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Introduction

Cost decrease and popularization of next generation sequencing (NGS) have led to increasingly
large DNA and RNA sequence datasets. These sequencing technologies can output over one
billion sequencing reads within a span of a few days at a relatively low cost*?. Current methods
available for analyzing these sequences are computationally intensive. Furthermore, 98% of
bacteria are uncultivated, meaning we do not have the information necessary to directly annotate
these sequences.

In most cases, in order to assign a function to a gene, reads need to be first aligned to the
reference genes or genomes 2. To facilitate functional gene annotation, the scientific community
has made several databases available online, which carry protein sequences that have been
characterized and curated to various degrees. The National Center for Biotechnology Information
(NCBI) allows all authors to submit and publish sequences generated from their study, including
unassembled and uncharacterized metagenomes (within their nr database, which paradoxically
stands for “non redundant”), resulting in extremely rich but very poorly functionally
characterized sequences. On the other end of the spectrum, investigators have spent an extensive
amount of time and energy experimentally characterizing enzymatic activities, and databases
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG?) present protein sequences
categorized by their function, the pathway they belongs to as well as the organisms they have
been identified in.

Unfortunately, the number of protein sequences present in this well-curated database is
very low as less than 2% of bacteria have been cultivated *. Furthermore, only a small portion of
the genome has been characterized through direct experiment while the rest has been

characterized through a comparison of sequence similarity, which has also come to be known as
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uncultured genome sequences >°. Subsequently, since we lack cultivated sequence data, we are
also missing key functionalities to assign to sequences and as a result, annotations often suffer.
This project proposes to address this gap by leveraging uncharacterized sequences to
develop enriched Hidden Markov Models (HMMs) profiles. To do so, we will rely on protein
families defined by the PFAM database®®, and develop new models that will refine the functional
annotations to the KEGG Ortholog level. The first part of this thesis will consist in a detailed
bibliography of three current alignment methods: BLAST, BLAT and HMMs. This bibliography
will introduce the rationale that motivates developing new Hidden Markov Models. We then

describe the methodology in section 2 and the results in section 3.

11



Background

Current Annotation Algorithms

As previously mentioned, the growth of NGS has ushered in an increasing supply of protein
sequences. Several algorithms and software tools have been developed to mark specific sequence
features through annotation and detect the similarities between these features through annotation.
There is such a large amount of data stored within these protein sequences that it requires
extensive computing power to analyze them’. The alignment stage alone is crucial to identify
similarity between the sequences; however, due to the large number of combinations, the time
complexity, O(mn), greatly increases as the number of sequences increases’.

There are two types of sequence alignments: Pairwise Sequence Alignment, which
compares a pair of sequences, and Multiple Sequence Alignment, which compares a group.
Pairwise Sequence Alignment can then be further classified into a local or a global sequence
alignment ’. During a global alignment, sequences are lined up end to end in order to detect
similarity. While in a local alignment, subsequence matches are searched for. One of the most
frequented alignment tools, BLAST, performs local alignment and utilizes a heuristic algorithm

to decrease computation time.
Local Alignment Heuristic Algorithm

The precursor to local alignment heuristic algorithms relied upon dynamic programming, which
was computationally intensive especially as the sequences grew in both size and numbers. These
algorithms included the Needleman-Wunsch and Smith-Waterman algorithms®. The algorithms
emphasized similarity by minimizing the evolutionary distance through the focus of the least
costly set of mutations®. However, given the size of databases today, these algorithms are

computationally infeasible. A heuristic alignment algorithm, on the other hand, aims to reduce
12



the computational complexity by approximating the above algorithms, but often sacrifices
sensitivity. BLAST is a widely used software alignment tool that utilizes a heuristic algorithm

and BLAT has since developed upon that algorithm.

BLAST

The Basic Local Alignment Search Tool (BLAST) optimizes speed and performance by using a
heuristic approach that estimates the Smith-Waterman algorithm, an accurate but slow alignment
algorithm®, BLAST utilizes subsequence similarity to find all possible pairs of local segments
whose similarities exceed a certain threshold to then create a similarity score matrix®°. These
similar segment pairs, who exceed the threshold, are called high-scoring segment pairs (HSP),
where the highest scoring pair is the maximal-scoring segment pair (MSP)°. The process BLAST

uses could be visualized in the following three steps®:

(a)

IABCDEFGHIJKLMNOPQRSTUVWXYZ |

|:>
DEF
DPF
(b)
lABCDEFGHIJKLMNOPQRSTWWXYZ |
ABC
ABC ‘DSKOWJJDFKSLMNKDKJDFKKJDFF |
— LMN
OPR [ MSLZMSOWURNFKSADEFAQUAZMSH |
_’ DEK
(c)
[ ABCDWFHHFISLMNKDKIDEHKKIFF |

Figure 1: The three stages of a BLAST alignment

1. Generate Seeds

Part a of Figure 1 shows seeds of length three constructed out of the query sequence. This list of
seeds is then used to identify short matches and is a technique known as seeding. Then using a

scoring matrix, high-scoring matching words are extracted from the word list that score above a
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given threshold °. The use of a threshold here is important to note as at this point speed and
selectivity is valued over sensitivity (i.e. the ability to capture distantly related sequences)®. By
not considering the seeds that score below this threshold, important information that could have
detected similar sequences is lost.

