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CHAPTER 1

INTRODUCTION

1.1 Overview

The creation of reduced-order models for systems described by partial

differential equations is key to design of real-time control systems. There has been

much recent literature on this topic, with many different approaches for deriving

models of reduced-order. The methodology proposed here uses a proper orthogonal

decomposition (POD) of experimental data and subsequent Galerkin projection to

derive a dynamic model of a jet-in-crossflow. The reduced-order models can then be

used for a variety of purposes: calculation of control laws, optimization problems, and

sensitivity analysis.

The conventional approach to discretization of the Navier-Stokes equations

and other nonlinear partial differential equations (PDEs) is by use of a finite-

difference, finite-element, or spectral method involving the use of basis functions. A

Fourier basis is generally used in spectral methods just as piecewise polynomials are

used with finite-element method. These basis functions are mathematically convenient

but have very little connection with either the underlying physics of a specific case or

the corresponding partial differential equations. In contrast, POD involves the use of

basis functions generated from numerical solutions of the partial differential equations

or from experimental data. In the case of this study, the basis functions are generated

directly from experimental data. More specifically, POD involves the extraction of an

optimal set of basis functions from a computational or experimental data set, by use of
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an eigenvalue analysis or singular value decomposition. Then by means of Galerkin

projection, an approximation is calculated as a combination of basis functions from

the optimal set. This solution is the desired reduced-order model solution.

An infinite number of basis functions could, in theory, yield a "perfect" model

while a relative few basis functions might yield a reasonably good model. Perfect is a

misnomer in the sense that the model can only be as good as the data from which the

POD basis vectors are generated. It is important to have a data set that captures the

complete dynamics of the system, including actuator affects of the control, if the

eventual intent of having a reduced order model is for control design (Atwell and King

1999, Prabhu et al. 2001). The control actuator in the case of this research will

presumably be pulsing of the jet when future research considers developing a

controller for the model derived here.

The remainder of this thesis will be an in-depth look at the process necessary

to develop a reduced-order dynamic model of a jet-in-crossflow from experimental

data using POD and Galerkin projection. While the methods used here are applied to

a very specific problem they are widely applicable to many instances involving the

discretization of PDEs where experimental data is available. The remainder of the

first chapter talks about the reasons why reduced-order modeling is necessary and

discusses the history of reduced-order modeling specifically related to fluid flow

control and jet-in-crossflow research. The second chapter outlines the general

concepts of PIV, POD and Galerkin projection before becoming more specific when

these concepts are applied to the problem studied in this thesis. The third chapter

discusses results of the numerical methods used and analysis of those results. Finally,



the fourth chapter draws some conclusions about the method used here discussing

both the strong points and limitations.

1.2 Motivation

The need for reduced-order modeling arises because of the inherent magnitude

and complexity of the computations for solving PDEs such as the full Navier-Stokes

equations. The time and cost of computation can be reduced through the use of

reduced-order models. Although POD based models have often been used for analysis

of system dynamics and simulation, it is of interest to derive suitable reduced-order

models that approximate the essential dynamics of the full order system well enough

for purposes such as control and optimization. The POD-based methodology presented

in Chapter 2 provides a means to create a state space form of the dynamic equations

Closed-loop control of highly non-linear systems has been another topic of

extensive research in recent years.* So farthere have been many successes in

enhancing the performance of complex systems and some attempts have been made to

use it in flow control (e.g., Caraballo and Samimy 2005, Bewley and Liu 1998,

Ravindran 1999). Open-loop flow control has proven particularly useful in the design

and development phase of aerodynamic bodies (e.g., Brooks and Powers 2002) but

lacks the flexibility and robustness needed to control an actuator in a dynamic flight

environment with unmodeled dynamics and disturbances. Closed-loop flow control,

on the other hand, appears to be a good candidate technique for successful flow

*

While development of a control is not within the scope of this thesis, much of the
previous relevant work performed on this topic has been in the context of fluid
control. Thus, much of the research referred to subsequently is control research, but it
all includes some component of model development which is pertinent to this thesis.
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management in many applications (Bewley 2001). However, the tools of classical

control system theory are not directly applicable to the fluid systems governed by the

non-linear Navier-Stokes equations which pose formidable modeling challenges due

to their infinite dimensionality and their complexity. Therefore, in order to design and

successfully implement a closed-loop control strategy, it is necessary to obtain simpler

models of the flow systems, which capture their important dynamic characteristics as

well as the effect of the actuation. The development of such reduced-order models is

the motivation behind the research presented in this thesis.

