ AX . 66)
0'

The relationship between the electric and magnetic
fields in the TE mode is implied by zte(t) of equation 52,
As with egquation 51 the electric field is the result of
convolving the magnetic field hte(t) with zte(t). The

electric field is then

e (t)

te hte(t) * zte(t)

% A
n, hte(t) dit)

+ Ny W, hte(t) * (u(t) J(wet)) 67b)
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o te(t) oy hre{t> # (u(t) I (Wet) e 67¢)

As in the ™ mode the eleatris field consists of a

{t) ard a distorted component

\
te

nondistorted compone:nt Yi, h
resulting from the cornvolution of the magnetic field and
and @, u(t) Jl((gct). The magnitude of the contribution
of the second term is approximately equal to the total
time integral of (y, u(t) Jl((gct). The value of that

integral is
(.-

W fu(t) I, (wet) dt =JJl(wct) d(w,t) = 1. 68)

o
The contribution of the second term is then

comparable to the ideal term, hence the electric field is

a distorted version of the magnetic field., However, the
duration of (y, u(t) Ji6@}dt3~is approximately equal to the
first zero of Jl(x) which is 3.83. Therefore, if the time
scale of interest, T, is much less than 3.83/‘;0c seconds,
the Bessel function Jl(&)ct) %ill appear as an ideal impulse
to the magnetic field. The resultant electric field in

that case is

te ¥ 2 Mo hialt) «
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Chapter X. Radiation z3rd Reflszction Considerations of
Nonsinusocidal Electrousgnetic W

An aspect of grzat impertarce in the operaticn of a
nonsinusoidal radar is “‘he characteristic of nonsinusoidal
radiation from charge zrd current distributions on
mechanically realizable arrangements of conducting elements.
The charge and current distributisns under consideration
are those generated by localized electronic power sources.
Accordingly, this chapter investigates the radiation of
nonsinusoidal carrier waveforms from several radiating
and antenna systems used so successfully in the past.

Traditionally antennas have been characterized by
their directional responses to a single frequency
sinusoidal excitation.v Frequency is also often a variable,
or controllable, syste:m paréméter. Thes2 responses to
single frequency excitzation are often slowly varying
functions of operating freqguency such that use of the
antenna over a band of fregquencies (i.e., resulting from
modulation of a high frequency sinusoidal carrier) is
fairly uniform.

Quantities most often uvsed in describing antenna

m

performance have been: 1) the stsady~state impedance
presented at the excitation terminals of the devices
2) 1its polarization properties; 3) its radiation
resistance which is a measure of how effectively the

antenna converts the power available at its terminals
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into radiating electromzinetic srnervgy; U4) the
directional properties ¢f the antenna which are
characterized by the reiztive intensities of the electrie
and magnetic fields 25 furctions =f direction with respect
to a suitable reference direction associated with the
antenna. These quantites are all expressed in terms of a
response to a single frequency excitation. The
directional property of the device is often expressed in
terms of the relative time averaged power density of the
radiated sinusoidal electromagnetic field at one frequency
as a function of direction. This quantity, often termed
the radiation pattern of the device, is also a frequency
dependent quantity.

0f the above quantities, the more important for radar

TN vl g pepar e

applications is the directional rroperty of the antenna
which is utilized to provide target direction information.
It is this property which is emphasized in this study.

In order to establish the suitability of a family of
nonsinusoidal functions as the electromagnetic carrier
waveform in radar applications it is necessary to determine
their radiation charactzaristics when launched into a
propagation medium by various antenna structures. It is
also desirable, where possible, to determine principles
and ¢riteria by which more effective and more directive
arrays of radiating elements may be devised: l.e.,

solution of the synthesis, or design, problem as well as
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the analysis problem.

The family of noncirusoidzl functions under study are
such that the directicrzi, time averaged power radiation
patterns now used t¢ characterize zntennas having
sinusoidal excitation constitute unsatisfactory means of
describing an antenna response to general excitation. In
the sinusoidal case the field components arising from
different portions of the radiating system merely
superimpose to form sinusoidal traveling waves throughout
the surrounding propagation medium. These fields have the
same temporal form and frequency as the gZenerating
sinusoidal source with their amplitudes and phases being
functions of location with respect to the antenna system.

The only distortiggwgiprggpagating field can suffer
from the differential time/delays is in the modulation
that might be imposed uucn i%t., However, for the narrow
band modulation usually used in radar (and communication)
applications, the distortion arising from this cause is
insignificant and undeiectable.

In the general nonsinuscidal and wideband case,
however, the situation is much different. 1In the following
sections it is shown that superpccsiiion of the field
components resulting from different portions of the antenna
system generally give rise to field time variations which
are greatly distorted versions of the ariginal scurce time'

function. In some cases they are completely different
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functions of time. This is <hs principal factor which
distinguishes most narsinuseidzl waves from purely
sinusoidal waves., Zecaus2 of %this distinction this chapter
is devoted to develeoning means of establishing the
radiation and directionzl characteristics of the class of
discrete functions under study.

Because of the distortion that a nonsinusoidal wave
can suffer it is readily apparent that the instantaneous
values of the electric and magnetic field or the
instantaneous power density are the quantities of primary
concern. In the sinusoidal case time-averaged power
density radiation patterns are the significant factorse
The traﬁsmitted electric and magnetic fields undergo

various transformations, or distortions, during propagation

B

through the radar medium ané on reflection from the radar
target. The voltage or currsnt waveforms that the
reflected fields subsesuently generate at the receiving
antenna zre ultimately ths guantities of primary concern.

Although the distortior. of the instantaneous values
of the fields seems a detrimental feature of their
propagation, the distortion is predictable and, most often,
is angle dependent. Thig fact may allow this distertion
to be used as an added {(arcd perhaps the only) measure of
the directional pesition cf a radar target.

Rather than attack the problem of nonsinusoidal waves

directly as done by Harmuth (1970) and Pearlman (1970), an
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indirect technique which utiliz:zs existing sinuscidal
antenna theory and e vast store of engineering data on
antenna system perforiarnte is wuged in the folloﬁing study.
The linear dipole ¢! aruitrary lzrgth is also investigated
to determine its sultabdility as a basic radiating element.
Such an antenna element might be used in larger arrays to
form antenna systems or to illuminate large parabolic
reflectors. The parbolic reflector is studied through
examination of the aperture diffraction integral model of
such antennas when illuminated by an ideal source of
nonsinusoidal radiation.

Since successful use of the parabolic reflector as an
antenna depends upon the reflection properties of the

nonsinusoidal electromagnetic wave from a smooth and

o
L O O Rt

highly conductive metallic surface, the parbolic antenna
study is prefaced by an araelysis of the general reflection

process.,
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The Long Dipole Antenna

The field quantities of the long dipole antenna (of
finite length), beirngz of grea’ importance tc conventional
radar and communications, may alsc prove useful with
nonsinusoidal waves. It is important, then, to investigate
it to determine its suitability for use with bi-valued
waveforms,

By analysis which is almost traditional (Ramo,
Whinnery, and Van Duzer, 1965, pp. 644-647) the differential
elements of the field quantites of a long dipole can be

shown to be

fl

- =-jBr!
dHﬁ(w) I z__d_g_[:_l_o}_; +_ui__Je . sin @' 1)

ﬂ B
cr' rt2

]

., . -jgr’ .

dE_ (W) = I(z)dz [ zn - 2j e cos 6° 2)

r T E _,._..__... -
T c Wer'3

dE (W) = I(z) dz [jogu + n
3] = i
r' r.z
-3 ]e'asr. sin 6° 3)
(A)er'3

where 0' is the angle htetween the z axis and the radius
vector from the curren% slement at z to the field
observation point, and r' is the distance Irom the same
current element to the observation point. Since the
dimensional extent of the antenna is much smaller than

the distance r from the origin to the observation point,
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the quantity r' in *he denominator of the above equations
l, 2, and 3 may be replizced nv the distance r from the
origin to the observatiun point with little error while 8°
may be replaced by ¢, the anzis netween r and the z axis.
These quantities are illustrated in Figure 6.

In order to account for the phase differences from
various portions of the antenna, (r - 2z cos 0) is
substituted for r' in the exponential term which is
sufficiently accurate for r >> z,

The total field quantities at point 0 of Figure 6 are
obtained by summing contributions due to all current

elements by integration over z from -3L to +:L which gives
1
L

-0 = - e
Hﬁ(cu) #~sin 8 [jew + 1 |e JBr%/;(z) eJBZ €08 ¥4z L)
2y cr .2 1
;: AL iBz cos 8
Er(CU) ~ cos 6 [Zn - 23 ]e—dpr%[I(Z) e’ dz 5)
i 2 ¢ 3
r Wer- -4
Ee(w) ~ sll;: 8 [jwu + :77 ~ e"JBr X
i IR e
iRz
4L

With sinusoidal time veriation the distribution ¢f
the current along the antenna is very close to being
ginusoidally distributed in z (Ramo, Whinnery, and Van
Duzer, 1965). For antennas greater than one half of a

wavelength in length the maxinum standing wave cuirrent
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Figure 6. Arrangement of the long dipole with the
standard spherical coordinate system.
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amplitude (Im) attained is rnot that at the input terminals.,
The terminal current mav be exprzcsed in terms of the
maximum current amplitude Im as

I = I sin(taL/2c), for wL/2c > 4 n 7)
ter m '
from which
I =1 / sin{WL/2c) . 8)
m ter
It is important to realize that Im is the maximum current
amplitude occurring on an antenna longer than one half of
a wavelength of the excitation freguency.
The current amplitude distribution along the antenna
is now expressed as
I(¥ 2) = I sin [:(%E & z)/{i , 0< 2z < 3L 9)
Substitution of equation? into the integrals of equations

4 ‘through 6 yields for those integrals

L
{f(z) esz cosb 4, =
-3
2 I, c [:cos(i;wL cos 0) - éos(%wL/c)] . 10)
—— C .

sinze

Equation 10 may be substituted directly into equaticns
4 through 6 to yield the phasor forms of the field
quantities. Although this step is valid the equations are

rot in the form of the transfer functions discussed in
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Chapter VI. 1In order *o satisty this criterion the field
quantities nust be expressed in tsrms of the terminal
current Iter' This mav be effected by replacing I{z) in
equations 4 through & byv the rignt side of equation 8.
The field quantities are now in terms of an independent
sinusoidal input current. This st2p is necessary since a
constant value of the terminal current amplitude will
produce different values of Im at different frequencies.
The inverse transforms of the field quantities will now
yield valid impulse responses.

Making the above mentioned substitutions and

converting to the laplace transform variable gives

H (S) =
4 )
Iior e=Sr/c [} [%osh(%S L cos &) - cosh(} SL/c)]
2m sind r sinh(3SL/c)
-cC [cosh(%s L cog &) - cos’n(%SL/c):I:l 11)
c

2 .
r° 3 sinm(31s/¢c)

E.(8) =
- i .
I cot 0 e Sr/c gcn[;osh(%s I, cos 8}~ cosh(4sSL/c)
ter ! 2 c
21 sin 9 Lo r?2 5 sirh(3SL/c)
+ cosh(#S L cos &) - cosh($5L/c) 12)
c

e rJ S2 sinh{$SL/c)



Eg(S) =

ter
21 sin @

-sr/e | | |
I e [fc[cnshiﬁs L c23 %) - cosh{3SL/c)

r sinh(%5L/c)

+ nc[?osh(%s L cos 8) - cosh(%SL/c)]
c

r? S sinh(%SL/c)

+ ¢ E:osh(%s L cos ) =~ cosh(%SL/c)] . 13)
c
e r3 8¢ sinh(4SL/c)

On first sight the above equations appear to be very
cumbersome transform expressions tc invert, but writing
the hyperbolic functions in terms of exponentials and

factoring sinh(4SL/c) in the derominator as

sinh(4SL/c) = % ¢ (1 - e-SL/c) 14)

simplifies them greatly. fThe term in parentheses in
equation 14 produces pericdic time functions of perioed
IL/c in the time domain. The numerators of equations 11,
12, and 13 become sums of exvorential terms such as g=Sx
producing delayed, or raztarded, time arzuments in the
corresponiéing time functions. The only inverse Laplace
transforms to be determined are those for a constant, and

~ .
those for such terms as 1/3,arnd 1/8¢, 7The inverse

transforms are, respectively, 6§(t), u{t), and t ul(t).
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Applying these inverss {ransformz to equations Li, 12, and
13 yields the followinag Pield gusnitities all of,whichvafe

periodic with pericd L/c:

o8 —
Hg(t) =_1  \ {1 i6(t - x - nb)
2m sin 6 Lr L c c
n= -

- 6(t~-b+a-re-nl) -5(t~-Db-a-r - nL)
(o] c (o] C

+ 6(t

21 -_r_-;ny} . [—u(t - r - nlL)

c c c
c !‘2

+ u(t-b+a-r-nL)+u(t-»b-a-=-r-nL)
C c c ¢

- u(t -2b - -,rLL.):':]. 15)
¢ c
- r
E.(t) = cot 6 crf=w{t -7z - nl)
r 2nsin 6 N s "¢
n&=
+u(t-b+a-y-nl) +u(t-b-2a~-r ~nL)
¢ c c c
- u(t - 2b -_z;-_n_L)]
c c
+ 1 [—(t—_;_q-nL vit - r - nL)
c C c
er
+ (t-b+a-r~-nl)ult-b+2a-r-nL)
c ¢ c c
+ (t-b~-a-1r-mnL) ult -b =-2-r - nl)
) c c c
- t - 2b - r_ ~ nlL ('t'-Zbe-r-‘L-' 16
( -0 u T ,%_)L 8

and
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12

Crs
o~
¥

Eg(t) = 1
27 sin 9

r - nL)

[¢] o

¢
-
[

~4!
rw._._._

-

I

H

n

+ 6(t-b+a - -nl)+8{t-b-2a-r - nL)

o] “ c c
- 8(t - 2b -_£>~J29J + ¢n Eu(t - r - nL)
¢ c 2 c c
+u(t-b+a-r-nb)+u(t->b-a=-r-nL)
c c c c

u(t - 2b-_£-_gl.._)]+
c c

+ _C [}(f - r -nL) u(t -_r -_nb)

er3 c (o] c c

+ (t-b+a-r-nL) u(t-b+2 -r - nlL)
c _5_) T ¢

+ (t-b-&a-r -nL) u(t ~b-2a ~-r -nl)
c

© c ¢
- (t-2b~-r ~-nL)} u{t-2b-r- nL)] 17)
c ¢ c ¢

where a = 3 L (cos 8)/c and b = % L/c.