2. Compare Seeds to Database

Part b of Figure 1 shows the seeds compared to the seeds in a sequence database. The sequences
in the database already have their seeds generated and indexed so search time is minimized °.
The goal in this step is to identify exact matches between the words in the database and the
words in the query. These pairs of matches are the high scoring pairs (HSP) mentioned earlier.
Since we are dealing with only high scoring words, found in step 1, the match detection ends up
being limited as identification of sequences with a lower level of similarity is missed.

3. Extend Alignments

At this point the HSP has been located and the goal is now to identify the maximum- scoring
segment pair (MSP). Part ¢ of Figure 1 shows the two HSP matches extended both directions.
The extension occurs until the scores start to decrease . The MSP is then identified as the
highest scores from the entire database °. The limitation in BLAST is that the hits generated are
too selective or too well matched and thus its sensitivity, or ability to identify distant but similar

sequences, is fairly low.
BLAT

Another sequence alignment tool known as the BLAST Like Alignment Tool (BLAT) is similar
to the algorithm used in BLAST; however, in an effort to increase speed, its similarity score is

even lower than that of BLAST 8. This is because the HSPs generated in Part b of Figure 1 are
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achieved through a more stringent threshold of a 98% match 8. This means that fewer sequences
are passed to Part ¢ of Figure 1 and thus fewer MSPs are located ’.

In both cases, BLAT and BLAST, an initial seed is built through the query sequence to
generate the alignments. This is not an effective approach as it becomes too selective at the cost
of sensitivity. Moreover, this seed alignment approach does not factor in the region conservation,
which is key to detecting homology. This is because BLAST and BLAT indexes a large

sequence with little to no curation rather than looking at the protein domains.
Hidden Markov Models

Protein domains and sequence motifs are key to identifying homologous sequences since they
show the level of evolutionary conservation 3. Domains often contain one or more motifs, which
are, loosely, a set of conserved residues that show protein function . Protein sequences can
contain one or more domains, and comparing domains individually is critical during sequence
analysis in order to identify homology between sequences®. Note that similarity and homology
are not the same thing. Similarity will show the level of resemblance between two sequences;
however, homology will show if this similarity results from common ancestors °. Because
BLAST and BLAT do not factor in the domain structure, these algorithms are not efficient in
detecting homologous sequences that do not maintain high sequence similarity.

We need to identify protein domains in order to detect protein function shared through
common ancestors. This can be done through Hidden Markov Models (HMMs), which have
been heavily used in a variety of applications such as speech recognition. HMMs allows us to
create probabilistic models for a system with state changes 1%, The system in this case is the
alignment and the changes correspond to the weights within the alignment that accounts for

modifications such as insertion, deletions, and substitutions.
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/ M2
Start M - M, | . / End

Figure 2: Diagram of the three states

Insertion (1;), Deletion (Dj), and Match (M;) states used to calculate the probabilities of an HMM Profile. T;

represents the Transition Probability from state i to j and Ex represents the Emission Probability of each amino acid.

Calculation

Hidden Markov Models allow us to detect distant homologs by utilizing a probability
distribution to classify sequences based on residue alignments. A probability is assigned to each
column of the alignment based on the frequency of a particular amino acid at that position. This
then gets factored in when assigning an overall score to the sequence. An application of Hidden
Markov Models known as Profile HMM is used to represent multiple sequence alignments with
its corresponding probability scores 2. Another way to describe this is to look if a particular
amino acid is present in all sequences at the same region, the area is considered a conserved
region. During a multiple sequence alignment, these conserved regions of the sequences become
more apparent as a higher number of sequences are aligned.

Profile HMM is especially efficient in detecting distant homologues because it accounts

for insertions and deletions of each column in a multiple sequence alignment **. The probability

16



assigned depends on three states: the match state, the insert state, and the delete state. An
instance of this could be visualized in Figure 2. The insert state (I;) allows for the insertion of a
new, random amino acid that is present in the query sequence 1. Note that this state can
transition back to itself, indicating multiple insertions. The delete state (D;) allows for the
conserved column to be deleted!®. In absence of a delete state and an insert state is the match
state (M;). This occurs when a column of a query and target align, where the amino acid between
the two do not necessarily need to match.

Each of these states has a certain likelihood, known as the transition probability (Ti,;), of
transitioning from state i to state j, as indicated by the arrows in Figure 2. The transition
probabilities are only dependent on what happens in the previous state 3. For instance, the match
state, M1 in Figure 2, has three possible states to transition to: insertion, deletion, or the
following match state, M,. Then the transition probabilities would be captured in a matrix*3:

P = [Tmwi2, Tmim2, Tmipz], where Tmai2 + Tmimze + Tmape = 1.
The emission probability occurs at every match and insertion stage to represent the likelihood of
each of the twenty amino acids appearing. All these states and probabilities are used to build a

Profile HMM to represent the specific characteristics of the sequences.
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Logo Representation
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Figure 3: HMMLogo with Column Probability

Top half is of an HMM Logo created by Skylign=, a web server that builds interactive logos. Bottom is of the amino

acids pictured in column 52 of the top half.

