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TORSION OF RECTANGULAR SANDWICH PLATE
1

—

By

SHUN CHENG, Engineer

Forest Products Laboratory,_...3 Forest Service
U: S. Department of Agriculture

I. INTRODUCTION 

An elastic sandwich plate is a structural component consisting of two thin

external members, called facings, separated by and bonded to a relatively

thick internal member called the core. Sandwich cores are stiff in the direc-

tion perpendicular to the plane of the plate but relatively weak in the other two

directions--much less stiff, in fact, than the facings in these two directions.

Thus, certain stresses in the core are assumed to be negligible. These

stresses are the normal stresses in the plane of the plate and the shear stresses

associated with shear strains in these directions. That is, of the six compo-

nents of the stress tensor, the three present in a plane stress problem are as-

sumed to be absent here. The remaining three components, two shear stresses

and one normal stress, are related to the corresponding strains by separate

and unequal moduli. These assumptions have been used in many previous anal-

yses and are known to represent actual sandwich construction very well.

—This progress report is one of a series (ANC-23, Item 57-4) prepared and dis-
tributed by the Forest Products Laboratory under U. S. Navy, Bureau of
Aeronautics Order No. NAer 01898 and U.S. Air Force Contract No. DO
33(616)58-1. Results reported here are preliminary and may be revised as
additional data become available.

2 The author prepared this report as a thesis for the degree of Doctor of Phil-
osophy at the University of Wisconsin.

-Maintained at Madison, Wis. , in cooperation with the University of Wisconsin.

Report No. 1871



2.

The present study is concerned with the performance of sandwich plates

under torsion within the linear range. McComb (1)-
4 considered the torsion of

shells having reinforcing cores. The shells were similar to facings, except

that they enclosed the core. Moreover, he assumed the core to be isotropic

and used the Saint Venant theory of torsion. Seide (2) considered the torsion

of rectangular sandwich plates of the type under study here. He used the

Saint Venant theory but did not make-the simplifying assumption of negligible

core shear stress in the plane of the plate.

In this report is presented a rather rigorous mathematical analysis of

the torsion of rectangular sandwich plates, which is done to determine the

limits for which the Saint Venant theory is satisfactory. Two analyses are

therefore presented. In one the Saint Venant theory is used, although it does

not satisfy the detail boundary conditions in regard to the applied load. In the

other, a more rigorous treatment is used that satisfies all boundary conditions.

The more rigorous treatment is given first.

In the rigorous analysis it is assumed that the torque to which the plate

is subjected is produced by loads appliednormal to the facings at or near the

two corners of one end, and similarly but resisting loads appliedat or near the

other two. corners. All other surfaces, including the edges of the core and

facings, are free of boundary stress. The mathematical theory of elasticity is

used with three simplifying assumptions:

(1) Core stiffness values associated with plane stress components are
negligibly small, as previously explained.

±Underlined numbers in parentheses refer to references at the end of the text.



(2) The facings are treated as isotropic solid membranes.
	 3.

(3) One-half the load at a corner is applied to the top facing and half
to the bottom facing.

Assumptions (2) and (3) were adopted to make the solution shorter,

rather than appreciably simpler. If the third assumption is not made, the

work is essentially doubled, because an almost exactly similar solution would

need to be superimposed on the one given here. The added solution contrib-

utes to stresses by compressing the core but does not affect the distortion

of the central plane and therefore has no effect on the c omputed torsional

rigidity of the sandwich plate. Assumption (3) is therefore completely jus-

tified for this study. If the facings were not sufficiently thin to be considered

membranes, they would be treated as thin plates with flexural rigidity rather

than as in assumption (2). This would make only a small correction in the

linear range.

The mathematical analysis given here for the torsion of a rectangular

sandwich plate has many points of similarity to that used previously by Goodier

and Hsu (3) and Raville (4) and (5) for bending of sandwich plates.

In the analysis using the Saint Venant theory, the mathematical theory

of elasticity is used with the following two assumptions:

(1) Core stiffness values associated with plane stress components are
negligibl small, as previously explained.

(2) The torque is applied by shear stresses applied at the ends of the
plate. These stresses are distributed in the proper way to avoid
variations in stresses with the longitudinal coordinate.

The second assumption characterizes the Saint Venant theory. It is

noted that the mathematical theory of elasticity is used for the facing as
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well as for the core, and therefore the facings need not be thin in this

analysis.

Finally, a rather simple formula is obtained from rather elementary

analysis based on the Prandtl membrane analogy. This formula is found to

be in good agreement with the Saint Venant analysis over the range of sand-

wich dimensions and properties for which the Saint Venant analysis is appli-

cable.

II. NOTATION

x, y, z

a, b

a l , b1

G

rectangular coordinates (fig. 1).

half length and width of sandwich.

length and width of loaded area at corners along x and y.

directions, respectively.

half thickness of core.

thickness of facings.

Young' s modulus of elasticity and Poisson' s ratio of the

facings.

E  , shear modulus of the facings.
(2 (1+v)

t

E, v

Ec , Gxz , Gyz Young' s modulus and shear modulii of the core.

, -v , w	 displacements of core in x, y, and z directions, respectively.

u Ar , w'	 displacements in the lower facing for the Saint Venant solu-

tion, displacements at the middle surface of the lower

facing for the rigorous solution.
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Arm ) Bmn i Cm ,Dm, configuration parameters associated with displacements.
Km' Fn Hn' LIP Amn

Ign ,	 Ln' ,	 These are sometimes written without subscripts in
Atinn,
Lri	 the general derivations.

a i2nan ,etc. coefficients of Amn, Amn' A tm' n , in sets of three si-a 1 lmni

multaneous equations.

stresses in core.'r e Txz' Tyz

T t 
z x• T I 	 shear stresses in lower facing.xY

Nx , Nxy , Ny	 membrane forces per unit length in lower facing.

