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TORSION OF RECTANGULAR SANDWICH PLATE-I-

By

SHUN CHENG, EngineerZ

Forest Products Laboratory,é. Forest Service
U. S. Department of Agriculture

-

I. INTRODUCTION

An elastic sandwich plate is a structural component consisting of two thin
external members, called facings, separated by and bonded to a relatively
thick internal member called the core. Sandwich cores are stiff in the direc-
tion perpendicular to the plane of the plate but relatively weak in the other two
directions--much less stiff, in fact, than the facings in these two directions.
Thus, certain stresses in the core are assumed to be negligible. These
stresses are the normal stresses in the plane of the plate and the shear stresses
associated with shear strains in these directions, That is, of the six compo-
nents of the stress tensor, the three present in a plane stress problem are as-
‘sumed to be absent here. The remaining three components, two shear stresses
and one normal stress, are related to the corresponding strains by separate
and unequal moduli. These assumptions have been used in many previous anal-

yses and are known to represent actual sandwich construction very well.

“This progress report is one of a series (ANC-23, Item 57-4) prepared and dis-
tributed by the Forest Products Laboratory under U. S. Navy, Bureau of
Aeronautics Order No. NAer 01898 and U.S. Air Force Contract No. DO
33(616)58-1. Results reported here are preliminary and may be revised as
additional data become available.

2The author prepared this report as a thesis for the degree of Doctor of Phil-
osophy at the University of Wisconsin.

—Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

Report No. 1871




2.

The present study is concerned with the performance of sandwich plates
under torsion within the linear range. McComb (_l_)fl.. considered the torsion of
shells having reinforcing cores. The shells were similar to facings, except
that they enclosed the core. Moreover, he assumed the core to be isotropic
and used the Saint Venant theory of torsion. Seide (2) considered the torsion
of rectangular sandwich plates of the type under study here. He used the
Saint Venant theory but did not makethe simplifying assumption of negligible
core shear stress in the plane of the plate.

In this report is presented a rather rigorous mathematical analysis of
the torsion of rectangular sandwich plates, which is done to determine the
limits for which the Saint Venant theory is satisfactory. Two analyses are
therefore presented. In one the Saint Venant theory is used, although it does
not satisfy the detail boundary conditions in regard to the applied load. In the
other, a more rigorous treatment is used that satisfies all boundary conditions.
The more rigorous treatment is given first.

In the rigorous analysis it is assumed that the torque to which the plate
is subjected is produced by loads appliednormal to the facings at or near the
two corners of one end, and similarly but resisting loads appliedat ornear the
other two corners. All other surfaces, including the edges of the core and
facings, are free of boundary stress. The mathematical theory of elasticity is

used with three simplifying assumptions:

(1) Core stiffness values associated with plane stress components are
negligibly small, as previously explained.

iUnderlined numbers in parentheses refer to references at the end of the text.




(2) The facings are treated as isotropic solid membranes.

(3) One-half the load at a corner is applied to the top facing and half
"~ to the bottom facing.

Assumptions (2) and (3) were adopted to make the solution shorter,
rather than appreciably simpler. If the third assumption is not made, the
work is essentially doubled, because an almostexactly similar solution would
need to be superimposed on the one given here. The added solution contrib-
utes to stresses b.y compressing the core but does not affect the distortion
of the central plane and therefore has no effect on the c omputed torsional
rigidity of the sandwich plate. Assumption (3) is therefore completely jus-
tified for this study. If the facings were not sufficiently thin to be considered
membranes, they would be treated as thin plates with flexural rigidity rather
than as in assumption (2). This would make only a small correction in the
linear range.

The mathematical analysis given here for the torsion of a rectangular
sandwich plate has many points of similarity to that used previously by Goodier
and Hsu (3) and Raville (4) and (5) for bending of sandwich plates.

In the analysis using the Saint Venant theory, the mathematical theory
of elasticity is used with the following two assumptions:

(1) Core stiffness values associated with plane stress components are
negligibl small, as previously explained.

(2) The torque is applied by shear stresses applied at the ends of the
plate. These stresses are distributed in the proper way to avoid

variations in stresses with the longitudinal coordinate.

The second assumption characterizes the Saint Venant theory. It is

noted that the mathematical theory of elasticity is used for the facing as




well as for the core, and therefore the facings need not be thin in this

analysis.

Finally, a rather simple formula is obtained from rather elementary

analysis based on the Prandtl membrane analogy.

This formula is found to

be in good agreement with the Saint Venant analysis over the range of sand-

wich dimensions and properties for which the Saint Venant analysis is appli-

cable.
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II. NOTATION

rectangular coordinates (fig. 1).

half length and width of sandwich.

length and width of loaded area at corners along x and y.
directions, respectively.

half thickness of core.

thickness of facings,

Young' s modulus of elasticity and Poisson's ratio of the

facings.

B
2(1+v)

, shear modulus of the facings.

Young' s modulus and shear modulii of the core.
displacements of core in x, y, and z directions, respectively.
displacements in the lower facing for the Saint Venant solu-

tion, displacements at the middle surface of the lower

facing for the rigorous solution.




5.

