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UNIVERSAL ALGEBRA 

INTRODUCTION 

A universal algebra, in brief, consists of a set A together 

with an arbitrary number of finitary and totally defined operations 

on A. 

Thus, a set is a universal algebra with no operation, and a 

groupoid is a universal algebra with a single binary operation. A 

group is a universal algebra with one binary operation, one unary 

operation, namely, the taking of the inverse of an element, and one 

nullary operation, namely, the taking of the identity. 

An example of a universal algebra with an infinite number of 

operations is a vector space V over the real field R. Here, the 

scalar multiplication induces a set of unary operations f r given by 

fr(v) = rv 

for all v E V, where r E R. 

A semi -group S is a universal algebra with a single binary 

operation which is associative. That is, if f denotes this binary 

operation, then 

f (f (a, b ), c) = f (a, f (b, c)) 

holds for all a, b, c, E S. This identity distinguishes the semi -groups 
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among the universal algebras with a single binary operation, namely, 

groupoids, and determines what we call a primitive class. In general, 

algebras in which a given set of identities hold, constitute a primitive 

class of universal algebras. 

The concept of a universal algebra used here does not permit 

partially defined operations, and hence we cannot treat the theory of 

fields, since the unary operation f(x) = x-1 is defined only when 

x 4 O. It cannot be extended in such a way as to maintain the identity 

xf(x) = 1 

for all x in the field. There is a more general theory allowing 

partial operations, but we shall not consider it here. 

Our subject is divided into two parts, the first on universal 

algebras and the second on groups with multi- operators. Part I, 

which comprises the first four chapters, begins with the fundamental 

notion of universal algebras, homomorphisms and congruence rela- 

tions, and ends with the theory of primitive classes. Part II, then, 

concentrates on the algebraic systems called groups with multi - 

operators, which form a primitive class of universal algebras. It 

comprises Chapters V and VI. 

Definitions and propositions of the fundamentals are covered in 

Chapter I. Chapter II, on the generalized Jordan- Hölder theorem, is 

devoted to the extension of the isomorphism theorems which are 
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usually found in group theory, to those of universal algebras. In par- 

ticular, it is shown that Zassehaus' lemma, Schreier's refinement 

theorem, and the Jordan- Hölder theorem hold in universal algebras 

under a very simple condition. Chapter IV introduces the notion of 

primitive classes, and together with this chapter, Chapter III presents 

existence theorem of free universal algebras, products, and sums in 

any primitive class of universal algebras. There, the basic language 

of category theory is used. 

The generalized notion of normal subgroups and ideals is devel- 

oped throughout the last two chapters. The theory of direct sums is 

covered in Chapter VI, and the uniqueness theorem of the complete 

decomposition of a group with multi- operators is represented as the 

last theorem of this paper. 

As most mathematical books and papers require the concepts 

and methods of the theory of sets as basic to their subjects, the pre- 

sent paper assumes the reader's familiarity with these. As far as 

the theory of algebras is concerned, only a knowledge of the funda- 

mentals of groups, homomorphisms, normal subgroups, factor 

groups, etc. are required. 

The following list shows symbols, notations and abbreviations 

used in this paper: 

A Set 

Z Set of integers 
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N Set of natural numbers 

A v B, v A Union 
AEA 

A n B, rTh A Intersection 
AEA 

A - B Difference 

A X B, H A , An(neN) Product set 
AEA 

Set inclusion 

C , D Proper inclusion 

R -1 Inverse of the relation R 

RT Composition-' of relations R and T 

RIA Restriction of R to A 

1A Identity relation for a set A 

f : A B f maps A into B 

f(x) Value of f at x 

f : y f (x) = y 

AI Cardinal number of A 

NO 

iff 

NI2/ 

"if and only if" 

f 
Sometimes we denote A B instead of f : A B, which 

is used especially in diagrams to illustrate the composition of 

1RT = {(a, b) : (a, x) E T and (x, b) E R for some x }. 

2 
In general, the first letter "aleph" of the Hebrew alphabet is 

used instead of N of N0. 

xi-- 

- 

3 



mappings. The diagram 

f 
1 

C 

where f1, f2 and f3 are mappings and A, B and C are sets, 

is said to be commutative or said to commute if f3 = f2f1. Similar- 

ly, the diagram 

5 

A 

14 

D 

f 
1 

> B 

1f2 

f 
3 

C C 

is commutative if f2f1 = f3f4, and the diagram 

fl 
> 

f2 

if3 

C 

is commutative iff all the triangles are commutative diagrams. 

We also need a rudimentary concept of categories and functors, 

especially the former, which is indispensable for our construction of 

free algebras. 

Definition of Categories. A category CAT consists of a col- 

lection of objects Ob(CAT) and for any pair of objects 

> 

D 
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A, B E Ob(CAT) a collection of morphisms HomCAT(A, B) satis- 

fying the following conditions: 

i) If f E HomCAT(A, B) and g E HomCAT(B, C) then there 

is a unique morphism gf E HomCAT (A, C) called the compo- 

sition of morphisms f and g. 

ii) For each object A E Ob(CAT) there is a morphism 1A 

in HomCAT(A' A) such that if f E HomCAT(A, B) and 

g E HomCAT(B, A) then f1A = f and 1Ag = g. 

iii) For any morphisms f, g, h, (hg)f = h(gf) whenever (hg)f 

and h(gf) are defined. 

iv) Two families of morphisms HomCAT(A, B) and 

HomCAT(A', B') are disjoint if either A A' or B B'. 

For instance, we see immediately that all sets and mappings 

between the sets form a category SET. In this paper, often the ob- 

jects are taken as algebras and the morphisms are taken as homo- 

morphisms between the algebras as the symbol "Hom" indicates. 

Definition of Functors. Let CAT and CAT' be categories. 

Then a rule 

F : CAT CAT' 

such that for each A E Ob(CAT), F (A) E Ob(CAT') and for each lA 

in HomCAT(A, A), F(1 
A) 

= 1F,(A) E HomCAT' (F(A), F(A)), is called 

- 

# 
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a functor of CAT into CAT' if it satisfies either i) or ii) below: 

i) For each f E HomCAT(A, B), F(f) E HomCAT!(F(A), F(B)), 

and further, if g E HomCAT(B, C) then 

F (gf) = F(g)F(f). 

ii) For each f E HomCAT(A, B), F(f) E HomCAT'(F(B), F(A)), 

and further, if g E HomCAT (B, C) then 

F (gf) = F (f )F (g ). 

The functor with the property i) is called covariant and the one with 

ii) is called contravariant. 

A simple example is a functor F : GRP -- SET where GRP 

is a category whose objects are groups, and whose morphisms are 

group homomorphisms. F maps every group onto its underlying set, 

and group homomorphism onto its underlying mapping. One can show 

at once that F is a covariant functor. 

Also, let S be a fixed set, SX a set of all mappings of a 

set X into S. Then we have a contravariant functor F: SET -SET 

such that for each set X and for each mapping f :X - X', F (X) is 

a set S and F(f) is a mapping of S into SX defined by 

F(f) : (pf 

for all cp E S . The proof is straightforward and is omitted. 

rp H 
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PART I. 

UNIVERSAL ALGEBRAS 



L GENERAL THEORY 

1. S2 -Algebras 

9 

By an n -ary operation on a set A, we understand a mapping 

which assigns to each n -tuple of elements of A a single element of 

A, n being some finite non -negative integer. In particular, a do- 

main of a nullary (0 -nary) operation is a singleton and hence the oper- 

ation selects a certain element (constant) in A. If the symbol 0 

is used to denote a nullary operation which picks up a constant c E A, 

we shall identify these two symbols 0 and c, i. e. , a nullary 

operation is a constant of A. 

Thus, if G and H are respectively a multiplicative group 

and an additive group, G and H are considered to have nullary 

operations 1 and 0, respectively. Similarly binary (2 -ary) 

operations and + are defined on G and H, respectively. 

However, since in this paper, a distinction between the binary opera- 

tions and + is inessential and may even cause some confusion, 

we shall avoid such a use of different symbols for the same kind of 

algebras. For this purpose we shall adopt the following definitions: 

Definition 1. 1. An operator domain is a set Q whose ele- 

ments are called operators such that for each w E S2 a mapping 

a : w F- a(w) E N is defined. a(w) is called the arity of w and if 
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a(w) = n we call w an n -ary operator. Often we denote a set of all 

n -ary operators in Q by On. n 

If A 

S2 
n 

is a set such that whenever Stn 0, a mapping 

is defined, then A is said to have an 0-algebra struc- 

ture, and a family of such mappings is called an 0-algebra structure 

on A. 

Definition 1. 2 A universal algebra or an 0-algebra is a set 

that has an SZ - algebra structure for a given operator domain Q. 

Hence, a set A is an 0-algebra iff for each w E On 
n 

an 

n -ary operation An -'-A is defined. We shall denote the value of the 

n-ary operation at each (al, a2, . . . , an) E A 
n by w(a1, a2, . . . , an). 

Thus, for instance if (il, i2, ... , in) E Zn then for each w E On we 

may define the corresponding n -ary operation by 

w(i 
1 
,i 

2 
,...,i n) = inf{il,i2,...,in}. 

Or more trivially if S is a set then we may define the n -ary opera- 

tion as 

w(sl, s2, . .. , sn) = sl 

for all s s ... , sn E S. Thus, Z has an Q - algebra structure 

and so does any nonempty set. In particular, from (1. 1. 1) we see 

that for any w E Stn, w(0, 0, ... , 0) = O. Henceforth we shall mean by 

# 

--AAn 
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the S2 -algebra Z the S2 -algebra Z given by (1. 1. 1). 

Example 1. 3. Let + denote a binary operator. Then a 

groupoid is an S2 - algebra, S2 being a singleton { + }. If 

S2 = { +, -, 0} where - is unary (1 -ary) and 0 is nullary then a 

group is an S2 - algebra G which satisfies the following identities for 

all a, b, c E G: 

+(+(a, b), c) = +(a, +(b, c)), 

+(a, 0) = a, 

+(a, -(a)) = O. 

Thus, a group is an e - algebra for S2 = { +, -, 0 }, but the converse 

may not be true. The subject of Chapter IV is related to such a set of 

identities, and there we shall see a certain formalization of a class of 

S2 -algebras that satisfy the given identities. 

Similarly, if S2 has an additional binary operator then 

the S2- algebra is a candidate for a ring. Here again, a ring is an 

Q -algebra but an S2 - algebra is not necessarily a ring. 

Definition 1. 4. Let A be an S2 - algebra. Then a subset B 

of A is called an S2 - subalgebra if B is closed under all the oper- 

ations on A determined by 0, i. e. , for any n -ary operation on 

A determined by w E On, by b2, ... , bn E B implies 

w(bl,b2,...,bn)E B. 
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Thus, a trivial example of an 0 - subalgebra of the 0-algebra 

A is A itself, and in particular O is an S2 - subalgebra of A 

iff 0 has no nullary operators. From the definition the following 

proposition is immediate: 

Proposition 1. 5. The intersection of an arbitrary number of 

S2 - subalgebras of an 0-algebra is an S2 - subalgebra of the 0-algebra. 

If A is an 0-algebra and S is a subset of A, then the 

intersection of all the S2 - subalgebras containing S is the smallest 

S2 - subalgebra B containing S. B is called the 0 - subalgebra of 

A generated by the set S. 

2. The Fundamental Theorem of Homomorphisms 

In this section, we shall start with the study of a mapping of an 

0-algebra into another 0-algebra that preserves the 0-algebra struc- 

ture, and obtain a theorem which indicates an important character- 

istic of algebras in general. 

Definition 1. 6. Given two S2 - algebras A and B, a bijec- 

tive mapping f : A -B is called an isomorphism of A onto B 

if for all co E Qn and a , a ... , a E A, 

f : w(al,a2,...,an) Hw(f(al),f(a2),...'f(an)) 
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If there is an isomorphism f.: A --B, A and B are said to be 

isomorphic and we write A = B, or f : A = B. 

If f has the property above but not necessarily bijective, f 

is called a homomorphism, and similarly the terminologies "epimor- 

phisms," "monomorphisms," "endomorphisms" and "automorphisms" 

are defined in obvious manner. 

Proposition 1. 7. If f : A --B and g : B --C are homomor- 

phisms of 0 - algebras A, B and C then the composition 

gf : A is again a homomorphism. 

The proof of 1.7 is immediate from the definition. Also one can 

show that the identity mappings lA : A -- A and 1B : B B are 

homomorphisms such that f1A = f and 1Bf = f for any homomor- 

phism f : A -- B, and that the composition of homomorphisms is 

associative. Hence all 0 - algebras together with a collection of all 

homomorphisms of 0-algebras form a category. This category is 

denoted by [SZ] and is called the category of Q -algebras. A collec- 

tion of objects in [Q] is denoted by Ob (Q) and for each pair 

A, B E Ob(Q), a collection of morphisms from A to B is denoted 

by HomQ(A, B). In particular, a category SET is considered as a 

category [0] with 0 = O. 

Proposition 1. 8. Let A and B be 0-algebras, and f a 

-C 
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homomorphism of A into B. Then if A' and B' are S2 - 

subalgebras of A and B, respectively, the following two sets 

are S2 - subalgebras of B and A respectively: 

f(A') = {f(a') : a' E A'}, 

f-1(B') = {a E A: f(a) E B'}. 

The former is called a homomorphic image of A' and the latter is 

called an inverse image of B'. 

Proof. By the definition of homomorphisms it is evident that 

f(A') is an S2 -subalgebra of B. To prove f 1(B') to be an 0- 

subalgebra of A, let al, a2, . . . , an E f 1(B') and w an arbi- 

trary operator in On. Then for each a., i =1, 2, ... , n, we have 

f (ai ) E B', and hence 

f(w(a1, a2, . . . , an)) = w(f(al ), f(a2), . . . , f(an)) E B' , 

w(al, a2, . . . , an) E f 
-1 (B'). 

Therefore, f-1 (B') is an S2 -subalgebra of A: Q. E. D. 

Definition 1. 9. Let R be an equivalence relation on the S2- 

algebra A such that R is closed under all the operations on A 

determined by O. It means that for all w E S2 and a., b. E A, n i i 

n 



i=1, 2, ... , n, a. = b. mod R implies 

w(al, a2, .. . , an) = w(bl, b2, . . . , bn) mod R. 

15 

Then R is called a congruence relation on A, and the R- equiva- 

lence classes are called R- congruence classes. We shall often adopt 

the notation: 

a={xEA: a mod R) 

for the R- congruence class (or R- equivalence class, as well) contain- 

ing a E A. 

Thus, from the definition, we see that if R- congruence classes 

a. and b., i =1, 2, ... , n, are given, then a. = b. implies 

w(a1, a2, ... , an) = w(b1, b2, ... , bn). Therefore, the n -ary operation 

on the family of all R- congruence classes such that 

(a1, a2, . . . , an) w(al, a2, . . . , an) 

is well- defined. Now it is natural to consider the operation to be the 

one determined by w E S2 . 
n 

That is, 

w(al, a2, . . . , an) = w(al, a2, . . . , an), (1. 2. 1 ) 

and the family of all the R- congruence classes has an 0-algebra 

structure. 

i i 

14 
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Definition 1.10. If A is an 0 - algebra with a congruence re- 

lation R then the family of all R- congruence classes forms an 

S2- algebra with respect to the n -ary operations given by (1. 2. 1). This 

0 - algebra is called a factor 0 -algebra of A with respect to R, 

and is denoted by A /R. 

Now let A be an 0 -algebra with a congruence relation R, 

and consider a mapping y : A - A/R defined by y: a h a for 

all a E A. Evidently, y is surjective and if al, a2, ... , an E A 

and Co E On then (1. 2. 1) is written as 

co(v(al ), v(a2), . . . ,v(an)) = v(w(al, a2, . . . , an)). 

Hence, v is an epimorphism, and we call it the canonical homomor- 

phism of A onto A /R. 

The following definition gives an important example of a con- 

gruence relation on the 0 - algebra. 

Definition 1. 11. Let f be a homomorphism of the S2 -algebra 

A into another S2 - algebra. Then the kernel of f is a set Ker(f) 

of the ordered pairs defined by 

Ker(f) = {(a, b) EA2 : f(a) = f(b)}. 

Henceforth, we shall rather write a = b mod Ker (f) to mean 
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(a, b) E Ker(f). We can show that Ker(f) is obviously an equivalence 

relation on A. Now if a. = b. mod Ker(f), i = 1, 2, ... , n, and 
1 1 

w E Stn then f(ai) = f(bi), and it implies 

w(f(al ), f(a2), . . . , f(an)) = w(f(bl ), f(b2), . . . , f (bn)) 

i.e., 

f(w(al, a2, .. , an)) = f(w(bl, b2, . , bn)) 

Hence, w(al, a2, ... , an) = w(b1, b2, ... , bn) mod Ker(f). This proves: 

Proposition 1.12. For any homomorphism f of the 0- algebra 

A into another S2- algebra, Ker(f) is a congruence relation on A. 

