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abstract: Recent comparative studies across sex-changing animals
have found that the relative size and age at sex change are strikingly
invariant. In particular, 91%–97% of the variation in size at sex
change across species can be explained by the simple rule that in-
dividuals change sex when they reach 72% of their maximum body
size. However, this degree of invariance is surprising and has proved
controversial. In particular, it is not clear why this result should hold,
given that there is considerable biological variation across species in
factors that can influence the evolutionarily stable timing of sex
change. Our overall aim here is to explain this result and determine
the implications for other life-history variables. Specifically, we use
a combination of approaches to formalize and make explicit previous
analytical theory in this area, examine the robustness of the empirical
invariance result, and carry out sensitivity analyses to determine what
the empirical data imply about the mean value and variation in
several key life-history variables.
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Sex change occurs in a variety of animals, including fish,
echinoderms, crustaceans, mollusks, and polychaete
worms (Charnov 1982b; Policansky 1982; Allsop and West
2004b). Evolutionary theory suggests that sex change is
favored when the reproductive success varies with age or
size and the relationship differs between the sexes. In this
case, selection favors a strategy where individuals start as
the sex whose fitness increases more slowly with age and
then change to the other sex at a later stage (Ghiselin 1969;
Leigh et al. 1976; Charnov 1982b; Warner 1988a, 1988b).
Despite considerable differences in details across species,
this basic idea is well established and has been widely
applied to numerous animals and plants.

A recent development in the field of sex change has
involved a dimensionless approach. Charnov and Skúla-
dóttir (2000) pointed out that predictions for the evolu-
tionarily stable (Maynard Smith and Price 1973) size or
age at sex change could be expressed in terms of several
dimensionless quantities. Their results depend upon the
von Bertalanffy (1938) growth coefficient (k), the adult
instantaneous mortality rate (M), the age at first breeding
(a), and the exponent (d) relating male size to fecundity
(according to the power law, ); defini-dfecundity ∝ size
tions of key notation are given in table 1. Specifically, the
dimensionless values k/M, aM, and d are of interest. Char-
nov and Skúladóttir (2000) showed that populations/spe-
cies with the same values of these dimensionless quantities
are predicted to have the same relative size at sex change,
given by size at sex size ( ); thechange/maximum L /L50 max

same relative age at sex change, given by age at sex
at first breeding (t/a); and the same breedingchange/age

sex ratio, defined as the proportion of breeders that are
male. Several studies have suggested that aM and k/M can
be invariant within and even across taxa (Charnov 1993;
Gemmill et al. 1999). Consequently, invariant relative size
and age at sex change are predicted whenever d is also
invariant.

It could be expected that d would be roughly invariant
within species or across closely related species sharing a
similar life history. Consistent with this, an invariant rel-
ative size at sex change has been observed across popu-
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Table 1: Key notation used in this article

Symbol Definition

a Age at maturity
t Age at sex change
tv Variant age at sex change
tr Resident age at sex change
t∗ Evolutionarily stable strategy age at sex change
k von Bertalanffy growth coefficient
M Instantaneous adult mortality rate
d, dmale Male fecundity exponent
dfemale Female fecundity exponent
d1, d2 Fecundity exponent for first and second sex
L Size (body length)
Lmat Size at maturity (smallest observed adult)
L50 Size at sex change (50% of individuals have changed sex)
Lmax Maximum size (largest observed individual)
V Reproductive value
V1, V2 Class reproductive values for first and second sexes
l Asymptotic rate of increase of rare variant sex change strategy
w Fitness, that which is maximized by selection
S1, S2 Reproductive success through functioning as first and second sex
p Probability of survival
Q1, Q2 Instantaneous reproductive rate for first and second sex
N1, N2 Number of breeders of first and second sex
Nmale, Nfemale Number of breeding males and breeding females
F Proportion of females among breeders
j, jX Standard deviation, standard deviation of X
U[zmin, zmax] Continuous uniform distribution over interval zmin to zmax

lations of the shrimp Pandalus borealis in the waters off
Iceland (Skúladóttir and Petursson 1999; Charnov and
Skúladóttir 2000). However, the invariant relationship also
holds across species. The relative size and age at sex change
have been found to be invariant across fish species (Allsop
and West 2003b) and even across all sex-changing animals
(including data from 77 species of fish, echinoderms, crus-
taceans, and mollusks; Allsop and West 2003a). Specifi-
cally, 91%–97% of the variation in size at sex change across
species can be explained by the rule that species change
sex at 72% of their maximum size. This result holds despite
huge variation in size and mating system across species,
from a 2-mm crustacean to a 1.5-m fish (fig. 1).

This extent of invariance in the relative size at sex change
across species was relatively surprising and has proved
controversial (Allsop and West 2004a; Buston et al. 2004;
Millius 2004). The main reason for this is that there is
considerable variation across species in factors that could
influence the evolutionarily stable timing of sex change,
particularly the following: First, sex change is from male
to female (protandrous) in some species, female to male
(protogynous) in others, and even in both directions in
some (Nakashima et al. 1995). Given that female fertility
is likely to be proportional to body size cubed (L3; Charnov
1979, 1993), for sex change to be favored there must be

variation in d between protandrous ( ) and protogy-d ! 3
nous ( ) species. Second, in some species there is ad 1 3
fraction of individuals who mature early as the second sex,
which is likely to correlate with or cause variation in d

(Charnov 1982a, 1982b; Warner 1984; Allsop and West
2004b, 2004c). Third, there is huge variation in mating
system across species, which could translate into variation
in d. For example, within just the fish species, the range
of mating systems includes harems, leks, monandry, and
aggregation spawners (Warner 1984; Allsop and West
2003b). Fourth, the cues and mechanisms involved in sex
change vary across species, depending on factors such as
social environment, size, and parasitism (Shapiro 1980,
1981; Shapiro and Lubbock 1980; Scharer and Vizoso
2003). Fifth, while aM is likely to be invariant across all
sex changers, with a value of approximately 2, it unclear
whether k/M is similarly invariant (Charnov and Berrigan
1990; Charnov 1993; Gemmill et al. 1999).