Amn'Bmn'CmPms configuration parameters associated with displacements.
gn, Ffl le}" LL,}', Alnns

Ag;fgei'nfié‘rh?%ﬂ’ These are sometimes written without subscripts in

Ly the general derivations.

a1 1mn’ ®12mn-€tc. coefficients of A, Al Abnn, in sets of three si-
multaneous equations.

o stresses in core.

z° szs Tyz

Txz? T;{Y shear stresses in lower facing.
N, ny, NY membrane forces per unit length in lower facing.
P resultant force applied at or near a corner.
q load per unit area
(2m+1) w
%m 2
Bn (21’12;1) "
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Gyz Etcag, J
1
Gyz 2(1 + V)Gyz v
Sn + :
¢ 5 Etcﬂn
2(2 + %)
b 2c(l -véa
G c(l -v
Q+v)a-=2%) 4 sz
Gyz Et(amc)
G
8 1 + Ny i
Im m Gyz
2(2 + &)
KI'l

2¢(l - v2) G

(1+v)(1-92’—z)+

Gyz Et(B,c )2




¢m

1+ 2, Ovz
GXZ
G
2 t t X7
[y A T e
Xz
(l-G )
Yz
O -1 G,
1+ ( )
Y Gy,
2 G
[6 “0+ 2ty t _Jy=z
= zc) Zc ze]
a - Syz)
GXZ
1+(@H;I)G¥z
Bn ze

“(2 4D (- ¢y

t t t
(1= ém)Om + A +1 + =+ (2 + Daybtanh ayb] + (13, + ém t3)

2+5)(1 - 0py)

k t , .
(- )8y + Ay Pl + (24 <)o, b tanh a b ]+ (O 1)(3m +¢m+%)

(24D 0= ¢y)

(1~ ¢y)0n +Ap +1 4 tg +(2 + %‘)B‘n atanh B a]+ (6 - 1)(¢p + @n + %)

(2 + 9 - 8y)

(1~ ¢p)6y + \n +1 +‘;_+ (2 + %)Bna. tanh B a] + (6 - 1)(¢én + &n + tE)




b
M 2P(b - _1)
0 angle of twist per unit length in radius
An, By parameters associated with equation (136).

III. MATHEMATICAL ANALYSIS (l_ligg_rous §91\_1tion)

The sandwich plate consisting of two facings and a core is shown in
figure 1.
1. The Core

It is assumed that

o'x=o'y=-rxy=0 (1)
¢, = BE. OW (2)
0z
0
=N CI (OL O (3)
0z ox
Tyz = Gyz ("a'i +3_w) (4)
0z oy

where u, v, and w are displacements in the x, y, z directions respectively.
From summation of forces of a differential element of the core as shown

in figure 2 the following equations of equilibrium are found

d0, s & g B'ryz
+ = 0 (5)
9z 9x 9y

oT
= =0 (6)
9z




Substitution of equations (2), (3), (4) into (5), (6), (7) gives

9%w 82 82 2 2 :

E, 2% 4 Gy (22 4 29y 4 g (2 4 2 = 0 (8)
9z 9x0z x 9ydz oy

82u  9%w

wume— 4 =0 (9)

2

0z 9z0x

2 2

Q._Y.. + 8%w =0 (10)

9z 2 829y

For the loading shown in figure 1 the displacement w is an even function
of z and an odd function of x and y. With this restriction the following expres-

sions are general solutions of equations (8), (9), (10),

w =c[A + B (—CZ:—)2 ] sin ax sin By (11)
u = -z[A + %B(_Z_)Z ] @c cos ax sin By (12)
v = -z[A" + :,];—B (—2—)2 ] Bc sin ax cos By (13)

where A', A", B, a, B are arbitrary. As will be shown later the constants
A' and A" are for the purpose of satisfying the differential equations of
equilibrium of the facings. The constant B is determined by the distribution
of the applied load. The constant « is selected to make the boundary shear
stress zeroatx = ta and B is selected to make the boundary shear stress
zeroaty = +b. Later subscripts will be attached to all of these constants.

The requirements on boundary shear stress are met by setting




cos oa =0 (14)

cos b (15)

1l
(=)

2. The Facings

The simplification arising from applying half of the torsional load to
the top facing and half on the bottom facing (figure 1), causes the stresses
in the two facings to be equal in magnitude for all x, y coordinate points.
Therefore only the lower facing is analyzed. Summation of forces of a dif-

ferential element gives

oN ON

x Xy
—_— f —— Ty =0 (16)
ox oy zZ = ¢
ON N,
—Ly =, = 0 (17)
oy ox 2 X 4

The stresses in the facing are given by

1 1
2
1l - v x 9y
1 - ve oy ox
Et 1 - v, 9u' ov!
Ny = ( N + ) (20)

1 - v2 2 dy  8x

The expressions for the displacement components of points in either fac-
ing may be obtained by requiring displacement continuity between the core and
facings at their interfaces (bonding surfaces), that is, the interface displace-

ments of the facings must be equal to the interface displacements of the core.
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The middle surface displacements of the facings may be expressed in terms
of these interface displacements by assuming that u' and v' vary linearly
through the facing thickness and that w' is constant throughthe facing thickness
and equal to the displacements of the core at the bonding surfaces.

From these considerations

w' = w . (21)
z = ¢
'
w = u (L 3w (22)
7 = c 2 ox
i
vl = v L e (23)
Z = C 2 9y

3. The Loading

The assumption is made that the loading is transmitted directly through

the facings to the core.

