
AN ABSTRACT OF THE THESIS OF

Laura A. Beckwith for the degree of Master of Science in Computer Science
presented on November 18, 2002.

Title: Reasoning about Many-to-Many Requirement Relationships in
Spreadsheet Grids.

Abstract approved

Margaret M. Burnett

Traditionally, research into end-user programming has focused on how to

make programming more accessible to end users. However, few researchers

have considered providing end users with devices to help improve the

reliability of the programs they create. To help improve the reliability of

spreadsheets created by end users, we are working to allow users to

communicate the purpose and other underlying information about their

spreadsheets using a form of requirement specifications we call "guards."

Guards were initially designed for individual cells but, for large spreadsheets,

with replicated/shared formulas across groups of rows or columns, guards can

only be practical if users can enter them across these groups of rows or

columns. The problem is, this introduces many-to-many relationships, at the

intersection of rows and columns with guards. It is not clear how the system

should reason and communicate about many-to-many relationships in a way

that will make sense to end users. In this thesis, we present the human-centric

design rationale for our approach to how the system should reason about such

many-to-many relationships. The design decisions are presented with their

reasons gleaned from two design-time modelsCognitive Dimensions and

Attention Investmentand from the users themselves in a small think-aloud

study.

Redacted for privacy

©Copyright by Laura A. Beckwith

November 18, 2002

All rights reserved

Reasoning about Many-to-Many Requirement Relationships in Spreadsheet
Grids

by

Laura A. Beckwith

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the degree of

Master of Science

Presented November 18, 2002
Commencement June 2003

Master of Science thesis of Laura A. Beckwith presented on November 18,
2002.

APPROVED:

Major PrófEssorresenting Computer Science

Head of the Department of Computer Science

of

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of
my thesis to any reader upon request.

A. Beckwith, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDGEMENTS

I would first and foremost like to express my gratitude towards my

advisor, Margaret Burnett, for her support, encouragement, and guidance. I

would also like to thank her for introducing me to an area of Computer Science

that I have come to love, but had no experience with prior to meeting and

working with her.

Thanks, also, to all members of the Forms/3 team, but in particular to

those who helped out during my periods of "oh-my, I need ANOTHER

screenshot and NOTHiNG is working!" I also extend this thanks to everyone

else in Dearborn 201, who made working in the office more enjoyable.

Lastly, I'd like to mention a few of the many others in my life who

have been extremely supportive as I completed my masters: my parents,

Melissa, Fabio and Jenny.

This work was supported in part by the National Science Foundation

under Awards CCR-9806821 and ITR-0082265.

TABLE OF CONTENTS

1. Introduction .
1

1.1 Introduction .
1

1.2 Forms/3 and Support for Guards .2

1.3 Related Work .. 5

1.4 The Problem Addressed by this Thesis ... 15

2. Experiment Design.. 20

2.1 What we hoped to accomplish by doing this study 20

2.2 Procedure ... 20

2.3 Subjects ... 24

2.4 Tutorial .. 25

2.5 Tasks ... 27

2.6 Spreadsheet problems .. 28

3. Results ... 34

3.1 Results of Question 1 .. 34

3.2 Results of Question2 .. 39

3.3 Results of Question 3 .. 41

4. Applying the Results by Study Question .. 45

4.1 Do users regard having many-to-many relationships among

guards and cells as being valid and useful9 .. 45

4.2 How should multiple guards propagate? ... 51

4.3 What constitutes a conflict9 .. 54

5. Conclusion .. 57

Bibliography .. 59

Appendices .. 63

Appendix A: Tutorial Materials .. 64

Appendix B: Subject Spreadsheets ... 65

AppendixC: Quotes ... 75

LIST OF FIGURES

Figure

1: Temp Spreadsheet ... 3

2: Basics Grades Spreadsheet .. 4

3: A Fonns/3 temperature converter .. 5

4: Grades Spreadsheet with WYSIWYT ... 6

5: Stagecast Creator ... 10

6: Match Forms ... 15

7: Grades Spreadsheet, hand annotated ... 17

8: Grades Spreadsheet from the study ... 23

9: Temperature Conversion ... 26

10: Second tutorial spreadsheet ... 27

11: Post-test Spreadsheet .. 27

12: Experiment Grades Spreadsheet ... 30

13: Sales Spreadsheet .. 32

14: Wait Time Spreadsheet ... 32

15: Conference Spreadsheet .. 33

16: The Sales Spreadsheet for subject 5 .. 36

17: The Wait Time Spreadsheet for Subject 5 .. 37

18: Subject 3's Grades Spreadsheet .. 38

19: Grades with Guards ... 46

20: Guard conflict explanation .. 47

21: Previous internal design ... 48

22: New internal design .. 49

23: Grades Spreadsheet with guards closed .. 50

24: Guard Priorities ... 52

25: Grades Spreadsheet with priorities set .. 53

26: Value violation explanation .. 56

LIST OF TABLES

Table

1.1: Design Constraints. The constraints our solution must follow................ 19

2.1: Subject information summary.. 25

2.2: Classification Schemes .. 29

2.3: Spreadsheet classifications .. 33

3.1: Answers: Did subjects remove the extra user guard when one existed? .. 39

3.2: Subjects' set-based reasoning or lack thereof... 43

LIST OF APPENDIX FIGURES

Fjgure

27: Subject 1 Grades ... 65

28: Subject I Conference .. 65

29: Subject I Sales ... 66

30: Subject 1 Wait Time.. 66

31: Subject 2 Grades .. 67

32: Subject 2 Conference ... 67

33: Subject 2 Sales ... 68

34: Subject 2 Wait Time .. 68

35: Subject 3 Grades .. 69

36: Subject 3 Conference ... 69

37: Subject 3 Sales ... 70

38: Subject 3 Wait Time .. 71

39: Subject 4 Grades .. 71

40: Subject 4 Conference ... 71

41: Subject 4 Sales ... 72

42: Subject 4 Wait Time.. 72

43: Subject 5 Grades.. 73

44: Subject 5 Conference... 73

45: Subject 5 Sales ... 74

46: Subject 5 Wait Time .. 74

Reasoning about Many-to-Many Requirement Relationships in
Spreadsheet Grids

1. Introduction

1.1 Introduction

In recent years a number of authoring environments and other kinds of

programming devices have become available to allow end users to do their own

programming. In fact Boehm et al. projected the number of end-user programmers

to be 55 million by 2005 while the number of professional programmers is

expected to reach only 2.75 million [Boebm and Basili 2000]. Although end-user

programming has received a growing amount of attention (one sign of which is the

increased focus on end users at conferences such as at the Human Centric

Computing Languages and Environments Conference), there has been little

research into aspects of end-user programming beyond the programming part per

Se. Programming is only one part of the development process, and focusing on

other aspects is important for reliability of the programs end users create. In fact,

reliability is an issue in end-user programming, as shown by statistics about

spreadsheets, a widely used type of end-user programming language. Panko

compiled field audits done on spreadsheets and found that a disturbing number of

spreadsheets have errors: a very conservative estimate is that 20%-40% of

spreadsheets contain errors, and in some studies, as many as 91% of the studied

spreadsheets had errors [Panko 1995, Panko 1998, Panko 2000].

We have been working on how to improve the reliability of end-user

programs in general and of spreadsheets in particular. One of our hypotheses is

that spreadsheet reliability can be improved if the spreadsheet users work

collaboratively with the system to communicate more information about known

relationships. Spreadsheet users know more about the purpose and underlying

requirements for their spreadsheets than they are currently able to communicate to

the system, and our goal is to allow end users to communicate this information

2

about requirements. This will allow for checks and balances, so that the system can

detect and point out ways in which the spreadsheet does not conform to the user's

requirements.

We are pursuing the question of requirement specifications for end users

using the research spreadsheet language Forms/3 [Burnett et al. 2001]. In our

prototype, we refer to requirement specifications as guards (guards are analogous

to assertions for professional programmers). We began this work with an early

prototype for individual cells, which afforded empirical investigations into how

users problem solve in the presence of guards [Wallace et al. 20021. From

research conducted concurrently with what is reported here, we know guards

significantly help users find and fix bugs [Burnett et al. 2002a].

The work presented in this thesis investigates scalable guard mechanisms.

By "scalable," we mean guard mechanisms that are viable for end users when

programming large spreadsheets. Typically, large spreadsheets contain grids of

many cells with repeated patterns of relationships, often due to shared or replicated

formulas across the rows or columns. Allowing users to place guards on grids

(such as on rows and columns) can lead to overlapping guards, which may be

difficult for users to reason about.

1.2 Forms/3 and Support for Guards

As mentioned, Forms/3 is the language in which we are prototyping our

work. Forms/3 is a declarative spreadsheet language, although it varies from

traditional spreadsheet languages. One of the most visible variations is the lack of

a predefmed grid layout that cells must belong to; cells can be placed anywhere

within the form (see Figure 1). Although cells can be placed anywhere within the

spreadsheet, there is also support for more structure in grids. In Forms/3 grids,

rows and columns are determined by user-specified formulas. Grids can then be

divided into regions of cells; with each region having one formula that applies to

3

all cells within that region. An example can be seen in Figure 2, where the cells in

the average row are in one region and share the same formula.

Figure 1: Temp Spreadsheet. A simple Forms/3 spreadsheet that takes a
Fahrenheit temperature and converts it to its Celsius equivalent. In Formsl3 a
cell's value and formula can be viewed at the same time (Celsius's Formula is
currently open). The tab on the top of the cells is how the users enter guards
(which will be explained shortly).

4

HomebJor1 Midterm Final Couree

WI'__
Jjsam 78

]

94
68 80

1

Ienny
1192 164 87 81

185
1

80.5

Average lGrades[1@J +
Grade[2@j))/2

Figure 2: Basics Grades Spreadsheet. This Forms/3 Grades Spreadsheet will be a
running example throughout the thesis. Each student has a grade for
"Homework", "Midterm", and "Final" which are averaged in the "Average" row.
The "Average" row is a region with four cells, and its formula (applying to all
cells in the region) refers to the other cells in the grid.

Before scaling guards up to grids, guards pertained to only one cell,

although their implications were propagated through formulas to other cells. That

is, whenever a user placed a guard into a spreadsheet cell (a user-entered guard)

that guard was propagated [Wallace et al. 2002] through formulas downstream

generating computer-generated guards on downstream cells. A cell with both a

computer-generated and user-entered guard was in a conflict state (a guard

conflict) if the two guards are not identical. As Figure 3 shows, to communicate a

guard conflict, the system circles the conflicting guards. Since the cell's value is

inconsistent with a guard on that cell (termed a value violation), the value is also

circled.

Other relevant aspects of Forms/3 will be discussed as they are needed.

j32to2J

212

Fahrenheit

5

Figure 3: A Forms/3 temperature converter. Stick figure icons identify user-
entered guards, and the computer icon identifies a computer-generated guard. The
computer-generated guard's conclusion that the Celsius value ranges from 0 to 324
degrees provides a clue that there is an error in Celsius's formula.

1.3 Related Work

1.3.1 Software Engineering for End Users

The primary focus of research in end-user programming has been on the

programming aspect, not on other aspects of the software engineering process.

Nardi argues that end users need to have the power to program because, despite the

best efforts of designers, it is impossible to know in advance what a user may need

in a program [Nardi 1993]. One solution to this uncertainty of requirements is to

give users the power to make customizations and add features that help them

become more efficient in completing their work.

Guards are one aspect of an approach we are devising, termed software

engineering for end users, aimed at helping end users improve the correctness of

their programs. The first contribution of this research was a visual methodology

for testing that allows users to incrementally edit, test, and debug their

spreadsheets as their spreadsheets evolve [Burnett et al. 2002b, Reichwein et al.

6

1999, Rothermel et al. 1998, Rothermel et al. 2001, Krishna et al. 2001]. This

approach, known as WYSIWYT ("What You See Is What You Test"), provides

visual feedback in several ways about how much of a spreadsheet has been tested.