Our overall aim here is to determine both how the
invariant results can hold in the face of so much biological
variation across species and what the implications for other
life-history variables are. Our article is divided into three
sections. In the first section, we test the underlying gen-
erality of the sex change invariant predictions. Specifically,
we provide a more explicit proof of Charnov and Skúla-
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Figure 1: Log-log plot of L50 versus Lmax for 77 species of sex-changing
animals with species as independent data points. Data are split by taxa:
Echinodermata (asterisks), Crustacea (circles), Chordata (diamonds), and
Mollusca (crosses). The regression has a slope fixed at 1, giving an intercept
of (95% confidence interval [CI]) and . The or-2�0.32 � 0.05 r p 0.97
dinary least squares slope is (95% CI), with an intercept of1.05 � 0.03

(95% CI) and . The mean relative size at sex2�0.55 � 0.07 r p 0.98
change ( ) is 0.72 (95% ), implying that individualsL /L CI p 0.67–0.7750 max

change sex when they reach 72% of their maximum size. Size (L50 and
Lmax) is measured in millimeters before logarithmic transformation.

dóttir’s (2000) invariant predictions and show that the sex
change invariants can also be predicted by an alternative
modeling approach, assuming that sex change occurs in
response to social environment, as is known to occur in
some fish (Shapiro 1981; Warner and Swearer 1991; Allsop
and West 2004c), rather than in response to age or size,
as assumed by Charnov and Skúladóttir.

In the second section, we examine the statistical sig-
nificance of Allsop and West’s (2003a, 2003b) empirical
result showing that the relative size at sex change is in-
variant. Buston et al. (2004; Millius 2004) have criticized
Allsop and West’s analysis and have argued that an alter-
native null model approach based upon randomization
techniques does not support the invariant prediction. We
assess the validity of Buston et al.’s analysis and develop
and test a more appropriate null model. This section quan-
tifies and expands on some issues we have raised in a
previous short comment (Allsop and West 2004a).

In the third section, we carry out a sensitivity analysis
of the Charnov-Skúladóttir model to test how variation
in the key life-history parameters (aM, k/M, and d) in-
fluences the predicted relationship between size at sex

change and maximum size. Specifically, we use the existing
information on aM, k/M, and the relative size at sex
change to estimate d; estimate how variation in aM, k/M,
and d influences the extent and nature of the relative size
at sex change invariant that would be expected; and es-
timate the amount of variation in aM and k/M that is
consistent with the empirical data.

When Is an Invariant Relative Size at
Sex Change Expected?

Formalizing Charnov and Skúladóttir’s
Invariant Predictions

The model of Charnov and Skúladóttir (2000) makes use
of the observation that selection acts as if to maximize the
product of reproductive success through male and female
function (MacArthur 1965; Charnov 1979, 1982b). The
following argument for the product maximand is phrased
in terms of sex change, although it applies to sex allocation
in general. Consider a vanishingly rare sex change variant,
which changes sex at age tv, within a population with
resident strategy tr. Assuming panmixia, reproductive
value (V) is reproductive success as the first sex (S1) plus
reproductive success as the second sex (S2), each weighted
by the class reproductive value for the appropriate sex (V1

and V2):

V(t , t ) p S (t )V � S (t )V . (1)v r 1 v 1 2 v 2

Since total reproductive values of males is equal to that
of females (Fisher 1930), then , andS (t )V p S (t )V1 r 1 2 r 2

hence . Substituting into equation (1)V p (S (t )/S (t ))V1 2 r 1 r 2

and dividing by the reproductive value of the resident
strategy yields the variant’s asymptotic rate of increase:

V(t ,t ) 1 S (t ) S (t )v r 1 v 2 v
l(t ,t ) p p � . (2)v r ( )V(t ,t ) 2 S (t ) S (t )r r 1 r 2 r

Here indicates that the variant invades. The locall 1 1
evolutionarily stable strategy (ESS; t∗) satisfies

; that is, it is a solution todl/dt F p 0v t pt ptpt∗v r

′ ′S (t) S (t)1 2� p 0 (3)
S (t) S (t)1 2

(Shaw and Mohler 1953; Charnov 1979, 1982b). Assuming
convergence stability (Christiansen 1991), t∗ is the strategy
that maximizes the integral of the left-hand side of equa-
tion (3) with respect to t,
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′ ′S (t) S (t)1 2� dt p S (t)S (t) � constant (4)� 1 2( )S (t) S (t)1 2

(Charnov 1979, 1982b; de Valpine 2000). Defining fitness
(w) as that which is maximized by selection, an appropriate
fitness function is then

w(t) p S (t)S (t); (5)1 2

that is, fitness is given by the product of reproductive
success gained through each sex (MacArthur 1965; Char-
nov 1979, 1982b). Reproductive success as the first sex is
given by integrating, over all ages (x) from maturity (at
age a) to sex change (at age t), the product of instanta-
neous reproductive rate (Q1) and the probability (p) of
surviving to age x:

t

S p p(x)Q (x) dx. (6)1 � 1
a

Following Charnov and Skúladóttir (2000), we assume
first, a fixed instantaneous adult mortality rate (M), such
that the probability of survival takes the form p(x) p

, where A is a constant; second, that instantaneous�MxAe
reproductive rate takes the form of a power law

, where L(x) is size at age x, B1 is a con-d1Q (x) p B L(x)1 1

stant, and d1 is the exponent appropriate for the first sex;
and third, that size is related to age according to the von
Bertalanffy (1938) function , where�kxL(x) p L (1 � e )max

Lmax is the maximum size of the species and k is the von
Bertalanffy growth coefficient. This equation has been used
successfully to model growth of indeterminate growers
(Beverton 1963, 1992; Pauly 1980). Hence,

t

d �Mx �kx d1 1S p AB L e (1 � e ) dx. (7)1 1 max�
a

For the second sex, with fecundity given by the power law
, we haved2Q (x) p B L(x)2 2

�

d �Mx �kx d2 2S p AB L e (1 � e ) dx. (8)2 2 max�
t

Hence, fitness may be written as an explicit function of
the age at sex change (t):

t �

�Mx �kx d �Mx �kx d1 2w ∝ e (1 � e ) dx # e (1 � e ) dx� �[ ] [ ]
a t

(9)

