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Introduction 

Cost decrease and popularization of next generation sequencing (NGS) have led to increasingly 

large DNA and RNA sequence datasets. These sequencing technologies can output over one 

billion sequencing reads within a span of a few days at a relatively low cost1,2. Current methods 

available for analyzing these sequences are computationally intensive. Furthermore, 98% of 

bacteria are uncultivated, meaning we do not have the information necessary to directly annotate 

these sequences.  

In most cases, in order to assign a function to a gene, reads need to be first aligned to the 

reference genes or genomes 2.  To facilitate functional gene annotation, the scientific community 

has made several databases available online, which carry protein sequences that have been 

characterized and curated to various degrees. The National Center for Biotechnology Information 

(NCBI) allows all authors to submit and publish sequences generated from their study, including 

unassembled and uncharacterized metagenomes (within their nr database, which paradoxically 

stands for “non redundant”), resulting in extremely rich but very poorly functionally 

characterized sequences. On the other end of the spectrum, investigators have spent an extensive 

amount of time and energy experimentally characterizing enzymatic activities, and databases 

such as the Kyoto Encyclopedia of Genes and Genomes (KEGG18) present protein sequences 

categorized by their function, the pathway they belongs to as well as the organisms they have 

been identified in.  

Unfortunately, the number of protein sequences present in this well-curated database is 

very low as less than 2% of bacteria have been cultivated 4. Furthermore, only a small portion of 

the genome has been characterized through direct experiment while the rest has been 

characterized through a comparison of sequence similarity, which has also come to be known as 
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uncultured genome sequences 3,5. Subsequently, since we lack cultivated sequence data, we are 

also missing key functionalities to assign to sequences and as a result, annotations often suffer. 

This project proposes to address this gap by leveraging uncharacterized sequences to 

develop enriched Hidden Markov Models (HMMs) profiles. To do so, we will rely on protein 

families defined by the PFAM database15, and develop new models that will refine the functional 

annotations to the KEGG Ortholog level. The first part of this thesis will consist in a detailed 

bibliography of three current alignment methods: BLAST, BLAT and HMMs. This bibliography 

will introduce the rationale that motivates developing new Hidden Markov Models. We then 

describe the methodology in section 2 and the results in section 3.  
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Background 

Current Annotation Algorithms 

As previously mentioned, the growth of NGS has ushered in an increasing supply of protein 

sequences. Several algorithms and software tools have been developed to mark specific sequence 

features through annotation and detect the similarities between these features through annotation. 

There is such a large amount of data stored within these protein sequences that it requires 

extensive computing power to analyze them7. The alignment stage alone is crucial to identify 

similarity between the sequences; however, due to the large number of combinations, the time 

complexity, O(mn), greatly increases as the number of sequences increases7.   

There are two types of sequence alignments: Pairwise Sequence Alignment, which 

compares a pair of sequences, and Multiple Sequence Alignment, which compares a group. 

Pairwise Sequence Alignment can then be further classified into a local or a global sequence 

alignment 7. During a global alignment, sequences are lined up end to end in order to detect 

similarity. While in a local alignment, subsequence matches are searched for. One of the most 

frequented alignment tools, BLAST, performs local alignment and utilizes a heuristic algorithm 

to decrease computation time. 

Local Alignment Heuristic Algorithm 

The precursor to local alignment heuristic algorithms relied upon dynamic programming, which 

was computationally intensive especially as the sequences grew in both size and numbers. These 

algorithms included the Needleman-Wunsch and Smith-Waterman algorithms6. The algorithms 

emphasized similarity by minimizing the evolutionary distance through the focus of the least 

costly set of mutations6.  However, given the size of databases today, these algorithms are 

computationally infeasible. A heuristic alignment algorithm, on the other hand, aims to reduce 
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the computational complexity by approximating the above algorithms, but often sacrifices 

sensitivity. BLAST is a widely used software alignment tool that utilizes a heuristic algorithm 

and BLAT has since developed upon that algorithm.  

BLAST 

The Basic Local Alignment Search Tool (BLAST) optimizes speed and performance by using a 

heuristic approach that estimates the Smith-Waterman algorithm, an accurate but slow alignment 

algorithm6.  BLAST utilizes subsequence similarity to find all possible pairs of local segments 

whose similarities exceed a certain threshold to then create a similarity score matrix6,9.  These 

similar segment pairs, who exceed the threshold, are called high-scoring segment pairs (HSP), 

where the highest scoring pair is the maximal-scoring segment pair (MSP)9. The process BLAST 

uses could be visualized in the following three steps9: 

1. Generate Seeds  

Part a of  Figure 1 shows seeds of length three constructed out of the query sequence. This list of 

seeds is then used to identify short matches and is a technique known as seeding. Then using a 

scoring matrix, high-scoring matching words are extracted from the word list that score above a 

Figure 1: The three stages of a BLAST alignment 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.apoz1sxx668k
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given threshold 6,9.  The use of a threshold here is important to note as at this point speed and 

selectivity is valued over sensitivity (i.e. the ability to capture distantly related sequences)6. By 

not considering the seeds that score below this threshold, important information that could have 

detected similar sequences is lost. 