A graphical representation, known as an HMM logo, of a sample Profile HMM is seen in
Figure 3. Each column contains twenty letters that correlates to the twenty amino acids built off
of a basic set of proteins. The original input was a multiple sequence alignment constructed out
of five sequences taken from the zf-CCCH_8 protein family. Here, the alignment information
was used to reveal a stack of letters at each position, where the stack’s height corresponds to that
position’s conservation®. In the case of Figure 3, column 52 would represent the largest
measure of invariance, as the stack height is the largest. The height of the individual letters then

corresponds to the number of occurrences of the letter at that position'*. The largest letter, P,
18
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signifies that that amino acid occurs the most at that position. A closer look of the probabilities
in column 52 is shown in the bottom half of Figure 3. In the HMM logo, the residue
corresponding to P is the largest letter pictured in column 52. Similarly, the probabilities show
that P has the largest probability at 0.728. This means that another sequence with a P in the same
position would have a higher likelihood to be similar to this protein family because it closely
resembles this conserved area. Since Profile HMMs leverage the information stored in a multiple
sequence alignment to assign probabilities at each column, it can better detect distant protein

sequences.

Current Hidden Markov Model Databases

Hidden Markov Models have already been widely applied by the scientific community for
functional annotation, as they focus on the protein domains in order to determine the level of
conservation for specific residues, and therefore allow the identification of distant domains. The
two main HMM databases, Pfam Database®® and TIGRfam Database'®, are detailed below.

PFAM

The Pfam database is a large database of 13,672 protein families composed of alignments
constructed at a very high functional level through Hidden Markov Models®. Moreover, Pfam is
a protein domain database, meaning that the Pfam entries are not protein sequences but rather
alignments of the most conserved domains of related proteins 3. Since Pfam uses protein
domains, which are a set of conserved residues that show protein function, sequence
functionality is preserved within the database . This means that alignments are then based on
these protein domains, or functionalities, rather than three letter seeds that are used with BLAST

and BLAT.
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The first step taken in the construction of a full alignment within a Pfam database is the
creation of a seed alignment. This seed alignment is built off of a representative set of sequences
and then is manually verified ’. Then an HMM Profile is created from the seed alignment.
Lastly, the full alignment is created by aligning members of the Swissprot database to this HMM
Profile ’. To eliminate false positives, two gathering thresholds are put in place, a sequence
threshold and a domain threshold, so that only sequences reaching a high level of similarity are
detected *°. The goal of these gathering thresholds is to minimize false positive matches®. It is
based on the idea that long profiles tend to be generic and thus capture sequences that overlap
between families . The gathering threshold is then meant to exclude these sequences in the
overlap. This is comparable to what is happening in BLAST and BLAT as we are now limiting
the sequences that we are detecting by being too selective. However, in this case we are limiting
sequences that share functionality, whereas with BLAST and BLAT the results only contained

sequences similar to each other based on three letter seeds unrelated to the protein domains.
TIGRFam

TIGRfam is similar to the Pfam database except that it emphasizes protein function whereas
Pfam stresses domain architecture'®. TIGRfam still goes through the process of using seed
alignments to produce HMM Profiles, but it also takes it one step further to generate an equilog
model. Each protein within TIGRfam is considered in terms of its function to see how they differ
from the protein family’s function®®. A protein family is deemed an equilog when all members of
a protein family share the same functionality®. Pfam, on the other hand, was only looking for
similarities in sequences' domains. In this way, TIGRfam would identify fewer protein

similarities than Pfam would?®.
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Project Rational

While both HMM databases developed above allow the detection of distant orthologs, motifs
detected via their pipeline only allow small domains to be identified. As a consequence,
TIGRfam and Pfam allows more sequences to be annotated than heuristic approaches using
whole length sequence alignment. But annotations of those short domains are difficult to
integrate with the metabolic pathways’ ontology available in the literature, such as MetaCyc or
the KEGG database!®

Furthermore, in order to find conserved domain within the protein considered, both
HMM databases use a seed alignment, where they remove any sequences that are not properly
aligned with their bulk of sequences. This first step results in critical loss of information as
sequences are thrown away when a perfect match is not found.

This project proposes to address some of these limitations by developing new HMMs
using the KEGG database'® framework, which would allow us to refine the annotation of HMMs
at the level of KEGG orthologs, and make distant ortholog detection compatible with multiple
visualization and analytics pathways analytics softwares'®. The KEGG database characterizes its
sequences with a KO identifier used to group by functionality and aimed to detect orthologs
between different organisms.

As mentioned previously, it is important to note that only about a third to a half of the
characterized genomes have KO annotations®®. To overcome this challenge, we propose here to
propagate KO annotations to unannotated sequences using a ClustalO alignment. Then, we will
construct an HMM Profile per KO using more complete sequence alignments generated from the
annotation propagation. The resulting HMM Profiles will then take into account a more diverse

set of sequences.
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We conducted an evaluation of our newly generated HMMs using a ten-fold cross-
validation approach to see how well we were able to predict the KO annotations of our
unannotated sequences. Through this validation, we set aside a unique 10% set at each fold. This
10% set contains both annotated and unannotated sequences. We compare our profiles against
the annotated sequences of this set to see if our profiles are linking to the correct KO

annotations.
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Methods

The code used to generate this pipeline is available at: https://github.com/MaudeDavidLab/hmm-
project.
Overview Diagram

The overall methodology can be visualized in Figure 19.