1.3 Turbulent Flow Modeling

During the last decade, many advances have been made in the area of

characterizing and modeling turbulent flow. The work has largely been done by two

separate communities working independently. POD has been used by the

experimental fluid dynamics community to characterize the large scale structures in

the flow. Most of these experiments have been conducted in wind tunnels and utilize

Particle Image Velocimetry (PlY) to capture velocity data for the entire flow field at

many discrete times or "snapshots." As will be made clear in Chapter 2, PIV data is

particularly well suited for POD. Some examples of the PlY method as used to

characterize turbulent structures include the wake of a circular cylinder (Cohen et al.

2003), cavity flow (Rowley et al. 2004) and jet-in-crossflow (Bernero and Fielder

2000).

Meanwhile, the controls community primarily utilizes computational fluid

dynamics (CFD) code based on finite element, finite-difference or spectral methods to
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generate "data" for the flow field. Most research then creates a POD basis from these

CFD generated snapshots and projects the Navier-Stokes equations in some form onto

the POD basis via Galerkin projection. The solution to this problem is a dynamic

model in state space form which a controller is built around. In older papers, the

controller is often of the open-loop variety. A more recent example of this type of

work is given by Brooks and Powers (2002). However, within the past five years

many controllers have begun to "close the loop." Closed-loop control has been shown

to be quite effective in many of these studies, but often the control input is not

computed in real time (e.g. Kim 2003). This is possible because the control is applied

to a computer simulation which can be slowed to accommodate the increased time of

computing the actuator input.

Bewley and Liu (1998) created a closed-loop controller for plane channel flow

and were able to modify eigenvalues and wall shear in their CFD environment. Wall

aspiration, unsteady blowing and sucking, was used as the control actuator. Their

CFD results were very encouraging, but not replicable in a real time experimental

setting. Similar research on channel flow with a backward facing step with similar

results was conducted by Ravindran (1999).

Narayanan et al. (2003) created an open-loop control law for a jet-in-crossflow

based on experimental data. The experimental data in this study was not PIV data, but

instead they used a single sensor hot film probe in the jet flow to capture flow field

velocities at one point and many discrete time instants. These data along with photos

of the flow field enabled the researchers to create a model and write an open-loop

control that, "was recognized and demonstrated to be effective in organizing
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unsteadyness and enhancing mixing and entrainment in the flowfield" (Narayanan et

al. 2003). The experimental setup was further used to validate the control response.

The only research group to test a closed-loop controller in an experimental

setting is the Collaborative Center of Control Science at Ohio State University

(Caraballo et al. 2005). This is also the only paper which uses POD of PJV data to

create a spatial basis which the Navier-Stokes equations are projected onto via

Galerkin projection. This technique appears to be similar to the one used in this

thesis, however details on the exact methodologies used have yet to be published.

This work at Ohio State is occurring simultaneously to this research and is applied to

the cavity flow problem. This team has also generated POD basis of cavity flow from

CFD models (e.g. Caraballo et al. 2003, Caraballo and Sarnimy 2003b). The results

given in Caraballo et al. (2005) are preliminary but, "are very promising and show that

control is capable of reducing the cavity flow resonancenot only at the Mach 0.3 flow,

for which the reduced order model was specifically derived, but also at other flows

with some variation in Mach number."
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CHAPTER 2

APPROACH

As previously mentioned, experimental data will be used to produce a POD

basis which will subsequently be used to create a system of reduced-order differential

equations. In this chapter, details of the various methods necessary to this approach

are provided.

2.1 Particle Image Velocimetry

Particle image velocimetry (PIV) is a reliable experimental method for

determining the velocities of many discrete points simultaneously in a two

dimensional flow field and can also be adapted to 3-D. It is based entirely on imaging

and is non-disruptive to the flow to the extent that small "seed" particles do not affect

the flow. Ply uses a planar laser light sheet which is pulsed twice, and images of fine

particles lying in the light sheet are recorded with a camera. The displacement of the

particles between the two images is measured and used to determine the velocity of

the particles in the flow simply by dividing the displacement of the particles by the

time between the two laser pulses. The most common way of measuring displacement

is to divide the image plane into small discrete areas and cross correlate the images

from the two time exposures. The spatial displacement that produces the maximum

cross-correlation statistically approximates the average displacement of the particles in

the interrogation cell.

The experimental data used in this study were collected in the low-speed

recirculating wind tunnel at Oregon State University by Bertrand Dano. For a



complete explanation of the experimental setup see Dano and Liburdy (2004). The

PIV data of the jet-in-crossflow originally contained data for full three dimensional

flow, however only streamwise, x, and wall-normal, y, components are used in this

work. Only the x andy components from the PlY slice right through the centerline

of the jet in the x direction are used here, as this is the plane of symmetry for the

flow. All results are for a steady jet inclined at 45° in the streamwise direction.

Similarly, all experimental data is for a free-stream crossflow velocity of 2 rn/s and a

jet velocity of 6.8 rn/s. For an example of a single flow visualization image and

sample jet behavior see Figure 1.

Figure 1: Typical 2D flow visualization of the steady jet in crossflow (Dano and
Liburdy 2004).

