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A Vector–Host Model of Coinfection by
Barley/Cereal Yellow Dwarf Viruses

1 Introduction

Barley and cereal yellow dwarf viruses (B/CYDV) are a suite of aphid-vectored

pathogens. These viruses are known to cause disease in over 150 host species, in-

cluding commercially valuable grasses and cereal crops such as barley, wheat, and

oats [14,18,26]. Globally, they are some of the most prevalent and most economically

important crop pathogens [4, 14, 21]. Infected crops have lowered yields, increased

mortality, lowered seed production, yellowed foliage, and stunted growth [4, 8, 24].

Estimates for the yield losses caused by B/CYDV range from 11 to 33% and losses of

86% have been recorded [18]. In the wild, B/CYDV is able to reverse the competitive

advantage of native Californian perennial grasses over exotic annuals [4].

Transmission of B/CYDV occurs solely between the vector and the host [24]. In-

fected aphids cannot directly infect other aphids, and infected grasses cannot transmit

the disease to other grasses either horizontally or vertically through seed production.

Therefore, in communities of annual hosts or in crop settings, B/CYDV cannot remain

endemic unless a viral reservoir is available in the form of a perennial host [4, 25].

After initial infection, both hosts and vectors experience a latency period varying

between 1 and 14 days, depending on temperature [21]. Host recoveries are generally

rare and vectors remain infectious for life [21].

Research into this disease is frequently motivated by its role in crop production

and so often only a single host species is examined. However, the community of

pathogens that cause it is diverse and is recently becoming a topic of greater interest.

Barley and cereal yellow dwarf viruses belong to distinct genera. Cross–protection

occurs between BYDVs but not between CYDVs or between BYDVs and CYDVs [31].
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Coinfection by both BYDV and CYDV can increase virulence, incidence, mortality,

and disease transmission rates above those for either virus in isolation [20,26]. Thus,

cross–protection from infection by viruses from the same genus should theoretically

lower the prevalence of coinfections, but field data has not yet supported this [26].

1.1 Mathematical Disease Modeling and Coinfection

Traditional models in mathematical epidemiology focus on a single pathogen affecting

a single host community. The simplest example is the compartmental SI model,

which divides the hosts into susceptible (S) and infected (I) types and describes the

movement of the population between these classes using systems of nonlinear ordinary

differential equations (ODEs). Standard variations on the SI model include the SIR

model, which adds a recovered (R) or removed class into which infected individuals

can move, and the SIS and SIRS models, which model reinfection by allowing infected

or recovered hosts respectively to return to the susceptible class [9].

Disease transmission is the most important process in host-pathogen models [19].

In disease models, the force of infection, defined as the probability per unit time

that a given susceptible individual becomes infected, is key in establishing threshold

quantities such as the basic reproduction number [9] and type reproduction num-

bers [12] that determine the dynamics of infection. There are several approaches to

modeling the transmission of disease that may or may not depend on host and vector

densities/numbers. The two most common approaches are called density–dependent

disease transmission (cf. Appendix A) and standard–incidence disease transmission.

In this thesis we use density–dependent disease transmission, meaning the force of

infection is proportional to the numbers of susceptible and infected hosts and vectors.

This is due to the fact that our model is a generalization of the model by Seabloom

et. al. [26] which assumes density–dependent disease transmission.

None of these models incorporate more than a single type of infection. However,
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in nature, hosts are exposed to hundreds of pathogens and field studies have demon-

strated that multiple infections (coinfection) are a relatively common occurrence and

most hosts support multiple parasites [16,27]. Coinfection refers to the simultaneous

infection of a single host by multiple pathogens or pathogen strains [26]. The classical

theory of competitive exclusion states that no two species can indefinitely share the

same ecological niche [1]. However, the significance of inter-pathogen interactions is

recently becoming more apparent [1, 16, 30]. Pathogen interactions can increase host

mortality [16] or transmission rates; for example, by lowering host resistance and

allowing coinfected hosts to serve as superspreaders [26]. Conversely, infected hosts

may have increased resistance due to a more active immune system or cross-protection

conferred against related pathogens [26].

Coinfection may have consequences for entire host ecosystems. Several recent

studies have explored its implications and conditions under which it is sustainable.