. . 09 in famili
Protein Famlly ) 9109 protein families
/ \ Z

90% of Pfam 10% of Pfam
Multiple Sequence = Cross Validate
Alignment against generated
[T p— profiles
i =

CLUSTAL

|

"| Propagation

HMM
:HMMER Profiles

= Clusters __ I i

Ko1 || ko2 |

Figure 4: Overview of Methods

The first part of our pipeline involved fetching protein sequences from the GenomeNet
DB, described in detail in the section Protein Retrieval. The we separate our sequences so that
we are currently working in 90% of our sequences. Next, we propagate our known KOs to
unannotated sequences as explained in KO Annotation Propagation. Following that, we are
able to build our HMM Profiles based on the annotated sequences as detailed in Cross
Validation. Lastly, we use the other 10% of our sequences to verify our new HMM Profiles as

reported in Cross Validation.
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Protein Retrieval

9,109 protein families were retrieved from GenomeNet Database. From there, the sequences
within the protein families were filtered out so that they only contained the prokaryotes. Within
the GenomeNet Database, about one-third to a half of the genes contain a KO annotation®®.

For each protein family, we performed a ten-fold cross validation in order to evaluate our
model’s performance. To do this, a unique ten percent of sequences were randomly pulled out
from each protein family at each fold. With the remaining 90% at each fold, we built a
phylogenetic tree based off of the initial guide tree generated by ClustalO ?°. This tree, shown in
Figure 4, contains both annotated and unannotated KOs. All the unannotated KOs were colored

in red, while the annotated KOs were uniquely colored depending on the KO.
KO Annotation Propagation

For each protein family, the trees generated from the alignment were used to propagate KO
annotation to the unannotated sequences using the ETE python toolkit?. The propagation was
performed by traversing down the tree and looking at each annotated leaf and its unannotated
children. If the unannotated child’s branch is shorter than the annotated leaf’s branch, the KO
annotation is propagated to the child. Frequently, at its initial stage, there are many more
unannotated genes than annotated, as seen on the left of Figure 4. There are two main cases to
consider:

Propagation Up/Down the Tree

The purple sequence in Figure 4 represents K12284 and three red, unannotated branches directly
below it. Additionally, these three branches are shorter than the annotated branch. Therefore,
since these three branches match our condition for propagation, these three branches will inherit

the KO annotation: K12284
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Propagation in between Two Branches

In another case, there could be unannotated branches that are placed in between two annotated
branches. For instance, in the case of the green branches in Figure 4, that represent K02656,
there is a red branch in between these. The longest branch would be looked at first that
corresponds to aaa_Acav_1461 K02656. Then the first unannotated child sequence will be
considered: aae_aq_854 no_KO. Since, this unannotated branch is shorter than the annotated
branch, the KO annotation propagates. The next child branch that is considered is
aach_ AANUM_0066 _K02656. However, since this branch is already annotated the propagation
from aaa_Acav_1461 K02656 stops and the next annotated branch with child nodes is
considered.

The right of Figure 4 shows 2 instances of propagation taking place based on the two
cases described above. In this way, we are left with fewer unannotated sequences than when we

started, as seen on the right.

aact_ACTT5_02150_no_KO
aalg_AREALGSMST 02627 no kO
aaa_Acav_1461_K02656 i
aae_aq_854.00_KO
aacn_AANUM_0066_K02656.
aah_CF65 00101 K02656
ask AA2016_3310_no KO
aaa_Acav_1827_no_KO 15
aa]_BOO57_18970_no_KO
aal_£P13_06780_no_KO

33CLACTT5_02150_n0_KD
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aak_AA2016 3310 1o KO
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a] 80057 18970 1o K0
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aab_A4R43_04270_P K128

aab_AdR43 04270 no_KO
ab_A4R43_29265_no_KO aab A4R43 29265 P K1208¢
b_#4R43_36395_10_KO El aab_A4R43 36585_P 12284

a2j_80Q57_01860 K12284 44]_BOOST_01860_K12284

aah A4R43 08760 K03088 aah_Add3_0BTE0_K03086
aak_AAZ016 0487 K03088 azk_AA2016_0497_KD3088

aal AARI_13230 o KO

a2 B00ST_15155_1o_KO
aace_ADUS2_12435_No_KO
aab_AdR43_23930 no_KO

aah A4R43_40040_n0_KO
a3CtACTTS 03435 no_KO

ai_AARI_13230_no_KO
&3] BOQS7_15155_no_kO 5
aace_AOU92_12435_no_KO
aab_A4R43_23930_no KO

aab_A4R43_20040_1o_KO
28t ACTI5_03435_no_KO

iR

3] BOQ57_08635_no_KO ki aaj_BOQS57_08635_no_KO
aal_EP13 12940 no_KO aal_EP13_12940_n0 K0
00 01 02 03 04 05 06 0o 01 02 03 04 05 06
branch length branch length

Figure 5: Before and After Annotation Propagation

Subset of 24 sequences from the TPR_21 protein family using the initial guide tree built by ClustalO. The left panel

represents the tree before propagation of the unannotated KO sequences and the right after propagation.
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Sequence Clustering for HMM Building

At this point, after propagating the known KO’s to the unannotated sequences, the next step
involves building an HMM profile to represent each of these KOs. As shown in Figure 5, the
tree is broken up into separate clusters based on the KO annotation. Since the tree Figure 5 only
contains three KOs, K02656, K12284 and K03088, only two HMM Profiles would be built. The
sequences in the tree without a KO annotation are ignored as their representation is unknown.
The size of the clusters range in the amount of sequences they hold. In order to build a
representative HMM profile, a threshold was placed so that a profile was only built if the KO
cluster contained at least five sequences. The results of this are further discussed in the
discussion section.