(Charnov and Skúladóttir 2000). The sex with the larger
power-law exponent has the greater relative improvement
in reproductive rate as the individual grows, and so fitness
is maximized by reproducing as this sex when large and
as the other sex when small. Sex change should therefore
be in the direction of increasing power-law exponent; that
is, (Warner et al. 1975; Leigh et al. 1976). For in-d ! d1 2

determinate growers, female fecundity scales approxi-
mately with size cubed ( ; references in Charnovd ≈ 3female

1979, 1993), so we may set and . Thus,d p 3 d p dfemale male

sex change is predicted to be male to female (protandry)
when and female to male (protogyny) when .d ! 3 d 1 3
Hence, fitness is


t

�Mx �kx de (1 � e ) dx�[ ]
a

�

�Mx �kx 3 # e (1 � e ) dx , d ! 3,�[ ]
t

w ∝ (10)
t

�Mx �kx 3e (1 � e ) dx�[ ]
a

� �Mx �kx d# e (1 � e ) dx , d 1 3.�[ ] t

Charnov and Skúladóttir (2000) applied Buckingham’s
(1914; Stephens and Dunbar 1993) p theorem to reveal
that the fitness function (eq. [10]) could, in principle, be
rewritten as a function of constants and the dimensionless
life-history parameters t/a, aM, k/M, and d. The values
t/a, aM, k/M, and d are all dimensionless because t and
a have dimensions of time, k and M have dimensions of
inverse time, and d is an exponent in a power function.
Being able to express fitness in this way indicates that the
fitness function (eq. [10]) is invariant for circumstances
where t/a, aM, k/M, and d are invariant. Hence, fitness
is maximized at the same relative age at sex change
( ) in all contexts where the other values (aM,∗t/a p t /a
k/M, and d) are invariant.

We now derive an explicit fitness function in terms of
dimensionless quantities, using the standard technique of
switching variables. We make the substitution :x r cy
where we see x in the fitness function, we will write cy.
The limits of the integrals need to be changed. For in-
stance, the lower bound of the first integral is ;x p a

hence, switching variables gives . Finally,y p a/c
, so . This gives usdx/dy p c dx p cdy
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
t/c

�Mcy �kcy de (1 � e ) dy�[ ]
a/c

�

�Mcy �kcy 3 # e (1 � e ) dy , d ! 3,�[ ]
t/c

w ∝ (11)
t/c

�Mcy �kcy 3e (1 � e ) dy�[ ]
a/c

� �Mcy �kcy d# e (1 � e ) dy , d 1 3.�[ ] t/c

The constant c is arbitrary, so we may set . Substi-c p a

tuting and rearranging, we have


t/a

�aMy �(aM)(k/M)y de (1 � e ) dy�[ ]
1

�

�aMy �(aM)(k/M)y 3 # e (1 � e ) dy , d ! 3,�[ ]
t/a

w ∝ (12)
t/a

�aMy �(aM)(k/M)y 3e (1 � e ) dy�[ ]
1

� �aMy �(aM)(k/M)y d# e (1 � e ) dy , d 1 3.�[ ] t/a

This is the fitness function Charnov and Skúladóttir pre-
dicted but did not find an explicit expression for. If the
integrands in equation (12) are invariant (i.e., aM, k/M,
and d are invariant), then fitness will be maximized by a
relative age at sex change (t∗/a) that is invariant. Under
these circumstances, we also predict further invariants. The
size at sex change (L50) is given by ∗L(t ) p L [1 �max

. Since is invariant,∗ ∗ ∗exp (�kt )] kt p aM # k/M # t /a
the size at sex change relative to maximum size
( ) is predicted to be invariant (Charnov and Skú-L /L50 max

ladóttir 2000). The relative size at maturity, L /L pmat max

, is also expected to be invariant, since1 � exp (�ak)
is invariant. Finally, the ratio of breedersak p aM # k/M

of the first sex (N1) to those of the second sex (N2) is

∗t �Mx �Ma �aMe dx∫aN e e1 p p � 1 p � 1, (13)∗ ∗� �Mt �(aM)(t /a)�Mx∗N e ee dx∫t2

which, for invariant aM, k/M, and d (and hence invariant
t∗/a), is also invariant.

Sex Change Invariant Predicted by
an Alternative Approach

The Charnov-Skúladóttir model assumes that timing of
sex change is determined by size or age. However, it has
been shown in numerous fish species that sex change can
be stimulated by the social environment (Robertson 1972;
Shapiro 1981; Warner and Swearer 1991; Allsop and West
2004c). For example, in the cleaner fish Labroides dimi-
diatus, the largest females change sex to become male
harem holders upon removal of the male from the social
group (Robertson 1972). Here we consider the situation
where social environment is assumed to be the primary
determinant of when sex change occurs. Specifically, we
model a protogynous species in which females change sex
to male to maintain a constant sex ratio, following Shapiro
and Lubbock (1980). This means that our model has Char-
nov and Skúladóttir’s (2000) third invariant prediction
(constant breeding sex ratio) as its underlying starting as-
sumption. Even though this represents essentially the ex-
treme opposite mechanism underlying sex change to that
assumed by the Charnov-Skúladóttir model, we are also
able to predict the first two invariant predictions of that
model, concerning the relative size and age at sex change.

Consider a protogynous species in which the largest
(oldest) males each have harems of F females. The largest
female is selected to change sex when the ratio of breeding
females to breeding males (Nfemale/Nmale) in the population
is greater than F, and so the breeding sex ratio will be
invariant and equal to F. This breeding sex ratio will be
given as

∗t �Mx �aMe dx∫aN efemale p p � 1 p F. (14)∗� �t M�Mx∗N ee dx∫tmale

The value of aM is known to be invariant within taxa
(Charnov and Berrigan 1990, 1991; Gemmill et al. 1999),
and so for equation (14) to hold, t∗M must also be in-
variant. Since k/M is known to be invariant within taxa
(Charnov 1993), the product is an in-∗ ∗t M # k/M p kt

variant. Applying the von Bertalanffy growth equation, the
relative size at sex change ( ) is∗L /L p 1 � exp [�kt ]50 max

predicted to be invariant, giving the first of Charnov and
Skúladóttir’s invariance predictions. Dividing t∗M by aM
yields an invariant relative age at sex change t∗/a, which
is the second of Charnov and Skúladóttir’s invariance
predictions.

