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6.2 Eigenvalues with fixed Coriolis parameter. Here the Coriolis parameter is

given by f = f0 where f0 is the Coriolis parameter at the 45◦ N, the center

of the channel. Here modes 61-188 appear as they did in Figure 6.1, but

modes 1-60 do not appear. They are not shown because they are very

near machine epsilon. This demonstrates that these modes only exist

because of the dependence of f on y in the β-plane problem. . . . . . . . . . . . . 21

6.3 Dispersion relations for some numerical Rossby modes. Here ∆x = 10

km. Observe that for all values of k, the phase velocity w/k is negative

(westward). However, while for small values of k (long wavelengths) the

group velocity dω/dk is negative (westward), the group velocity for larger

values of k (short waves) is have positive (eastward). . . . . . . . . . . . . . . . . . . . . 22



LIST OF FIGURES (Continued)

Figure Page

6.4 First external Rossby mode. This shows the perturbation of the layer

thickness for layers 1 and 2 as well as the perturbation in the free-surface

elevation. Solid curves correspond to positive perturbation and dotted

lines to negative perturbation. This mode corresponds to mode number

60 in Figure 6.1 and is the first external Rossby mode in the sense that it is

the external Rossby mode that varies least in the cross-channel direction.

In each subplot the intervals between contours are the same. Since there

are three times more contours in the plot of layer 2, the perturbation in

the thickness of layer 2 is three times greater than the perturbation in

the thickness of layer 1. This is consistent since layer 2 is three times

thicker than layer 1 at equilibrium. Notice that the layers thicken or thin

together, so that the effect on the free-surface elevation is the sum of the

perturbations in each layer. Thus there are four times as many contours

in the plot showing perturbation in free-surface elevation as there are in

the plot showing perturbation in the thickness of layer 1. . . . . . . . . . . . . . . . 23

6.5 Velocity fields for the first external Rossby mode. These are the velocity

fields corresponding to the mode shown in Figure 6.4. Observe that

the velocity field arrows are approximately tangent to the level curves

shown in Figure 6.4 with clockwise circulation corresponding to crests

and counterclockwise circulation corresponding to troughs. Also, at any

point the circulation is in the same direction in both layers. This is

characteristic of external Rossby modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.6 First internal Rossby mode. This mode corresponds to the mode number

58 from Figure 6.1. Again, “first” refers to the fact that this is the internal

Rossby mode with the least variation in the cross-channel direction. Here

the number of contours is the same in both layers but where layer 1 has a

positive perturbation, layer 2 has a negative pertubation and vice versa.

Thus the net effect on the free-surface perturbation is nearly zero. Thus

the plot showing free-surface elevation is blank. . . . . . . . . . . . . . . . . . . . . . . . . 25

6.7 Velocity fields for the first internal Rossby mode. These are the velocity

fields corresponding to layer 1 and layer 2 in the mode shown in Fig-

ure 6.6. Observe that the layers show circulation along the level curves

as in the external mode, but that layers circulate in opposite directions.

In fact, the mass-weighted average of the velocities in the two layers is

nearly zero. In the thinner layer, layer 1, the magnitude of the velocity

is 3 times that of layer 2. While it is true, this is difficult to see using

this type of plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



LIST OF FIGURES (Continued)

Figure Page

6.8 Second external Rossby mode. This mode corresponds to mode number

59 in Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.9 Velocity fields for the second external Rossby mode. These velocity fields

correspond to the mode shown in Figure 6.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.10 Second internal Rossby mode. This mode corresponds to the mode num-

ber 57 in Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.11 Velocity fields for the second internal Rossby mode. These velocity fields

correspond to the mode shown in Figure 6.10. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.12 A Kelvin mode. This is the cross-channel profile of the internal Kelvin

wave that travels along the South edge of the channel. The first column

of figures corresponds to the upper layer, and the second column corre-

sponds to the lower layer. Note that, consistent with the theory, there is

exponential decay in ∆pr from one side of the domain. Furthermore, the

phase velocity of this wave is found to be positive, thus this wave is trav-

elling eastward. This is also consistent with the theory that states that

Kelvin waves propagate in a counterclockwise fashion in the northern

hemisphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Normalized cross-channel velocity, exact and approximate, for the first
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PSEUDO-SPECTRAL APPROXIMATIONS OF ROSSBY AND

GRAVITY WAVES IN A TWO-LAYER FLUID

1. INTRODUCTION

The purpose of this paper is to develop highly accurate solutions of a test problem

involving Rossby and gravity waves with the intention that these solutions could be used

for partial testing of numerical models of ocean circulation. Specifically, the problem is:

Given a hydrostatic fluid with two layers of constant density in a channel running East-

West, find nearly analytic representations of the internal and external Rossby and gravity

waves that occur in the channel. Some manipulation of the governing equations leads

to a differential-algebraic eigenvalue problem. To solve this, Chebychev pseudo-spectral

differentiation is employed in hopes of achieving spectral accuracy. The solutions are then

compared with the theory and, in a special case, with known analytic formulas. These

comparisons provide evidence that this method does produce highly accurate representa-

tions of the solution to the test problem.

Section 2. introduces the governing equations, as presented by Higdon [2]. These

governing equations can be thought of as two linearized systems of partial differential

equations similar to the Linearized Shallow-Water Equations, each corresponding to one

layer in the fluid. The two systems are coupled. Together with an interface jump condition,

these systems comprise the governing equations.

These governing equations rely on the assumption that the vertical scale is much

smaller than the horizontal scale of the waves being modeled, so the fluid is nearly hy-

drostatic. Also, they are linearized, so they require the assumption that the general state
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is a small perturbation from a static state. Thus, nonlinear factors are negligible. The

dependent variables are horizontal velocity in each layer and the pertubations in the dif-

ferences in pressure from the bottom to the top of each layer, which can be thought of as

“perturbation in layer thicknesses.” The independent variables are horizontal coordinates

and time.

Section 3. formally develops the channel problem as an eigenvalue problem with

boundary conditions due to the hard wall of the channel on the North and South edges.