After the formation of clusters of KOs, each cluster was aligned using ClustalW2 version
2.1%2. The HMM Profiles were then constructed using the hmmbuild software available within

HMMER package version 3.1.b1.

q aact ACT75_02150_n0_KO
aalg AREALGSMST 02627 no KO
( a2a_Acav_1461 K02656
a3e_30_854_ —p
[~ 2acn_AANUM_0066_K02656 ’
L aah_CF65_ 00101 K02656
aak_AA2016_3310_no_KO

aaa Acav_1827_10_KO
22]_B0S7_18970_no_KO
2al EP13 06780 no KO

15 -I
aab_A4R43_04270_P K1228
aab_A4R43 29265 _P K122 e
2 aab A4R43_36595_P _K12284
aa] B0QS7 01860 K12284
W
23K AR2016 0497 K03088
aai_AARI_13230_n0_KO
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branch length

Figure 6: HMM Clustering
The annotated KOs are broken up into their own clusters. For instance, all sequences annotated with K02656 get

grouped together.
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Cross Validation
10% of our protein family’s sequences were set aside to conduct the ten-fold validation. The
unannotated sequences from the 10% sequence set were then filtered out so that only the
sequences with the known KOs are included. Using the tool hmmsearch through the HMMER
package version 3.1.b1, the profiles we created were searched against this filtered 10% sequence
set. With the hits generated, the results consist of our prediction, based on the HMM Profiles, the
ground truth, generated through our known 10% set, and the e-value that gives us the level of

which this similarity occurs.

27



Results

Propagation Increases the Number of Annotated Sequences by 14%

As described above, we propagated KO annotation of sequences from the GenomeNet Database,
by using a guide tree (see K03088, K02656, and K12284 in Figure 4 as an example).

Prior to propagation, one protein family, TPR_2, contained 49,586 sequences with only
12,877 of these sequences containing a KO annotation. This means that 36,709 did not contain a
KO annotation.

Using a ten-fold cross validation, we pulled a unique 10% out, so that we are only
working with 90% of the sequences at each fold. This means that at each fold we are working
with a total of about 44,620 sequences. On average, at each fold, 11,589 sequences were
annotated with a KO. The results at each fold is shown in Table 1.

After propagating the known KO annotations to the unannotated sequences, about 6,157
sequences were annotated. This means that the number of annotated sequences increased by an
average of 53%. Out of the total subset, the number of annotated sequences increased by an

average of 13.7%.
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Total | Annotated Annotated After % increase in annotated % increase in total
Propagation sequences annotated sequences
44,628 | 11,542 5,705 49 12.7
44,628 [ 11,596 5,799 50 13
44,628 [ 11,549 6,083 53 13.6
44,628 | 11,618 6,290 54 14.1
44628 [ 11,574 5,979 52 134
44,628 [ 11,569 6,529 56 14.6
44,628 [ 11,616 6,339 55 14.2
44,628 [ 11,608 6,636 57 14.7
44,628 [ 11,606 6,012 52 135
44,622 | 11,615 6,200 53 13.9
Table 1
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Each KO Generates Multiple HMMs

HMM Profiles were built for each KO at each fold and within every protein family (one KO
being sometimes present in multiple protein families). Figure 6 shows the number of models
created per KO for a random set of 100 protein families. In total there were 2,104 unique KOs

across the 100 protein families. From these KOs, 22,260 models were created.

Number of Models per KO
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Figure 7:Models per KO

Overall Model Performance

The goal of the HMM Models is to correctly label the sequences without a KO annotation. To do
so, we looked at 100 randomly sampled protein families and the HMM Profiles built from their
KOs. These HMM Profiles contained the sequences that we annotated using our propagation
method. Using a 10-fold cross validation approach, we have also set aside 10% of our sequences
at each fold to align against these HMM Profiles. We subsequently match these sequences with

known KOs to the corresponding HMM Profile to validate the models. After searching our
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known KO sequences from the 10% set against our HMM Profiles, we are able to characterize
our results in four ways based on the level of similarity defined by the e-value:

1. True Positive: Given an e-value below our threshold, our prediction was correct

2. True Negative: Given an e-value above our threshold, our prediction was correctly wrong

3. False Positive: Given an e-value below our threshold, our prediction was wrong

4. False Negative: Given an e-value above our threshold, our prediction was missed
We focused on reporting: precision and sensitivity, whose box plots can be seen in Figure 7. The
F1 Score is also included to show our classifier’s performance. Conceptually, our metrics tells
us:

1. Precision - When something was predicted positive, how often was it actually positive?

2. Sensitivity - From our actual positive data, how often did we predict correctly?
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Figure 8: Overall performance of HMMs on 11 Randomly Sampled protein families
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Figure 7 shows the performance of 226 HMM models that were built for the KOs of 11 random
protein families across an e-value threshold with a range of 1100 to 1e-190. With a more
stringent threshold (a lower e-value), there is an apparent tradeoff between precision and
sensitivity. So, with a lower e-value we are able to achieve higher precision but then our
sensitivity suffers.