= q (24)

(25)

where qis the intensity of pressure on the top facingand the intensity of pull on

the bottom facing. This is a good approximation because of the thinness of the
2

facings and the relative small values on suchnonlinear terms as Nx 8—\2”
ox
From equations (2) and (11)
T, = 2E_. B sin ax sin By (26)




This shows that any distribution of loading q may be satisfied by super-
posing solutions with arbitrary values of B, @, and 8. Let
o0 o)
oy = q = 2E, E N Z B, 8in @, x sin B,y (27)
zZ =c¢C m=0 n=o
where in accordance with equations (14) and (15)
_(2m + 1)« “(2n + 1) @
% = 2 By it
2a 2b
By means of Fourier analysis

ab
Bmn = 1 f f q sin oy, x sin B,y dxdy (28)
b

" 2abE,
-a -

4., The Particular Solution

The three constants, A, A', and A" may be found in terms of B, «,
and B by substituting the appropriate equations into equations (8), (16), and
(17). Note the subscripts m and n are again omitted for this general discus-

sion. This procedure leads to the following three equations respectively.

ajl A+ a2 A + a3 A" = B (29)
a1 A + a2 A' + a3 A" =b; B (30)
az] A + a3 A' +a33 A" =b B (31)
where 2 G G
ap = (ac)® 22 4 (Bcf L= (32)
2E, 2E¢
2E

C
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’ G
aj3 = - (Bc)? ¥z (34)
2E¢
2
2 2.t 2(1-v%) G
az) = [(@c)” + (Be)™] - - — (35
21 12 = )
21 - v%)c G
azy = Z(c:zc)2 + (1 - v)(Bc)Z + ( Je G (36)
Et
az3 = (L + v)(Be)? (37)
> st 201 - v3)c Gy,
ag = [ec)” + (Be)*]Z - (38)
Et
az, = (1 + v)(azc)Z (39)
2
2(1 - v)c G
a3z = 2(Bc)? + (1 - v)(arc)2 + i (40)
Et
t 2 2
by = - (5 + 2)l@e)® + (Be)’] (41)
Equations (29), (30), (31) may be solved for A, A, and A" in terms of
B, @, and B which as previously indicated may be selected to give by super-
position, any desired loading. This particular solution is
_® =
w=c > E [Amn + Bmn (_(z:..)z] sin op,x sin Bny (42)
| m=0 n=o
0 _® 1 :
z .
N= = Z Z[A}nn + §an (E) ] @me cos ap,x sin Bhy (43)
m=o0 n=o
0 ) 2z
v = -z E Z [ar ot = B n (:) ] B c sin o x cos By (44)
m=0 n=o
0 ©
o, = 2E¢ E- Z Zan sin a_x sin By (45)

m=0 n=o
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©

Txz = Gxz Z Z (Amn = A" mn) @m® €08 ayx sin Bry (46)
m=0 n=o
©

Tyz = GYZ z Z (Amn = A"mn) Pnc sin eyx cos Byy (47)
m=0 n=o

This particular solution satisfies all of the boundary requirements on
the core since cos a.a =0 and cos Bnb = 0 as given previously. The con-
stant B, is given by equation (28) and the constants Ap,,, AL, and Afgpn

are found in terms of B,,,, by means of equations (29), (30), (31).

5. The Homogeneous Solutions

The particular solution meets the requirements for the facings that.

ny=0atx=iaandaty=ib.

However unfortunately it gives values of Ny at x = + a and values of
Ny aty = +b. Therefore other solutions must be found which if possible do

not disturb those conditions already satisfied. This is accomplished by setting
B = 0 in equations (29), (30), and (31). In order that a solution exist the
determinant of the coefficients a;;, aj,, etc. must be zero. This leads to a

cubic equation in az and BZ. For a given a, a cubic in BZ results. The three

roots are as follows:

B? = - o?
BZ="1’2
Gy 2(1 + v)c G
BZ=-a’2 z.+ xz_____azvz

G Et(ac)?

Yz
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This leads to an expression for w of the form

2 I'_Cﬂ—;l sinh emy + Dm @y cosh oy
w = C E sin ap,x L

m=o cosh amb

Ky sinh yho v
+

Ymecoshy o b
with corresponding expressions for u and v. These are considered homogen-
eous solutions because they do not contribute to the loading. Of the three
terms, the first and second come from the double roots BZ = - o2 and the
third comes from the third root, BZ = - azyz.

The two constants D,,, and K, can be selected in terms of Cq 80 as

not to disturb the two conditions, =0aty = + band N,, = Oaty = +Db.

Tyz y

This leaves C,, free to form a Fourier series expression for annihilating
the force NY at y = + b given by the particular solution.
In a similar manner a given B in the cubic equation of o® and BZ results

in three roots for o and three homogeneous solutions which for w takes

the form
0 F, sinh B x + H, B,x cosh Byx
w = ¢ § sin B,y
n=o cosh B a
L, sinh 6,8, x
+

6, cosh 6,8 a
The constants H, and L, can be selected in terms of Fp so as not to
disturb the condition v, , = 0 at x = + a and Nyxy = 0Oatx = +a. This leaves
Fyp, free to form a Fourier series expression for annihilating the Ny at x = +a

produced by other solutions.
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The details by which this is accomplished follow.