P	 resultant force applied at or near a corner.

q	 load per unit area

(2m + 1) w

2a

(2n + 1) rr

2b

B1
Ecab

1
G xz	 2(1 + v )Gxz

Ym.
Etc cr2yz	 /T1 1

6n
2(1 + v )G yz 7

G
yz

xz	 Etc 0112

2(2 +
Xm

(1
CL,	 2 c(1 - v 2 ) G

+	 (1	 +	
xzv)

GyZ	 Et(amc)2

pm 1 + Xm 
Gx

z
Gyz

xn

2(2	 +	 ..)

2 c(1 - v 2 ) G
(1 yz

+	 ( 1v)	 -
Gxz	 Et(Inc)2

am

13n



On

1

6.

1 + Xn GYz
G„

t	 t Gxz

	

fYrn2 (1 +	 -Gyz 

G

	

(1	
xz )

Gyz

0m - 1

(--M)
Ym

8 n2 (1 + 2C ) t	 Gyz

 2-E - 67Z- j

(1	 Gyz )

GXZ.

- 1 Gyz1 + (  /I 2 	 )
6 11	 Gx,

- (2 +	 (1 - 4)m)

(1 - 4,m )[0m + Xm + 1 + -Lc + (2 + -tdamb tanh amb] + (0m-1)(Cm + 4 m 4)

(2 +1- )(1 - Om)

t ,
(1 - 4,m )[Om +	 + 1 + + (2 +  -)amb tank amb ]+ (Om- 1 )( C'm + (1)m +-c7.1

- (2 +)(1 -fin)

(1 - 4,n )[en + Xn + 1 + + (2 + -t-c )f3n a tanh Pn a] + (On - 1)(4)n + 1%/1 +

(2 + 1-)(1 - on)

(1 - (1)n )[On + Xn + 1 + +	 +	 a tanh fin + (On - 1)(4)n +	 +

m

xz

Gyz
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M
	

2P(b -
2

e	 angle of twist per unit length in radius

An , Bin	 parameters associated with equation (136).

III. MATHEMATICAL  ANALYSIS (Rigorous Solution) 

The sandwich plate consisting of two facings and a core is shown in

figure 1.

1.	 The Core

It is assumed that

0. x =	 = Ty	 xy = 0 (1)

Txz

= Ec aw

awl

(2)

(3)

az

= 
r_	 ( au

xz
az 8x

TTyz = G	 f 8v Ow
) (4)yz 1

ez ay

where u, v, and w are displacements in the x, y, z directions respectively.

From summation of forces of a differential element of the core as shown

in figure 2 the following equations of equilibrium are found

ao-z	aTxz 	 OTyz
+	 = 0

8z	 8x	 8y

aT
xz 

=0
az



(8)

(12)

(13)

8.

8T
Y°	 0
	

(7)
az

Substitution of equations (2), (3), (4) into (5), (6), (7) gives

8 2w	 8 2w)
	 82w

Ec —"Z Gxz ( 82u + —8 w) +	 —) = 0

8z	 Oxaz 8x2 	 8yaz 8y2

B Zu	 82w
= 0

az 2	8z8x

8 2v	 82w =0

8z 2 8z8y

For the loading shown in figure 1 the displacement w is an even function

of z and an odd function of x and y. With this restriction the following expres-

sions are general solutions of equations (8), (9), (10),

w = c[A + B (—z ) 2 ] sin ax sin 13y

1	 z 2
u = -z [A' + —B (—) ] ac cos ax sin Py

3	 c

v = -z [A" +1 ( a ) 2 ]Oc sin ax cos PY

where A' , A", B, a, 13 are arbitrary. As will be shown later the constants

A' and A" are for the purpose of satisfying the differential equations of

equilibrium of the facings. The constant B is determined by the distribution

of the applied load. The constant a is selected to make the boundary shear

stress zero at x = + a and 0 is selected to make the boundary shear stress

zero at y = + b. Later subscripts will be attached to all of these constants.

The requirements on boundary shear stress are met by setting
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cos as = 0	 (14)

cos f3b = 0	 (15)

2. The Facings 

The simplification arising from applying half of the torsional load to

the top facing and half on the bottom facing (figure 1), causes the stresses

in the two facings to be equal in magnitude for all x, y coordinate points.

Therefore only the lower facing is analyzed. Summation of forces of a dif-

ferential element gives

8Nx 8Nxy

	

+= 0	 (16)- Txzl
ax	 ay	 z = c

8 Ny aNxy
A"	 - T	 = 0	 (17)Tyz

By	 8x	 z = c

The stresses in the facing are given by

Et	 au'	 8v'Nx =	 v	 )

	

1 - v 2 ax	 By

=	 v au' )N
Y

	

1 - v 2 ay	 8x

Nxy = Et	 1 - v )( 8u' 
+	 )

1 - v 2	 2	 ay	 8x

The expressions for the displacement components of points in either fac-

ing may be obtained by requiring displacement continuity between the core and

facings at their interfaces (bonding surfaces), that is, the interface displace-

ments of the facings must be equal to the interface displacements of the core.
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The middle surface displacements of the facings may be expressed in terms

of these interface displacements by assuming that u' and v' vary linearly

through the facing thickness and that w' is constant through the facing thickness

and equal to the displacements of the core at the bonding surfaces.