Alizon [2] considered the invasion of a mutant viral strain into a stable system with

an endemic strain already present. In most cases, only a single strain persists; how-

ever, if cross-protection reduces the overall virulence (the net pathogen-induced host

mortality) below the virulence of each coinfecting strain, then coexistence between

two pathogen strains can occur as a stable state.

Allen et al. [3] examined an SI model for a single host affected by two pathogens:

hantavirus and arenavirus. Both are transmitted horizontally via standard–incidence

[9, 19]; arenavirus may also be transmitted vertically. The authors determine that if

cross-protection is not complete and both viruses may simultaneously infect a single

host, then stable pathogen coexistence and coinfection is possible.

1.2 Applications

The dynamics and epidemiology of barley and cereal yellow dwarf viruses has been the

topic of several modeling efforts. Borer et al. [4] constructed a nonspatial B/CYDV
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model consisting of a continuous–time rainy season and discrete time dry season.

Perennial grasses were divided between first-year seedlings and adult plants. The

aphid population was not explicitly modeled; instead, it was assumed to depend

entirely on the infected plant biomass. B/CYDV was assumed to reduce fecundity

and increase dry season mortality of the perennials, which persist over the summer in

a dormant stage. Using this model, the authors were able to show that the presence

of B/CYDV allowed invasive annual grasses to replace native perennial grasses.

Moore et al. [21] examined the effect of spatial dynamics on the spread of B/CYDV

by adding a network of connected patches. As in Borer et al. [4], both annual and

perennial grasses were included, and a differential-difference approach was used to

capture varying dynamics in the growing and dormant seasons. A mathematical

analysis was conducted for the two-patch case, including a derivation of the basic

reproduction number and a sensitivity analysis of this number with respect to the

model parameters. Numerical simulations were used to explore both the two-patch

case and a larger network of 20 linearly arranged patches. Based on this analysis,

the authors conclude that the patches’ spatial configuration, host composition, and

connectivity determine the pathogen’s invasive ability and its ability to facilitate

invasion of the system by exotic annual grasses [21], as predicted by Borer et al. [4].

Although we focus our investigation on B/CYDV, the methods are relevant to

many other vector-borne diseases, such as the whitefly-transmitted African cassava

mosaic virus [15] and the mosquito-transmitted dengue virus.

There are four strains of dengue virus; infection by one confers immunity against

that particular strain but only temporary cross-immunity to the others [11]. Katri [17]

examined several dengue models, beginning with an SIR-type model for a single strain

of dengue combined with an SI model for the vector. Although the vector population

was assumed constant, it had explicit age structure. Seasonal, spatial, and multi-

strain variations on this model were also considered; in particular, the latter included
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two strains of dengue. In this model, coinfection was impossible due to the assumption

of complete cross-protection while infected, but recovered hosts were susceptible to the

strain by which they were not infected. In order to prevent a multi-strain epidemic,

controlling susceptibility to secondary infection was found to be critical.

Feng and Velasco-Hernandez [11] also analyzed a two-strain dengue model, but

assumed variably sized host and vector populations. Recovered hosts experienced a

temporary period of incomplete cross-immunity before becoming fully susceptible. In

this model, competitive exclusion occurred, and the pathogen coexistence equilibrium,

with both viruses persisting, was unstable.

1.3 Objectives

We are interested in examining the dynamics of coinfection by B/CYDV: the con-

ditions under which it is possible and how its prevalence varies with respect to the

parameters governing the host, vector, and pathogen dynamics.

We focus our analysis on a single host species. Since the economic importance of

B/CYDV is primarily due to its role as a crop pathogen, it is reasonable to examine a

homogeneous host community. However, within a single population, multiple species

of aphid vectors may be active and transmit B/CYDV. In California alone, at least

seven vector species are known to transmit B/CYDV [26].

1.4 Methods

Our proposed model is closely related to the model of Seabloom et al. [26], who con-

sider two pathogen strains, two vector species, and a single host. The host is divided

into susceptible, coinfected, and two singly-infected compartments. Coinfection in

the vector is not considered and the vector population is not tracked explicitly. The

population of each vector species infected with each strain is assumed to be at its

quasiequilibrium value [13] (also called the pseudoequilibrium, see Appendix B), as-
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suming a constant total vector population. The model is fitted to B/CYDV data and

explored computationally, showing that coinfection is most prevalent with generalist

vectors and weak cross-protection and coinfection-induced mortality.

