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The Thinness of Oceanic Temperature Gradients 

D. R. CALDWELL, T. M. CHRISS, P. A. NEWBERGER, AND T. M. DILLON 

School of Oceanography, Oregon State University, Corvallis, Oregon 97331 

A test of the scaling of the extent of the thinnest vertical temperature gradients, in the near-bottom 
boundary layer on the Oregon shelf, shows that the Batchelor wave number determines the cutoff wave 
number in vertical temperature gradient spectra. In combination with previous results, in other words, 
this test shows that the smallest scale at which significant temperature variance due to turbulence exists at 
any given point in the ocean is determined by the Batchelor scale, (vD2/•) i/4, v being the kinematic vis- 
cosity, D the thermal diffusivity, and ß the kinetic energy dissipation per unit mass. Stress measurements 
in the viscous sublayer provide estimates of e. 

If the theory put forward by Batchelor [1959] concerning 
small-scale variations in the spatial distribution of a passive 
contaminant in a turbulent fluid applies to the distribution of 
heat in the ocean, a smallest length scale exists on which ap- 
preciable temperature gradients will be found. This scale de- 
pends on the kinetic energy dissipation rate E as (vD2/E) i/4, 
where v is the kinematic viscosity and D is the thermal diffusi- 
vity.. Because this theory was derived for high Reynolds num- 
ber, isotropic, homogenous turbulence, its relevance to the 
ocean must be shown. A decrease in the spectral intensity with 
wave number is indeed usually found in vertical temperature 
gradient spectra near the highest wave number observable. If 
a 'cutoff wave number' kc is defined as the wave number at 
which a given spectrum has dropped to 10% of its peak value, 
we can ask whether kc is related to the wave number ks ---- 
(2,r)-i(e/vD•) i/4, corresponding to the Batchelor scale. Two 
problems are presented in making this test: (1) A value for e is 
required and (2) considerable uncertainty exists as to the 
value of the 'universal constant' q involved in the Batchelor 
form. 

The first evidence we found, which rendered the connection 
between kc and ks at least plausible, came from data taken in 
August 1977 at ocean station P as part of the mixed layer ex- 
periment (MILE) [Caldwell et al., 1980]. The temperature gra- 
dient profiles came from the mixed layer, the seasonal 
thermocline, and the halocline. Values of e were estimated 
from the rate of work,/•, done against the density gradient. A 
formula for/• was derived by following atmospheric work in 
relating/• and the eddy diffusivity and then calculating the 
eddy viscosity by the usual Osborn-Cox method. The utility of 
/• as an indication of e is based on the hope that the efficiency 
of the mixing process does not vary greatly. The formulas in- 
volved are 

2.28 

kc (2q)i/2 ks 
derived from the Batchelor spectrum and the definition of kc, 

K s = I' D' Cox 

the Osborn-Cox relation (assuming the eddy diffusivity for 
buoyancy, Ks, is the same as that for heat), where Cox is de- 
fined as ((dT'/dz)2)/((dT/dz)) 2 and I is the isotropy factor, 
which varies from 1 for vertical stratification to 3 for isotropy, 
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the relation between rate of work and eddy diffusivity in the 
presence of stratification represented by buoyancy frequency 
N, and the definition of the efficiency of mixing 

Combining all these, we obtain 

kc = 2.28 { I(I - x)/x } i/4 1 4q2 ' .•-• •, )i/4 
so that, except as affected by variations in X and I, kc and/• 
will be correlated. The conclusion reached was that this corre- 

lation was quite good, and that the coefficient 2.28. [I(1 - X)/ 
4q2X] i/4 is near 1.2, for cases where the Cox number is less 
than 2500. Reasonable choices of the parameters might be X -- 
0.2 [Osborn, 1980], I -- 2 +_ 1, and q -- 3.9 + 1.5 [Grant et al., 
1968]. With these choices we might have expected the coeffi- 
cient to lie between 0.98 and 1.94, so the value of 1.2 is reason- 
able. The scatter may be caused by any of a number of factors 
but probably principally results from either the statistical na- 
ture of the Batchelor theory or local variations in X or I. A 
segment represented by a dot in this figure uses data from 
only 60 cm of the water column, so the effective number of de- 
grees of freedom represented in kc is few. The decrease in 
kc/ks as the Cox number increases above 2500 can be as- 
cribed to a decrease in mixing efficiency; for very small mean 
gradients, N becomes irrelevant, and our scheme breaks 
down. 

We have also found that when the Cox number is large, the 
form of the Batchelor spectrum is followed [Dillon and Cald- 
well, 1980]. This led us to suspect that kc is always related to 
ks, even at large Cox numbers. After all, the large Cox num- 
ber situation resembles more closely the condition assumed by 
Batchelor. 