From these considerations

= (21)

Z = c

= U
t	 8w' (22)
2 axZ = C

v'	 = v1	 -

z = c

t	 8w'

2	 ay
(23)

3. The Loading 

The assumption is made that the loading is transmitted directly through

the facings

o-z

Z

to the core.

= q
z	 c

=	 -I
I Z = -C	

q

(24)

(2 5)

where q is the intensity of pressure on the top facing and the intensity of pull on

the bottom facing. This , is a good approximation because of the thinness of the

facings and the relative small values on such nonlinear terms as Nx 
a 2w

From equations (2) and (11)

^zl= 2Ec B sin ax sin (3y
z = c

	 (2 6)

3x2



sin am x sin tiny	 (27)
cr z Z = C Ill =0 n=o

(29)

(30)

(31)

(32)

(33)

This shows that any distribution of loading q may be satisfied by super-

posing solutions with arbitrary values of B, a, and 13. Let

11.

where in accordance with equations (14) and (15)

(2m + 1) Tr	 (2n + 1) 
am-	 Prl

2a	 2b

By means of Fourier analysis

1 nBm =
— ZabEc

a b
f	 q sin am x sin filly dxdy

-a -b

(28)

4. The Particular Solution 

The three constants, A, A' , and A" may be found in terms of B, a,

and 13 by substituting the appropriate equations into equations (8), (16), and

(17). Note the subscripts m and n are again omitted for this general discus-

sion. This procedure leads to the following three equations respectively.

an A + a12 A' + a13 A" = B

am. A + a22 A' + a23 A" = bll B

a 31 A + a32 A' + a33 A" = bll B

where	 2 Gxz	 2 Gv
all = (")	 (13c)

	

2Ec	 2Ec

2 Gxza12 = - (ac)
2E



a13 = - (13c)2 GYz
2Ec

a21 = [(ac)2 + (a02] 	 - 2 (1 -
P 1	 -.-

a22 = 2(ac) 2 4. (1 - ,t) )0302 4_

a23 = (1 + v )((3c) 2

a 31 = [( ac )2 + (Pc) 2 0. - 2(1 -
c

a 32 = (1 + v)(ac)2

a 33 = 2(13c) 2 + (1 - v)(ac)2 +

bll = - (3 + -)[(ac )2 + (i3c)21

l 2.

v 2 )c Gxz

(34)

(35)
Et

2(1 -	 v 2 )c Gxz
(36)

Et

(37)

v2 )c Gyz
(38)

Et

(39)
2(1 -	 v 2 )c Gyz

(40)
Et

(41)

Equations (29), (30), (31) may be solved for A, A', and A" in terms of

B, a, and f3 which as previously indicated may be selected to give by super-

position, any desired loading. This particular "solution is

03	 00

w = c > >--- [Amn + Bmn (;)2 ] sin amx sin PnY
m=o n=o

00	 00

= - z	 >1[Am' n + 3 Bmn ()2 ] ainc coo amx sin [3ny
m=o n=o

1
v = - z	 >  [A tm' n + —3 Bmn ( 1 )2 ] PriC sin amx cos 13nY

m=o n=o

co	 00

o- z = 2Ec 	 >  Bmn sin amx sin Puy
m=o n=o

00	 00

(42)

(43)

(44)

(45)
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00	 oo 

Txz = Gxz >  >  (Amn - A' mn ) amc cos a x sin (anym
m=o n=o

00	 op 

T = G >  >  (Amn - A" mn) 13nc sin amx cos Poyz	 yz
m=o n=o

This particular solution satisfies all of the boundary requirements on

the core since cos a a = 0 and cos f3nb = 0 as given previously. The con-

stant Bmn is given by equation (28) and the constants A mn , Amn, and A'Ain

are found in terms of Bmn by means of equations (29), (30), (31).

5. The Homogeneous Solutions

The particular solution meets the requirements for the facings that.

N = 0 at x = + a and at y = + b.xy

However unfortunately it gives values of Nx at x = + a and values of

N at y = + b. Therefore other solutions must be found which if possible do

not disturb those conditions already satisfied. This is accomplished by setting

B = 0 in equations (29), (30), and (31). In order that a solution exist the

determinant of the coefficients an, a12, etc. must be zero. This leads to a

cubic equation in a2 and (32 . For a given a, a cubic in 32 results. The three

roots are as follows:

132 = - a2

132 = - a2

2 rxz 2(1 + v )c	 Gx1	 2 2a2 = -a —	 a Y
Yz	 Et(ac)2

(46)

(47)
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This leads to an expression for w of the form 

Cm sinh amy + Dm amy cosh amyco 

>w = c	 sin amx
M=0 cosh amb

Km sinh Ym am y

y m cosh ym amb

with corresponding expressions for u and v. These are considered homogen-

eous solutions because they do not contribute to the loading. Of the three

terms, the first and second come from the double roots 13 2 = - a2 and the

third comes from the third root, 02 = 	 a2v2.

The two constants Dm and Km can be selected in terms of Cm so as

not to disturb the two conditions, Tyz = 0 at y = + b and Nxy = 0 at y = + b.