Our paper differs from that of Seabloom et al. [26] in the following respects. First,

our model allows varying numbers of vector species, using a structure similar to that

of Ackleh and Allen [1], who examined competitive exclusion in an SIR model for

j pathogen strains directly transmitted to a host population via density–dependent

disease transmission. However, in their model, complete cross-immunity was assumed,

prohibiting coinfection.

Second, we explicitly model vector populations rather than assuming fixed total

vector populations and using the quasiequilibrium argument to reduce the model to

four host equations. We formulate our initial model with general functions represent-

ing host and vector birth rates.

The outline of this paper is as follows. In Section 2, we introduce the model for

n vector species, including suggested birth functions for the host and vector. This

system is then rescaled to model the proportions of each population that is infected.

The case of n = 1 vector species, assuming a constant vector growth rate, is ex-

amined in Section 3, including both the disease-free and coinfected equilibria. We

compute the basic and type reproduction numbers of the pathogen strains and con-

duct a sensitivity analysis of the coinfected equilibrium. We also provide simulations

depicting the system dynamics and disease prevalances for varying parameters and

initial conditions. An alternative logistic-type vector birth rate is examined in Sec-

tion 4, including a second sensitivity analysis of the coinfected equilibrium. Section 5

discusses conclusions of the analysis and future work. Finally, we provide a glossary

of terms in Appendix A and relate the explicit vector equations in our model to the

implicit equations used by Seabloom et al. [26] in Appendix B.
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2 Vector–Host Model with Multiple Vectors

Our model is based on that developed by Seabloom et al. [26] and includes a single

host species, n vector species, and two strains of BYDV. We consider coinfection in

the host, but not the vector, and model each vector population explicitly.

We divide the host species between four classes, representing susceptible (S),

infected by strain A (IA), infected by strain B (IB), and coinfected (IAB) populations.

We denote the total population N , where N(t) := S(t) + IA(t) + IB(t) + IAB(t), with

t denoting time. This gives the system of nonlinear ODEs shown below.

Hosts:

dS

dt
= g(S, IA, IB, IAB)− βHS

n∑
i=1

(Vi,A + Vi,B)− µ0S, (1a)

dIA
dt

= βH

n∑
i=1

(SVi,A − ψIAVi,B)− (µ0 + µ1)IA, (1b)

dIB
dt

= βH

n∑
i=1

(SVi,B − ψIBVi,A)− (µ0 + µ1)IB, (1c)

dIAB
dt

= βHψ
n∑
i=1

(IAVi,B + IBVi,A)− (µ0 + µ1 + ψµ2)IAB. (1d)

Each vector species i, for i = 1, . . . , n, is divided into three classes: susceptible (Vi,S),

infected by strain A (Vi,A), and infected by strain B (Vi,B).

Both strains have the same transmission rate (βH) from vector to host. However,

the cross-protection factor (ψ ∈ [0, 1]) may reduce or prevent transmission of the

second strain to singly infected hosts. For similar viral strains, ψ → 0, resulting in

high levels of cross-protection. For very different strains, ψ → 1, resulting in little or

no cross-protection (though for some diseases like dengue ψ may be greater than 1).

Hosts have a birth function g and experience a base mortality rate (µ0). Infection

by either strain results in the same additive increase to mortality (µ1). Coinfected
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hosts experience an additional additive mortality rate (µ2), which is scaled by the

cross-protection factor ψ. Thus, coinfection by highly similar viral strains causes

little additional mortality, whereas coinfection by highly distinct strains causes greater

additional mortality. We assume µ0 ≥ µ1 ≥ µ2 ≥ 0.

We assume disease transmission is density dependent and model it using density–

dependent disease transmission, rather than standard–incidence disease transmission.

This is primarily because our model is based on that proposed by Seabloom et al. [26]

which also uses density– dependent disease transmission, and this type of transmission

has been used to model BYDV previously [4].