To test this conjecture and to provide a conclusive test of 
the Batchelor scaling, we require a situation of large Cox 
number where • can be estimated by some method not depen- 
dent upon the assumptions used in the test quoted above. The 
microstructure instrument could then be dropped through the 
region, and the observed cutoff wave numbers could be com- 
pared with a Batchelor scale calculated from •. The boundary 
layer near the seabed offers such a situation. Using profiling 
speed sensors on a bottom-mounted tripod, we have been able 
to make measurements within the viscous sublayer and 
thereby accurately determine the stress at the seabed [Caldwell 
and Chriss, 1979]. With the sublayer stress measurements and 
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Fig. 1. Large dots represent the ratio of cutoff wave number in vertical temperature gradient spectra to the Batchelor 

wave number calculated from boundary layer assumptions and sublayer measurements, plotted versus dissipation. Small 
dots represent upper l•yer •ta with Cox number <1000, for which, was calculated by an entirely different method [Cald- 
well et al., 1980]. The units •of, are cm 2 s -3. 

10-3 

the assumption that the flow above the sublayer resembles the 
constant-stress portion of an unstratified boundary layer, the 
dissipation can be calculated as a function of distance from 
the boundary, yielding • estimates independent of assump- 
tions about transport in stratified fluids. 

In June 1979 such an experiment was run in 100 m of water 
on the Oregon shelf, for the purpose of learning about the 
boundary layer flow. While the sublayer profiler was record- 
ing, a number of casts of the microstructure instrument were 
made, extending to the bottom within 1 km of the profiler. 
(The sampling of the two instruments is different, of course. A 
profiler record approximately 30 min long is compared to a 
microstructure traverse of the bottom 10 m requiring about 1 
min.) The microstructure casts showed a well-mixed layer ex- 
tending approximately 10 m upward from the bottom at this 
station, the profile resembling Figure la of Newberger and 
Caldwell [1981]. The mean temperature gradients were so 
small that accurate Cox numbers could not be calculated, but 

values were clearly greater than 10 n. The vertical temperature 
gradient spectra resembled the Batchelor form, and values of 
kc could be determined. 

Because the mean vertical temperature gradient is so small 
in the well-mixed region, it is plausible that the flow does re- 
semble the constant-stress portion of an unstratified boundary 
layer. Stratification length scales are much larger than the 
layer thickness, so stratification is not likely to be important 
within the layer. Current velocities determined by the velocity 
profiler and by a rotor 0.6 m above the bed demonstrate the 
existence of a logarithmic layer. We have no current measure- 
ments above 1.6 m and so have no direct knowledge of the na- 
ture of the flow above. A test for consistency is discussed be- 
low. 

In laboratory turbulent boundary layer flows, stress does 
not vary significantly with distance from the boundary, and 
the turbulence kinetic energy budget is dominated by a bal- 

ance between the production of turbulence kinetic energy and 
its dissipation [Hinze, 1975, p. 649]. In the constant-stress log 
layer, 

dU u. 

dz 0.41z 

and 

so 

2 
T • pU, 

dU 

production -- 'r -•z = Ou*3/kz 

Therefore if also production is assumed equal to dissipation, 

• = u,3/O.41z (1) 

where z is the height above the boundary, 0.41 is von Kar- 
man's constant, and u, is the friction velocity (,/p)l/2,, being 
the bed stress and p the density. The wave number corre- 
sponding to the Batchelor scale is defined as 

l(e l/n = (2) 

so if the assumptions about the boundary layer flow are cor- 
rect, 

I u,3/0.41z 
ks-- • vD • (3) 

Using data from eight casts executed over a 5-day period, 
we compute the ratio kc/kB for 1-m segments of the water col- 
umn. Points representing these ratios are indistinguishable 
from similar points representing data from the upper ocean 
for small Cox numbers (Figure 1). Numerical tests show that 
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within the statistical variations of these data, the two samples 
could be drawn from the same parent distribution. That is, 
within the scatter of the points, similar in the two data sets, 
the relationship between k½ and ks holds for this large Cox 
number case. Therefore increasing the Cox number does not 
break down the relationship. Our hypothesis that it is the as- 
sumptions required for the upper ocean test that failed is sup- 
ported. 

To render more plausible the assumption that the usual lab- 
oratory boundary layer assumptions apply well enough that ß 
can be estimated by u,3/kz, • can be calculated from the mi- 
crostructure data by assuming k½ = ks and solving for • to 
yield 

• = t,D:(2•rkc) n (4) 

When such values of ß for the bottom layer are plotted versus 
z, the z dependence expected from (3) is confirmed [New- 
berger and Caldwell, 1980, Figures 2 and 3]. Thus the bound- 
ary layer assumptions are confirmed, and we may now con- 
clude that the extent of temperature gradients is controlled by 

the Batchelor scale; gradients thinner than (vD2/•5) i/n will not 
be found. 
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