This leaves Cm free to form a Fourier series expression for annihilating

the force N at y = + b given by the particular solution.
y

In a similar manner a given in the cubic equation of a2 and 132 results

in three roots for a2 and three homogeneous solutions which for w takes

the form

	

co	 Fn sinh Pnx + Hn f3nx cosh f3nx
w = c	 s in Ony 	

	n=o	 cosh f3na

Ln sinh 6n/3nx

bn cosh bni3na

The constants Hn and Ln can be selected in terms of Fn so as not to

disturb the condition Txz = 0 at x = + a and Nxy = 0 at x = + a. This leaves

Fn free to form a Fourier series expression for annihilating the Nx at x = + a

produced by other solutions.



The details by which this is accomplished follow.

6. The Complete Solutions 

From the foregoing analysis the complete expressions for core dis-

placements may be written as follows:

W = c

co	 co
z>--	 [Amn + Bmn (-6-)

2  sin amx sin Orly

m=o n=o

Cm sinh y + Dm a rif cosh amy00

15.

+ c	 sin amx
m=o

K m sinha ym m

ycosh ymarnbm 

cosh amb

co	 Fn sinh Onx + HnOnx cosh Rnx
+ c	 sin Orly 	

n=o	 cosh f3na

Ln sinh 5n Prix	 (48)

6 n cosh 6 nOn a

U = -

co	 00
1	 z 2

z 	 7[ 	 ▪ —mn	 333 
mn r a c cos arnx s in Ony

m=o n=o

00 

- Z

m=0
am C cos amx

Cm' s inh am y + D a y cosh amy
m	 in ni

cosh amb

Km sinh .ymamy

ym cosh ymotmb

L'n' cosh 6n 13nx

oo
z	 finc sin Ony

n=o

Fn cosh Pnx + HnOnx sixth Pnx

cosh f3 an

(49)

cosh 5n33na



Kin cosh ymamy

cough ymamb

Fn sinhiSnx + Hn[3nx cosh 13nx

cosh 13na
c cos (any

n=o

00	 00
v	

- z	 [Atm, n + _13 Bmn onc sin arm x cos Ony2

00

z 	 amc sin amx
m=o

[Cm cosh amy + Dmamy sinh amy

cosh ambm

16.

m=o n=o

L' Binh 6 /3 x
n	 n n 

On cosh 01.1(3na

Substitution of these expressions (48), (49), (50) into equations (2), (3),

(4) for core stresses and equations (18), (19), (20) for facing stresses by using

equations (21), (22), (23) gives

zz z  00	 co= 2—	 TB sin amx singny
Ec c Z 

m=o n=o

(50)

(51)

TXZ

GXZ

00	 00
>	 (Amn
m=o n=o

Alnn ) amc cos amx sin OnY

+> amc cos cr x
Tr1=0

sinh amy ( K1 - Km) sinh yrnamy
(Cm - Cln) 	

cosh amb ym cosh ym amb

c sin (any
cosh gnx	 cosh 6nOnx

cosh Pna (L 
- L")L'n c')	

cosh Eingna(Fn Hn
n=o 

(52)



17.co

Gyz mr.io n=o
	 >(Amn - .AVnn ) gnc sin amx cos any

00 cosh amy
+ > anic sin a xm (C	 + Dm C"-	 )

cosh ambm=o

cosh ymcrmy
1- (Km -	

)cos

 yrnamb

(Lin - Lni ) sinh 6nOnl

5n cosh 6ngna

n=o
gnc cos (any

sinh Onx
Fn Fnn cosh Pna

(53)

Rmn sin affix sin any

+ >  sin amx
m=o

[ lin sinh cry + Jrnamy cosh amy Urn sinh ymamy
	 + 	

cosh amb	 ym cosh ymarnb

co 

- >  sin any
n=o

Pn sinh Enx Qn 13nx cosh gnx v n sinh 6n13nx

cosh Ona	 6n cosh 6ngna
(54)

1 - v2

Et

co	 cc 

= >  >  RMn sin amx sin piny
m=o n=o

sin a x
m=o

E n sinh army + Jim amy cosh amy Uhl sinh yrnamy

	 + 	
cosh a b	 ym cosh yrnarnb

rn

co Pn

	

	 v n' sinh 6 n Pn xsinh Pnx + Q.% P nx cosh. finx
+ >  sin any 	

n=o	 cosh Pna	 6n cosh nf3na_

(55)



on	 oo
,2 t t

>	 > B rnnk—3  c Amnc Alnn
rn.o n.o

1 - v 2 N	 =	 (
1 ..

xy 
Et 2

n=o

18.

+ mn (a c)(f3	 oc) cos a x cos ny
m 
m 

op {C' +C" +- C + (1 +-a-)Dm } cosh any2	 m +>  (amc) cos amx
IT1 =0 	 cosh amb

2(1 + 27-) Dmarny sinh amy (iqn + KVn + Km ) cosh ymarn y

cosh amb	 cosh ymarnb

(Inc )2 cos /any
Fn + 111.1 +Fn + (1 + t-t )Hn }cosh f3nx

cosh f3na

2(1 + —)Hni3nx sinh f3nx2

cosh fins

+ L" + -L ) cosh n13nx
n	 n	 n

cosh 6 n Dina

(56)

where 
(2m + 1) Tr (2n + 1) Tr

t3n =	 2b
(57) am 2a

1	 t
Rmn -	 -2-)Bmn + 2-c-t Amni al_ric)2 + v (Pnc)21 + AMn(amc) 2

+ A" n (13nc)2

Rhin =	 + --1)Bmn + -1-c-Arnni E)(crrnc)2 + (Pnc)21 + AMnv(arnc)2; 

+ A tr'rm (13nc)2

(58)