In particular, if R is a congruence relation on the S2 - algebra 

A, then the kernel of the canonical homomorphism of A onto 

A/R is the congruence relation R. 

The following theorem is quite useful as a lemma for a num- 

ber of theorems relative to the homomorphisms and isomorphisms of 

0 -algebras. 

Theorem 1. 13. Let f be a homomorphism of the 0 -algebra 

A into the 0 - algebra B and let R be a congruence relation on 

A contained in Ker(f). Then the assignment T: x } f(x) for 

all x e A /R, is a homomorphism of A/R into B making the 

diagram 



A 
f 

B 
^ 

f 

A/R 
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where v is the canonical homomorphism, commutative. Further- 

more, f is an isomorphism iff R = Ker(f) and B = f(A). 

Proof. Since RC Ker(f), the mapping f is well- defined. 

If w E Stn and al, a2, ... , an E A then 

...,.an)) = f (w(a1,,a2, .. .,,,an) = f(w(a1, a2, .., an)) 

=w(f(al),f(a2),,..,f(an)) =w(f(al),f(a2),...,f(an)), 

and hence f is a homomorphism, making obviously the given dia- 

gram commutative. If further, R = Ker(f) then for all a, b E A, 

a = b iff f(a) = f(b), which shows f is a bijective mapping. 

Conversely if f is an isomorphism then we obtain that a = b mod R 

iff a = b mod Ke r (f ), i. e. , R = Ke r(f ). Q. E. D. 

This result and the previous proposition lead the following cor- 

ollary. 

Corollary 1. 14. (The Fundamental Theorem of Homomor- 

phisms). Any factor S2 - algebra of S2 - algebra A is a homomorphic 

image of A and conversely any homomorphic image of A is 

f (w(a, a2, . 
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isomorphic to a factor 0 - algebra of A. 

Now, let R and T be congruence relations on the 0- algebra 

A such that RC T. If v and µ are the canonical homomor- 

phisms of A onto A/R and A onto A /T, respectively, then 

by 1. 13 we have a unique homomorphism 
N- such that the diagram 

A/T 

A/R 

is commutative. Thus, we have a congruence relation Ker (µ) on 

A /R, which is sometimes called the induced congruence relation 

from T, and is denoted by T /R. It follows then immediately 

from 1. 13 that 

A/T = (A/R)/(T/R). 

Conversely, let R' be any congruence relation on A /R. Then if 

v' is the canonical homomorphism of A/R onto (A /R) /R' then 

T = Ker (v'v) is a congruence relation on A such that 

R = Ker (v)C Ker (v'v) = T. If is the canonical homomorphism 

of A onto A/T then clearly Ker(p) = R' and hence R' = T /R. 

That is, any congruence relation on A/R is of the form T/R for 

some congruence relation T on A such that RC T. 

v 

> 

Î; 

µ 
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3. Congruence Relations on S2 -Algebras 

On the 0 - algebra A, we always have two congruence rela- 

tions, namely A 
2 which yields the trivial factor S2 - algebra A/A 2, 

and lA which yields the factor e -algebra A/ 1 
A 

which is iso- 

morphic to A with respect to the canonical homomorphism. Any 

congruence relation on A other than A2 is called a proper con- 

gruence relation, and the one different from 1A is said to be non- 

trivial. 

Proposition 1. 15. The intersection of an arbitrary number of 

congruence relations on an Q - algebra is a congruence relation on the 

S2 - algebra. 

Proof. Let {R 
A 

} 
AEA 

be a family of congruence relations on 

the S2 - algebra A. Then evidently n RA is an equivalence rela- 
XEA 

tion on A. If ai = bi mod (-- RA, i =1, 2, ... n, and w E Stn then 
AEA 

w(al, a2, ... , an) = w(bl, b2, ... , bn) mod RA for all X E A, and 

hence we obtain the result. Q. E. D. 

Similarly, the intersection of an arbitrary number of equiva- 

lence relations on the S2 -algebra A forms an equivalence relation 

on A. The intersection of all the equivalence (or congruence) rela- 

tions that contain some set R of ordered pairs in A2 is the 

smallest equivalence (or congruence) relation containing R, and 

, 
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is called the equivalence (or congruence) relation generated by R. 

Theorem 1. 16. If R and T are congruence relations on 

the 0 - algebra A, then the composition RT is the congruence 

relation generated by R v T iff RT = TR. 

Proof. Suppose first that RT = TR. Then 

(RT) -1 
= T 1R -1 = TR = RT, which shows that RT is symmetric, 

and also RTRT = RRTT = RT, which shows the transitivity of RT. 

Since RT is clearly reflexive, it is an equivalence relation on A. 

If w E On and a. = b, mod RT, i =1, 2, ... , n, then there exist 
i i 

x. E A such that a. = x. mod T and x. = b. mod R. Hence 

w(al,a2,...,an)=w(xx2,...,xn) mod T, 

(x . x 
n 

) ...,bn) mod b2, bn) mod R, 

Therefore, w(al, a2, ... , an) = w(b1, b2, ... , bn) mod RT, which 

shows that RT is a congruence relation on A. If sup {R, T} is 

the smallest congruence relation containing R v T, then we obtain 

at once 

RT = sup {R, T }. 

Conversely, if RT = sup {R, T }, then RT is an equivalence 

relation on A and hence by the symmetric property, it follows that 

RT = (RT)-1 T-1R-1 TR. Q.E.D. = 

i 

= 
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Usually in algebras like groups and rings we can show that all 

the congruence relations commute with respect to the composition. 

However, in general we are not able to assert the commutativity. To 

obtain the sufficient condition for all the congruence relations on the 

0- algebra A to be commutative with respect to the composition, 

we need some concept of a special kind of a mapping from A to A 

called the translation. 

Let w E Stn and fix any n -1 elements al, a2, ... , a. 1, 

ai +1' ' ' ' 
an E A. Then w derives a unary operation a on A 

defined by 

a: x I-*w(al,a2,...,ai-l'x'ai+l'...,an) 

for all x E A. The unary operation thus defined is called an ele- 

mentary translation, and if a mapping O : A -*A is expressed as a 

product of a finite number of elementary translations, O is called a 

translation. 

In general, an S2 - subalgebra is not closed under the translation, 

but for congruence relations the situation is rather different. To il- 

lustrate this, let R be a congruence relation on A and 

a a. . a2, . . . , ai- l' i+1' . . , a n any fixed elements of A. If 

x = y mod R then clearly for any w E S-2 

n, n 

w(a ,a ,..., ai-1,x,.ai+l'... w(a,,, ... ,ai- l'y'ai +1'...,an) mod R, a ) = n 
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i. e. , a(x) = a(y) mod R. Hence R is closed under all the elemen- 

tary translations. By induction, it follows that for all translations 

0, 0(x) = 0(y) mod R. 

Proposition 1. 17. An equivalence relation R is a congruence 

relation iff R is closed under all the translations. 

Proof. If R is a congruence relation, then we know that R 

is closed under the translation. So, suppose that R is an equiva- 

lence relation which is closed under all the translations. Then we On 

ai = bi mod R, i =1, 2, ... , n, implies that w(a1, a2, ... , an) 

w(b1, a2, ... , an) mod R by the fact that a(al) _ a(bl) mod R for 

the elementary translation a such that a: x H w(x, a2, ... , an). 

Repeating such an argument, we obtain 

w(al, a2, . . . , an) w(bl, a2, . . . , an) 

w(bl, 

w(b1, b2, . , bn) mod R. 

Q. E. D. 

Proposition 1. 18. Let R and T be congruence relations 

on the 0 - algebra A. Then RT = TR provided that for all the 

2 pairs (a, b) E A , there exists a translation 0 such that 0(a) = b 

n 

_ 

E 

n 
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and 0(b) = a. 

Proof. Let a = b mod RT. Then there exists x E A such 

that a = x mod T and x = b mod R. Since R and T are con- 

gruence relations, it follows that 6(a) = 0(x) mod T and 

0(x) E. 0(b) mod R. Hence, 0(b) a 0(a) mod TR, i.e. , a mod TR, 

which shows that RTC TR. By symmetry, we also obtain TRC RT. 

Therefore, RT = TR. Q. E. D. 

Now let A be an Q - algebra, R its congruence relation, 

B its Q - subalgebra, and let RB denote the union of all the R- 

congruence classes that intersect B, in other words, 

RB = {a E A : a = b mod R, for some b E B} (1. 3. 1 ) 

If al, a2, ... , an E RB then there exist bl, b2, ... , bn E B such 

that a. = b. mod R, so that for any w E S2 , 
i i n 

w(al, a2, . . . , an) = w(bl, b2, . . . , b) mod R, 

where w(bl, b2, ... , bn) E B. Hence, w(al, a2, . . . , an) E RB, which 

shows that RB is an Q - subalgebra of A. We shall call RB an 

Q- subalgebra generated by the congruence relation R and the sub - 

algebra B. In particular, 

x = R{x} 
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is an 0 - subalgebra provided that {x} forms a trivial 0 - subalgebra 

of A. Similarly, we may define RX = {aE A: a= xmodR, for some 

X E X} for any subset X of A. Of course, RX need not be an 

S2 - subalgebra, but it is immediate that X is an R- congruence class 

iff 

X = RX. (1. 3. 2) 

Proposition 1. 19. Let R and T be congruence relations on 

the 0 -algebra A, and X a subset of A. Then 

T (RX) = (TR )X 

provided that TR is a congruence relation on A. 

Proof. If a E T(RX) then there exists b E RX such that 

a_ b mod T and b_ x mod R for some x E X. Hence, 

a = x mod RT for some x E X, which shows that a E (RT)X= (TR)X. 

Conversely, if a E (RT)X then a = x mod RT, x E X, so that 

a = y mod T and y _ x mod R for some y E A. It follows that 

a = y mod T, y E RX, and thus, a E T (RX), as desired. Q. E. D. 

Henceforth, if X is a subset of the S2 - algebra A and 

R R2, ... , Rm are congruence relations on A we shall write 

R1R2. . . RmX 

instead of putting parentheses whenever R. R. ... R. is a congru- 
11 12 lk 

ence relation on A for every subset {i1, i2,....,ik} of {1, 2,..., m }. 
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II. THE GENERALIZED JORDAN-HOLDER THEOREM 

1. First, Second and Third Isomorphism Theorems 

Let A and B be 0-algebras, R and T congruence 

relations on A and B, respectively, and h an epimorphism of 

A onto B. Then, the homomorphic image h(R) of R and the 

inverse image h 1(T) of T are respectively defined as follows: 

h(R) = {(h(x), h(y)) : (x, y) E R}, 

h-1(T) = {(x, y) : (h(x), h(y)) E T}. 

It is trivially verified that if R contains Ker(h) then h(R) is a 

congruence relation on B, and h -1(T) is always a congruence 

relation on A. 

Theorem 2. 1. (First Isomorphism Theorem). Let A and 

B be 0-algebras and h an epimorphism of A onto B. Then, 

the correspondence R h(R) is one -to -one between the family 

Cong(A) of all congruence relations on A that contain Ker(h) and 

the family Cong(B) of all congruence relations on B. Further- 

more, if T = h(R), i. e. , R corresponds to T under this one- 

to-one correspondence then 

A/R = B/T. 

M 
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Proof. Since for any congruence relation T on B, 

h(h 1(T)) = T, the mapping R I-- h(R) of Cong(A) into Cong(B) 

is surjective. Also if h(R) = h(R') for some congruence relations 

R and R' on A, then x = y mod R implies 

h(x) = h(y) mod h(R), i. e. , h(x) = h(y) mod h(R'). Hence 

x a y mod R'. By symmetry, x a y mod R' implies x a y mod R. 

It follows that R = R', and hence the correspondence R .-. h(R) 

is one -to -one. 

Now if v' is the canonical homomorphism of B onto B/T 

then we have a homomorphism v'h : A --B /T. We wish to establish 

the equality Ker (v'h) = R. If x a y mod Ker(v'h) then 

h(x) _ h(y) mod T, and hence x = y mod R. This establishes 

Ker(v'h)C R. Since RC Ker(v'h) is obvious, we obtain the desired 

equality. By 1. 13, it follows that A/R is isomorphis to B /T. 

Q. E. D. 

Theorem 2. 2. (Second Isomorphism Theorem). Let A be an 

0-algebra, B an 0 - subalgebra of A, and R a congruence re- 

lation on A. Then R B2 is a congruence relation on B and 

B /(R nB2) = RB /R. 

Proof. Let v be the canonical homomorphism of A onto 

A/R and let v' = v I B. Then v' is an epimorphism of B onto 

(Th 
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RB /RC A/R since for any b E B, v'(b) = b E RB /R and also for any 

x E RB /R, there exists b E B such that b E x, i. e. , v'(b) = x. 

Hence by 1. 13, 

B/Ker(v') = RB/R. 

But since Ker(v') = R n B2, the theorem follows. Q. E. D. 

Lemma 2. 3. Let R, T and U be congruence relations on 

the 0-algebra A such that TC U, and suppose that all the con- 

gruence relations on A commute with respect to the composition. 

Then 

(RT) n U = (R U)T. 

Proof. If a = b mod (RT) n U then a = b mod U, 

a_ x mod T and x = b mod R for some x E A. Hence 

b = x mod U, b = x mod R and a = x mod T, i. e. , 

a = b mod (R ,U)T. This shows that (RT) n UC (R ,U)T. Now if 

a = b mod (R n U)T then a = x mod T and x_ b mod R n U for some 

X E A. Hence, a = b mod RT and a = b mod U, i. e. , 

a = b mod (RT) n U. Thus, (R n U)T C (RT) n U, and this com- 

pletes the proof. Q. E. D. 

Now, we shall establish a complicated isomorphism theorem 

which will be used as the lemma to prove Schreier's refinement the- 

orem. 
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Theorem 2. 4. (Third Isomorphism Theorem, Zassenhaus' 

Lemma). Let A be an 0-algebra, B and C S2 -. subalgebras of 

A, and R, T congruence relations on B and C, respectively. 

Suppose that all the congruence relations on B r C commute with 

respect to the composition. Then 

2 
i) R(B T )R is a congruence relation on R(B C ), 

ii) T (R n C 2)T is a congruence relation on T (B n C ), and 

iii) R(BnC) /R(B2nT)R T(B nC) /T(R (ThC2)T. 

Proof. First, we shall show that R(B2, is a congruence 

R(B,-,C). The symmetric and reflexive properties are relation on 

obvious, and since R(B2T)RR(B2TT)R = R(B2TT)R(B2T)R 

2n n R(B = 2n n R(B 2 2 T)(RC)(BnT)R = R(RnC2)(B2T)R = R(B2nT)R, 

R(B2(ThT)R is transitive. Thus, it is an equivalence relation on 

R(BnC ). Now for any 

if a. = b. mod R(B2 -T)R then there exist x., y. E B n C such 

that a. = x, mod R, x. _ y. mod B2 n T and y. _ b. mod R. Hence, 

w E S2 and a., b. in R(BnC), i=1, 2,...,n, 
n i. i 

w(a1, a2, . . . , (xi, x2, ..., xn) mod R 

w(xl, x2, . . . , xn) = w(y1, y2, . . . , yn) mod B2 n T 

w(y1, y2, ..., yn) = w(b1, b2, ..., bn) mod R, 

i. e. , w(a1, a2, .. , an) = w(bl, b2, . . . , bn) mod R(B2nT)R, 2 

which proves that R(B2nT)R is a congruence relation on R(B,-,C). 

an) = 
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This proves i) and by symmetry ii) follows. 

Viewing R as a congruence relation on -B n C, we have, 

by Lemma 2. 3, that (R(B2nT)R) n (BnC)2 = (R(B2nT)) n (BnC)2 

= (Rn(BnC) )(B nT) 2 2 
= (RnC )(B nT). 2 2 Hence, by the second iso- 

morphism theorem, 

(BnC)/(RnC2)(B2nT) :=7 R(B2nT)R(BnC)/R(B2nT)R. 

Furthermore, if a is an arbitrary element of R(B2nT)R(BnC) 

then a = x mod R(B2nT )R for some X E B n C. That is, 

a _ y mod R for some y E B n C, and there exists Z E B n C 

such that y = z mod B2 n T and z = x mod R. Hence 

a E R(BnC), and we obtain R(B2nT)R(BnC)C R(BnC). Since 

R(BnC)C R(B2nT)R(BnC) is obvious, it follows that 

R(BnC) = R(B2nT)R(BnC). Therefore, 

(BnC) /(RnC2)(B2nT) - R(BnC) /R(B2nT)R. 