A surprising feature of the above field quantities is
their periodicity even though excited by a single impulse.
The analysis, however, was based upon an ideal situation
wherein the ohmic resis*tance of the dipole was neglected.
In actual circumstances the resistive losses of the dipole
element would cause the periodic variations to dampen out
with time and would also cause broadening of the individual
impulses comprising the periodic response.,

The form of the far field impulses (those terms
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proportional to 1/:}, snewn in Figure 7, indicates that
the long dipole anterrnaz would likely be unsatisfactory for
use with any carrizr waveform excent that of a sinusoidal
carrier., Substitution of the %this series of impuiseS»
into the superposition, or convolution, integrai would
show that, in general, the temporal form of the far field
would consist of the superposition of progressively
delayed replicas of the excitation current waveform,
although not all of the same polarity. The resulting
field variations would definitely not be a duplication
of the excitation waveform: Rather, it would be a greatly
distorted version of the excitation current waveform. A
steady~-state, urmmodulated sinuscid is the only waveform
that would be reproduced in the far field without
distortion.

At small angles of & the dclay between the first and
second impulses and thzt between the third and fourth
impulses becomes small enough that these two pairs of
impulses both approach ideal unit doubletse. In the
convolution integral they would produce delayed replicas
of the time derivative of the excitation waveform with each
of opposite polarity. In theory the transverse field would
vanish at & = 0: the far as well as the intermediate and
near fields. These facts are evident from equations 11,

12, arnd 13. In equations 11 and 13 the only angle dependent
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Figure 7. The first cycle of the far field impulse
response of a long dipcls antenna,.
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factor is

F(8) = cosh(3SL can 8)-cosh{43L/c) | 18)

n e aee .

2

sin &
Application of 1'Hospitai's rule yields

lim F(8) =

0—>0
lim -%(SL/c) sin @ sinh(4SL cos 8) = 0 . 19)
6—>0 c

cos o

Therefore, Hg(s) and Ee(S), and hence Hg(t) and Ee(t)

vanish at 8 = 0 . Also in equation 12 the ahgle dependent

factor is
G(8) = cos 8_|cosh(3SL cus 8} ~ cosh($ SL/C{} . 20)
sinze ¢

At angles near 8 = 0 the cos © factor is approximately
unity and can be ignored. The rulecf 1'Hospital can be

applied to the remaining factor to yield

lim G(8) = 1lim #(SL/c) sin 8 sinh(3SL cos 8) 21)
8 —>0 6 —>0 c

2 8in 6 cosé

1im  3(SL/c) sinh{2SL cos 8) # 0 . 22)
8—>0 ¢

i

Hence, Er(s) and git) don't vanish at € = 0. fThat Hﬂ(t)
and Eg(t) vanish at 8 = 0 is alsc heuristically obvious

in the time domain: as the relative delay bpetween two ideal
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impulses of equal sivergth but of cpposite polarity
approaches zero, the tws impulses will cancel.

The near and irtermediate field components produce
equally distorted versisnrs of the excitation current
waveform. They would c¢onsist ¢f the superposition of
of progressively delayed replicas of the first and second
time integrals of the excitation current waveform except
near 8 = 0 where they form the superposition of components
proportional to the excitation current and its first time

integral.
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Reflection off a Smcoih, Flat, Lessy Conducting Plane

Another phenomenan of great lmportance to the
suitability of nonsinuéoidal. vi-vzlued functions and
related functions (time derivatives and integrals) to
radar applications is their reflection from smcoth metallic
surfaces, The importance stems from the fact that many
radar targets of interest consist of structures of smooth
metallic surfaces of a planar nature or having a fairly
large radius of curvature, approaching a plane surface
over small portions of the surface.

The reflection process is also part »f the antenna
problem if it is desired to use an zppropriately shaped
metallic surface to either focus or to form directional

netic waves.

]

e v
ri7s,

beams of nonsinusoidal =slectr:

0q

The reflection rprecess is simiiar tc the terminated
transmission line protlem in that a2 simiiar reflection
coefficient completely describes the process. In order
to establish the reflection prererties of nonsinuscidal
waves at arbitrary angles of incidence and at arbitrary
polarization with respect to the plane of incidence, it
is only necessary to study two special cases: polarization
of the electric vector perpendicular to the plane of
incidence and that parallel to it. Any other case of
general linear polarization may be treated as a linear

superposition of these twoc special cases.
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As discussed in Chavter YI th2 quantity that
describes, or characterizes, the reflection properties of
nonsinusoidal waves is 2 form of impulse response derived
from a form of reflection trar«eier function which turns
out to be the sinuscidal reflisotion coefficient of the
reflecting surface. This fact is established in the
ensuing development.

In both cases of polarization the fregquency dependence
of the conductance of the metallic reflecting surface is
included since this still yields a mzthematically
tractable situation even though adding considerable
complexity to the analysis. In both cases of polarization
that factor could have been ignored in order to arrive at
a solution of more reasonable proportions. However, the
more complex solution doeé iénd greater insight into the
limiting factors of the reflection process.

The conventional textbenok approach to the (sinusoidal)
reflection problem is to deterwmine the toftal electrie and
magnetic field consisting of the superposition of the
incident and reflected fields outside of thes reflecting
surface. The interest here, however, lies in the effect
of the reflection process at the surface on the reflected
portion of an incident nensinusoidal wave, It is shown
that the reflection coefficient R is the desired surface
sinusoidal transfer function which relates the amplitudes

and phases of the incident and reflected plane sinusoidal
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waves. The inverss Fourier or Laplace transforms then

yield analogous quantities in the time domain,
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Polarization of & Pzrrendicular to the Plane of Incidence

Fortunately elewentary 2rd standard techniques may
be used to attack tihe nroblem of the nonsinusoidal
reflection process. These of Chapter 6 of Ramo, Whinnery,
and Van Duzer (1965) are utilized in this section.

Figure 8 depicts the geometrical situation of interest.
The vector quantities Ei and Er represent the propagation
vectors of the incident and reflected waves respectively.
Both lie in the xz plane}forming the plane of incidence.,
The angle of incidence, 8, is equal to the angle of
reflection, 8's The incident electric field vector is Ei
while the reflected quantity is Er. Both are perpendicular
to the plane of incidence.

The quantity of interest iz the ratio Er/Ei at the
surface with z = 0, This ratio is the surface sinuscidal
transfer function. It may be expressed in terms of the
angle of incidence 6, thz operating (sinusoidal) frequency,
and the parameters of the conducting interface, and by
examining the electric fieid equation that results from
equation 22, page 361 of Rame, Whinnery, and Van Duzer
(1965)s Tnere the only field component is in the y
direction which yields for the tangential (to the surface)

component
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Medium 1, air

9'

/ +X

W?K:v metallic reflecting

_//// surface

Medium 2, metal

+2

Figure 8., Geometry of the reflection process,
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£ =

8

5 | g. e~dkx sin & ~ jkz cos @
y| =i

23)

-3kx sin & +
+ QE, e ikx sin 8 + jkz cos e]

where ? is the ratio Er/Ei which is defined in terms of

the parameters of the system by

e = (zL - zzl)/(zL + zzl) 24)
with

2,1 = n, sec 9 | 25)
and

ZL = nz/\\/l - E;_sinze . 26)

The quantites ny and n, are the intrinsic wave impedances
of media one and two respectively and ey and e, are their
respective permittivities. As simple as these equations
appear, n and e represent complex functions of frequency
which greatly complicate the analysis.

Examination of equation 23 shows that the first term
represents the incident wave while the second term
represents the reflected wave., Hence

E/E; = €

. o-Jkx sin 8 + jkz cos 6 27)
e-JkX sin 9 - jkz cos 0

]
H 3

eej2kz cos € . 28)
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Qur interest is In this aguantity at the surfaée at
z = 0 so that € is inde=d the regquired surface trénsfer
function.
Since medium or® iz alr, ny is essentially the

intrinsic wave impedance of free space:
nl X n = u /e 29)

where u, is the permeability of vacuum and e, permittivity,
both being independent of frequency.
The intrinsic wave impedance of the second medium, the

metal, is

nz = \/uZ/ez ) 30)

Since only a non-permeable conductor is being considered
n, = uo/e2 . - 31)

It now remains to establish the nature of e,, the
permittivity of the cenducting wmaterial., The general
expression for a dielectric with high conductance, or a

metal, is

ep = e =(e' + o/iW) = e (1 + o/jwe") 32)

with e' the dielectric of the metal and ¢ its
conductivity. For all frequencies of interest the second
term in equation 32 normally far exceeds the first

which could be neglected without greatly affecting the
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outcome. However, lezving e’ ir the expression yields a
tractable solution.
The value of the permittivity, e', for metals is not
measurable, but it is felt by msnv authorities (Adler,

Chu, and Fano, 196(¢ and¢ Bromwell zrnd Beam, 1947) to be of

the same order as that for free space, hence
e, e, +o/jw= e (1 +0o/jwe,) 33)
which, in terms of the Laplace transform variable, becomes
82 ~ eo(l + 0/ Seo) . 3"")

The conductivity of a metal is also known to be
frequency dependent. In terms of the lLaplace transform

variable it is given by XKittel (1968) as
o(S) =0, /(1 +8/v,) =0, v /(S +v,) 35)

where %, is the low freguency conductivity and v, is the
collision frequency of the free electron gas within the
conducting material., Table IiIl of Chapter IX lists these
parameters and the plasma frequency of four widely used
conducting materials.

Substituting equaticr. 35 into equation 34 yields an
expression for the detailed frequency dependence of the
complex permittivity of a metzl. Then, substituting that
modified form of eguation 34 into 31 and 26 then 30 into

26 and 24 gives the operational expression for the
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on by the following sequence of

steps:
e, = e (1 + 0, vc/(egsis eveld)o,
= e S(s + Vo) + o, vc/e0 , 36)
S(S + vg)
n, = | u, S(s + vc) 3 ’
e, (S(S + v, ) + o vo/e,)
- 3 "
= norS(S + vc) , 37)
L S(s + v,) + 0, vc/eo
1 .2 -%
ZL = S(S + v.) 2 1 - sin"® S(S + v,)
. 140 -
S(S + v,) + o0, v./e, S(S+v,) + crovc/eo_j
R 1
S(s + vc) costt + o, v e
and
3
Z, = ng (A/B)
= s = Q{2 4 v ) 2
where A = S(S + Jc) and B = &(8 + r,) cos"e + oovc/eo .
Also
Zzl = n, sec 9 =n_ / cos 6 39)
and
3y 2 ;
Q(s) = 2 :,f&l = n, RA - nOB-/ccs 8 ’ +0a)
ZL + Zzl n, A% + noBé/cos ]

or
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1
- Az o
e(s) = A% B cos @ 40b)
A?  + Ba/cos ]
where Z is n, sec &, ¥Fquation 40b then reduces to
71 1 )
. i
(s) = (s(s + Ve »4 (3{S + Vo) oovc/eo cosze)2 41)

(S(S + vc»<+ (S(S + v,) + oovc/eo cosze)%

The direct inverse transform of equation 41 is not
available in published tables. This fact, however, is of
no great consequence since our interest lies in a form
that will isolate, or show, the distortion effects of the
reflection process. By the expedient of clearing the
denominator of radicals by multiplying both numerator
and denominator by (S(S + vc))% - (S(5 + vc) + a)% a
form results which clearly shows the distorting effect:

0(s) =-1-28° -2v3s

a o

+ _E_ [S(S + 'vc)(S(S + vc) + a)]% 42)

a

2.
where a has been substituted for o,v /e cos“@ in order
to clarify and facilitate notation.

The corresponding time domain unit impulse response is

Q(t) = = &6(t) ~ 2vg 8°(t) - 2 86"(t)

— P

a a
+ _i_L"l[[S(S + vc)(s(s + vc) + a) ]ﬂ‘ 43)
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Equation 43 is a very interezving and meaningful
result., Examining each term individually we see that the
first. -6(t), when convalved with a given nonsinusoidal
incident wave yields an exact, But inverted, replica of
the incident wave on reflection while the remaining terms
produce additive distortion components.

The first time derivative of the impulse function in
the second term, and the second time derivative in the
third, respectiyely yield the first and second time
derivatives of the incident wave as additive distortien
terms. However, notice the numerical values of their
multiplying coefficients. fThat of the first, for copper,

is

2vc/d = 2eocosze/oo = 2x8.85 208%0 x 10'12/6x107

~ 0.3 x 10~18 cos?e

while that for the second is

~ 20
2/a = 2e cos?o / a,v, % 2x8,85x10 12:05%0 /6xkx10

32

8 0.7 x 10 cos“e .

Corresponding values for gold and silver are close to
those above,

The relative magnitudes of the reflected components
corresponding to the terms eof equation 43 depend upon the

the temporal form of the Incident wave, Ei(t)' and its
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first and second timz devivaiives, These quantities are
relatively easy to cutimate for a phi-valued wave such as
a Walsh function or ons of itz +ims derivatives. The
relevant parameters of such vulce~like waveforms are,
for the first term, the weak wzlue attained, Ei' The
relevant parameter in the second term is the peak of its
time derivative which is approximately ZEi/Trwhere T, is
the transition time changing from -Ei to +Ei' For the
third term the peak of the second time derivative which
is 2Ei/aTi is the important parameter and the factor a is
the fractional part of the transition time, T, required
for the first time derivative to reach its peak value.

The value of the gquantity (a) might vary from one tenth

to slightly less than one half for typical applications.
The above quantities applied to equation 43 yield

relative magnitudes of reflection components corresponding

to the first three termz. For the fastest rise times that

might be electronically pvroduced in the near future, say

ten picoseconds, we have

first term: Ei
second term: 6 x 10'“ E.l cosze
-8

third term: 1.48 x 10 E, c0s8 with a = 0.01.

The above estimates indicate that the distortion
components due to the second and third terms of equation

43 are negligible for the bi-valued waveforms under study.
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Notice also that as the a»gie of incidence increases,
cosze decreases causing the mzgnitudes of all the
distortion terms to derrezse aliso. It is obvious that
normal incidence is the worst case. Also note that all
distortion terms would wvanish if the conductivity of the
reflecting material were infinite.