2. Compare Seeds to Database 

Part b of Figure 1 shows the seeds compared to the seeds in a sequence database. The sequences 

in the database already have their seeds generated and indexed so search time is minimized 9. 

The goal in this step is to identify exact matches between the words in the database and the 

words in the query. These pairs of matches are the high scoring pairs (HSP) mentioned earlier. 

Since we are dealing with only high scoring words, found in step 1, the match detection ends up 

being limited as identification of sequences with a lower level of similarity is missed. 

3. Extend Alignments  

At this point the HSP has been located and the goal is now to identify the maximum- scoring 

segment pair (MSP). Part c of Figure 1 shows the two HSP matches extended both directions. 

The extension occurs until the scores start to decrease 6. The MSP is then identified as the 

highest scores from the entire database 9. The limitation in BLAST is that the hits generated are 

too selective or too well matched and thus its sensitivity, or ability to identify distant but similar 

sequences, is fairly low.  

BLAT 

Another sequence alignment tool known as the BLAST Like Alignment Tool (BLAT) is similar 

to the algorithm used in BLAST; however, in an effort to increase speed, its similarity score is 

even lower than that of BLAST 8. This is because the HSPs generated in Part b of Figure 1 are 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.apoz1sxx668k
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.apoz1sxx668k
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.apoz1sxx668k
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achieved through a more stringent threshold of a 98% match 8. This means that fewer sequences 

are passed to Part c of Figure 1 and thus fewer MSPs are located 7. 

In both cases, BLAT and BLAST, an initial seed is built through the query sequence to 

generate the alignments. This is not an effective approach as it becomes too selective at the cost 

of sensitivity. Moreover, this seed alignment approach does not factor in the region conservation, 

which is key to detecting homology. This is because BLAST and BLAT indexes a large 

sequence with little to no curation rather than looking at the protein domains. 

Hidden Markov Models 

Protein domains and sequence motifs are key to identifying homologous sequences since they 

show the level of evolutionary conservation 3. Domains often contain one or more motifs, which 

are, loosely, a set of conserved residues that show protein function 3. Protein sequences can 

contain one or more domains, and comparing domains individually is critical during sequence 

analysis in order to identify homology between sequences3. Note that similarity and homology 

are not the same thing. Similarity will show the level of resemblance between two sequences; 

however, homology will show if this similarity results from common ancestors 9. Because 

BLAST and BLAT do not factor in the domain structure, these algorithms are not efficient in 

detecting homologous sequences that do not maintain high sequence similarity. 

We need to identify protein domains in order to detect protein function shared through 

common ancestors. This can be done through Hidden Markov Models (HMMs), which have 

been heavily used in a variety of applications such as speech recognition. HMMs allows us to 

create probabilistic models for a system with state changes 10,11. The system in this case is the 

alignment and the changes correspond to the weights within the alignment that accounts for 

modifications such as insertion, deletions, and substitutions.  

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.apoz1sxx668k
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Figure 2: Diagram of the three states 

Insertion (Ij), Deletion (Dj), and Match (Mj) states used to calculate the probabilities of an HMM Profile. Ti, j 

represents the Transition Probability from state i to j and Ek represents the Emission Probability of each amino acid. 

 

Calculation 

Hidden Markov Models allow us to detect distant homologs by utilizing a probability 

distribution to classify sequences based on residue alignments. A probability is assigned to each 

column of the alignment based on the frequency of a particular amino acid at that position. This 

then gets factored in when assigning an overall score to the sequence. An application of Hidden 

Markov Models known as Profile HMM is used to represent multiple sequence alignments with 

its corresponding probability scores 12. Another way to describe this is to look if a particular 

amino acid is present in all sequences at the same region, the area is considered a conserved 

region. During a multiple sequence alignment, these conserved regions of the sequences become 

more apparent as a higher number of sequences are aligned.  

Profile HMM is especially efficient in detecting distant homologues because it accounts 

for insertions and deletions of each column in a multiple sequence alignment 11. The probability 
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assigned depends on three states: the match state, the insert state, and the delete state. An 

instance of this could be visualized in Figure 2. The insert state (Ij) allows for the insertion of a 

new, random amino acid that is present in the query sequence 11. Note that this state can 

transition back to itself, indicating multiple insertions. The delete state (Dj) allows for the 

conserved column to be deleted11. In absence of a delete state and an insert state is the match 

state (Mj). This occurs when a column of a query and target align, where the amino acid between 

the two do not necessarily need to match. 