The feedback the user receives is a change of color indicating the level of

testedness, starting with red for untested and moving along in the spectrum toward

blue (blue indicates that all adequacy criteria have been met). Figure 4 shows a

spreadsheet using WYSIWYT. Some of WYSIWYT's features have also recently

been adapted for the visual dataflow paradigm of Prograph [Karam and Smedley

2001]. WYSIWYT and guards are seamlessly integrated into the Formsl3

environment and with each other.

Sara

Jenny

2% Tested

Hnmework Mdterm Final Couree

78 92 67 79

92 64 88
81.31E1

85 IJ 78 ffJ 77.5J L80.l.1

Average (Gradee(l@j] 4
Gradee[2@j))/2

Figure 4: Grades Spreadsheet with WYSIWYT. In this spreadsheet the cells in
the "Course" column have already been tested (they are blue), while the cells in
the "Average" row have not (they are red). The percent testedness indicator at the
top of the screen conmiunicates how much of the spreadsheet has been tested thus
far.

Other research into spreadsheets has focused on finding ways to use units

(based on column and row headings) to help end users find errors [Burnett and

Erwig 2002]. With their approach the user does not need to "declare" any unit

information, rather the row and column headers are used as the units, and the user

is able to correct the system, via a programming by demonstration approach, if the

system makes the wrong assumptions. By using units the system can detect some

formula errors, such as a wrong cell or omitting some cells from aggregate

calculations. These errors are detected by applying an underlying inference system

for unit-based reasoning.

There is also research regarding helping end-user programmers find errors

through outlier analysis [Miller and Myers 2001]. This work focuses on common

maintenance tasks within text documents that can often lead to errors. For

example, a "replace all" within a text document might change more than was

intended, or might not replace everything intended if there were slight spelling

differences in the document. The attention cost required for a user to check each

change is often too much. Miller and Myers's approach detects probable errors by

a method analogous to statistical outlier detection. An empirical study showed that

the approach did aid the subjects in completing their assigned tasks with fewer

errors.

1.3.2 Can end users use assertions?

Various approaches to assertions have been made available to professional

programmers [Ernst et al. 1999, Sankar and Mandal 1993] over the years, and

while they are effective in finding runtime errors [Rosenblum 1995] they have not

been geared toward end users.

Research indicates that end users can potentially work with some forms of

requirement specifications. Nardi summarized work by several researchers

indicating that, although end users are not particularly good at working with

abstract requirements, they work much better with a concrete program they are

able to criticize [Nardi 1993].

The need for some form of explicit requirement specifications is also

indicated by a study Gray and Fu conducted. They found that if people have a

vague recollection of requirements, they will not take the time to look them up in

another document [Gray and Fu 2001]. For example, in the task of programming a

VCR to record a television show, those who had memorized the times to program

made significantly fewer mistakes than those who had seen the information and

had access to it, but had not actually memorized it. Instead, those who had not

memorized the information relied on their recollections rather than doing the extra

work to access the information. Gray and Fu refer to this as "perfect knowledge

in-the-world" versus "imperfect knowledge in-the-head."

1.3.3 Grid-based Programming Languages for End Users

Some of the programming systems for end users use grids as part of the

programming. Since our work focuses on reasoning in the presence of grids, the

following discussion focuses on research surrounding grid-based languages. We

have categorized grid-based languages into spreadsheet languages and non-

spreadsheet languages.

Spreadsheet research varies from extending the traditional uses of

spreadsheets to making the dependencies within a spreadsheet more visible and

using the spreadsheet paradigm to address the issue of information visualization.

Similarly to Fonns/3 the programming language Formulate [Ambler and Broman

1998, Ambler 1999] builds on the traditional spreadsheet model. In Formulate

users program by solving simple equations. Like Fonns/3, not all of Formulate is

grid-based; grids are used to represent arrays, lists and tables. Ambler and Broman

stress that users do not need to worry about indexing arrays or lists; nor do they

need to program loops to iterate through all elements within a data structure.

Users can, instead, manipulate the data structures (represented by grids) by

defining partitions, called "regions."

One potential difficulty spreadsheet users face is trying to remember the

relationships between cells, which can be especially difficult when only the cell

values are showing. Igarashi et al. designed some visualization techniques for

spreadsheets making the relationships between spreadsheet cells more apparent

[Igarashi et al. 19981. Their method involves a new view of the spreadsheet, the

"dataflow" view, where the arrows mark the dataflow of the spreadsheet. They

also added a mouse over feature that brings up lines indicating what cell(s) affect

the current cell, and what cell(s) are affected. Forms/3 has similar features; for

example, arrows show the dataflow of the spreadsheet. Additionally, in Forms/3

both a cell's value and formula can be seen at the same time, along with any

number of arrows the users chooses to view; this differs from Igarashi's work

where users can view arrows and values together, but not all three aspects.

Chi et al. have used a spreadsheet approach to visualizing large amounts of

data [Chi et al. 1997]. In this case, the spreadsheet based approach can be

considered grid-based, as the data (they used graphics in one example) is

represented in cells of a grid. The formula for a cell indicates how to display the

data, or whether to do any transformations to the data before displaying it.

Grids are used not only in spreadsheets. AgentSheets [Repenning 2000,

Repenrnng et al. 2000, Repenning and Citrin 1993], Stagecast [Cypher and Smith

1995, Seals et al. 2002], and Kara [Hartmann et al. 2001] are all (non-spreadsheet)

languages that use grids. Agentsheets combines grid-based programming, end-

user programmable agents and Java authoring to allow end users to build

simulations. Agents are programmed to respond to specific conditions (these

conditions and responses are called rules and are programmed by dragging and

editing conditions and actions stored in tool palettes). The agents are placed into a

grid, and as the program runs, the agents respond to the environment and can move

around within the grid. Agentsheets was a sibling to another simulation

programming language, called Stagecast Creator (previously calledKidSim and

Cocoa) [Cypher and Smith 1995]. Stagecast is "based on a movie metaphor where

users create a cast ofcharacters who interact and move within a simulation

microworld" [Seals et al. 2002]. The grid-based system is where all of the

characters reside, similar to Agentsheets. Stagecast characters are programmed by

10

demonstration, where before and after pictures define the rules, which differs

slightly from how the agents are programmed in Agentsheets. A picture of a

Stagecast world can be seen in Figure 5. Kara [Hartmann et al. 2001] uses a grid

similar to Stagecast and Agentsheets, where characters move around within the

grid following some programmed instructions. Kara, though, is meant to represent

finite state machines and is limited to four types of objects; only one of these

objects can be programmed to react to its surroundings. The purpose of Kara,

according to the authors, is to be used for programming instruction.

Figure 5: Stagecast Creator. In this picture the large box in the upper left corner is
the "World," a grid that the characters are placed in; when the user presses play
(not shown) the characters respond according to their rules. Just below it is an
example of a rule. The box on the right side of the picture shows all the available
characters for the world.

11

1.3.4 Fundamental Principles

When language designers/researchers design a new language there is a

body of research they can rely on for evaluating their design. The first of these are

the Cognitive Dimensions (CDs) [Green and Petre 1996].

Our design was guided in part by our use of the CDs during the design

process. CDs are a set of factors that help designers to assess usability at design

time. The CDs are not rules, but instead provide vocabulary with which to talk

about design. One example is consistency: "When some of the language has been

learnt, how much of the rest can be inferred?" [Green and Petre 1996]. In addition

to the consistency CD, other CDs that impacted our design include visibility,

progressive evaluation, abstraction gradient, and premature commitment, as will

be seen.

Another influence on our design was Attention Investment [Blackwell and

Green 1999, Blackwell 2002]. Attention Investment is an analytic model of user

problem-solving behavior that allows a designer to consider the costs, benefits, and

risks users weigh in deciding how to complete a task. For example, consider a

programmable phone. If the ultimate goal is to make a phone call, then pro-

gramming the number into the phone has a cost, benefit, and risk. The cost is

figuring out how to program the phone. A benefit is the freedom to forget the

phone number. The risk is that the "program" might not work as the user intended.

in our research, we use Attention Investment to guide our design decisions toward

providing users with a low cost and low-risk mechanism whose benefit will be a

higher probability that their programs' (spreadsheets') errors will be automatically

detected and brought to their attention.

Recall Gray and Fu's research [Gray and Fu 2001] on "perfect knowledge

in-the-world" versus "imperfect knowledge in-the-head;" we propose an

explanation for the subjects' behavior from an Attention Investment perspective:

Users simply want to be efficient. That is, even when the information was

accessible, users would still lose time retrieving the needed information, such as

12

by context switching from working with the spreadsheet system to finding the

right document and looking things up in it. Our approach to guards attempts to

eliminate some use of imperfect knowledge in-the-head by making perfect

knowledge in-the-world time-efficient to access in the same context as the

spreadsheet.

1.3.5 Studies

Some aspects of end-user programming languages have been studied

empirically and can be divided into two categories: formative and summative.

Formative studies are conducted prior to design and help researchers form the

design. Summative studies, on the other hand, are conducted post design and are

generally used to measure users' improvement in some specific task which can be

attributed to using the new design. The following sections cover a variety of

sunimative and formative studies in end-user programming.

1.3.5.1 Summative studies

Outside of the sunimative studies we have conducted with end users, there

are a number of other sunimative studies. The Forms/3 research team has done

summative studies evaluating many aspects of our system, including WYSIWYT,

guards, and a feature called "Help Me Test" (helping users find new testcases)

[Krishna et al. 2001, Wallace et al. 2002, Burnett et al. 2002a, Wilson et al. 2002].

Outside of Forms/3 other empirical studies on end users have involved children,

teachers, and other community members (such as the studies on Agentsheets and

Stagecast Creator [Rosson and Seals 2001, Seals et al. 2002, Rader et al. 1997]).

The following discussion covers a few summative studies and their results.

A study by Engebretson and Weidenbeck [Engebretson and Weidenbeck

2002] looked at whether end-user programs written with task-specific constructs

aids subjects' comprehension. The subjects were teachers and the programming

language was a common end-user programming language for teachers

(HyperCard). In the first part of the study the teachers were asked to examine

13

code and answer questions regarding what the code would do when run. In the

second part of the study, teachers we asked to modify the code. This study did not

actually evaluate a particular programming language design or method, but rather

examined the effects the differences of the actual code had on users'

comprehension (task-specific versus non-task-specific constructs). They found

that teachers with the task-specific programming constructs completed the

programming tasks and questions more successfully.

As previously mentioned, guards are part of a larger methodology for end

users, including WYSIWYT. Our research team has performed summative studies

on WYSIWYT that revealed subjects performed significantly better in aspects of

testing, debugging, and maintenance tasks with the help of WYSIWYT [Krishna et

al. 2001].

In addition to the WYSIWYT studies we have also conducted two studies

investigating guards. The first of these studies was a think-aloud study designed to

investigate if end users were really able to understand and use guards, and whether

they were distracted by the red ovals the system uses to make known

inconsistencies [Wallace et al. 2002]. The examiners found that subjects were able

to understand and use guards effectively, and that the subjects did not seem to be

distracted by the system's marking inconsistencies in the spreadsheet. The

subjects would simply attend to those problems, as they were ready.

The second study, investigating whether guards helped users find and

debug their spreadsheets, was conducted concurrently with the work reported in

this thesis [Burnett et al. 2002aJ. The results of this study were promising;

subjects who were supplied guards' performed significantly better on finding and

correcting errors in their spreadsheets.

During the first two studies investigating guards, the subjects were given

spreadsheets that already had guards entered. The third study [Wilson et al. 2002]

'The subjects did not actually need to enter the guards themselves; the spreadsheet
they were given already had guards, which the subject could choose to display.

14

examined if subjects could be enticed to enter guards on their own using a

surprise-explain-reward strategy. We used the surprise aspect to get the users

attention, and then took the opportunity (though tool tips in a non-intrusive

manner) to explain guards (guards were not taught as part of the tutorial),

including communicating the possible rewards of using guards. By means of this

strategy 94% of the subjects entered guards.