By symmetry, we also have 

(BnC) /(RnC2)(B2nT) T(BnC) /T(RnC2)T 

and our result iii) follows. Q.E.D. 

= 



2. Normal Series and Schreier's Refinement Theorem 

Definition 2. 5. Let A be an 0 -algebra and I and S2 - 

subalgebra of A. Then by a normal series from I to A we 

mean a finite sequence of 0 - subalgebras of A: 

I = A0Ç Al ...As = A, 
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(2.2.1) 

together with congruence relations R. on A., i =1, 2, ... , s such 

that each Ai is an R.- congruence class. Two normal series 

I = A0C Al Ç ... Ç As =A 
(2. 2. 2) 

I = BOC B1 C . . . C Bt = A 

are said to be equivalent if s = t and if there exists a permutation 

of the indices i =1, 2, ... , s, written such that A. /R. is 

isomorphic to B. /T. where where T. are the congruence relations on 
1 1 

J 

B., j =1, 2, ... , t such that B. are T.- congruence classes. 
J J -1 J 

Note that we may rewrite (2. 2. 1) as 

I = R IC 
1 

R2I C. . . C RSI CA 

since A. = RiI by the fact that IC A. 
1. 

Definition 2. 6. One normal series is said to be a refinement of 

a second normal series if its terms contain all the 0 -algebras which 

occur in the second series. 

Theorem 2. 7. (Schreier's Refinement Theorem). Let A be 

an 0 -algebra such that all congruence relations on any subalgebra 

if-- if 

I 
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commute with respect to the composition. If I is an SZ- subalgebra 

of A then any two normal series from I to A have equivalent 

refinements. 

Proof. Let the two series be given by (2. 2. 2). We set 

A. . = R. (A. (ThB. ) j = 0, 1, . . . , t. 
13 1 1 J 

B.. = T.(A.rmB.) i = 0, 1, ..., s. 
31 J 1 J 

Then we obtain the two sequences of S2 - subalgebras of A: 

I=A C A C... 
C A=A 10_ 11_ _ lt 1 

=A C A C . . . C A =A 20_ 21_ 2t 2 

As0CAs1C... CAst =As =A, 

I = B10C BllC ... C B = B 

=B 
20 

C B21C . .. 
s B2 

Bt0 C Btl C C Bts = Bt = A. 

(2. 2. 3) 

(2. 2. 4) 

By the third isomorphism theorem, R.(A?- T.)R. is the congruence 
1 1 J 1 

relation on A.. = R. (A. B . ). 
13 1 1 3 

Now we wish to establish that Aij_i is an Ri(Ai (ThTj)Ri- 

C 21- - 

= 
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congruence class so that the sequence (2. 2. 3) becomes a normal ser- 

ies from I to A. For this purpose, let x denote an 

R. (A. 
2 

mT . )R. - congruence class containing x E I. If a is an arbi- 
1 1 J 1 

trary element in x then a = y mod R., y = z mod A? n T , and 
1 1 J 

z = x mod R. for some y and z in A. m B.. Since z and 
1 i J 

x are elements in Ai B, we actually have z = x mod R. n B. . 

Now both R. n B and A. n T, are congruence relations on i J i J 

A. n B., so that they commute with respect to the composition. 
1 J 

2 2 Thus, y = x mod (A. T.)(R.r B. ), and since a E y mod R., it 

2 2 follows that a E x mod (Ain T.3 )(RinB )Ri, i. e. , 

a = x mod (A. 
2 

(ThT.)R.. Hence there exists x' E A. n B. such that i J i i J 

a = x' mod R. and x' = x mod A. T., i. e. , x' E A. T.I 
1 i J i J 

= Ai n B. 
1. 

Hence, a E R. (AiB. 
1) 

= Ai 
1, 

and we obtain 
J- J- J- 

x ç Ai i_1. 

Also, if a is an arbitrary element in R. (AiB. 1) then 
J- 

a E y mod R. for some y E A. T.I. That is, y _ zmod (A.2 .) 
1 1 J 1 J 

for some z E I. But since I is contained in Ai-1' it follows 

that both x and z are in Ai- 
1. 

Hence z = x mod R.. It fol- 

lows that a = x mod Ri (Ai rT 2 
)R . , and we obtain R. (A. B. )C x- . 

Thus, the required equality x = R.(Ai(ThB. 
3-1 

Accordingly, 

= Ai. is established. 
J- 

Accordingly, (2. 2. 3) is a normal series from I to A. Sim- 

ilarly, T.(R.B ?)T. is a congruence relation on B.. = T.(A.B.), 
J 1 J J J1 J 1 J 

Bpi_ 1 is a T-(RnB )T- congruence class and (2. 2. 4) is another 

J- 1 

r, 
i J 

r, rl 

i 

J 
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normal series from I to A. 

By the third isomorphism theorem, 

2 2 A../R.(A. T.)R. = B../T.(R.nB. )T, 
1J 1 1 J 1 31 J 1 J J 

and hence (2. 2. 3) and (2. 2. 4) are equivalent refinements. Q. E. D. 

3. The Jordan -Hölde r Theorem for Q -Algebras 

We know that any Q -algebra A has two congruence relations 

A2 and 1A. If an Q - algebra A has no other congruence rela- 

tion, it is called a simple Q - algebra. 

Definition 2. 8. A normal series without the repetition of 0- 

algebras is called a composition series, if it has no refinement with- 

out the repetitions of Q- subalgebras, other than itself. 

The factor Q - algebras Al /R1, A2 /R2, ... , As /Rs are called 

the factors of the normal series (2. 2. 1). If (2. 2. 1) is not a composi- 

tion series then by the definition there exists another term B be- 

tween, say A. 
1 

and Ai which contains properly A. 
1 

and is 

contained properly in A.. Hence there is a congruence relation T 
1 

on Ai which contains properly R. and is contained properly in 

Ai such that B is a T- congruence class. By the remark after the 

fundamental theorem of homomorphism, it follows that A. /R. is 
1 1 
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not simple. The converse can be shown similarly, and thus, we ob- 

tain the following proposition: 

Proposition 2. 9. A normal series is a composition series iff 

all its factors are simple 0-algebras. 

Theorem 2. 10. (Jordan -Hölde r Theorem). Let A be an S2 - 

algebra such that all congruence relations on any subalgebra commute 

with respect to the composition. If I is an S2 - subalgebra of A 

then any two composition series from I to A are equivalent. 

Proof. By Schreier's theorem the composition series have 

equivalent refinements, and we have a one -to -one correspondence be- 

tween the factors of the refinements such that the corresponding fac- 

tor 0-algebras are isomorphic. Hence, in this one -to -one corres- 

pondence the trivial factor S2- algebras are paired, and so, also the 

nontrivial factor 0-algebras are paired. Since these nontrivial fac- 

tor 0-algebras are the factors of the given composition series, we 

see that the two composition series are equivalent. Q. E. D. 
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III. FREE UNIVERSAL ALGEBRAS 

1. Direct Products 

Let {AA }AEA be a family of 0 -algebras. Then the set theo- 

retical product 

A= H AA 

AEA 

forms an 0-algebra called the direct product of S2 - algebras AA 

when an n -ary operation is defined on A suitably for each w E On. 
n 

The n -ary operation is in fact defined on A as a componentwise 

n -ary operation, i. e. , if (a ) , (a ) 
A AL E 

, ... (a ) are ele- 
2A AEA n% AEA 

ments in A then for any w E On, 
n 

w((alA)AEA' (a2A)AEA' "' (anA)AEA) = (w(alA' a2A' ..' anA))AEA 
(3. 1.1) 

If A is finite, we take A to be the product set 

s 

A = H A. 
j-1 J 

of elements a = (al, a2, ... , as), a. 
J 

E A.J , and for any w E Stn, the 

corresponding n -ary operation acts as 

w((all'a12,...,a1s), (a21'a22,...,a2s),..., (an l'an2,...,ans)) 

_ (w(all' a21, . . , an1), w(a12' a22, . . . , an2),...,w(als, a . . . , ans)). 

1% 
, 

, 
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where a.. E A., i =1, 2, ... , n, j =1, 2, ... , s. Thus, in any case, A 

forms an 0-algebra. 
s 

Now if the direct product H A. is given, we notice that for 
j =1 J 

any permutation of j =1, 2, ... , s, written j I-- j' we have an iso- 

morphism 

Al X A2 X. . . X As = Al' X A2' X. . . X A . 
s 

In fact, it is immediate from the fact that the correspondence 

(al, a2, ... , as) }--' (al a2, ... , a ) s' is an isomorphism. Hence the 

direct product is independent of the order of the factors. 

Also, if 0 = s0 < sl < ... < s = s then we have another iso- 

morphism 

s 
s m k 
II A. = II II A., 

j=1 
3 

k=1 i=s k-1+1 

by the fact that the correspondence (al, a2, ... , as ) 

r-' ((a1,a2,...,as ),(as 
1+1' 

as +2'...,as ),...,(s +1, s )) 
1 1 2 m -1 m -1 m 

an isomorphism. In particular, it follows that (Al X A2) X A3 is 

is 

isomorphic to Al X (A2XA3), and in this respect the binary opera- 

tion 

tive. 

tt X can be considered to be associative as well as commuta- 

Let us return to the more general case A = II A> for a 
XE A 

while, and let Trx be a mapping which assigns each x E A to its 

J 

+2,...,as 

A. 

s 



A -th component. Hence if (a., 
)AEA' (a 2A )AEA' ... , (anA )AEA E 

A and 

w E O n 
then 

so that 

1TA((aiA)AEA) - A E AA' 1=1, 2, . . . , n, 

TrA (w ( (a 
1 A )AE A' (a 2A )AE A' . . . , (anA )AE A) ) 

= TrA((w(a1 A, a2A, . . . , anA))AE11.) 

= w(al' a2A, . . . ,anh) 

= 
w (A((a 1X )AE A)' ( (a 2A )hcA)' . . . , TrA ( (anA )hcA) )' 
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Therefore, TrX is a homomorphism, and we call it a projection 

homomorphism or simply a projection. 

Now consider the congruence relation Ker(nh) on A deter- 

mined by each projection Tr . Since x _ y mod n Ker(Tr ) implies 
A 

AEA 
A 

x = y, we have the following equality: 

n Ker(nh) = 1A. 
AEA 

(3. 1. 2) 

Also, for any (x, y) E A2 there exists an element z such that 

TrA,(x) = TrA 
' 
(z) for some A' E A and TrA(y) = TrA(z) for all X E A, 

A I. Hence, for any (x, y) E A 
2 there exists z E A satisfying 

x _ z mod Ker (Tr ) for some A' E A, and z _ y mod n Kern ) 

AíA' A 

i. e. , x _ y mod ( n Ker (TrX )) (Ker (TrA e) ). This gives the other 
A A' 

# 



equality: 

In particular, 

( Ker(TrX ))(Ker(TrX')) = A2. 

(Ker(Trx))(Ker(Trx,)) = A2, X X', 
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(3. 1. 3) 

so that the compo- 

sition of such congruence relations is commutative. 

Now we shall determine conditions that a given SZ - algebra be 

isomorphic to a direct product of a finite number of 0 -algebras. In 

such a case, the 0 - algebra is said to be representable as a direct 

product. 

Theorem 3. 1. If an 0- algebra A is representable as a di- 
s 

rect product II A. of SZ -algebras then there exist congruence rela- 
j=1 J 

tions R1, R2, ... , Rs on A satisfying 

(Th Rj=1A 
j=1 

(3. 1. 4) 

Rj)Rk = A2 
j#k 

s 

(3. 1. 5) 

A = II A/R.. 
j=1 

(3. 1. 6) 

Conversely if there exist congruence relations R1, R2,..., .Rs 

on A satisfying (3. 1. 4) and (3. 1. 5), then also (3. 1. 6) holds, and 

hence A is representable as a direct product of 0-algebras. 

X #k' 

# 

(. 

) 
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s 

Proof. Suppose that A is isomorphic to II A., and let us 
j =1 

s 

identify A and II A. for the sake of simplicity. Let ir, be 
j =1 J J 

the projection of A onto A., and set R. = Ker(rr.). Then 
J J J 

(3. 1. 4) and (3. 1. 5) follow from (3. 1. 2) and (3. 1. 3), and (3. 1. 6) fol- 

low from 1. 1 3. 

Conversely, suppose that there exist congruence relations 

RI, R2, ... , Rs for which (3. 1. 4) and (3. 1. 5) hold. Let vj be the 

canonical homomorphism of A onto AIR., and define the map- 

ping f : A -' II A/R. by 
j=1 J 

f : x (vi (x), v2(x), . . . ,vs(x)) 

for all x E A. Then the homomorphic property of f is immediate, 

and if f(x) = f(y) for some x, y E A, then v.(x) = v.(y) for all j 

so that by (3. 1. 4), x = y. Hence, f is injective. Now we wish to 

show by induction that for any r < s there exists x E A such that 

for all 

(v1(Y1 ), v2(Y2), ... , vs (Ys )) 

= (v1 (x),v2(x), ... ,vr(x),vr +1(yr +l)' ... ,vs(Ye)) 

s 

(VI (Y1)) v2(Y2), ...,vs(Ys)) E II A/R.. 
j=1 J 

If this is true then by (3. 1. 5), yr +1 = 
x mod( rm Ker(v.)) 

j4r +1 
(Ker(vr 

+1)). 
Hence, there exists z E A such that 

J 

s 

F-- 

j 
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yr +1 = 
z mod Ker(vr 

+1) 
and z = x mod Ker(v.) for all j r + 1, 

J 

i. e. , yr 
+1 (z) = 

yr 
+l (yr +1 ), 

and 

v 
1 

(z) =v1(x) =v1(y1) 

v2(z) = v2(x) = v2(y) 

v(z) = vr(x) = v(Y r) 

Thus, the induction is completed, and accordingly f is surjective. 

This completes the proof. Q.E.D. 

2. Free S2 -Algebras Generated by Sets 

Let A be an S2 - algebra and S its subset. We say that A 

is the S2 - algebra generated by a set S if A coincides with its 

Q-subalgebra generated by S. Further, if S is finite, A is 

said to be finitely generated, and in any case, elements of S are 

called generators of A. 

Theorem 3. 2. If an S2- algebra A is generated by a set S 

then every element of A is completely determined by the generators 

and a finite number of n -ary operations defined by Q. 

Proof. Let Q = {W }XEA, and define the sequence 

So, S1, S2, ... of subsets of A by the following manner: 

# 
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SO = S 

S1 = (v wX.(SO)) 
/kE11 

Sm+ 1 Sm v( v co (S )) 
ñEl1 

where o (Sm) denotes the totality of elements of the form 

w (x X ,...,X ), X E S , i=1, 2,...,n if w E Si Let 
X 1 2 n i m A n 

X = v S.. 
jEN 

Then we claim that X is an S2 _subalgebra of A. For, let 

w E Stn and al, a2, ... , an E X. Now every ai lies in some Sm 
i 

for some m. E N. Hence, al, a2, ... , an E S where 
m0 

m0 = max {ml, m2, ... , mn }. It follows that 

w(a1, a2, . . . , an) E w(Sm )C Sm +1 
g X. 

XEA 0 

But since S = Ç X, we must have A = X. 0- 
Now every element in A is an element of X, i. e. , an ele- 

ment of S for some m E N, and therefore the theorem follows. m 

Q. E. D. 

The proof of 3. 2 can be extended to another important theorem 

in our subject, namely: 

SO v 

. 

= 



the n 

Theorem 3. 3. If an 0- algebra A is generated by a set S 

IAI < 1Q1 IsINO 
=max {IQI, 
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Proof. The proof is continued from that of 3. 2. Since all wx 

are finita ry, I wx (Sm) I < I Sm I N so that IXE Á 
X.(Sm 

) I < I I I SmIN 0 

Hence 

ISm +l I 

< max {ISmI> IQ I 

IsmINO} = 
I 

IsmINO. 

Now ISOI = ISI and ISl I < I0I ISINO If ISmI < I (ISINO then 

ISm +l I < I0 I ISmINO < IS2 I2ISINO = I0 I ISINO> and therefore for 

all m E N, 

Ism! <_ 
I IsINO> 

IAI = IXI = IS'I < NOI Ñ I ISINO = I I ISINO 

Q. E. D. 

Lemma 3. 4. Let A be an S2 - algebra with a set S of gen- 

erators of A. Then any homomorphism of A into another S2 - 

algebra is completely determined by its restriction to S. 

Proof. Suppose that h1 and h2 are two homomorphisms 

from A to an S2 -algebra such that h I S 
1 

= h2 I S. Let A' be a 

subset of A which contains all the elements x for which 

IsI,N0}. 