The total population size of the host is then described by

dN

dt
= g(S, IA, IB, IAB)− µ0N − µ1(N − S)− ψµ2IAB. (2)

The lifespan of the aphid is approximately one month [26]; this is assumed suffi-

ciently short such that the prevalence and effect of coinfection in the vector is neg-

ligible. We also assume that any additional mortality due to infection is negligible,

due to the aphids’ short lifespan and to the stronger regulatory effect of predators

and seasonality [26].

We let r denote the vector birth function, which gives the following system of

equations for each vector species.

Vectors:

dVi,S
dt

= r(Vi,S, Vi,A, Vi,B)− βVi,AVi,S(IA + IAB)− βVi,BVi,S(IB + IAB)− µV Vi,S, (3a)

dVi,A
dt

= βVi,AVi,S(IA + IAB)− µV Vi,A, (3b)

dVi,B
dt

= βVi,BVi,S(IB + IAB)− µV Vi,B. (3c)

The infection rates of each strain (βVi,A , βVi,B) may be different for each vector species.
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However, we assume here that single infections of each type and their further coin-

fections are equally transmissible.

We denote the total vector population NV,i, where NV,i = Vi,S + Vi,A + Vi,B. This

population size is described by the equation

dNV,i

dt
= r(Vi,S, Vi,A, Vi,B)− µVNV,i, (4)

so by choosing r to be a function of the total population NV,i only, infection does not

affect the vital rates of the vector species.

For the case n = 1, the birth and death dynamics of the model are shown in Fig-

ure 1 and the model’s disease dynamics are shown in Figure 2. With additional vector

species (n ≥ 2), the host would experience separate rates of infection corresponding

to each vector. The remaining dynamics would be unchanged in both diagrams.

2.1 Suggested Birth Functions

We use the following birth rates for hosts and vectors respectively:

g(S, IA, IB, IAB) =
[
b0S + b1(IA + IB) + b2IAB

](
1− N

θ

)
, (5)

r(Vi,S, Vi,A, Vi,B) = bVNV,i, (6)

where b0 ≥ b1 ≥ b2 ≥ 0. Thus, uninfected hosts reproduce at rate b0, hosts infected

by one strain reproduce at a reduced rate b1, and coinfected hosts reproduce at a rate

reduced further to b2. We define the maximum growth rate of the susceptible host

population to be r0 := b0 − µ0 > 0. In Section 4, we consider a logistic growth rate

for the vector population.

In the absence of disease, the host population grows logistically towards its car-

rying capacity. Since the host’s birth and death rates are modeled separately, this
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Figure 1: Diagram of the birth and death dynamics of the system (1) and (3). Left: host.
Right: each vector species.

Figure 2: Diagram of the infective dynamics of the system (1) and (3). Dark arrows
indicate new host infections; light arrows indicate new vector infections.
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carrying capacity does not appear explicitly. Rather, the function (5) depends on the

population pressure (θ), the population at which host births cease. This is defined in

terms of the carrying capacity K as

θ :=
b0
r0
K, (7)

so K = r0
b0
θ < θ.

By using the function (6), we assume that infection does not alter the vector’s

reproductive ability, and so regardless of the presence of disease, the vector population

grows exponentially with growth rate rV := bV − µV ≥ 0, so (4) becomes

dNV,i

dt
= rVNV,i, i = 1, 2, . . . , n.

A summary of the model’s variables and units is given in Table 1. The parameters,

including those from the suggested growth functions (5) and (6), are listed in Table 2.

2.2 Proportions Model

For analysis, it is simpler to rewrite the system (1) and (3) in terms of the total host

and vector populations and the infected proportions of each. Note that since

S(t) = N(t)− IA(t)− IB(t)− IAB(t)

and

Vi,S(t) = NV,i(t)− Vi,A(t)− Vi,B(t)

for all t ≥ 0 and i = 1, . . . , n, the susceptible populations are uniquely determined by

the infected and total populations and need not be modeled explicitly. Thus, in our

system, we omit the equations for susceptible hosts (1a) and vectors (3a) and substi-
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Variable Description

Host
N Total host population (N := S + IA + IB + IAB)
S Susceptible host population
IA Population of hosts infected by strain A
IB Population of hosts infected by strain B
IAB Population of hosts coinfected by strains A and B

Vector
NV,i Total population of vector i (NV,i := Vi,S + Vi,A + Vi,B)
Vi,S Susceptible population of vector i
Vi,A Population of vector i infected by strain A
Vi,B Population of vector i infected by strain B

Table 1: List of variables and the populations they represent.