1.3.5.2 Formative

Summative studies help in post-design evaluation and improvements. In

this thesis, we conducted a formative study to inform our design from the start,

basing our design on choices our subjects made during the study.

Research by Pane illustrates one example of an exceptional set of formative

studies that guided his design of an end-user programming language. When Pane

started his research into a new programming language for end users, his goal was

to "elevate" usability to one of the most important aspects of the programming

language. In other words, Pane conducted many formative studies; his findings

were then incorporated into the design of his new language, HANDS.

One significant finding of the studies Pane conducted was the subjects' use

of Boolean expressions. End-users understand the meanings of the words "and,"

"or," and "not" differently from the traditional view of computer scientists. In

order to approach this problem Pane and Myers designed a non-textual query form

[Pane and Myers 2000] (see Figure 6) and they compared this design against

textual versions that avoided the troublesome AND and OR operators. This study

was both summative and formative. Since they were evaluating two new designs

the study is summative. However, because they used the findings about issues end

users face when dealing with Boolean expressions (to inform the design of

HANDS) the study was also formative.

15

blue circle

not square not green

Figure 6: Match Forms. The query language designed by Pane and Myers to help
avoid the common pitfalls end users have with traditional Boolean expressions.
They have illuminated the words "and" and "or" by using these boxes where
elements inside are placed together with an "and", and the two boxes are placed
together with an "or" forming one query.

Pane et al. conducted a series of studies prior to the study above which

contributed to motivation for the aforementioned study. They examined how non-

programmer devised solutions to programming problems [Pane et al. 2001]. These

purely formative studies examined solutions of both children and adults. Some of

the highlights of the results of these studies include indications that the traditional

model of variables (whose contents are not available except when the program is

running, and then often difficult to access) is not ideal for end users. To address

the problems with traditional variable rules, Pane has developed a concrete model

where variables exist whenever they are visible. A recommendation Pane made

was that the syntax of the language should be something the users are already

familiar with, for example using text such as "add 100 to score" instead of "score

= score + 100." He also found that users are more likely to use aggregate

operations instead of performing loops on a dataset. The results of how these

series of studies ultimately helped shape the programming language HANDS can

be found in [Pane et al. 2002].

1.4 The Problem Addressed by this Thesis

A challenge in scaling up guards to support grids is finding a reasoning

mechanism that will be understandable and sensible to end users. It is this

challenge that this thesis sets out to address.

Until now, our system allowed only one user-entered guard per cell, and

communicating with the user about the one-to-one relationship between a user-

entered guard and its cell was relatively straightforward. However, multiple user-

entered guards per cell seem necessary in grids. For example, a user may need to

specify a guard on a row and another on a group of columns, and these guards

would overlap on at least one cell. The issue is how to reasonably handle multiple

relevant guardsmany entered directly by the user on a row and a columnthat

pertain to the same cell where the row and colunm intersect. The reason allowing

the user to enter guards for entire rows and columns at a time makes choosing an

understandable reasoning mechanism difficult is that the new feature introduces

not only one-to-many (one guard for several cells) but also many-to-one (several

guards applicable to one cell) relationshipsand hence, many-to-many

relationships.

For example, suppose the user specified that the Homework, Midterm,

Final, and Course columns of Figure 7 all must be between 0 and 100, that the

Average grid (row) must be between 0 and 100, and that the last column of

Average should be the average of the previous columns. (Not all of these

specifications are depicted in the figure.) This last specification would crosscheck

Average's formula, which instead computes the last column as the average of the

Course column. Such multiple guards give users more ways to enter checks and

balances.

17

Figure 7: Grades Spreadsheet, hand annotated. The same Formsl3 Grades
Spreadsheet from previous example, hand annotated to illustrate issues arising
from many-to-many relationships.

One problem is how to define the notion of these multiple guards being in

conflict. In our early prototype, we used a "must exactly match" rule, but this rule

may not suffice in the presence of many-to-many relationships. For example in

Figure 7, we can imagine the user of the spreadsheet wanting to know when Sam's

grades fall below a 70, because Sam requires special monitoring. To do this the

user would put a guard of 70-100 on Sam's row. If there were already guards on

the columns that all grades are between 0-100, this student would have multiple

user-entered guards on all cells in this student's row that do not match exactly.

Should this be considered to be a conflict among guards?

One possibility, for the above example, is to allow one guard to be a subset

of another without conflict. However, this would prevent the system notifying the

user of inconsistencies among their guards. The above student example was an

inconsistency the user wanted; on the other hand, it could instead have been a

mistake, and for the system to simply ignore that inconsistency would diminish the

power of the system to provide feedback about errors.

ii:

So, either decision made by the system is incorrect for some cases.

Another possible approach is to have the user make the decision. If the user makes

all the decisions, such as if two guards should match exactly or if subsets are

acceptable, the benefit is the decisions are the ones the user wants, but the cost is

the time the user must spend doing the deciding. We could cut the cost by having

the system make the decision for the user, but this runs the risk of later cost due to

potentially bad decisions.

In researching possible ways to reason about multiple user-entered guards

we developed five design constraints (which determine "rules" for possible

solutions to the above issues), which draw from several researchers' work relevant

to end-user programming [Belkin 2000, Corritore et al. 2001, Green and Petre

1996, Blackwell 2002].

Design Constraint 1 is that the system must immediately display the

presence of inconsistencies and conflicts involving guards. From literature on on-

line trust and its impact on the usefulness of on-line systems [Corritore et al.

20011, it is clear that if users can trust our system to notify them when there is a

logic error, they will be more likely to provide the system with the information it

needs to provide these notifications. Immediate display also relates somewhat to

the visibility CD, which refers to how easily users can view components as a

whole; poor visibility would be if in order to view all parts of a component the

user must do so one by one.

Design Constraint 2 is to handle all similar situations consistently. This

design constraint is drawn from the consistency CD. Treating similar situations

consistently also helps with predictability, which helps to build trust.

Design Constraint 3 is that users should feel they understand the system's

reasoning. This design constraint is important for trust, which in turn promotes

effective use [Belkin 2000, Corritore et al. 2001].

Design Constraint 4 is to not demand unwarranted attention from the user.

Drawn from the model of Attention Investment, this constraint means that the

II

system will leave control of a user's problem-solving agenda up to the user. For

example, the system will not pop up dialog boxes demanding immediate answers,

will not trap users in modes, and will not require actions to be performed in a

particular sequence (which also relates to the premature commitment CD).

Design Constraint 5 is that all algorithms must be fast enough to maintain

immediate visual feedback. This is a corollary to Design Constraint 1. It is also

tied to the progressive evaluation CD, which is about the concept of immediate

visual feedback after an edit.

The design constraints, summarized in Table 1.1, were used to help shape

the approach, as will be seen throughout this document, but they did not provide

answers to the following issues, which are fundamental to how the system should

reason in the presence of many-to-many relationships:

. Do users regard having many-to-many relationships among guards

and cells as being valid and useful?

. How should many-to-many user guards propagate?

. What constitutes a conflict?

To investigate these issues, we turned to the users themselves.

ystem must:
1 Display inconsistencies and conflicts involving guards
T Handle similar situations consistently
T Be comprehensible to users
T Not demand unwarranted attention from the user
S Maintain immediate visual feedback

Table 1.1: Design Constraints. The constraints our solution must follow.

20

2. Experiment Design

Experiment Questions:

1. Do users regard having many-to-many relationships among guards and

cells as being valid and useful?

2. How should many-to-many user guards propagate?

3. What constitutes a conflict?

2.1 What we hoped to accomplish by doing this study.

We decided to conduct a study for two reasons. First, although the design

constraints, covered in Chapter 1, answered some questions about our design they

were not sufficient in answering the above questions. Second, we wanted to obtain

information directly from the audience that will be using our approach.

Using empirical studies to evaluate a language is not uncommon.

However, most are conducted late, after the language has been designed, and are

used to improve the currently existing design, not to guide the initial design.

Conducting an empirical study late has two possible weaknesses that we hoped to

avoid. First, changing a system drastically as a result of a study's findings can be

costly, if done after the system has already been implemented. The second

weakness has to do with how subjects react during the study if they feel the system

has a "finished" appearance; [Landy and Myers 2001] have shown that subjects

are less likely to criticize systems that appear fmished.

2.2 Procedure

We conducted a think-aloud study. A think-aloud study is closely related

to a protocol analysis. The primary difference lies within the treatment of

collected data. In general, both think-aloud studies and protocol analyses are well

suited for learning qualitative information about behaviors such as intermediate

steps or strategies employed and why. A critical part of such studies is the

subjects' thinking-aloud; their voicing of what they believe is happening, or the

21

reasons they are acting in a particular way. During such a study the examiner

watches and observes a subject's actions. Most ofthe literature [Dix et al. 1993,

Ericsson & Simon 1984] states the examiner should be involved with the subject

as little as possible. For example, the only communication between the examiner

and the subject should be the examiner prompting the subject to continue talking

when the subject falls silent. However, there is a second school of thought [Boren

and Ramey 2000] that recognizes there is already a relationship between the

subject and the examiner, and ignoring this is unnatural. Our study leaned more

toward recognizing the relationship between the subject and examiner. In this

second school of thought the examiner asks questions relating to what the subject

is doing, although when asking questions the examiner needs to exercise care that

the questions do not influence subjects' actions. Carefully selected questions, the

authors suggest, will only add to the infoimation obtained from the study and will

not negatively affect the study.

Think-aloud studies and protocol analysis diverge when it comes to their

treatment of collected data In protocol analysis the data is classified into different

categories, and statistically analyzed based on those classifications. By contrast a

think-aloud study is not collecting statistics, but rather behaviors. For example,

what did each subject do when they saw a particular situation? This often involves

a range of behavior patterns, and in our analyses of the data we were more

interested in the range of behavior patterns, not the number of subjects who

followed a particular behavior pattern.

Prior to conducting the study with subjects we did a cognitive walkthrough.

The purpose of a cognitive walkthrough [Ko et al. 2002] is to help ensure that the

research questions will be answered by the users' tasks. One of the main goals of

a cognitive walkthrough is to remove any confounding factors from the study.

Confounding factors in a study can make it impossible to answer the research

question from the data collected.

22

The cognitive walkthrough we conducted led to several major changes in

our study's design. The biggest set of changes from the cognitive walkthrough

was specifying exactly what we needed the subjects to do. For example, we

considered whether we were more interested in how the subjects handled one-to-

many guards or in how subjects decided on the value of the system generated

guard given a guard conflict upstream from this cell. in the end we decided we

were more interested in how subjects handled one-to-many situations; to make

sure we obtained this information we needed to be very explicit in our tasks. We

needed to tell subjects to place a guard on a particular row if that is what we

wanted them to do. We made this change.

Another change we made from the cognitive walkthrough was changing

the size of the spreadsheets. Many of the spreadsheets were needlessly

complicated and large. Since we were not attempting to test subjects on how they

comprehended large spreadsheets we decided this was a factor that would simply

complicate getting answers to our questions. We reduced the size of the

spreadsheets by taking out extra rows and columns that were not essential to

answer our study questions. We made several other changes, many of which will

be mentioned throughout this chapter.

After conducting the cognitive walkthrough but prior to conducting the

actual study, we ran through the study using a pilot subject. The goal of a pilot

subject is help find unforeseen problems that may appear during the actual study.

The combination of the pilot subject and performing a cognitive walkthrough of

the study aided in finding, and then correcting problems that might have

influenced the actual study.

23

The think-aloud study of five subjects was conducted one-on-one in a small

study room. We conducted the study using Excel-like grids with sketchy icons on

paper such as the one shown in Figure 8. Our reason for a paper-based study was

to avoid restricting the users to only those possibilities we had managed to predict

in advance. Our reason for the drawings' informal appearance and use of hand

annotations to develop the problems was to encourage the subjects to freely

criticize and change the system's reasoning; as mentioned before, research has

shown that subjects are less likely to criticize software that has a "finished"

appearance (e.g., [Landay and Myers 200!]). We decided to use Excel instead of

Forms/3 for several reasons; first, it was just as easy to use either since the paper-

based study did not require an implementation. More importantly, Excel had the

advantage of staying as close to these users' previous experiences as possible,

which helps avoid some kinds of confounding factors.

