COLLEGE OF PUBLIC HEALTH AND HUMAN SCIENCES

The Influence of Exercise on Single Leg Jump-Cut and Double Leg Jump Landing Biomechanics

Michelle Correia, Eunwook Chang, Samuel T. Johnson, Marc F. Norcross Exercise and Sport Science Program

BACKGROUND

- Anterior cruciate ligament ruptures are frequently noncontact in nature and most commonly occur during deceleration motions.¹
- It is estimated that there are over 200,000 anterior cruciate ligament (ACL) tears in the U.S. each year with an estimated cost of \$4 billion in reconstruction and rehab costs combined.^{2,3}
- Neuromuscular fatigue is thought to contribute to the higher incidence of lower extremity injuries that occur during the later stages of sporting events⁴, and is associated with changes in lower extremity landing biomechanics that likely increase ACL injury risk⁵
- In the frontal plane specifically, greater knee valgus angle at initial contact and greater peak knee valgus angle and knee varus moment have been shown prospectively to predict ACL injury.⁶
- While these factors are important with respect to injury risk, the type of task (i.e., single vs. double leg landing) used has been shown to influence frontal plane landing biomechanics.⁷
- It is not known whether any potential changes in frontal plane biomechanics caused by neuromuscular fatigue are the same for each type of task.
- Therefore, the purpose of this study was to compare single leg jump-cut and double leg jump landing biomechanics before and after the completion of a standardized exercise protocol.

MATERIALS AND METHODS

PARTICIPANTS

- 31 Female Volunteers between the ages of 18-30 years old
- No current injuries or illness that limits their ability to perform regular physical activity
- > No history of lower extremity or back surgery in the last 6 months
- > No history of low back, hip, knee, or ankle surgery
- ➤ No previous ACL injury
- ➤ Physically active a minimum of 150 minutes of moderate to vigorous physical activity a week
- ➤ Previously has participated in a physical activity involving cutting or jumping motion in the last 6 months

INSTRUMENTATION

- Kinematics
 - ➤ Nine camera motion capture system (Vicon, Inc.) using a standard retroreflective marker set (25 static, 21 dynamic) sampled at 120 Hz

Kinetics

> Two type 4060-08 force plates (Bertec Corp.) sampled at 1,560 Hz

PROCEDURES

Participants performed 2 different landing tasks:

- 1. Double leg landing from a 30 cm high box placed at a distance of 50% of the subject's height from the edge of two force platforms.
- 2. Single Leg jump-cut over a small hurdle from a distance equal to 50% of the subject's height.

- Participants completed 5 jump landing trials for each task before completing a standardized exercise protocol lasting 30 minutes. The protocol consisted of 6 cycles of treadmill walking at self-selected speed between 3.0-3.5 mph for 5 minutes followed by a minute of jumping activities.
- Following the exercise protocol, participants immediately repeated the two landing tasks.

OUTCOME MEASURES AND STATISTICAL ANALYSES

- Peak internal knee varus moment, peak knee valgus angle, and frontal plane hop and knee angles at initial contact
- Mean values across trials during the Pre and Post-exercise conditions were calculated for each dependent measure
- Paired-samples *t*-tests were used to compare landing biomechanics between conditions

RESULTS

	Double Leg Jump			Single Leg Cut-Jump		
	Pre	Post	P-value	Pre	Post	P-value
Peak Internal Knee Varus (Nm)	20.9±15.3	21.4±14.7	0.336	9.7±11.5	9.9±13.6	0.426
Frontal Plane Knee Angle (°)	-1.9±2.9	-2.0±2.9	0.315	-2.5±3.4	-2.7±3.3	0.309
Peak Knee Valgus Angle (°)	-7.3±6.9	8.1±6.2	0.127	-6.6±5.6	-7.2±5.5	0.174
Frontal Plane Hip Angle at Initial Contact (°)	-7.1±3.7	6.9±3.7	0.366	-11.3±4.0	-11.7±4.9	0.274

Table 1. Means \pm SDs for frontal plane biomechanical variables of interest Preand Post-Exercise. There were no significant changes in any of these landing biomechanics for either task (p > 0.05).

Figure 1. Peak hip adduction angle during the double leg (DL) and side-cut (SC) landing tasks. Participants were relatively less abducted following exercise during the DL task (p = 0.042), but were more abducted following exercise during the SC task (p = 0.027)

Figure 2. Peak internal hip abduction moment during the double leg (DL) and side-cut (SC) landing tasks. While the peak hip abduction moment was not different pre- and post-exercise for the DL task (p > 0.05), the moment requirement during SC significantly decreased post-exercise (p = 0.04)

CONCLUSIONS

- Contrary to our hypotheses, we observed very few changes in frontal plane landing biomechanics during either task following exercise.
- While peak hip adduction angle and internal hip abduction moment achieved statistical significance, the absolute magnitude of the changes likely has no clinical relevance with respect to ACL injury risk.
- Given previous research that has shown biomechanical changes in landing mechanics following exercise, it is possible that the lack of expected findings could be the result of:
- > Subjects not being adequately fatigued through the exercise protocol
- ➤ Too much time elapsing between finishing the exercise protocol and the Post Exercise Testing such that any fatigue effects were mitigated, or
- Trunk compensations by subjects following fatigue which was noticed anecdotally during testing

REFERENCES

- Kernozek, T., Torry, M., Van Hoof, H., Cowley, H., & Tanner, S. (2005). Gender differences in frontal and sagittal plane biomechanics during drop landings. Medicine and Science in Sports and Exercise, 37(6), 1003-12.
- 2. Frobell RB, Roos EM, et al. (2010). A Randomized Trial of Treatment for Acute Anterior Cruciate Ligament Tears. New England Journal of Medicine, 363(4), 331–342.
- 3. Mather RC, Koenig L, et al. (2013). Societal and Economic Impact of Anterior Cruciate Ligament Tears. The Journal of Bone and Joint Surgery (American), 95(19), 1751-1759.
- 4. Ekstrand, J., Hägglund, M., & Waldén, M. (2011). Epidemiology of Muscle Injuries in Professional Football (Soccer). *The American Journal of Sports Medicine*, 39(6), 1226–1232. http://doi.org/10.1177/0363546510395879
- 5. Santamaria, L. J., & Webster, K. E. (2010). The effect of fatigue on lower-limb biomechanics during single-limb landings: a systematic review. *Journal of Orthopaedic & Sports Physical Therapy*, *40*(8), 464–473.
- 6. Hewett, TE, Myer GD, et al. (2005). Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study.

 American Journal of Sports Medicine, 33(4), 492–501.
- 7.Yeow, C., Lee, P., & Goh, J. (2011). An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. *Human Movement Science*, 30(3), 624-635.