It is assumed that the solutions, which consist of the horizontal velocity and perturbation

in pressure difference for each layer, are continuous in time and in the East-West (x)

direction. It is possible to take the Fourier transform of the system to eliminate derivatives

with respect to these variables. The resulting system is a differential-algebraic eigenvalue

problem, that is, an eigenvalue problem involving equations that are purely algebraic as

well as equations involving derivatives with respect to the North-South (y) variable. In

the following sections, this eigenvalue problem will be numerically solved using Chebychev

pseudo-spectral methods, by discretizing on a non-uniform grid in y and replacing the

derivatives with Chebychev differentiation matrices.

Section 4. introduces Chebychev interpolation and pseudo-spectral differentiation.

To approximate the derivative of a function, first interpolate the function using a polyno-

mial and then differentiate that polynomial and use the result to estimate the derivative

of the original function. Using a uniform grid for polynomial interpolation can lead to

large error due to oscillation near the endpoints. To avoid this, interpolate the function

using a non-uniform grid called a Chebychev grid. In a Chebychev grid the interpolation

points are clustered near the endpoints to prevent spurious oscillations.

Section 5. describes the discretization of the differential-algebraic eigenvalue problem

using Chebychev differentiation and reduces the problem to a purely algebraic eigenvalue

problem that can be solved using MATLAB. Up to an imaginary multiple, the eigenvalues
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are wave frequencies, and their corresponding eigenvectors give the spatial dependence of

solutions in the cross-channel direction.

In Section 6. some numerical Rossby and Kelvin modes are shown and discussed.

These numerical solutions are qualitatively consistent with the theory. First, by comparing

the case where the Coriolis parameter f varies with y to the case where f is held constant,

it is demonstrated that this method does produce Rossby modes. Then, the dispersion

relations for some of these Rossby modes are shown and are consistent with the theory.

Next, this section includes plots of the first and second internal and external Rossby

modes, where “first” refers to the wave with least cross-channel variation, and the second

mode varies second least. Next, the numerical Kelvin modes are discused, including a

plot of the cross-channel profile of an internal Kelvin mode. It is shown that these Kelvin

modes propagate in a counterclockwise fashion, again, consistent with the theory.

Section 7. considers a special case in which exact solutions are known. When the

densities of the two layers are equal, this system degenerates to the Linearized Shallow-

Water equations. In the case where f is held constant across the channel, the exact

solution for Poincaré modes is known. In this special case the Chebychev pseudo-spectral

approximations converge exponentially to the exact solutions, consistent with the theory

of pseudo-spectral methods.

2. GOVERNING EQUATIONS

Consider a fluid with two layers of constant density. Assume that for each layer

the thickness of the fluid is much smaller than the horizontal scale. This is the same

assumption used to construct the related Shallow-Water Equations. This assumption
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implies that any vertical acceleration is negligible, thus the fluid is nearly hydrostatic.

Next, assume that the flow is a small perturbation of a static state in which the surface of

the water, the layer interface, and the bottom are all level. Thus, any non-linear factors

are negligible. This leads to the linearized governing equations as presented in [2].

Let r = 1 indicate the top layer and let r = 2 indicate the bottom layer. Also,

when referring to a layer interface, let r = 2 indicate the bottom of layer 2, and let r = 1

indicate the bottom of layer 1 and let r = 0 the free surface. So, for r = 1, 2 let ur and vr

be the velocity in the x (East-West) and y (North-South) directions, respectively, in layer

r.

Given the static state, let p̃r be the equilibrium pressure at the bottom of layer r.

Given a small perturbation from the static state, let the pressure at the bottom of layer r

be p̃r+pr. Thus, the difference in pressure from the bottom of a layer to the top of a layer

is (p̃r− p̃r−1)+(pr−pr−1) = ∆p̃r+∆pr Hence, define ∆p̃r to be the equilibrium difference

in pressure from the bottom to the top of a layer and ∆pr to be the perturbation in that

difference.

Now, since the fluid is hydrostatic, the vertical pressure difference over layer r is

the weight per unit horizontal area in layer r. Because of the assumption of constant

density in each layer, the thickness of layer r can be directly determined by the relation

(∆p̃r + ∆pr) = ρrg(∆z̃r + ∆zr) where ∆z̃r is the equilibrium thickness of layer r and ∆zr

is the perturbation of layer thickness, ρr is the density of layer r, and g is acceleration due

to gravity. Thus, ∆p̃r and ∆pr can be informally thought of as the equilibrium thickness

of layer r and the perturbation of thickness of layer r respectively.

Furthermore, let M = αp+ gz be the Montgomery potential at any given elevation

z where α = 1/ρ is specific volume. Let αr denote the specific volume of layer r. For a

hydrostatic fluid of constant density, the Montgomery potential is independent of depth.

So, let z̃r be the elevation of the bottom of layer r. For each layer r, the Montgomery
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potential at equilibrium can be written M̃r = αrp̃r + gz̃r, and the Montgomery potential

for a small perturbation from equilibrium can be written M̃r+Mr = αr(p̃r+pr)+g(z̃r+zr).

Thus, the perturbation in Montgomery potential can be written Mr = αrpr+gzr. Finally,

let f be the Coriolis parameter, which depends on y.

Then, the governing equations are

∂ur
∂t − fvr = −∂Mr

∂x

∂vr
∂t + fur = −∂Mr

∂y

∂
∂t(∆pr) + ∆p̃r

(
∂ur
∂x + ∂vr

∂y

)
= 0,

(2.1)

together with the jump condition M1 −M2 = p1(α1 − α2).

Given appropriate initial and boundary conditions, several types of waves are solu-

tions of this system [3]. The first type is a gravity wave. In gravity waves, a perturbation

in layer thickness is counteracted by gravity resulting in harmonic oscillations. Gravity

waves occur in two forms. In an open domain these are approximately sinusoidal in x

and y and are called Poincaré waves. In a bounded domain a second type of gravity

wave occurs called a Kelvin wave. Kelvin waves only form in a rotating reference frame.

The profile of a Kelvin wave is of exponential decay from one side of the domain. In the

northern hemisphere Kelvin waves always propagate in a counter-clockwise fashion. That

is, a Kelvin wave that appears on the North edge of a domain will travel westward, while

a Kelvin wave on the South edge of a domain will travel eastward.