Is the Relative Size at Sex Change
Invariant across Species?

Allsop and West (2003a, 2003b) tested for invariance by
using the standard methodology of whether a log-log plot
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Table 2: Empirical values for the RSSC derived from log-log regressions of the size at sex change against the
maximum size with the slope fixed at proportionality (i.e., 1)

Taxa

Direction of sex change

Both directions Male first Female first

Intercept RSSC Intercept RSSC Intercept RSSC

Arthropoda (crustaceans) �.42 � .12 .66 � .08 �.44 � .12 .64 � .09
Chordata (fish) �.26 � .04 .77 � .03 �.29 � .11 .75 � .09 �.25 � .04 .78 � .03
Mollusca �.57 � .16 .57 � .10 �.57 � .16 .57 � .10
Echinodermata �.32 � .05 .73 � .03 �.32 � .05 .73 � .03

Note: The intercept for the regression is also given in the table. Entries include the 95% confidence interval. Data are split by taxa

and direction of sex change. Empty cells represent instances when there are too few data points to perform the regressions for these

categories alone. Data were obtained from Allsop and West (2003a, 2003b). size at sex .RSSC p relative change p L /L L p50 max 50

at sex change; size.size L p maximummax

gave a slope not significantly different from unity (Harvey
and Pagel 1991; Charnov 1993; Brown et al. 2000). In
particular, they tested for an invariant relative size at sex
change, by examining the relationship between the loga-
rithms of mean size at sex change and maximum size
across all sex-changing taxa (Allsop and West 2003a,
2003b; fig. 1), and for an invariant relative age at sex
change, by examining the relationship between the loga-
rithms of mean age at sex change and mean age at maturity
for sex-changing fish (Allsop and West 2003b). In these
analyses a significant positive relationship between max-
imum size (age at maturity) and size (age) at sex change
is not surprising, and it merely reflects that larger species
change sex when bigger—the crucial point is determining
the extent of variance in the relative size at sex change
(Allsop and West 2003a, 2003b; table 2).

Buston et al. (2004; Millius 2004) criticized this ap-
proach and instead suggested the use of a null model based
on randomization techniques. Specifically, they generated
data for each species by randomly assigning a maximum
body size, and (assuming that maturity is at 50% of max-
imum body size) they then randomly assigned a size at
sex change between 50% and 100% of maximum body
size ( , ). This analysisL /L p 0.5 L /L ≈ U[0.5, 1]mat max 50 max

generated data that gave slopes similar to those for the
real data when the relation between the logarithms of size
at sex change and maximum size were examined. Con-
sequently, Buston et al. suggested that Allsop and West’s
invariant result was in fact nonsignificant.

However, the Buston et al. model can be rejected both
empirically and because it is not a true null model. First,
empirically, the Buston et al. model cannot produce the
observed sex change data, because five of the 77 species
in the data set (Allsop and West 2003a) change sex below
their lower limit of 50% of the maximum body size (crus-
taceans Acontiostoma marionis, Ichthyoxenus fushanenensis,
and Emerita analoga and gastropods Crepidula adunca and
Crepidula linulata). Second, the distribution of relative size

at sex change in the actual data is significantly different
from the uniform distribution Buston et al. assume (Allsop
and West 2004a). Third, Buston et al. arbitrarily assigned
the size at maturity a value that forces a good fit between
the model and the data (Allsop and West 2004a). Because
the size at maturity is set to 50% and size at sex change
is uniformly distributed over the range between maturity
and maximum size, the model predicts an average relative
size at sex change of 75%, which is very close to the ob-
served 72%. However, previous work has suggested that
a more accurate average size at maturity is 65% (Charnov
1993), which would give a mean size at sex change of 83%,
which is far from the observed data. Fourth, the assump-
tion of a uniform distribution in relative size at sex change
assumes no selection on size at sex change, which has been
shown not to be the case in numerous studies over the
past 35 years (Warner et al. 1975; Charnov et al. 1978;
Charnov 1982b).

Furthermore, and more fundamentally, the Buston et
al. model is not null, because it assumes an invariant rel-
ative size at maturity, which is linked to an invariant rel-
ative size at sex change in the Charnov-Skúladóttir model.
An invariant relative size at maturity follows from two of
the three dimensionless invariants required by the invar-
iant sex change predictions, aM and k/M. If these are
invariant, then their product ak is invariant, and so the
relative size at maturity ( ) isL /L p 1 � exp [�ak]mat max

also invariant. We show in “Sensitivity Analysis” that these
are the crucial invariants for the Charnov-Skúladóttir
model (d is less important), so we would expect the Buston
et al. null model to produce an invariant relative size at
sex change and hence to fit the empirical data.

If an invariant relative size at maturity is not assumed,
then more appropriate null models can be developed. The
predictions of these differ significantly from the observed
data. We examine a model in which maturation size is
uniformly distributed from size zero to maximum size and
size at sex change uniformly distributed from size
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Figure 2: Testing the more appropriate null model: size at maturity (Lmat) is a uniformly distributed random variable bounded by [0, Lmax], and
size at sex change (L50) is a uniformly distributed random variable bounded by [Lmat, Lmax], where Lmax is asymptotic size. The circles denote the
distribution of (A) variance in and (B) the r2 statistic for the best-fit invariant relative size at sex change for 10,000 replicates of a simulatedL /L50 max

data set of 77 species of sex changers. The arrow indicates that the variance observed in the real data set (0.017) is significantly lower (estimated
) and the r2 statistic (0.967) significantly higher (estimated ) than predicted by the null model.P ! .0001 P ≈ .01

at maturity to maximum size (i.e., ,L /L ≈ U[0, 1]mat max

). We find that this more appro-L /L ≈ U[L /L , 1]50 max mat max

priate null model predicts significantly more variation in
than is observed in the data set and that the r2L /L50 max

statistic for the observed data is significantly higher than
that predicted by the null model; see figure 2.

