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Abstract

Many machine learning applications require classi�ers that mini-
mize an asymmetric loss function rather than the raw misclassi�-
cation rate. We study methods for modifying C4.5 to incorporate
arbitrary loss matrices. One way to incorporate loss information
into C4.5 is to manipulate the weights assigned to the examples
from di�erent classes. For 2-class problems, this works for any loss
matrix, but for k > 2 classes, it is not su�cient. Nonetheless, we
ask what is the set of class weights that best approximates an arbi-
trary k� k loss matrix, and we test and compare several methods:
a wrapper method and some simple heuristics. The best method
is a wrapper method that directly optimizes the loss using a hold-
out data set. We de�ne complexity measure for loss matrices and
show that this measure can predict when more e�cient methods
will su�ce and when the wrapper method must be applied.
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1 Introduction

For most of the history of machine learning research, a central goal has been
to develop supervised learning algorithms that minimize the misclassi�cation
error rate on unseen examples. Great progress has been made toward this
goal. Indeed, recent algorithms are so good that current research papers must
employ very sophisticated statistical tests to measure the improvements in
accuracy produced by various algorithms.

While academic research has continued to improve the misclassi�cation
error rate, applications in business, medicine, and science have shown that
real problems require more subtle measures of performance (see, for example,
(Fawcett & Provost, 1997; Kubat, Holte, & Matwin, 1997; Provost, Fawcett,
& Kohavi, 1998)). In particular, one important problem is that in these appli-
cations, di�erent kinds of errors have di�erent costs. For example, in medical
applications, the cost of a false positive diagnosis is usually the cost of putting
the patient through an unnecessary medical treatment. But the consequences
of a false negative diagnosis can be fatal. In text-to-speech systems, misclassi-
�cation errors between di�erent consonants are usually much more important
than misclassi�cations between vowels. The users of machine learning pro-
grams need to be able to make tradeo�s between di�erent kinds of errors.

The relative importance of di�erent kinds of errors can be represented by a
loss matrix. If there are k classes, the loss matrix is a k� k matrix, L, of non-
negative values. The rows correspond to the class predicted by the learning
algorithm, and the columns correspond to the correct class. The value in L(i; j)
gives the \loss" of predicting class i when the true class is j. The diagonal
elements, L(i; i), are always zero. For example, Table 1 shows a 4-class loss
matrix. The cell in column 4 of row 3 gives the loss (5.5) of predicting class
3 when the true class is 4. The standard 0/1 loss function (misclassi�cation
rate) can be represented by a matrix all of whose o�-diagonal elements are
equal to 1.

Several papers in the literature have presented approaches for minimiz-
ing the misclassi�cation costs in supervised learning algorithms. (Pazzani,
Merz, Murphy, Ali, Hume, & Brunk, 1994) present algorithms for learning
and avoiding over�tting in decision lists for minimizing the loss. (Bradford,
Kunz, Kohavi, Brunk, & Brodley, 1998) experiment with di�erent methods
for pruning decision trees to minimize loss. (Kubat & Matwin, 1997; Kubat,
Holte, & Matwin, 1998) also address the issue of minimizing misclassi�cation
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costs.
For neural network algorithms (Haykin, 1994), we can minimize the loss

on the training set by incorporating the loss matrix directly into the back-
propagated error signal. However, it isn't clear how to combine such a general
loss function with existing regularization methods (e.g., weight decay and other
complexity penalties).

In this paper, we study how to incorporate general loss matrices into
decision-tree algorithms (Breiman, Friedman, Olshen, & Stone, 1984; Quin-
lan, 1993). These algorithms pose particular challenges, because they do not
directly minimize a loss function. Instead, a splitting heuristic|such as in-
formation gain or the GINI index|is employed. These heuristics have the
dual role of �nding splits that minimize loss and also �nding splits that \make
progress" toward good subsequent splits. The rules need to detect \progress"
in order to overcome the greedy nearsightedness of the top-down splitting pro-
cess (Dietterich, Kearns, & Mansour, 1996). This is why the training set loss
alone does not give a good splitting heuristic.

Our research has focused on the C4.5 decision tree learner (Quinlan, 1993).
We are particularly concerned with multi-class problems, where the number
of classes, k, is greater than two. The next section describes several candi-
date methods for incorporating general loss matrices. Section 3 introduces a
measure of the complexity of a loss matrix that we call the cost irregularity.
This measure is useful for predicting the performance of the di�erent candidate
methods. Finally, Section 4 describes the results of our experiments.

Table 1: Example of loss matrix for a four-class problem.