Each of these states has a certain likelihood, known as the transition probability (Ti, j), of 

transitioning from state i to state j, as indicated by the arrows in Figure 2. The transition 

probabilities are only dependent on what happens in the previous state 13. For instance, the match 

state, M1 in Figure 2, has three possible states to transition to: insertion, deletion, or the 

following match state, M2. Then the transition probabilities would be captured in a matrix13: 

P = [TM1,I2, TM1,M2, TM1,D2], where TM1,I2 + TM1,M2 + TM1,D2 = 1. 

The emission probability occurs at every match and insertion stage to represent the likelihood of 

each of the twenty amino acids appearing. All these states and probabilities are used to build a 

Profile HMM to represent the specific characteristics of the sequences.  

 

 

 

 

 

 

 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yw8zc0tdx7w7
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yw8zc0tdx7w7
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yw8zc0tdx7w7
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Logo Representation 

 

 

 

Figure 3: HMMLogo with Column Probability 

Top half is of an HMM Logo created by Skylign14, a web server that builds interactive logos. Bottom is of the amino 

acids pictured in column 52 of the top half. 

 

 

A graphical representation, known as an HMM logo, of a sample Profile HMM is seen in 

Figure 3. Each column contains twenty letters that correlates to the twenty amino acids built off 

of a basic set of proteins. The original input was a multiple sequence alignment constructed out 

of five sequences taken from the zf-CCCH_8 protein family. Here, the alignment information 

was used to reveal a stack of letters at each position, where the stack’s height corresponds to that 

position’s conservation14. In the case of Figure 3, column 52 would represent the largest 

measure of invariance, as the stack height is the largest. The height of the individual letters then 

corresponds to the number of occurrences of the letter at that position14. The largest letter, P, 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.21pe8sqi9bx4
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.21pe8sqi9bx4
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signifies that that amino acid occurs the most at that position.  A closer look of the probabilities 

in  column 52 is shown in the bottom half of Figure 3. In the HMM logo, the residue 

corresponding to P is the largest letter pictured in column 52. Similarly, the probabilities show 

that P has the largest probability at 0.728. This means that another sequence with a P in the same 

position would have a higher likelihood to be similar to this protein family because it closely 

resembles this conserved area. Since Profile HMMs leverage the information stored in a multiple 

sequence alignment to assign probabilities at each column, it can better detect distant protein 

sequences.   

Current Hidden Markov Model Databases  

Hidden Markov Models have already been widely applied by the scientific community for 

functional annotation, as they focus on the protein domains in order to determine the level of 

conservation for specific residues, and therefore allow the identification of distant domains. The 

two main HMM databases, Pfam Database15 and TIGRfam Database16, are detailed below.  

PFAM 

The Pfam database is a large database of 13,672 protein families composed of alignments 

constructed at a very high functional level through Hidden Markov Models15.  Moreover, Pfam is 

a protein domain database, meaning that the Pfam entries are not protein sequences but rather 

alignments of the most conserved domains of related proteins 3. Since Pfam uses protein 

domains, which are a set of conserved residues that show protein function, sequence 

functionality is preserved within the database 3. This means that alignments are then based on 

these protein domains, or functionalities, rather than three letter seeds that are used with BLAST 

and BLAT. 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.21pe8sqi9bx4
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The first step taken in the construction of a full alignment within a Pfam database is the 

creation of a seed alignment. This seed alignment is built off of a representative set of sequences 

and then is manually verified 17. Then an HMM Profile is created from the seed alignment. 

Lastly, the full alignment is created by aligning members of the Swissprot database to this HMM 

Profile 17. To eliminate false positives, two gathering thresholds are put in place, a sequence 

threshold and a domain threshold, so that only sequences reaching a high level of similarity are 

detected 15. The goal of these gathering thresholds is to minimize false positive matches15. It is 

based on the idea that long profiles tend to be generic and thus capture sequences that overlap 

between families 15. The gathering threshold is then meant to exclude these sequences in the 

overlap. This is comparable to what is happening in BLAST and BLAT as we are now limiting 

the sequences that we are detecting by being too selective. However, in this case we are limiting 

sequences that share functionality, whereas with BLAST and BLAT the results only contained 

sequences similar to each other based on three letter seeds unrelated to the protein domains. 