We tape-recorded the sessions, and also kept their paperwork. Pen color

was changed between each task to differentiate the work done during each task.

Prior to the cognitive walkthrough, we had planned to give subjects a fresh

spreadsheet after each task. We decided instead to change pen colors, since it was

important that decisions they made in earlier tasks still be present for later tasks;

additionally, the subjects did not have to reacquaint themselves with a new piece

_TY
61iLo-Lfl!E! _ !'1351'J

IE: [i: 'r':i

Figure 8: Grades Spreadsheet from the study. The top half of each cell shows the
guard. The stick figure versus computer indicates whether the user or the computer
placed the guard on the cell. The bottom half of each cell has space for the cell's
value (which was written in interactively during the experiment), and shows the
cell's formula if one is present, such as in the Average column. Guards with down
arrows were replicated down the entire column.

24

of paper several times.

During each problem we needed to hear subjects' reasoning when they ran

into problems they were not sure how to handle. The strength of the think-aloud

method is it allows us to capture the details of their reasoning. If the subjects were

quiet for any length of time the examiner asked "What are you thinking?" or

"Why?" to prompt them to resume speaking. When subjects asked the examiner

for help, they were simply instructed to refer to the problem description. If the

examiner did not understand the way users expressed their statements, she simply

encouraged them to keep talking, using the same prompting questions as above. If

the users' actions or statements inspired questions the examiner wanted to ask,

these questions were saved until the question period at the end of all the

spreadsheet tasks. This procedure was because the examiner did not want to

influence users' answers to upcoming tasks. The examiner also interviewed the

subjects after they had completed all the tasks.

2.3 Subjects

The subjects were students from majors that do not entail computer

programming, namely Nutrition, Health Promotion and Education, and Soil

Science. All the subjects had previous spreadsheet experience. All subjects were

native English speakers. Four of the five subjects were female, one male. The

Table 2.1 gives additional information on each subject.

25

Subject Major GPA Year Programming Spreadsheet use
1 Nutrition & Food 3.0 Senior High school College, personal

Management
2 Health Promotion 3.14 Sophomore High school High school,

& Education college,
professional,
personal

3 Nutrition & Food 3.80 Senior High school College
Management

4 Agronomy 3.7 Graduated None Professional
5 Dietetics 3.0 Senior None College

Table 2.1: Subject information summary. Shows each subjects' major, GPA,
Current year in school, computer programming experience, and reported uses of
spreadsheets.

2.4 Tutorial

The experiment began with some practice thinking aloud. The examiner

read a short statement to the subjects describing the subjects' role in a think-aloud

study. After this the subjects were given two tasks, both non-mathematical,

because some end-user subjects, of our previous experiments have become anxious

when asked to perform mathematically oriented tasks. The first task included a

short paragraph with inserted errors such as spelling, grammatical, and nonsense

meaning; this paragraph can be found in Appendix A. The subjects were asked to

read the paragraph aloud and fix any mistakes they found along the way. After

'this first task the examiner either moved onto the second think-aloud practice

(noting to the subject that he/she did a good job), or worked with the subject to let

them know more clearly what she was expecting. The second task was to name

the states beginning with the letter 'A' that people could ski in. This task required

a two-step process, first to think of the states that start with an 'A', then to

determine whether those states have skiing. As with the first practice, if the

subjects did not think aloud the examiner would let them know what it was that

she was hoping to hear from them.

The second part of the tutorial introduced guards. During this part of the

tutorial the examiner encouraged subjects to continue thinking aloud and to ask

26

any questions they had. The examiner first worked through the temperature

conversion problem of Figure 9. This covered the basics of the guards: guard

propagation (for a simple problem), value conflicts, and guard conflicts. After

explaining the basics to the subjects the examiner asked the subjects if specific

values would result in value conflicts, and how they might resolve the guard

conflict on the spreadsheet. If the subjects appeared to be unclear on any point the

examiner would go over this information again, until it appeared the subjects

understood. It was important that each subject understand the concepts covered in

the tutorial; tutorial times ranged as little as 5 minutes for one subject and as much

as 15 minutes for another.

A B C

I
32-212 9 0-100 0-100

32 0 =(BI_32)*5

Figure 9: Temperature Conversion. The examiner worked through this
spreadsheet introducing guards, propagation, guard conflicts and value conflicts.

The second spreadsheet in the tutorial, Figure 10, kept track of the number

of calories a patient in the hospital was supposed to consume for each meal. This

spreadsheet was used to introduce grids and column guards on grids. The purpose

of this spreadsheet was to explain the reasoning of guards within a spreadsheet

with rows and columns. Initially we had planned using two spreadsheets, but a

third spreadsheet was added to the tutorial after the cognitive walkthrough, when

we realized the subjects never saw how to place guards on rows. The third tutorial

spreadsheet introduced row guards on grids and how to use a comma to represent

non-range guards.

27

A 8 C 0 E F

edest cories Lmch Cores Dfl,e Cdories Sneck Cories

91 300-500 91 2(0-320 91 200-320 91 50-18) 750-1240

I.51.*$2:E2)

3 23-Dec
913oo-soo 912co-2o 9I28)-32o 91SO-i8) 750-1240

IS1J3f3)
4 24-Dec

4300 912c-32a 912(u-320 915O-18) 750-1240

ISUkB4:E4)
9j3U0-5C4) 3C0-5l)) 912oa-32o 200-320 914200-320 200-320 91450-ioo 50-1Cs) 750-1240

avg
.=SR4(8284)I3 =S&MC2:C4y3 S1J(0ZD4)(3 S'JtIEZE4)13 I.SU85:D5)

Figure 10: Second tutorial spreadsheet. During this spreadsheet the examiner
introduced the subjects to grids and to column guards.

After fmishing all tutorial tasks the examiner had the subjects complete a

short practice spreadsheet Figure 11. The subjects were given a description of the

spreadsheet along with the guards for the spreadsheet and were asked to place the

guards on the spreadsheet and to compute the computer-generated guard. The

examiner addressed any difficulties the subjects had with this task before moving

to the experimental task.

A B C

I Fred Meyer Sateway

2 Gum

4 Oranges

5 Tl
I=SUM(82:B4) IISIJtVI(C2C4)

Figure 11: Post-test Spreadsheet. This is the blank copy of the final spreadsheet
the subjects used as their post-test. They were asked to place guards on the rows
of the spreadsheets to ensure the spreadsheets' conformance to particular
specifications given to the subjects.

2.5 Tasks

After the above preliminaries the following experimental tasks were

assigned for each spreadsheet:

Task 1 :Place a specific guard on a specific row of the spreadsheet.

28

Task 2:Make the spreadsheet work as described in the problem description. This

required making decisions about guards that would make sure "bad" values

would not go unnoticed.

Task 3 :Play the role of the computer to determine the correctness of values

interactively specified by the examiner.

Task 4: (If any computer guards were missing, due to subjects' spreadsheet

changes): Play the role of the computer to fill in the missing computer

guards.

Task 5:Given the scenario that someone else had worked on the spreadsheet and

had left a particular set of (multiple) guards on the cells, and were asked

what, if anything, needed to be changed in the spreadsheet.

2.6 Spreadsheet problems

The four spreadsheets used in the experiment were: Grades, Wait Time,

Sales and Conference. Each subject saw these spreadsheets in a different order.

The figures of each spreadsheet are included with detailed descriptions of each

later in this section.

In preparing to design the problems and then to analyze the results of users'

reasoning about guards, we predicted two sets of patterns we thought we might

see, and discovered a third set during the study. We will refer to all three sets of

patterns as "classification schemes". See Table 2.2. We designed the

experiment's problems in a way that probed whether users based their reasoning

decisions on these schemes.

29

Classification Schemes
Guard purpose Do users reason about guards based upon whether guards are

used in these different ways:
"hard": value is wrong if outside guard.
"external": guard due to something outside the spreadsheet.
"data exception": guard is used to protect against
unreasonable values, guard is logically based on spreadsheet
purpose.

Set reasoning Do users use set-based reasoning in making decisions about
guards, and if so what kind? (intersection, union, subset, etc.)

All-knowing Is the correctness of values always determined by the
computer computer guard? (yes or no)

Table 2.2: Classification Schemes. This table summarizes the three classification
schemes.

The first classification scheme is by "guard purpose." People often use

features in ways not originally intended by their designers, regardless of whether

their designers approve of these uses. In considering ways to understand the

reasoning patterns users followed, we thought of three hypothetical purposes that

might motivate users to use guards. Although we predicted three possible

purposes, we did not limit ourselves to these in our analysis of the results.

For example, consider Figure 12, the Grades Spreadsheet, which was one

of the problems in the experiment. The midterm score must be between 0 and 100

points. Therefore a guard of 0-100 on this colunm is said to have a guard purpose

of being "hard": any values that fall outside the range are wrong. The other two

purposes are not "hard" in that they do not mean that a value is definitely

incorrect. For example, a teacher might place a 70-100 guard on a student's row in

order to especially monitor that particular student's progress. We term this guard

purpose as "external", because it was derived from information that is external to

the spreadsheet, such as the reason this student needs to be monitored. (It is not

"hard" in that it does not indicate that values are incorrect.) The third purpose we

hypothesized was that a guard might be used to notify spreadsheet users of "data

exceptions". A "data exception" guard could be used to call unusual values to the

user's attention, such as a salesperson selling an unusually high or low amount

compared to his/her usual average. It is different from an "external" guard

because this kind of a guard comes from data that is explicitly present in the

spreadsheet.

A 5 C D 0
T Homework Mdterm Final Average

2 Sam
3000 o-iüo Io-ioo 0-100

______________ I=(52+C2D2)13

3 Jenny 1 0 -100 0 -100 0 -100 0 - 100

I=(53+C3+D3),3

Figure 12: Experiment Grades Spreadsheet. One of the spreadsheets each subject
saw during the experiment. The guard on the colunms, such as the midterm, is
said to have a guard purpose of being "hard": any values that fall outside the range
are wrong.

The second classification scheme examines whether subjects reason about

guards in some set-based way. For example, if there are two non-matching user-

entered guards on one cell, do users want to combine these into one guard using

union or intersection? In the design of our spreadsheets we created a variety of

conflicts that were intersections or disjoint to see how users would handle each

case.

The third classification scheme was noticed after the fact, as a result of our

analysis. We present it here to keep the discussion of classification schemes

together. The scheme is binary, and considers whether our subjects simply

decided that the computer-generated guard was always right. We term this kind of

reasoning the "all-knowing computer". An example is if a cell had both user-

entered and computer-generated guards that were different, and a subject chose to

follow whatever the value of the computer guard was in determining the

correctness of a value.

Because we thought of two of the three approaches in advance, we were

able to devise spreadsheet problems that offered a variety of set-based

relationships among guard values and whose guards had a variety of purposes.

Each spreadsheet provided information to help answer the study questions,

and each was different with respect to the classification schemes.

31

Grades: The Grades Spreadsheet, shown in Figure 12, was a simple

spreadsheet which included homework, midterm, and final scores as input cells.

The Average column used a basic formula to calculate the average of the input

cells. This spreadsheet, when the subjects first saw it, had user-entered guards on

the first three columns; the Average column had a system-generated guard. The

subjects' first task was to place the guard 70-100 on Sam's row because, as

described in the problem description, he was on academic probation and the

teacher wanted to make sure his grades did not fall below 70. The cognitive

walkthrough helped us realized that we needed to directly tell the subjects what to

do. We wanted them to place another guard on the spreadsheet so we could see

how they reacted when two user-entered guards intersected. From this task we

hoped to gain understanding regarding what the subjects do with conflicts. We

knew from pervious work by our colleagues [Wallace et al. 2002] that subjects

understood user-computer conflicts, thus, our tasks were designed to see how they

reasoned about user-user conflicts.

The classification for the Grades Spreadsheet can be found in Table 2.3.