The last term is also extremely small although its
detailed nature is not known. Although the inverse
transform of the last term of equation 42 is not easily

obtained, some information about it can be obtained by

factoring it as follows:
3
S(s + vc)(S(S + vc) + a) =

3 ' 3
(5(5 + v )? x|(S(S + v) + a)] -

naj

J|
(S(S + v, ))° x[(s + a)(s + b):l% )

where a and b result from factoring (S(S + vc) +a)e The
corresponding time domein quantities may be convolved to
form the resultant compcnent of the overall unit impulee
response of equation 43,

Applying the transform domain shifting theorem to
item 15 of page 246 of Roverts and Kaufman (1G666) and

2

setting 2a° = 0 in that item gives

1t [(s +a)(s + ‘a)‘ié} e et . 45)

1
2 ﬁ% t3/2 2 n* t3/2
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Direct convolution of +the twoe faciors above (developed in

Appendix VI) yields

L’l[[(s + a)(s + b)ﬂ%%

~3{

LR b
i

3 (a-b)" B P 5 (3 - byt 46)

for (a - b) imaginary or, for (a - b) real,

L‘ll—[(s +a)(s + b)]ﬂ =

L.
-3(a + b)t

t(a-Db)e I,(3(a - D)t) k7)

which are both finite, pulse-like functions having decay
time constants of the order of 2/(a + b) or less due to
the Bessel function factors. Similar expressions result
for (S(S + vc))th of equation 44 with b set to zero and
a = vy |

In terms of the constants of equation 44, its time
domain equivalent is the convolution of two quantities

similar to those of eguation 46. Making the appropriate

substitutions, the last term of equation 43 becemes

= v2 2| =3vet . w,‘i~%fa+b‘t _—
i .

Iy

20

2l

Numerically the multiplying coefficient is very large

2 . . . Lz
being on the order of 3 x 10 7. Substituting the quantities
of equation 47 inte a convolution integral with (a + b) =

v, and for copper as the conducting material, I, becomes
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27 -2,08x%1013
14 = 3,46 x 1¢ / cas 0 e 082107-% X

A
.

¥ 13 .. 16
b/“Il(ZeOSZEO' x} J,{2.30x107 (t-x)/cos ) dx
~13 v 16
(2,08%x107 x)(3.30x107(t - x))
49)
Because of the large difference between the

coefficients in the arguments of the two Bessel functions,

the following approximation may be made:

s 3.46 x 1027 cos o

I, °
3.30 X 101
2 o8x1013 3.30x1016t
e=208x107-% I,(2.08 x 101347 le(X) ax 50)
(2.08 x 1013 ) o’ X

which applies for t > 10-16 seconds. For these values of
time the value of the integral factor approcaches a constant
value near unity. The value of Iu is governed princinally
by the time functiong outside of the integral sign. For
smaller values of time, the time functions preceding the
integral are close to the constant value of 0.5 with the
value of I; then determined by the integral, Since for
this case the value of X in the integrand is smali,

J(X)/X % 0.5 - ¥°/16 the integral of which is 0.5X -

a linear function of time t. Its amplitude, therefore,
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starts at zero and incrsases very rapidly to larger valuese

However, the peoak zmpliztude of the auantity in
either equation 48 or 4% is wuot of great significance.
Since all of the gquantities éiﬁcussed here are componsnts
of a system unit impulse response, it is their relative
areas that are of significance when convolved with an
appropriate excitation function.

The area of the quantity in equation 48 or 49 is

approximated by

oS
Au 8 J.U46 x 1027 cos 8 ‘}P e-T Il(T) dT = 5.04x10°3005 8

3030)(2.08}(1029 T

since the value of the integral is unity. Therefore, when
convolved with a suitable excitation functicn, or wave,
this term contributes less than one half of one percent to
the resulting wave, Also note that this error term becomes
less as the angle of incidence is increased.

It is then concluded that a typical smcoth conducting
surface will reflect nonsinusoidal electromagnetic waves
when polarized normal to the plane of incidence as long as
its first and second time derivatives are small enough to
make the second and third terms of equation 43 much less
than unity. Specific conditions on excitation time

derivatives are

, ] i
dEi/dt << a/2vc = 10‘9 x 0,328/ cosze




184
.
din/dtZ} << 3¢ = 1,36 x 103L/cosze .

Notice also that all +the distoriisn components are maximum

at normal incidence.
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Reflection nff a Smocth, Flat, Losscy Conducting Plane
with Polarization in the Plans of i

As in the case 5! prlarizaticn normal to the plane
of incidence the szwe ¢lementzry techniques may be used
in the case of polarizstion in the plane of incidence.
The reflection process in this case is also completely
described by a reflection coefficient, € . TfThis fact is
established by equations 14 and 16, page 360 of Ramo,
Whinnery, and Van Duzer (1965) which yield for the

incident and reflected waves

= - Lz s -jk(x sin 8 + z cos 8)
Ei = E+(axcos ] a,sin 8)e 5la)

- - gin 6 - ]
Er jk(x sin z cos ©) 51b)

]

E+f’ (8,cos 8 + & sin 8)e

where the factors in parentheses are vector quantities of
unity magnitude, Taking the ratio of ‘Eri/ 'Eilat the

surface z = 0 yields
B [5- ¢ -

In this case the reflection coefficient is also
described in terms of freguency and the parameters of the

conductor as
Qes) = (2 - 2,0)/(2p + 2,7) 53)

where

Z  =mn cos & =n ces 8, 54)
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and

55)

}._I

ZL = np COS o = Tig (i -~ 3 sinza]

s

]

f}
~

and n, is the intrinsis wave imoedance of the metallie

medium and 8" = angle of refraction:

3

n, = (uo/ez) N (uo/eo(l + covc/eoS(S + vc)) )% 56)

n, = no/(l + oovc/eoS(S + vc))% 57)

where the relationship e2 R 5 + covc/s(s + vc) has been
used for the permittivity of the metallic medium.

Rearranging equation 53 yields

O(s) =

oS

-

[%(S + vc)(S(S + vc) + A/coszéﬂ

E(S + v, ) (S(S + vg) + A/cnszaﬂ'

X

- (S(S + v,) +A) 59)
* + (5(S + vg) +A)

C
o

where A has been substituted for oovc/eo to simplify

notation. The value of Vo for copper is

v, = 416 x 1013 ana A = 2.725 x 1022 .

Equation 59 may be decomposed in many ways to reveal
the distortion components explicitiy. Technigues similar
to those in the case of normal p0larization'are used in
the following by adding and subtracting the quantity

1
@(S + vc)(S(S + vc)+A/coszGﬂ2 to and from the numerator
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of equatioh'59 to vizlg
€(s) =

-1 + 2[%(8 + vc)(S(S 4 vﬁ) +-A,ce32éﬂé‘ . 60)

E(S + v )(S{(5 + +‘A’/“~2® 5 (s
Ve (5 + vc) Jeos ] (S + vc) + A)

Equation 60 clearly separates the ideal term, -1, from
the second distortion term. The second term may be

further simplified by clearing the denominator of radicals

€(s) =-1

1
+ 2 [?(s + v ) (S(S + v,) + A/cosze)j2
= X

A [?(S + v, ) (1l =2 cosze) - E]
’ cos28

=J

. i
H%(S + vc)(S(S + vc) + A/cosde) ]2 - (S(s + vc) + AH. 6la)

Carrying out the indicated multiplication in equation 61la
and noting that (1 ~ 2 cosze)/cosze = -2 + se029 = <2 +1
+ tan®e = tan%e - 1 by use of standard trigonometric

identities, the equation reduces to

B(S) = -1 + 2 S(S + v,)(S(S + v,) + A/cos?e)

A(tan®8 - 1)(S(s + v.) - A/(tan%e - 1))

o ! /o A s%
- < x . <(g r g 4 R
2(s(35 + IC) + A) iS(S + ‘,c)(S\o 4 VC) t cos‘z‘é)

A(tan®e - 1)(5(S + v,) - A/(tan®® - 1))
61b)
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Notation may be greatly simrvlified by factoring

the guadratic quantitiss above giving

s2 + Sv, + Afces®a = (S + c){5 + @) | 61c)
and

32 + SVC - A/(tanze - 1) = (S +a)(S + b) | 616 )
where

]
a= v, + JE02 4 4/ - tan?e)]?

. 1. 2 2 3
= - - 1 - t i
b %V J 4v‘ + A/(_ tan 92

1.2 2% .
. :kvc + A/cos ﬂ ~ %vc + j A®/cos 6

0
Lt}
Nj
<
+

[

1
d =~ dv, - j A®/cos

After considerable algebraic manipulation equation

61b (see Appendix VII) may he reduced to

2

Q(s) = -1+ 2v S + 28

f') [s
A(tan“e - 1) A(tanze - 1)

+ 2 S(5 + vc)

(1L - cot?0)3(s + a)(S + b)

2 [%(S + vC)(S + c)(S + d{]%

A(tanZe - 1)

% tanz(ze)[é(s + v ) (S + ¢)(S + d)]% . €2)
(s + a)(s + b)
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Notice that two criticsl vaiues of 6 appear to exist
for the quantities s ard b ztove, First, the term
A/(1 - tanze) under +he radical ig positive for 8 less
than 45°, and it is much greztzr than ivg making'the
radical term completely Imagirary. At 6 = 450 a and b are
both imaginary and of infinite magnitude. However, for
angles 450 < 8 < 90°, A/(1 - tanze) changes sign and
starts decreasing in magnitude ard the radical is also

real so that

1
a =~ 3v, + jEA/(tanze - l)-_]2 63a)
” 3 0 < 6 < 45°
b~ dv, - j[A/(tane - 1)] 63b)
and
a %‘VC + E&/(tanze - l\—)% 63¢c)
N 45° < 8 < 89,5%
5 1
b = %;vc - E./(tan‘“?) " 1)]2 63d)

Also, for 6 between about 720 and 89.50 the denominator
5 ,

(tan™® - 1) may be approximated by tan29 so that
i
a = %vc + A%/tan 63e)
i
b~ dv, - A%/tan 8 63F)

Another special corditicn, although of no particular
interest in the study of the reflection process, is the

case where the angle of incidence is very near 90%. 1In

this case % vg >> A/tanae, s¢ that
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N

asv, - A/(vc tan 8)

b=~ A/(vc tanze)
. 1
c s j A%/cos 8
1
d -3 A%/cos 8 ,

Taking the direct inverse transform of equation 62
would provide the desired unit impulse response of this
reflection process. However, it is not necessary to
obtain the complete inversion of that equation in order to
gain useful information about this impulse response. The

following suffices:

Q) = -8ty + _2v, eggy 2 8" (t)
(tan“@ - 1)& (tan%® - 1)A

+ 2 a(a-v,) e”3t b(b-v,) e bt _ u(t)
242 N oy

(1 - cot (a=b) (a=b)

- 2 Ld{%ﬁ§+v&(s+c)w-+dﬂﬂ

(tanze - 1)A

~ % tan(26) [}‘at # 7Pt 4 -1 [s(s + v, )(S +c)(S + d{ﬂ
6l)
As in the case for normzl polarization, the first
term of equation 64 above represents the distortion-free
reflected component while all the remaining terms

represent distortion components. The second and third
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terms again represent first a=d second derivative
distortion components which are small for all angles of
incidence except thcse near 45° 1 the time derivatives
are sufficiently smzll. As 8 approaches 45° both terms
approach infinity and can badly distort the reflected wave,
For e‘greater than #5°, but less than 90°, both terms again
become small and also change signe.

The remaining terms also suffer similar amplitude
increases as 6 appoaches 450. They undergo changes in
form because of the dependence of a, b, ¢, and d on ©
shown explitly in the equations preceding equation 62.
Those cases are examined individually below.

For the case that 8 is less than 45° the fourth term
in equation 64 is

Ty = 2 X

(1 - cotze)2

-iv ¢t )
U}vi + A/(1 - tan2 6)} e - C sin(t A/(1 - tanze)%)
(A/(1 - tanze)%

- u(t)] 65)

The above expression has large values near t = 0
and is of very short duration. However, it is the total
time integral that is of impertance when uged in the

convolution integral with a2 given excitation function.
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The integral of the bracketed term in equation 65 is

area = kvc + A/(1 - tane)

5 X
A/(1 - tan“e)
20y /i 13
u{;’%vc K} - tan 9)/4] T sin(T) a7 =1 66)
o]

since the value of the integral is the reciprocal of its
multiplying coefficient. Note that the unit step function
term has been neglected for the moment.

Taking into account the coefficient 2/(1 - cotze)zp

the integral of the fourth term becomes simply
IL} = 2/(1 - Catze)z .

The fourth term has negligible effect only for those
2. .2
values of 8 for whichEZ/(l - cot“e) }<< 1. If ten percent

is selected as a criterion, angles of incidence such that
2/(1 - cot?8)?| < 0.1,

then angles of incidence of 10° or greater will produce
noticible distortion of the reflected wave, The same
argument applies tc¢ the unit step function term since it
it multiplied by the same coefficient. Its effect is to
produce the time integral of the incident wave.,

For the case where 6 is‘greater than 45° but less
than about 89.50, the sign of A/(} - tanze) changes to

negative which changes squation 65 %o
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X
(1 - cot29)2

3
2

H}vg - A/(tanze - 1;19-%vct sinh(t[}/(tanze - 13%)
E\/(tanze - lﬂ

- u(t)] . 67)

A curious phenomenon occurs over the range of 6
such thatlA/(tanze - 1) > évg which corresponds to 45° to
about 89.9°. Recall the exponential form of the hyperbolic

sines
-3 1 1
e 2Vctsinh(t(k’?/(tanze - )3 =
3
: 1
%et((ﬁV(tanze - 1)% - 3v,)

-t
2

e-t((é?(tanze -1 - tve) 68)

2 2

When[A/(tan 0 - 1)|> %vc notice that the first term in
equaticn 68 has a positive exponent producing a component
of the impulse response which grows exponentially with
times Considering the energy required for such growth,

it is obvious that some important energy limiting process
has been neglected in the analvsis. However, it must be
expected that severe distortion occurs over this range of 8,

For angles of incidence between 89.9° and 90° both

exponential terms are well behaved: i.e. a pulse~like



194
waveform of unit area. However, for that condition the
coefficient 2/(1 - cot28)2 is quickly approaching zero
so that both terms in szuation 65 become negligibly small..

The fifth term in esquation €4, except for beqoming
infinite at 8 = 45°, is identical to the radical term in
equafion 43 for the normally polarized case. It is well
behaved except near 45°.