Figure 2 shows a schematic of the 3D PIV system used by Dano and

Liburdy (2004) in their experiment. While the data used in this thesis were

obtained using this setup, the third velocity component was not used in this study.
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Figure 2: Schematic of the 3D PIV system (Dano and Liburdy 2004).

The PIV method produces measurements of m state variables, in the case of

this work these are the fluid velocities u and v at each grid point in the flow field.

The flow field for the problem addressed in this thesis is discretized into a 58 by 39

grid creating 2262 discrete points, as illustrated in Figure 3. Each of these grid-points

has a two velocities associated with it, u and v, thus m 2262 x 2 = 4524. These

state variables are recorded at N instants in time. There are 200 "time snapshots"

available in the PIV data set provided by Dano thus N = 200. These N sets of

m simultaneous measurements that are arranged in a N x m matrix D. Each row of

D represents a "time snapshot" of the system and each column contains the flow

velocity u or v at a point in the flow field. The manner in which these discrete flow

areas are numbered does not matter, but consistency is required. For the purposes of

this research they are numbered starting with one at the upstream flat plate surface and

moving across the flow in the wall normal, y, direction. Once point 39 is reached the

next consecutive number (point 40) is back at the wall immediately downstream of

point one. See Figure 3 to get a better sense of the numbering scheme.
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Figure 3: Numbering scheme for discrete points within the flow field (Dano and
Liburdy 2004).

2.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) provides a powerful method for

deriving low order models of complex dynamic systems. The underlying problem is

to identify coherent structures in a seemingly random vector field. The development

of POD is credited independently to several people, including Kosambi (1946),

Karhunen in 1946 and Loéve in 1955, and is also commonly referred to as Principal

Component or Hotelling Analysis (Hotelling 1933), the Karhunen- Loéve

Decomposition, Empirical Eigenfunction Decomposition and Singular Value

Decomposition. POD is commonly used in a variety of applications from our

approximation of highly non-linear turbulent flows, to structural vibrations, damage

detection in structures, as well as signal analysis, image processing, and file

compression.
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The POD method was introduced to the fluid dynamics community by Lumley

(1967) as an objective way to extract the large-scale structures from a turbulent flow.

Details on the fundamentals of the POD method can be found in Berkooz et al. (1993)

and Holmes et al. (1996), while an easy practical guide can be found in Chatterjee

(2000). The general idea is to decompose the flow field into a set of orthogonal bases

that contains the most dominant characteristics of the flow.

The process is started by approximating some function u(x, t) over a domain

of interest as a finite sum

u(x,t)ak(t)Øk(x), (2.1)

where {k(x)}l is a set of basis functions This approximation is expected to

become exact as M approaches infinity. The variable xis generally referred to asthe

spatial variable and t as the temporal variable. The basis functions q5 (x) can be

chosen as any number of things, including Fourier series, Chebyshev polynomials or

piecewise polynomials. Each choice of basis for the function u(x,t) results in a

different sequence of time functions ak (t). Naturally, trigonometric functions will

require one set of functions, ak (t), while polynomials of different types require a

different sets. The POD basis arises as follows.

There are two criteria used in selecting the POD basis functions, 0k (x). First,

it is necessary to have an orthonormal basis. An orthononnal set of basis functions

has the property:
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Ilifk1=k2
fck, (x)cbk (x)dx

to otherwise
(2.2)

Using the definition of orthonormality and substituting in eq.(2.l), it can be shown

that each series of coefficient functions ak(t) depends only on the corresponding

cbk (x) and not on other çb,s where (1 k)

a (t) = Ju(x, t)cbk (x)dx. (2.3)

Second, while it is always possible to approximate the original function

u(x, t) with an infinite number of basis functions, the most accurate approximation

with the least number of basis functions is desired. It is desirable to choose (x) so

that it provides the best one term approximatiOn ofi4x,t). (x) and 2 (x) should

provide the best two term approximation, and so on. The mathematical explanation of

this lies in the error

E = rIju(x,t) 1u(x,t)I2 dt. (2.4)

Where Pr is the projection given by

(2.5)

These ordered, orthogonal vectors ç are the proper orthogonal nodes ofu(x, t) when

the error, E, is minimized for a given rank, r (Rowley et al. 2004, Berkooz et al.

1993). With these special vectors eq. (2.1) becomes the POD of u(x,t).