X. E n 
S2 

IQ 

- 

jeN 
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h1(x) = h2(x). Then for all al, a2, ... , an E A' and w E Stn, 

hl (w(al, a2, . . . , an)) = w(hl (al), hl(a2), . . . , hl (an)) 

= w(h 
2(a 1), 

h2(a2), . . . , h2(an)) 

= h2(w(al, a2, . . . , an)), 

and hence A' is an S2 - subalgebra that contains S. Thus, A' =A 

and it follows that hl (a) = h2(a) for all a E A. Q. E. D. 

Now let us consider an arbitrary category CAT. An object 

A of CAT is called terminal if there exists a unique mor- 

phism of each object of CAT into A, and is called initial if for 

each object of CAT there exists a unique morphism of A into 

this object. With this preliminary remark, we shall define a free 

0 - algebra. 

Definition 3. 5. Let [0 ] be the category of 0 -algebras, and 

let S be a nonempty set. Also let CAT be a category whose ob- 

jects are mappings of S into 0 -algebras and whose morphisms 

are defined as follows: 

If f : S -A and g : S --.B are two objects in CAT then a 

morphism from f to 

such that the diagram 

g is a homomorphism cp E HomQ (A, B) 
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is commutative. 

Then a pair 

S > A 

B 

(F, f0) or often F is called a free S2 - algebra 

generated by S if the mapping f0 : S F is an initial object of 

CAT. 

Thus, if (F, f0) is a free 0 -algebra generated by a set S, 

then for any object A E [S2 ] with a mapping f : S A, we have a 

unique homomorphism f* : F A such that f*f = f. Throughout 

this paper we shall use the notation f* for such a uniquely deter- 

mined homomorphism by a mapping f. 

Theorem 3. 6. (Existence Theorem). For any set S 0, 

there exists a free Q - algebra 

more, f0 

(F, f0) generated by S. Further- 

is injective and f0(S) is a set of generators of F. 

Proof. Let T = S v Z 0 so that T is either infinite or 

denumerable, and let F be a set of all S2- algebra structures on 

T. Using F as an index set, we denote by T the correspond - 

ing 0 - algebra whose underlying set is T, and by the family 

of all mappings of S into T . Also for each cp e , we set 
Y 

f 

1,49 

-- 

-- 

/ 

v 

Y 

. 
Y 

l' 
Y 

-- 



T =T . Now let 
Y, 9 Y 

T F0 = II II 

YEI, cpet, Y, cp 

Y 
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and define the mapping f0 : S -'F0 by f0(s) _ ((cp(s))cpE.1 LEI., for 
Y 

all s E S. Further, suppose that A is an arbitrary object in [01 

with a mapping f : S -'A. We may assume that f(S) generates 

A simply by restricting our attention to the 0 - subalgebra of A 

generated by f(S). So, IAI < ISI 
I2INO = ITI. 

For all t E T, let Z = Z and set P = Il Z . Also we t 
tE T t 

set A = A X P so that IAI = IAI I 

T I N0 = I T I . Therefore, for 

some 0-algebra structure y0 E r, there exists an isomorphism 

g : A -'T . If T denotes the injection3 "of A into A, then 
YO 

we have a mapping cp E such that 9 = gTf : S -'T = T 
O YO O YO Y0, cp0 

Let Tr be a projection of F0 onto T such that 
YO' 0 0 

1TY 1ll(p(S))cpE )YEï') = 9,1(S), 
0 0 Y 

and let Tr be a projection of A onto A. Set 

h = Trg 1Tr, cP : F0 --'A. Then for any s E S, 
0 0 

3T maps a E A onto (a, (0)tET) E A. About 0 EZ, see Chapter 
1, Section 1. 

l' . 



hf0(s) = ng 
lTrY 

(((co(s)) cpE )yEI,) 
0 

g-1 = 
90(s) 

= Trg 1 gTf (s ) 

= f(s) 

and hence the following diagram is commutative: 

S 

h 
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Since IS 
I 

< IT I, there exists an injective mapping cp' E . 

Y - Y 

Hence, for any s, s' E S, ((9(s))(19E )yEr = ((cP(sT)) )YEI' 
Y Y 

s = s', i. e. , f0 is injective. 

f0(S) 

implies 

Finally, let F be an 0 - subalgebra of F0 generated by 

and let f* = hIF. Using Lemma 3. 4, we conclude that f* 

is a unique homomorphism which makes the diagram 

S 

f0 

0 Y 

41 

w 
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commutative, and (F, f0) is the desired free S2 - algebra generated 

by S. Q. E. D. 

Thus, we always associate with a nonempty set S, a free 

S2 - algebra generated by S, which is often denoted by (F(S), fS) or 

simply F(S) when we disregard the mapping fS : S -'F(S). 

Corollary 3. 7. Given any 0 - algebra A, there is a free 0 - 

algebra (F, f0) with an epimorphism h : F--W A. If A is finitely 

generated by m elements then F can be chosen as an Q - algebra 

generated by m elements. 

Proof. Let S be a set of generators of A and let F be 

a free Q - algebra generated by S. Note that we always have a set 

of generators for an S2 -algebra A, for instance, A itself. Then 

the corollary follows from the commutativity of the diagram: 

where 

fo 
> F 

inc* = h 

A 

inc is an inclusion mapping. Q. E. D. 

Accordingly, every S2 - algebra is a homomorphic image of some 

free 0 -algebra. That is, that every S2 - algebra is isomorphic to a 

factor S2 -algebra of some free SZ -algebra by the fundamental theorem 

inc \ 
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of homomorphisms. 

Corollary 3. 8. Let F be a free 0 - algebra with a homomor- 

phism f of F into an 0 - algebra B. If there exists an S2 - 

algebra A with an epimorphism g : A - B then there exists a 

unique homomorphism h : F A such that the following diagram 

is commutative: 

h 
F >A 

Ig 

Proof. Let S = {xX 
}XEA 

be a set of generators of F. Then 

for each X E A, f(xx) is an element in B and by the surjective 

property of g there exists a subset {a 
}xEA 

in A such that 

g(ax) = f(xx). This gives a mapping h1 : S --iA defined by 

hl (xX) = aX . Hence, by the property of free 0 - algebras, there 

exists a unique homomorphism h = hi of F into A such that 

h I S = hl. Clearly gh I S = ghl = f I5, and hence by Lemma 3. 4, it 

follows that gh = f. Q. E. D. 

Corollary 3. 9. Let S and T be sets with a mapping 

f : S T, and let (F(S), fs) and (F(T), f) be the corresponding 

free 0 -algebras. Then f induces a unique homomorphism 

F(f) : F(S) F(T) such that the following diagram is commutative: 

B 

-- 

-- 



S 

T 

fS 

Proof. Put F(f)= (f f)*. Q. E. D. 

In fact, the Corollary 3. 9 gives rise to the covariant functor 

F (S) 

F(f) 

F(T) 

F of SET into EQJ such that for each object S, T E SET, F(S) 
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and F(T) are free 0- algebras, and for each morphism f: S 

in SET, F(f) is the induced homomorphism of F(S) into F(T). 

Using the following commutative diagram, the properties of the co- 

variant functor are immediately verified: 

fS 

S > T g > U 

1 
F(S) 

fT fU 

F(f) 
>F(T) 

F(g) 
> 

F(U) 

In particular, if S is a set with an equivalence relation R 

then the canonical mapping y : S -' S /R, S/R being a set of R- 

equivalence classes, induces a unique homomorphism 

F(v) : F(S) -' F(S /R). In other words, the equivalence relation R 

on S induces a unique congruence relation R* = Ker(F(v)) with 

the properties: R = R* n S2 and 

-'T 

f 

fT 



F(S/R) = F(S)/R*. 

Theorem 3. 10. Let S and T be sets with a mapping 

f : S T. Then the homomorphism F(f) : F(S) F(T) is i) in- 

jective iff f is injective, and ii) surjective iff f is surjective. 

Proof. If f is injective then there exists a mapping 

such that 

g 

gf = 1S and hence there exists a homomorphism F(g) 
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such that F(g)F(f) = F(gf) = F(ls) = 1F(S). Conversely, if F(f) is 

injective then for any s, s' E S, f(s) = f(s') implies 

F(f)fs(s) = fTf(s) = fTf(s') = F(f)fs(s'). Hence, by injectiveness of 

F(f)f5, it follows that s = s'. 

If f is surjective then for any fT(t) e fT(T), there exists 

s E S such that fTf(s) = fT(t). Since F(f)fs(s) = fTf(s) = fT(t), 

F(T) is generated by the elements of the form F(f)fs(s). Hence by 

the homomorphic property of F(f), every element in F(T) is in 

the image of F(f). Conversely, if f is not surjective then f(S) 

is a proper subset of T. For the sake of simplicity, we identify 

T and fT(T). Assume that F(f(S)) = F(T), i. e. , for t E T 

such that t f(S), t E F(f(S)). Hence, by Theorem 3. 2, t is a 

consequence of a finite number of operations determined by S2 on the 

set f(S) of generators of F(f(S)). Since these operations are 

finitary, it allows us to write t = y(f(sl), f(s2), ... , f(sr)) for some 

- 

É 
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function-4/ y on f(S)r, i. e. , 

t = y(t1,t2,...,tr), 

where t. = f(s.) E T, j =1, 2, ... , r. But since T is an arbitrary 

set, such an identity does not hold in T. Thus, we have a contra- 

diction. Therefore, F(f(S)) is properly contained in F(T), and 

since the surjective mapping f : S f(S) induces an epimorphism 

F(f) : F(S) F(f(S)), it follows that F(f)(F(S)) = F(f(S)) is proper- 

ly contained in F(T). This completes the proof. Q.E.D. 

Corollary 3. 1 1 . If S and T are sets then SI = I T I iff 

F(S) is isomorphic to F(T). 

3. Products and Sums 

Let {A 
}XEA 

be a family of Q -algebras, and consider the di- 

rect product II A, and a family of projections 
XEA 

{Tr, : II A AX 
}SEA' 

If A is an arbitrary Q - algebra with a 
XEA 

family {fx : A -y AX}%E of homomorphisms, then there always 

exists a unique homomorphisms h: A -- IIA such that the diagram 

4Such a function is called a compound operation composed of a 
finite number of operations determined by ft We shall give the de- 
tails in Chapter IV. 

J J 



IIAx 
1rX 

> AX 
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is commutative for all X E A. In fact, h is defined by 

h(x) = (fX(x))XEA and one can show that h has the property asserted 

above. This property is now extended into the more general situation:. 

Definition 3. 12. Let CAT1 be any category and {AX }XEA a 

family of objects in CAT,. We define a category CAT2 as fol- 

lows: 

The objects of CAT2 are the families {fx : B --A 
}AEA 

of 

morphisms in CAT and given two such families {fx : B--. Ax 
}xEA 

and {f' B' -* AX }XE 
A' 

a morphism in CAT2 from the first to the 

second is a morphism h : B B' in CAT1 making the diagram 

B 

hl 
B' 

A 

f' > 
AN. 

commutative for all X E A. 

Then if a family {fox : A0 -- AX 
}AEA 

is a terminal object in 

CAT2 we call a pair (A0, {fOX }XEA) or often A0 a product of 

- 

k 



{AX 
}XEA, 

and denote A by H A . 

%EA 

As we have seen, the direct product of S2-algebras together 

with projections forms a product, and hence, we have the following 

theorem: 

Theorem 3.13. The product exists in the category [S2 ] . 

The following definition indicates the dual to the notion of pro- 

ducts. 
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Definition 3. 14. Let CATI be any category and {AX 
}XEA 

a family of objects in CATI. Also let CAT2 be a category de- 

fined as follows: 

The objects of CAT2 are the families {fX :A 
X 

B 
}XEA 

of 

morphisms in CATI, and given two such families {fX: A-- B}, 
E 

and {f' : A 
AEA' 

a morphism in CAT2 from the first to the 

second is a morphism h : B B' in CAT1 making the diagram 

lh 

B' 

commutative for all X E A. Then if a family {fox : AA -- AO 
}AEA 

is an initial object in CAT2 we call a pair (A0, {foA 
}AEA) 

or often 

A0 a sum of {AA 
}AEA, 

and denote A0 by / AA . 

AEA 

° ` 

- 

- 

-B' 
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As an example of a sum, consider the direct product II G 
XEA X 

of additive abelian groups. Let G be the subgroup of H G 
XE A X 

consisting of all elements of the form 

(xX)XEA, 
xX = 0 for all but a finite number of X E A. 

Then G together with a family of injections forms a sum of 

{GX }XEA. The proof is found in most materials on the group theory 

or the module theory. Thus, the category ABE of abelian groups 

has both products and sums, and in particular, the sum and the pro- 

duct of a finite family of abelian groups coincide with each other. 

For 0 - algebras, we have the following existence theorem: 

Theorem 3.15. The sum exists in the category [0]. 

Proof. Let {AX 
}XEA 

be a family of 0 -algebras and we set 

for all X E A, SX = AX v Z v 0 so that SX is either denumerable 

or infinite. Also, we set S = S X {X} and T = v S , and hence, 
X X XeA 

T I = I SX 
I 

. Let F be a family of all 0 -algebra structures on 

XE A 
T. Using r as an index set, let T be an S2- algebra corres- 

ponding to Y E r whose underlying set is T, and a collec- 

tion of all families 

9(Y) { (Y) 
A 

. A } 
X XT XE 

\ 

Y 

S 

- ' 



of homomorphisms. For all cp(y) E 1' , we set T = Ty. 
Y 

Now we define an S2 -algebra A'0 by 

A T lI II 

yEr, cP(y)E8y cP 

and a mapping fa: Ax-'A' by 

fO(x) _ ((wY)(x)) 
(y)E )YEI' 

Y 

for all x E AX . fa is a homomorphism since for any 

and al, a2, . . . , an in AX . 

f0X (co (al, a2, . , an)) 

= (cPY)(W(al, a2, ..., an))) 
(Y)E )YEF 

cp E 
Y 

WESZ 
n 
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= (w(cPxY)(al ), 50(xY)(a2), , 
c4Y)(an))) 

(Y) )YEr (Y)e 
Y 

= (((92(Y)(a)) ((PY)(a2)) 
(y)E 

,,(cPY)(an)) 
(y) ) yEI' 

9 
Y 

9 CI' 
Y 

= w )) (P( 
Y)(a 

A 1 
y)E$ 

Y 

, 
YEI, (9(Y)(a2)) ñ y)E 

)YEr'..., )YEF' 

Y 

(99(xYkan))(y) )YEF) 
Y 

w (f 
0X 

(a ), f0(a2) ' , f (an)). 

Let A be an arbitrary object in [0 ] with a family of 

(Y) 
W 

o 
= 

(Y) 

1 
. . 

w 

(Y)E 9 
Y 

9 

= 

Y 

rp 

, 

\ 



homomorphisms {fA : Ax --A }xEA. Restricting our attention to the 

images of fX's we may assume that A is generaged by 

fA (AA ). Hence, 
XEA 

I A I< N O 101 / 
I fA (AA )1< N O 

101 DA 
X 

I 

AEA AEA 

I5A1 = 1\101Q1 1T1 = ITI 
AEA 

Let Z = Z for all t E T, and we set A = A X II Z , so that 
t tET t 

ITI. Hence, we have a bijective mapping g s A -'T such 

that for some S2 - algebra structure YO E 
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g is an isomorphism of 

A onto TY Since we have an injection T : A -'A, there exists 
0 

(YO) (Y0) (Y0) 
a family cp E such that cpA E cp implies 

YO 

(YO) 
cqX = g TfA : AA -T 

Y 0 

Now put h' = Trg- 1Tr(vo) where Tr is a projection from 
9 

A to A and Tr 
(Y 

) is a projection from A'O to 
0 

(YO) such that for all x E A'O' 

L.) 

< NOI0 

r, 

T 

5 

0 

YO' `p 

N) 
(YO'(,(Y)(x)9(Y)< 

)YEr - O (x) 

\ 



Therefore, for any x E A , 

h'fOA(x) u 
71.g-1 Tr (yo) ((5, (y)(,) 

E y r (y) 
Y0' Y/ 

-1 (y0) 1 -1 
= Trg cpX (x) = Trg gTf (x) = fX (x), 

which shows that the diagram 
f A OA 

> A 

A 

is commutative. 

h 
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Finally let A0 
0 

be the SZ - subalgebra generated by v f0 (A ) 

AEA 

and h = h' I A0. Then h is a unique homomorphism such that for 

all X E A , the following diagram is commutative: 

Therefore the pair (A , {f } ) is the required sum. Q.E.D. 
XEA 0 

//II 
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IV. PRIMITIVE CLASSES 

Throughout this chapter, we shall identify a set S and the set 

of generators of a free SZ - algebra F(S) whenever a free 1-2 - algebra 

appears. 