Predicted Correct Class
Class 1 2 3 4

1 0.0 3.2 1.0 2.7
2 1.0 0.0 3.0 0.5
3 4.5 2.2 0.0 5.5
4 1.0 0.1 7.1 0.0
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2 Growing Decision Trees for Loss Minimiza-

tion

There are two distinct steps in learning a decision tree: growing the tree and
pruning it to avoid over�tting the data. Quinlan's C4.5 decision tree learner
(Quinlan, 1993) uses a set of weights associated with each of the examples.
The weights were originally introduced as part of the mechanism for handling
missing values in the data. However, more recently, Quinlan and others have
used them to implement boosting algorithms (Quinlan, 1996).

The weight of an example can be viewed as a measure of the importance of
classifying the example correctly (or equivalently, as the cost of misclassifying
it). To incorporate classi�cation costs, we can consider manipulating these
weights. For example, consider the general two-class loss matrix shown in
Table 2. We can place a weight of cost1 on every training example in class 1
and a weight of cost2 every example in class 2.

Table 2: General loss matrix for two-class learning problems.

Predicted Correct Class
Class 1 2

1 0 cost2
2 cost1 0

The values of the weights of the examples are used during both the growing
and the pruning phases of C4.5. In preliminary experiments, we have found
that this method works very well for incorporating asymmetric loss functions
for 2-class problems.

However, in a general k � k loss matrix, there are k(k � 1) o�-diagonal
weights, whereas there are only k possible class weights that can be manip-
ulated in C4.5. (In fact, since it is only the relative values of the weights
that matter, only k � 1 of the input weights to C4.5 are independent, and
only k(k � 1)� 1 of the weights in an arbitrary loss matrix are independent.)
Hence, this simple technique of weighting the inputs does not directly extend
to problems with more than 2 classes.

Nonetheless, adjusting the input weights is a very attractive technique for
incorporating loss information into C4.5, so it is worth considering whether
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there might be a good way of choosing a set of input weights w = (w1; : : : ; wk)
for C4.5 to \best implement" a general loss matrix L. Of course this will not
be the ideal method, but it may work well in practice.

We have developed �ve di�erent methods for choosing the input weight
vector w. These methods can be divided into three di�erent class: wrapper
methods, class-distribution methods, and loss-matrix methods. We describe
each of these in turn.

2.1 Wrapper Methods

The most expensive approach is a \wrapper" method, which treats the decision-
tree learning algorithm as a subroutine as follows. Suppose we randomly par-
tition our training data into a sub-training set and a validation set. When the
learning algorithm is applied to the subtraining set with input weight vector
w, the loss of the resulting decision tree can be measured using the validation
set and the loss matrix L. Hence, we can use a general-purpose optimization
algorithm to generate di�erent w's and try to �nd the w that minimizes the
loss on the validation set.

We chose Powell's method (Press, Teukolsky, Vetterling, & Flannery, 1992),
which is a gradient-free, quadratically-convergent algorithm. The method
works by performing a sequence of one-dimensional optimizations. The search
directions are chosen to try to make them orthogonal, so that maximum
progress is made toward the minimum.

We used Powell's method to develop two di�erent wrapper methods: Pow-
ell10 and Powell20. Powell10 uses a randomly-chosen 10% of the training data
for its validation set, whilc Powell20 uses 20%.

The overall procedure is the following: we run Powell's algorithm using the
sub-training set and the validation set to determine the values of the weights
w. Then, we build the �nal decision tree using w on the whole training set.

2.2 Class Distribution-based Methods

The second group of methods is based on making some measurements of the
frequencies of the di�erent classes (or di�erent errors) on the training set and
then computing a good input vector w from this information.

Most prediction errors committed by learning algorithms tend to result
from predicting items that belong to less frequent classes as being in more
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frequent classes. This observation suggests the following two methods.
We call the �rst method, ClassFreqCount. In this method, we compute the

class frequencies in the training data, such that ni is the number of training
examples belonging to class i. Then, we set the input weights to C4.5 so that
ni�wi is constant for all classes 1 � i � k. This gives higher weight to classes
that are less frequent.

The second method, called EvalCount, is based on �rst growing a decision
tree to minimize the traditional 0/1 loss (raw misclassi�cation rate). This is
accomplished by subdividing the training data into a sub-training set and a
validation set, growing the tree on the sub-training set, and then measuring
its losses (according to loss matrix L) on the validation set. We then set wi to
be the sum of the losses of the examples from class i that were misclassi�ed,
plus 1 (to avoid having weights with a value of zero).