6. The Complete Solutions

From the foregoing analysis the complete expressions for core dis-

placements may be written as follows:

o0 00
A z,\2, . .
w = C _;_ Z [Amn + Bmn (-C—) ] sin ap,x sin Bpy
m=0 n=0
h Gy 8inh gy + Dy, @py cosh apny
+c Z sin o x
ms=o cosh o b
K, ,sinh y o v ) F, sinh Bx + HpBux cosh Bnx
- +c Z sin B,y
Ymcosh ymamb n=o0 cosh f,a

(48)
00 o0 1
a = -zZZ[A}nn+—B (%-)z’]afmccos a x sin By

: C;_n sinh a_y + D, oY cosh a_.y
- Z arn C COs8 Q!rnx

cosh ap,b

! sinh a sl F" cosh B_x + H_B._x sinh B x
+Km Ym%mY 'ZZBnCSianY n n nFn n

Ym ¢€o8h ymomb n=o

cosh Bna

5 1 cosh & B x

(49)

cosh Gana
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0 00 1 -
vV = -2 E E [A'r'nn +-;an (-c-:-) ]Bnc sin o _x cos BnY

m=0 n=o

00
C!' cosh oy + D_ @, y sinh oy
-2z § Q. .c sin o, X arl m DI m
m=0 m
cosh a b
K! cosh y_ o,y < F' sinhf x + H B x cosh fx
+ -z Z.Gnc cos Bny

cogh yo,b n=o cosh B a

L' sinh & 8 x
4 B n n (50)
bp cosh §,fpa

Substitution of these expressions (48), (49), (50) into equations (2), (3),
(4) for core stresses and equations (18), (19), (20 for facing stresses by using

equations (21), (22), (23) gives

Oz

z 0 90
— = 2— B_ sin a_x sin By (51)
Ec C Z 2 m m n

T o0 o0
XZ . E Z mn - Amn) @mCc €os amx sin By
ze m=0 n=o
o« sinh o,y (K - K!,) sinh v,y
+ E @ c cos o x |(Cp - Ci,) +
m m m/
e cosh ob Y, cosh y, o b
i cosh Bux )cosh dnBnx
+ Boc sin By KE_ + P y———— + (L, - LY )}————
n=o n n o - cosh Bpa n M cosh 6nBh2 |

(52)
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b L Z Z(Amn - Al'n) Bpc sin opx cos Bpy

GYZ m=0 n=o

X cosh a,y
+ a, ¢ sin g % (Cm + D, - CY )________
m=0 cosh [, b

sinh B, x

cosh y_ oYy
+ (K, - KY,) LML gﬁccosﬁy (Fn—F;}‘
cosh ypa b n=o cosh f§ a

(L, - L!)sinh 6_B x
& n nPn (53)
6p cosh 6,82

2 00 oo
1 - = .
—_— Ny = EE_ ; Rinn 8in o, x sin Bny
m=o0

Et n=o

I, sinha v + J &,y coshayy Unm sinh ypamy

m—-r
§ i +
+ sin o X
m=o0

cosh b Ym €0sh ypamb

0 . Fy, sinh B x + Qn an cosh Bx v, sinh 6,8, x
= E 81n Bny P
n=o cosh B a 6, cosh 6,82 _‘
(54)
1 v2 = -
r——ane z g Rinn §in ep,x sin Sy
Et m=0 n=o
%0 I'  sinh e, v + Ji, ¢,y cosh oy Up, sinh vy, amy
- sin o X +
m=o cosh o b Ym c¢osh vy, b
o Pl sinh B x + Q] f,x cosh Bnx v! sinh & fB x

+ > sinBy + (55)

n=o cosh B a 6 coshd 8 a
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= Al (Q'mc)(BmC) cos a_x cos B,y

> (o)
+ (afmC) cos o X

[o.9]
m=0

e
|

t t
[jc;n +C +=C +(1 +2)D, } cosh a y

cosh amb

t =

2(1 + 55) Do,y sinh amy (K + KY,y + tEKm)C°Stha’mY
+ +
cosh e b cosh y o b

t t
: {F! + Fi! + oF +(1+5)H }cosh fyx

e

(Bnc )Z cos By

=
1}
o

cosh Bna

t . t
2(1 + {g)Hanx sinh an (L]':l + :I'_;'l_'1 + ELH) cosh Sanx
+ + (56)

cosh Bna cosh &, Bna,

2m + 1) = (2n + 1) w -
®m T 2, : Pa = Top

4

= B% + %)an + 'ch_ Amn] Bafmc)2 +v (Bnc)z:l + A}nn(cxmc)‘2

A (Bae)® v (58)

+

4

Elg + Et:)an + 'Z‘t;'Amn] E(amc)z + (Bnc)ZJ + AL, v(@mc)?