1. Notes on Definitions of an Algebraic System 

In definitions of most algebras such as groups and rings, we al- 

ways encounter statements like "G satisfies (ab)c = a(bc), as 1 = 1,... 

for all a, b, c e G." Therefore, in our subject, too, we must have 

some convenient way to define the S2 - algebras that satisfy certain 

identities. 

In this section, we shall state a conventional definition of a 

familiar algebraic system, and then introduce a new definition for the 

system which is practically equivalent to the conventional one. Al- 

though the new definition may look rather messy, we shall find it con- 

venient to use it especially when we attempt to formalize the entire 

class of algebras that satisfy the given identities in the conventional 

definition. 

This is also a good opportunity to show an example of a connec- 

tion between SZ - algebras and the familiar algebraic systems, other 

than groups and rings which have already been shown, and therefore, 

throughout this section, we consider a Boolean algebra as an 
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S2 - algebra. Let us now set an operator domain 0 as 

= { +,, -,0,1} 

where + and are binary, - is unary and 0 and 1 are 

nullary operators. If B is an 0 - algebra then B contains 0, 1, 

and for any a, b E B, the elements a + b, ab, a where each de- 

notes +(a, b), (a, b) and -(a), respectively. 

The following definition is the one given by Huntington in 1904. 

Definition 1. An 0 - algebra B is a Boolean algebra if it sat- 

isfies the following identities for all a, b, c E B: 

a + b = b + a, 

a+0 = a, 

a(b+c) = ab + ac, 

a + a = 1, 

ab = ba, 

al = a, 

a + (be) = (a+b)(a+c), 

aa=0. 

Now consider the following definition: 

Definition 2. Let X be a set with at least three elements, 

and F(X) a free 7 -algebra generated by X. Further, let I' 

be the equivalence relation generated by the eight pairs: 

(x + y, y + x ), (xy, yx), 

(x+ 0, x), (x l, x), 

S2 



where 

(x(y+z), xy+xz), (x+(yz), (x+y)(x+z)), 

(x + x, 1), (xi(, 0), 

x, y, z are distinct elements in X. 

Then, an e - algebra B is a Boolean algebra if for all 

(u, v) E F and for any mapping f : X -B, 

f *`(u) = f*:(v) 

holds. 

61 

Accordingly, since for instance (xy, yx) e T, we have 

f *(xy) = f *(yx), i. e. , f(x)f(y) = f(y)f(x) for any mapping f : X B. 

In other words, ab = ba for all a, b E B, and hence Definition 2 

implies Definition 1. Since the converse is obvious, they are in fact, 

equivalent. 

Let us now consider the class of all Boolean algebras, i. e. , 

the class of all Q - algebras satisfying Definition 2. Although this 

class is an example of the primitive classes of 0 -algebras, we shall 

not, in this section, refer to it by this terminology. If we fix a set 

X in Definition 2, we see that the class depends only on the operator 

domain and the equivalence relation F on F(X). This allows us 

to designate this class simply as P(0, r) to express fully the class 

of all Boolean algebras. 

Similarly, giving a definition of the same kind as Definition 2, 
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one can obtain a class P(SZ, r') of all rings with identities, and 

again we see that this class is associated with an equivalence relation 

r' on F (X). 

The question is now whether or not among a family of all equiva- 

lence relations on F(X), the equivalence relation r is the unique 

one which determines the class of all Boolean algebras. However, 

we cannot assert this to be true unless we restrict the family (cf. 4. 8) 

of equivalence relations in some way. For, although the use of an 

additional generator such as (x +x, x) or ((x +y) +z, x+ (y+z)) in 

Definition 2 would not change its equivalence with Definition 1, it 

could change the equivalence relation r. We shall meet this prob- 

lem later. 

Finally, we shall state a definition which will be used in the fol- 

lowing section. 

Definition 4. 1. Let A be an SZ - algebra for an arbitrary 

operator domain Q. Then for any natural number r, a function 

y ; Ar A is called a compound operation of arity r composed of 

r 
wl, w2, , wm if for any (a1, a2, . . . , ar) e A, Y(al, a2, . . . , ar) 

is obtained from al, a2, . . . , ar e A and wl, w2, . . . , wm e Sl in 

some order. When we disregard wl, w2, ... , wm e SZ 

that Y is a compound operation derived from SZ . 

we we simply say 

Thus, functions yl, y2 : B2 B defined by y1(a, b) = a + b 
1 

m 



and y2(a, b) = ab + ab for all a, b E B are compound operations. 

Note that Yl is nothing but the binary operation determined by 
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+ E 0, and Y2 is composed of +, -, E 0 in certain way. But if 

y is defined by 

Y (a, b, c) = a (b + c) if a, b, c e SC B 

Y(a,b,c)=a+(bc) if a,b,ce B-5 

then it is not a compound operation since not all y(a, b, c) are ob- 

tained by applying + and in the same order. 

2. Primitive Classes of 0-Algebras 

In the preceding section, we have used X for a set with at 

least three elements. The size of X was in fact, determined by 

the maximum arity of compound operations which appeared in Defini- 

tion 2. 

In this section, we deal with 0-algebras with an arbitrary 

operator domain 0. And since all the compound operations derived 

from Sl are of at most finite arities, we fix X as a denumerable 

set, which is called a standard set. 

As preliminary remarks for this section, note that, by Theorem 

3. 2, every element in F(X) is of the form 

Y(xl, x2, , xr) 
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for some compound operation y derived from S2 where 

x1, x2, ... , xr e X. We shall use the symbols y and y as com- 

pound operations throughout this section. Also, if Y1 and y2 

are compound operations composed of the same operators in the same 

order, then we shall use the same symbol for them even though they 

have distinct domains. Thus, for example, if y1 : B3 B and 

y2 : C3- C are defined by Y1 (a, b, c) = a(b +c) and 

y2(a', b', c') = at (131+c') for all a, b, c E B and a', b', c' E C where 

B and C are Boolean algebras, the same symbol is used for 

and y2. 

Y1 

Definition 4. 2. A primitive relation r is an equivalence re- 

lation on F(X), and the elements in r are called laws in r 
over O. 

Definition 4. 3. Let A be an S2 - algebra. Then we say that 

A satisfies the law 

(y(x1, x2, ... , xr), y'(xi, x2, ... , x')) (4. 2. 1) 

in the primitive relation r if for any mapping f : X --'-A 

f *(y(x1, x2, ... , xr)) = f *(y'(xi, x2, ... , xt)), 

i.e., 

Y(f ), (xi f(x2), ..., f (xr )) = y'(f(xi), f(x2), . . . , f(xt)) 
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If A satisfies all the laws in r, then we say that A satisfies 

the primitive relation r. 

Definition 4. 4. If r is a primitive relation then a class of 

all SZ - algebras that satisfy r is called a primitive class of Q - 

algebras defined by r. We denote the class by P(Q, I'). Often 

Q- algebras in P(0, I') are called r- algebras to emphasize the situ- 

ation. 

r is not an operator domain of course, and the notation 'T- 

algebra" should not be confused with the notation "Q - algebra. " The 

operator domain 0 is always associated with r- algebras. 

Proposition 4. 5. Let L be any set of generators of a primi- 

tive relation r. Then an Q - algebra A satisfies all the laws in 

L iff A satisfies T. 

Proof. Let A be an arbitrary Q - algebra satisfying all the 

laws in L, and let M be a set of all mappings of X into A. 

Then we set 

R = {(u, v) : f*(u) = f-%-(v), u, v EF(X)}. 
fE M 

R is evidently an equivalence (even congruence) relation on F(X) 

which contains L. Hence, rC R and since A satisfies all the 

laws in R, it satisfies all the laws in I'. The converse is 
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trivial. Q. E. D. 

Theorem 4. 6. Let r be a primitive relation on F(X) and 

let I' denote a set of all elements of the form 

(y(Y1, y2, . . , yr), y'(Y y2, yt)) 

where yl, y2, ... , yr, yi, y2, ... , yt E X and (y(x1, x2, ... , xr), 

y'(xi, x, ... , xt)) E F. Further, let A be the congruence relation 

generated by r Thus, we have three primitive relations F, F 

and A. Then i) A is a r- algebra iff ii) A is a r0- algebra iff 

iii) A is a A- algebra. 

Remark. If for each we S2, we define the corresponding 

n -ary operation componentwisely on the set of ordered pairs, then we 

have a free Sl - algebra F(ro) generated by r0. F(ro) is a con- 

gruence relation, and in fact it coincides with A. The proof is 

simple, and we shall omit it. 

Proof of 4. 6. Let (4. 2. 1) be an arbitrary law in F. Then it 

follows from the definition of r- algebra that any r- algebra A 

satisfies the identity 

y(al, a2, . . . , ar) = y' (al, a2, . . . , at) 

for all al, a2, ... , ar, ai, a2, ... , at e A. Hence, we see at once that 

, 



i) implies ii). Also since FC A, we have that iii) implies i). 
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Now if (u, NO is an arbitrary element in p then by Theorem 

3. 2, it has the form 

(6(u 
1, 

u2, . . . , uk), 6 (ul, u2, , uk)) 

where (u., u'.) e F0, j =1, 2, . . . , k for some compound operation 6. 
J J 

Hence, if we assume ii) then for any mapping f : X ~A, 

f *(u .) = f *(u!) and since 
J 

f* is a homomorphism, f *(6(u1, u2,...,uk)) 

= f *(61(u'i, u2, ... , uk)). This proves the theorem. Q. E. D. 

Now consider a factor 0 - algebra F(X) /A. If f : X -"F(X) /A 

is an arbitrary mapping, then there exists a mapping g: X --F(X) 

such that f = vg for the canonical homomorphism v of F(X) onto 

F(X) /A. If (u, NO is an arbitrary law in A then (g *(u), g *(v))e A, 

and hence we have vg- *(u)=- vg *(v). It follows that f *(u) = f *(v), and 

F(X) /A is a F- algebra. This proves: 

Proposition 4. 7. For any primitive relation r there exists a 

F- algebra, i. e. , P(0, r) # 0. 

We have seen in the proof of 4. 7 that for the endomorohism g* 

of F(X), u = v mod A implies g *(u) _ g *(v) mod A. One can show 

that this is true for all endomorphisms of F(X). 

In general, a congruence relation R on the Q - algebra A 

J 



is said to be fully invariant if a = b mod R implies 

f(a) = f(b) mod R for every endomorphism f of A. Thus, 

in 4. 6 is an example of a fully invariant congruence relation. 

A 

68 

Proposition 4. 8. If A is a primitive relation which is a fully 

invariant congruence relation, then there is no other fully invariant 

congruence relation A' on F(X) such that P(S2, A ) = P(S2, A'). 

Hence, every primitive class is associated with a unique fully invar- 

iant congruence relation. 

Proof. Suppose that (u, v) is a law in, say A such that 

(u, NO is not in A'. Hence v(u) v(v) for the canonical homomor- 

phism v of F(X) onto F(X) /A'. Thus, we have a mapping 

f = v I X : X -"F(X) /A' such that f *(u) = v(u) v(v) = f *(v), and 

F(X) /A' is not in P(SZ, A). Since F(X) /A' E P(S2, A'), we have 

P(S2, A') P(S2, A). Q. E.D. 

The following two propositions are immediate from the defini- 

tions, and indicate the characteristics of primitive classes. 

Proposition 4. 9. If A E P(S2, I') and B is any 0- subalgebra 

of A then B E P(SZ, I' ). 

Proposition 4. 10. If h is any homomorphism of A E P42,T ) 

into another 0-algebra which is not necessarily a r- algebra, then 
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h(A) is a r- algebra. 

Let [r] denote a category of all I,- algebras and homomor- 

phisms between r- algebras. 

By the following three theorems we shall show that a primitive 

class contains free SZ -algebras, products and sums. 

Theorem 4. 11. The product exists in the category [r]. 

Proof. We shall show that for any family {A } 
SEA 

of T- 

algebras H A forms again a r- algebra. The rest of the proof is 
XEA 

similar to the existence of the product in the category [0]. 

Let TrX denote a projection, and for any mapping f: II A 
AEA X 

we write f(x) = (f,(x))xEA where fx = Trxf. Hence if (4. 2. 1) is an 

arbitrary law in r then for each ? E A, 

y(fX(xl ), fX(x2), . . . , fX(xr)) = y' (fX(xi ), fX(x2), . . . , f(xt)). 

(y(fx(xl), fx(x2), .. ., fx(xr)))),EA 

= (y'(fX(xl ), fX(x2), . . . , fX(xt)))XEA' 

It follows that 

y((f \(xl ))XEA' (fx(x2))AEA' . . . , (fX(xr))xEA) 

= y`((fX(xi ))XEA' (fl(x2))XEA' 
... , (f(xt ))XEA)' 

X- 



f(x2), , f(xr)) = y`(f(x1),f(x2),...,f(xt)) 

Q. E. D. 
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Definition 4. 12. Let S be a nonempty set and let CAT be 

a category whose objects are mappings of S into I'- algebras and 

whose morphisms are defined as follows: 

If f S -'A and g : S ---B are two objects in CAT then 

a morphism from f to g is a homomorphism h such that the 

diagram 

is commutative. 

Then a pair 

S 
f A 

ih 

B 

(G, f0) or often G is called a free I'- algebra 

generated by S if a mapping f0 : S -G is an initial object in 

CAT. 

Theorem 4. 13. For any nonempty set S, there exists a free 

F- algebra (G, f0) generated by S. Moreover, if [I'] contains 

a r- algebra with more than one element, then f0 is injective and 

G is generated by f0(S). 

Proof. Let S be a nonempty set, F(S) a free S2- algebra 

: 

> 

y 



71 

generated by S, and M a set of all homomorphisms of F(X) 

into F(S). Also let R be the congruence relation on F(S) gen- 

erated by all the pairs of the form (h(u), h(v)) where h E M and 

(u, NO is an F. If A is an arbitrary F- algebra with a mapping 

f : S A then by the definition of F- algebra, f *h(u) = f *h(v) for 

all h E M and (u, v) E F. Hence, 

RC Ke r (f *). (4. 2. 2 ) 

So if y is the canonical homomorphism of F(S) onto F(S) /R 

there exists a unique homomorphism f* such that the diagram 

f= 

is commutative. Since it is immediate that F(S) /R is a F- algebra, 

(F(S) /R,vIS) is the required free F- algebra. 

Now let f0 = v IS, and let A be a F -algebra with more than 

one element. Assume that f0 is not injective, i. e. , for some dis- 

tinct s, s' E S, s s' mod R. Since A has at least two elements 

there is a mapping f : S -;A such that f(s) f(s'). Hence, 

s A s' mod Ker (f *). Thus, we have a desired contradiction to (4.2.2). 

Q. E. D. 

As a result of 4. 13, we may identify the set S and the 

S F(S) 

_ 

ft v 

A < F(S)/R 
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generators of G unless the category [r] has only trivial objects. 

If [I'] has only trivial objects it means that F contains a law of 

the form (x, x'), x x' where x, x' E X, which yields the identi- 

ties a = at for all a, a' E A for each object A E [r]. Hence our 

free F- algebra (G, f0) is also trivial even though the mapping f0 

is an initial object in the category CAT in the Definition 4. 12. In 

any case, f0(S) is in fact a set of generators of G since all the 

elements of G are R- congruence classes of the form 

y(s s ... , s r) for some compound operation Y and 

sl, s . . . , s E S, which is rewritten as Y(s s . . . , sr). 

Theorem 4. 14. The sum exists in the category [r] . 

Proof. Let (A0, {f0X)AEA) be the sum of a family {AX }SEA of 

F- algebras in the category [c2] and let R be the congruence re- 

lation on A0 which is generated by all the pairs (h(u), h(v)) for 

all laws (u, v) E r and for all homomorphisms h of F(X) into 

A0. If A is an arbitrary F- algebra with a family of homomor- 

phisms {fX : AX - A 
}X.EA 

then there exists a unique homomorphism 

g of A0 into A such that for all X E A, gf 
0A 

= fx . Since A 

is a r- algebra, gh(u) = gh(v) for all laws (u, NO E F and for all 

homomorphisms h of F(X) into A0, and hence RC Ker(g). 

Thus if v is the canonical homomorphism of A0 onto A 
0 

/R 

there exists a unique homomorphism g such that the diagram 

r 

# 
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fOX 
A 

o 

jg 

A 

v 
Ao/R 

is commutative for all X E A. Evidently A0 /R is a r- algebra, 

and hence (Ao /R, 
{vf o\ }AEA) 

is the required sum of the family 

{A 
XE A. 