TIGRFam 

TIGRfam is similar to the Pfam database except that it emphasizes protein function whereas 

Pfam stresses domain architecture16. TIGRfam still goes through the process of using seed 

alignments to produce HMM Profiles, but it also takes it one step further to generate an equilog 

model. Each protein within TIGRfam is considered in terms of its function to see how they differ 

from the protein family’s function16. A protein family is deemed an equilog when all members of 

a protein family share the same functionality16. Pfam, on the other hand, was only looking for 

similarities in sequences' domains. In this way, TIGRfam would identify fewer protein 

similarities than Pfam would16.  
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Project Rational 

While both HMM databases developed above allow the detection of distant orthologs, motifs 

detected via their pipeline only allow small domains to be identified. As a consequence, 

TIGRfam and Pfam allows more sequences to be annotated than heuristic approaches using 

whole length sequence alignment. But annotations of those short domains are difficult to 

integrate with the metabolic pathways’ ontology available in the literature, such as MetaCyc or 

the KEGG database18.   

Furthermore, in order to find conserved domain within the protein considered, both 

HMM databases use a seed alignment, where they remove any sequences that are not properly 

aligned with their bulk of sequences. This first step results in critical loss of information as 

sequences are thrown away when a perfect match is not found.  

This project proposes to address some of these limitations by developing new HMMs 

using the KEGG database18 framework, which would allow us to refine the annotation of HMMs 

at the level of KEGG orthologs, and make distant ortholog detection compatible with multiple 

visualization and analytics pathways analytics softwares19. The KEGG database characterizes its 

sequences with a KO identifier used to group by functionality and aimed to detect orthologs 

between different organisms.  

As mentioned previously, it is important to note that only about a third to a half of the 

characterized genomes have KO annotations19. To overcome this challenge, we propose here to 

propagate KO annotations to unannotated sequences using a ClustalO alignment. Then, we will 

construct an HMM Profile per KO using more complete sequence alignments generated from the 

annotation propagation. The resulting HMM Profiles will then take into account a more diverse 

set of sequences.  
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We conducted an evaluation of our newly generated HMMs using a ten-fold cross-

validation approach to see how well we were able to predict the KO annotations of our 

unannotated sequences. Through this validation, we set aside a unique 10% set at each fold. This 

10% set contains both annotated and unannotated sequences. We compare our profiles against 

the annotated sequences of this set to see if our profiles are linking to the correct KO 

annotations.  
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Methods 

The code used to generate this pipeline is available at: https://github.com/MaudeDavidLab/hmm-

project. 

Overview Diagram 

The overall methodology can be visualized in Figure 19. 

 

Figure 4: Overview of Methods 

The first part of our pipeline involved fetching protein sequences from the GenomeNet 

DB, described in detail in the section Protein Retrieval. The we separate our sequences so that 

we are currently working in 90% of our sequences. Next, we propagate our known KOs to 

unannotated sequences as explained in KO Annotation Propagation. Following that, we are 

able to build our HMM Profiles based on the annotated sequences as detailed in Cross 

Validation. Lastly, we use the other 10% of our sequences to verify our new HMM Profiles as 

reported in Cross Validation. 

https://github.com/MaudeDavidLab/hmm-project
https://github.com/MaudeDavidLab/hmm-project
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.7ng5s3kz3dg0
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.7z3njlcwwsvd
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.20z2n9i5ff80
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.tbnelgctkr4j
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.tbnelgctkr4j
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.tbnelgctkr4j
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Protein Retrieval  

9,109 protein families were retrieved from GenomeNet Database. From there, the sequences 

within the protein families were filtered out so that they only contained the prokaryotes. Within 

the GenomeNet Database, about one-third to a half of the genes contain a KO annotation19. 

For each protein family, we performed a ten-fold cross validation in order to evaluate our 

model’s performance. To do this, a unique ten percent of sequences were randomly pulled out 

from each protein family at each fold. With the remaining 90% at each fold, we built a 

phylogenetic tree based off of the initial guide tree generated by ClustalO 20. This tree, shown in 

Figure 4, contains both annotated and unannotated KOs. All the unannotated KOs were colored 

in red, while the annotated KOs were uniquely colored depending on the KO. 