Parameter Description Range Default

Host
r0 Growth rate of susceptible hosts (r0 := b0 − µ0) [0,∞) 44.87
b0 Birth rate of susceptible hosts (0,∞) 45
b1 Birth rate of singly-infected hosts [0, b0] 22.5
b2 Birth rate of coinfected hosts [0, b1] 11.25
µ0 Natural host mortality rate (0, b0] 0.13
µ1 Additional mortality for singly-infected hosts [0, µ0] 0.13
µ2 (Max) Additional mortality for coinfected hosts [0, µ1] 0.13
θ Host population pressure (0,∞) 100
K Host carrying capacity (K := r0

b0
θ) (0,∞) 99.71

Vector
rV Vector growth rate (rV := bV − µV ) [0,∞) 0
bV Vector birth rate (0,∞) 12
µV Vector mortality rate (0, bV ] 12

Pathogen
βH Vector-to-host transmission rate [0, 1] 0.04
βVi,A Host-to-vector-i transmission rate of strain A [0, 1] 0.04
βVi,B Host-to-vector-i transmission rate of strain B [0, 1] 0.04
ψ Pathogen taxa similarity [0, 1] 0.5

Table 2: List of parameters, their ranges, and their default values, taken from Seabloom
et al. [26].
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tute those for total host (2) and vector populations (4) respectively.

Next, we rewrite the components of the system as proportions of the total popu-

lations by introducing new variables defined as

s :=
S

N
, iA :=

IA
N
, iB :=

IB
N
, iAB :=

IAB
N

,

vi,S :=
Vi,S
NV,i

, vi,A :=
Vi,A
NV,i

, vi,B :=
Vi,B
NV,i

.

Thus, the proportions of susceptible hosts and vectors can be rewritten in terms of

the infected proportions as

s = 1− iA − iB − iAB and vi,S = 1− vi,A − vi,B. (8)

We also define the host’s scaled maximum birth rate as

p := s+
b1
b0

(iA + iB) +
b2
b0
iAB. (9)

We note that 0 ≤ p ≤ 1, and in the absence of disease, p = 1.

In order to rescale the model, we must rewrite the system in terms of these new

variables and quantities. For x = A,B,AB corresponding to the viral strain(s)

infecting the host, the chain rule yields

dix
dt

=
1

N

dIx
dt
− 1

N

Ix
N

dN

dt
=

1

N

dIx
dt
− ix
N

dN

dt
.

Similarly, for y = A,B corresponding to the viral strain infecting the vector,

dvi,y
dt

=
1

NV,i

dVi,y
dt
− 1

NV,i

Vi,y
NV,i

dNV,i

dt
=

1

NV,i

dVi,y
dt
− vi,y
NV,i

dNV,i

dt
.

Using these formulas, the system in proportions form is as follows.
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Proportions Model:

dN

dt
= N

[
b0

(
1− N

θ

)
p− µ0 − µ1(1− s)− ψµ2iAB

]
, (10a)

diA
dt

= βH

n∑
i=1

NV,i (svi,A − ψiAvi,B)− iA
[
b0

(
1− N

θ

)
p+ µ1s− ψµ2iAB

]
, (10b)

diB
dt

= βH

n∑
i=1

NV,i (svi,B − ψiBvi,A)− iB
[
b0

(
1− N

θ

)
p+ µ1s− ψµ2iAB

]
, (10c)

diAB
dt

= βHψ
n∑
i=1

NV,i(iAvi,B + iBvi,A)− iAB
[
b0

(
1− N

θ

)
p+ µ1s+ ψµ2(1− iAB)

]
,

(10d)

dNV,i

dt
= rVNV,i, (10e)

dvi,A
dt

= βVi,ANvi,S(iA + iAB)− bV vi,A, (10f)

dvi,B
dt

= βVi,BNvi,S(iB + iAB)− bV vi,B. (10g)

2.3 Host Population Bounds

We demonstrate that the total host population N is asymptotically bounded by using

the comparison argument presented in Feng and Hinson [10]. Consider two initial

value problems

u′i = fi(t, ui), in (0, T ], ui(0) = ui,0, i = 1, 2. (11)

where the functions fi, i = 1, 2 are continuous in [0, T ] × R. Then we have the

comparison result below.