Q. E. D. 
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PART II 

GROUPS WITH MULTI -OPERATORS 
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V. 0- GROUPS 

So far, we have studied a completely generalized algebraic sys- 

tem, namely, an 0-algebra which is a set with an arbitrary algebraic 

structure (0-algebra structure). In Part II, however, instead of tak- 

ing a set with an 0-algebra structure, we shall take a group with an 

0-algebra structure. 5/ As a result, this new algebraic system does 

not apply to all algebras but only to the ones that are somehow re- 

lated to groups. Even though we have such a restriction, our subject 

still represents a wide generalization in the sense that there are many 

algebras with group structures, say, groups, abelian groups, rings, 

modules, vector spaces and so forth, to which it is applicable. Thus, 

the unification of the theories of groups, rings, etc. will be one of 

our results in Part II. 

Also, we shall see that groups with 0-algebra structures may 

be considered as algebras in a primitive class of 0*- algebras for 

some restricted operator domain 0 Therefore, all the theories 

developed so far perfectly apply to our new subject. 

1. A Construction of 0-Groups 

Let G be an 0 *- algebra, where 0* is an operator domain 

which contains at least a binary operator +, a unary operator 

5Replace the word "set" by "group" in Definitions 1. 1 and 1. 2. 

- 



and a nullary operator O. Suppose further that G satisfies the 

primitive relation generated by the following three laws: 

(+(+(x, y), z), +(x, +(y, z))) 

(+(x, -(x)), 0 ) 

(+(x, 0), x) 
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(5.1.1) 

where x, y and z are distinct elements in the standard set X. 

Thus, G is an element of the primitive class of S2 _ algebras de- 

fined by these three laws. We shall always use the symbol 0* to 

denote such an operator domain and set 

S2 =52::- {+,-,0}. 

If S2 = 0 then G is simply an additive group which need not be 

abelian, and if Q is arbitrary then G is a group that has an S2 - 

algebra structure. 

Definition 5. 1. A group with an 0-algebra structure is called 

a group with multi -operators SZ or S2 -group if it satisfies all the 

laws 

6(0, 0, . . . , 0), 0), w E Q. (5.1. 2) 

A subset H of G is called an S2 -subgroup of G if H is an 

S2 *-subalgebra of G. 
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Accordingly, a class of all 12- groups coincides with the primi- 

tive, class of 12 &algebras defined by the set of laws (5. 1. 1) and 

(5. 1. 2), and by Proposition 4. 9, 12- subgroups of 1-2- groups are in the 

same primitive class. 

Henceforth, we shall write for a, b E G, a + b instead of 

+(a, b) and -a instead of -(a). The nullary operation 0 is an 

element of G called the zero (rather than the identity) of G, and 

is unique. Also whenever we speak of homomorphisms, isomor- 

phisms, congruence relations, etc. in the rest of this paper, it should 

be understood that they are homomorphisms (or isomorphisms, etc. ) 

of 12 *...algebras. 

If G and G' are 12- groups with a homomorphism f : G -'G' 

then for all w E n 

w(f(0), f(0), ... , f(0)) = f(w(0, 0, ... , 0)) = f(0) 

and hence f(0) is the zero of G' . 

2. f2 -Ideals 

One of the most remarkable differences between S2 -algebras 

and 0- groups is that always the latter are assured to contain trivial 

subalgebras, namely O = {0 }. As indicated in Section 3 of Chapter 

I, this property gives us some possibility to express each congruence 

relation on the 12 -group conveniently in terms of an 1-2- subgroup. 

f2 &, 
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Let G be an SZ - group, R any congruence relation on G, 

and let x denote an R- congruence class containing x E G. Since 

{0} is an SZ - subgroup, it follows that 0 is an SZ - subgroup of G 

(cf. 3, Chapter I). 

If x is an arbitrary element in G, then a = x mod R 

implies a - x = 0 mod R, and hence a - x E O. It means that, x 

is contained in the coset 0 + x. Also, if a E 0 + x then 

a = x mod R, and at once we obtain 0 + xC x, i.e. , x = 0 + x. 

Similarly, we have x + 0 = x, and thus every R- congruence class 

is a coset of O. 

Let x1, x2, ... , xn be arbitrary elements in G and consider 

n cosets x1 + 0, x2 + 0, ... , xn+ O. If ai is any element in 0, 

(i =1, 2, ... , n) then x. + a. = x. mod R, and it follows that 

w(x1 x2+a2, .. , xn+an) = w(x1, x2, . , xn) mod R 

w(xl x2+a2, . . , xn+an) E w(xl, 1, 
x2, . . . , xn) + 0 

for any w E S2 ><. This property of 0 is precisely the property of 

S2 -ideals which are defined as follows: 

Definition 5. 2. Let H be a subset of the S2 -group G such 

that for any x1, x2, ... , xn E G, al, a2, ... , an E H and w E S2n* 

i 
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w(xl+al, x2+a2, . . . , xn+an) E w(xl, x2, . , xn) + H. 

(5.2.1) 

Then H is called an 0-ideal of G. 

In particular, if x1 = x2 = ... = xn = 0 in (5. 2. 1) then it 

shows the property of 0-subgroups. Accordingly, every 0-ideal is 

an SZ - subgroup. An example of the 0-ideal is a normal subgroup of 

a group or an ideal of a ring. For instance, if we consider w in 

(5. 2. 1) to be a multiplication of a ring then (x1 +a1)(x2 +a2) E xlx2 + H. 

Thus, x1 = 0 gives us the familiar membership a1x2 E H for any 

al E H and x2 E G. 

As we have seen, for any congruence relation R on G, R- 

congruence class 0 is an 0-ideal. Now, let H be an 0-ideal 

in the 0-group G, and consider the relation of all elements (x, y) 

in G2 for which y E x + H holds. This relation is obviously an 

equivalence relation, and furthermore, for all 

(x1, 
y 

1), (x2, y2), ... , (xn, yn) in the relation and for any w E 0 

w(Yl, Y2, . , yn) = w(x1+a1, x2+a2, . . . , xn+an) 

E w(x1,x2,...,xn)+H 

for some al, a2, ... , an E H. That is, (w(x1, x2, . . . , xn), 

w(y1, y2, . . . 
, yn)) is also in the relation, and hence it is a congruence 

relation. 

: 
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Thus, we have a one -to -one correspondence between the family 

of all congruence relations on G and the family of all SZ - ideals of 

G such that for each congruence relation R on G the corres- 

ponding SZ -ideal H is an R- congruence class 0. Symbolically, 

we shall write this correspondence as 

R- H. 

Proposition 5. 3. Let f be a homomorphism of an 0-group 

G into an S2 -group G'. Then 

Ker(f) - f 1 (0). 

Proof. Let 0 be a congruence class containing O E G de- 

fined by Ker(f). Then since a = 0 mod Ker(f) is equivalent to 

saying f(a) = 0, or f(a) = f(0), we obtain the result at once. 

Q. E. D. 

In particular, f -1(0) is an SZ -ideal of the 0-group G. Now 

for each pair (x, y) E G2, define a translation 0 by 0(z)=x - z + y 

for all z e G. Evidently, it has a property that 0(x) = y and 

0(y) = x. Therefore, by 1. 18, all congruence relations on the 0 - 

group G commute with respect to the composition, and hence a 

composition of the congruence relations is again a congruence rela- 

tion on G. 
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Proposition 5. 4 Let H and K be 0-ideals in the 0 -group 

G. Then H n K and H + K = {x +y : xE H, ye K} are both 0- ideals 

of G. 

Proof. Let R and T be congruence relations on G 

such that R - H and T - K. Then the correspondences 

R (Th T^' H nK, 

RT - H+ K (5. 2. 2) 

are immediate. Q. E. D. 

Thus, the intersection of two 0-ideals of the 0 -group G is 

an S2 -ideal, and since for any two congruence relations R and T 

on G, RT is the congruence relation generated by R v T, the 

correspondence (5. 2. 2) shows that H + K is the smallest 0 -ideal 

containing H u K. In other words, H + K is the intersection of 

all S2- ideals containing H v K. Similarly, if B is any 0 -sub- 

group of G then one can show that H + B is the S2- subgroup gen- 

erated by H u B. In fact, 

H + B = RB (5.2.3) 

(cf. (1. 3. 1)) where R is a congruence relation on G such that 

R H. 

In the theory of groups, an inner automorphism of the group G 

_ 
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is defined to be a translation 0 x such that for all z E G 

0 x : z I- -x +z +x (5.2.4) 

for a fixed element x e G. However, 0 
x 

need not be an automor- 

phism of the Q - group. Now we extend the notion of inner automor- 

phisms of groups for our Q _groups. 

Definition 5. 5. Let G be an Q - group. Then for each 

(x1, x2, ... , x ) 
n 

e Gn, w e Q * and i =1, 2, ... , n, we have a transla- 

tion 0.6) : G -'G defined by 
1, (x1, x2, ... , xn) 

w 0. ) :z I-' -c,,>(x ,x ,...,x ) 
i, (x1, x xn) 1 2 n 

+ w(xl, x2...,xi-l' xi+z, xi+1'...,xn). 

The translation of this type is called an inner translation of the Q - 

group G. 

In particular, a translation 0 x of the SZ -group G defined 

by (5. 2. 4) coincides with an inner translation 0( +) 
1, (0, x)' 

If an Q- subgroup H of the Q -group G has the property that 

0(a) e H for all a e H and for all inner translations O of G, 

then we shall say that H is closed under all inner translations of 

G. 



Lemma 5. 6. An SZ - subgroup H of the 0 -group G is an 

0-ideal iff H contains all the elements of the form 

-w(X , X , . . . , X ) + w(X , X , . . . , x. , x.+a, x. , . . . , x ) 
i-1 i 1+1 n 

where w e SZri* , xl, x2, . .., xn e G and a E H. 

Proof. If H contains all the elements stated above, then 

w(x1 +a x2,...,xn)E (.0 (x1,x2,...,xn) +H and 

w(xl+al,x2+a2,x3,...,xn)e w(x1 +a1, x2, ... , xn) + H for all 
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xl, x2, ... , xn E G and w E Q *. From these two, it follows that 
n 

w(x1 +al, x +a 
2 2' 

x3, ... , xn) E w(x1, x2, ... , xn) + H for all al, a2 E H. 

Thus, by induction, we obtain 

w(x1 +a1, x2 +a2, ... , xn +an) E w(x1, x2, ... , xn) + H 

for all al, a2, ... , an E H. The converse is obvious. Q. E. D. 

From this lemma, we immediately obtain the following proposi- 

tion. 

Proposition 5. 7. An 0 - subgroup H of the Q -group G is 

an 0-ideal iff H is closed under all inner translations of G. 

Now if H and R are respectively an 0-ideal of the 0- 

group G and a congruence relation on G such that R - H then 
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the set of all the cosets of H coincides with the set of all R- 

congruence classes. Hence, the set of all the cosets is an S2 

algebra G /R, and since G/R is, of course, a homomorphic im- 

age of G, it follows from 4. 10 that G/R is an S2 - group. The 

action of each w E 0 on the set of the cosets is obtained directly 
n 

from (1. 2. 1) as 

w(x1+H,x2+H,...,xn+H) =w(xl,x2, ... ,xn) + H 

for all xi, x2, ... ,xnE G. 

The S2 -group of the cosets is called a factor 7 -group of G 

by H, and henceforth denoted by G/H instead of G /R. 

3. The Composition Series and the Chain Conditions 

As we have seen in the previous section, all the congruence 

relations appeared in Part I are replaced by the suitable S2 -ideals, 

and by the establishment of the equalities and the correspondences 

like (5. 2. 2) and (5. 2. 3), we may rewrite the isomorphism theorems 

in Chapter II in terms of 7 - subgroups and 0 -ideals, often in much 

more simple forms. For example, without repeating the proof, we 

may state Zassenhaus' lemma for 0 - groups as follows: 

Zassenhaus' Lemma (Restatement of 2. 4). Let G be an S2 - 

group, B and C S2- subgroups of G, and H and K 
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0-ideals in B and C, respectively. Then H + (BnK) is an 

0-ideal in H + (BnC ), K + (HnC) is an 0-ideal in K + (BnC ), 

and 

(H+ (BnC ))/ (H+ (BnK)) = (K+ (B(ThC )) /(K+ (HnC )). 

In Chapter II, we defined a normal series as the series from 

I to A (cf. 2. 5). However, the most important normal series is 

obtained if I is fixed as a trivial S2 - subalgebra (if possible), and 

it can be shown that such a selection of I does not break a gener- 

ality. Since we have a definite S2 -ideal {0} in the 0-group, the 

normal series of the SZ -group will have a slightly simplified form: 

Let O = {0 }. Then a normal series of the 0-group G is a 

sequence of S2 - subgroups of G: 

O = G0C G1 Ç... C Gs =G 

such that each G. is an SZ -ideal in G., i =1, 2, ..., s. 

(5. 3.1) 

We say that an 0-ideal H of the 0-group G is maximal 

in G if HC G and there is no 0-ideal K such that 

HC KC G. In other words, there is no 0-ideal in G/H other than 

G/H and H /H, i. e., G/H is simple. 

A normal series (5. 3. 1) is called a composition series of the 

Q -group G if each Gi 
-1 

is a maximal Q -ideal in G.. 

I 

i 
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Jordan -Hölder Theorem for 0 -Groups (Restatement of 2. 1 0). 

Any two composition series of the 0 -group G are equivalent. 

Now we shall state two conditions that together constitute a nec- 

essary and sufficient condition that an 0-group G have a composi- 

tion series. 

Definition 5. 8. Let G be an 0 -group. 

i) The first descending chain condition. If G1 D G2 3 G3 D . . 

is a sequence of 0 - subgroups such that G1 is an 0 -ideal in G 

and each Gi 
+1 

is an 0 -ideal in the preceding, then there exists a 

positive integer r such that Gr = Gr +l . . 

ii) The first ascending chain condition. If G1 C G2C G3C .. . 

is a sequence of S2 -ideals in H which is any term of a normal ser- 

ies then there exists a positive integer r such that Gr = Gr 
+1 

The two chain conditions can be stated equivalently for an arbi- 

trary 0 - algebra A, and the two conditions are sufficient that an 

0-algebra A possess a composition series. 

iii) Descending chain condition for 0 - algebra. If 

Al D A2 D A3 D... is a sequence of Q - subalgebras of A together 

with the congruence relations R. on Ai such that Al is a con- 

gruence class in A for some congruence relation on A and each 

Ai +1 
is an R.- congruence class in the preceding then there exists a 
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positive integer r such that Ar = Ar +l 

iv) Ascending chain condition for S2 - algebra. If 

Al CA 2C A3C .. is an ascending sequence of S2 - subalgebras of 

A each of which is a congruence class in B defined by some con- 

gruence relation on B, B being any term of a normal series, then 

there exists a positive integer r such that Ar = Ar +1 . . 

Theorem 5. 9. If an S2- algebra A which possesses a nontriv- 

ial normal series 6/ from its S2- subalgebra I to A, satisfies 

the two chain conditions iii) and iv), then A has a composition ser- 

ies from I to A. 

Proof. In any nontrivial normal series from I to A, let 

B I be an arbitrary term and let Al Ç A2 C A3 C... be any as- 

cending sequence given in iv). Then we necessarily have an S2 - 

algebra Ar such that Ar = Ar +1 = . 

. This means that there 

exists a congruence relation T which defines a T- congruence class 

B' in the sequence such that B/T is simple. Since B is 

arbitrary we set 

B = A0i and B' = A0i+1' i=1, 2, . . . . (5. 3. 2) 

6A normal series is nontrivial if it differs from the series: 
AC A. 

# 

. 

. 
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This gives rise to a descending sequence A= A DA DA 3 .. . 00- O1- 02- 
together with a congruence relation Ti on AOi such that 

A0i /Ti is simple and AOi 
+l is a T.-congruence class. By the 

descending chain condition iii) we meet B' = I after a finite number 

of iterations (5. 3. 2), and hence we obtain the composition series 

A = A00 DA01 DA02D... DI . 

Q. E. D. 

The converse of 5. 9 is not true in general since if A is infi- 

nite and does not contain a trivial S2 - subalgebra then it is possible 

for A to possess an infinitely descending sequence of S2- subalgebras 

even though A have a composition series from I to A for 

some S2 - subalgebra I. However, if A contains a trivial S2 - 

subalgebra, the situation becomes different. We shall state this with 

the 2-group G rather than with the 0- algebra that has a trivial 

S2 - subalgebra. 

Theorem 5. 10. A necessary and sufficient condition that an 

S2 _group G have a composition series is that G satisfies chain 

conditions i) and ii). 