KO Annotation Propagation 

For each protein family, the trees generated from the alignment were used to propagate KO 

annotation to the unannotated sequences using the ETE python toolkit21.  The propagation was 

performed by traversing down the tree and looking at each annotated leaf and its unannotated 

children. If the unannotated child’s branch is shorter than the annotated leaf’s branch, the KO 

annotation is propagated to the child. Frequently, at its initial stage, there are many more 

unannotated genes than annotated, as seen on the left of Figure 4. There are two main cases to 

consider:  

Propagation Up/Down the Tree 

The purple sequence in Figure 4 represents K12284 and three red, unannotated branches directly 

below it. Additionally, these three branches are shorter than the annotated branch. Therefore, 

since these three branches match our condition for propagation, these three branches will inherit 

the KO annotation: K12284 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.rioky5j9241d
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.rioky5j9241d
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.rioky5j9241d
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Propagation in between Two Branches  

In another case, there could be unannotated branches that are placed in between two annotated 

branches. For instance, in the case of the green branches in Figure 4, that represent K02656, 

there is a red branch in between these. The longest branch would be looked at first that 

corresponds to aaa_Acav_1461_K02656. Then the first unannotated child sequence will be 

considered: aae_aq_854_no_KO. Since, this unannotated branch is shorter than the annotated 

branch, the KO annotation propagates. The next child branch that is considered is 

aacn_AANUM_0066_K02656. However, since this branch is already annotated the propagation 

from aaa_Acav_1461_K02656 stops and the next annotated branch with child nodes is 

considered. 

The right of Figure 4 shows 2 instances of propagation taking place based on the two 

cases described above. In this way, we are left with fewer unannotated sequences than when we 

started, as seen on the right. 

 

Subset of 24 sequences from the TPR_21 protein family using the initial guide tree built by ClustalO. The left panel 

represents the tree before propagation of the unannotated KO sequences and the right after propagation. 

 

Figure 5: Before and After Annotation Propagation 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.rioky5j9241d
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.rioky5j9241d
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Sequence Clustering for HMM Building 

At this point, after propagating the known KO’s to the unannotated sequences, the next step 

involves building an HMM profile to represent each of these KOs. As shown in Figure 5, the 

tree is broken up into separate clusters based on the KO annotation. Since the tree Figure 5 only 

contains three KOs, K02656, K12284 and K03088, only two HMM Profiles would be built.  The 

sequences in the tree without a KO annotation are ignored as their representation is unknown. 

The size of the clusters range in the amount of sequences they hold. In order to build a 

representative HMM profile, a threshold was placed so that a profile was only built if the KO 

cluster contained at least five sequences. The results of this are further discussed in the 

discussion section.  

After the formation of clusters of KOs, each cluster was aligned using ClustalW2 version 

2.122. The HMM Profiles were then constructed using the hmmbuild software available within 

HMMER package version 3.1.b1.  

 

Figure 6: HMM Clustering 

The annotated KOs are broken up into their own clusters. For instance, all sequences annotated with K02656 get 

grouped together. 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wdij8x3ettri
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wdij8x3ettri
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Cross Validation 

10% of our protein family’s sequences were set aside to conduct the ten-fold validation. The 

unannotated sequences from the 10% sequence set were then filtered out so that only the 

sequences with the known KOs are included. Using the tool hmmsearch through the HMMER 

package version 3.1.b1, the profiles we created were searched against this filtered 10% sequence 

set. With the hits generated, the results consist of our prediction, based on the HMM Profiles, the 

ground truth, generated through our known 10% set, and the e-value that gives us the level of 

which this similarity occurs. 
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Results  

Propagation Increases the Number of Annotated Sequences by 14% 

As described above, we propagated KO annotation of sequences from the GenomeNet Database, 

by using a guide tree (see K03088, K02656, and K12284 in Figure 4 as an example). 

Prior to propagation, one protein family, TPR_2, contained 49,586 sequences with only 

12,877 of these sequences containing a KO annotation. This means that 36,709 did not contain a 

KO annotation.  

Using a ten-fold cross validation, we pulled a unique 10% out, so that we are only 

working with 90% of the sequences at each fold. This means that at each fold we are working 

with a total of about 44,620 sequences. On average, at each fold, 11,589 sequences were 

annotated with a KO. The results at each fold is shown in Table 1. 

After propagating the known KO annotations to the unannotated sequences, about 6,157 

sequences were annotated. This means that the number of annotated sequences increased by an 

average of 53%. Out of the total subset, the number of annotated sequences increased by an 

average of 13.7%. 

 

 

 

 

 

 

 

 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.rioky5j9241d
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.vbqns591am1z
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Total Annotated Annotated After 

Propagation 
% increase in annotated 

sequences 
% increase in total 

annotated sequences 

44,628 11,542 5,705 49 12.7 

44,628 11,596 5,799 50 13 

44,628 11,549 6,083 53 13.6 

44,628 11,618 6,290 54 14.1 

44,628 11,574 5,979 52 13.4 

44,628 11,569 6,529 56 14.6 

44,628 11,616 6,339 55 14.2 

44,628 11,608 6,636 57 14.7 

44,628 11,606 6,012 52 13.5 

44,622 11,615 6,200 53 13.9 

Table 1 
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Each KO Generates Multiple HMMs 

HMM Profiles were built for each KO at each fold and within every protein family (one KO 

being sometimes present in multiple protein families). Figure 6 shows the number of models 

created per KO for a random set of 100 protein families. In total there were 2,104 unique KOs 

across the 100 protein families. From these KOs, 22,260 models were created. 