Filtering out KO Models with Low Counts of Sequences
The propagation step may result in producing clusters of sequences for each KOs with drastically
variable size. Figure 8 shows the distribution of the number of sequences (x-axis) used for each
KO model (y-axis). Out of 22,260 HMM Profiles, 3,528 HMM Profiles were built from only two
sequences. In general, Figure 8 shows that most KO models contain fewer sequences while
fewer KO models contain a lot of sequences.
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Figure 9: Number of Sequences per KO Model
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Total Sequence Number Impacts the Models’ Overall Performance

Since the number of sequences per KO model can change drastically (see Figure 8), we wanted
to estimate how the total number of sequences fed into the pipeline would affect the overall
performance. We used the protein family TPR_21 that contained 21,544 sequences to test this. A
random 2000 sequences were set aside at the start and 492 of these sequences had KO
annotations. Using the remaining 19,544 sequences, we started out with a random set of 2,000
sequences. An HMM Profile was built off of the propagation conducted from this set of 2,000
sequences. We repeated this process of building a tree, propagating, and generating HMM
Profile nine more times, each time adding 2,000 more sequences to the mix.

We used our constant ten percent set that we set aside at the beginning of the process to
estimate our performance by searching these sequences against our 10 sets of HMM Profiles that
we continuously added 2,000 sequences to. In this way we are able to gage how our performance
changes with the inclusion of more sequences. Figure 9 shows how the performance changes
based on precision, sensitivity, and accuracy.

2,000 was the fewest amount of sequences, seen in Figure 9 in light blue. In terms of
sensitivity this set of sequences performed lower than the other. In terms of accuracy, a more
stringent e-value threshold is necessary for it to perform on par with the other sets of sequences.
Additionally, about 20,000 sequences was the max number. In terms of precision, it performed

less well than the other sets; however, in terms of sensitivity, it performed better.
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Figure 10: Overall Impact of Number of Sequences on Performance

Performance Over Selected E-Values
Based on Figure 9, the performance varies based on the e-value. In order to figure out an ideal e-
value threshold, we looked at three specific e-value points: 1, 1e-40, and 1e-170. We considered
the same set of sequences and performance as in the previous section and the results could be
viewed in Figure 10. As previously mentioned, there is a tradeoff between precision and
sensitivity. Looking at Figure 10, this becomes more apparent as the e-value threshold becomes
more stringent.

Similarly, with a bit more stringent hold starting 1e-40, the sequence set with the least
amount of sequences, light blue in Figure 10, performs less well in terms of sensitivity in
comparison to other sets of sequences.

At the most stringent threshold, 1e-170, the sequence sent with the greatest number of

sequences, orange in Figure 10, is one better performing sets according to all three metrics.
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Figure 11:Overall performance at 3 E-values

a shows the metrics at an e-value of 1, b at e-value of 1e-40, and ¢ at 1e-170



Number of Sequences per Cluster does not Significantly Impact Model’s

Precision

Since there is a tradeoff between sensitivity and precision, we wanted to see if we did lean in

favor of developing precise models, if that would be influenced by the number of sequences in

the model. Figure 11 shows the precision vs the number of sequences at three e-values: 1, 1e-40,

and 1e-170 along with the maximum precision achieved at any e-value.
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Figure 12: Precision vs Number of Sequence per KO

The general trend shows that the higher the e-value, the greater the precision. However,

as the number of sequences in a cluster increases, there does not appear to be a trend between the

number of sequences and precision.
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Additionally, looking at the Spearman Rank Correlation Coefficient, based on the
average values, there does not appear to be a relationship between the two, as seen in the

following table:

E-value Average Spearman Correlation Coefficient Average p-value
1 0.35 0.37
le-40 0.05 0.603
le-170 -0.006 0.533
Table 2

Shows the Spearman Rank Correlation Coefficient for each of the 3 e-values comparing the number of sequences vs.

precision
Refining KO Models with Larger Sequence Cluster

Figure 8 shows it is seen that the majority of HMM Profiles correspond to a lower number of
sequences. However, to have a profile built on very few sequences means that these profiles are
not well characterized as there are not enough sequences present to fully develop the probability
scores assigned to the alignments. So, we explored the effects of assigning a threshold that HMM
Profiles may only be built if there are at least five sequences present in the KO cluster. The
following goes through the effects of this threshold and how that would change our results.

This does not affect how many sequences are propagated, only how many HMM Models
are built. As such that would affect the overall performance of our models.

Number of Models Developed Per KO

For the same set of 100 random protein sequences as used in Figure 6, the number of HMM

models per KO were compared, given that now the HMM Profiles can only be generated if they

37


https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.gjc6vr7lp1gn
https://docs.google.com/document/d/1L_Cut-5v0nAAscNCg7_fX-esH8UNJKxg1TkHKr5OukY/edit#heading=h.558i4iotrez

contain at least five sequences. Figure 12 shows the results. In this case, there are only 14,085

HMM Profiles that represent 1,699 KOs. This means that with the introduction of the threshold,

8,175 fewer HMM Profiles were generated and 405 fewer KOs were present.