Sales: The Sales Spreadsheet (Figure 13) calculated salespeople's bonuses

based on their sales. During this experimental spreadsheet task subjects were

asked to use the table at the top of the spreadsheet to deteimine an appropriate

guard, and then place this guard onto the salespeople's rows in the lower part of

the spreadsheet. Note that the "Adjusted Salary" column has two guards on it, one

user-entered guard, and one computer-generated guard, which do not match. We

used this conflict to discover what the subjects did when determining the validity

of values with guards that were in conflict with each other. This spreadsheet also

offered more opportunity for the propagation of guards than any of the other

spreadsheet problems.

32

Figure 13: Sales Spreadsheet. The subjects used the table in the upper left hand
corner to detennine the guard for the cells of the total sales column.

Wait Time: The Wait Time Spreadsheet, Figure 14, describes the average

wait time for customers calling different departments within a company. The

description of this problem emphasized the need for all departments to answer the

President's phone call within 0-5 seconds, this translates into a row guard of 0 to 5.

This spreadsheet covered two of the set relationships that the other spreadsheets

did not cover.

= A 8 C
Ses Custom SeMce avg. wt tine

Non-

Mener
.43-90 I.15-80 9-85

I I-(82+C2)t2

Member
4,3-90 % 4,15-80 9-85

kB3+c3Y2

4 esier
9j 4,3-90 4,1 5-80 9-85

k84*C4)f2

ovgw 4,3-90 3-90 4,15-80 IS-80 9-85

tine UM(B2:B4y3 S1il(C2C4)t3 I=(85+C5)12

Figure 14: Wait Time Spreadsheet. Subjects were told that the amount of time the
President was allowed to wait was between 0 and 5 seconds, they were expected to
place this guard on the President's row.

Conference: The final spreadsheet, Conference Spreadsheet, Figure 15,

calculates the cost of attending tutorials at a conference. This spreadsheet, unlike

the other spreadsheets, was based upon a real spreadsheet, with the names

33

changed. The description included the fact that the cost of the tutorials was

different depending on the type of registration, a student, or normal attendee.

Another unique feature of this spreadsheet is that each guard is classified as being

"hard", which is not true for any other spreadsheet problem (see Table 2.3).

A B C 0 E

Tutoriel 1 Tutorlel 2 IiAoriel 3 Tdal

2 Sue
30t30i45 0130I45 $4,0130145 0 130 145 260275 296 390 405

k62+c2+o2)

3 John
Clj30j45 j0.130j45 O,13O,145 O,130t45250275,295,390,405.

kB3sc3.03i

Figure 15: Conference Spreadsheet. Each column guard included the price for
students and non-students to attend a tutorial at a conference. Since Sue was a
student the subjects were told to put a guard on her row to allow for only the
student price.

Spreadsheet Column guard Row guard Guards- set classification
Grades Hard External Subset
Sales Exception Exception Subset
Conference Hard Hard Subset
Wait Time External External Disjoint and intersection

Table 2.3: Spreadsheet classifications. This table shows each spreadsheet and the
classification scheme of each guard. The first column shows the spreadsheet, the
second columns show the guard purpose of the guard that existed on the
spreadsheet when the subjects first received it, and the third column shows the
guard purpose of the guard the subjects were asked to add to the spreadsheet. The
fourth column shows the kind of set formed in the user-user guard conflicts.

3. Results

3.1 Results of Question 1:

34

Do users regard having many-to-many relationships among guards and

cells as being valid and useful?

This question can be broken down to two smaller questions:

a. How do user work with many-to-one guards (many guards on one

cell)?

b. How do users work with one-to-many guards (one guard on many

cells)?

3.1.1 How do users work with many-to-one guards (many
guards on one cell)?

Subjects dealt directly with multiple user guards on one cell during tasks 1

and 5. Task 1 required subjects to place a guard on a row of a grid that already

had column guards (the column guards were already on the spreadsheet to insure

the subjects had to deal with an interaction of two guards). Task 5 required

subjects to deal directly with a conifict between two user guards (the conflict was

created by the examiner). The list of tasks can be found in Chapter 2.

Although at the outset of working with the spreadsheets subjects had

differing attitudes about the validity of multiple user-entered guards on the same

cell, by the time they were finished with their tasks, four of the five came to regard

multiple user-entered guards on one cell as being a situation that required some

kind of fixing (by the user). The remaining subject, however, had quite a different

outlook.

Subjects 1 and 4 were the most obvious in their opinions that multiple user-

entered guards on one cell should not be allowed to remain. both subjects removed

the guards they decided were "extra" ones right away. These two subjects

immediately removed the extra guards during both Task 1 and Task 5 of the

spreadsheets.

35

Si (Wait Time, task5): "1 wouldn't want to make the president unhappy, so I

would probably just go ahead and get rid of [the guards already here]."

Si (Grades, task5): "I would find myself going in and crossing out the 0-100."

S4 (Grades, taski): "It seems like since Sam's a special case you could just

change the range of his guards from 0-100 to 70-100, say at or above 70 points.

So just change the 0 to [a] 70 for his homework."

S4 (Conference, task!): "... the values should only be 0 or 130, just take the 145

value off the guard."

During the interview at the end of the tasks Subject 1 was asked, as a

follow-up to the fact that she had removed a guard, whether having two different

user guards on one cell was wrong. She responded that it was wrong.

Subjects 2 and 5 were somewhat more tolerant of multiple user-entered

guards on one cell. Subject 2's behavior was like subjects 1 and 4 while

completing Task 1; she did not think that two different guards on one cell were

valid. But, during Task 5 her opinion wavered. She appeared to be less confident

about removing the extra guards on the cells. She expressed this discomfort

during the last problem:

S2 (Conference, task5): "It would be better if it was just the 0 and the 130, if they

deleted [the other guard] or erased it..."

Subject 2 was clearly not confident about removing the extra guards

herself, since someone else had placed them. Subject 5 did not lack this

confidence, but did act in similar ways to Subject 2's actions of leaving multiple

guards on cells. Subject 5, like Subject 2, was more tolerant of multiple user-

entered guards on one cell. In fact, during the Sales Spreadsheet she left more than

one guard on a cell explaining that she was using both guards on the cell. During

the interview at the end of the tasks the examiner asked her about using the two

guards on the cell, and whether she would use the 50-210 over the 0-1000 (because

she had seemingly been basing decisions on values on the more constraining

guard, see Figure 16):

36

S5 (Sales, post session): "yeah, because that is what the whole thing is focusing

on. So, I guess this [0-1000 guard] is just to make sure there is no huge mistake.

To stay focused I would use [50-2 10]."

30 ic

Me 2 45 IOC]

S 1 2 1
2

10 Smel 3 i

Renk Salee I3o,u 0ay M,ueta Saley

ASOl-- k

- ...i.... L 1n2O%E4) II.1=F4+Cl1

- LM5 i43.2SC 2S0-33O30 jJ2tlOC3 /-oj i;'.2i

I L 1.12C*E1S) :Z)&X)

Figure 16: The Sales Spreadsheet for subject 5. Notice in the cell we have circled
here, although she had left two guards on the cell, 0-1000 and 50-2 10, she used the
range 50-2 10 in determining whether the system would circle the value 215
(circled in red).

Although she sometimes found a way to reason with all the guards, this

was not always her preference:

Examiner: "Are you comfortable giving the spreadsheet to the customer?"

S5 (Wait Time, task5): "...They wouldn't want something that isn't matching."

She also stated:

S5 (Grades, task5): "... you shouldn't use both [guards] at the same time, because

that just doesn't work. ... You would somehow let the computer know which

guard to use."

Additionally, like Subject 2, Subject 5 would sometimes cross off the

guard that she did not want. Subject 5 started by crossing off the guard she did not

37

want in both the Grades and Conference Spreadsheets; during the Grades

Spreadsheet she said:

S5 (Grades, task 1): "I would cross out the 0 and make it so it's between 70 and

100..."

During the Wait Time Spreadsheet she did not just remove the unwanted

guard, instead she appeared confused and separate the spreadsheet cell (so the

guard on the cell, and location for the cell's value were 2 individual cells); hence

the guard that she added was not interacting with the other guard for that cell, this

can be seen in Figure 17.

A I) C

Sak Custer SeMce avg *a tk

2
Ncn-

M&rnt.r
415.3U

() =B2-C2)2

3 Mrnber

.- (

--
4 J +3.g:I -jT\ f+isso os

o

await &4,3.id j 415.80 1iP
I=SUM(5B4y3 StJMc2:C4)3 (B5+C5I2

Figure 17: The Wait Time Spreadsheet for Subject 5. In this spreadsheet she split
the cell we have circled here (and all others in this row) into two cells, ignoring the
guards on the top part of the cell.

Like Subject 5 did, subjects 1, 4, and 2 also questioned the validity of

having two user-entered guards on one cell. As Subject I put it, "How can it have

two guards on it?"

However, unlike the other subjects, Subject 3 did not indicate any

difficulties with two user-entered guards being on one cell. Rather, she saw them

as working cooperatively together. As she put it while working on the spreadsheet

in Figure 18:

38

S3 (Grades, taski): "Here is her other guard, more of a filter I guess ... It is like

an additional guard on her."

8 C 0 G

Homework Midte Final Average

4'1 itt'
2 Sam

12 4

3 Jenny
IkOO C-iOO

Figure 18: Subject 3's Grades Spreadsheet. As Subject 3 made decisions during
this Grades Spreadsheet she used both the existing guard (0-100) and the guard she
placed (70-100) when making decisions about values.

3.1.2 How do users work with one-to-many guards (one guard
on many cells)?

Unlike the range of views on the many-to-one relationships, subjects

consistently choose to make use of the ability to work with one-to-many

relationships. All subjects made decisions about how guards applied row by row.

They could have instead made such decisions one cell at a time, but none of them

did. (We did not give them tasks conducive to decisions colunm by column.) This

suggests that users indeed wanted to reason in groups where repeated patterns of

relationships existed, rather than one cell at a time. For example:

S4 (Conference, Task 5): "I'll just take off the 145 guard for [the row labeled]

Sue."

Si (Grades, post session): "I would find myself crossing the 0-100 out."

Examiner: "For the whole row?"

Si: "Yes."

3.1.3 Conclusion of results for Question 1

Summarizing the above results, during the first task subjects encountered a

many-to-one relationship (see Table 3.1). They again saw a many-to-one

39

relationship during Task 5. How they dealt with it in both cases helped us answer

the first sub-question of research question one. Our subjects handled many-to-one

relationships in three ways. One of these was to remove the conflict by

immediately deleting the unwanted guard. A second way was to leave multiple

user guards but "ignore" one when reasoning. The third way these conflicts were

handled was by allowing any number of guards on a cell and reasoning with all

guards. Regarding the second sub-question of Research Question 1 we found a

more uniform result: all subjects choose to work with the one-to-many

relationship. We weren't able to conclude that they would create new guards on to

grids "in bulk" because we taught them to do this. However, we do know from

our results that subjects chose to work with existing guards in bulk, and they did

not have problems with this concept. The influence the results had on the design

can be found in Chapter 4.

Subject Task 1 Task 5
1 Yes Yes
2 Yes No but did not like multiple guards
3 No No
4 Yes Yes
5 Usually No but did not like multiple guards

Table 3.1: Answers: Did subjects remove the extra user guard when one existed?

3.2 Results of Question 2:

How should many-to-many user guards propagate?

Recall that three of the subjects allowed multiple user-entered guards to

exist on a cell for at least some period of time. Even the subjects who choose to

immediately delete "extra" guards in Task 1 were faced with them in Task 5,

because Task 5 asked them what to do with a spreadsheet containing two different

user guards already on one cell. Multiple user-entered guards require the system

to propagate the implications of these guards.

This question can also be broken down into two sub-questions:

40

a. Which guards "win"?

b. How do guards propagate?