 

Figure 7:Models per KO 

 

Overall Model Performance 

The goal of the HMM Models is to correctly label the sequences without a KO annotation. To do 

so, we looked at 100 randomly sampled protein families and the HMM Profiles built from their 

KOs. These HMM Profiles contained the sequences that we annotated using our propagation 

method. Using a 10-fold cross validation approach, we have also set aside 10% of our sequences 

at each fold to align against these HMM Profiles. We subsequently match these sequences with 

known KOs to the corresponding HMM Profile to validate the models. After searching our 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.7hloh3pvv5h2
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known KO sequences from the 10% set against our HMM Profiles, we are able to characterize 

our results in four ways based on the level of similarity defined by the e-value: 

1. True Positive:  Given an e-value below our threshold, our prediction was correct 

2. True Negative: Given an e-value above our threshold, our prediction was correctly wrong 

3. False Positive: Given an e-value below our threshold, our prediction was wrong 

4. False Negative: Given an e-value above our threshold, our prediction was missed  

We focused on reporting: precision and sensitivity, whose box plots can be seen in Figure 7. The 

F1 Score is also included to show our classifier’s performance.  Conceptually, our metrics tells 

us:  

1. Precision - When something was predicted positive, how often was it actually positive? 

2. Sensitivity - From our actual positive data, how often did we predict correctly? 

 

 

Figure 8: Overall performance of HMMs on 11 Randomly Sampled protein families 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wkejypwlkdjr


 

32 

 

Figure 7 shows the performance of 226 HMM models that were built for the KOs of 11 random 

protein families across an e-value threshold with a range of 1e100 to 1e-190. With a more 

stringent threshold (a lower e-value), there is an apparent tradeoff between precision and 

sensitivity. So, with a lower e-value we are able to achieve higher precision but then our 

sensitivity suffers.  

Filtering out KO Models with Low Counts of Sequences 

The propagation step may result in producing clusters of sequences for each KOs with drastically 

variable size. Figure 8 shows the distribution of the number of sequences (x-axis) used for each 

KO model (y-axis). Out of 22,260 HMM Profiles, 3,528 HMM Profiles were built from only two 

sequences. In general, Figure 8 shows that most KO models contain fewer sequences while 

fewer KO models contain a lot of sequences. 

 

Figure 9: Number of Sequences per KO Model 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wkejypwlkdjr
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.gjc6vr7lp1gn
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.gjc6vr7lp1gn
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Total Sequence Number Impacts the Models’ Overall Performance  

Since the number of sequences per KO model can change drastically (see Figure 8), we wanted 

to estimate how the total number of sequences fed into the pipeline would affect the overall 

performance. We used the protein family TPR_21 that contained 21,544 sequences to test this. A 

random 2000 sequences were set aside at the start and 492 of these sequences had KO 

annotations. Using the remaining 19,544 sequences, we started out with a random set of 2,000 

sequences. An HMM Profile was built off of the propagation conducted from this set of 2,000 

sequences. We repeated this process of building a tree, propagating, and generating HMM 

Profile nine more times, each time adding 2,000 more sequences to the mix. 

We used our constant ten percent set that we set aside at the beginning of the process to 

estimate our performance by searching these sequences against our 10 sets of HMM Profiles that 

we continuously added 2,000 sequences to. In this way we are able to gage how our performance 

changes with the inclusion of more sequences. Figure 9 shows how the performance changes 

based on precision, sensitivity, and accuracy.  

2,000 was the fewest amount of sequences, seen in Figure 9 in light blue. In terms of 

sensitivity this set of sequences performed lower than the other. In terms of accuracy, a more 

stringent e-value threshold is necessary for it to perform on par with the other sets of sequences. 

Additionally, about 20,000 sequences was the max number. In terms of precision, it performed 

less well than the other sets; however, in terms of sensitivity, it performed better.  

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.gjc6vr7lp1gn
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wma00jbvziv9
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wma00jbvziv9
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Figure 10: Overall Impact of Number of Sequences on Performance 

Performance Over Selected E-Values 

Based on Figure 9, the performance varies based on the e-value. In order to figure out an ideal e-

value threshold, we looked at three specific e-value points: 1, 1e-40, and 1e-170. We considered 

the same set of sequences and performance as in the previous section and the results could be 

viewed in Figure 10. As previously mentioned, there is a tradeoff between precision and 

sensitivity. Looking at Figure 10, this becomes more apparent as the e-value threshold becomes 

more stringent. 