(59)



(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

Im = (amc) 2 .3(1	 vqin	 vDm (1 f -
c

) + (1 - v)	
Cm]

	

= (amc) 2 	 vq.n + C'L + Dm (1	 + (1 - v)	 Cm]

= (amc)2 (1 - v)(1 + -t--2c )Dm

= (amc) 2 (1 - v)(1 +Dm = Jrn
2c

Urn = (amc)2 [Nn - v ym 2 K'z 'n + (1 - vy 2) t—
m 2c '

U' = (amc)2 [ - v IC4n + ym m2K" + (- v +

	

	 ) 
t

— K
m 2 2c m

Pn = (1nc)2	 + Hn - vFh + (Fn + 2Hn - vFn)

Ph = (3nc)
2
 [-	 - v Hn + Fn + (Fn - vFn - 2 vHn) 2c

Qn = (13nc )
2
 (1 - v )(1 +Hn

2c

Qn = (f3nc)2 (1 - v)(1 + -t-) Hn =
2c

Vn = (f3nc)
2 

[L'A6 n
2
 - vLh + (6 11

2
 - v) —t Ln]

2c

tVh = U3nc) [- v 6n2 L' 1 + Ln' + (1 - v8n2 ) — Ln]
2c

For a concentrated load at the corners B mn is found from equation (28)

to be m+n	 , .,m+n
8	 =	 (-1)	 = B (-4)mn

	

Ecab	 1

If the loading is uniformly distributed over a rectangular area a l by b1

at the corners then

Qn

(72)



P	 z cos am (a - al ) cos On (b - b1)

Ecab aibi	 a c
	

Onc

Bmn (73)

20.

7. Determinations of Parameters in  the Expressions of Displacements

By substituting equations (48), (49), (50), (52), (53), (54), (55), (56)

into the equilibrium equations (8), (16), (17) the following relations are found

2(2 + —) D
c m

m m

[(1 - V )( y m 2 - 1) + 2(1	
Gxz

Yz

C" = C (1
G	 G

Xz ) + D + C'	
xz

m m G m m
yz	 yz

C' = C + (74)

(75)

F' = Fn +

2(2 4. -) Hn 
(76)

[(1 - v )(6n2 - 1) + 2(1
G y" )]
Gxz

	

Gyz	 Gyz
= Fn (1 -	 ) + Hn + Fn' G (77)

	

xz	 xz

[Yrn 2 (1 + —t—) -	 G—]
xz

NT, =	 2c	 2c	 yz

(79)

2 (1 
Gx

z)
yz

F"

KmGxz
(1 -	 )

yz

t Gxz 
[Nin2 (1 + -c	 Gxz (1 + —2c H

Y 
K" = 	 Kmm

(78)

Ym



(81)

(82)

L' -n

t	 G
Yt 

[8n 2 (1 + TE)	 Gxz

21.

Ln 	(80) 
(1	 G yz)

Gxz

t Gyz
[6,1 2 (1 +	 Gxz) - 6

yz
— (1 + 

2-c 
)J

xz L"_	 Lnn

26
n
 (1 yz )

Gxz

The requirement Nxy = 0 at y = + b gives

C' + Cm —
t 

Cm + [1 + —
c 

+ (2 + —
t

) amb tanh ambPm +m m cm

+ K" + —
t

K =0
m c m

The requirement Tyz = 0 at y = + b gives

Cm + Dm -	 + Km - Ki6 = 0	 (83)

The requirement Nxy = 0 at x = +a gives

F' + F" + —F + [1 + — +	 + --c ) fina tanh /3na]Hn + L'n	 n c n

+ L" + —
t

L = 0	 (84)n c n

The requirement Txz = 0 at x = +a gives

F + H - F" + Ln - Ln" = 0n	 n	 n

Solving equations (82), (83) by using equations (74), (75), (78), (79), gives

- (2 +	 4m) Cm

t
(1 - cl)m llem + X rn + 1 + + (2 + amb tanh amb] + (Om - 1)()m + 4m +

(86)

(85)



Urn

[(amc )2 +
(onc) 2 	 (01102 (ymamo2

2(amc) 2 Jm
Pn tanh gna

tanh,13na
+ a– (0 c)	 + v nc n	 n

oo

>  (-1)rn Rmn
m=o6n

(90)

m

- (2 + –
c

)(O
na - 1)Cm

(1 - 4m )[0m + Xm 4 1 + –t + (2 + --c ) amb tanh amb] + (Om - 1)(4,m + (1)rn + t )

(87)

Solving equations (84), (85) by using equations (76), (77), (80), (81), gives

- (2 + -t-)(1 - 4)n ) Fn

Hn

(1 - Sin )[en + X n + 1 + C+ (2 + L)f3na tanh Ona] + (On - 1)(4n

(88)

(2 + -)(l - en) F

t
gen + Xn + 1 +	 + (2 +a tanh gna] + (On - 1)(4)n + (13n 4-t)

C	 c n

(89)

where the value of 4m , Orn , X m' Com , •n , en, xn , and On are as defined in

"Notation."

By means of the Fourier sine transform of equations (54) and (55) it can

be shown that the requirement, Nx = 0 at x = + a, would give

co
2 '13-	 (-1)m+n(amc)

m=o 

- Im - Jm (1 + amb tanh amb) 

( am02 + 031102    

22.