Besides gravity waves, another type of wave solution of (2.1) is a Rossby wave.

Rossby waves result from the dependence of the Coriolis parameter f on y and on variation

in bottom topography. Instead of gravity, the restoring mechanism in these waves is

vorticity, and they can be derived from the conservation of potential vorticity [3]. The

conservation of potential vorticity can be stated

D

Dt

(
f + ξ

h

)
= 0.
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Here, f is the Coriolis parameter, ξ = vx − vy is vorticity (in the z direction) and h

is the fluid thickness. The operator D
Dt is the material derivative, the derivative with

respect to time in a reference frame that moves with the fluid. This shows there are two

ways to generate Rossby waves. The first way is by changing h. These Rossby waves

are called topographical Rossby waves because they depend on bottom topography. Since

the current test problem concerns a channel with a fixed flat bottom, these will not be

considered here.

The second way to generate Rossby waves is to change f . These are called planetary

Rossby waves because they depend on the planetary parameter f . For example, consider a

column of water in the northern hemisphere. If this column moves northward its Coriolis

parameter increases, causing the relative vorticity to decrease and resulting in clockwise

rotation. This, in turn, causes nearby water to rotate and a wave, propagating East to

West, is generated. Long Rossby waves are nearly non-dispersive and are known to cross

entire ocean basins. Rossby waves are believed to play an essential role in ocean circulation,

so it is important the model incorporates these waves. An interesting characteristic of

Rossby waves is that they are in near geostrophic balance [3]. That is, the velocity field

of the fluid in a Rossby wave is normal to the pressure gradient. (See Section 6.3.)

In a two-layer system these waves occur in two different forms. The first is as ex-

ternal modes, where the layer thickness perturbation of each layer changes together in

the same direction. That is, the two layers thicken or thin together, and the relative

perturbations in the layer thicknesses are approximately equal. So, the profile of the free

surface and the profile of the layer interface have the same shape. The second class of

waves in the two-layer system consists of internal waves. These waves travel along the

layer interface and the layer thickness in each layer changes oppositely so that the total

perturbation of the free surface at the top of the fluid is nearly zero.
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3. FORMULATING THE PROBLEM

3.1. Set-up

Consider a channel with nearly the same parameters as found in [2]. Let the channel

be 320km wide and be oriented East-West. So, −∞ < x <∞ and −160000 < y < 160000

where y = −160000 is the South edge of the channel and y = 0 is the center of the channel.

Let the equilibrium thickness of the top layer be ∆p̃1 = 1000m and of the bottom layer

be ∆p̃2 = 3000m. Let the specific volumes be α1 = 0.975× 10−3 and α2 = 0.972× 10−3.

Now, for the Coriolis parameter f , use a β-plane approximation f(y) = fo+βy where

fo is the Coriolis parameter at the center of the channel. In this case take the center of the

channel to be 45◦ N. So, fo = 2R sin(45◦), where R = 6378100m, the approximate radius

of the Earth, and β = 2R cos(45◦)/Ω where Ω = 2π/86400 radians/s is the approximate

rate of rotation of the Earth.

3.2. An eigenvalue problem

To transform ( 2.1) into a solvable problem, first consider the perturbation Mont-

gomery potential for layer r, defined in Section 2. to be Mr = αrpr + gzr. For the

case where r = 2, the perturbation of the bottom of layer 2, z2, is always zero. (This

is the channel floor.) Also, p2 = ∆p1 + ∆p2, the combined perturbation in pressure

above the channel floor. Thus, M2 = α2(∆p1 + ∆p2). Then, using the jump condition

M1−M2 = p1(α1−α2), together with the fact that p1, the perturbation in the pressure at

the bottom of layer 1, is equal to ∆p1 (assume constant pressure at the top of the water),

M1 = M2 + p1(α1 − α2) = α1∆p1 + α2∆p2. Hence, it is now possible to eliminate the
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Montgomery potential using the substitution

Mr = αr∆p1 + α2∆p2.

The system becomes

∂ur
∂t − fvr = −αr ∂∂x(∆p1)− α2

∂
∂x(∆p2)

∂vr
∂t + fur = −αr ∂∂y (∆p1)− α2

∂
∂y (∆p2)

∂
∂t(∆pr) + ∆p̃r

(
∂ur
∂x + ∂vr

∂y

)
= 0.

(3.1)

Furthermore, assume the solution is continuous in x and t and take the Fourier

transform of the system in these two variables. By canceling the common factors in

each term and getting rid of the integrals it can be shown that this is equivalent to the

substitution

ur(x, y, t) = ûr(k, y, ω)eikx−iωt

vr(x, y, t) = v̂r(k, y, ω)eikx−iωt

∆pr(x, y, t) = ∆p̂r(k, y, ω)eikx−iωt

(3.2)

Observe that derivatives in x and t become multiplications by ik and −iω respec-

tively. Thus, this substitution will eliminate any derivative with respect to the x and t

variables. Unfortunately, it is not possible to take the Fourier transform in y, since f

depends on y.

After the substitution, cancel the common factor of eikx−iωt. The system reduces to

(−iω)ûr = fv̂r − ikαr∆p̂1 − ikα2∆p̂2

(−iω)v̂r = −fûr − αr ∂∂y (∆p̂1)− α2
∂
∂y (∆p̂2)

(−iω)∆p̂r = −∆p̃r(ikûr + ∂v̂r
∂y ).

(3.3)

The channel wall requires that the y-velocity is zero at the channel wall, that is, for

r = 1, 2,

vr(k, yS , ω) = vr(k, yN , ω) = 0

where yS = −160 is the South wall of the channel and yN = 160 is the North wall of the

channel.
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Now, (3.3) is a differential-algebraic eigenvalue problem. That is, it is an eigenvalue

problem where differential equations are coupled with purely algebraic equations. The

eigenfunctions of this system have six components,

(u1(x, y, t), v1(x, y, t),∆p1(x, y, t), u2(x, y, t), v2(x, y, t),∆p2(x, y, t)).

These eigenfunctions will be modal, physical solutions, and will include Poincaré, Kelvin

and Rossby waves. The eigenvalues are wave frequencies.