Number of KO Models

Number of Models per KO (with a threshold of 5)
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Figure 13: Models per KO with a minimum of 5 sequences
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Overall Model Performance of Larger Cluster Show More Variation

between KOs
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Figure' 14: Overall performance for 11 random protein sequence, only considering at least five sequence for profile

generation

Figure 13 shows the performance of the HMM models that were built for the KOs of 11 protein

families. These are the same protein families that were used in Figure 7. The same observation is

made that with a tradeoff between precision and sensitivity. However, comparing precision in

Figure 13 and Figure 7, it can be seen that certain protein families such as letoacylSynt2

perform more uniformly as the range is smaller.

Impact of Sequence Number on Model Performance

Overall Impact

Figure 15 shows the impact the number of sequences now have with the performance metrics. In

comparison to Figure 9, there are not any apparent differences. The sets of the least amount of
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sequences (2,000) and the sets of the greatest amount of sequences (20,000) seem to follow the

same patterns as shown in Figure 9.
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Figure 15: Overall Impact of Number of Sequence on Performance with KOs that contain at least 5 sequences

Precision over Selected E-Values

Based on Figure 10, we saw that the performance varies based on the number of sequences, as
the sequence set with the least amount of sequences compared less well than the others in terms
of sensitivity. We also say that with a stringent threshold, at 1e-170, the sequence set with the
greatest number of sequences performed the best.

Figure 16 shows how this performance would change if we limited the HMM Profiles
generated if at least 5 sequences make up the KO. At a threshold of 1e-40, while the smallest set
of sequences don’t perform the best in terms of sensitivity and accuracy, they perform better than
they did in Figure 10.With the most stringent threshold at the e-value of 1e-170, there is not as

much difference between Figure 16 and Figure 10.
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Figure 16: Overall performance at 3 E-values

a shows the metrics at an e-value of 1, b at e-value of 1e-40, and c at 1e-170.



Guide Tree Reliability

Due to the number of sequences in the protein families and the number of protein families
themselves, the initial guide trees outputted by ClustalO were used for the propagation. A
comparison between this initial guide tree and a tree built from a full alignment is done below.

Using a protein family CPL, which contained 71 sequences, an initial guide tree and a
full alignment was done through ClustalO. This initial guide tree can be viewed in Appendix 1.
Using the full alignment, a tree was built and replicated 100 times along with its bootstrap value.
One instance of this tree with its bootstrapped values can be viewed in Appendix 2.Then using
CompareToBootstrap.pl (a Fast Tree Comparison Tool), the initial guide tree was compared
against the bootstrapped tree. This generated a new tree with the initial guide branch lengths and
new bootstrap values, which can be viewed in Appendix 3. These bootstrap values at each node
shows the fraction of times that leaves within the nodes is maintained within the 100 replicated
trees. This process was repeated to compare the initial guide tree to a bootstrapped replicated 500
times. Figure 18 shows the distributions of the new bootstrapped values after comparing the
trees.

Average Bootstrap Value: 0.3026086956521739

Occurance
Pt
(=]

00 0z 04 06 0.8 10
Bootstrap Value

Figure 17: Compared tree bootstrap value distributions with 500 tree replications
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Discussion

Propagation Control

When propagating our sequences from a known KO to an unknown KO, it is important to note
that there is no limitation to how much propagating can take place. If it turns out that there is a
known KO with 100 unannotated children, these children will be propagated from that one
known KO. Based on Table 1, the average number of sequences increased by about 53%. We
want to avoid the case where we are incorrectly annotating KOs. However, we also do not want
to lose sensitivity by imposing conditions on our propagation. Somewhere in there we need to

find the balance between control of our propagation and freely annotating.

Threshold to Use

E-Value

For much of the results section, we considered three e-values: 1, 1e-40, and 1e-170. We did this

to see if there is a threshold we should enforce. There is a really high threshold, 1, which is loose
as you would expect more sequence hits to generate here, as it also did. At a loose threshold of 1,
there were a lot of hits, as expected. Similarly, at a stringent threshold of 1e-170, there were less

hits, again, as expected.

Through this, we saw that there is a tradeoff between precision and sensitivity based on
how strict the e-value got. So, if we were to use a lower e-value for our cutoff, the precision will

perform really well but we will sacrifice sensitivity.
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Total Number of Sequences

A considerable amount of the results went into the effects of imposing a limitation on the number
of sequences to actually build an HMM Profile from. In our case, we just tested using a threshold
of 5 sequences, which overall seemed to improve the performance. Further exploration will be
needed to refine this threshold. By placing this threshold, we are being more selective on the
HMM Profiles we create, but would potentially waste some of the newly annotated sequences.
For example, Figure 12, from a random 100 protein families, we constructed 8,175 fewer HMM
Profiles and identified 405 fewer KOs. In this case, we could also be losing valuable information

and annotation.