Ln
(1 -



and the requirement, N y = 0 at y = +b, would give

23.

tanh ymarnb[rm tanh amb + —
b (amc).1111 +

Yrn

00

+ 2 > (-0m+n(pnc)
a n=0

	

pi	 Q1 (1 + p a tanh (La)	 2(%c )2 Q;.1

	

n	 n	 n	 n
(arnc) 2 + (Pnc)2

v t
n

00

[( am c )2 + (Onc)212

 (-1)n Rm'	 n	 (91)=

(arnc)2 + (5nOnc)2 n=o

where
00 co

(-1)rnRrnn = (-1)n	 P I

2

2	 t	 t Arn	
2

Ecab
+	 +	 ]rn

n

n3	 c	 c B	 Marnc)2 + v (i3ric
111 =0 ni=o

Am' n v (i3n0 2  mn
A"(arnc)_

Bmn Bmni

00

>— (-1)nlIMn = ( - 1 )m P > I (-2 + —t	 --mn	 (anic)2 + (01102]
n=o	 Ecab n=o 2 3 c c Bmn

(92)

2 Am' n
+ v (amc)	 + (Onc) 2

Bmn
(93)

The first parts on the left side of equation (90) and (91) can be expressed

in terms of Cm by means of equations (60), (61), (62), (63), (64), (65), (74),

(75), (78), (79), (86), and (87).

The second parts on the left side of equations (90) and (91) can be ex-

pressed in terms of F
n
 by means of equations (66), (67), (68), (69), (70), (71),

(76), (77), (80), (81), (88), and (89). Thus equations (90) and (91) may be
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solved for Cm and Fn in terms of 	  for as many m and n as
Ecab

desired.

8. Determination of Torsional Rigidity —

The loads acting at the corners of the sandwich plate form a couple

the magnitude of which is
b lM = 2P(b - —)2

The angle of twist per unit length is

w
z = 0, x	 a, y = b

0	 	
ab

The displacement w is given by equation (48).

Thus the torsional rigidity can be expressed as

M	 2E (P2 (1i) 3 c4

At+Bt+ Ct

where	 I	 Do	 _00 Amn
At = 	 	  Bt	 rim

(1 + —) tri=o n=o2c

tanh ymamb

	

Bt = >  (-1)m Cm [tanh amb + cr m(a,c) b + Trn 	

m=o	 1	 — c —	 Ym

Do	 F	 tanhOnf3na
(-1)n -11	 n[tanh ona +	 ((3 n c) c + Tn

n=o	
B
	 O n

00

Ct

( 9 4 )

(95)

( 9 6 )
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IV. NUMERICAL COMPUTATIONS (Rigorous Solution)

For the most part the computations were made on an IBM 650 in the

Numerical Analysis Laboratory of the University of Wisconsin. To facilitate

the programming for these computations, the following nondimensional

parameters were introduced, Xm 0- int °int `I'm' Tint Sint Xn, crn, On, 0-n,

Tn , and 4n . These are all listed and defined in section II. Each of these

parameters are functions of core and facing properties and the integers m

and n.

By means of these new dimensionless parameters equations (74) to

(81) and (86) to (89) were written as follows:

= (1 + Xm )Cm

= (1 + Gmcrm)Cm

= (1 + Xn o- n) Fn

= (1 + On n) Fn

= OillTmCm

=Cm M M

=

= 4'nTnFn

= ITmCm

Km = TmCm

Hn = crnFn

Ln = TnFn

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

Crn

CII
m

Frit

n•
NT"

Kin

n•
L"

Dm



+ vym
2

 (cl)in + Tm Cm

2 t
v(

2c

(4)In

T	 c
M Cm2c

Jna = (aniC ) 2	 V )(1	 Cr mCm

(114)

J 1 = J

Um =
	 c.2 [t k m )

2c

U;Ti = (crc)m
2

Fn+ a-(8n - v Xn +	 +
2cE

1 _ v)(1 +

xn -
t

V •-
F

l - 11)(1 + -21c-) + crn(-von

Pn = 0;102

Pn = (gnc)
2

(115)

F	 (116)
n

Then the equations (60) to (71) may be expressed as

26.

(amc)2[(1

1.1.n = (amc)2[(1

- v )(1	 o-m( Xm - vem - v - v I-)]Cm	 (109)

2c	 c

- v)(1 +	 o-m(em - v Xm + 1 + )]Cm
2c

(110)

Qn = (I3nc)2 (1 - v )(1 +	 a-nFn

Qn

Vn

Vn = (13nc)2	 2v8 n 41n + 4,n + (1 - v6n2 )-
2
tcl TnFn

The procedure of numerical computations for torsional rigidity 
CI

thus can be outlined as follows:

= Qn

= (01102 (l)n	 - v Con + (6 v
_Ltj F 

n n2

(1) Compute am , y m, Xm, 0-	 0	 T41) 3 m gym,
rn

fan' 6n , X n' 6 11 , On, 'n,

Try and (13.n for the properties assumed for and as many m and n as

considered desirable.

(2) Substitute these values into equations (97) to (120) to obtain all parameters

Can,
etc. , occurring in the homogeneous solutions, in terms of C m and

tn.

F.



M . The remaining properties of the sandwichdimensional parameter
0Gtc 2b

were assumed as follows:

27.

(3) Compute bilmn, allmn , al2mn, etc. as given by equations (32) to (41)

and Bmn from equation (72) or (73) for each combination of m and n

used.

(4) Solve equations (29) to (31) A mn ,	 Aim' n in terms of B1( = P  ).
Ecab

Note the subscript m and n have been omitted in the general expres-

sions of equations (29) to (41).