Now, the goal is to solve the system (3.3) with solutions that are as accurate as pos-

sible. One way to do this is to approximate the solutions with polynomials. The challenge

is to find the polynomials that achieve the desired accuracy. One method to do this is to

use the polynomials described in Section 4. Since a polynomial of degree N −1 is uniquely

determined by its values at N points, (3.3) will reduce to a purely algebraic eigenvalue

problem.

4. A NUMERICAL METHOD

This section describes the method of Chebychev differentiation. The strategy of

Chebychev differentiation is to interpolate a function on a non-uniform grid and then

to differentiate the interpolating polynomial and use this as an approximation to the

derivative of the original function at the interpolation points. As will be seen in this

section, this method can be highly accurate. Because both interpolation and polynomial

differentiation are linear operations they can be represented as matrix multiplication.

Thus, after a discretization of (3.3) in y, the differential operator ∂
∂y can be replaced with

multiplication by DN , the N ×N Chebychev differentiation matrix. Do not confuse the

notation of this section with the notation in the test problem. Here pN will signify an
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interpolating polynomial using N interpolation points, not a pressure.

4.1. Chebychev interpolation

With polynomial interpolation on a uniform grid, error can grow without bound

due to oscillations as the degree of the polynomial increases. This is called Runge’s

phenomenon. Chebychev interpolation uses a non-uniform grid to minimize Runge’s phe-

nomenon, clustering the interpolation points near the edges of the domain to reduce

spurious oscillations. This results in a high degree of accuracy and an exponential rate of

convergence.

Figures 4.1 and 4.2 compare polynomial interpolation on a uniform grid to interpo-

lation on a Chebychev grid, which is defined in equation (4.1). This is the famous Runge

example. On the uniform grid large spurious oscillations occur near the boundary. How-

ever, using the Chebychev grid, the interpolating polynomial remains close to the exact

solution.

In fact, we have the following theorem quoted by Trefethen [5] concerning the choice

of interpolation points and the accuracy of the interpolating polynomial. This theorem

borrows from electrostatic theory and uses the idea that the interpolation points are like

point charges with a density function and potential.

Theorem 4.1..1 (Accuracy of polynomial interpolation) Given a function g defined

on [−1, 1] and a sequence of sets of interpolation points {xj}N , N = 1, 2, ..., that converge

to a density function ρ on [−1, 1] as n→∞ with corresponding potential φ given by

φ(z) =

∫ 1

−1
ρ(x) log |z − x|dx,

define

φ[−1,1] = sup
x∈[−1,1]

φ(x)
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FIGURE 4.1: Interpolating the function f(x) = 1/(1 + 9x2) on the interval [−1, 1] using
a uniform grid of 15 points. The oscillatory behavior of the interpolating polynomial near
the boundary using the uniform grid introduces error that increases and the degree of
polynomial increases. It is clear that the derivative of this polynomial will also have this
error, thus it will not be a good approximation to f ′.

For each N construct the polynomial pN of degree ≤ N−1 that interpolates g at the points

{xj}N . If there exists a constant φg > φ[−1,1] such that g is analytic throughout the closed

region

{z ∈ C : φ(z) ≤ φg},

then there exists a constant C > 0 such that for all x ∈ [−1, 1] and all N ,

|g(x)− pN (x)| ≤ Ce−N(φg−φ[−1,1])

The same estimate holds, though with a new constant C (still independent of x and N),

for the difference of the νth derivatives g(ν) − p(ν)N , for any ν ≥ 1.

Now, if the hypotheses of this theorem hold, then not only will this method produce

a interpolating polynomial whose error decreases exponentially as the number of interpola-

tion points increases, but it will also produce a highly accurate polynomial approximation
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FIGURE 4.2: Interpolating the function f(x) = 1/(1+9x2) on the interval [−1, 1] using a
Chebychev grid of 15 points. Using the nonuniform grid, the oscillations near the boundary
are minimized. Graphically, it is seen that not only is the interpolating polynomial a close
approximation to f , the derivative of the interpolating polynomial is approximately equal
to f ′

to the derivative of a function. To show the hypotheses are satisfied, first, Trefethen [5]

shows that the Chebychev interpolation points defined at

ξj = cos(jπ/N) for j = 0, 1, 2, .., N (4.1)

converge to the density function

ρ(x) =
1

π
√

1− x2
, x ∈ [−1, 1]. (4.2)

So, the potential is

φ(z) = log
|z −

√
z2 − 1|
2

. (4.3)

As shown in [5], the level curves of this potential are ellipses with foci at -1 and 1 and

the minimal level curve degenerates to the line segment [−1, 1]. So for z = x ∈ [−1, 1], the

potential reduces to the constant function φ(x) = − log 2. Thus, φ[−1,1] = − log 2. Also
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since the level curve φ(x) = − log(2) is [−1, 1] and is a minimum, the last part of the

hypothesis requires that the function g to be interpolated be analytic on some complex

region properly containing the interval [−1, 1]. If this holds, the rate of convergence is

given by

|g(x)− pN (x)| = O(K−N ) (4.4)

for K some positive constant greater than 1.

Now consider interpolating the solutions to the system (3.3). Let

q = (û1, v̂1,∆p̂1, û2, v̂2,∆p̂2)
T

be the solution to the system (3.3) with fixed k and ω. Let q[−1,1] be the solution scaled

to the interval [−1, 1] in y. It would be nice to show that q[−1,1] is analytic (in y) on some

complex region properly containing [−1, 1]. For now, assume this condition is satisfied. A

partial justification of this assumption is as follows: First, the solutions to the one-layer

system do satisfy this hypothesis. They are linear combinations of parabolic cylinder

functions, which are entire [4]. (See Section 7.) Secondly, the results of this paper rapidly

converge to qualitatively accurate solutions. (See Section 6.)

4.2. Chebychev differentiation

According to Theorem 4.1..1, given a function g satisfying the hypothesis of the

theorem, not only is the polynomial interpolant at Chebychev points, pN , an accurate ap-

proximation of g for a sufficient number of interpolation points, in addition, the derivative

of this polynomial, p′N , is an accurate approximation of g′. Furthermore, Theorem 4.1..1

states that the rate of convergence of this approximation is exponential as the number of

interpolation points increases. That is,

|g′ − p′N | = O(K−N ). (4.5)
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Note that this K might be different from the K in (4.4). Since polynomial interpolation

and polynomial differentiation are both linear operations, this leads to the development

of a numerical differentiation method.