Proof. The sufficiency follows from 5. 9. To prove the neces- 

sity, let G1 3 G2 3 G3 D... be any descending sequence of S2 - 

subgroups such that G1 is an S2 -ideal in G and Gi +1 is an 



Q -ideal in the preceding. Then for any integer k 

GDG1 DG2D... DGkDO 
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(5. 3. 3) 

where O = {0 }, is a normal series of G. If we delete the repiti- 

tions of Q -subgroups from (5. 3. 3) then there is a composition series 

which is a refinement of the resultant of the deletion. Hence, the 

number of terms in the resultant is finite, and the descending chain 

condition i) holds. 

Let G1C G2C GCJ ... be an ascending sequence such that 

all G. are Q -ideals in H which is any term of a normal series 

of G. Then obviously G. is an Q -ideal in G. and hence 

OCG1CG2C... CGkC HC... G C 

is a normal series for any integer k. Therefore, the same argu- 

ment as we used for the descending sequence shows that 

G1 Ç G2 Ç G3 Ç . . . cannot be an infinitely ascending sequence. 

Q. E. D. 

Definition 5. 11. A normal series (5. 3. 1) of the Q -group G 

is called an invariant series if all G., í =1, 2, ... , s, are Q -ideals 
1 

in G. Also an invariant series without repetitions of Q- subgroups 

which has no refinement without repetitions is called a chief series. 

+l 
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Let Qv be an operator domain such that S2' =1-2 v S21 where 

S21 is an operator domain of unary operators such that IS21 I 
coin- 

cides with the number of inner translations of the 0-group G. If 

we consider every inner translation as a unary operation on G de- 

termined by the operator in 521, then G becomes an S2' -group as 

well as an S2 -group. And it is immediate from 5. 7 that a composition 

(or normal) series of the S2' -group G is a chief (or invariant) ser- 

ies of the S2 -group G. 

Of course, all the theorems for the composition (or normal) 

series hold for the chief (or invariant) series. 
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VI. DIRECT SUMS OF S2 -GROUPS 

1. Direct Products and Direct Sums 

If a family of Sl - groups 
{GA }XEA 

are given then by 4. 11, the 

direct product 

G = II Gx 
XE A 

forms an 0-group called the direct product of 0- groups Gx . For 

each w E a*, the corresponding n -ary operation is defined by the 

same way as (3. 1. 1), and hence it is immediate that for the unary 

operator - E a*, 

- ( (aX )AE 11) 
= 

( - aX. )AE 11' 

and the element 0 = (0)E is the zero of G. 

Now let G1, G2, ... , Gs be Q - groups and let 

s 

G = II G.. 
j=1 

Then for each k =1, 2, ... , s, G contains the a - subgroup 

Hk = {( 0, 0, . . . , 0, ak, 0, . . . , 0 ) E G : ak E Gk} 

which is isomorphic to Gk under the correspondence 

j 



(0, 0, ... , 0, ak, 0, ... , 0) H ak. 

Let Tr. be the projection of G onto G. and 

K. = Tr 1 (0) = {(a , a2'' a 0, a. ,...,a ) E G}. 
J J 1 

J. 3+1 s 

Then by 5. 3, K. is an SZ -ideal of G, and at once we obtain the 

following equalities: 

Hk = n K. = K1 n K2 n n Kk-1 n Kk+l n n Ks 
jA( J 

Kk 

G = 

j#k 

j=1 

H. = H1 + H2 + . . . + Hk-1 
+ 

Hk+l + . . . + Hs 
J 

7/ 
= H1 + H2 + . . . + Hs . - 

It follows from 5. 4 that Hk is an S2 -ideal of G and 

7 
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(6. 1. 1) 

(6. 1. 2) 

For the rest of the paper, the symbol ) does not represent 

the sum of H ... , Hs in the category theoretical sense (cf. 

3.14), i.e., % H. is only the totality of the elements of the form 
j =1 

. 

= al + a2 +... + as, where a. E H. (cf. 5. 4). 
J J 

s 

j=1 

, 

s 

H2, 

= 

H. 

(LHj)=G, 
j#k 

l 
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where O denotes the trivial 12 - subgroup throughout this chapter. 

Also, (6. 1. 1) and (6. 1. 2) may be written as 

G=(nK.)+K (6.1.3) 
.0k J k 

O = ñ K., 
j=1 

(6. 1. 4) 

respectively, which correspond to the equalities (3. 1. 5) and (3. 1. 4). 

Lemma 6. 1. If any S2 -group G has 12 - ideals H1, H2,...,Hs 

satisfying (6. 1. 1) and (6. 1. 2) then every element of G has a unique 

expression 
s 

a. =a1 +a2+...+as u J 

j=1 

where a. E H.. 
J J 

s s s 

Proof. If al = a! then -al + a = a! - , . // J J 

J=1 J=1 J=2 J=2 
s 

Hence, -ai + al E H1 n H. = O. This gives al = ai, and the 
J 

s 

j =2 

similar argument will show that a. = a! for all j. Q. E. D. 
J J 

Proposition 6. 2. In order that an 1-2 -group G be represent- 
s 

able as a direct product of the form II G. where G. is an 12 - 
j=1 J J 

group, it is necessary and sufficient that there exist S2 -ideals 

L 1 

J 

J 

a ). 
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H1, H2, ... , Hs in G satisfying (6. 1. 1) and (6. 1. 2). 

Proof. The necessity follows from 3. 1 and the equalities 

(6. 1. 3) and (6. 1. 4). To show the sufficiency of the condition, let 

H1, H2, ... , Hs be the SZ -ideals of G satisfying (6. 1. 1) and 

(6. 1. 2). Then we set 

From this and from 6. 1, we obtain the equalities (6. 1. 3) and (6. 1. 4), 

and hence the sufficiency follows from 3. 1. Q. E. D. 

Definition 6. 3. Let G be an S2 -group which contains the SZ - 

ideals H1, H2, ... , Hs satisfying (6. 1. 1) and (6. 1. 2). Then G 

is called the direct sum of H H2, ... , Hs and is written 

s 

G= ® Hj =H1 H2®...®Hs. 
j=1 

Also, each H. is called the direct summand of G. 

(6. 1. 5) 

As we know, if G is the direct sum (6. 1. 5) then every ele- 

ment of G has the unique expression a., a. E H.. Now note that 
J J J 

j=1 

H1 ® (H2®H3) _ (H1®H2) ® H3, 

H1 ®H2=H2®H1. 

s 

Kk = H.J . 

j#k 

® 
s 

y 
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Hence, if G = H1 ® H2 ®... ® Hs then for any permutation of 

j =1, 2, ... , s, written G = H1, ® H2 
' 

® . . . ® Hs Let t 

be an integer such that i < t < s, and let 

H=H1,®H2'®. t 

K= H ® H ® ® H . 
(t+1)' (t+2)' ' ' 

Further, define a mapping f : H -iG /K by f(x) = x + K for all 

x E H. f is obviously surjective, and using the uniqueness of the ex- 

pression of the element in H ®K we also obtain the injectiveness 

of f. Now if xl, x2, ... , xn E H and w E S2 * , then 

w (f (xl ) , f (x2 ) , . . . , f (xn ) ) = w (xl 
+K, x2+K, , xn+K ) 

=w(xl,x +K x 2,...,n) 

= f(w(x1, x2, ... , xn)), 

and it follows that f is an isomorphism. This gives us 

H1' ® H2' ® ... ® Ht' = G/ (H(t +1)'G H(t +2)'® 
... ®Hs!). 

In particular, if 

then 

Kk= H. 
J jk 

Hk = G/Kk , (6. 1. 6) 

ii- it, '. 

Ht' , 

s 

n 



and from 3. 1, we obtain the isomorphism 

defined by 

s s 

11) H. = G = II (G/K.) 
j=1 

J 
j=1 

s 

aj -- (a1+K1, a2+K2, . . . , as+Ks). 

j=1 

96 

(6. 1.7) 

By (6. 1. 6) and (6. 1.7), the following theorem is now immediate. 

Theorem 6. 4. If an Q -group G is a direct sum of Q -ideals 

H1, H2, ... , Hs then 

s s 

II H. ® H. = G 

j=1 J j=1 

under the correspondence 

( a , a , . . . , a ) F.- al +a2 +...+as. (6. 1. 8) 

s 

Corollary 6. 5. If G = ®H. for its SZ - ideals H. then for 
j =1 J J 

s 

all wEQ* and J al , /a2,... /an in ® H. 
n u j j 

, 

u j j =1 J 

a2j, . . . , anj) = w(a1j, a2j, . . , anj) (6. 1. 9) w(/alj, 

_ 
J 

. 
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Proof. Let f be the isomorphism (6. 1. 8). Then 

w(alj, /a2i, ... , /anj) 

= w(f(all'a12,..., als)' f( a21' a22,. ..,a2s)...,f(anl,an2,...,ans)) 

= f(w((all'a12, ,als), (a21'a22,...,a2s),..., (any anl,...,ans))) 

= f (w(al anl )'w(a12' a22,. ..,an2),...,w(a2s,,ans)) 

= w(al 
l ' 

a21, ... , anl) +w(a12' a22, ... ,ant) +... +w(als, als, ... ans ) 

= jw(a1..a2., ..., an.). Q.E.D. 
i 

2. Projective Endomorphisms 

Let M be a family of all mappings of the 0 -group G into 

itself, and for each wE On* , we define the corresponding n -ary 

operation on M as 

(fl, f2, , fn) `- w(fl, f2, , fn) 

for all f f2, ... , fn E M where w(fl, fl, ... , fn) is an element of 

M such that 

(w(fl, f2, ... , fn))(x) = w(fl(x), f2(x), , fn(x)) 

for all x E G. Hence M is an S2 &_algebra. In particular, for all 

n 



fl' f2E M and x G, 
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(f1 +f2)(x) = fl (x) + f2(x) 

(-f 
1 

)(x) = -(fl(x)) 

0(x) = 0 

where 0 denotes the zero in M called the zero mapping. Evi- 

dently, 

(f1 +f2) + f3 = f l 
+ (f2+f3) 

for all fl, f2, f3 E M, but the addition need not be commutative. 

Also we have the additional properties: 

fl + (-fl) = 0 = -fl + fl 

fl + 0= fl = 0+ fl, 

and thus, M is an S2 - group. Furthermore, the composition is left 

distributive relative to addition, i. e. , 

(fl+f2)f3 = flf3 + f2f3 

for all f 
1, 

f2, f3 E M. However, the other distributive law need not 

hold, since we can not assert 

f3(f1 (x)+f2(x)) = f 
3 

f 
1 

(x) + f3f2(x) 

1 

c 



unless f is an endomorphism of G. 

that 
s 
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Let Hl, H2, ... , Hs be the S2 -ideals of the S2 -group G such 

G = ® H.. Since every element in G has a unique expression 
j =1 J 

a. being an element of H., we have a mapping r.: G-'G 
J' J J 

j =1 

defined by 

a. I--' a. 

j=1 

for each j=1, 2, . . . , s. If Lal La2j, . . . , janj e G 

then it follows from (6. 1. 9) that 

(6. 2.1) 

and co E Q* 
n 

o-(w(/a, a, . . ., .)) w((a .., o-.(/a )), 
J J G3 J n3 

which shows that o. is an endomorphism of G. From (6. 2. 1 ), 

we also obtain 

jók = 0 (j.k) 

2 

J 3 

0.1 +62 +... +6s = 1G. 

(6.2.2) 

(6.2.3) 

(6. 2. 4) 

Definition 6. 6. An endomorphism of the S2 -group G is said 

to be normal if it commutes with all the inner translations of G 

with respect to composition. 

J 

o-j . 

s 

J 

T. = T. 

J 

),r (a 
J 
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Proposition 6. 7. Let G be an S2 -group and o-1, v2,..., 6s 

endomorphisms of G satisfying (6. 2. 2), (6. 2. 3) and (6. 2. 4). Then 

each o-. is a normal endomorphism. 
J 

Proof. Let e = e. (w) (cf. 5. 5) be an arbitrary 
1, (x1, x2, ... , xn) 

inner translation of G. Then for any a E G 

0o-,(a) = -w(X , x2' . . . , x) + w(x , X , . . . , x. , X,+6 ,(a), x. , . . . , x ), 
1 2 n 2 i-1 1 J 1+1 n 

and hence for any k j, crk(xi) = Yi 

and 

k0o-j(a) = -w(Y1, y2, . 

+w(y1,y2,...,yi-1'yi+O,yi+1'...,yn) = 0 

o-j0o-j (a) 

implies 

= -w (cr . (x ), o- . (X ), . . . , o" (x ) ) 
J 1 J 2 J n 

+ (o-.(xl ), o-.(x2), . . . , Q".(xi- ), o-.(xi) 
J J 

+ o .(a), o .(x. )..... 6j(xn)) 
1+1 

= (o-.0 a). 

Hence, by (6. 2. 4), we obtain 

0o-.(a) = 1G0o-(a) = (0-1+0-2+. .. +o-s)0o-.(a) = o-10o-.(a) + o-26o".(a) 
J J J J J 

+ . . . + o- 06j (a) = j0oj(a) = j0(a). 
S 

Q. E. D. 

J 1 

/ 

, Yn) 

J J 

J J 
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Thus, the endomorphism 6. obtained from the direct sum 
s 

® H. of S2 -ideals by (6. 2. 1) is a normal endomorphism. 
j=1 J 

Lemma 6. 8. If f is a normal endomorphism of the S2 -group 

G then for any S2 -ideal H of G, f(H) is again an S2 - ideal. 

Proof. For all f(a) e f(H) and for all inner translation 0, 

O(f(a)) = Of(a) = f0(a) = f(O(a)) E f(H), so that f(H) is closed under 

all the inner translations of G. Q. E. D. 

Proposition 6. 9. Let f and g be normal endomorphisms 

of the e -group G. Then i) fg is again a normal endomorphism 

of G, and ii) if f(G) ,- g(G) = O then f + g = g + f, and more- 

over f + g is a normal endomorphism of G. 

Proof. i) is obvious, and so, we consider ii). By Lemma 6. 8, 

both f(G) and g(G) are S2 -ideals of G and hence they are nor- 

mal subgroups of the group G. Therefore, 

-f(x) - g(x) + f(x) + g(x) E f(G) n g(G) = O, i, e. , 

-f(x) - g(x) + f(x) + g(x) = 0 for all x E G. This proves 

f+g=g+f (6.2.5) 

Let w E 0 * and x1, x2, ... , xn E G. Using (6. 2. 5) and the defini- 

tion of S2 -ideals we see that 
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-w(f(x1 ), f (x2), - , f(xn)) - w(g(x1 ), g(x2), . . . , g(xn)) 

+ w(f(x1)+g(xl), f(x2)+g(x2), . .. , f(xn)+g(xn)) = 0 

since the left side of the equality is an element of f(G) - g(G). It 

follows that 

(f +g)(w(x1, x2, ... , xn)) = w((f +g)(x1), (f +g)(x2), ... , (f +g)(xn)), 

which shows that f + g is an endomorphism of G. 

Now, let O = 8w) (cf. 5. 5). Then for all a E G, 
i, (x1, x2, ... , xn) 

(f+g)8(a) - 9(f+g)(a) 

= f0(a) + gA(a) - 6(f+g)(a) 

= Of(a) + Ag(a) - 8(g+f)(a) 

= -w(x ,x . .. + ,x ,...,x.+f(a),...,x ) 
n 1 2 n 

-w(xl, x2, . . . , xn) + w(xl, x2, .. . , xi+g(a), . . . , xn) 

-w(x1, x2, . . . , xi+g(a)+f(a), . . . , xn) +w(xl, x2, . . . , xn). 

Since f(G) is an S2 -ideal, 

y= w(x 
1, 

x2,..., xi+g(a),..., xn) - w(xl, x2,..., xi+g(a)+f(a),..., xn) E f(G), 

-w(xl, x2, ... , xn) + y + w(xl, x2, ... , xn) E f(G). 

1 

i.e., 

n 
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It follows that (f +g)0(a) - 0(f +g)(a) E f(G). Similarly, using the corn- 

mutativity (6. 2. 5), we also have (f +g)0(a) - 0(f +g)(a) E g(G). Hence, 

(f+g)0(a) - 0(f+g)(a) E f(G) n g(G) = O. 

Since 0 is arbitrary this is precisely saying that f + g is a nor- 

mal endomorphism of G. Q. E. D. 

Definition 6. 10. A projective endomorphism of the S2 -group G 

is an endomorphism of G which is normal and idempotent. A set of 

projective endomorphisms is called orthogonal if the composition of 

any two distinct ones in the set is 0. Finally, we say that the ortho- 

gonal set of projective endomorphisms is complementary if their sum 

is the identity mapping. 