Buston et al. (2004) have criticized this null model on
the grounds that maturation at size zero is implausible.
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Table 3: Summary of estimates for the key life-history parameters for the major taxonomic groups containing
sex-changing animals

Taxa k/M Source aM Source

Chordata .56 Charnov 1993; data from Beverton and
Holt 1959, Beverton 1963

≈2 Charnov and Berrigan 1990;
data from Beverton and Holt
1959; Beverton 1963

Arthropoda .39 Charnov 1993; data from Charnov 1979 ≈2 Charnov 1979, 1989
Echinodermata .3 Charnov 1993; data from Ebert 1975 No data Charnov 1993
Annelida No data 1.45–2.5 Gemmill et al. 1999

Note: There are no such data for the Mollusca.

Figure 3: Evolutionarily stable strategy relative size at sex change ( ) predicted by the Charnov-Skúladóttir model, assuming the publishedL /L50 max

estimates of and and a range of d. When male fecundity increases with size ( ), the model and published estimates predictaM ≈ 2 k/M ≈ 0.6 d 1 0
a relative size at sex change that is higher than that observed for sex-changing fish ( ).L /L p 0.7750 max

They suggest that altering the model so that maturation
is bounded by 40% and 80% of maximum size is more
appropriate, and they find that the associated variance in
the relative size at sex change is not significantly different
from that observed in the data set at the 5% level. However,
this approach is equally arbitrary and ad hoc. What is the
basis for the 40%–80% range, and why are the infinite
different possibilities excluded? How much variation is
required in the relative size at maturity before aM and
k/M are not statistically invariant? What would be a suit-
able minimum size at maturity? These points are partic-
ularly important because a true null model should exclude
any related factors, and this is not the case here, because
theory predicts that the size at sex change should depend
on the size at maturity. Furthermore, invariance is statis-
tical, and so the more appropriate question should be,
how much variance could there be in the different param-

eters to explain the data? We explore this approach in the
next section.

Figure 2B also illustrates an important caveat about r2

values in testing for invariant relationships. An r2 value
gives the amount of variance explained when comparing
against the null model of no relationship between the two
variables. However, as mentioned above, we expect the
mean size at maturity and the mean size at sex change to
be positively correlated, because both will be greater in
larger species. Indeed, our null model shows that this alone
can produce an average r2 value of 92.1% (fig. 2B). The
invariant relative size at sex change hypothesis explains
96.7% of the variation in the actual data (fig. 1), suggesting
that the invariant relationship explains 58.2% of the var-
iation in the data not explained by our null relationship
between size at maturity and sex change (0.582 p

). This value is still very large[96.7 � 92.1]/[100 � 92.1]
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Figure 4: Log-log plot of Lmat versus Lmax for 17 species of sex-changing fish. With the regression slope fixed at 1, it has an intercept of
(95% confidence interval), ( , species). The relative size at maturity invariant ( ) is 0.46, showing that sex-2�0.78 � 0.16 r p 0.90 n p 17 L /Lmat max

changing fish mature at approximately 46% of their maximum body size, on average. Size (Lmat and Lmax) is measured in millimeters before logarithmic
transformation.

compared to the average of 2.5%–5.4% from evolutionary
and ecological studies (Møller and Jennions 2002).

Sensitivity Analysis: Consequences of Variation
in aM, k/M, and d

Relative size at sex change is invariant ( ;L /L ≈ 0.7250 max

Allsop and West 2004b) over sex-changing animals ranging
in size from 2 mm to 1.5 m. This result is predicted by
the Charnov-Skúladóttir model if aM, k/M, and d are
invariant. The value of aM is likely to be invariant across
sex-changing species (Charnov 1993; Gemmill et al. 1999),
and so Allsop and West’s result suggests that k/M and d

are also invariant or have relatively little influence on the
ESS relative size at sex change. To address this requires a
sensitivity (elasticity) analysis of the Charnov-Skúladóttir
model and an examination of how variation in these life-
history variables influences the sex change invariant. We
will use published values for aM and k/M to obtain an
estimate of d from the Charnov-Skúladóttir model, giv-
en the observed data for sex-changing fish (Allsop and

West 2003b); estimate aM and k/M directly from the sex-
changing fish data; and introduce variation into each of
the dimensionless quantities aM, k/M, and d in turn, to
see how much variation in each corresponds to the ob-
served variation in . We restrict our attention toL /L50 max

fish only, since there are many more data on the relevant
life-history variables for them than for other sex changers.
In this subset of the data, the best-fit invariant timing of
sex change is 77% of maximum body size.

Variation in d

Assuming (Charnov and Berrigan 1990, 1991;aM ≈ 2
Charnov 1993) and (Charnov 1993; see table 3k/M ≈ 0.6
for a summary of estimates for aM and k/M), the optimal
relative age (and hence size) at sex change can be deter-
mined numerically from equation (12), given a value for
d. We do this for a range of d in figure 3. These results
predict that the relative size at sex change ( ) is anL /L50 max

increasing function of the male fitness exponent (d) and
that the slope of this relation is very small. The weak
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Figure 5: Evolutionarily stable strategy relative size at sex change ( ) predicted by the Charnov-Skúladóttir model assuming that andL /L d ≈ 350 max

, as estimated from the size at maturity data. By plotting for a range of aM to see where the model predicts the observedaM # k/M p ak p 0.616
size at sex change invariant ( ), we can obtain an estimate of aM and hence k/M.L /L p 0.7750 max

relationship between the male fitness exponent and the
timing of sex change suggests that the former need not be
particularly invariant in order for latter to show great in-
variance. In addition, the predicted relative size at sex
change is much greater than that observed in sex-changing
fish, a point addressed below.