 Similarly, with a bit more stringent hold starting 1e-40, the sequence set with the least 

amount of sequences, light blue in Figure 10, performs less well in terms of sensitivity in 

comparison to other sets of sequences. 

At the most stringent threshold, 1e-170, the sequence sent with the greatest number of 

sequences, orange in Figure 10, is one better performing sets according to all three metrics.  

  

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wma00jbvziv9
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yang2eyvqiq3
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yang2eyvqiq3
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yang2eyvqiq3
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yang2eyvqiq3
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Figure 11:Overall performance at 3 E-values 

a shows the metrics at an e-value of 1, b at e-value of 1e-40, and c at 1e-170 
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Number of Sequences per Cluster does not Significantly Impact Model’s 

Precision 

Since there is a tradeoff between sensitivity and precision, we wanted to see if we did lean in 

favor of developing precise models, if that would be influenced by the number of sequences in 

the model. Figure 11 shows the precision vs the number of sequences at three e-values: 1, 1e-40, 

and 1e-170 along with the maximum precision achieved at any e-value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The general trend shows that the higher the e-value, the greater the precision. However, 

as the number of sequences in a cluster increases, there does not appear to be a trend between the 

number of sequences and precision.   

Figure 12: Precision vs Number of Sequence per KO 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.p3ojetr7judf
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Additionally, looking at the Spearman Rank Correlation Coefficient, based on the 

average values, there does not appear to be a relationship between the two, as seen in the 

following table: 

 

E-value Average Spearman Correlation Coefficient  Average p-value  

1 0.35 0.37 

1e-40 0.05 0.603 

1e-170 -0.006 0.533 

Table 2 

Shows the Spearman Rank Correlation Coefficient for each of the 3 e-values comparing the number of sequences vs. 

precision 

Refining KO Models with Larger Sequence Cluster 

Figure 8 shows it is seen that the majority of HMM Profiles correspond to a lower number of 

sequences. However, to have a profile built on very few sequences means that these profiles are 

not well characterized as there are not enough sequences present to fully develop the probability 

scores assigned to the alignments. So, we explored the effects of assigning a threshold that HMM 

Profiles may only be built if there are at least five sequences present in the KO cluster. The 

following goes through the effects of this threshold and how that would change our results.  

This does not affect how many sequences are propagated, only how many HMM Models 

are built. As such that would affect the overall performance of our models. 

Number of Models Developed Per KO 

For the same set of 100 random protein sequences as used in Figure 6, the number of HMM 

models per KO were compared, given that now the HMM Profiles can only be generated if they 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.gjc6vr7lp1gn
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.558i4iotrez
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contain at least five sequences. Figure 12 shows the results. In this case, there are only 14,085 

HMM Profiles that represent 1,699 KOs. This means that with the introduction of the threshold, 

8,175 fewer HMM Profiles were generated and 405 fewer KOs were present.  

 

Figure 13: Models per KO with a minimum of 5 sequences 

 

  

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.d9spohk51k74
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Overall Model Performance of Larger Cluster Show More Variation 

between KOs 

 
Figure 14: Overall performance for 11 random protein sequence, only considering at least five sequence for profile 

generation 

Figure 13 shows the performance of the HMM models that were built for the KOs of 11 protein 

families. These are the same protein families that were used in Figure 7. The same observation is 

made that with a tradeoff between precision and sensitivity. However, comparing precision in 

Figure 13 and Figure 7, it can be seen that certain protein families such as letoacylSynt2 

perform more uniformly as the range is smaller. 

 

Impact of Sequence Number on Model Performance 

Overall Impact 

Figure 15 shows the impact the number of sequences now have with the performance metrics. In 

comparison to Figure 9, there are not any apparent differences. The sets of the least amount of 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.8trqxtqz7lk
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wkejypwlkdjr
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.8trqxtqz7lk
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wkejypwlkdjr
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.nmy17q1fhajw
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wma00jbvziv9
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sequences (2,000) and the sets of the greatest amount of sequences (20,000) seem to follow the 

same patterns as shown in Figure 9. 

 
Figure 15: Overall Impact of Number of Sequence on Performance with KOs that contain at least 5 sequences 

 

Precision over Selected E-Values 

Based on Figure 10, we saw that the performance varies based on the number of sequences, as 

the sequence set with the least amount of sequences compared less well than the others in terms 

of sensitivity. We also say that with a stringent threshold, at 1e-170, the sequence set with the 

greatest number of sequences performed the best.  