The last term in equation 64 is similar to the fifth

term in that its coefficient also becomes infinite as o

approaches 450. Except for its argular behavior it is the

result of convolving e 2t%e"Pt Lith the inverse transform
of the radical factor. The convolution of e~2% and e~bt
is

e~at » o0t _ (e”?* = e"bﬁ)/(b - a) . 69)
The total area of this convolution function is

Area =1/|ab| . 70)

The convolution of e~2% and e~P% is also very

dependent on the angle of incidence, 6. For 0< 8<45°

e-at % e“bt =

- El - tanze)/i;]% e"2Vet qin (4 E\/(l - tanze):‘%) 71)

which is well behaved. V¥hen convolved with
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-l % \ 7 %
L S(S + v 1S + ¢){(S +d)

it produces a convuiutlior quantity on the order of
[}/(1 - tanze)]%. For & sush that 2/(1 - cotze)2 is small,
this term can be neglectzd. However, for b5°< 9<:89.9°

at bt

the convolution of e™“" and e ~° becomes

&tanze - 1)/A]% e"2Vet gimn (tEk/(tanze - 1)]% ) 72)

which grows exponentially with time as does the fourth
term of equation 64, For angles of incidence between 89.9o
and 90° it is again well behaved being exponentially
damped with time,

It may be conclucézd tha% {sr polarization in the
plane of incidence, reflection of nonsinusoidal waves will
occur with sever distertion at angles of incidence of 459
or more, but will reflect with little distortion for

angles less than 45°.
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Reflection from Lossy Dielectric Materials

A case of reflectior of great interest in radar
mapping is the reflection of zlectromagnetic waves off
of imperfect dielectric materials mear normal incidence.
Reflection back in the direction of the incident wave would
be the situation of primary interest to the monostatiec
radar case. Although not studied in detail, the general
form of the solution is briefly outlined.

The reflection coefficient at normal incidence off a

lossy dielectric is especially simple being

1 i
= - - 02 _ aR
P(s) =np = ny = e - e; 73)
n, +mn e> + ez

which may be modified tc¢ yield 2 form which explicitly

reveals the distortion characteristics as additive terms:

1,01 1
R(S) = -1 + 2e> (e3 - e3) 74 )

ez-eo

The above reflection coefficient may also be expressed
in terms of a relative dielectric constant, k' = eé/eo and

a relative loss factor k" = eé’/e0 as follows:

O(s) = - 1 + 2((x* -jk")% - 1)
k' - jk* - 1

75)

-1 - 2 + 2(k* - jk")% 76)
k' « jk" -1 k' - jk" -1

€(s)
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where e, = eé - jeg .

In the time domain equation 76 is

C(t) = - 6(t) ~ 2 L‘lrl,/(k' - k" - 1)]
+ 21t [k - Jk")%‘; | 77)
k' - jk" -1

which also explicitly reveals the second and third terms
as additive distortion terms. In order to use equation 77
the frequencykdependence of k* and k" must be known.

Since these two quantities are complicated functions of
frequency which are different for each dielectric material,
this case does not lead to a generalized form of analysis
as do the metallic conductors., Bacause of this added
complexity each dielectric is a special case which must

be analyzed individually. Therefore, it will be discussed

no further in this worke.



198

General Considerationrs of Noensinusoidal Electromagnetic
Fields Generated by Aparture QDevices

Because of the impertance of such devices and systems
as parabolic antennas, phased arrzys, horns, slots, and
open waveguides, etc., to conventional radar, the
question of their suitability for use with nonsinﬁsoidal
excitation is naturally of interest.

In the sinusoidal case, under certain conditions
specified in later sections, the active areas of such
devices may be treated as if they were illuminated openings,
or apertures, in a highly conductive screen of infinite
extent. 1In these cases the field in the aperture, by
Huygen’s principle, is a source of radiated fields. As
such the aperture field is equivalent to a distributed
current source.

If the smallest dimension of the aperture is
considerably larger than the wavelength of the source
excitation, then the vector form of Kirchhoff'sdiffraction
integral may be applied to determine the intermediate and
far zone fields produced by the excited aperture. At
distances within a few wavelengths from the aperture, or
for aperture dimensions on the order of a few wavelengths
or less, the assumed boundary conditions on the conducting
screen break down badly. This fact makes use of the
diffraction integral invalid under those conditions.

However, for the high frequency case in which the aperture
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dimensions are largz cimnrared tc the operating wavelength,
the diffraction integral produces accurate resulté.

As with the otiher ¢ystems examined so far, the
expressions for the radizting electric and magnetic
fields produced by an aperture type device constitutes a
form of steady-state transfer function. It describes the
amplitudes and phases of the fields at various points in
the space around the device in terms of the amplitude and

phase of the steady-statevsinusoidal excitation.
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Examination of the Diffracticn Integral

Before evaluating tne unit impulse responses of
apertures (parabolic aniennas) from their far field
transfer functions, it is firs% necessary to consider any
limitations that may result from the ultimate source of
those functions. Such transfer functions are derived
from the sinusoidal far field quantities expressed by the
vector diffraction integral of the fields existing over
an aperture,

For sinusoidal operation (at a single frequency) the
far field (Fraunhofer) diffraction integral is an
approximation which is cnly valid for distances much
greater than the dimensions of the aperture and at
frequencies where the ~perating wavelength is much less

than the aperture size a, or the conditions
A << a<<r,

The second limitation, a << r, offers no great
difficulty since most conceivable radar situations,
whether using a conventional sinusoidal carrier waveform
or using a nonsinusoidal waveform, correspond to distances
much greater than the aperture.

The first limitation, A << a, however, stems from the
fact that the (approximate) Xirchhoff boundary conditions

used to evaluate the diffraction integral break down for
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wavelengths close %o, or greater than, the aperture
dimensions.,

The second limitation may offer difficulties:or.even
render invalid the evaluation of the unit impulse response
which’requires integration of the transfer function with
respect to the frequency variable from - o to + e, The
path of integration necessarily passes through the low
frequency, or long wavelength, region where the Kirchhoff
boundary condition approximation breaks down. This fact
makes it necessary to examine the transfer function for
each aperture shape and each field distribution considered.
It is shown in subsequent sections that neglecting the
long wavelength breakdown of the boundary conditions
contribute little error to the resulting impulse response
functions.,

The classical Kirchhoff diffraction integral may be
derived for an opening, or aperture, in a sheet of
conducting material of infinite extent and of infinitesimal
thickness as illustrated in Figure 9. This arrangement of
conducting sheet and aperture with a propagating sinuscidal
field progressing from left to right in the general
direction of the positive z axis represents the aperture
presented by a large parabolic reflector antenna, cor
array, as used in mcdern radar zpplications.

The B and B fields at an arbitrary observation point

Xos Ygoe and z,, may be expressed as an integral of the
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//p

Aperture,

' /
/ !
xooyoszo-
' observatior.
point

Figure 9., Details of the Kirchhoff-Huygens Diffraction
integral,
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fields appearing in the aperture 2nd on the surface of the

conducting screen. fhe classiczl diffraction integral

[
b
e}
g
A

expressing the far eleciric field Aue to one rectangular
componant of the E (ir. +his case the x component) field

in the aperture from Silver (1963) is

B (X 1¥g024) =

1 JIE (x*',y',0) -jwr/e E’ﬁ.?+ﬁ.’s‘)jw
T x - -

Sa+Se r

+’r?.?] dx' dy’ 78)
r

where the quantities involved are depicted in Figure 9

with the following definitions.

A = unit vector perpendicular to differential
area, dA',

r'= position vector of dA' in aperture S, e

T = unit vector in the direction of #'.

unit vector in the direction of propagation
at each point in the aperture = 7@ in the cases
to follow.

w)
]

R_= position vector of the observation point
(xo,yo.zo) with respect to the origin.

T = unit vector in the direction of ﬁo.

Notice that the field E,.(x',y", 0) on S, and Sc includes
not only the amplitude distribution of the field over that
surface, but also any phase distribution that may be

associated with ite In normal practice the third term
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in the brackets of the integrard ig¢ usvally dropped as
being negligible conpared to the cther two terms. For
our case it is advisable to retain that term and determine
its contribution after the imprulse responsesg have been
determined.

To obtain the entire field at the observation point
such an integral must be evaluated for each rectangular
component of the field in the aperture and on the
conducting surface.

Evaluation of these diffraction integrals is made
mathematically tractable by use of the Kirchhoff
approximations for the fields on the right side of the
conducting screent +the field components and their
derivatives normal to the conductor surface are assumed to
vanish con the screen and the fields and their normal
derivatives in the aperture are assumed to be unchanged
from their values in the absence of the screen.

Although the above Kirchhoff approximations to the
conditions on the screen and in the aperture are actually
inconsistent? the diffraction integral gives satisfactory
solutions to the far fields when the wavelength is much
smaller than the aperture dimencions. For the purposes
here the diffraction integral may then be evaluated only
over the field in the aperture.

9) Since both E, and dEx/dn cannot both be specified on
the surface Sy + S,.
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For the special case to be considered, many
simplifications may be impoged on the diffractiqn
integral. Only aperture fields that lie entirely in the
plane of the aperture ard that are linearly polarized in
the X or y directions are considered. This restriction
reduces the effort to the evaluation of only one such
diffraction integral. This restriction also causes the
unit vector §, which is a vector in the direction of
propagation of the field at each point in the aperture, to
be the normal direction (i.e., 1) over the entire aperture.

Note also the decomposition of ﬁo’ the distance
vector from the origin to the observation point, and F,
the vector from the area element in the aperture to the
observation point, into products of a scalar magnitude
and a unit vector in the direction of the corresponding
vector. The following simplifications and approximations

then ensue:

"= cos 6 ,

For the condition that Ro is much greater than the
aperture size, the distance r in the denominator may
readily be approximated by Rye This quantity may be
removed from under the integral sign since it is not a
function of the aperture coordinates., This approximation

reduces the diffraction integral to
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Ex(Xo1¥g120) =

ﬂlR ff Ex(x’,y'g 0) e-jwr/c [(cos 8 + 1)_j__og_

° s
a

+ 1 cos e]dx' dy* . 79)

Ro

The value for r in the exponent is not so easily
managed. Values of Ro much greater than the aperture size,
however, allow suitable approximations to be made. The

following expression for r result:

r = l:zg +(xy - x)% + (3, - y')z]it 80a)
=z, [l + (xo - x')2 + (yo - y')ZJ% 80b)
"l 2
“o Zo

which may be approximated by

2 2
rez + (xo -x")" +(y, - ¥') 4 ~-- 8la)
2 2, 2 z,
’ ’ 2 2 2 2
mazo-Xx'x,=y'y, + (x0 +y, *+ zo) - 1z,
20 ') 2 24 224
R A N 81b)
2 24

It is convenient to express the subscripted quantities

in spherical coordinates R , 8_, and ﬁo. With



207

= 3 d = D
X, = R, sin e cos,(Jo R_a

y =R sin@asinﬂo:R B

the expression for r becomes
r 8 R, cos 8 _ + 4R _(-cos o  + 1/cos 8)

~ (ax’ +By') 4+ (x)2 + (y)° 4 - 82)

cos 8, 2Ro cos eo

For R >> ‘x'land R, >> ly'lthe last term containing
(x')2 and (y')2 is negligible while the first two terms
with Ro and cos eo may be combined by trigonometric
identities and series representations of the trigonometric

functions to give

Ro(cos 0, - 4 cos 8, + % sec eo) ~

2 L 6 2
Ro(% - % eo +_§Q -8, + === 4+ 2+ %0
8 1450
+_5_el; + 61 eg + ——- 83a)
48 1440
so that
L" 6 ] ]
reR(1+0,+0 ) - (ax' +8y") . 83b)
8 24 cos 8,

Since the angles for which an antenna pattern are of

of interest are usually less than 10°. or 0.2 radian, the
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higher powers of 60 in the first parentheses may be

neglected leaving

r s Ry - (ax' + By") . 84)
coSs Go

The diffraction integral then reduces to

- c
Ex(xo.yo-zo) = Ex(Ro'eo'ﬁo) = e ijO/ X
bw R,
. i w(ax"+8y')/c cos 8
Ecas 60 + 1)9_&)[/‘ Ex(x-'y-'o) e'] ( y dx'ody'
c
a

: [ [ ]
+ cos 8 “[, Ex(x'.y'.O) eJCU(ax +By')/c cos 8, i dy] ]

Ro a
85)

The integrals in Loth terms of equation 85 above are
identical which reduces the task of determining the field
transfer function to the simple evaluation of the following

integral for any aperture shape and field distributions

I(eoo goo w) =

ff Ex(x'.y'.O) ej(A)(O.x' + By')/c cos 90 dx’ dy® 86)
S

a

Recall that e = sin 8, cos ﬁo and B = sin 8, sin §_ .
In order to keep this study of aperture antennas to

reasonable proportions it is limited to the rectangular

and the circular apertures having uniform intensity and
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phase distributions. These two forms of aperture are basic
to the sinusoidal steadv-state mode of operatione Other
intensity and phase distributions have been used in the
past (Skolnik, 1970} in order to optimize performance in
some manner such as maximizing gain, increasing directivity,
or reducing side lobe levels, Any change from uniform
intensity and/or phase distributions usually degrades

antenna performance in some other manner.
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Recténgular Aperture with Uniform Intensity and Phase

Distributions
For a rectangular zperture of dimensions 2a and 2b
in the x and y directions respectively, the integral

I(eo,ﬂo,(u) becomes

(8 w) =
a b
Eo fejwax'/c cos 6, dx’ fejway'/c cos 8, dy' =
-3 -b
4ab E_ sin(wha) sin(WBb) 87)

WAa WBL

where A = a/(c cos 0,)sB = B/(c cos 90). and E, is the
peak value of the electric field in the aperture. In terms

of the Laplace transform variable, S, the above integral is

I(eo,ﬁo,S ) = 4 ab E, sinh(SAa) sinh(SBb) 88)
SAa SBb

or, in terms of exponentials,

I(Oo,ﬁo, S) =

4 ab By [ s(aa + Bb) _ _S(Aa - Bb)
SABab S

- e

89)

-S(Aa - BD) _ -Slha + Bb)}
S

The first term in the diffraction integral of equation
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85 is multiplied by j = S whish cancels the first S in
the denominator of eguation 89 above. The inverse Laplace

transforms required are
-1
L [s I(8518, S )1 =
J

E_Fo [%(t + Aa + Bb) -~ u(t + Aa - Bb)
AB

- u(t - Aa + Bb) + u(t - Aa - Bb)] 90)
= I(eo'ﬁo' t)
and

At {:I(eo,ﬁo.s)] =

UEO [(t+Aa+Bb) u{t + Az + Bb)
AB

- (t + Aa - Bb) u(t + Aa - Bb)

- (t - Aa + Bb) u(t - Aa + Bb)

Bb)} =f1(eo,¢°.'r) dT .