(5) Compute the expressions .> (-1)111i and, (-1)nRI as given by
mn

m=o	 n=o
equations (92) and (93).

(6) Prepare the matrix of equations represented by equations (90) and (91).

These are of the form

(7) Solve these equations for C m and Fn.

(8) Compute 0 by means of equation (96).

The principal results for the rigorous solution are given in table 1. The

first four columns give assumed values of the core rigidities E c and G andyz

the dimensions a and b. The last column gives computed values of the non-

Gxz = 25,000 p.s.i. = 25 k. s.i.

32
E =	 106 p. s.

3

v = 1
3
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G	 4 x 10 6 p.s.i.

c = 0.25 inch

t = 0.0125 inch

Except as noted the loads were taken to be concentrated at corners.

All values shown are the result of summing over m from 0 to 10 and

over n from 0 to 10. Other computations were made in which fewer terms

were used. The results showed that very little change resulted from us-

ing terms with m or n in excess of 7. However, the indications were

that round off errors were a greater source of error leading to the final

results being accurate to perhaps only two significant digits.

Increases in the rigidities E c and Gyz result in increased torsional

rigidity. However, increasing Ec from 100 k. s.i. to co only increased the

rigidity factor from 14. 9 to 15.23 and increasing G from 5 k. S. to 10yz

k. s.i. increased the rigidity factor from 14.4 to 14. 9. Increases in either

the length 2a or the width 2b resulted in an increase in the rigidity factor.

V. SAINT VENANT SOLUTION

The derivations based on the Saint Venant theory are as follows:

Let the core displacements be

u = 0	 F (c, y)

v = - Oxz

w = exy
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and the lower facing displacements be

u' = 0 F(z,y)	 (124)

v' = - Oxz	 (125)

w' = Oxy	 (126)

Upon solving for stresses all are found to be zero except the core stress

Txz and the facing stresses T' and T1xz	 xy. These are as follows:

Txz = Gxz e [
F(c

'
y) d	 (127)

TI = G [1-2: +	 (128)xz	 8z

TXy = G 0	 -	 (129)
By

All equilibrium equations are identically satisfied except the following

for the facing

cr'	 aT 1x 	 xy	 xz+	 +	 = 0	 (130)
8x	 By	 az

This requires that

V
2
F = 0
	

(131)

The boundary conditions are

-0xy = 0	 at y = +b	 (132)

Ti	 = 0	 at z = c + t	 (133)xz

Txz -
_ 

Txz z	 at z = c	 (134)

u = u'	 at z = c	 (135)



[tanh (2m + 1)Trt sinh (2rn + 1)-rr (z 

(2m + 1)ir
	

J
2b

(136)2b	 2b

(139)o

Condition (135) is satisfied by any function F. Equation (131) and condition

(133) are satisfied by the following expression

oo  An sin (2n + 1) Ir(z - c)	 (2n + 1) Try
>	 2t	 sinh

= - yz + c	 2t F 
n=o	 (2n + 1) Tr 	(2n + 1)-irb 

cosh2t	 2t

Eosh(2m 1)Tr(z
Bm sin (211a +1)1rY	 2b

M=0 	 (2rn + 1) Tr
Zb

30.

where the A's are determined from the condition (132) which requires that
00 An>	 s 	 + 1)Tr(z - c)2z=— for 0 <z-c<t

n=o	 2t
(137)

This gives         

8
=

–	 (2n + 1)Tr 

(-on

1 + 	
(2n + 1) Trc

2t

(138)     

The B' s are determined from condition (134) which requires that

	  An sinh  (2n 4- 1 ) 71Y	 oo	 (2-rn + 1)-rry	 Pm + 1)rrt

/	
2t 	 + > B sin 	  tan.h 	

213	 2bn=o	 m=ocosh (2n + 1)Trb 
2t

Gxz
(2rn + 1)-rrc

ab



+ t
An

0	 c	 c	
4t	 )( 1)n

3 c	 b	 + 1)Tri2
2	

(2n + 1)Trc
M 4 b t= 4Gc 	 2[1 + +

c

This gives An (2n + 1) t co

n=o 2n + 1  2	 (2m + 1)t 
(	 2	 )	 [	 Zb

31.

Brn (140)
+ 1) Trt	 xz

TF tanh
2b	 (2m + 1)Trc G

2b

The Moment M is given by

b c	 b c+t
Txz y dy dz + 2	 (Txtz y - "Icy z) dy dz

-b -e	 -bf c

From which the torsional rigidity is found to be

m = f I (141)

t-

00 Bm (-1)rn 2b G
( - xz1 

(2m + 1)TrcM=0 [Tr(Zrn + I) T
2

tanh (Zm	 1)1°.
(2m + 1)Trt cosh 	 	 Zb

2b

(142)

It is seen that equation (142), unlike equation (96), is independent of the

plate length a, Young' s modulus E c and shear modulus Gyz of the core.

Table 2 gives results using the same values of Gxz , G, c, and t as pre-

viously used and for a wide range of b. The summations were taken over

both m and n from 0 to 29.
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The results given in the last column are of interest in connection with

the elementary analysis to be discussed later. This column was suggested

by figure 3 where the torsional rigidity —M is plotted against b.
e

The rigidity factors shown by the third column are higher than those

given in table 1 for the same values of b. It is of interest that the value

15.23 for b = 10 inches in table 2 is also found in table 1 for Ec = co. This

is considered to be a coincidence since the values in table 1 are only accurate

to perhaps two significant digits.