3.2.1 Which Guards "win"?

Given the findings of research question 1, it is not surprising that Subjects

1 and 4 always immediately selected a guard that should "win" (and thus

propagate forward as will be seen in the next section, only one guard can

propagate forward for any cell), and deleted the other guard. When faced with the

propagation question, Subject 2 did the same:

S2 (Wait Time, Task 1): "I want to change the president's time to ... 0-5 seconds

for each of them because he's different."

S4 (Grades, Task 1): "It seems like since Sam's a special case you could just

change the range of his guards from 0-100 to 70-100."

Instead of deleting the extra user-entered guard Subject 5 decided that she

would retain all user-entered guards, and embarked on a conflict-by-conflict

precedence strategy, selecting which guard to use wherever a cell had multiple

non-matching user-entered guards:

S5 (Grades, Task 5): "Maybe you can enter Sam's name and it will forget about

[the 0-100] guard, and remember only something about the 70-100 guard. Or you

can [specify] Guard 1 and Guard 2, and say use Guard 1 or Guard 2 on this

person's name. And then you have the guards there available, and you just type

in 1 or 2."

Subject 3's solution was also precedence based, but guard by guard rather

than conflict by conflict. She was a little unclear about the meaning of a computer

guard, and reinvented it to mean that a computer guard was one that had priority.

During the Wait Time Spreadsheet (which required users to make sure the

company's president did not have to wait long for service) she added a guard to

one of the president's cells and said:

41

S3 (Wait Time, Task 1): "I'm going to put a little computer guard on here. I'm

going to use the computer guard because it's the president and you don't want it

to fail."

Her wording suggests that by making it a computer guard, the guard

became more important than the other kind of guards it might conflict with later in

the row.

Although subjects did not agree with one another on strategy, each

remained consistent with his or her own strategy. That is, they built up a method

of how to handle multiple guards and once it was developed, they consistently

used the same method on the remaining spreadsheets and tasks, and ultimately

expressed confidence in the choices they made

3.2.2 How do guards propagate?

Although we had taught the basic rules for propagation during the tutorial,

these rules did not include two user-entered guards. We were interested in

observmg how users thought multiple user-entered guards should propagate.

During Task 4, subjects were asked to assume the role of the system and propagate

the guards, filling in any missing computer guards. We were particularly interested

in observing how the subjects choose to propagate guards when there were guard

conflicts. We observed that the subjects did not exhibit any coherent or consistent

propagation strategy in the presence of (user-user) guard conflicts. For example,

Subject 2 did not actually use the formula of the cell she was propagating in

determining the propagated guard:

S2 (Wait Time, Task 2): "I just looked at my lowest number.. . so I would take the

lowest of the first row/column thing, which would be zero, and then the higher of

the second one, so it would be 0-90. I used the 90 because it was the higher

number".

3.3 Results of Question 3:

What constitutes a conflict?

42

Recall that our early prototype of guards handled only one-to-one

relationships; in this prototype any two guards that did not exactly match were

considered to be in conflict. We wanted to explore both whether this rule should

still hold in the presence of many-to-many relationships, and the basis subjects

used in deciding which guards were in conflict. For basis, we used the

classification schemes covered in Chapter 2. The rest of this section is broken

down into two sections:

a. How the subjects defined guard conflicts.

b. How the subjects dealt with value violations.

3.3.1 How the subjects defined guard conflicts

3.3.1.1 Guardpurpose

Our work in devising spreadsheet problems where the guards had a variety

of purposes did not pay off. We did not find any evidence of reasoning patterns

based upon a guard's purpose. It is possible that subjects based their decisions

upon a guard's purpose, but they did not mention it during thinicing aloud or

otherwise give any hint in their reasoning patterns that they were classifring

guards as "validity guards" versus "query guards" or other similar purpose-based

classification schemes.

3.3.1.2 Set reasoning

On the other hand, as Table 3.2, indicates, set-based reasoning was

extremely common in reasoning about guard conflicts, primarily (but not always)

using intersection. In other words, for some subjects, guards did not conflict if they

had a non-empty intersection.

However, Subjects 2 and 5 did not rely heavily on intersection. Although

Subject 2 made decisions based on exact match when computer and user guards

were not in agreement, she behaved differently for user-userguard conflicts. In

this case she used the union of the two guards to guard the cell (i.e., a value must

43

satisfy at least one of the guards), in essence defining guard conflicts out of

existence.

Subject 5 showed a different strategy, one that we had not anticipated in

advance. In her view, the computer guard was always right, and any other guard on

the cell should then be ignored. We call this strategy "the all-knowing computer."

This is problematic, because a computer-user guard conflict is often due to a

formula error, in which case the user guardnot the computer guardis the

correct one.

Subject User-User User-Computer
1 N/A Intersection
2 Union Exact match
3 Intersection Intersection
4 N/A Intersection
5 Intersection All-knowing computer

Table 3.2: Subjects' set-based reasoning or lack thereof. The User-User colunm
shows set reasoning subjects used for user-user guard conflicts. (N/A indicates that
the user eliminated the conflict.) The User-Computer column shows the reasoning
used for user-computer guard conflicts.

3.3.2 How the subjects dealt with value violations

We choose to have subjects identify value violations by circling cell values

not satisfying the relevant guards because doing so required them to think deeply

about the implications of the guards and guard conflicts.

Subjects 1, 3, and 4 (and to some degree Subject 5) all reasoned about

value violations in the same way: if the value fell outside any of the guards they

circled it. This is consistent with the intersection-based reasoning of Table 3.2 in

that to avoid a value violation, a value had to fall in the intersection of all the

guards on a cell. For example:

S3 (Wait Time, Task 3): "[The cell value] 12 would be wrong because it would

go through this first filter [a user guard of 3-90], but it would not go through [the

computer guard of 0-5], so the computer would get it there."

44

However, when faced with determining value violations, Subject 2 changed

her reasoning technique from the union-based reasoning she had used about user-

user guards. Instead, she decided it did not make sense to reason about the

correctness of a value within a cell in which the two guards did not match exactly.

An example of this occurred when she noticed the guards were different on a cell

where she was deciding about a value:

S2 (Sales, post session): "Fine in one, but not in the other. I would change [the

range] because [the value is] fine in one and not in the other."

In determining what constitutes a guard conflict we found no one way that

subjects agreed upon. The same was true for determining if the value of a

particular cell is in conflict. The effects of this on our design will be discussed in

the next chapter.

45

4. Applying the Results by Study Question

The previous section answered the research questions from the study; this

section explains how the results of the study affected our design. Like the last

section, this section is broken down by research question.

4.1 Do users regard having many-to-many relationships among
guards and cells as being valid and useful?

Recall that we examined the answer to this question from the perspective

of one-to-many relationships and many-to-one relationships. Recall also, the

subjects' lack of consistency within their own problem-solving and their lack of

agreement with each other about whether multiple user-entered guards per cell

were valid, given that they uniformly demonstrated that working with a single

guard for multiple cells was useful. The fact that, subjects were not entirely

consistent about the validity of multiple user-entered guards per cell suggests that

the right way to reason about many-to-one was not obvious to them. (In fact, it is

possible that there is no single "right way" to reason about multiple user-entered

guards per cell, but even if not, there at least needs to be a default way for the

system to reason.)

It might at first seem tempting to conclude from these results that the

system should support the one-to-many relationships but not the many-to-one

relationships (and hence not many-to-many relationships). However, without

severely restricting the way users can apply guards in spreadsheets, this solution is

not possible. To restrict the user, the system could only allow the user to place a

row or column guard, but not both on one grid. (In Figure 19, this would mean a

user would not be able to place a guard on Sam's row once a column guard had

been placed on "Midterm".) So, in order to support the one-to-many relationships,

it is necessary to also support the many-to-one relationships that arise at

row/column intersections. An example of the one-to-many and many-to-one

relationships as we have implemented them is shown in Figure 19.

46

HomeWork Midterm Final Course

0to 1000 Ij I1

jioto 10 k70to 101

I70to 1Q)0to 100! kI7oto 10 See tool

r-t
1*!70t0 100! 78 94 80

Jenny

otoi

i

Gr1es

SeetooI

L5

Average

Figure 19: Grades with Guards. Guards have been placed on the "Midterm"
column, and on "Sam's" row. The stick figure now has an arrow next to it
indicating where the guard came from.

The users' lack of consistency and agreement suggested to us the need for a

tightly integrated explanation system to clarify any reasoning the system employs.

As a result, we have decided that all reasoning done by the system will be

accompanied by a visible explanation. For example, in our prototype, if a user

moves the mouse over a guard conflict oval, the system displays a one-sentence

message explaining that "all guards for this cell must match." Figure 20 shows an

example of the explanation the user receives for a guard conflict. The

explanations are aimed at supporting Design Constraint 3: that users should feel

they understand the system's reasoning. The explanation system has since been

expanded to include explanations (the semantics for the object, what action can be

taken regarding this object, and the reason for this action reward) for all parts of

the system whose meanings are not otherwise obvious, as explained in [Wilson et

al. 2002].

[--

A-*[7oto1OQ

[Homeijork
Midterm Final Course

0to10O
}

70to 10 1*-b _ to 1001

e tool tipbb0t0 10 /0to 1001 I70to io]

MAlI guans for this cell must ree

92

1*40to 1001
l

i_I ____
85 80.5

I___,__ Avere

Figure 20: Guard conflict explanation. The explanation the user gets when they
move their mouse over a guard conflict. This message is the same for a user-user
conflict, or user-computer conflict.

4.1.1 Implementation

As stated previously, prior to many-to-many relationships, we supported

only one user guard per cell. In order to support many-to-many relationships, we

had to make some changes as to how the system reasoned about guards. The first

of these was a new internal structure to support multiple guards per cell. Figures

21 and 22 show the old and new designs. One significant change to the design was

to allow an unlimited number of guards for each cell. The change, which can be

seen in Figure 22, was made by allowing a list of guards for each cell, and by

extending the guard (assertion) class to include all types of guards a cell can have.

We opted to add new subclasses under the original assertion class to better keep

track of an guard's source: user, computer, row, or column.

I Assertion I

inConflict

inViolation

Figure 21: Previous internal design. In the old design, an RO (i.e. a cell) could
have only one assertion (guard). A square box represents classes, and the ovals
represent the "has-a" relationship.

49

iRO
Assertion

onList
nflict ty
iolation

IUserAssertion
I I

ComputerAssertion
J

f
RowColAssertion

1

IRowAssertion
I

Figure 22: New internal design. In the new design an RO can have a list of
guards. Additionally, some of the class variables have moved from being
associated with a guard to being part of the RO class.

When scaling up guards, there were two specific Forms/3 attributes that we

wanted to preserve. One attribute was conserving screen real-estate and

minimizing user memorization. Since guards cannot fit into the amount of space

between grid cells (see Figure 2 in Chapter 1), we needed to balance the amount of

information to show (taking up screen real-estate) versus requiring the user to

memorize the guards. An undesirable solution would be to force users to view

guards only using a mouse-over because although it conserves screen real-estate,

this solution requires users to memorize guards. Another undesirable solution that

minimized screen real-estate involved leaving guards showing at the start of a row,

instead of on individual cells. This solution would have still required

memorization, especially for large grids.

The implemented approach was to put the guard on every cell. Although

this approach does not conserve screen real-estate, we controlled the amount of

space used by allowing the user to hide guards (see Figure 23). Hiding the guards

conserves screen real-estate by repositioning the cells within the grid.

The algorithm for determining the locations of a cell is based on using the

maximum number of guards for the cell's row and the cell above it. In other

words, to determine the location of a cell in row five, use the y position of cell in

row four and the maximum number of guards showing on any cell in row five.

Since the location of any cell is based on the cell above it, the layout for the cells

within a grid must be done row-by-row.

Figure 23: Grades Spreadsheet with guards closed. When the guards are closed
the cells adjust to save screen real-estate.

51

4.2 How should multiple guards propagate?

4.2.1 Which guards "win"?

Recall from Chapter 3, the subjects demonstrated a variety of propagation

decisions that were all reasonable. Thus, the approach to propagation needed to

support such differences.