Chebychev pseudo-spectral differentiation works in the following way:

Let {ξj}Nj=1 be a Chebychev grid of N points from 1 to -1 ( 4.1) and let {g(ξj)}Nj=1

be the function values at these points.

1. Let pN (ξ) be the unique polynomial of degree at most N − 1 that interpolates g on

the Chebychev grid.

2. Then wN (ξ) = p′N (ξ) is an approximation to g′ from 1 to -1.

Given a vector of function values ~gN at Chebychev points, this reduces to multipli-

cation by a N ×N matrix. That is, ~wN = DN~gN , where ~wN is a vector of the values of

w(ξ) at the Chebychev points.

A MATLAB function that implements this, called cheb.m by Trefethen, is available

at http://www.comlab.ox.ac.uk/oucl/work/nick.trefethen [5]. The function takes

the degree of polynomial (N − 1) as input and outputs the N ×N differentiation matrix

as well as the Chebychev grid with N points.

The notation used in this paper differs slightly from Trefethen [5] in that the indexing

begins at 1 instead of 0. This is more convenient because MATLAB begins indexing at

1. Also, since this paper will be referring much more often to the number of interpolation

points than to the degree of interpolating polynomial, it is also more convenient to make

N the number of interpolation points.

4.3. Application to the ocean eigenvalue problem

In summary, given the assumption of the analyticity of the solution, and for suf-

ficiently large N , a good approximation to the solution q of (3.3) is qN , the vector of
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polynomials interpolant at Chebychev points. Furthermore, to estimate ∂v̂r
∂y and ∂

∂y∆p̂r,

the corresponding parts of q′N (y) serve as good approximations. Using these approxima-

tions, ( 3.3) reduces to an algebraic eigenvalue problem involving a 6N × 6N matrix with

N ×N blocks for each dependent variable ûr, v̂r,∆p̂r, r = 1, 2.

5. DISCRETIZATION OF THE EIGENVALUE PROBLEM

Let ξj = cos((j−1)π/(N−1)) for j = 1, 2, ..., N be a Chebychev grid on the interval

[−1, 1]. Note that that ξ1 = 1 and ξN = −1 so these points go from right to left. Then,

let L = 160000, half the width of the channel, and let yj = −Lξj . Thus, {yj}Nj=1 are the

Chebychev interpolation points (4.1) scaled so that y1 is at the South edge of the domain

and yN is the North edge. Let k and ω be fixed and consider q a function of y only, and

for values of q at the Chebychev points write q(yj) for j = 1, 2, ..., N . Let

Ur = [ûr(y1), ûr(y2), ..., ûr(yN )]T

Vr = [v̂r(y1), v̂r(y2), ..., v̂r(yN )]T

Pr = [∆p̂r(y1),∆p̂r(y2), ...,∆p̂r(yN )]T
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and let

qN =



U1

V1

P1

U2

V2

P2


.

This is a column vector of the function values at the interpolation points. It has length

6N . Now let

F =



f(y1) 0 · · · 0

0 f(y2) · · · 0

...
...

. . .
...

0 0 · · · f(yN )


be the N ×N matrix with the discretized Coriolis parameter at the Chebychev points on

the diagonal using the β-plane approximation f(y) = f0 + βy. (See Section 3.1.) Also,

replace each derivative with a Chebychev differentiation matrix Dy,N with appropriate

scaling. Also let Kr = ikαrIN and let Qr = ik∆p̃rIN where IN is the N ×N identity ma-

trix. So, the differential-algebraic eigenvalue problem (3.3) becomes the purely algebraic

eigenvalue problem

(−iω)qN = GqN (5.1)

where

G =



O F −K1 O O −K2

−F O −α1Dy,N O O −α2Dy,N

−Q1 −∆p̃1Dy,N O O O O

O O −K2 O F −K2

O O −α2Dy,N −F O −α2Dy,N

O O O −Q2 −∆p̃2Dy,N O


. (5.2)
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Here O is the N ×N zeros matrix.

Now consider the matrix operator Dy,N . The Chebychev grid that cheb.m outputs

is between 1 and -1, so it must be scaled to the width of the channel. Also the order must

be reversed so that the y values go from South to North in order. Similarly, a scaling

factor is needed with the differentiation matrix from the chain rule.

Now, if yj = −Lξj for j = 1, 2, ..., N , then q(yj) = q(−Lξj) = g(ξj). So, q′(y) =

g′(ξ) dξdy = g′(ξ)(−L−1). Thus if DN is the N × N Chebychev differentiation matrix on

the interval from -1 to 1, q′(y) ≈ −L−1DNgN (ξ) = −L−1DNqN (y). Thus, the desired

differentiation matrix is Dy,N = −L−1DN .

So, G can be rewritten, replacing Dy,N with −L−1DN , as

G =



O F −K1 O O −K2

−F O α1L
−1DN O O α2L

−1DN

−Q1 ∆p̃1L
−1DN O O O O

O O −K2 O F −K2

O O α2L
−1DN −F O α2L

−1DN

O O O −Q2 ∆p̃2L
−1DN O


. (5.3)

5.1. Boundary conditions

From Section 3., the boundary conditions are

vr(yS) = vr(yN ) = 0 for r = 1, 2.

Now, since the South and North walls are at y1 and yN respectively, in the discretized

eigenvalue problem the boundary condition is

v̂r(y1) = v̂r(yN ) = 0 for r = 1, 2.
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This boundary condition requires that these four entries of qN are zero. Specifically they

are the N + 1, 2N , 4N + 1, and 5Nth entries. For an eigenvalue problem, if an entry of

an eigenvector is known to be zero, the column of the multiplying matrix corresponding

to that entry might as well be zero as it is always multiplied by zero. That is, if ci =

[c1,i c2,i · · · cN,i]T is the ith column of the multiplying matrix, and v the eigenvector with

eigenvalue λ, then λvj = cj,ivi+
∑

k 6=i cj,kvk, where vj is the jth entry of v. Since vi = 0 is

known, λvj =
∑

k 6=i cj,kvk and no information is lost by setting cj,i = 0. Thus the columns

N + 1, 2N , 4N + 1 and 5N of G can be set to zero.