The experimental data from the jet-in-crossfiow covers a finite spatial

dimension and is recorded in discrete time. Since the 2-D case is currently under
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consideration, each point in the flow field has two velocities, U and v, associated

with it. These will be inserted in matrix D so that the first m /2 columns (1-2262)

contain U velocities for each grid point and the second m /2 columns (2263-4524)

contain v data. More information on the organization of the experimental data can be

found in the previous section, 2.1 Particle Image Velocimetry. It is also common

practice to subtract the mean velocity at each point from each column ofD. The

reason for this is because the mean flow is so dominant that it can conceal any

coherent structures in the flow. This practice will receive further treatment in Chapter

3.. The mean velocity of each column will create a vector ü(x) and eq. (2.1) becomes:

u(x, t) (x)
+

a (t)Øk (x). (2.6)

The next step in obtaining the POD of the experimental data is to perform a

singular value decomposition or SVD of matrix D. The SVD of D less the mean of

each column takes the form

Dii=UVT. (2.7)

Where, U is an N x N orthogonal matrix, V is an m x m orthogonal matrix and is

a N x m matrix of zeros, except on the main diagonal which contains the singular

values ofD. The singular values o- are all positive real numbers arranged in

decreasing order, i.e. o a2 ... a1 0. The number of nonzero singular values is

equal to the rank r of matrix D.

In eq.(2.7), let U = Q. If Qk is the kth column of Qand Vk is the

kth column of V, then:
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D=ii+QVT=ii+QkVkT. (2.8)

This is the discrete form of eq. (2.6). The function u(x,t) is represented here by the

matrix D as described above. The function a, (t) is analogous to the vector Qk as

the function qk (x) is to vector V.

A key issue in numerical approximation schemes for systems of partial

differential equations is that of convergence. For finite element, finite difference and

spectral methods, there are theorems that can be applied to ascertain if a numerical

approximation method is convergent for a particular problem. The notion of

convergence can be expressed in the following sense: that as the grid determined by

Ax and Ay is refined (that is, as Ax -f 0 and Ay *0) and as the timesteps are

refined, that solution of the approximating system converges to the solution of the

partial differential equation. If one uses a numerical method for which convergence

for a particular problem is not known, one runs the risk of obtaining results that bear

little relevance to the true PDE solution.

This issue is tricky in the case of POD. When error bounds and convergence

are considered, one has the following:

(2.9)

where D is the entire data set and DR is the data set reconstructed with a reduced

number of basis vectors. This formula implies that as the number of basis vectors

used in the approximation increases, the approximation converges to the original data

set. This has no implications for convergence of the approximate system obtained by
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Galerkin projection onto the POD basis to the solution of the PDE. It is expected that

if the data set were rich enough to capture the dynamics of the original system, then

some sort of convergence properties would exist. To date, there has not been a

convergence theory developed for POD that addresses convergence of the finite

dimensional approximation to the infinite dimensional solution of the partial

differential equation, although the method often works in practice (Atwell and King

1999, Caraballo etal. 2003 and Ravindran 1999).

2.3 Galerkin Projection

The Galerkin projection is based upon the idea that the dynamics of a system

can be approximated by the dynamics based upon a subspace of the original system.

Consider a dynamic system which evolves in a Hilbert space H. This can be shown

as, u(t) E H, and u(t) satisfies

ü(t) X(u(t)), (2.10)

where denotes a time derivative and X is an operator on H. For instance, in a
dt

partial differential equation governing a variable u(x,t), defined on some spatial

domain x f, H is a space of functions defined on , and X is a spatial

differential operator. Given S, a finite-dimensional subspace of H, Galerkin

projection specifies a dynamic system which evolves on S and approximates eq.

(2.10) in some sense. This approximate dynamic system is obtained by orthogonal

projection of the vector field X onto the subspace, and is denoted

(t) = PX(r(t)) (2.11)



where r(t) e S just as the original system u(t) E H, and P : H -* S is the

orthogonal projection map.

To apply this method to the required task, eq. (2.11) needs to be written in

terms of a sum of basis functions. Let {q } be an orthonormal basis for the

subspace S. This is the very same basis discussed in the previous section obtained

from POD of the data set. Writing r(t) as a finite sum of time functions ak (t) with

respect to this basis, yields

17

r(t) = ak(t)9k(x). (2.12)

Rearranging eq. (2.11) gives P(i X(r)) = 0, and the equations of motion become

ak(t) =KX(r(t)),k), k =1,...,n, (2.13)

based on the orthonormality of the q5.

For many types of equations, the ODEs given by eq. (2.13) may be determined

analytically, in terms of the time function ak. This is particularly useful

computationally, as the inner product in eq. (2.13) does not need to be computed at

every timestep. For instance, if X(u) is quadratic, given by

X(u)=A(u), (2.14)

where A is a linear operator, the projected ODEs (2.13) become

ak(t)_-A(,øk)ak(t), (2.15)
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where the inner products are independent of time and can be determined before

numerically solving the ODEs in eq. (2.15) with some initial condition or boundary

value.