91)

Inserting the above transformed quantities into the

+ (t - Aa - Bb) u(t - Aa

diffraction integral of equation 85 yields the overall
unit impulse response of a rectangular aperture. The

exponential factor e"SR°/c merely represents a time delay

of -R,/c in the time domain.
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The total unit imvulse reeponse is

Ex(Rge8q:8 3 t - Ry/c) =

E
— 2% (cos 0, + 1) X
cABRon

l}(t + Aa + Bb =~ Ro/c) - u(t + Aa - Bb - Ro/c)

- u(t - Aa + Bb - R,/c) + u(t - Aa - Bb - Ro/c)]

+ Eo coSs eo

2
AB Ro i

Et + Aa + Bb -~ Ro/c) u(t + Aa + Bb - Ro/c)

- (t + Aa - Bb - Ry/c) u(t + Aa - Bb - Ro/c)
- (t - Aa + Bb - Ry/c) u(t - Aa + Bb - R /c)
+ (t - Aa - Bb - R /c) u(t - Aa - Bb - Ro/c)] 92)

where A and B are functions of 90.

Pictorially the far and intermediate field impulse
responses are as shown in Figure 1C. This result has some
very interesting interpretations. First, the ratio of the
absolute magnitudes of the intermediate field and the far
field is

2 b sin 90 sin ﬂo
R, (cos 8, + 1)
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a) Far Pield Impulse
Response

Aa > Bb

2E,c(1 + cos 0,)

T R, tan8 _ sin 2¢
(Aa+8b)

(Aa-Bb) °

-t

~(Aa+Bb)

-(Aa-Bb)

L

Ro/c

t.

ke 2Bb —>

b) Intermediate
Field Impulse
Response

ZEch coszeO

Z .
™ R5sin 8, cos #,

-1
-(Aa~-Bb)

-(Aa+Bb)

t =Ro/c

Figure 10,

.tl
(Aa=~Bb)
(Aa+BDb)

Rectangular aperture unit impulse response.
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which shows that the intermediate field is negligible for
Ro>> be In addition, &t 90 = 0, on the z axis, the ratio
is zero.

Next, the form c¢f the dominant far field is such that
for waveforms for which the time interval of interest is
much greater than the duration of this impulse response,
2(Aa + Bb), it appears as a unit doublet, or the first time
derivative of the ideal impulse function. Therefore, for
such excitation waveforms, the far field of the rectangular
aperture will be the first time derivative of the fields

in the aperture. This relationship may be put on a more

guantitative basis:

t; >> 2(Aa + Bb) = tan 8, (a2 + p?)? cos(f, - #,)
c

93)
where ti is the time interval of interest of the field in
the aperture and ﬁp = tan"1(v/a) .

Further study of the far field impulse response shows
more interesting features. For instance, the duration of
one of the pulses is

2Bb = 2b tan 8, sin £ . 94)
c

The above relationship shows that near the z axis

where tan eo approaches zero, the duration of the pulse

also approaches zero. In addition, the separation
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between the positive and negative portions is
‘ 2 r 2%
2(Aa - Bb) = tan €, (a® + p°;
¢
which is smaller tharn the pulse duration and which also

cos(f, + ﬂp) 95)

approaches zero on the z axis. The amplitude of the pulse

is

2 E, (cos 0, + 1) ¢

2 e
T R, tan<8, s1n(2ﬂo)

which approaches infinity as eo approaches zero. All of
the preceding discussion means that on and near the z axis
the impulse response approaches an ideal doublet which
produces a far field proportional to the first time
derivative of the field in the aperture. At locations off
the 2z axis poorer replicas of the time derivative are
formed.,

The above result is very significant. It was
mentioned earlier that other indicators of target angular
location might exist. This means that if an aperture is
- excited by a very short duration impulse-like field, a far
field response similar to Figure 10a 1is produced at a
given angular location. A small point target at that
location will reflect a doublet-like waveform peculiar to
the coordinates 6  and #, having a fixed relationship to
signal duration, pulse separation, and pulse duration.

For example,
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Total signal duration = K = a cos g, + b sin f# 96)
Pulse separation a cos f, - b sin #,

from which

tan # = a(K - 1) - 97)
b(K + 1) -
where K is a measurable quantity from which ﬁo, one
coordinate of the angular location of the target, could
be surmised. Once ﬂo is known the value of eo may be
calculated from the pulse durations

T4 = pulse duration = 2 b tan 8  sin ﬁo . 98a)
c

or

tan 8, = ¢ Ty . 98b)
2 b sin g,

The above technique would be very important for
measuring the angular position of a target since the
relative amplitudes of the signal with respect to direction
does not provide nonambiguous indications of the two
angular coordinates. Recall that the far field amplitude

is proportional to

(COS 90 + l) . 99)

2 .
tan“6, 51n(2¢0)

It is also of interest to note that the intermediate

field pulse approximates an ideal impulse function near
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the z axis, but its contributionr is insignificant.

As mentioned earlier it is alzsc necessary to determine
if the long wavelengzth {(i.e., low frequency) breakdown of
the Kirchhoff boundary ccnditione can safely be ignored in
this analysise. It is shown in Jackson (1967, Section 9.9

and problems 9.10 and 9.11) that in the long wavelength

limit, where

2 aw/c << 1 or W << c¢/2a ,
that the far field varies as (wa/c)2 for a small circular
. aperture. This fact indicates that for frequencies
satisfying the above inequality, the aperture transfer
function may be considered to be zero at these lower
frequenéies. The physical aperture then appears as the
ideal aperture we have considered here in cascade with a
high-pass filter which rejects the lower band of
frequencies. We may then determine the overall effect of
rejecting the low freguency band by recalculating the
impulse response from the transfer function cascaded with
a suitable high-pass filter. A suitable high-pass filter
offering mathematical tractability is the traditional RC

high-pass filter with the following transfer function:
th(s) = S/(S + W,) 100)
with ¢y, = c/2a.

Applying the above transfer furction to that of the
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rectangular aperture (ecuation 89 or 90) yields

S S I(eo,¢o¢8) =
S +w0

+ Bb S(Aa -
N E, eS(Aa Bb) - e (Aa Bb)
AB S + W, S+ Wy

- - b
e-S(Aa Bb) e S(Aa + B )] . 101)

S + Wo S + Wo
The inverse transform of equation 101 is a summation of

appropriately delayed exponential functions. Neglecting

propagation delay this is

-1
[ s SI(GO,E!O,S)J =
LS + W,
[~ - t + Aa + Bb
MEO u(t + Aa + Bb) e Wol )
AB L

- + -
- u(t + Aa - Bb) e Wolt + Aa Bb)

+

- u(t - Aa + Bb) e~ Wolt - Aa + BD)

+ u(t - Aa Bb) 102)

e-Q)o(t ~ Aa - Bb):]

The corrected waveform of equation 102 is shown in
Figure 11, The amounts of drocp, Z}l and [32, can be

calculated from
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_&
<— 2Bb ——>
—=2(Aa=-Bb
- B VR B
<— 2Bb ——>
P
t = Ro/b

Figure 11, Distortion of =z

ectangular aperture unit

r
impulse response due to lew freguency attenuation
effects of the aperture,
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-b{tan 8 i ’
431 = 1 - e-Pitan 8, sin go)/a 103a)

Zﬁz =1 - e-(a + b)%(tan 8o cos(fo + ﬁb)/Za 103b)

Typical worst case corngiderations for 6, = 5%, sin ﬂo = 1,
a= b, ﬂp ~ 452 yields

0.l o1 - 0.9 = 0.1

>

and - i
£§2 1-e 0.1/2

2]l - 0093 = 000? .

The above approximate values of droop show that the
far field impulse response may be distorted by as much as
10% droop in the individual pulses. The droop would have
little effect when convolved with a field appearing in
the aperture: the relative durations, pulse separations,
amplitudes, and areas of the pulses would be changed very
little by this distortion. As an approximation to the unit
doublet, the exact shape of the two separated pulses is of

no great concern.
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Circular Aperture with Uniform Intensity and Phase
Distributions

The diffraction integral may be evaluated for a
circular aperiure by changing the variables x' and y' to
polar coordinates in the aperture. In terms of polar

coordinates x' and y' are
x' =r' cos f#°
y' = r' sin #°
while the area elemeﬁt is
dA = dx' dy' =r' dr' 4fg*' .

Substituting the above expressions into the integral

of equation 87 gives, with a = radius of aperture,

I(eooﬂoo W) =

2
E, jr. dr.fejw(a cos @'+ B sin g#')r'/(c cos eo)dﬁ' )
o o

104)
The exponent in the integrand may be written as
2 2.% ' '
Jwr' (a% + 8%)° cos(g' - 47) =
c ¢os eo
j F cos(g' - £°) 105)

P

where
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g = tan " (B/a) = tan " (tan g,) = 4, . 106)

The integral in terms of ¢' is a standard form for

the zero order Bessel function of the first kind so that
2am

Jej F cos(ﬁ' - %) dﬁ' =—2—JO(F) . 107)
o

L

Since (a2 + 82) = sin eo v the quantity F simplifies to

F= wr'tan 6, . 108)
c

The second integration with respect to r' is
a

I, =E, Zfr' Jo( wr' tan 6, /c) dr’

o

o a W tan Bo/c

2 ’ ’ ’

2 Eo c fR JO(R ) dR
ﬂwz tanzeo

2

=2E,cawtan 8, J;(al tan o /c)

T e w? tanzeo

2 aE,c Jy(awtan e, fc) . 109)

™ ) tan 90
The far field transfer function then becomes

3 e-j(URo/c (cos 8, + 1) E,a Jl(acu tan /c) 110)

2
2 R0 tan eo
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which in operational form is

Ex(90'¢0's) =
e-SRo/c (cos 0, + 1) E, a I\(aS tan 90 /c) 111)
2 ﬂ2 R tan 6

o o]

If equation 111 is written in the form

-SR
E (8518,:S) = B, a® (cos 0, +1) e o/ X
2l R ¢
o
Il(aS tan 8 /c) 112)

a tan 8, /c

the portion of equation 112 which is a function of S is

e~SRo/c I,(AS)
-

where A = tan 90 .

2
c
The exponential factor just contributes an overall delay
term of Ro/c to the corresponding time domain quantity and
may be ignored in inverting the factor Il(A S) to the time
domain. From Roberts and Kaufman ( item 12.3-1, page 297,
1966) the inverse Laplace transform of the modified

Bessel function is

U1 s)) = _ -t for ~A<t<A.  113)
) m A2(A2 - 2)?

Recall that t actually incorporates a delay of Ro/c. The
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form of the above function of time is illustrated in
Figure 12,

As A approaches zero, or as #, approaches zero, the
waveform approachesan ideal doublet, For angles away from
the 2z axis the impulse response appears as if it were an
ideal unit doublet to an aperture field for which the
interval of interest of the waveform is much greater than
the value of A,

The above fact is verified and made clear by a series

expansion of I;(A S)/As

35 +83a%2 +85A% 4 -

ST ; :
2 3 x 2
=35+ zg: l + 21 21 114)
i=1 s (i +1)s

Taking the inverse Laplace transform of this series form

of I,(A S)/A gives the following

p1 I:Il (: S)] =

3o0(t) + A% 6™ (t) + A 500 () 4 —me 115)

24 3 x 2

where 6(5)(t) indicates the fifth derivative of the impulse

functione. Since A =_§;tan 80 and useful values of 60 are
c
on the order of 10° or less, it is seen that all terms after
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to oo

.t'

to -0

Figure 12, Idealized unit impulse response for a
circular aperture.
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the first diminish inversely with increasing even powers
of ¢ (= 3 x lO8 meters ver second) so that they are
negligible, It is safe to assume that a circular aperture
produces far fields that are the first time derivative of
the field in the aperture.

The complete impulse response of the circular aperture

is

Ex(eovﬂov t) =

E, c (cos 8 + 1) (t = Ry/c)
2
2 R, tan’e [az tan®e - (t - R /c) ]é
c?
116)
or, as an approximation from equation 115,
E (8,08,,t) =
E, a° ¢ (cos 8, +1) &'(t - R,/c) 117)
2
2 m R

The above equations 116 and 117 are interesting in
that there is very little angular variation of the far
field amplitude and it is completely independent of ﬁol
This fact indicates that some phencmenon other than
amplitude variation with angle is required to indicate
target direction.

The effect of the low frequercy cut-off can bte
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estimated by subtracting the low frequency components
contributed by this analysis. This is done in the
frequency domain using the transfer function of the
aperture. The frequency dependent portion of the transfer

function is

3 Jl(acu tan 8 /c)

a tan 0 /c

For W= w, c/2a the argument of the transfer function

is 4 tan 8_ . For small angles the Bessel function can be
o

j Jy(a W, tan 8, /c) = % jcuo . 118)

a tan /c

The contribution to the impulse response by these low

frequency components is
Wo

3 jferE)dw= 4 |sinw,t
dt t

%
= W, €S Wt = sin w t7]. 119)
t te

The overall time dependent factor of the impulse response

is

f(t) = =t [u(t + A) - u(t - AB - 9__rsin wo-t']. 120)
. dt[?‘"??“"

1
m A% (A% - ¢2)3

The form that this corrected impulse response might take is
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sketched in Figure 13. It is obvious from this figure

that some distortion can occur.
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10 =

Figure 13. Form of the corrected impulse response
for the circular aperture.

to +oo
> 2 a tan eo =
[
-t'/\ £
< 2 m
Wo
t = Ry/c
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Array Antennas

The general effect of an array of several radiating
elements may be guickly demonstrated by use of the
fundamental relatiomnship of equation 25 of Chapter VI. It

is repeated here for the reader’s conveniences
N

E_ (8, f,w) = a, edW®not/e + op) 121)
far n
n=1
or, in terms of the Laplace transform variable,
N
_ s(€,. T/c + 68))

Efar(e. g, s) = EE:An e 122)
n=1

with An the relative strength of the nth radiator, 6n the

h radiator, @

relative delay of the excitation for the nt
a vector denoting its location with respect to the origin,
and T a unit vector in the direction of the observation
point.

Inverting equation 122 to the time domain yields
N

Epar(e. g, t) = S;wAn 5(t - G;. #/c - 5.) 123)

i
n=

Since the overall far field transform domain response
is simply the product of the aperture, or array, response
and that of the radiating eiements making up the array, the
overall time domain unit impulse response is obtained from
the convolution of equation 123 with the impulse response
of the radiating element. If the far field unit impulse

response of the radiating element is h(t), then the overall

unit impulse response in terms of h(t) is simply
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Epop (80 g, t) = }Ej}%‘ji(e' d, t -~ ?g.f/c - 5,) 124)

n=1
which is nothing morz= than the linear superposition of

the several relatively delayed impulse responses due to
the individual radiating elements.

As an example of the effect of an array, consider a
one dimensional linear array having N evenly spaced
elements with uniform amplitude and phase distributions.