Figure 16 shows how this performance would change if we limited the HMM Profiles 

generated if at least 5 sequences make up the KO. At a threshold of 1e-40, while the smallest set 

of sequences don’t perform the best in terms of sensitivity and accuracy, they perform better than 

they did in Figure 10.With the most stringent threshold at the e-value of 1e-170, there is not as 

much difference between  Figure 16 and Figure 10. 

  

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wma00jbvziv9
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yang2eyvqiq3
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.imf5m11do18e
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yang2eyvqiq3
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.imf5m11do18e
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.yang2eyvqiq3
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Figure 16: Overall performance at 3 E-values 

a shows the metrics at an e-value of 1, b at e-value of 1e-40, and c at 1e-170. 
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Guide Tree Reliability 

Due to the number of sequences in the protein families and the number of protein families 

themselves, the initial guide trees outputted by ClustalO were used for the propagation. A 

comparison between this initial guide tree and a tree built from a full alignment is done below.  

Using a protein family CPL, which contained 71 sequences, an initial guide tree and a 

full alignment was done through ClustalO. This initial guide tree can be viewed in Appendix 1. 

Using the full alignment, a tree was built and replicated 100 times along with its bootstrap value. 

One instance of this tree with its bootstrapped values can be viewed in Appendix 2.Then using 

CompareToBootstrap.pl (a Fast Tree Comparison Tool), the initial guide tree was compared 

against the bootstrapped tree. This generated a new tree with the initial guide branch lengths and 

new bootstrap values, which can be viewed in Appendix 3. These bootstrap values at each node 

shows the fraction of times that leaves within the nodes is maintained within the 100 replicated 

trees. This process was repeated to compare the initial guide tree to a bootstrapped replicated 500 

times. Figure 18 shows the distributions of the new bootstrapped values after comparing the 

trees. 

 

Figure 17: Compared tree bootstrap value distributions with 500 tree replications 

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.4fzbc4c9860f
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.wngogzgkigm9
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.6yvagl33mw3f
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.9nbjnf28ef7t
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Discussion 

Propagation Control 

When propagating our sequences from a known KO to an unknown KO, it is important to note 

that there is no limitation to how much propagating can take place. If it turns out that there is a 

known KO with 100 unannotated children, these children will be propagated from that one 

known KO. Based on Table 1, the average number of sequences increased by about 53%. We 

want to avoid the case where we are incorrectly annotating KOs. However, we also do not want 

to lose sensitivity by imposing conditions on our propagation. Somewhere in there we need to 

find the balance between control of our propagation and freely annotating. 

Threshold to Use 

E-Value 

For much of the results section, we considered three e-values: 1, 1e-40, and 1e-170. We did this 

to see if there is a threshold we should enforce. There is a really high threshold, 1, which is loose 

as you would expect more sequence hits to generate here, as it also did. At a loose threshold of 1, 

there were a lot of hits, as expected. Similarly, at a stringent threshold of 1e-170, there were less 

hits, again, as expected.  

Through this, we saw that there is a tradeoff between precision and sensitivity based on 

how strict the e-value got. So, if we were to use a lower e-value for our cutoff, the precision will 

perform really well but we will sacrifice sensitivity.  

  

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.vbqns591am1z
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Total Number of Sequences  

A considerable amount of the results went into the effects of imposing a limitation on the number 

of sequences to actually build an HMM Profile from. In our case, we just tested using a threshold 

of 5 sequences, which overall seemed to improve the performance. Further exploration will be 

needed to refine this threshold. By placing this threshold, we are being more selective on the 

HMM Profiles we create, but would potentially waste some of the newly annotated sequences. 

For example,  Figure 12, from a random 100 protein families, we constructed 8,175 fewer HMM 

Profiles and identified 405 fewer KOs. In this case, we could also be losing valuable information 

and annotation. 

Validation 

While the 10-cross validation allowed us to develop these models, we need to identify an 

independent set of sequences in order to make sure our HMM Profiles are effectively predicting 

KO annotation and not overfitting our dataset.  We plan to pull in all sequences from the KEGG 

database, which already contain a KO annotation, and remove all sequences that were used 

during the training set (hoping that KEGG latest update was not yet taken in account by 

PFAM).   

 

  

https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.d9spohk51k74
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Conclusion 

Over 98% of bacteria are uncultivated, meaning there is a lot of information that we do know. 

Our propagation method aims to define this gap by characterizing sequences based on what they 

are similar to. The aligned trees and Profile HMMs are based on the formed protein families and 

the annotated KEGG database. We now are left to develop the thresholds and constraints we use 

in order to develop quality protein annotations and in turn assign some characterization in order 

to improve our understanding of genetic-based biological processes.  
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Appendix 1: Initial Guide Tree built by ClustalO 
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Appendix 2:  One instance of the bootstrapped tree 
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Appendix 3: Compared Tree 
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