2.4 Governing Equations

The governing equations for the jet-in-crossfiow problem at relatively low

Mach number are the incompressible Navier-Stokes equations on a domain , they

are often written in the following form,

+(u.V)u=Vp+vAu (2.16)

(2.17)

Where in 2D ii (u, v) is the velocity vector, p is the pressure and v = ,u /p is the

kinematic viscosity. If all quantities are made non-dimensional by normalizing

velocities by some velocity scale U, lengths by a length scale L, time by U / L,

pressure by pU2 where p is the density, and viscosity by pUL, then v is the

reciprocal of the Reynolds number Re. Thus, the Navier-Stokes equation (2.16) can

be written in terms of Reynolds number for this problem as

=0. (2.18)
3t Re

Where, the operator denotes a non-dimensional quantity. The mathematical

definition of incompressibility as shown in eq. (2.17) has been omitted because it is

automatically satisfied by the POD basis. This makes physical sense as well, the air

in the wind tunnel is clearly compressible, but it is reasonable approximation to model
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it as an incompressible flow at the low Mach number operating conditions examined

in this thesis.

The following boundary conditions are imposed on the problem at hand,

u =(u1,O)=u
laupn = (0,0)

Re n
u (0,0)

u = 0)

Ofl Fin x [0, TJ

on rout x [0, T]

on FboUom x [0, T]

on Fx[0,T]

(2.19)

The boundary condition for F is a method of dealing with flow in an unbounded

region. See Heywood et al. (1996) for a full explanation of the F0 boundary

condition. The values for u, are simply taken to be the mean values at each discrete

point on the leading edge of the flow field. This corresponds to points 1 thru 39

inclusive in this numbering scheme.

A weak form of the Navier-Stokes equations (2.16) and (2.17) is necessary for

a discrete projection and subsequent reduced-order approximation. For an identical

formulation of the weak Navier-Stokes see Ravindran (1999),

(u + (u V)u, )
+I (Vu,v) (p, V. =0

Re (2.20)

(V.u,')=0

for all test functions c1 and 1' belonging to Hubert space H1 (c). The state

variables u andp lay in the L2 (i)) space in time between 0 and T. If the velocity

u is written as an expansion in POD modes q(x), defined on a spatial domain

in which the fluid evolves
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u(x, t) ii(x)
+

a (t)cbk (x), (2.21)

then the Hubert space H is just the space of smooth, divergence-free, vector-valued

functions on , with the standard inner product

and norm

(u, v) = Ju(x) v(x)dx, (2.22)

112

JuI=(u,u) . (2.23)

Inserting the expansion (2.21) into the weak form of the Navier-Stokes

equations (2.20) gives the Galerkin projection of the weak form

= 0(2.24)

Now it is important to note that the basis vectors q5 are naturally divergence free due

to the fact that the flow in the experimental data is incompressible. This makes the

pressure term vanish. Also, the flow satisfies zero boundary conditions on F0,. so

that the boundary term vanishes; see Ravindran (1999) for a similar problem. Now

eq. (2.24) becomes

(2.25)
Re

Forall Espan{q,çb2,...,q5}. When eq. (2.21) is substitutedinto eq. (2.25)the

following nonlinear equation for the coefficients (t) is obtained.

ã(t) = Aa(t) + aT (t)Na(t) + e,
(2.26)



where
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A =-(ø

NIkI k

(2.27)

e
Re

a0i _(Uo,9j).

2.5 Implementation

Application of the Galerkin method to the nonlinear convective term N

produces three products of nodal values. This feature makes eq. (2.26) far more

costly to solve, because the nonlinear term must be computed at each time step as

a subroutine of the ODE solver. However, this unnecessary computation can be

avoided by introducing the group finite element formulation (Fletcher 1988).

First, rewrite the 2-D Incompressible Navier-Stokes Equations (2.16) in

conservation form as

u(x,y,t) + (u2(x,y,t)) + (uv(x,y,t)) =
1-p(x, y,t) +(u(x,

Re
y,t) +

v(x,y,t) + (uv(x,y,t)) + (v2(x,y,t)) =
1-p(x,y,t) +(v(x,y,t)

Re
+v(x,y,t)),

and introduce the weak form

1

Re (2.28)
1

Re
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As before, the linear terms u(x, t) are approximated by a finite sum as in eq. (2.1),

except now the nonlinear terms u2 (x, t) are approximated by the group formulation

u2(x,t)

v2(x,t) = v(t)k(x), (2.29)

uv(x, t) = UV (t)qk (x).