For the core rigidities assumed, which are believed to be within the

practical range, the Saint Venant theory gives values in excess of the rigorous

a
theory by the following percentages depending on — and _13 ratios

a percentage excess

80 40 3%

40 40 10%

20 20 28%

40 12 5%

20 12 28%

12 12 56%
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VI. ELEMENTARY ANALYSIS

The lack of core stiffness causes the core stresses to be very small ex-

cept for the edge regions where the major portion of shear forces are trans-

mitted from one facing to the other. Therefore a rectangular sandwich in

torsion performs similarly to a hollow tube in torsion. A well known approxi-

mate formula for the torsional stiffness of a thin hollow tube is the following

M 4GA2

0	 rds

t

where A is approximately the gross cross sectional area.

For the sandwich one of the A' s in A 2 would be the gross area

A = 4b(c + t)

and the other A would be approximately

A = 4c(b - 6)

where 6 is a correction to the width b similar to that used in the torsion of

solid rectangular shafts (7). 6 would be a function of t, c, and b and the

ratio of G to G.xz

JasThe integral — should be approximately that found from integrating
t

4balong the facings only or — .
t

From the foregoing one finds

M - 16(1 - 6)
b

(143)
eGtc(c + t)b



or
M 	 c + t 

16(1 - 
6

)

eGtc 2 b
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(144)

For the dimensions given this becomes 16.8(1 - —
6 ) which is to be com-
b

pared with 16. 37(1 - 	 ) given by table 2 for all except very small values
b

of b. This is remarkable agreement but still better agreement would be

found if c + t were replaced by c + —
t

.
2

VII. CONCLUSIONS

The primary conclusions reached from the foregoing analysis are:

1. The computed torsional rigidity obtained with the more rigorous

solution is smaller than that based on the Saint Venant Theory. There is

little difference, however, for relatively long sandwich plates. These re-

sults are reasonable, since the local bending deflections near the applied

loads are taken into account by the more rigorous theory.

2. The effects of the rigidities E c and Gyz are shown by the more

rigorous theory. For loads applied to the facing surfaces, some stiffness,

E c , is required to keep the facings apart, and some stiffness, G yz , is re-

quired to transmit the shear associated with bending. Increasing E c from

a reasonable value to infinity resulted in a small increase in overall tor-

sional rigidity. Increasing G also caused a small increase in torsionalyz

rigidity.



3. The more rigorous method shows that torsional rigidity per unit

length increases as the length or width of the sandwich plate is increased,

and approaches the value found by the Saint Venant method. Except for

length-to-thickness or width-to-thickness ratios of less than about 40, the

Saint Venant theory gives the torsional rigidity with sufficient accuracy.

4. The simple formula based on elementary theory and containing an

empirical correction factor gives excellent agreement with the results

from the Saint Venant theory.

35.
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Table 1. --Torsional Rigidity of Sandwich Plate from
Rigorous Solution 

E	 : G	 ayz	
0Gtc2b

	

K. s.i. :	 K. s.	 : In.	 : In.

	

100 :	 10	 10	 : 10	 13.9

	

100 :	 10	 15	 : 10	 14.5

	

100 :	 10	 : 20	 : 10	 14.9

	

100 :	 1025 : 10	 14.8:

	

100 :	 10	 •	 28	 : 10	 15.2

	

100 :	 10	 •	 32.5: 10	 14.3

	

100 :	 10	 40	 - 10	 14.9

	

100 -	 JO	 60	 : 10	 14.9

	

100 :	 10	 5	 : 5	 :	 11.0

	

100 :	 10	 8	 : 5	 12.2

	

100 :	 10	 12	 : 5	 :	 13.0

	

100 :	 10	 16	 5 :	 13.5

	

100 :	 10	 3	 3	 8.05

	

100 :	 10	 5 . 3 :	 9.82

	

100 :	 10	 8	 3	 11.45

	

100 :	 10	 10	 3	 11.92

	

100 :	 5	 20 : 10	 14.4

	

100 :	 1	 20 : 10	 12.26

	

00 :	 10	 20	 : 10	 :	 15.23

	

100 :	 10	 20 : 10 :	 15.5*
•
•

*
Load is uniformly distributed over an area 2. 5" by
2" at each corner of the sandwich plate.
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Table 2. --Torsional Ri gidity of Sandwich Plate From Saint
V e nant Solution

38.

b in.	 m
-0 Lb. -in. 2	 M 

: 0GtcZb
M  

OGtc 2b (1 .69
)

b

	

.5	 3,360 :	 2.15

	

1.0	 19,100 :	 6.13	 19.7

	

1.5	 41,900 :	 8.94	 16.55

	

2.0	 66,800	 10.69	 16.32

	

2.5	 92,300 :	 11.81	 16.31

	

3.0	 118,000 :	 12.59	 16.35

	

4.0	 169,000 :	 13.52	 16.34

	

5.0	 220,000 :	 14.08	 16.33

	

6.0	 270,000 :	 14.40	 16.27

	

7.0	 322,000	 14.7216.33

	

8.0 .	 374,000 :	 14.96	 :	 16.37

	

9.0 :	 425,000 :	 15.11	 16.37

	

10.0	 476,000	 15.23	 16.36

	

15.0	 :	 732,000 :	 15.62	 16.37

	

20.0	 988,000 :	 15.81	 16.37

	

30.0	 1,500,000	 16.00	 16.37

	

40.0 :	 2,000,000 :	 16.00	 16.28

	

80.0 .	 4,050,000 :	 16.20	 16.34
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