+ A (Bpe)? (59)




to be
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Im = (amc)z[c}n - vCi, - vDm (1 + Ec_) + (1 - v) EEE Cm] (60)
L, = (amc)?-[. vCl, + C, + D (1 + tz) + (1 - ")Zt'c" cm:I (61)
T = (ame)? (- v)(Q + fg)Dm (62)
o= (amc)z 1 - v)Q + L)Dm =J. (63)
2¢
Up = (a_c)?[K - vy ZK' + (1 - vymz);t;Km] (64)
U = (o)’ [-vEL, + v 2Ky + (v 4y ) Km] (65)
P, = (B,c)? [FY + H, - vFh + (Fy + 2H, - an)é-t;-] (66)
Pl = (Byc) [- vEY - vH, + FY + (F, - vF, - Zan) -] (67)
O = (Bae)® (1 - v)0 + ) H, (68)
Q= (Be) (- v+ EEE) H =Q, (69)
Vo = (Bye)® [Li6. % - vLy + (6, - u);—an] (70)
VL o= (Bnc)Z [- v 8,°Lt + LL 4 (1 - v6n2)§gLn] (71)

For a concentrated load at the corners B__ is found from equation (28)

P m+n
B = —(-1 = B -1
mn gy (-1) (~1)

m+n (72)

If the loading is uniformly distributed over a rectangular area a; by b;

at the corners then
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2
P c¢® cosay,(a ~aj) cosfB (b~ by)
By - (3)

E.ab a;by @, C Bne

7. Determinations of Parameters in the Expressions of Displacements

By substituting equations (48), (49), (50), (52), (53), (54), (55), (56)

into the equilibrium equations (8), (16), (17) the following relations are found

t
2(2 + 'C-) D_
C' =C_ + — : (74)
m m G
[ - v Nym?2 - 1) + 201 - =i
YVZ
G G_
ct =c_(1--2+D_ +c X2 (75)
Yz vz
2(2 + %) H
F' = F + — (76)
n n 2 G Z
[(1 - v)(6n® - 1) + 200 - —2=)]
GXZ
G G
- il yz
F;;-Fn(l = )+Hn+F;1G— (77)
X2 XZ
G
N2 (1 + &) - = - 2]
K = éc 2¢C Yz K_ (78)
- ==2)
Gy,
G G
t XZ Xz t
2 L o o AU
[y ( > Gyz) G (1 + c )]
K! = K, (79)
G
2 XZ
Yp,° @ - G——)
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t t 2
2 L ¥
(57 (1+Zc)'20_G ]
L = = Ly (80)
(1= =5
G){Z
G G
t Yyz yz t
6,0+ 506G ) -G + 5]
L' = Xz Xz ' L (81)
n n
G
5 2 - X2
n
X2z
The requirement NXY = 0 aty = +b gives
C! +C"+t—C 1 t—+2 t—) b tanh ab + K!
T m cm+[+c (+cam anh e bDpy, + KL
+ K +LK -0 (82)
m . m
The requirement Tyz = 0 aty = + b gives
Cm * Dm - Ch + Ky - K, = 0 (83)
The requirement Nxy = Oatx = +a gives
' " t .t_ .t—. !
F, + Fp + ~Fy t 1+ i (2 + c) Bna tanh Bha]H, + L!
t
+ L" +-1, =0 (84)
n c n
The requirement Tyz = 0 atx = +a gives
F,+H, -F!+ L, -1L=0 (85)

Solving equations (82), (83) by using equations (74), (75), (78), (79), gives

- (2 + D ~ém)Cpy

t
(1 -¢ )0y thp +1 4 % +(2 + %) amb tanh amb] + (0, - 1)(8p + dm + 2)

(86)
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- (2 + 96, - ey,

t t : t
1 - + = L - g
(- ém)Om + Ay +1 4 - + (2 + C)armb tanh o, b} + (0, - 1)(@_ +¢,, + C)

(87)

Solving equations (84), (85) by using equations (76), (77), (80), (81), gives

-2+ 91 - ¢,

Hn =
t
(1-¢ )6 +x_ +14+ -+ (2 +t:)3na tanh Bpa] + (6 - Doy + &, + t:)
(88)

2 + fc-)(l - 8y F_

t
1 - ¢'n)[9n + A, +14 t: + (2 + t:) Bna tanh Bna] + (8, - Doy, + 2y +:)

(89)
where the value of ¢m, Om, A m’ Qm, éns On+ A\p» and ®, are as defined in

"Notation."

By means of the Fourier sine transform of equations (54) and (55) it can
be shown that the requirement, Ny = 0atx = +a, would give
) I

+ = - J (1 + e,btanh o b)
2= > ()M o) |[—2—T =

m=0 (@,c)? + (Bye)®

2(a )% Iy U

+ - m

(eme)? + (Bae)’ T (Bnc)? + (v@me)®

tanh & _f8 a 20
a ntn m
< (B,c) Q + v | = E (-1) R n (90)

n m=0
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and the requirement, Ny = 0aty = +b, would give

n 00
[, tanh a b + 2 (gne) It + UL, tanh Ymo[”"b] ¥ 28 Z(-l)mm(ﬁnd
~ < Y a4 nzo
- P! - Q! (1 +Batanh Ba)  2(c)lQ!
+
(@me)? + (Bye)? [(eme)® + (Bac)?)
¥ h | <
. = > (-)" Ry, (91)
(@ c)® + (8,B,c)? =D
where
I .2
1 = (-1 —(= 4+ — 4-na o
Z()Rn EameJ,Zl?; c+can)[ac * v (Bae)"]
Al Al’l Ny
+ (@me)® =22 4+ y (B c)? 1R (92)
mn mn
-
2 n m P <1, t tA
Zo(-l) RL = (-1) ¥ %a S+ S 3BZE v (e, c)? + (B.c)?]
Al All
+ v (e c)® B 4 (g )2 Zmn (93)
mn an

The first parts on the left side of equation (90) and (91) can be expressed

in terms of C__ by means of equations (60), (61), (62), (63), (64), (65), (74),

(75), (78), (79), (86), and (87).
The second parts on the left side of equations (90) and (91) can be ex-

pressed in terms of F by means of equations (66), (67), (68), (69), (70), (71),

(76), (77), (80), (81), (88), and (89). Thus equations (90) and (91) may be
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P

Ecab

solved for C_ and F) in terms of for as many m and n as

desired.