One way to support these differences might have been to require the users

to select which guard "won" each time a new propagation was needed with

competing guards. However, if we had proceeded in this direction, we would have

run the risk of demanding so much of the user's immediate attention, using guards

would become non-productive, violating Design Constraint 4. On the other hand,

if the system made all the decisions for the users, some of the decisions would be

wrong, because subjects did not all use the same strategies.

Finding the balance between requiring users to make the decisions versus

making decisions for them to save time is, in our view, critical to the success of

this rósearch. The way we have balanced these competing factors here is to use

default decisions accompanied by passive feedback, such as changes in markings

that can be attended to as the user desires. Specifically, the system's default is to

circle any conflicting guards on a cell. (We will explore exactly what constitutes a
* conflict in later in this chapter.) To resolve conflicts among multiple user-entered

guards, one option we implemented is to allow users to simply remove a user-

entered guard from any cell or cells, which is the way Subjects 1,2, and 4

demonstrated.

To support the precedence-oriented view, we also decided to support

another, more sophisticated option, namely that users can define precedence

relationships among guards (this can be seen in Figure 24). Given such

precedence relationships, the system uses only the guard with the highest

precedence and ignores the other user-entered guards. Users can define

precedence relationships at either the cell or row/colunm level. Figure 24 shows

the way users can set precedence: by selecting to set the precedence for a

52

particular cell they are able to apply the precedence to this cell only or to the

row/column level (effectively setting the precedence of that specific guard for

every cell in the row/column). This is a gentle slope approach: users can simply

delete extraneous guards if they choose, but can establish precedence for more

subtle control. This relates to Design Constraint 3 (as well as to the CD termed

Abstraction Gradient), because users are not forced to grapple with guard

precedence unless they prefer to.

Note that these devices are only available for user-entered guards. The

computer-generated guards produced by propagating user-entered guards through

formulas cannot be overridden or ignored, and always are considered as having

equal weight to the highest-precedence user guards. This can be seen in Figure 25,

no changes can be made to the precedence of the computer guard.

Figure 24: Guard Priorities. The users can set priorities to resolve guard conflicts.
These priorities can apply to the whole row or column, or just the selected cell.

1H0m0 Midterm Final Course

Oto1001

1l70to 1011 kI70to loll

I*I70to 101 Oto 100 kI70to 10 70to 10(

s I*i70t0 1001
78

80

F*:4lOto l0O

IJennYl 164

Graies

I35 to 10(1
5

verge

Figure 25: Grades Spreadsheet with priorities set. Shows the spreadsheet after a
guard conflict has been resolved using precedence.

4.2.2 Implementation

Support for priorities required a few changes. Each guard knows its

priority. The user guard with the highest priority becomes the effective guard for

that cell. A computer guard's priority is always equal to the highest priority of the

user guards. In other words, a computer guard can never have higher priority than

all the user guards, which means a user-computer conflict cannot be resolved by

rearranging the priorities of a cell with a user-computer conflict.

4.2.3 How the subjects propagated the guards

As a result of the inconsistent decisions subjects made when propagating

guards during task 4, we decided not to propagate conflicting guards. This

54

decision was largely motivated by Design Constraint 3: since there was no clear

propagation scheme that either the users or we were able to devise of what to

propagate, we chose not to propagate at all rather than to devise some complicated

scheme that might have been too confusing for end users. Figure 19 shows a

picture of the resulting computer guard when a contributing cell has a user-user

guard conflict (this also holds true for user-computer conflicts).

4.3 What constitutes a conflict?

Recall this question looked at set-based reasoning for guard conflicts

user-user, and user-computer (summarized in Table 3.2), and it also looked at

how subjects dealt with value violations. The outcome of these results might be

expected to be that we took the way the majority of subjects reasoned, and

incorporated it into our design. However, we could not take this approach for

reasoning about conflicts, because the reasoning mechanisms most subjects

showed for reasoning about conflicts allowed for more bugs to go unnoticed.

Resolving the conflict, without the users input, could result in (incorrect) removal

of conflicts tied with formula errors. We have already explained the problem with

the "all-knowing computer" in Chapter 3. Using intersection would also

incorrectly allow errors to slip through the system unnoticed, eroding the value of

the guards. For example, referring again to Figure 3 in Chapter 1, using

intersection-based reasoning would mean that no guard conflict would be shown

on the Celsius cell. The other alternative, union-based reasoning, would never

result in guard conflicts, and would accept even more erroneous values than

intersection-based reasoning.

Thus, to keep the errors out, it is necessary for guards to exactly match to

be considered to be free of guard conflicts, provided that all guards are at equal

precedence levels. Our current prototype does this, as Figure 19 shows. However,

recall that users can control this behavior: they can delete guards that do not apply

55

to particular cells, or can establish precedence hierarchies to cause certain guards

to "win" over other guards, if this level of sophistication is desired.

Even in the presence of guard conflicts, it is necessary for the system to

reason about whether value violations exist. The approach follows intersection

reasoning here, as did most of the subjects, in essence saying that a value must

satisf' all the (top-precedence) guards to be free of violation.

As the other issues also showed, subjects did not agree on their reasoning,

and thus might not understand the system's reasoning choices without explicit

support. As we pointed out before, part of our design includes an explanation

system in the form of consistent, one-sentence explanations for each reasoning

outcome. For example, if the user mouses over a value violation, the system

displays the message "value must satisfy all guards" . Key to this strategy is the

fact that a reasoning explanation can be given in just one sentence (with the

aforementioned expanded explanation system the one sentence explanation is

longer to accommodate all aspects of the explanations, as shown in Figure 26),

which is helped by following Design Constraint 2 (consistency) to avoid special-

case reasoning.

56

Nidterin Final Coure

70to10 fotoioo

70to
101

0to iOO] 70to
101

e tool tip

[e value forthls cell must not conflict with any c(the cells guard

Jenny

1

85 77.5 80.5

Average ;

Figure 26: Value violation explanation. This shows the message the users see as
they move their mouse over a value violation.

57

5. Conclusion

In this work, we have considered how a system should reason behind the

scenes about many-to-many relationships between requirement specifications

(guards) and spreadsheet cells. Although the approach is about behind-the-scenes

reasoning, the reasoning is not really very far behind the scenes, because end users

need to understand how the reasoning works if they are to trust it and use it

effectively. Thus, we designed the approach following a human-centric procedure.

First, we drew from Cognitive Dimensions, Attention Investment, and literature

about on-line trust, to devise a set of five design constraints to guide the develop-

ment of our approach.

Second, we turned to the users themselves for additional insights, via a

small think-aloud study. The subjects demonstrated that the troublesome side of

the many-to-many relationships lay on the many-to-one side (many guards to one

cell). They exhibited a variety of reasoning approaches, some of which were

reasonable and some of which were faulty. We were able to employ some of their

reasoning mechanisms in our approach, as is shown in the following issue-by-issue

summary:

Many-to-many relationships: Subjects were inconsistent in their attitudes

and reasoning about multiple guards on one cell (many-to-one), but all chose to

work with one guard over multiple cells (one-to-many). Because of their

difficulties with many-to-one relationshipswhich are required to support the

one-to-many relationshipswe added an explanation-based approach to the design

for all reasoning about guards.

Propagation: Subjects demonstrated a variety ofpropagation mechanisms,

all of which were reasonable. The impact on our design was to support all the

propagation mechanisms they demonstrated via a gentle slope approach, except

with guard conflicts (in which case no propagation at all occurs).

What is a conflictiviolation: Regarding guard conflicts, subjects

demonstrated several mechanisms for defining guard conflicts, many of which

were unsound. Instead of adopting unsound mechanisms, the design uses an exact

match rule to define guard conflicts. Regarding value violations, subjects

demonstrated intersection reasoning, which was adopted by our design.

The most important outcome was that subjects' differing approaches made

clear that many-to-many relationships will require careful support to be viable for

end users. We provide this support via an explanation-based approach for all

aspects of the system's behind-the-scenes reasoning. Since the time of the study

we have expanded the explanation-based approach beyond guards, including

explanations for any object whose meaning is not immediately apparent.

59

Bibliography

[Ambler 1999] A. Ambler "The Formulate Visual Programming Language," Dr.
Dobb's Journal, Aug. 1q99, 2 1-28.

[Ambler and Broman 1998] A. Ambler and A. Broman, "Formulate Solution to the
Visual Programming Challenge," Journal of Visual Languages and Computing
9(2), April 1998, 171-209.

[Belkin 2000] N. Belkin, "Helping people find what they don't know," Comm.
ACM 4 1(8), Aug. 2000, 58-61

[Blackwell and Green 1999] A. Blackwell, A. and T. R. Green, "Investment of
attention as an analytic approach to cogmtive dimensions." In T. Green, R.
Abdullah & P. Brna (Eds.) Collected Papers Wkshp. Psychology of
Programming Interest Group, 1999, 24-35.

[Blackwell 2002] A. Blackwell, "First steps in programming: a rationale for
attention investment models," Proc. IEEE Human-Centric Computing
Languages and Environments, Arlington, VA, Sept. 2002, 2-10.

[Boehm and Basili 2000] B. Boehm and V. Basili "Gaining intellectual control of
software development," Computer 33(5), May 00O, 27-33.

[Boren and Ramey 2000J, M.T. Boren and J. Ramey "Thinking aloud: reconciling
theory and practice' IEEE Transactions on .krofessional Communication,
43(3), Sept. 2000, 26'l -278.

[Burnett and Erwig 2002] M. Burnett and M. Erwig. "Visualjy customizing
inference rules about apples and oranges," Proc. IEEE Human-Centric
Computing Languages and Environments, Arlmgton, VA, Sept. 2002, 140-148.

[Burnett et al. 2001] M. Burnett, J. Atwood, R; Djang, H. Gottfried, J. Reichwein,
and S. Yang "Forms/3: a first-order visual 1anuage to explore the boundaries
of the sreadsheet paradigm," Journal of Functional Programming, Mar. 2001,

[Burnett et al. 2002a} M. Burnett, C. Cook, 0. Pendse G. Rothermel, J. Summet,
"End-User Software Engineermg with Assertions," techmcal Report 02-60-05,
Oregon State Umversity, Sept. 2002.

[Burnett et al. 2002b] M. Burnett, A. Sheretov, B. Ren and G. Rothermel,
"Testing homogeneous spreadsheet grids with the 'What '(ou See Is What You
Test' methodology," IEEE Trans. Software Engineering, May 2002, 576-594.

[Clii et al. 1997] E. H. Chi,P. Barry, J. Riedi, and J. Konstan, "A spreadsheet
approach to mformation visualization." Proc. IEEE Symposium on Information
Visualization '97, Phoemx, AZ, Oct. 1997, 17-24.

[Corritore et al. 2001] C. Corritore, B. Kracher and S. Wiedenbeck, "Trust in the
online environment," HCI International, Vol. 1, New Orleans, LA, Aug. 2001,
1548-1552.

[Cypher and Smith 1995] A. C,ypher and D. C. Smith "KidSim: End User
l'rogramming of Simulations'. AM Conf Human Pactors in Computing
Systems, Denver, CO. May 1995, 27-34.

[Dix et al. 1993] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer
Interaction, Prentice Hall, New York, 1993.

[Ericsson and Simon 19841 K. Ericsson, and H. Simon, Protocol Analysis, MIT
Press, Cambridge, MA, 1984.

[Engebretson and Wiedenbeck 2002] A. Engebretson and S. Wiedenbeck "Novice
comprehension of programs using task-specific and non-task-specific
constructs," Proc. IEEE Human-Centric Computing Languages and
Environments, Arlington, VA, Sept. 2002, 11-18.

[Ernst et al. 1999] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin,
"Dynamically discovenng likely program invanants to support program
evolution," Int'l. onf Software Engineering, Los Angeles, CA, May f999,

[Gray and Fu 2001] W. Gray and W. Fu, "Ignoring perfect knowledge in-the-
world for imperfect knowledge in-the-head: implications of rational analysis for
interface design," ACM Conf. Human Factors in Computing Systems, Seattle,
WA, March 2001, 112-1 19.