Substituting these group formulations and the standard finite sum into the weak form

and eliminating the pressure term as before gives the group finite element version of

the ordinary differential equations

Thus the ODE is obtained

= (2.30)

Má(t) = Aa(t)+aT(t)Na(t). (2.31)

Where again a(t) =[a1(t). .aN(t)]T. M is still the identity matrix due to the

orthonormality of the basis vectors, A is the same as given in eq. (2.27), and N is

governed by

N _(vcb1,bj). (2.32)

In order to solve for the time coefficients ak(t) spatial derivatives of the basis

vectors (x) are necessary. These could be solved for directly through a finite

difference method; however this method is extremely sensitive to noise in the



experimental data. This problem can be negotiated by casting each basis vector

Ok (x) as a finite sum of linear spline functions

Ok (x) 8ff
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(2.33)

where is the linear spline functions and 8ff is the coefficient for each spline. It is a

very nice property of these functions that the coefficiens8ff are equal to the values

contained in the original basis vectors Ok Using eq. (2.33) it is possible to rewrite the

inner product of two basis vectors

Similarly,

= Jq(x) .çb1(x)dx

J0flk0l'flldx (2.34)
ç k=1 1=1

01'

=[,0,...,0Jflkflldx

0JT

01J

.Vflidx[2 (2.35)

Thus, it is possible to avoid using a finite difference method for differentiating the

basis vectors: instead spatial derivatives of the spline functions are used and simply

multiplied by the basis vectors to evaluate the inner products involving spatial

derivatives.
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CHAPTER 3

RESULTS AND ANALYSIS

The major result of this thesis is the production of a dynamic model for the

uncontrolled Navier-Stokes equations of the form

ü(t) = Au(t)+N(u(t)). (3.1)

To produce a model that can be used for the purpose of control, an actuator needs to

be included. This dynamic system takes the form

ü(t) = Au(t)+N(u(t))+Bg(t). (3.2)

In this system, g(t) is the actuator command. For instance, if the jet were to be used

as an actuator to control the flow in some way, then g(t) would be the signal that

commands the jet action and the B operator would represent the effect of that signal

on the flow. In order to obtain such a model using POD, the data set for the actuator

must contain input signals and output effects. Since no such data set is available at

this writing, instead this thesis focuses on producing a dynamic model of the jet-in-

crossflow as a first step toward obtaining dynamic models from experimental data.

3.1 POD from Data

Prior to performing a Galerkin projection it is possible to plot the POD modes

and visually confirm that they capture the dynamic structures of the system. Figures 4

and 5 show the first six POD modes for the u and v components of velocity

respectively with the time averaged mean flow removed from the data set.
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Figure 4: u component eigenfunctions of the first six POD modes based on wind
tunnel data with a steady jet. The time averaged u component of velocity was
removed from the data set.

These POD modes represent the primary dynamics of the original data set and

a summation of all 200 modes will reconstruct the original data in full. Similarly, a

summation of a reduced number of the POD modes will capture a certain percentage

of the original dynamics. The squares of the singular values represent the kinetic

energy captured by each mode and a percentage of energy captured by each mode can

be calculated; this is shown in Figure 6. The mean flow by itself captures 90% of the

energy of the data set, and the first ten POD modes capture approximately 30% of the
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Figure 5: v component eigenfunctions of the first six POD modes based on wind
tunnel data with a steady jet. The time averaged v component of velocity was
removed from the data set.

remaining energy of the data. It is important to note that the percent energy trend line

in Figure 6 is a cumulative sum of the energies and will always reach 100% when the

number of POD modes equals the number of time snapshots in the experimental data

set. This is because the summation of energies is divided by the total energy in the

data set which does not always capture all of the energy of the physical system. The

number of POD modes used to generate the dynamic model can be varied, but the
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increased accuracy associated with more POD modes comes at the cost of computing

efficiency. This will be discussed more fully in Section 3.3.2.
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Figure 6: Summation of percent energy captured by each POD mode.

Since 90% of the energy captured by the data is contained in the mean flow

it is important to show exactly what this flow looks like. Figure 7 shows the mean

flow in the u and v directions taken directly from experimental data.



Figure 7: Time averaged mean velocity components in the u and v directions.

3.2 Model Stability

In two cases, where the mean flow is subtracted before the POD basis is

calculated and no mean is subtracted, the systems of ODEs obtained via Galerkin

projection as described in Section 2.3 are asymptotically stable. This is to say that all

of the eigenvalues are negative. This is expected and further validates the model. The

sorted negative eigenvalues of the A matrix are shown in Figure 8. These are

generated for a system based on 10 POD modes. The system is always twice the size
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of the number of basis functions used due to the two components of velocity, thus the

20 eigenvalues. While the figure is shown for a system based on 10 POD modes, both

larger and smaller systems of ODEs have negative eigenvalues of the A matrix.

Ekienvalue Mean Subtracted Full Data Set
1 -0.6298 -0.6211
2 -0.6284 -0.6196
3 -0.6144 -0.5528
4 -0.5386 -0.4992
5 -0.5216 -0.4095
6 -0.4763 -0.3425
7 -0.4015 -0.3216
8 -0.3308 -0.2849
9 -0.3056 -0.2823

10 -0.2994 -0.2581
11 -0.2764 -0.2536
12 -0.2438 -0.2332
13 -0.2169 -0.2103
14 -0.2107 -0.2037
15 -0.1782 -0.1994
16 -0.1700 -0.1699
17 -0.1658 -0.1547
18 -0.1588 -0.0875
19 -0.1519 -0.0771

20 -0.0838 -0.0043

Figure 8: Eigenvaluesof A (1*i01).