8. Determination of Torsional Rigidity ——

The loads acting at the corners of the sandwich plate form a couple

the magnitude of which is
M = 2P(b - —) (94)

The angle of twist per unit length is

v 0 b
%2 =0, x = a, y =
6 = . (95)

ab

The displacement w is given by equation (48).

Thus the torsional rigidity can be expressed as

(96)

-— s

b
M 2E. @2 @Q)
5] At + By + Ct

[+ a]
Ay = ———— 2}_:

(1+——) 0

Ms
il
s

=]
i}
(o]

tanh ymafmb

o
]

0
C
¢ E (-1)™ Jm [tanh a,b + o (enc) by Tm
— B c Y
m=o 1 m

tanh 6,8, a

O
-+
]

Z (-1)" [tanh Bato o(Bnc) -:— T,

n
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IV. NUMERICAL COMPUTATIONS (R_i_gorous Solution)

For the most part the computations were made on an IBM 650 in the
Numerical Analysis Laboratory of the University of Wisconsin. To facilitate
the programming for these computations,the following nondimensional
parameters were introduced, A\, 05 8., &y Trys S Ny Tns Oy By,
Tp» and ¢,. These are all listed and defined in section II. Each of these
parameters are functions of core and facing properties and the integers m
and n.

By means of these new dimensionless parameters equations (74) to

(81) and (86) to (89) were written as follows:

Cln = 1+ Npoim) Cpy (97)
cro =01+ 0,0,)Chyy (98)
Fl, =+ 0 )F, (99)
F' = (1L +6,0,)F, (100)
Kl = & 7nCm (101)
K'' = ¢pTmCon (102)
Lp = &mpFn (103)
LY = ¢, TpFp (104)
D, = mCm (105)
Km = TmCm (106)

= o, Fp (107)
L, = maF, (108)
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Then the equations (60) to (71) may be expressed as

Im = (@mc)?[ - v)( + Et—) + om(Am - V0m - v - v =)ICm (109)
C C
I = (a)2[ - VIO + L) + oo, - va, + 1+ B)]C, (110)
2c c
T = (@pe)? @ - V)0 + ) oGy (111)
I =9 (112)
U _ (0! 2 t 2 _t__
m ) | =— t B - VYV, (b t 2c) Tm Cm (113)
U, = (e« C)Z E/ 2(¢ 2y - we, + )| T, C (114)
m m 2¢c m m m
P, = (BHC)2 Q- v)a + -ét:) toog(0, -va, + 1+ _c".):l F, (115)
P, = (Bnc)z El - v)(1 + Et;") + o‘n(—ven + Ny - Vv - v%ﬂFn (116)
Q. = (B - v)a + Et;) v F. (117)
Qn = Qp (118)
Vo, = (Bnc)2 E“2¢n - v 4+ (5n2 - v)z—‘ﬂ ToFn (119)
Vh = (Bnc)? [ v 2oy + @, + (1 - vanz)zt;:l o Fn, (120)

The procedure of numerical computations for torsional rigidity %—
thus can be outlined as follows:
(1) Compute @, Y1 A T Om’ B Tm? Pme Bn Sn:Anv Ons Ons @n»
tns and ¢pn.for the properties assumed for and as many m and n as
considered desirable,

(2) Substitute these values into equations (97) to (120) to obtain all parameters

C;'n’ etc., occurring in the homogeneous solutions, in terms of C_ and

F -




e

(3)

(4)

(6)

(7)
| (8)

Compute byjnns 211mn’ 212mn: ©€tc. as given by equations (32) to (41)
and B, . from equation (72) or (73) for each combination of m and n

used.
)
Ecab ’

Solve equations (29) to (31) A, . AL, ., Al interms of B( =
Note the subscript m and n have been omitted in the general expres-
sions of equations (29) to (41).

E _q\m E 1\,
Compute the expressions 2 (-1) R, and (-1) R!  as given by

n=o

equations (92) and (93).

Prepare the matrix of equations represented by equations (90) and (91).

These are of the form

Z r"'mncm + ann = R,
m=o

Cm Cm + E fmnFn = Rm
n=o

Solve these equations for Cnp and F,

Compute I;I— by means of equation (96).
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The principal results for the rigorous solution are given in table 1. The

first four columns give assumed values of the core rigidities E_ and Gyz a

dimensional parameter

the dimensions a and b. The last column gives computed values of the non-

M
thczb

were assumed as follows:

= 25,000 p.s.i. = 25 k.s.i.

nd

The remaining properties of the sandwich
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- 6 .
G = 4x10" p.s.i.

c = 0.25 inch
t = 0.0125 inch

Except as noted the loads were taken to be concentrated at corners.

All values shown are the result of summing over m from 0 to 10 and
over n from 0 to 10, Other computations were made in which fewer terms
were used. The results showed that very little change resulted from us-
ing terms with m or n in excess of 7. However, the indications were
that round off errors were a greater source of error leading to the final
results 'being accurate to perhaps only two significant digits.