The positive relation between the male fecundity ex-
ponent and the relative timing of sex change can be ex-
plained as follows. For protandrous species ( ), and ! 3
increase in d means that the relative success of small males
is reduced, and so the individual is selected to increase
reproduction as a male in order to make up this quota of
total reproduction; hence, longer time is spent as the first
sex. Conversely, for protogynous species ( ), an in-d 1 3
crease in d means that the relative fitness of the large males
is increased, so that less time need be spent reproducing
as a male, and hence the individual spends longer repro-
ducing as the first sex. In both instances, an increase in d

is associated with delayed sex change. With regard to this
prediction that the relative size at sex change should in-
crease weakly with d, the data do reveal a slight tendency
for protogynous fish ( , ) to haved 1 3 E[L /L ] p 0.7950 max

a higher relative size at sex change than protandrous fish
( , ). However, as might be ex-d ! 3 E[L /L ] p 0.7450 max

pected, given the weak predicted effect, this difference is
not significant ( ).P p .21

The results given in figure 3 also predict that the relative
size at sex change is too high to explain the empirical
observation for sex-changing fish. ThisL /L p 0.7750 max

suggests either that the model is incorrect or that the values
of aM and k/M published for fish in general do not cor-
respond to those in our data set. We investigate this pos-
sibility using the data sets compiled by Allsop and West
(2003a, 2003b) and find support for the suggestion that
sex-changing fish may have aM and/or k/M values dif-
ferent from those published for other species. The product
ak determines the relative size at maturity (L /L pmat max

), so we may use size at maturity data (table1 � exp [�ak]
A1 in the online edition of the American Naturalist)
to estimate ak. Assuming an invariant relative size at ma-
turity (i.e., a slope of unity on a plot of vs.log Lmat

; fig. 4), we find that the least squares regressionlog Lmax

gives and hence . This valueL /L ≈ 0.46 ak ≈ 0.62mat max

is approximately half of that published for other fish
( ), indicating that sex-changingaM # k/M p ak ≈ 1.2
fish mature relatively earlier than other fish. There is a
danger associated with the use of von Bertalanffy’s equa-
tion in relation to size at maturity. Since immature or-
ganisms do not reproduce and hence may allocate more
of their resources to growth, the growth rate coefficient
(k) may be somewhat higher prematuration than post-
maturation (Day and Taylor 1997). However, the associ-
ated bias in the estimation of the postmaturation growth
rate from age at maturity data is in the wrong direction
to explain the discrepancy between the estimated ak and
that published for fish in general. In the next section, we
show that this reduced estimate of ak is more consistent
with the observed timing of sex change.



Figure 6: Effect of variation in the three dimensionless quantities of interest on variation in the evolutionarily stable strategy (ESS) relative size of sex change ( ), as predicted by the modelL /L50 max

of Charnov and Skúladóttir (2000), with , , and . In A, aM and k/M are held fixed at their estimates, and d is varied. In B, d and k/M are held fixed at their estimates,aM ≈ 0.96 k/M ≈ 0.64 d ≈ 3
and aM is varied. In C, d and aM are held fixed at their estimates, and k/M is varied. In D, the relationship between k/M and the ESS relative age at sex change (t∗/a) is investigated, with d and
aM held constant.
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Figure 7: Sensitivity analysis of the Charnov-Skúladóttir model. Two of the three dimensionless quantities of interest are held fixed at their estimates
( , , ) while the third is drawn from a normal distribution with mean given by the above estimate and standard deviationaM p 0.96 k/M p 0.64 d ≈ 3
j, to generate size at sex change data for 52 species of fish. The r2 statistic relating the data to the best-fit invariant (i.e., having a slope of unity in
a plot of versus , where L50 and Lmax are the size at sex change and asymptotic size, respectively) is determined for each value of jlog L log L50 max

and each of the three dimensionless quantities in turn. A, Mean r2 for 200 replicates over a range of d (holding aM and k/M fixed), with the dashed
lines indicating the zone in which 95% of the replicates fell. B, Mean r2 for 200 replicates over a range of aM (holding d and k/M fixed), with the
dashed lines indicating the zone in which 95% of the replicates fell. C, Mean r2 for 200 replicates over a range of k/M (holding d and aM fixed),
with the dashed lines indicating the zone in which 95% of the replicates fell.

Estimating aM and k/M

We now estimate values for aM and k/M for sex-changing
fish. As outlined above, we can numerically solve equation
(12) to give a relative age (and hence size) at sex change,
given values for d, aM, and k/M. By exploring a range of
these three parameters, we can determine which triplets
give the observed . As we have seen, theL /L p 0.7750 max

male fitness exponent (d) has very little effect on the rel-
ative size at sex change—we can essentially ignore this
parameter and restrict our attention to the two parameters
aM and k/M. Recalling that some species in the data set
will have while others have (since there is ad ! 3 d 1 3
mixture of protandry and protogyny), we assume d ≈ 3
for the purposes of estimating the other two life-history
parameters. We estimated that the invariant product of
aM and k/M is approximately 0.62, and so the parameter
set is effectively reduced to a single quantity: given aM,
k/M will be given by . In figure 5, we determine0.62/aM
the effect on the relative size at sex change of variation in
aM by allowing it to take a range of values while satisfying
the estimate of . We find that the model predictsak p 0.62
the observed invariant relative size at sex change
( ) when . From this, we alsoL /L p 0.77 aM ≈ 0.9650 max

estimate k/M to be .ak/aM ≈ 0.64

Assessing Variation in d, aM, and k/M

We have obtained estimates for the average values of d,
aM, and k/M in sex-changing fish. We now make a qual-
itative assessment of how variation in these life-history
parameters translates into variation in the relative size at
sex change by varying the value of each parameter in turn
while holding the other two constant (at their estimated
values: , , ). Our results ared p 3 aM p 0.96 k/M p 0.64
given in figure 6. As above, we find that the value of the
male fitness exponent (d) has little effect on the relative
size at sex change (fig. 6A), while variation in aM (fig.
6B) and especially k/M (fig. 6C) have a more dramatic
effect.

We find that the value of aM correlates positively with
the relative size at sex change (fig. 6B) when the values of
k/M and d are held constant. One way to visualize this is
to hold k, M, and d fixed and to vary age at maturity, a.

It makes sense for species that mature later to change sex
later in order to make up their quota of reproduction as
the first sex. Species with a higher aM should therefore
tend to change sex at a greater size. We have also found
that increasing k/M increases the relative size at sex change
(fig. 6C) when aM and d are held constant. To see why,
hold a, M, and d constant, and allow k to vary. As the
von Bertalanffy growth coefficient is increased, the size at
all ages is increased, and so if we assume no effect on the
ESS relative age at sex change (t∗/a), we would expect an
increased relative size at sex change ( ). In fact, theL /L50 max

ESS relative age at sex change is a decreasing function of
k (fig. 6D). This is because the increase in size due to
increased k is more pronounced at earlier ages; hence, the
reproduction of the first sex is improved the most by this
increase, so that less time need be spent reproducing as
that sex. This means that in increasing k the ESS age at
sex change is reduced, but the size at that age is increased.
The net effect is a positive correlation between k/M and
the relative size at sex change.