As with Powell10 and Powell20, we implemented two versions of Eval-
Count: EvalCount10 and EvalCount20, that use 10% and 20% of the data
(respectively) for the validation set.

2.3 Loss-based Methods

The third group of methods for computingw calculates them directly from the
loss matrix without either invoking C4.5 or measuring class frequencies in the
training data. We call such methods loss-based methods. The big advantage of
these methods is that they are extremely e�cient! We propose two loss-based
methods for calculating the weights.

The �rst method is called MaxClassCost. Each weight is computed as the
maximum of the corresponding column:

wj = max
1�i�k

L(i; j)

The intuition is that the maximum value within a column is the worst-case
cost of misclassifying an example whose true class corresponds to that column.

The second method is called AvgClassCost. Each weight is computed as
the mean of the o�-diagonal elements in the corresponding column:

wj =

Pk
i=1;i6=j Lk(i; j)

(k � 1)
:

The intuition here is that the average of the non-zero values within a column
approximates that average cost of misclassifying an example whose true class
corresponds to that column.
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3 Cost-irregularity: A measure for the structure

of the loss matrix

In designing and analyzing our experiments, we wanted some measure of the
\di�culty" or \complexity" of a loss matrix. The following measure is based
on the idea that if it always costs more to misclassify examples of class j than
class i, then the \costs" of the classes are monotonically related. Hence, our
simple approach of using C4.5's input weights is more likely to work.

To be more precise, consider the following binary relation �(j1; j2) over
pairs of classes j1 and j2:

De�nition 1 Two classes j1 and j2 are cost-transitive (we write �(j1; j2)) i�
either

8i1; i2 if L(i1; j1) � L(i1; j2) then L(i2; j1) � L(i2; j2)

or
8i1; i2 if L(i1; j1) � L(i1; j2) then L(i2; j1) � L(i2; j2):

Note that � is a symmetric relation: if �(i; j) is true, then �(j; i) is also
true.

We can use cost-transitivity to de�ne a measure of complexity for loss
matrices.

De�nition 2 (Cost Irregularity) For k � 4, we de�ne the cost-irregularity
of a loss matrix as the number of pairs of classes that are not cost-transitive.

Our intuition is that if all pairs of classes are cost-transitive, then a simple
loss-based method, such asMaxClassCost, will work well for �nding the weight
vector w. But if many pairs of classes are not cost-transitive, then a �xed
weight vector will not represent the loss matrix very well.

4 Experimental Tests

4.1 Experiment Design

Section 2 de�ned seven di�erent techniques for choosing a weight vector w
for input to C4.5. To evaluate and compare these methods, we chose eight
multi-class data sets from the UC Irvine Repository (Merz & Murphy, 1996)
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Table 3: Data sets studied in this paper

Number of Dataset
Name Classes Size
Splice 3 3190
Waveform 3 4500
Iris 3 150
Lymphography 4 148
Vehicle 4 846
Annealing 5 898
Hypo 5 3772
Glass 6 214

and designed a series of loss matrices (with di�erent levels of cost irregularity).
We then evaluated each method on each data set with each loss matrix via
10-fold cross-validation and analyzed the results.

Table 3 lists the data sets and the number of classes.
For the three-class problems (k = 3) we employed the loss-matrices shown

in Table 4. For the problems with k > 3, we started with a loss-matrix whose
entries are powers of two, generated as follows:

L(i; j) =

(
2j; when j 6= i

0; otherwise.

This matrix has cost-irregularity zero.
Starting with this matrix, we generated four additional matrices with di�er-

ent levels of cost-irregularity by permuting elements among the rows. Table 5
summarizes the cost-irregularities of the generated loss matrices. Each matrix
has been given a name (L2, L3, etc.).

We also tested each method on the standard 0/1 loss matrix.

4.2 Results

The performance of Powell20, MaxCost, ClassFreq and EvalCount20 are com-
pared for each dataset in the plots in Figures 1 and 2. The performance of the
Powell10, EvalCount10, and AvgClassCost methods is not shown because it
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Table 4: Loss matrices used in our experiments for the three-class problems.