Validation

While the 10-cross validation allowed us to develop these models, we need to identify an
independent set of sequences in order to make sure our HMM Profiles are effectively predicting
KO annotation and not overfitting our dataset. We plan to pull in all sequences from the KEGG
database, which already contain a KO annotation, and remove all sequences that were used
during the training set (hoping that KEGG latest update was not yet taken in account by

PFAM).
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Conclusion

Over 98% of bacteria are uncultivated, meaning there is a lot of information that we do know.

Our propagation method aims to define this gap by characterizing sequences based on what they
are similar to. The aligned trees and Profile HMMs are based on the formed protein families and
the annotated KEGG database. We now are left to develop the thresholds and constraints we use
in order to develop quality protein annotations and in turn assign some characterization in order

to improve our understanding of genetic-based biological processes.
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Appendix 1: Initial Guide Tree built by ClustalO
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| boachovatus 03031 no KO
A 0b§aegcl\4V03 17695 no KO
T beogcBEH 10565 K21138
0.41 —— bcwgcQ7M 1236 no KO
E{csgvgcQ7M 1340 no KO
avagcAva 0250 no KO
’bhlchache 1601 no KO
- bsagcBacsa 1705 no KO
axigcAXY 08590 no KO
5 NaﬂgcAﬂv 2005 no KO
anmchFC28 715 K03406
o ’?nlchFCZS 911 K03406
brcgcBCCGELA0O1 08745 no KO
beogcBEH 13120 no KO
azogcazu(M37 KO1744

uf’mom?m-"m?mpmf’m
8g8F8g8T8

n O

m.OumF’umP
8 8!

0.32

0.06

0.1}

0.

0.20

0.1

0.34

0.0

- aoagcdqs 0448 KO1744
attgcAMQzS 00370 KO1679
advchJ533 09440 KO1679

- alagcBFGS52 10100 K01679
0.07
—

253

Appendix 2: One instance of the bootstrapped tree
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. Ugbaagc\xﬂs 06650 K02167

. DﬁibabngJABOﬂS 01042 K02167
abadgeABD1 08810 K02167
abajgcBJABOBES 01038 KO2167

0.p8
abalgcABLAC 16950 KO2167

E:sgxbaugc\}(si 00890 K02167
| 80azgeP795 13065 K02167
| FBABBFA 02650 K02167
)| AbegeACICU 00890 K02167
| abhgctza 1227 Koz1e7
2bigeBIABOT104 01024 KO2167
| kgl 00 04670 Ko2167
abrgcABST 1004 KO2167
= | abrgcABT. 02882 K02167
oo AowgeBLOT 11350 K02167
| abvacaBavE2886 Ko2167
8 | | abzgcABZJ 01030 K02167

-

0.0

[

S8

0.43 |ﬁlcbgcA‘\S 0928 K02167
! anagcRR32 13500 K02167
*lar algeBUMBB 04455 KO2167
0.00) 1accchDGl 000206 K0O2167
) fpnacl‘!gcAULk 14715 KO2167
0.0 alegeOTEC02 14240 KO2167

100 ~ aqbgcD1818 14505 K02341

0.3

0.05
aqdgeD 1816 16350 K02341
bhugebhn 11023 no KO

0.05

0.42
bhangeCGCE3 14305 no KO

9% o auegcCHO00 05595 KO2021
0.14 bkogcCKF48 06155 K02031

.30
aocgcAocu 04350 K02004

10 , afggeAFULGI 00007010 K02470

J .42 ‘.L‘afugr‘AF 0621 K03470
aeugcACEE 03710 K0O966T
aocgcAocu 08680 no KO
bbewgcBBEY 2169 no KO
bbegcBBRA47 07490 no KO

alpgel PB137 12075 no KO

0.43

beogcBEH 08230 K09684

0.43
bifgcN288 03715 no KO

0.4
100 ; bmeggeBG04 3901 no KO

0.44 gmegchGM §735no KO

0.0
bpkgcBBK 2308 no KO
buygeDB8S85 14500 KO3770

afugcAF 2248 no KO

bpwgcWESE 2184 K01619

achbgcDVB37 11210 no KO

apacgeSTS 15155 K02050
% advgeDJ533 09440 KO1679
{g alageBFGS2 10100 KO1679
0 —5;— attgcAMQ28 00370 K1679
0.2 " i0o , avagedas 0448 KO1744
0.29 C‘]Ezugcazoo‘!il? KO1744
beogeBEH 13120 no KO

aflgeAflv 2005 no KO

m% QanlchFCzS 911 K03406
0.14 B JGanmchl—CZS 715 K03406
axdgeAXY 08590 no KO

bregcBCCGELAQQ1 08745 no KO

g
Sl %
FIE

auigcAPTE2 01405 no KO
bpyrgcABDOS 05810 no KO

bsafgeBSLO56 08865 no KO

beogcBEH 10565 K21138

99 —————— bhigcBache 1601 no KO

0.3 bsagcBacsa 1705 no KO
8 bewgeQTM 1236 no KO

bewgeQ7M 1340 no KO

avagcAva 0250 no KO

0.41
8z [P:aegcl\wua 17695 no KO

99 ngboachwalus 03031 no KO

0.3 hog,| BihgcBT 2677 no KO

003 bthageBtheta7330 00120 no KO

Appendix 3: Compared Tree
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