Its normalized response is

E = sinh(N S B) 125)
far

N sinh(S B)

where B = d cos @ and d= element spacing, and 8 is the
c

direction measured from a direction perpendicular to the

array. The above eguation may be written as

S -
SB 2SB 3SB + e(N 1)SB

E (1 + e + e + e + == )e

far =-é-
N
126)
Assuming ideal isotropic radiating elements, equation 126
constitutes the overall response of the array.,
Equation 11 of Chapter VII provides the value of
02 of the overall unit impulse response of the array. 1In
order to exploit that equation the first and secord

derivatives of E with respect to S are required:

far
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Q N-1)SB
(e5B 4 20258 4 3e3 Byi s (N - l)e( ) ) o 127)

BQ+2+3+4+ =+ (N-1))=4%B(N-1), 128)

SB 2SB SB -
2( 3 2 e(N l)SB) ., 129)

B (144 +9+ -+ (N-1)2) = B3N - 1)(2N - 1).130)
N 6

Then

B2(N - 1)(2N - 1) - % B3(N - 1)% . 131)
3

With B=d sin 8 , we have
2c
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0% = (N~ 1)(5 + 1) 4% sin o
48 ¢
= (N - 1) 42 sin‘e 132)
L8 02
and for N > 4,
o~ Nd sin 6 = 0,48 N d sin & nanoseconds.

3 x 105(48)%
133)

The value of 0 is also the amount by which the mean-

square duration of a pulse-like excitation is increased:

— (<2 2. %
Ofar field (osignal +0%) . 134)

Equation 19 of Chapter VII may be used to estimate
the rise time in response to an ideal unit step function.

That equation yields, for the 10% to 90% rise time

Tr < 4472 x 0,48 N d sin @ 135)
or

Tr < 2,14 Nd sin © 'nanoseconds . 136)

It is obvious from equation 136 that closer element
spacing and a smaller number of elements will improve

the time domain unit impulse respcnse of an array antenna.



234

Two-way Antenna Performance

To this point discussion has centered on the electric
intensity of the far fields produced by various antenna
configurations. However, the ultimate concern in radar
(or communications) applications is the form of, and the
distortion impressed on a signal after it has been
transmitted, reflected, then received by the antenna
system of the radar, The two-way time domain response is
quite easily established by considering the two-way
frequency domain response which is just the square of the
complex antenna one-way response (Harger, 1970, page 63).
Note that this assumption neglects any effects induced by
the radar target or the intervening radar medium. This
being the case, the effect in the time domain is then
simply the convolution of the antenna unit impulse response
with ifself. This fact is highly significant. It means
for those combinations of excitation time scale and a~erture
which produce far fields proportional to the first time
derivative of the aperture source field, that the final
received signal will appear as the second time derivative
of the aperture source field.

For those combinations of excitation source time scale
and aperture size not producing the time derivative of the
source, the self convolution c¢f the antenna unit impulse

response must be accounted for in cenjunction with the
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excitation waveform,
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Chapter XI Summary and Conclusiorns

Before stating the conclusions tc be drawn from this
study it is worthwhile %o restate the original aims and
purposes in making it.

As stated in Chapter I crowding of the available radar
electromagnetic spectrum is likely to occur in the future
making the possible availability of another form of
electromagnetic spectrum for radar applications very
attractive, It was also noted in Chapter III that radar
theory and its applications consists of two major divisions:
the electronic and signal processing aspects of the radar
operation; the electromagnetic and propagation principles
on which the radar operation itself depends. Since a great
deal is already known uzbout the 2lectronic processing and
amplifying of bi-valued and pulse-like wave trains it was
felt that little contribution could be made in that area.
However, little investigative effort has apparently been
made into the nature of the transmission, radiation, and
propagation characteristics of bi-valued waveforms such as
Walsh waves. The aim of this thesis, then, is to answer
the question of the compatibility of the radar environment
and several standard high frequency (sinusoidal) electro-
magnetic devices with bi-valued waveforms and whether
useful radar information {target direction, velocity, etc.)

might be provided by their use as a carrier waveform. No
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consideration is given regarding 2ains to be made in signal
processing using a Walsh carrier wave rather than a

sinusoidal carrier.
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Contributions and Findings

In Part I several qualitative conclusions were made
regarding the nature of the problems to be encountered in
using Walsh wave carriers in radar operations. First it
was concluded that detectable and useable target speed and
direction information can only be provided by an electro-
magnetic wave possessing a high periodic rate of one of its
fundamental parameters such as its rate of zero crossings.
This property is inherent in the bi-valued functions
considered here.

Another important conclusion is that direct transient
analysis of transmission, radiation, and propagation
phenomena would be very difficult and would require much
new research effort. In zddition, within the body of
knowledge of such phenomena the properties of devices and
materials have traditionally been described in terms of
their responses to steady-state sinuscidal excitation: i.e.,
suitable time domain descriptions of the items and materials

relevant to the problem are lacking.
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Contributions of Part IT

Part II offers corcepts and techniques by which the
desired transient or pulce-~like responses may be obtained
by other means. 1In Chapter VI it is pointed out that
transmission elements, radiating devices, and propagation
media may all be described by effective transfer functions
which relate the relative amplitudes and phases of steady-
state sinusoidal electromagnetic fields at two different
locations either along a transmission device or in free
space.

In Chapter VII the argument is made that the unit
impulse responses associated with transmission and radiation
devices and propagation media are sufficient to
characterize them when responding to bi-valued waves such
as Walsh functions. If this is true then such impulse
responses are readily available from the aforementioned
transfer function descriptions of these elements if wvalid
over a sufficiently wide band of (sinusoidal) frequencies.

However, in Chapter VII it is also shown that the
effect of the three classes of elements considered upon a
bi-valued wave is only of interest at its transition points
in either affecting rise and fall times or in increasing
the duration of and changing the shape of a pulse-like
waveform. A direct measure of these effects is the root-
mean-square duration of the related unit impulse response,

o, which was shown to be easily obtainable from the
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transform domain transfer functiecn of an element or device,
It is then not necessary to resort to time domain

evaluation of the root-mean-square duration, o, quite a
difficult task for many of the complicated unit impulse
responses obtained in Part III. The increase in rise or
fall time in response to a waveform having a finite rise
time is also established in Chapter VII. It is felt that
the simple but fundamental concepts introduced in that
chapter constitute a major contribution of this thesis.
Another important contribution arose in the work for
Part III in which the ideas of Chapter VII are applied to
actual transmission and radiation devices and antennas,
In this work it was ncticed that very often a transfer
function can be decomposed into a set of additive terms of
which one is a constants In the time domain the
corresponding unit impulse response then contains an ideal
impulse term plus others that are functions of time. The
ideal impulse term reproduces the original excitation
without distortion {other than an amplitude or delay
change) while the remaining terms describe the distortion
that the device or medium imparts to a signal or waveform
passing through it. The distortion terms are then isolated
and explicitly expose the parameters of the system
responsible for distortion as well as their relationships
to each other. Their effects can be minimized by keeping
their amplitudes or areas small with respect to the weight

of the ideal impulse term.
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Findings of Part III

Chapters VIII, IX, and X provide the quantitative
results of the study pertinent *o the aims stated earlier
while the material of Chapters VI and VII provide the
mathematical framework within which the analyses of Part
III are carried out and interpreted. Chapter VIII deals
principally with the radar environment. Its major
conclusions are few, but clear:

A planetary ionosphere can reduce useable
transmission distances to only a few meters. The
electric and magnetic fields are also found to
undergo relative distortion as they progress through
a plasma, meaning that they don't possess the same
temporal functional form. Because of this fact,
care must be taken in devising circuits that extract

energy from the fields.

The lower atmosphere is found to produce rather
low distortion, allowing useful transmission
distances of several thousands of meters. These
distances are proportional to the square of the
smallest time interval of interest in the progressing
wave: i.e., the time resolution desired,

In Chapter IX it was found that clcsed, hollow

metallic waveguide appear to be useless for transmitting

nonsinusoidal waveforms within the radar system or over
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any considerable distance from the electronic signal
processing units to antenna units. The useable trans=-
mission distances are found to of the same order as the
lateral dimensions of the waveguide., Since this is the
case, it appears that a more detailed analysis which takes
wall and dielectric losses into account is unnecessary.

Coaxial and strip transmission lines are found to
operate with useable transmission distances with the

following breakdown by the classes of transmission line

considered:
Coaxial line: 0.2\/Tm to 6.5\/Tm meters
Stripline: 20\/Tm to 85\/Tm meters

igzgfgizigc%iﬁi?lto.IWJE;' to O.ZNJE;' meters
where T is the smallest time interval of interest in the
transmitted waveform in nanoseconds.

In addition a simple criterion was established as
a by product of the analysis in that the transmission
distance may be maximized for a given amount of distortion,

or pulse distortion may be minimized by maximizing the

quantity

FL u,o

E VK"
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in the design of a transmission line. It is also found
that the current and veltage on a transmission line don't
retain the same temporzl forms as they progress along the
line.

Chapter X provided many interesting results. As
expected it is shown that a dipole antenna of finite
length is unsatisfactory as a radiating element if its
length is comparable to the product of the speed of light
and the duration of one Walsh function pulse interval.

Reflection yielded to analysis showing that for angles
of incidence much smaller than 45 degrees waveforms suffer
little distortion on reflection. This fact means that for
angles of incidence much less than 45 degrees parabolic
reflectors would be suitable to focus bi-valued waves.

When considering apertures (or parabolic reflectors)
as means of forming beams of Walsh waves it is found that
the far radiation field takes the form of the first time
derivative of the field within the aperture. In addition,
little unambiguous amplitude (or power) variation with
direction occurs in the far fields. However, a detectable
change in the shape of the impulse response occurs for
variations in direction.

In addition, a qualitative analysis shows the two-way
performance of an aperture antenna produces a received
voltage or current which has the temporal form of the

second time derivative of the field in the aperture.
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General Conclusion

Walsh functions or similar tvpe functions and their
time derivatives and integrals may be used as a radar
carrier waveform while conventional coaxial or strip
transmission line may be used to interconnect the elements
comprising the system. The lower atmosphere will offer
little hindrance while applications involving a planetary
ionosphere must be approached with some caution. Parabolic
reflectors are suitable for producing angle sensitive
parameters in the far field and target reflected fields,
although it appears that they don't produce a high
concentration of electromagnetic energy in a small solid
angle as is done in the sinusoidal case., Beam forming
properties of bi-valued waveforms do not allow the same
interpretation as found in the sinusoidal steady-state

response.
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Areas for Further Reseavch ard Consideration

This work is admittedly just the start of research in
a very neglected area of study. Because of the breadth of
the work, it was often limited to approximate or lossless
cases while the more mathematically difficult topics had to
be neglected., However, several topics for further, or more
intensive, research are apparent. Some of these are: 1) a
more exact analysis of the transmission line and its
termination problem; 2) inclusion of the effect of the
geomagnetic field with the ionosphere, or plasma; 3) obtain
the time domain unit impulse response of the lower
atmosphere; 4) obtain a more exact analysis of the low
frequency response of an aperture, These problems and the
general area of pulse, or transient, responses of
propagation media and transmission and radiation devices
offers not only the promise of an interesting and fruitful
area of research, but should also become very useful .s the

pulsed mode, or bi-valued waveforms, come into greater use,
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Appendix I: Subject Content of Classical Radar Text

Books and Specialized Short Courses in Modern Radar Theory
and Applications. :

Below are listed the tables of contents of several
recent text books and the generalized subject matter of
several specialized short courses offered in recent years
by several universities and recognized authorities in the

field of modern radar.
Text Books

"Radar System Engineering". Volume I of the Massachusetts
Institute of Technology Radiation Laboratory Series.

Edited by Louis N. Ridenour, 1963.

Chapter Topic
1 Introduction
2 Radar Equation
3 Properties of Radar Targets
L Limitations of Pulse Radar
5 CW Radar
6 The Gathering and Presentation of Radar
Data
7 The Employment of Radar Data
8 Radar Beacons
9 Antennas, Scanners, and Stabilization
10 The Magnetron and the Pulser

11 RF Components



12
13
14
15
16
17

249
The Receiving 3System- Radar Receivers
The Receiving Svstem- Indicators
Prime Power Supplies for Radar
Examples of Radar System Design
Moving Tarzet Indication

Radar Relay

"Introduction to Radar Systems" by M. I. Skolnik,

McGraw-Hill, 1962.

O g O FWwWwoNdD

o)
©

11
12
13
14

The Nature of Radar

The Radar Equation

CW and Frequency Modulated Radar
MTI and Pulse Doppler Radar
Tracking Radar

Radar Transmitters

Antennas

Recelivers

Detection of Radar Signals in Noise

Extraction of Information from Radar
Signals

Propagation of Radar Waves
Clutter, Weather, and Interference
Systems Engineering and Design

Radar Detection of Extraterrestrial
Objects

"Modern Radar- Analysis, Evaluation and System Design" by
R. S. Berkowitz (ed.), John Wiley & Sons, 1965.
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Part I Radar Basics

1 Basic Radar Concents

2 The Radar Equation
Part II Basic Signal Analysis Techniques

Linear System Analysis Fundamentals
Theory of Noise
Response of Devices to Noise

Noise Plus Signal Situations in Radar

w F W e

Complex Signal Analysis Concepts

Part IIT Radar Target Detection and Parameter
Estimation

1 Statistical Decision Theory and Detection
of Signals in Noise

2 Target Parameter Estimation
3 Probability Density and Distribution
Functions

Part IV Resoluticn, Ambiguity, Pulse Compression
Techniques

Ambiguity and Resolution

Linear FM Pulse Compression

Optical Correlation

F W =

Pseudo-random Binary Coded Waveforms

Part Vv Radios Frequency Considerations
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1 Atmospheric Effectz on Radio Wave
Provzgation

2 Factors in Antenna Design
Radar System Sensitivity

L Modern Low Noise Devices

Part VI Radar System Analysis and Design

Techniques

1l Target, Clutter, and Noise Spectra

2 MTI Radar Filters

3 Radar Feedback Filters

b Predetection Integration

5 Radar Cross Section Target Models

6 Illustrative Problems in Radar Detection
Analysis

7 Tracking Radars

8 Satellite Tracking

"Principles of High Resolution-Radar” by A. W. Rihaczek,
McGraw-Hill, 1969.