A more quantitative approach is to use the model to
simulate sex change data for a range of variation in the
underlying dimensionless quantities, to see how much var-
iation corresponds to that observed in the real data set.
We simulate 52 species of sex-changing fish (as in the
actual data set), each assigned values for aM, k/M, and d.
Within each data set, two of these dimensionless quantities
are held fixed at their estimates from the previous section,
while the other takes a pseudorandom value independently
drawn for each species from the normal distribution with
mean given by the estimated value and standard deviation
j. Because it is biologically implausible for aM and k/M
to take negative values, we draw these from a normal
distribution truncated at the origin, which, for the param-
eters we will explore, involves removing a trivial propor-
tion (!3%) of the probability distribution. With the actual
data on maximum size (Lmax), the Charnov-Skúladóttir
model of sex change is then used to generate the ESS
relative size ( ) at sex change for each of the sim-L /L50 max

ulated fish species. For each data set, an r2 statistic can be
generated to describe how well the simulated data conform
to the prediction of a slope of unity in a plot of log L50

against . This procedure is used to explore a rangelog Lmax
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of variation (standard deviation j) in each of the invariant
quantities aM, k/M, and d.

From figure 7, we can read off the estimate of the stan-
dard deviation for each of the life-history parameters by
seeing what value of j corresponds to the observed

. Figure 7A confirms that the invariant relative2r p 0.973
size at sex change is expected to hold even with extensive
variance in the male fitness exponent (d) when the other
life-history parameters do not vary. Figure 7B reveals that
variation in aM corresponding to a standard deviation of
around 0.45 (47% of the estimated mean, E[aM] p

) can account for the observed variation in the relative0.96
size at sex change. Figure 7C reveals that a standard de-
viation in k/M of around 0.18 (28% of the estimated mean,

) can account for the observed variation inE[k/M] p 0.64
. It should be noted that these results are upperL /L50 max

limits on the amount of variation, because they assume
that only one parameter is variable, whereas in reality there
will be some variation in each.

Discussion

We have formally derived the life-history invariants pre-
dicted by Charnov and Skúladóttir (2000), who modeled
sex change conditional on an individual’s size (and hence
age). These are invariant: relative age at sex change (t/a),
relative size at sex change ( ), and breeding sex ratioL /L50 max

(N1/N2). Previously, Buckingham’s (1914) p theorem was
invoked in order to show that the appropriate fitness func-
tion could be expressed in terms of dimensionless quan-
tities. We employed a simple “switching variables” tech-
nique to explicitly derive this fitness function. In addition,
we have shown that these invariants can be predicted with
a different approach, when sex change is assumed to occur
in response to social cues.

Allsop and West (2003a, 2003b) showed invariance in
the relative size at sex change across all sex-changing or-
ganisms for which there are data and in the relative age
at sex change in fish. These results were criticized by Bus-
ton et al. (2004), who argued that randomization tests
should be used instead of standard methodology (Harvey
and Pagel 1991; Charnov 1993; Brown et al. 2000). We
have argued that their randomization test was not truly
null, that the data do not fit their model, and that more
appropriate tests support the invariance conclusion. Fur-
thermore, we suggest a more powerful approach: we avoid
randomization tests based on possibly arbitrary assump-
tions and instead examine how much variance in the dif-
ferent parameters would explain the observed data.

We carried out a numerical sensitivity analysis in order
to determine the relative consequences of variation in the
dimensionless parameters that can influence the relative
size at sex change. These results showed that the invariant

prediction depends primarily on invariance in aM and k/
M and that variation in d has little consequence for the
ESS size at sex change. This result illustrates clearly one
of the major problems with the Buston et al. “null”
model—it was not null, because it effectively assumed an
invariant aM and k/M and allowed only d to vary, and so
we would expect it to predict the observed data.

How much variation in aM and k/M are consistent with
the observed data on relative size at sex change? We es-
timated the variation in each of these parameters that is
consistent with the observed variation in the timing of sex
change in the fish data set. We found that (withaM ≈ 0.96
a standard deviation of �0.45) and .k/M ≈ 0.64 � 0.18
This suggests that there can be a relatively large amount
of variation in aM but less in k/M. These results are upper
limits on the amount of variation, because they assume
that only one parameter is variable, whereas in reality there
will be some variation in each. More generally, the invar-
iant result suggests a fundamental similarity across all an-
imals in the underlying forces that select for sex change
(Allsop and West 2003a). Our results suggest that the fun-
damental similarities are the basic assumptions of the
Charnov-Skúladóttir model and the value of k/M and, to
a lesser extent, aM.

Our results also lead to the prediction that the value of
aM differs in sex-changing fish from that in other fish
species. Specifically, the published values for fish in general
give and . In contrast, we predict thataM ≈ 2 k/M ≈ 0.6

for sex-changing species. We have verified thisaM ≈ 1
prediction by estimating the product of these two putative
invariants from the relative size at maturity data in sex-
changing fish, confirming that ,aM # k/M p ak ≈ 0.6
half of the value expected for fish in general. More in-
vestigation, both theoretical and empirical, is needed to
explain this difference between sex changers and other fish.

We conclude with two general points. First, the debate
over the usefulness of applying the life-history invariant
approach to sex change cuts to the heart of the philosophy
of statistics in the biological sciences. Because we are deal-
ing with biology, it is clear that there are really no true
invariants in the physical sense. However, there are a num-
ber of statistically invariant relationships that hold across
taxa for reasons that are not immediately apparent, and
these require explanation. Second, we have demonstrated
that invariant theory can be used to estimate the values
of and variation in important biological parameters. This
is especially useful when it allows us to get at parameters
that are difficult or laborious to measure directly. Another
much-studied example of this is the use of sex ratios and
sex ratio theory to estimate inbreeding rates in protozoan
parasites (Read et al. 1992; West et al. 2001; Nee et al.
2002).
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Charnov, E. L., and U. Skúladóttir. 2000. Dimensionless invariants
for the optimal size (age) of sex change. Evolutionary Ecology
Research 2:1067–1071.