2
64
0:0 1:0 1:0
1:0 0:0 1:0
1:0 1:0 0:0

3
75
2
64
0:0 2:0 3:0
1:0 0:0 3:0
1:0 2:0 0:0

3
75
2
64
0:0 1:0 1:0
2:0 0:0 2:0
3:0 3:0 0:0

3
75

2
64 0:0 2:0 4:0
1:0 0:0 4:0
1:0 2:0 0:0

3
75
2
64 0:0 1:0 1:0
2:0 0:0 2:0
4:0 4:0 0:0

3
75
2
64 0:0 2:0 3:0
4:0 0:0 1:0
1:0 2:0 0:0

3
75

2
64
0:0 2:0 4:0
8:0 0:0 1:0
1:0 2:0 0:0

3
75
2
64
0:0 4:0 2:0
1:0 0:0 2:0
2:0 1:0 0:0

3
75
2
64
0:0 2:0 4:0
1:0 0:0 4:0
8:0 1:0 0:0

3
75
2
64
0:0 1:0 2:0
1:0 0:0 4:0
8:0 4:0 0:0

3
75

Table 5: Cost-irregularity values of loss matrices used in the experiments in
this paper (based on the number of classes)

Number of Loss Matrix
Classes L2 L3 L4 L5 L6
4 0 1 2 2 3
5 0 1 2 3 4
6 0 1 3 4 5

was generally worse than Powell20 and EvalCount20, and we wanted to avoid
cluttering the graphs.

In the Splice, Hypo, Annealing, and Vehicle data sets, Powell20 is clearly
superior to the other methods for all loss matrices tried. In all of the other
domains, this method is typically the best or second-best method for all loss
matrices. In some cases, MaxCost or ClassFreq will out-perform Powell20, but
the di�erences are usually small. Hence, the �rst conclusion that we can draw
is that Powell20 performs very well.

Unfortunately, Powell20 is also very expensive to execute, so this raises
the question of whether some of the cheaper methods will work well in certain
situations. Unfortunately, there are examples of domains and loss matrices
where each of the other methods performs very badly. For example, ClassFreq
performs very badly on Splice with L7 and in Annealing with L6. MaxCost

9



performs badly in Lymphography with L6 and Glass with L6. Eval20 performs
badly on Iris with L7 and Hypo with L4 and L6. This suggests that a rea-
sonable strategy might be to use hold-out methods to evaluate each of these
techniques and choose the one that gives the best results. If the best technique
can be identi�ed reliably, then that will give good results in all domains except
Splice and for all loss matrices. And it might still be faster than executing
Powell20.

In addition to measuring the performance of the di�erent methods for
choosing the weight vector, these experiments also show that the class-irregularity
measure is a reasonable, but imperfect, predictor of the degree of di�culty of
a loss matrix. In most domains, the performance of MaxCost degrades as
the class-irregularity increases, although its behavior is not monotonic. When
class-irregularity is zero, all of the methods give similar results (except that the
ClassFreq method is sometimes worse than the others). This suggests another
reasonable strategy: If class-irregularity is zero, use the MaxCost method.

Table 6 summarizes the results of applying the di�erent techniques to stan-
dard 0/1 loss matrices. Each row lists the methods that gave the best results.
In two domains, Hypo and Glass, uniform weighting gave worse results than
some of the other methods. But in two other domains, Lymphography and
Annealing, uniform weighting was better than all of the others. This shows,
not surprisingly, that Uniform weighting is generally the best approach. How-
ever, it is interesting that Powell's method could sometimes manipulate the
weight vector to obtain better 0/1 loss than uniform weights provide. This
probably re
ects the fact that decision tree algorithms are heuristic and do
not guarantee to �nd the optimal decision tree. By manipulating the input
weights, Powell's method is able to \fool" C4.5 into �nding a better decision
tree.

5 Conclusions

The paper introduced �ve methods for determining the class weights for con-
structing decision trees for loss minimization on multiple-class problems. From
the experiments, we conclude that we can improve the performance of the
learned decision trees for multi-class problems by manipulating C4.5's input
weights, no matter how complex the associated loss matrix is. Furthermore, a
wrapper method (Powell20) that directly searches for good input weights gave
excellent results across a wide range of domains and loss matrices.
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Table 6: Algorithms that yielded the best performance for the standard 0/1
loss matrix

Domain Methods
Splice Powell20, Uniform
Waveform All methods
Iris ClassFreq, Uniform
Lymphography Uniform
Vehicle Powell20, Uniform
Annealing Uniform
Hypo Powell10, Powell20
Glass Powell20, Eval10

The paper also de�ned a complexity measure for loss matrices of size higher
than 3, the cost-irregularity. The experiments have shown that this measure
can help in deciding whether the costly wrapper method is likely to give better
weights than simple loss-matrix methods.
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Figure 1: Performance of the algorithms on 3-class problems.
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Figure 2: Performance of the algorithms on the datasets with a number of classes larger
than 3. The loss matrices are sorted on the x-axis based on their class-irregularity value.
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