Introduction

Fundamentals of Waveform Analysis
Single Target Measurements

Resolution in a Matched Filter Radar

wmFwWwNn

Resolution Theory for Targets with
Constant Range Rate

o

Pulse Compression Waveforms
7 Linear FM Waveforms

g Cohzrent Pulse Trains
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10
11
12

13
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Radar Mapping of Distributed Targets
Target Detection in Clutter
Extensiors of Resolution Theory

Waveforms for Simplified Doppler
Processing

Syntheticz Aperture Radar

"Radar Design Principles: Signal Processing and the
Environment"” by F. E. Nathanson, McGraw-Hill, 1969.
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10
11
12

13

14

Radar and Its Composite Environment

Review of Radar Range Performance
Computations

Statistical Relationships for Various
Detection Processes

Automatic Detection by Nonlinear,
Sequential, and Adaptive Processes

Radar Targets
Atmospheric Effects, Weather, and Chaff
Sea and Land Backscatter

Signal Processing Concepts and Waveform
Design

Moving Target Indicators
Environmental Limitations of CW Radar
Pulse Doppler and Burst Waveforms
Phase Coding Technigues

Linear Frequency Mcdulation and
Frequency Coding

Hytrid Processors, Correlators, and
Incoherent Technicues
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"Radar Handbook" by M. Skclinik (ed.}, McGraw-Hill, 1970.
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An Introduction to Radar
Prediction of Radar Range
Waveform Design

Radar Measurement Accuracy
Receivers

Radar Indicators and Displays
Transmitters

Transmission Lines, Components, Devices
Aperture Antenna Analysis
Reflectors and Lenses
Array Antennas

Phase Shifters for Arrays
Frequency Scanned Arrays
Radomes

Automatic Detection Theory
CW and FM Radar

MTI Radar

Airborne MTI

Pulse-doppler Radar
Pulse~-compression Radar
Tracking Radar

Radar Height Finding
Synthetic Aperture Radar

Weather Effects on Radar
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ion]

Ground Echo

Sea Echo

Radar Cronss Section of Targets
Target Noise

Electromagnetic Compatibility
Solid-state Radar

Civil Marine Radar

Satellite Surveillance Radar
Radar Astronomy
Spaceborne-radar Applications
Digital Signal Processing
Bistatic and Monostatic Radar
Laser Radars

Beacons

Passive Detecticn
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Radar Short Courses

"Principles of Modern Radar™ - Jeorgia Institute of
Technology, Atlanta, Georgia, October 21-25, 1974,

NV @@ 9 N W E WO
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11

Radar System Furndamentals- Range Equation
Radar Cross Section

Propagation Effects

Radar Detection Problem

Elements of Radar Systems

Mechanical Aspect of Radar Design

Radar Measurement and Tracking

Special Signal Processing Techniques
Electronic Countermeasures

Basic Systems Analysis Approach

Laboratory Demonstration

"Radar Systems and Technology" - The George Washington
University, Washington, D.C., May 20-24, 1974,

Introduction to Radar; Performance and
Capabilities

Detection of Targets in Clutter; MTI
Radar

Signal Processing; Pulse Compression
Data Processing; Computer Control

Phased Array Radar; Solid-state Devices
in Array Radar; Adaptive Antennas

3-D Radar; Low Angle Tracking; Frequency
Agility

System Design Considerations
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Synthetic Aperture Radar; Optical
Processing ang Hcolography

Remote Sensing nf the Environment; Ice
Detection: Earth Resources Detection

Clear Alyr Turbulence; Cver-the-horizon
Radar

Millimeter Wave Radar; Future Trends

"Introduction to Radar” - University of Missouri-Rolla,
Missouri, May 25-29, 1970 and repeated January 11-15, 1971,

Wn
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11
12
13
14

Introduction to Pulse Radar, Search Radar
Coverage, and Radar Range Equation

Radar Measurement Problem, Classification
of Radars, Ambiguities

Minimum Detectable Signal, Prdbability
Density Functions, S/N, False Alarm
Rates, Pulse Integration

System Losses

Tracking Losses, Monopulse, Angular
Glint, Multiple Targets

MTI and Pulse Radar
Radar Transmitters
Antennas

Phased Array Antennas

Antenna Temperature, Noise Figure, Effect
on Radar Range

Estimation of Signal Parameters
Digital Signal Processing
Ambiguities, Pulse Compression

Propagztion, Refractivity, Effect on
Range and Elevation Data
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15 Weather Effects

16 Radar Astronomy

"Radar Systems Design" - University of Southern California,
July 24 to August 4, 1672.

1l Introduction, Radar Equation

2 Matched Filters

3 Radar Detection

by Antennas

5 Nonfluctuating and Fluctuating Target
Detection

6 Target Characteristics and the Radar
Channel _

7 Transmitter and RF Hardware Constraints

8 Receivers and Noise Sources

9 Ambiguity Functions and Radar Signal
Design

10 Pulse Compression

11 Scan-to-scan Performance

12 Fast Fourier Transform

13 Clutter Rejection

14 Binary Coded Waveforms

15 Electronic Scanning and Phased Arrays

16 Angle Tracking

17 Synthetic Arrays

18 Range and Doppler Trackers

19 Digital Signal Processing

20 Radar Astronomy

o
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21 Countermeasures
"Advanced Methods of Modern Radar Systems" - Technology
Service Corporation (Santa Monicz, California), Los
Angeles, California, June 27-30, 1972 and at Washington,
D.CI' June 5"'8' 19730
1 Course Overview

2 Target Detection and Target Models in
Modern Radar Systems

High Resolution Waveform Design

Adaptive Antenna Processing and MTI

Techniques

5 Technology Advances in Radar Transmitter-
Receiver and Array Antennas

6 Advanced Signal Processing Techniques

7 Environmental Mecdeling

"Radar Signal Processing and Clutter" - Technology Service
Corporation (Santa Monica, California), Silver Spring,
Maryland, October 18-22, 1971 and October 16-20, 1972,

1 Introduction and Types of Radar
2 Principles of Waveform Decign
3 Radar Equation Review, Clutter and

Jamming Equations

4 Probability and Detection Theory,
Minimum Detectable Signal

5 Effects of Limiting, Pulse Integration
in Noise and Clutter, Automatic Detection

6 Fourier Analysis and Power Spectral
Density, Correlation Processes, Matched
Filter Design, and Quadrature Detection

7 Radar Target Properties, Amplitude
Distributions, Fluctuation Spectrum,
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11
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Weather and Chaff Clutter-Reflectivity
and Svectrum, Freguency Decorrelation
Effect

Land arnd Sea Clutter, Amplitude and
Spatial Distribtuticns, Grazing Angle
Effects, Doppler Spectrum, Short
Pulse Effects

Ambiguity Functions, Pulse Compressicn,
Choosing Optimum Waveforms, Subclutter
Visibility, Airborne Pulse Doppler (ICW)

Pulse Doppler Techniques, FFT Techniques,
Phase Coding Techniques, Digital
Implementations, Quantization Noise

MTI, Variable Interpulse Period,I and Q
Implementation, Scanning Losses, Linear
FM and Chirp

Comparision of Processing Techniques,
Equipment Limitations, Pulse Compression
and MTI Hybrids, Adaptive Techniques

"Prediction of Radar Detection Range" - Technology Service
Corporation (Santa Monica, Califecrnia), Silver Spring,
Maryland, October 23-25, 1973.

1
2
3
n

Introduction, Range Equations
Signal/Noise Relationships
Wave Propagation Phenomena

System Losses; Range Calculation
Techniques

"Applied Theory of Radar Resolution” - Technology Service
Corporation (Santa Monica, California), Los Angeles,
California, November 6-10, 1972,

The Problem c¢i Resolution
Signal Notation and Waveform Analysis

Single Target Measurements
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4 The Role of Resolution
Basic Theory of Resclution and Waveform
Design
6 Radar Waveforms
7 The Linear FM Signal
8 Coherent Pulse Trains
"Radar Meteorology" - Technology Service Corporation

(Santa Monica, California), Silver Spring, Maryland,
November 9-12, 1971,

Fundamentals of Radar

Attenuation and Fluctuation of
Precipitation Echoes

Weather Radar Equations

Doppler Radar

The Relationship of Radar Reflectivity
Factor, 2, to Other Meteorological
Parameters

Clear-air Radar Echoes

Calibration, Measurements, and Data
Handling Techniques

"Microwave Sensing of the Earth" - Technology Service
Corporation (Santa Monica, California), Silver Spring,
Maryland, September 11-14, 1973,

W & W N

Introduction and Overview
Environmental Considerations
Spatial and Temporal Resolution
Radar Mapping

Synthetic Aperture Radar (SAR)
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6 Satellite Radicmetry

7 Radar Satellite Altimetry
“Radar Simulation” - Techncingy Service Corporation
(Santa Monica, California}, 3ilver Suring, Maryland,
September 26-29, 1972,
Introduction and Overview
Signals, Filters, and Noise
Radar Receliver Response
Radar Environment Models
Video Signal Simulation Technigques
Functional Simulation Examples

Video Signal Simulation Examples

W 33 O N FWON

Real-time Applications

*Radar Simulation" - Technology Ssrvice Corporation,
(Santa Monica, California), Los Angeles, California,
May 8"11, 1973.

1 Introduction

Functisnal Simulation Examples

Radar Data Processing and Real-time
Simulation

0

Signals, Filters, and MNoise
Radar Receiver Responses
Radar Environment Models

Video Signal Simulation Technigues

0 3 (o Y S

Video Signal Simulation Examples
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Appendix II: Derivation of the £ a2nd B Fields for the
Short Hertzian Dipocle with Arbitrary Excitation Using
Harmuth's Direct Technigue

Analysis of twe simplified, but fundamental,cases as
done by Harmuth, do much to expcse the nature of the
radiation of electromagnetic waves produced by sources
having arbitrary (i.e., nonsinusoidal) time variation.
These cases are the short Hertzian dipole and the small
magnetic moment dipole radiating elements. However, the
radiation characteristic of the magnetic dipole is the dual
of that of the short electric dipole so that only the latter
need be considered in great detail.

In both cases the spatial dimensions of the source
distribution is considered to be sc small that at any
instant of time the current density distribution due to
any electronically produced localized current or voltage
source is constant over its entire extent and proportional,
or equal, to the electronically produced quantity. Under
these conditions the current density distribution over a
short dipole element oriented along the z axis at the origin

of a rectangular coordinate system is
J(x,y,23t) = k i(t), -%4s € z € +3s 1)

with s the length of the short dipole element. Substituting
this quantity into equation 6 of Chapter V and usirg the
Lorentz gauge condition, both & and X may easily be

determined. The integral for K becomes
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A(x,y,23t) =

oo ) %S

k ui(t - | - 2'/c)e(x") s(y') dx'dy'dz"' =
b jx - x’
Xm0 y=a002S
- s - -
k u it - % -Aggj/h) dz* | 2)

b % - Ez1

~-1is
Since Iil > z', the denominator of the integrand may be set
equal to le and since %s/c << (the time interval over which

significant changes in i(t) occur) we have

A(X,y,2:t) =
8 .
Kui(t - ,il/c) dz' =K us i(t - |i’/c) . 3)
CRLIR ]

Since K and i(t) are vectors in the same direction, X

may be expressed in terms of current vectors having

arbitrary orientation:

K(x,y,2;t) = 8 u i(t - |%l/ec) L)
b |i|

in which s is a fixed vector in the direction of the current
element and of magnitude equal to the length of the dipole
element.,

The magnetic induction B is obtained as the curl of

A which reduces to

B(x,y,z5t) = VXK= u H(x,v,z:t)

or
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B(x.y.Z:t) =
us di(t -|R)/e) S X X +__us , i{t -|%|/c) s X X . 5)
unlilc dt | V slij iﬂ'ilz 'l/ s il

Notice that both terms of B are perpendicular to s and
X. The first term is normally called the far zone component
as it is inversely proportional to the distance |§l while
the second, inversely proportional to Iilz, is the near
zone component since it will dominate at distances close to
the antenna. However, the relative significance of either
term at a given distance Iil depends also upon the
instantaneous relative magnitudes of the excitation current
and its time derivatives.,

The scalar potential, in principle, 1is easily obtained

from the Lorentz gauge condition:

VR + ue 0f = 0. 6)
at
From this equation we obtain
t
g(x,ysz3t) = = 1 | NA(x,y,23T) 4T

ueo t

= - 1g[ ilT =~ |xl/c) ar . 7)
. b ||

The electric field E is much more difficult to obtzin

from
E(x,y,23t) = -0k - ¥
dt t
= __b__K_ + V(v\v‘é o'fi(T - I)-(!/,C) dT)a 8)
st Lr e ]il
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After considerable meanipulaticn the above equation may

be reduced to the following complicated expression

E(xyyyzit) = u  di(t -[%|/c) ¥

which consists of three basic components., The first is
usually termed the far zone component inverseiy proportional
to distance 'il from the dipole to the point of observation.
The third, inversely proportional to the cube of Iil s 1is
normally termed the near field since it predominates at
distances close to the antenna., The second term, inversely
proportional to the square of Ii] s is intermediate to the
near and far zone components. Notice that the far zone
component is perpendicular to both B and X.

As in the case with B(x,y,z;t) the relative
significance of the three terms in E(x,y,z;t) depends also
upon the instantaneous magnitudes of the excitation current,
its time derivative, and its time integral.

The small loop antenna element has been treated by
Harmuth (1972) by making use of Babinet's duality principle
which states that if E and B are soluéions to Maxwell's

equations in a charge and current free regiocn then %he
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transformed quantities
E—> AJuv/e =Rz, H— -EJule =-E/z, 10)

are also solutions since they also sztisfy Maxwell's
equations. If the expressions for E and H contain source
quantities they must also be transformed to their dual

quantities by the following transformation
B(t) = i(t) 5 — BJu/e = i(t) & Vu/e = Wz, 11)

where i(t) is the original electric dipole source, and M
the magnetic moment of a current i(t) flowing around a loop
of area a with its normal in the direction of the original
dipole.

Applying these principles to Harmuth's short electric
dipole element yields the dual solution for a small loop

antenna element:

E(x,y,23t) =_u i x X +_w = RXZX
b Zolil il 4nzo[i[2 x
= 1 di(t -[§|/c) a X %
Yo ;lc dt il
+ 1 i(t -[%]/c) & x % 12)

while for the magnetic induction we have the following

FJ

expression



267

B(x,y,23t) = u ¥ X (EX W
b Zoc |X| ggiz
f {3(5@)5{ - sa]
b Zolii l |2 .
t
+ u [311( aofMt TiX -fﬁdT] . 13)
2o |2’ HE o

The magnetic induction may also be written in terms of the

excitation current and its time derivative and integral:

B(x,y,z3t) = 1 di(t -lxl/b) XX (x X a)
b c? le dt Ix ‘2

t
+ 1 | i(r -|il/c) ar [3§i 73§ - é] . 14)
=13

As expected from the electric dipole soutions, the
far field terms for the current loop element are found to
be proportional to the time derivative of the excitation

current in this case also,
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he Mean-square Duration of the

Appendix III: Derivation of ¢
zscaded Elements

Unit Impulse Response of C

The effect of cascading two or more elements, each
being individually characterized by i1ts unit impulse
response or by its transfer function, is easily determined.
Let F(S) and G(S) be the individuzl transfer functions of
two cascaded elements such that the overall transfer

function, H(S), is their product:
H(S) = F(S) G(S) . 1)

By use of Equation 11 of Chapter VII, the mean-square

duration of the pair of cascaded elements is

o
-
ol

n

0}21=’t}21-f}21= lim [l ___2_1‘{_ - | _}_IE)Z] . 2)
S—>0| H(S) gs H(S) ds

Q.