3.3 Model Simulation

This portion of the results section presents findings that contribute new

knowledge to the engineering community. The solution to the initial value problem

Má(t) Aa(t)+aT(t)Na(t)+e (3.3)

was obtained using MatLab's 0DE45 solver which utilizes a 4/5 Runge-Kutta

method for the coefficients a of the POD approximation. Where M is the
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identity matrix, A and e are given in eq. (2.27), and N is given in eq. (2.32).

Once the coefficients a are obtained they are multiplied by their respective basis

vectors and a summation of the weighted basis vectors simulates the flow.

Three different initial conditions were evaluated. This results section is

organized into three separate sub-sections based on the initial condition used. The

in initial condition z, is formed as follows

a01 =(u0,qi,), (3.4)

where u0 is a function, and a0 is the projection onto the set of POD basis. Here

the subsections to follow are described; the first initial condition (Section 3.3.1)

examined is simply the first POD mode. In this section the results show

differences between subtracting the mean flow from the data and raw data with no

mean flow removed. The second initial condition (Section 3.3.2) is Couette flow.

In this section the number of POD modes used to generate the model was varied.

The third and final section (3.3.3) looks at what happens with an initial condition

very dissimilar to any of the POD modes. To achieve this, a uniform flow of high

velocity is used as an initial condition. In this section the timestep used by the

ODE solver is varied to assess convergence of the model.

It is important to emphasize the degree to which this dynamic model is

verifiable within the scope of a thesis. Ideally a couple of methods of verification

could be used, but both would be extensive projects in and of themselves. The

first option for testing this model would be to apply initial conditions that can be

verified experimentally. That is similar to what is done in section 3.3.1, however
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it would be beneficial to have an initial condition different from that at which the

data were collected. To do that a whole new experimental data set would be

necessary to verify the results of the model created here. That data set is not yet

available. A second method of verifying the results of this model would be to

create CFD code for this jet-in-crossflow problem. The CFD code could then be

used to verify this model created from experimental data. Creation of a control

based on this model and subsequent verification of that control in an experimental

environment is another possible method of model verification. Again, this is

beyond the scope of this thesis. For this reason, eigenvalue analysis (Section 3.2),

simulation of the model with different initial conditions (Sections 3.3.1-3.3.3),

variation in the number of modes used in the dynamic model (Section 3.3.2), and

convergence analysis (section 3.3.3) will suffice as a workable substitute in the

area of model validation.

3.3.1 1st POD mode initial condition

If the first POD mode is used as an initial condition in the simulation, then

presumably the experimental data should be reproduced with some degree of

accuracy. This initial condition is implemented by setting

c =[i 0000000001 000000000]T. (3.5)

This is for a system with the number of basis functions n = 10. Two cases were

tested with this initial condition, one with the mean flow removed from the data

and the other with no mean flow removed.



32

It is standard practice when using POD of CFD simulations to subtract the

mean from the computational fluid dynamic data set before computing the POD basis

vectors. It makes sense that this step would also be necessary with experimental data.

This is done because the mean flow dynamics dominate all lesser dynamics captured

in subsequent POD modes, and Figure 9 depicts this visually. It shows the u

component of velocity at three time steps during the simulation with little difference.

The simulation is completely dominated by the first POD mode which is very similar

to the mean flow shown in Figure 7. This first POD mode has far stronger dynamics

than any of the subsequent POD modes, thus changes in the subsequent modes are

covered up and the simulation just appears as a steady mean flow; recall that 90% of

the energy is captured in this mode. This can be contrasted with Figure 10, which

shows and identical simulation of u velocities, except the mean flow was subtracted

from the experimental data prior to computing the POD basis.
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Figure 9: Ten POD mode simulation of the u component without the mean flow
removed and first POD mode initial condition.

It is repetitive to show the v component counterpart of Figure 9, as it shows a

steady state very similar to the mean v component in Figure 7. Even if initial

conditions other than the first POD mode are used, the first mode quickly becomes the

dominant characteristic of the flow.
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Figure 10: Ten POD mode simulation of the u component with the mean flow
removed and first POD mode initial condition.