Charnov, E. L., D. Gotshall, and J. Robinson. 1978. Sex ratio: adaptive
response to population fluctuations in pandalid shrimp. Science
200:204–205.

Christiansen, F. B. 1991. On the conditions for evolutionary stability
for a continuously varying character. American Naturalist 138:37–
50.

Crabtree, R. E., and L. H. Bullock. 1998. Age, growth, and repro-
duction of black grouper, Mycteroperca bonaci, in Florida waters.
Fishery Bulletin 96:735–753.

Day, T., and P. D. Taylor. 1997. Von Bertalanffy’s growth equation
should not be used to model age and size at maturity. American
Naturalist 149:381–393.

de Valpine, P. 2000. A new demographic function maximized by life-
history evolution. Proceedings of the Royal Society of London B
267:357–362.

Ebert, T. A. 1975. Growth and mortality of post-larval echinoids.
American Zoologist 15:755–775.

Ferreira, B. P., and G. R. Russ. 1995. Population-structure of the
leopard coralgrouper, Plectropomus leopardus, on fished and un-
fished reefs off Townsville, central Great Barrier Reef, Australia.
Fishery Bulletin 93:629–642.

Fisher, R. A. 1930. The genetical theory of natural selection. Oxford
University Press, Oxford.

Gemmill, A. W., A. Skorping, and A. F. Read. 1999. Optimal timing
of first reproduction in parasitic nematodes. Journal of Evolu-
tionary Biology 12:1148–1156.

Ghiselin, M. T. 1969. The evolution of hermaphroditism amongst
animals. Quarterly Review of Biology 44:189–208.

Gillanders, B. M. 1995. Reproductive biology of the protogynous
hermaphrodite Achoerodus viridis (Labridae) from southeastern
Australia. Marine and Freshwater Research 46:999–1008.

Grandcourt, E. M. 2002. Demographic characteristics of a selection
of exploited reef fish from the Seychelles: preliminary study. Ma-
rine and Freshwater Research 53:123–130.

Harvey, P. H., and M. D. Pagel. 1991. The comparative method in
evolutionary biology. Oxford University Press, Oxford.

Leigh, E. G., E. L. Charnov, and R. R. Warner. 1976. Sex ratio, sex
change and natural selection. Proceedings of the National Academy
of Sciences of the USA 73:3656–3660.

Lorenzo, J. M., J. G. Pajuelo, M. Mendez-Villamil, J. Coca, and A.
G. Ramos. 2002. Age, growth, reproduction and mortality of the
striped seabream, Lithognathus mormyrus (Pisces, Sparidae), off
the Canary Islands (central-east Atlantic). Journal of Applied Ich-
thyology 18:204–209.

MacArthur, R. H. 1965. Ecological consequences of natural selection.
Pages 388–397 in T. H. Waterman and H. Morowitz, eds. Theo-
retical and mathematical biology. Blaisdell, New York.

Mackie, M. 2000. Reproductive biology of the halfmoon grouper,



566 The American Naturalist

Epinephelus rivulatus, at Ningaloo Reef, Western Australia. Envi-
ronmental Biology of Fishes 57:363–376.

Marino, G., E. Azzurro, A. Massari, M. G. Finoia, and A. Mandich.
2001. Reproduction in the dusky grouper from the southern Med-
iterranean. Journal of Fish Biology 58:909–927.

Maynard Smith, J., and G. R. Price. 1973. The logic of animal conflict.
Nature 246:15–18.

Millius, S. 2004. When to change sex. Science News 165:40–41.
Møller, A., and M. Jennions. 2002. How much variance can be ex-

plained by ecologists and evolutionary biologists? Oecologia (Ber-
lin) 132:492–500.

Nakashima, Y., T. Kuwamura, and Y. Yogo. 1995. Why be a both-
ways sex changer? Ethology 101:301–307.

Nee, S., S. A. West, and A. F. Read. 2002. Inbreeding and parasite
sex ratios. Proceedings of the Royal Society of London B 269:755–
760.

Pauly, D. 1980. On the inter-relationships between natural mortality,
growth parameters, and mean environmental temperature in 175
fish stocks. Journal du Conseil International pour l’Exploration
de la Mer 39:175–192.

Policansky, D. 1982. Sex change in plants and animals. Annual Review
of Ecology and Systematics 13:471–495.

Read, A. F., A. Narara, S. Nee, A. E. Keymer, and K. Day. 1992.
Gametocyte sex ratios as an indirect measure of outcrossing rates
in malaria. Parasitology 104:387–395.

Robertson, D. R. 1972. Social control of sex reversal in a coral reef
fish. Science 177:1007–1009.

Robertson, D. R., and J. H. Choat. 1974. Protogynous hermaphro-
ditism and social systems in labrid fish. Pages 217–225 in Pro-
ceedings of the Second International Symposium on Coral Reefs.
Vol. 1. Great Barrier Reef Committee, Brisbane.

Robertson, D. R., and R. R. Warner. 1978. Sexual patterns in the
labroid fishes of the western Carribbean. II. The parrotfishes (Scar-
idae). Smithsonian Contributions to Zoology 255:1–26.

Scharer, L., and D. B. Vizoso. 2003. Earlier sex change in infected
individuals of the protogynous reef fish Thalassoma bifasciatum.
Behavioral Ecology and Sociobiology 55:137–143.

Shapiro, D. Y. 1980. Role of females in the initiation of sex change
in a coral-reef fish. American Zoologist 20:826–826.

———. 1981. Size, maturation and the social control of sex reversal

in the coral reef fish Anthias squamipinnis (Peters). Journal of
Zoology (London) 193:105–128.

Shapiro, D. Y., and R. Lubbock. 1980. Group sex ratio and sex re-
versal. Journal of Theoretical Biology 82:411–426.

Shaw, R. F., and J. D. Mohler. 1953. The selective significance of the
sex ratio. American Naturalist 87:337–342.
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