From Equation 1 above

dH = F dG_ + G dF, 3)
d ds d<

so that

1 di =_1 d6 + 1 dF , i)
A(SY) dS  G(S) dS  F(S) ds

and

a°H=Fa% + G&F + 2dGxdF . 5)
4s

Then,
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1 a% = 14% + 14 +_2 dFP xdG ,  6)
H(S) gs? G as© F ¢s¢ FG dS dS

Considering the equations above the overall mean-square

duration of the cascade is then

2
o< =
h
1im |1 d%¢ + 1 d°F + 2 _dF yd6 + 1__(FdG +GdF
S—>0 | G gs F 452 FG 4 S (FG) ds ds

7a)

Completing the indicated multiplication and combining

terms gives

2 2 2]
= lim a¢ + 1d°F - ac Y - 1 [gF 7b)
S—>0 l:? 557 _g;? ( s) ?(ds)]

(3] o)

62 = 1lim |1 d%g - 4G /g 4 .l.QE_ -(4E_/p 21 . 7c)
h S—0 G ds? ds F 4s

It is noted in equation 7¢c above that the first two
terms constitute the mean-square duration, oz, of the unit
impulse response of the element G(S) while the second pair

of terms constitute 02

£ of element F(S). Then,

2 _ .2 2
h = oF + og . 8)

o
By simple mathematical induc+tion, the mean-square
duration of the unit impulse response of an arbitrary

number of elements ie¢ simply
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9)
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Appendix IV: The Mean-square Duration of a Signal Consisting
of the Superposition of an Arbitrary Number of Individual
Signals

First note that the laplace transform of a signal

consisting of the superposition of several terms is

Ht(s) = Hl(S) + HZ(S) + HB(S) + ——— + HN(S) la)
N
=i£l Hi(S) . ib)

The overall average duration, %, is then

N
T = 1lim 4H,= 1lim -1 _ .X dH: . 2)
S—>0 H Zs) st s—s0 H (S) & i=1 gg*
The square of T is
N N
% = lim D> dH. 5 3)
S—>0 i=1 ,]=1‘EIS'JL ds
N N
. % H (8) H (S
mE1 Ioq - (8) n(S)
The mean-square value of ty is
2 . N
t% = 1im 1 a’y, =1m z % . y)
t  s—>0 THL(S) dS s—>0 P51 4P
N
L. H (S
oE1 q( )
The mean~square duration is then
2 . 3 2 ‘
0" = 1im (t° - %) . 5)
t s—0 ¢

Meking the appropriate substitutions in equation §

gives
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2 N > N N 6)
of =lim [ 3 4%, - I £ dH 4K
¢ S"’O(p_l as? __ P2t ast 68
2
He(S) Ht{S)
which may be factored to give
/ N
02 = 1lim 1 L a°H
N N )
- _1__.I. =, dH gH.|. 7
7§Z§7‘1“13'1 as” dSJ)
Notice that dsz/dS2 may be written as
2 2 2
d°H = H_(S) ( _1 d°H )= H_(S) t 8a)
p a———
452 P -ﬁgrgj 2P P P
and
42 32 2 2
H S = H S t - f +H S [}
p(8) tp = Hy(S) (2 - ) + 1 (5) T 8b)

Substituting equations 8a and 8b into equation 7 and

combining summation indices in the first and second terms

yields
N
o2 =1im _1 [z |H ()% - T) +H (s) T
S—>0 Ht(s) 1=] i i i 1
2 N N
- _1__ [¢H. - _1 T T dH. dH. |\ . 9)
H (S) |as* H,(S) i#j S gs?

If now (dHi/dS)z/Ht(S) is written as

2 2 : 2,2 2 2
1 [dH:\" = H,(S) [dH.\"/HS(S) = H.(S) T/H.(S) . 10)
Ht(35(d51) Hy(S) (551) : ’ Bt
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Equation 9 then becomes

N =
o2 =1im 1|z (%655 (42 - %)
s—>0 H, S) |~ - = -
2 2
+ H.(S) T5(1 - HS(S)/H ()] - _1 § E dH, . . 11)
105) %  (S)/H () R (5) 14] ast i)
With ;g - %E = o? equation 11 becomes
N
0% = 1im 1| .z [H.(s) o}
' s—0 HtZS) i=1| +
+  H.(S) T2 (1 - H2(S)/H,(S))
i i i t
| ) N N - )
H,(S) £,.I dH, dH. 12
t i#j gsi dSJ:!
which may be factored to yield
N
02 = lim 1 I H (s)[o?
T s—o0 H,(S) 1 1
+ T2(1 - HA(S)/H,(S))
i i t
NN
- 1 T3 dH. dH. . 13)
Ht(S) 1#) d3? dSJ]

Due to the complexity of equation 13 it is obvious that

it could be manipulated into many different forms.
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Appendix V: Calculation of Collision Frequency, Vv for

?
Metallic Conducting Materials ¢

Values of collision frequency for Chapter IX are
calculated from the freguency dependent form of

conductivity given by (Kittel, 1568)
o(S) = N ez/h(S + Vo) | 1)

where N = electron density per cubic meter, e the electron
charge in coulombs, m the electron mass in kilograms, and

v, = 1/T of Kittel's development of 1968. Setting S=0

yields the known static value of conductivity, Coo in mhos
per meter. Then
v. =N e2/m o_ . 2)
c o

The quantity v, may also be expressed in terms of plasma

frequency, Wp? given by Kittlel (1968) as
2

cqi =Ne/e m 3)

from which
2 . 2
€Wy Ne/m . L)
Setting eowlz) for Ne2/m in equation 2 gives
v. = wie /o . 5)
c p o "o

The quantitycup is the free electron plasma frequency in

radians per second and e_ is the permittivity of free space

(o]
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which is equal to 8.85 x 10"1? farads per meter.
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Appendix VI: Convolution of _e aF and _e t

t t
It is shown belcow that the fcllowing convolution

relationship holds:

1t [ﬁs T a)(s + b)] = T3t bt
2n¥t  ondt

2 e-%(a+b)t

=(a -b) J;(3(a-b)t) 1)
b 3(a-b)t
or
L'l[?(s +a) (s +-t0] = (a - p)? e"2(@D)Y I,(3(a-b)t)  2)

4(a=b)t

as (a - b) is real or imaginary.
Substitution of the exponential functions into the

convolution integral yields

-bt v -(a - b)x
= e e

I dx . 3)

© m X3/2(t - X)3/2

o)

Making the following change of variable
X—>yt

yields

1
= oDt t e t(a - b)y d

= y
© £ y3/2(1 - y)/?

0

I

k)

or
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1 ,
I =e 0% e-tla = D)y 4 5)
C e rouar s A

- v/ (1 - y)¥e
(o]

Next add and subtract % to y %o cbtain

1 4 3
I, = Jiffl. o-t(a - bi(y %,+ 3) Ay - 3 +3) 6)
bt 2 (v - 2+ 35723 - (y - 3))3/2
and change the variable y - & tc Y to obtain
-t(b + %a - 3b) -1 - b):
I = t( ) 3 o-3t(a :)zy a4y . )
bm 12 (3 + )% (3 - 1)I/?

Making another change of variable Y—> %z provides

_ e-%t(a + b) e-%t(a - b)z dz

I, 8)
m t° (1 - 22)3/2
or
Ic =
-it(a + b) 1 1
e * 2 n2(a-b)(-3/2)¢ o-¥t(a-p)z .,
"t b x 3t m2(a=b)((-3/2)! —5.3/2 9)
(1-2°)
0
where (-3/2)! = - Zn% « Collecting all factors outside of
the brackets gives
1
-2 S ek -
I = it(a + b) (a - b) r S 3t(a - b)z izl . 10)
2t (1 - z2)3/2

o

The factor in brackets is a standard fcrm for Jl(%t(a - b))

if (a - b) is imaginary or Il(%t(a - b)) if (a « b) is real,



Therefore
Ic =
when (a -

Laa]
||

when (a

-3t
i(a - ) e7FHE T D)

b) is imaginary and

1
i(a - b)2 o 1t(a + b)

b) is real.

Ji{3t(a - b))
st(a - b)

I;(3t(a - b))
it(a - b)
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11)

12)
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Appendix VII: Derivation of Equation 62 of Chapter X
from Equation 61 b

It is shown that equation 61 b,

e(s) = -1

+ 2S(s + vc)(S(S + vc) +'A/cosze)
A(tan®e - 1)(S(S + v,) - A/(tan®0 - 1))

- 2(S(S+v,) +A) S(S+v,)(S(S+vy) +A/cosPe), 1)
A(tan%e - 1)(S(S+v,) - A/(tan%e - 1))

may be decomposed into the following additive components

shown below:

e(S) = -1+ 2v,_ S + 25°
A(tan<e - 1) A(tan%e - 1)
+ 2 S(s +vc)
(1 - cot?e)® (S + a)(S + b)
- 2~/s(s + v )(S +c)(S +d)
A (tane - 1)
- % tan®(20) \/S(S + v_)(S + c)(S + d) 2)
(8 + a)(s +b)
where

a= .;_vc + 3-\/.9;»'(2: + A/(1 - tan%e)

b = %vc - j_\/-i-vg + 4A/(1 - tanze)
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o
u

%vc + j“\/:%vg + A/bosze R 3)

= 3v, - j‘\/—%vg + A/cosze .

.
}

First consider the second term of equation 1 above,

2

Add and subtract A/(tan“8 - 1) to the numerator factor

(S(s + vc) + A/cosze). This procedure yields for the second
term

A A
2s(s + VC)(S(S + VC) ~ tan®p - 1 t tan?e - 1

+ A/bosze

A(tan®e - 1)(S(S + v,) - A/(tan%0 - 1))

25(S + v,) [s(s +v) - A/(tan’® - 1)
A(tan®e - 1) [ S(S + vc) - A/(tane - 1)

1 1
A (Cos2e * tan<g - l) }
)

S(S + v,) - A/(tan®e - 1

25(S + v,) 2S(S + v.) 1 1
+ ¢ %6 t*t T
A(tan®e - 1) (s +a)(s + b)[;°s tan6 - 1|, 4)

tane - 1

The trigonometric factor of the second term in
equation 4 may be reduced to 1/(1 - cotze)2 by use of

standard trigonometric identities as follows:

1 1 } 1
5, ¥ 7]
cos<8 tan<e - 1 tanle - 1

29 tanzﬂ - sin29

tanze - 1 + cos

cosze(tanze - 1)2 cos?o tanae(l - cotze)2
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tanze sir:ze_1 1l

2. - ZJXIL 2 2 =
cos 9 cos 9 +an 2{(1 - zo0t“8)
(tanze/cosze) - tanze cosze(ml + 1/cos29)

2 .2
tanhe(l - cot 8)7 sinze(l - cotze)2

l - cosze sinze 1

= = 5)

D e
sinze(l - cot29)2 (1 - cotze)“

2
sinze(l - cotze)

Equation 4 is then

2(s%+ Sv,,) 25(S + v,)
+ =
A(tan%e - 1) (1 - cot®8)°(s + a)(S + b)
2 82 2 S Vo
+

A(tan® - 1)  A(tan8 - 1)

2 S(s + vc)

+ . 6)

(1 - cot?0)%(Ss + a)(S + b)

The third term of equation 1 is treated also by adding
and subtracting A/(tanze - 1) to the factor (S(S + v8+ﬁ).
This operation yields

A A
+
tan® - 1 = tan<® - 1

-z[é(s + v,) - +-A]WJS(S+VC)(S+C)(S+G)

A(tan®e - 1) (S(S +v,) - A/(tan%6 - 1))

-2 [} . A+ A/(tan®e-1)NE(S+v, ) (5+) (5+d)
(S+a)(S+b) J .A(tanze - 1)



-2°\/s(s + vc)(s + cy(S + 4)
A(tan%s - 1)

2(tan%e - 1 + 1) VS(S + v,)(5 +c)(S + d) )
- . 7

(tan%e - 1)(S + a)(S + b)

The trigonometric coefficient of the second term above is

2(tan%6 - 1 + 1) , 4 tanZe ; 2 tan$
(tan%e - 1)2 (tan%e - 1)° tane - 1
2
= 4 tan (20) . 8)

The third term of equation 1 is then

2\/s(s + v )(s +¢c)(s +4)
A(tan26 - 1)

3 tanz(ze)'\/s(s + vc)(s +c¢)(S +4d) )
- . 9

(S +a)(sS + b)

Substituting equation 6 and expression 9 into equation
1 yields equation 2.

It is noted that equation 2 appears to possess
singularities at & = 45° whereby the second, third, fourth,
fifth, and sixth terms become infinite. The overall
behavior of ®(S) as 6 approaches 45° is eacily deternined
by setting x = tane - 1, (x + 1)2/'x2 =1/(1 - cotze)z, and
2(x + 1)/x2 = tanz(ze) and then taking the limit of #(S)
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as x approaches zero. Making the above substitutions gives

OS) ==1+25(S+v)+ 2S(S+v)(x+1)?
A x x° (S(s + v ) - A/x)

- 2°/S(s + v )(S +¢c)(s +4)
AXx

(x + 1)\/S(s + v,)(5 +¢c)(5 +d)
x?(S(S + v,) = A/x)

(S) = =1+ 2 S(S + vc) 1 + (x + 1)2
Ax x(S(S + v )x - A)

2\/s(s + v,)(S +¢c)(S +d) | 1
(S +a)(S +b) A x

(x +1)
x(S(S + vo)x - &) | °

10)

As x approaches zero (or equivalently, as 6 approaches

45°) the limits of the two bracketed factors are as

follows: the first is

lim S(s + Vo)X= A + A(xZ + 2x + 1) =
x—>0 Ax(S(S + vy)x = A)

;1m o x(S(S + v,) + Ax + 2A) _ S(S + v,) + 2A
E x A(S(s + Vo)x = A) Y

while the second bracketed term is

lim S(s + Yc)x - A+ AX + A_j;ip S(Ss + vc) + A

X—>0 X (S(s + Vo)X = A) Xx—>0 . A2

11)
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= S(S + v,) + A 12)

The above equations 11 and 12 show that the entire
expression for @(S) remairs finite as 6 approaches 4 5°
even though the individual terms in the decomposition

of equation 2 tend to infinity.