[Green and Petre 1996] T. R. G. Green, and M. Petre, "Usability analysis of visual
programming environments: a 'cognitive dimensions' framework," J. Visual
Languages and Computing 7(2), June 1996, 131-174.

[Hartmann et al. 2001] W. Hartmann, J. Nievergelt, R. Reichert, "Kara, finite state
machines, and the case for programming as part of general education," Proc.
IEEE Symposia on Human-Centric Computing Languages and Environments,
Stresa, Italy, Sept. 2001, 135-141.

[Igarashi et al. 1998] T. Igarashi, J. D. Mackinlay, B. Chang, and P. T. Zeliweger,
"Fluid Visualization of Spreadsheet Structures," ACM Conf Human Factors in
Computing Systems, Los Angles, CA, Apr. 1998, 118-125.

[Karam and Smedley 2001] M. Kararn and Trevor Smedley, "A testing
methodology for a datallow based visual rogrammmg language" Proc.
Human-Centric Computing Languages and Eàvironments, Stresa, rtaly, Sept.

[Krishna et al. 2001] V. Krishna C. Cook, D. Keller, J. Cantrell, C. Wallace, M.
Burnett, and G. Rothermel, "Incorporating incremental validation and impact
analysis mto spreadsheet maintenance: an empincal study," IEEE Int'l. Conf
Software Maintenance, Florence, Italy, Nov. 2(J01, 72-81.

[Ko et al. 2002] A.J. Ko, M. Burnett, T. R. G. Green, K. Rothermel, and C. Cook,
"Improvmg the Design of Visual Programming Language Expenments Usmg

Journal of I'isual Languages and Computing 13(5),

[Landay and Myers 200fl J. Landay and B. Myers "Sketching interfaces: toward
more human interface design," Computer 34(3), Mar. 2001,56-64.

[Miller and Myers 2001] R. Miller, R., and B. Myers "Outlier finding: focusin
user attention on possible errors" ACM Symp. L/'ser Interface Software an
Technology, Orlanao, FL, Nov. 2O01, 8 1-90.

[Nardi 1993] B. Nardi A Small Matter of Programming: Perspectives on End-
User Computing, MiT Press, Cambndge, MA, 1993.

[Pane Ct al. 2002] J. Pane, B. Myers and L. Miller "Using HCI techniQues to
design a more usable programmlng system," l3roc. IEEE Human-Centric
Computing Languages and Environments, Arlington, VA, Sept. 2002, 198-206.

61

[Pane et al. 2001] J.F. Pane, C:A. Ratanamahatana, and B.A. Myers, "Studying the
language and structure in non-programmers' solutions to programming
IDroblems," International Journal of Human-Computer Studies 54(2), Feb.
2001, pp. 237-264.

[Pane and Myers 2000] J.F. Pane and B.A. Myers, "Tabular and Textual Methods
for Selecting Objects from a Group," Proceedings of VL 2000: IEEE
International Symposium on Visual Languages, Seattle, WA, Sept. 2000, pp.

[Panko 1995] R. Panko, "Finding spreadsheet errors: most spreadsheet models
have design flaws that may lead to long-term miscalculation," Information
Week, May 29, 1995, 100.

[Panko 1998] R. Panko "What we know about spreadsheet errors," J. End User
Computing, Spnng 198.

[Panko 2000] R. Panko, "Spreadsheet errors: what we know what we think we can
do," Symp. European Spreadsheet Risks Interest Group, July 2000.

[Rader et al. 199711 C. Rader C. Brand, and C. Lewis, "Degrees of
Comprehension: Children's Understanding of a Visual Programming
Environment," ACM Conf Human Factors in Computing Systems, Atlanta, GA,
Mar. 1997, 351-358.

[Reichwein et al. 1999] J. Reichwein G. Rothermel, and M. Burnett, "Slicing
soreadsheets: an mtegrated methodology for spreadsheet testmg and
debugging," Conf Domain-Specfic Languages, Austin, TX, Oct. 1999, 23-38.

[Repenning 20001 A. Repenning, "AgentSheets®: an Interactive Simulation
Environment with End-User Programmable Agents," Interaction 2000, Tokyo,
Japan, 2000.

[Repenning et al. 2000] A. Repenning, A. Ioannidou, and J. Zoh, J.
'AgentSheets: End-User Programmable Simulations," Journal of ArtVicial
Societies and Social Simulation, 2000, 3(3).

[Repenning and Citrin 1993] A. Repenning, and W. Citrin, "Agentsheets:
Appiying Grid-Based Spatial Reasomng to Human-Computer Interaction,"
IEEE Vrorkshop on Visual Languages, Bergen, Norway, Aug. 1993, 77-82.

[Rosenbium 1995j_D. S. Rosenblum, "A Practical Approach to Programming with
Assertions," IEEE Trans. Software Engineering 21(1), Jan. 1995, 19-3 1.

[Rosson and Seals 2001] M.B. Rosson and C. Seals, "Teachers as simulation
programmers: mimmalist learmng and reuse," ACM Conf Human Factors in
Computing Systems, Seattle, WA, Mar. 2001, 237-244.

[Rothermel Ct al. 1998] G. Rothermel, L. Li C. DuPuis, and M. Burnett "What
you see is what you test: a methodology for testing form-based visual
ropams" Int'l. Conf Software Engineering, Kyoto, Japan, Apr. 19-25, 1998,

[Rothermel et al. 2001] G. Rothermel, L. Li C. DuPuis and A. Sheretov, "A
methodology for testmg spreadsheets," ACAI Trans. software Engineering and
Methodology, Jan. 2001, 110-147.

[Rothermel et al. 2000] K. Rothermel C. Cook, M. Burnett, J. Schonfeld, T. R. G.
Green, and G. Rotherme!, "WYSI'.TYT testing in the spreadsheet paradigm: an
empirical evaluation" Int'l. Conf Software Engineering, Limenck, Ireland,
June 2000, 230 to 23).

62

[Sankar and Mandal 1993] S. Sankar, and M. Mandal, "Concurrent runtime
monitoring of formally specified programs," Computer 26, Mar. 1993, 32-41.

[Seals et al. 2002] C. Seals, M.B. Rosson, J. Carroll? T. Lewis, L. Colson, "Fun
learning Stagecast Creator: An exercise in mrnimalism and collaboration,"
Proc. lEEK Human-Centric Computing Languages and Environments,
Arlington, VA, Sept. 3-6, 2002, 177-r86.

[Wallace et al. 2002] C. Wallace, C. Cook, J. Summet, and M. Burnett,
"Assertions in end-user software englneenng: a think-aloud study," Proc.
IEEE Human-Centric Computing Languages and Environments, Arlington,
VA, Sept. 3-6, 2002, 63-65.

[Wilson et al. 2002] A. Wilson, M. Burnett, L. Beckwith, 0. Granatir, L. Casburn,
C. Cook, M. Durham, and G. Rothermel, "Harnessing curiosity to increase
correctness in end-user programming," ACM Conf Human Factors in
Computing Systems (to appear).

63

Appendices

64

Appendix A: Tutorial Materials

Think-aloud introduction read to subjects before the tutorial:

"In this experiment we are interested in what you say to yourself as you perform
some tasks that we give you. In order to do this we will ask you to TALK
ALOUD CONSTANTLY as you work on the problems. What I mean by talk
aloud is that I want you to say aloud EVERYTHING that you say to yourself
silently. Just act as if you are alone in this room speaking to yourself. If you are
silent for any length of time, I will remind you to keep talking aloud. It is most
important that you keep talking. Do you understand what I want you to do?
Good. Before we turn to the real experiment and the tutorial, we will start with a
couple of practice questions to get you used to with talking aloud. I want you to
talk aloud as you do these problems. First I will ask you to add two numbers in
your head."

The following is the paragraph used during think-aloud practice, just as

they saw it, seeded with grammatical and spelling errors. Users were instructed to

read the paragraph aloud and make any changes they felt necessary.

"Lleyton Hewitt becomes the first Australian Open top ever seed to loose in the
first round of the men's single on Tuesday hence he was sensationally dumped
out by journeyman Spaniard Alberto Martin, 1-6, 6-1, 6-4, 7-6. the world No.!,
recovering for a bout of chicken pox, receives courtside treatment for blisters and
had his thighs massaged, as he losed to a player who before this year had won
just won match in four visits to the Open."

65

Appendix B: Subject Spreadsheets

A B C D C

I Honework Midterm Final Average

2 Sam
73

LB2+C2+D2y3

3

-

Jenny

J4o4OO ibo LQ.1Qo

7. cS' f=B34C3-IDay3

4t

pLfk -4tiS

ral 3

- -L 5

Figure 27: Subject I Grades.

0
l3c

4.i--3

Figure 28: Subject 1 Conference.

Figure 29: Subject 1 Sales.

-

oL

Figure 30: Subject 1 Wait Time.

(Q5t7
24L1YO

67

/

7
A B.' C 0 G

1 Home,ork Midterm Final Average

2 Sam
(]1e.ieO. 'OjQ

(5) 1=(82+C2+P2y3

3 j4oloO j4o-ioo j4o o-loo

512 JB34CD33

4?A 3

-

Figure 31: Subject 2 Grades.

*1

Figure 32: Subject 2 Conference.

tiUt *a1

-

4

SaI..y Mmi.dSwy

=
- .2C

_z

..(20% E14} Q) 1F1 G14

M02 LA00C2 0.200 20,000.1.00Q J420000ll5.e4,a fA2000 - 30 200

1 1 I:.(20%.5 .-<-3O f=F15*G15

O'-O

1! !Z

M4-

u-c'

Figure 33: Subject 2 Sales.

OL

S
cøjt1S

i_0

-lb CC

-ic)

Figure 34: Subject 2 Wait Time.

A B C D G

1 Homework Midterm Final Average

2 Sam IX)

72 44(B2.C2+D2)/3

3 Jenny
B A3+C34D3)I3

Figure 35: Subject 3 Grades.

0

Figure 36: Subject 3 Conference.

70

Figure 37: Subject 3 Sales.

71

A B C D

1 Sates Customer Service avgwait ttme

Non- 40-90 +15-80 9-85
2 Member

(B2+C2)/2

+15-80
3 Member

(B3+C3)I2
- ______ _______________________

Preskei. (;) 0
4.

avg wait
ji.
J $3-9

IDI-'
' C S _J

I

45-80 0 --' -0;\
SUM(B2:B4)/3 =SUM(CaC4)/3 =(B54C5)12

-

time

3

Figure 38: Subject 3 Wait Time;

Figure 39: Subject 4 Grades.

Figure 40: Subject 4 Conference.

72

Figure 41: Subject 4 Sales.

[IA! 8, 1 c. .1

-

r"i'ii 1Eil

Figure 42: Subject 4 Wait Time.

73

A B C D G

I Homework Midterm Final Average

2 Sam 1''° '° oo

J=(B24C2+D2Y3
-

3 Jenny

!#100 i.,_100 100

16' =(B3+C3+D3)/3

Figure 43: Subject 5 Grades.

B C 0 E

Tutorial I Tutonal 2 Tutnal 3 Total

134& I4O l3o 0i30' 0130 14
2 Sue

1q55 / "192+C2+02,

130 145 130 145 4o 130 145 0. 130 145 260 275 295 300 405

=(63+C3+D3)

Figure 44: Subject 5 Conference.

74

Figure 45: Subject 5 Sales.

I

_& H

4vlt-

$1 - -_

ic"

!.T flii1it
I

U______ I

Figure 46: Subject 5 Wait Time.

75

Appendix C: Quotes

Quotes not included in the body of the thesis, broken down by spreadsheet:

Wait Time:

SI (taski): "I'm going to correct and change the values that are in here right

now.,,

S4 (task5): "take [the extra guard] off the president and leave the 0-5 value."

Grades:

Si (taski): "Take out the guard that is already there and replace it with the 70-

100, do this for all the columns."

Conference

Si (taski): "Just going to cross out the 145 on each column of Sue's."

S5 (taskl): "1 just crossed off the 145 because we're dealing with 0 and 130."