Accordingly, the endomorphisms 0-13 62, , 6S defined by 

(6. 2. 1) give an orthogonal and complementary set of projective endo- 
s 

morphisms, i. e. , if the 0 -group G is a direct sum ® H. of 
j =1 J 

S2 - ideals it always possesses an orthogonal and complementary set 

P of projective endomorphisms. Now conversely, if there is such a 

set P = {a-1, 0-2, ... o-s} for the SZ -group G then by Lemma 6. 8, 

each o- . determines an S2 -ideal 6.(G). Let H. = o-.(G). Then 
J J J Js 

for any x E G, x = 1G(x) = 0-1(x) + 0-2(x) + ... + os(x) E ¿ H., which 

s j =1 

shows that G = L H.. Also if y is an element in Hk n ( H.) 

=1 J 

s 

J J 
j 



then y = ok(xk) and y = L o-.(x.) for some elements 
J J j/k 

X1, X2, . . . , xs E G. Hence 

y = 1G(y) = 61(y) + 62(y) + . . . + o-s (y) 

Therefore, 
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= 610"k(xk) + o-2o-k(xk) + .. . + 6k-16k(xk)+ 6k(6.(X.)) 
J J 

= 0. 

+ 6k +l° 
k()(k) + ... +o-s6k(xk) 

H.) = O 

j/k 
proves the following theorem: 

j/k 

s 

and it follows that G = ® H.. This 
j =1 J 

Theorem 6. 11. An SZ -group G is a direct sum of its Q - 

ideals iff there is an orthogonal and complementary set of projective 

endomorphisms of G. 

From this it is immediate that for any Q -group G there 

exists a one -to -one correspondence between a family of the orthogonal 

and complementary sets of projective endomorphisms of G and a 

family of the sets of Q -ideals each of which determines a direct 

sum G. 

J 
Hk n (/ 
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3. The Krull- Schmidt Theorem for 0-Groups 

s 

In the rest of the paper, we shall call ® H. a direct decom- 
j=1 J 

s 

position of the 0 -group G if G = ® H.. 
j=1 

Definition 6. 12. An S2 -group G is said to be decomposable 

if G = H1 ® H2 for some proper 0 - ideals H1 and H2. 

Hence, if an 0 -group is decomposable, its decomposition 

H1 ® H2 determines projective endomorphisms o-1 and o-2 de- 

fined by (6. 2. 1), which are distinct from 1G and O. This shows 

the necessity of the condition in the following theorem. 

Theorem 6. 13. In order that an SZ -group G be decomposable 

it is necessary and sufficient that there exists a projective endomor- 

phism of G other than 1G and O. 

Proof. To prove the sufficiency of the condition, let o- be a 

projective endomorphism distinct from 1G and O. Also, set 

H1 = o-(G) and H2 = o- 
-1(0) so that H1 and H2 are 0 -ideals 

of G. 

Now for any x E G, x = (x) - cr(x) + x, and since 

o-(- (x) +x) = 0, it follows that x E H1 + H2. This proves that 

G = H1 + H2. But since for any y E H1 n H2, y = o-(x) = o-2(x) _ (y) = 0 

for some x E G, we have H1 n H2 = O. Thus, G = H1 0 H2. 

1 
1 



106 

Of course, both H1 and H2 are proper S2 -ideals. Q. E. D. 

In 5. 8, we had the two chain conditions for a - subgroups that 

together are necessary and sufficient that an S2 -group have a compo- 

sition series. In this section, we similarly define the following two 

chain conditions. 

Definition 6. 14. Let G be an S2 - group. 

i) The second descending chain condition. If 

H1 D H2 D H3 D... is a descending sequence of s2 - ideals of G, 

then there exists an integer r such that Hr = Hr +1 

ii) The second ascending chain condition. If 

H1 C_ H2C H3 C . . . is an ascending sequence of S2 -ideals of G, 

then there exists an integer r such that Hr = Hr +1 . . 

Lemma 6. 15. If an S2 -group G is a direct sum of 0 - ideals 

then any c -ideal of the direct summand is again an S2 -ideal of G. 

Proof. We shall prove the lemma for the particular case 
s 

G = H1 ® H2. The proof for G = ® H. for an arbitrary integer s 
j =1 

is similar. Let K be an S2 -ideal of, say H1. If 
61 

and cr2 

are projective endomorphisms defined by (6. 2. 1) then for any 

x1,x2,...,xnE G, weS2ri and a E K, 

J 

n n 
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-W(X , X , . . . , X ) + W(X , X , . . . , X , x.+a, X. , . . . , x) 
i-1 i 1+1 n 

w(61 (x1 )+cr2(x1 ), 
°-1(x2)+ T2(x2)' . , 61 (xn)+0-2(xn)) 

+ w(61 (xl )+ 0-2(xl ), 
Cr 1 

(x2)+ o-2(x2), . . , 
Cr 

(x i- 1 )+ 62(xi- ), 61(xi) 

+ a"2(Xi), 
61 (xi+1 , 61(xn)+0-2(xn)) 

= 
- W(61 (x1 (x1 ), 

T1(3(2), 
(xn)) - w(Cr2(x1 ), o-2(x2), Cr2(xn)) 

+ w 
(61 (x ), 01(x . . . , 0 

1(xi- 
1), 

61 (xi )+ a, 61(xi+1 )' 
. . . , u-1 (xn ) ) 

+ (00-20(1 ), 
o-2(x2), . . , 0'2(xn)) 

s 
Now note that for any direct sum ® H., a. E H. implies 

j =1 J J J 

a. + a = a + a. if j k, since -a +a. +a -a. E H. n Hk O. 
k 

Hence it follows that 

- W(X , x 
1 2' . , x 

n ) 
+ W(X , X 

1 2' 
, x. , X.+a, x i-1 , . . , X 

n 
) 

i i+l 

_ - W(o-1(x1), o-1(x2), ..., 1(xn))±w(61()(1), 0"1(x2), 61(xi-1), 61 (xi) 

+ a, o- 
1 

(xi+1 ), . . . , 0-1 (xn ) ) E K. 

By 5. 6, the lemma follows. Q. E. D. 

Theorem 6. 16. Any nontrivial S2 -group that satisfies the sec- 

ond descending chain condition is either indecomposable or a direct 

sum of indecomposable nontrivial S2 -ideals. 

Proof. Suppose that G is decomposable, i. e. , G = K1 Q K2, 

_ - 

61 , 

= 

J J k J k J J 

. 
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where K1 and K2 are proper S2 - ideals of G. If K1 is inde- 

composable we set H1 = K1. If K1 is decomposable then 

K1 = K11 
® K12 

where K11 and K12 are proper S2 - ideals of 

G (cf. Lemma 6. 15). Again if K11 is indecomposable we set 

H1 = K11. If K11 is decomposable then K11 
K111 

® K112. 

The lemma just proved assures that every term in the descend- 

ing sequence 

K1 
Di< DK p... 

is an 0 -ideal of G. Hence by hypothesis, we must have an inde- 

composable direct summand H1 after a finite number of the pro- 

cess. 

Now we can write G = H1 ® K' for some nontrivial S2 -ideal 

K' of G. By the same process by which we have obtained H1, 

we obtain the indecomposable direct summand H2 of K', so that 

we can write G = H1 ® H2 K" for some S2 -ideal K" of K'. 

If K" O we repeat the process and obtain 

G = H1 ® H2 ® H3 ® Km. Applying the given chain condition again to 

the descending sequence 

Kt D 9K"' Kii 

we conclude that K(s) = 0 for some finite number s, i. e. , 

/ 

3 

= 
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G=H1 ®H2®... (I) Hs 

where each H. is an indecomposable and nontrivial S2- ideal. 

Q. E. D. 

s 
If ® H. is a direct decomposition of the 12 -group G such 

j =1 J 

that every H. is indecomposable, then we shall call it a complete 

decomposition of G. 

Lemma 6. 17. Let G be an fl -group satisfying the descend- 

ing and ascending chain conditions in 6. 14. Then a normal endomor- 

phism f of G is an automorphism provided that f is either 

injective or surjective. 

Proof. First, assume that f is injective but not surjective. 

We shall show by induction that for the descending sequence 

Gpf(G)9f2(G)9. ..3fr(G)D... 

of 0- ideals, we have fr -1(G) fr(G) for all integer r =1, 2, ... 

so that it contradicts the hypothesis. Since f is not surjective, 

G / f(G). Now if fr 1 (G) fr(G) then there exists x E fr - 1 (G) 

such that xi fr(G). Hence f(x) E fr(G) but f(x)/ fr +1(G), i. e. , 

fr(G) fr +l This completes the induction, and f must be sur- 

jective as well as injective. 

Next, assume that f is surjective but not injective. This 

J 

/ 

/ 

(G). 



110 

time, we shall show by induction that for the ascending sequence 

f-1(0)C f 2(0)C . . .0 f-r(0)C . . . 

of S2 -ideals, we have no integer r such that f -r(0) = f- (r +1)(0) 

If r = 1, 0 / (1(0) since f is not injective. If 

f- (r -1)(0) / f -r(0) then there exists x E G such that fr(x) = 0 and 

fr -1 (x) / 0, and it follows that fr +1 (x') = 0 and fr(x') A 0 where 

x = f(x'). That is, f -r(0) / f- (r +1)(0). Thus we have obtained a 

contradiction to the second ascending chain condition, and f must 

be injective as well as surjective. Q. E. D. 

If an S2 -group G satisfies the second descending chain condi- 

tion and if f is a normal endomorphism of G, then it is clear 

that 

H = n fk(G) 
kEN 

is an S2 -ideal of G. Also if an S2 -group G satisfies the ascend- 

ing chain condition in 6. 14 and if f is any endomorphism of G 

K = f k(0) 
kEN 

is an S2 -ideal of G. In general, such a subset K of the S2 -group 

G (regardless of the second ascending chain condition) is called the 

radical of f. 

= v 
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Theorem 6.18. Let G be an S2 -group satisfying the two chain 

conditions in 6. 14. Then G = H O K where H = n fk(G) and 
kEN 

K = v f k(0) provided that f is a normal endomorphism of G. 
kEN 

Proof. By hypothesis, there exists an integer r such that 

H = fr(G) and K = f 
_r 

(0). Since for any x E G, 

r r 2r r 2r 
f (x) E fr(G) = f (G), we have f (x) = f (y) for some y E G. 

Hence x = fr(y) - fr(y) + x and fr(- fr(y) +x) = -f2r(y) +fr(x) = 0. 

It follows that x E H + K, i. e. , G = H + K. Also, for any 

x' E H n K, x' = fr(y') for some y' E G, and f2r(y') = fr(x') = O. 

This implies y' E K so that xl = fr(y') = O. Thus, H n K = O 

and we obtain the result. Q. E. D. 

Corollary 6.19. If G is an indecomposable S2 -group which sat- 

isfies the two chain conditions in 6. 14 then any normal endomorphism 

of G is either an automorphism or nilpotent. 

Lemma 6. 20. Let G be an indecomposable S2 -group that 

satisfies the second descending and ascending chain conditions, and 

let f, g be normal endomorphisms of G such that 

f(G) rm g(G) = O. Then f + g is a nilpotent endomorphism provided 

that both f and g are nilpotent. 

Proof. By 6. 9, h = f + g is a normal endomorphism of G. 

Assume that h is not nilpotent, .i. e. , h is an automorphism of G. 
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Then h -1 is also an automorphism of G since for any 

x1,x2,..,,xnE G there are 

so that for any o E 
n 

y1,y2,...,yn such that h(yi) = xi 

(Y 1, y2, . , yn) = h 1(w(h(Y1 ), h(y2), . , h(Yn)), 

0)(h-1 (xi ), h (x2), -1 ... , h-1(xn)) = h-1(0)(x1, x2, . . ., xn)) 

Now, if O is any inner translation of G then h9 = Oh, and 

hence Oh -1 = h 16, which shows that h 
-1 

is normal. Therefore, 

both cp = h -1f and = h lg are normal endomorphisms of G. 

From 

cp+= 1G, 

2 2 2 2 
it follows that (pLIJ = -cp2 + cp2 + cpt¡i = - cp2 + cp(cp + = - cp2 + (cp+ Op 

= -cp 
2 

+ cp 
2 

+ tkp = iço. Since cp and 4P are nilpotent, an applica- 

tion of the binomial formula to ((p+ 4,)k for a sufficiently large inte- 

ger k, gives 

Thus, we have a contradiction. That is h = f + g must be nilpotent. 

Q. E. D. 

Theorem 6. 21. (The Krull- Schmidt Theorem for S2 -Groups). 

Let G be an S2 -group which satisfies the second ascending and 

*, 

L 1 

4 

(cP+ 0k = o. 
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G=H1 ®H2...0 Hs 

G=K1 41) K2®...®Kt 
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be two complete decompositions of G. Then s = t and for a suit- 

able ordering of K. there exists a normal automorphism f such 

that f(K.) = H.. 
J J 

Proof. Assume that s > t. We make the following induction 

hypothesis: For each integer r, 1 < r < t, there is a suitable 

ordering of K1, K2, ... , Kr 
i 

so that there exist normal endomor- 

phisms fl, f2, . . . , fr -1 
of G with the property fk : Kk = Hk, 

k < r, and 

G = K1 ® K2 ® . . . ® Kr-1 ® Hr . . . ® Hs. 

We wish to show that this also holds when k = r. Let 

p1,cP2,...,cps 

(6. 3. 3) 

and yp1, L,2, ... , 4't be the projective endomorphisms 

obtained from (6. 3. 3) and (6. 3. 2), respectively (cf. (6. 2. 1)). Since 

j = 1 G' 
j=1 

r r 1 
-3- (PrLP 2 

-1- } rt 
But for all x E G, 

`Pk`iik(x) 
= 

`Pk(ilik(x)) 
= 4k(x) for k < r, so that 

® 

s 

(P 

(6. 3. 1) 

(6..3.2) 

ryr 
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cpr`lik(X) = 9r90Jk(X) = 0, i. e. , 
`pripk 

= 0. Hence, 

`pr - 9r4'r `prgjr+l ` (PrLPt 

(Prr + `prr+1 + . . . + cprt 1H r 

on Hr. By Lemma 6. 20, it follows that for some q = r, r +1,..., t, 

r L-Pq is not nilpotent. Thus, yo r i q 
is an automorphism of Hr, 

and i is a monomorphism of H into K . Let 
q q 

H = `prl 
(0) n K 

q 

K = (H 
q 

Clearly, H and K are S2 -ideals of G, and furthermore 

Kq = H ® K. For, if z H n K then 9 (z) r = 0 and z = 4q(y) 

for some y E Hr, and hence cp (y) r q 
= 0, which shows that 

y = 0, i. e. , z = 0. Also, if z E Kq then cpr(z) E Hr 
= 

(prgq(Hr), 

so that cp (z) r = cp (y) r q 
for some y E Hr. This shows that 

z = (z- tp q(y)) + Pq(y) E H + K. 

It follows that K = H or K = K, and since evidently 
q q 

K , O, we must have K = K = Lp (H ). Thus, is an isomor- 
q q r q 

phism of H onto K . This also implies that cr p is an isomor- 
q 

phism of K onto Hr. 
q r 

Let us reorder Kr, Kr 
+1, ... , 

Kt so that K becomes 
q 

+ + + 

= 

r 

r 

r r 

). 
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K , i, e. , cp is an isomorphism of K onto H , and 
r r r r r 

is an isomorphism of Hr onto Kr. We set 

fr=cpr. 

If x Kr and x K1 + K2 + +Kr_1 + Hr 
+1 

+ ... + Hs then 

cpr(x) E Hr and cpr(x) = O. Since cpr is an isomorphism of Kr 

onto Hr, it follows that x = 0, i. e. , 

Kr n (K1+K2+...+Kr_1+Hr+l+...+Hs) 
= O. 

G Now, this equality implies rcpr(G) n cpj() = O, j =1, 2,..., s, j /r, 

so that the mapping g = (p1 + 
2 

+ ... + cpr- 
1 + 

Lprr + ... + cps is a 

normal endomorphism of G. Since g is written as 

g : b1 + b2 +. . .+ br_ + ar +. . . + as - b1 + b2 +. . .+ br_ + Car ) 

+...+ a 
s 

where b. E K. and a. E H., and is obviously injective, g 
J J J J 

automorphism of G (cf. 6. 17). Therefore, 

G = g(G)C Kl ®K2 -.0 Kr Q Hr 
+1 

-.0 Hs C G 

G = K1 0 K2 Q ...ED Kr ®Hr 
+1 

... ®Hs, 

and this completes the induction. 

or 

is an 

E E 



116 

Thus, we have s = t. Now we set 

f = f2`P2 + . . + fsq's. 

f is a normal automorphism of G, and has the property 

f(K.) = H.. This completes the proof. Q. E. D. 
J J 

f14,1 + 
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