Increases in the rigidities E_ and Gyz result in increased torsional
rigidity. However, increasing E_. from 100 k.s.i. to o only increased the
rigidity factor from 14.9 to 15.23 and increasing GYZ from 5 k.s.i. to 10
k.s.i. increased the rigidity factor from 14.4 to 14.9. ‘Increases in either

the length 2a or the width 2b resulted in an increase in the rigidity factor.

V. SAINT VENANT SOLUTION

The derivations based on the Saint Venant theory are as follows:

Let the core displacements be

u e% Flc,y) (121)

- Oxz (122)

v

(123)

w = Oxy




Z9%

and the lower facing displacements be

u'= 0 F(z,y) (124)
v'= - Bxz (125)
w!' = Oxy (126)

Upon solving for stresses all are found to be zero except the core stress

Txz and the facing stresses Ty, and T;:y' These are as follows:
Txz = Gygz 9[.&:'11 + )ZI (127)
o = GeB—f + ;] (128)
Ty = GO E?E - zJ (129)

9y

All equilibrium equations are identically satisfied except the following

for the facing
doy + BTy N 0Tz =0 (130)
9x 9y 0z

This requires that
veF = 0 (131)
The boundary conditions are
T;:y =0 aty = +b (132)
T, =0 atz = c + t (133)
Txz = Tkz atz =c (134)
u = u atz = ¢ (135)
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Condition (135) is satisfied by any function F. Equation (131) and condition

(133) are satisfied by the following expression

(2n + 1) w(z —c),h(2n+1)"’}’

00 q
— A s8in sin
F =-yz +c _>_ -n 2t 2t
n=o (2n_+ 1)w n (2n + 1)wb
2t ©°® 2t

(2m + l)TI'(Z -c):|

}’cosh
) CZBm i Zm+1)1ry
(2m +1) w
2b

E:anh (2m + 1)mwt sinh (2m + I)n(z - c]

) 2b 2b (136)
(2m + 1)w J
2b
where the A's are determined from the condition (132) which requires that
0
1 -
> A, sin o) X/ 1K) I c (137)
2t C - -
This gives
= n "
. (-1)
A = —m—————— L (138)
(2n + 1l)w (2n_+ 1) wc_
2t =
The B' s are determined from condition (134) which requires that
®© A, sinh (2n + l)my 00 (2m + 1)y (2m + l)wt
2t ' ;
E + Z B_ sin —————— (tanh—
n=o o5k (Zn + 1)Trb_ m=o m 2b 2b
2t
G =
+ —=2 1o (139)

{(2m + l}mwc

2b )




This gives " A, (2n + 1)t
()™ 2 :
n=o 2n + 1 .2 (2m + 1)t 2
) g ]
B, = - e
m G I
. T (Z2m + 1) wt - XZ
2b (2m + l)ﬂCG |
2b <
The moment M is given by
b c b cit
M:l!f'rxzydydz+26ff (T)'CZY—T;‘Yz)dydz
-b -c -b c

From which the torsional rigidity is found to be

M | et 2l + L e L2y L P -
0 C 3 c b n=o0 E@n + ].)"!T]z

OIU‘
2| e

B,, (-1

00
gm—

2
m=0 |:‘rr(2,m + 1)
2

1 2m + 1)t

- + tanh (
cosh M

2b |
2b J
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(140)

(141)

(142)

It is seen that equation (142), unlike equation (96), is independent of the

plate length a, Young's modulus E_ and shear modulus GYZ of the core.

Table 2 gives results using the same values of G, G, ¢, and t as pre-

viously used and for a wide range of b.

both m and n from 0 to 29.

The summations were taken over
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The results given in the last column are of interest in connection with
the elementary analysis to be discussed later. This column was suggested
by figure 3 where the torsional rigidity M i plotted against b.

The rigidity factors shown by the thiard column are higher than those
given in table 1 for the same values of b. It is of interest that the value
15.23 for b = 10 inches in table 2 is also found in table 1 for E. = . This
is considered to be a coincidence since the values in table 1 are only accurate
to perhaps two significant digits.

For the core rigidities assumed, which are believed to be within the

practical range, the Saint Venant theory gives values in excess of the rigorous

theory by the following percentages depending on 2 and P ratios
c c

o

-~ percentage excess
c

80 40 3%
40 40 10%
20 20 28%
40 12 5%
20 12 28%

12 12 56%
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VI. ELEMENTARY ANALYSIS

The lack of core stiffness causes the core stresses to be very small ex-
cept for the edge regions where the major portion of shear forces are trans-
mitted from one facing to the other. Therefore a rectangular sandwich in
torsion performs similarly to a hollow tube in torsion. A well known approxi-

mate formula for the torsional stiffness of a thin hollow tube is the following

M 4GA?
é ds
t

where A is approximately the gross cross sectional area.

For the sandwich one of the A's in AZ would be the gross area

A = 4b(c + t)
and the other A would be approximately

A = 4c(b - 6)
where § is a correction to the width b similar to that used in the torsion of
‘solid rectangular shafts (7). & would be a function of t, ¢, and b and the
ratio of G, to G.