Now, consider a row of the multiplying matrix corresponding to a zero entry of an

eigenvector. This row only determines that entry and does not affect any other entry.

That is, if ri = [ri,1 ri,2 · · · ri,N ] is a row of the multiplying matrix, and v an eigenvector

with eigenvalue λ, then

riv = λvi.

In particular, if vi is known to equal zero,

riv = 0.

Thus ri can also be replaced with zeros for i = {N + 1, 2N, 4N + 1, 5N} without losing

any information, and this guarantees that the boundary conditions are satisfied.

However, this method will clearly give 0 as an eigenvalue with multiplicity at least

four. This can be avoided by deleting the mentioned rows and columns. Care must be

taken in coding this correctly in MATLAB, deleting rows from bottom to top and columns

from right to left to avoid indexing errors.

5.2. Eigenvalues and eigenvectors

As stated above, the goal is to solve the eigenvalue problem (−iω)q = Gq. So, use

the eig function in MATLAB to compute the eigenvalues and eigenvectors of G. The
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eigenvalues are λ = −iω, so the frequency ω can be recovered as the imaginary part of

an eigenvalue λ. The eigenvectors correspond to the cross-channel spatial dependence of

modal solutions. The first N entries correspond to û1. The next N − 2 entries correspond

to v̂1, as q does not include the values of v̂ at the boundary where it is zero. The next N

entries correspond to ∆p̂1. The next 3N − 2 entries correspond to the same information,

but for the second layer.

Finally, to recover the solutions ur, vr and ∆pr at any x and t, multiply the eigen-

vectors by eikx−iωt to reverse the substitution in (3.2) and use the real part of the result.

6. RESULTS

This section explores the results of the scheme described in Section 5. and shows that

these results are consistent with the theory discussed in Section 2.. Mainly, this section

will explore the Rossby waves produced by this scheme, demonstrating their existence as

well as examining dispersion relations and a few internal and external modes. Additionaly,

this section will briefly discuss the Kelvin waves.

6.1. Existence of Rossby modes using this scheme

Figure 6.1 shows a plot of the absolute values of the eigenvalues of G with N = 32,

so that there are 6×32−4 = 188 modes. A question that arises is the following: Which, if

any, of these eigenvalues correspond to Rossby modes? Note that there appear to be three

main “clusters”. It turns out that the first of these is made up of Rossby modes while the

second two clusters are made up of gravity modes. To see this, instead of building the
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FIGURE 6.1: Eigenvalues with variable Coriolis parameter. Here the Coriolis parameter
is given by f(y) = f0 + βy where f0 is the Coriolis parameter at 45◦ N, the center of the
channel. The eigenvalues are ordered acording to absolute value and the mode number
just refers to this ordering. The number of interpolation points in this case is N = 32, so
there are 6 ∗N − 4 = 188 modes. Modes from 1-60 are Rossby modes with external and
internal modes generally alternating. Closer to 60 are the well-resolved modes. Modes
61-123 are internal gravity modes. Of these, modes 61-64 are the internal Kelvin modes,
immediately followed by the internal Poincaré modes. Modes 124-188 are external gravity
modes. Modes 124-127 are Kelvin modes and are immediately followed by the external
Poincaré modes.

matrix block F as in Section 5., set f(y) = f0 for all y. By removing the dependence of f

on y, this changes the problem from being a β-plane problem to an f -plane problem. Upon

plotting the eigenvalues again, the first cluster drops to about machine epsilon (Figure

6.2). Thus, the first cluster only exists if the Coriolis parameter varies over y. Hence, these

are Rossby modes and the remaining modes are gravity modes. Furthermore, these modes

have qualities consistent with their identification as Rossby modes, as demonstrated next.
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FIGURE 6.2: Eigenvalues with fixed Coriolis parameter. Here the Coriolis parameter is
given by f = f0 where f0 is the Coriolis parameter at the 45◦ N, the center of the channel.
Here modes 61-188 appear as they did in Figure 6.1, but modes 1-60 do not appear. They
are not shown because they are very near machine epsilon. This demonstrates that these
modes only exist because of the dependence of f on y in the β-plane problem.

6.2. Dispersion relation for Rossby waves

Figure 6.3 shows the dispersion relation for some of the Rossby modes demonstrated

to exist in Section 6.1. That is, it shows the dependence of ω on k for a given mode. Both

internal and external modes are shown.

The shape and scale of these dispersion relations match those found by Higdon using

finite differences [2]. Figure 6.3 shows that, since ω < 0 everywhere, for any particular

mode the phase velocity ω/k < 0. Thus, the individual mode propagates in the negative,

or westward, direction. However, the group velocity, dω/dk is negative for very small

k (long wavelength) and positive for larger k (short wavelength). Thus wave packets of

very short Rossby waves propagate eastward, but wave packets of longer Rossby waves
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FIGURE 6.3: Dispersion relations for some numerical Rossby modes. Here ∆x = 10 km.
Observe that for all values of k, the phase velocity w/k is negative (westward). However,
while for small values of k (long wavelengths) the group velocity dω/dk is negative (west-
ward), the group velocity for larger values of k (short waves) is have positive (eastward).

propagate westward. This happens for k greater than approximately 10−4. Thus, in this

channel, long Rossby waves have wavelengths greater than about 60 km in the x direction.

All of the Rossby modes examined in the following section are of the long, westward-

propagating type. This scale is consistent with experimental data. For example, Gill cites

the observation of Rossby waves with periods of 4-11 months and wavelengths of 170-300

km [1].