3.3.2 Couette flow initial condition

This initial condition varies the flow linearly in the wall normal direction from

u = 0 at the wall boundary (bottom) to u = 1 at the top of the flow. The initial
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condition v 0 was used for the whole domain. In this section it is also assessed how

the number of POD modes used to generate the model affects the solution. Three, ten

and 100 POD mode models were all created and given the same couette flow initial

condition. This initial condition did result in a different a0 vector for each model due

to the different sizes of the systems of ODEs. For example, the three POD basis

model used

= [-2.68 -0.50 13.57 0 0

while the 10 POD basis model used

=[-2.68 -0.50 13.576.40-12.797.42-2.47-7.527.96-6.34000000000 0}T.

More POD frmnctions should in theory provide greater accuracy in the model,

but the cost of computing and running simulations increases. At some point it is no

longer feasible to compute in real time. This may not be an issue for "off-line"

computations, however the goal is to provide the needed accuracy for the final

application of the model, be it controller design, stability analysis or optimization,

with as few POD modes as possible. Figures 11-13 all show the same simulation,

except the number of POD modes utilized in constructing the model were varied.

As expected, the more POD modes that are used in construction of the model

the more detailed the results of the simulation. A greater overall non-dimensional

velocity is seen in the 100 POD mode simulation simply because the simulated flow is

a summation of each coefficient multiplied by each POD mode. Because there are

more modes there are more terms in the summation and a greater overall velocity.

Also, dynamics can be included in the larger system of ODEs that there is no possible
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way to include in the more reduced models just because those dynamics are not

captured by the higher energy or lower numbered POD modes.

Figure 11: Three POD mode simulation of the u component with the mean flow
removed and a couette flow initial condition.
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Figure 12: Ten POD mode simulation of the u component with the mean flow
removed and a couette flow initial condition.

Figure 13 shows the same simulation as Figs. 11 and 12, but with 100 POD

functions. The resolution of the model is noticeably increased, however the extra

computing time required for a model of this size is significantly greater,

approximately 10 times. The results for the v component are very similar in all cases

and inclusion of those figures would be repetitive.
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Figure 13: 100 POD mode simulation of the u component with the mean flow
removed and a couette flow initial condition.

3.3.3 Constant high velocity initial condition

The inclusion of this initial condition has the purpose of evaluating how the

model responds to initial conditions far away from the information contained in the

data set. The initial condition was implemented with a constant non-dimensional



velocity in the x direction of 1000 and no velocity in the y direction. This generates

the following initial condition:

z =1000*[3.61 0.07 3.19 0.71 -2.32 1.91 0.52-1.520.72-2.29000000000 0]T.

To attempt to assess convergence, various timesteps within the simulation are

used. All previous simulations have been run with MatLab's adaptive time stepper

which decreases At as the system changes more rapidly. In this section the time step

is refined from At = 0.01 to At = 0.1*10-3 to At = 0.1 *10_6 in order to see if the

same or a similar solution is generated. With each time step size the Frobenius norm

of the non-dimensional velocities is evaluated once the system has reached steady

state, which it does by t = I in the simulation. With all timesteps the Frobenius norm

of the final steady state response was identical which indicates that the model

converges. Figure 14 shows how the model responds to the large steady flow initial

condition.
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Figure 14: 10 POD mode simulation of the u component with the mean flow
removed and a steady flow initial condition u = 1000.
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CHAPTER 4

CONCLUSION

The present reduced-order model does capture the dynamics of the jet-in-

crossflow system. This is significant progress toward the end goal of reduced order

model based closed-loop flow control. The reduced order model is obtained through

the use of snapshot based Proper Orthogonal Decomposition of PIV data in

conjunction with a Galerkin Projection of the Navier-Stokes equations onto the POD

basis functions. This method appears to achieve the desired goal, however a working

controller based on the reduced order model must be created to verify this result.

Since the end purpose of this model is ultimately closed-loop control design

which is outside the scope of this work it is difficult to assess the overall success of

this model. Even if an adequate controller can be created based on this model there

are still inherent limitations to deriving a model from POD of experimental data. The

primary limitation of POD is that the POD basis functions are intrinsic to the

particular flow they were created with. As the flow is modified by the action of the

control or disturbances in the flow the POD basis will change. It follows that, a

reduced order model built around a set of POD basis functions for one flow would

certainly not be optimal and may not even represent the dynamics of the controlled

flow under some conditions. This dynamic model is based on one specific set of

steady operating conditions for the flow, thus it only captures those dynamics. Likely,

this particular model is not very suitable for many applications, but the methodology
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used to create the model and corresponding MatLab code can now be used to generate

a similar model given a richer data set.

Future work is clearly needed in a number of areas. Development and

verification of a working control system in the laboratory environment is the next

obvious step. Also, due to the impracticalities of having full PlY data outside the

laboratory environment, a stochastic method must be used for real-time estimation of

the time coefficients. Input to this model would presumably come from pressure

measurements on the plate surface downstream of the jet. It could also prove useful to

adapt the present model to three dimensions by adding additional "slices" of PlY data.

Addressing all three of these areas would provide a fine PhD dissertation for an

interested individual.
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