The integral Jgf— should be approximately that found from integrating

along the facings only or <l .

t
From the foregoing one finds

M

A (143)

0Gtc(c + t)b b
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or

Mz st e - 2) (144)

b [ b

0Gtc

For the dimensions given this becomes 16.8(1 - %) which is to be com-
pared with 16.37(1 - .69 ) given by table 2 for all except very small values
b

of b. This is remarkable agreement but still better agreement would be

found if ¢ + t were replaced by ¢ + -;-

VII. CONCLUSIONS

The primary conclusions reached from the foregoing analysis are:

1. The computed torsional rigidity obtained with the more rigorous
solution is smaller than that based on the Saint Venant Theory. There is
little difference, however, for relatively long sandwich plates. - These re-
sults are reasonable, since the local bending deflections near the applied
loads are taken into account by the more rigorous theory.

2. The effects of the rigidities E; and Gy, are shown by the more
rigorous theory. For loads applied to the facing surfaces, some stiffness,
E¢, is required to keep the facings apart, and some stiffness, Gy, is re-
quired to transmit the shear associated with bending. Increasing E. from
a reasonable value to infinity resulted in a small increase in overall tor-

sional rigidity. Increasing Gyz also caused a small increase in torsional

rigidity.




3. The more rigorous method shows that torsional rigidity per unit
length increases as the length or width of the sandwich plate is increased,
and approaches the value found by the Saint Venant method. Except for
length-to-thickness or width-to-thickness ratios of less than about 40, the
Saint Venant theory gives the torsional rigidity with sufficient accuracy.

4. The simple formula based on elementary theory and containing an

empirical correction factor gives excellent agreement with the results

from the Saint Venant theory.

35.
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Table 1. --Torsional Rigidity of Sandwich Plate from
Rigorous Solution

E G : 4 b M

= yz oo, 8Gtc2b

K.s.i K.s.1 In. : In.

100 : 10 1 10 10 i 13.9
100 : 10 : 15 10 ; 14.5
100 10 : 20 10 14.9
100 : 10 25 10 14.8
100 : 10 : 28 :10 15.2
100 : 10 s 32.5: 10 14. 3
100 : 10 40 10 14.9
100 : 10 . 60 :10 - 14.9
100 : 10 3 5 : 5 = 11.0
100 : 10 : 8 : 5 12.2
100 : 10 : 12 & 5 ¢ 13.0
100 : 10 : 16 : 5 13.5
100 : 10 - 3 : 3 8.05
100 : 10 : 5 3 9.82
100 : 10 : 8 + 3= 11.45
100 : 10 10 - 3 11.92
100 : 5 : 20 10 14.4
100 : 1 : 20 :10 12.26

0 10 : 20 10 15.23
100 10 ;20 10 15. 5%

*1.0ad is uniformly distributed over an area 2.5" by
2" at each corner of the sandwich plate.




Table 2. --Torsional Rigidity of Sandwich Plate From Saint
Venant Solution

2 M ; M

bin. : M
— Lb. -in .
BGEESE 0Gtc2b (1 - ~29)
S b
.5 3,30 : 2.15

1.0 19,100 :  6.13 : 19. 7
1.5 41,900 : 8.94 16. 55
2.0 66,800 : 10.69 16. 32
2.5 92,300 : 11.81 16. 31
3.0 118,000 : 12.59 16. 35
4.0 169,000 : 13.52 : 16. 34
5.0 220,000 : 14.08 16. 33
6.0 270,000 : 14.40 16. 27
7.0 322,000 : 14.72 16. 33
8.0 374,000 : 14.96 16. 37
9.0 425,000 : 15.11 : 16. 37
10.0 476,000 : 15.23 : 16. 36
15.0 732,000 : 15.62 : 16. 37
20.0 : 988,000 : 15.81 16. 37
30.0 1,500,000 : 16.00 16. 37
40.0 : 2,000,000 : 16.00 : 16.28

80.0 : 4,050,000 : 16.20 : 16. 34
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Figure 1. --Sketch of sandwich plate,
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SUBJECT LISTS OF PUBLICATIONS ISSUED BY THE

FOREST PRODUCTS IABORATORY

List of publications on
Box and Crate Construction
and Packaging Data

List of publications on
Chemistry of Wood and
Derived Products

List of publications on
Fungus Defects in Forest

The following are obtainable free on request from the Director, Forest Products
laboratory, Madison 5, Wisconsin:

List of publications on
Fire Protection

List of publications on
Logging, Milling, and
Utilization of Timber
Products

List of publications on
Pulp and Paper

Products and Decay in Trees

List of publications on
List of publications on Seasoning of Wood
Glue, Glued Products
and Veneer List of publications on

Structural Sandwich, Plastic
Leminates, and Wood-Base
Aircraft Components

List of publications on
Growth, Structure, and
Identification of Wood

List of publicatlons on

List of publications on Wood Finishing

Mechanical Properties and

Structural Uses of Wood

and Wood Products

List of publications on
Wood Preservation

Partial list of publications
for Architects, Builders, for Furniture Manufacturers,
Engineers, and Retail Woodworkers and Teachers of
Lumbermen Woodshop Practice

| Partial list of publications

Note: Since Forest Products Laboratory publications are so varied in subject
no single list is issued. Instead a list is made up for each Laboratory
division. Twice a year, December 31 and June 30, a list is made up
showing new reports for the previous six months. This is the only item
sent regularly to the Iaboratory's mailing list. Anyone who has asked :
for and received the proper subject lists and who has had his name placed
on the mailing list can keep up to date on Forest Products Laboratory
publications. Iach subject list carries descriptions of all other sub-
Ject 1lists.
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