6.3. Contour plots and velocity fields

Figures 6.4-6.11 are contour plots of the first few Rossby modes at t = 0, external

and internal, together with their velocity fields. Observe that the external modes have
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the same profile in both layers, proportional to layer thicknesses. Note also that the

internal modes have opposite profiles so that the total free-surface perturbation is nearly

zero. Furthermore, observe that the arrows indicating the velocity field are tangent to level

curves. This shows that the waves are in near geostrophic balance, consistent with physical

Rossby waves. Thus, qualitatively these solutions have the characteristics expected of

Rossby waves.
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FIGURE 6.4: First external Rossby mode. This shows the perturbation of the layer
thickness for layers 1 and 2 as well as the perturbation in the free-surface elevation. Solid
curves correspond to positive perturbation and dotted lines to negative perturbation. This
mode corresponds to mode number 60 in Figure 6.1 and is the first external Rossby mode
in the sense that it is the external Rossby mode that varies least in the cross-channel
direction. In each subplot the intervals between contours are the same. Since there are
three times more contours in the plot of layer 2, the perturbation in the thickness of
layer 2 is three times greater than the perturbation in the thickness of layer 1. This is
consistent since layer 2 is three times thicker than layer 1 at equilibrium. Notice that
the layers thicken or thin together, so that the effect on the free-surface elevation is the
sum of the perturbations in each layer. Thus there are four times as many contours in
the plot showing perturbation in free-surface elevation as there are in the plot showing
perturbation in the thickness of layer 1.
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FIGURE 6.5: Velocity fields for the first external Rossby mode. These are the velocity
fields corresponding to the mode shown in Figure 6.4. Observe that the velocity field
arrows are approximately tangent to the level curves shown in Figure 6.4 with clock-
wise circulation corresponding to crests and counterclockwise circulation corresponding to
troughs. Also, at any point the circulation is in the same direction in both layers. This is
characteristic of external Rossby modes.

6.4. Kelvin modes

This scheme outputs four Kelvin waves, two along the North edge of the channel,

one internal and one external, and two along the South edge of the channel, one internal

and one external. The waves propagating along the North edge of the channel have neg-

ative phase speeds, so they are travelling westward, while the waves propagating along

the South edge of the channel have positive phase speeds, so they are traveling eastward.

Thus these waves are travelling in a counterclockwise fashion. Since the channel is in the

northern hemisphere, this is consistent with the theory described in Section 2.. For each

Kelvin wave, this scheme outputs an eigenspace of dimension two. MATLAB outputs
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FIGURE 6.6: First internal Rossby mode. This mode corresponds to the mode number
58 from Figure 6.1. Again, “first” refers to the fact that this is the internal Rossby mode
with the least variation in the cross-channel direction. Here the number of contours is the
same in both layers but where layer 1 has a positive perturbation, layer 2 has a negative
pertubation and vice versa. Thus the net effect on the free-surface perturbation is nearly
zero. Thus the plot showing free-surface elevation is blank.

two eigenvectors forming a basis for this eigenspace. These eigenvectors have unphysi-

cal oscillations, but linear combinations of these eigenvectors lead to the non-oscillatory,

smooth Kelvin waves. Figure 6.12 shows the cross-channel profile at x = 0 and t = 0 of

the internal Kelvin wave that travels along the South edge of the channel. Observe the

exponential decay from the South edge in ∆pr. The velocity component v is zero in this

cross-section, because when x = 0, v is purely imaginary.
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FIGURE 6.7: Velocity fields for the first internal Rossby mode. These are the velocity
fields corresponding to layer 1 and layer 2 in the mode shown in Figure 6.6. Observe that
the layers show circulation along the level curves as in the external mode, but that layers
circulate in opposite directions. In fact, the mass-weighted average of the velocities in the
two layers is nearly zero. In the thinner layer, layer 1, the magnitude of the velocity is 3
times that of layer 2. While it is true, this is difficult to see using this type of plot.

7. EXACT SOLUTIONS FOR A SPECIAL CASE

The goal of this section is to show convergence to an exact solution in a special

case. When the thickness of one layer is much smaller than that of the other, or when

both layers have the same density, the two-layer system degenerates into the Linearized

Shallow-Water Equations (LSWE). There are special cases in which exact solutions of the

LSWE are known. One example of this is found in Paldor et al. [4]. Here, an analytic

solution is derived for the single layer LSWE on an f -plane that may not be physical, but

serves to check the solutions produced by the above method.
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FIGURE 6.8: Second external Rossby mode. This mode corresponds to mode number 59
in Figure 6.1.

Once again, consider a channel of shallow water 320 km wide in the y direction,

with total depth 4000 m. The single layer LSWE can be stated

∂u
∂t − f(y)v = −g ∂η∂x ,
∂v
∂t + f(y)v = −g ∂η∂y ,
∂η
∂t = −H

(
∂u
∂x + ∂v

∂y

)
,

(7.1)

where η is the perturbation in surface elevation and H is the equilibrium thickness of

the fluid. f(y) is the Coriolis parameter as above, which can be written f0 + βy =

2Ω(sin(φ0) + cos(φ0)y/R. Here φ0 is the latitude of the center of the channel, Ω is the

earth’s rotation frequency and R is the earth’s radius. Paldor [4] changes variables to get

a nondimensionalized version of (7.1),
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FIGURE 6.9: Velocity fields for the second external Rossby mode. These velocity fields
correspond to the mode shown in Figure 6.8.

∂u
∂t − (sin(φ0) + cos(φ0)y)v = −α ∂η∂x
∂v
∂t + (sin(φ0) + cos(φ0)y)u = −α∂η∂y

∂η
∂t = −

(
∂u
∂x + ∂v

∂y

)
,

(7.2)

where α = gH/(2ΩR)2.

Assume that the solution is of the form

(u(x, y, t), v(x, y, t), η(x, y, t))T = q(x, y, t)

= q̂(k, y, ω)eikx−iωt

= q̂(k, y, ω)eik(x−Ct).
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FIGURE 6.10: Second internal Rossby mode. This mode corresponds to the mode number
57 in Figure 6.1.

The last line leads to the substitution

u = ûeik(x−Ct)

v = v̂eik(x−Ct)

η = η̂eik(x−Ct).

Paldor [4] also uses the substitution V (y) = iv(y)/k. After some algebra, the system (7.2)

becomes
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FIGURE 6.11: Velocity fields for the second internal Rossby mode. These velocity fields
correspond to the mode shown in Figure 6.10.

u =
sin(φ0) + cos(φ0)y

C
V +

α

C
η (7.3)

dV

dy
=

sin(φ0) + cos(φ0)y

C
V +

(α
C
− C

)
η (7.4)

dη

dy
=
k2C2 − [sin(φ0) + cos(φ0)y]2

αC
V − sin(φ0) + cos(φ0)y

C
η (7.5)

The first line, (7.3), is an algebraic expression for u in terms of V and η. (7.4)-(7.5)

do not involve u, so to solve the whole system, it is only necessary to solve the system

comprised of the last two lines. Now, differentiating (7.4), and using (7.4) and (7.5) to

eliminate η, the result is a single Schrödinger equation in V that can be written in terms

of z ∈ [−1, 1],

ε2
d2V

dz2
+ [E − (1 + bz)2]V = 0, (7.6)
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FIGURE 6.12: A Kelvin mode. This is the cross-channel profile of the internal Kelvin wave
that travels along the South edge of the channel. The first column of figures corresponds
to the upper layer, and the second column corresponds to the lower layer. Note that,
consistent with the theory, there is exponential decay in ∆pr from one side of the domain.
Furthermore, the phase velocity of this wave is found to be positive, thus this wave is
travelling eastward. This is also consistent with the theory that states that Kelvin waves
propagate in a counterclockwise fashion in the northern hemisphere.

with the boundary conditions V (−1) = V (1) = 0. Here,

ε =

√
α

sin(φ0)L

b =
cos(φ0)L

sin(φ0)

E = − α

sin2(φ0)

[
cos(φ0)

C
+ k2

(
1− C2

α

)]
.

Paldor [4] shows that for the case b = 0 this has eigensolutions

Vn(z) =
2

π(n+ 1)
sin

[
(n+ 1)π

2
(z + 1)

]
with corresponding eigenvalues

En = 1 +

[
πε(n+ 1)

2

]2
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for n = 0, 1, 2, ...

The condition b = 0 means that cos(φ0) = 0, thus φ0 = π/2, that is, the North pole

is the center of the channel. As stated before, this is not physically meaningful; however,

mathematically it is meaningful, and it gives a way to check the results of the Chebychev

pseudo-spectral method presented in this paper. The parameter b = 0 also means that

β = 0. Thus, this is the f -plane case and so only gravity waves will be present as solutions,

not Rossby waves.

7.1. Convergence of Chebychev solution to analytic solution

Returning to the two-layer system, let the densities of the two layers be equal and

let β = 0, with the center of the channel at φ0 = π/2. Since the layers have equal densities,

the system only includes external waves. Take the perturbation in free-surface elevation

to be the sum of the layer thickness perturbations and compare this with the analytic

solution of the one-layer case.

Figures 7.1 and 7.3 compare the first two modes in each system after normalization.

The results of the Chebychev approximation are very nearly exact. Let Vn be the nth mode

of the exact solution at the Chebychev points and V n
N be the i/k times the cross-channel

velocity part of the corresponding mode of the Chebychev approximation. N refers the

number of interpolation points used. Consider the maximum error at the Chebychev

points, given by

EnN = max(|Vn − V n
N |).

Figures 7.2 and 7.4 show log10(EnN ) plotted against the number of interpolation points

N . Note that at about 20 interpolation points this method leads to very high accuracy.

The nearly linear relation shown implies the exponential rate of convergence,

EnN = max |Vn(y)− V n
N (y)| = O(K−N ). (7.7)
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This is the rate of convergence expected from Theorem 1 given that the solution is analytic

on a certain region. According to Paldor [4], the exact solutions of (7.6) are parabolic

cylinder functions, which are entire. Thus, they satisfy the hypothesis of Theorem 4.1..1

and exponential convergence is expected.
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FIGURE 7.1: Normalized cross-channel velocity, exact and approximate, for the first
Poincaré mode. V is an imaginary constant multiple of the cross-channel velocity. This
plot shows the cross-channel profile of V for x = 0. Here both solutions are normalized to
have maximum value 1.

8. CONCLUSION

The goal of this paper is to present near analytic solutions for a numerical ocean

circulation test problem. The test problem developed in this paper is for a two-layer
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FIGURE 7.2: The rate of convergence of the max-norm error. The error here is taken to
be the maximum difference between the approximated solution and the exact solution at
interpolation points. The vertical axis shows the base 10 logarithm of this error. There is
a slight difference in error between the even and odd number of interpolation points. Still,
the relation between the number of interpolation points and the logarithm of the max-error
is nearly linear. Thus, the error decreases exponentially as the number of interpolation
points increase. This is consistent with the order of convergence given in Theorem 4.1..1.

fluid in an East-West channel. A β-plane approximation of the variation of the Coriolis

parameter across the channel is used, so this system includes both Rossby and gravity

waves. First, the system is transfomed into a differential-algebraic eigenvalue problem.

Then, to compute the solutions of this eigenvalue problem to a high degree of accuracy, a

pseudo-spectral method is used. This method is based on the concept of first interpolating

a function on a non-uniform, Chebychev grid and then differentiating the interpolating

polynomial and using this as an approximation to the derivative of the original function.

Since interpolation and polynomial differentiation are both linear operations, this can be

represented using matrix multiplication. The system is discretized in the cross-channel di-

rection and then the derivatives are replaced with the Chebychev differentiation matrices.
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FIGURE 7.3: Normalized cross-channel velocity of the approximate and exact solutions
for the second Poincaré mode.

These matrices are modified to impose hard-wall boundary conditions. The now purely

algebraic eigenvalue problem is then solved.

To show that these solutions are indeed accurate, first it was shown that the numer-

ically computed waves have the qualities that the physical waves are known to possess.

Second, in the special case where the two-layer system degenerates to a one-layer system,

some analytic solutions are known. In this case, it was shown that the numerical solutions

converge with spectral accuracy to the analytic solutions.

In conclusion, it is reasonable to assume that the solutions produced here are very

near exact and could be used as a test problem in numerical ocean circulation modeling.
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N

lo
g
(E

2 N
)

FIGURE 7.4: The rate of convergence of the max-norm error. A few more interpolation
points are needed to reach the minimum error, but the rate of convergence is still clearly
exponential. At about 20 interpolation points the pseudo-spectral method produces a
nearly exact solution.
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