Lemma 1 (Comparison Argument). Let ∂fi
∂u

, i = 1, 2 be continuous in [0, T ]× R. If

f1(t, u) ≤ f2(t, u) in (0, T ] × R and u1,0 ≤ u2,0, then the corresponding solutions u1

and u2 of (11) satisfy u1(t) ≤ u2(t) on [0, T ].

Based on Lemma 1, we have the following bounds on the host population.
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Theorem 1 (Host Population Bounds). The host population for the proportions

model (10) satisfies the bounds

[(
1

N(0)
+
b0
µθ

)
eµt − b0

µ

]−1
≤ N(t) ≤

[(
1

N(0)
− 1

K

)
e−r0t +

1

K

]−1
, (12)

where µ = µ0 + µ1 + µ2.

Proof. Since the quantities p, s, ψ and iAB are all positive and bounded above by 1,

−b0
N2

θ
− µN ≤ dN

dt
≤ r0N

(
1− N

K

)
.

The comparison argument Lemma 1 gives us the upper and lower bounds on N(t).

By Theorem 1, the host population satisfies the bounds

0 ≤ lim inf
t→∞

N(t) ≤ lim sup
t→∞

N(t) ≤ K.

This proves the boundedness of the total population.
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3 Analysis of the Single Vector Model with Con-

stant Vector Growth

We begin our analysis by examining the most basic case of a single vector species.

To simplify notation, we omit the species subscripts i from the vector variables and

parameters in (10), giving the single–host, single–vector, two–pathogen strain model

dN

dt
= N

[
b0

(
1− N

θ

)
p− µ0 − µ1(1− s)− ψµ2iAB

]
, (13a)

diA
dt

= βHNV (svA − ψiAvB)− iA
[
b0

(
1− N

θ

)
p+ µ1s− ψµ2iAB

]
, (13b)

diB
dt

= βHNV (svB − ψiBvA)− iB
[
b0

(
1− N

θ

)
p+ µ1s− ψµ2iAB

]
, (13c)

diAB
dt

= βHψNV (iAvB + iBvA)− iAB
[
b0

(
1− N

θ

)
p+ µ1s+ ψµ2(1− iAB)

]
, (13d)

dNV

dt
= rVNV , (13e)

dvA
dt

= βVANvS(iA + iAB)− bV vA, (13f)

dvB
dt

= βVBNvS(iB + iAB)− bV vB. (13g)

Let x = (N, iA, iB, iAB, NV , vA, vB)T be the vector of host and vector populations and

population proportions and define f(x) = dx
dt

by the system (13). Define the region

D :=





N

iA

iB

iAB

NV

vA

vB



∈ R7
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ N ≤ K

iA ≥ 0

iB ≥ 0

iAB ≥ 0

iA + iB + iAB ≤ 1

NV ≥ 0

vA ≥ 0

vB ≥ 0

vA + vB ≤ 1



.
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Choosing an initial value x0 ∈ D gives the initial value problem (IVP)

dx

dt
= f(x), x(0) = x0. (14)

We begin by proving existence and uniqueness of solutions of (14).

Theorem 2 (Uniqueness of Solutions). The IVP (14) has a unique solution x(t) on

the interval [−a, a] for some a > 0.

Proof. Observe that f(x) ∈ C ′(D). Then by the Fundamental Existence-Uniqueness

Theorem [22], a unique solution x(t) exists on [−a, a], for some a > 0.

Next, we prove existence of the solutions of (14) for all t ≥ 0 and positive invari-

ance in the region D.

Theorem 3 (Existence and Positive Invariance). Let x0 ∈ D. Then any solution x(t)

of (14) through x0 is defined for all t ≥ 0. Furthermore, the region D is positively

invariant.

Proof. The existence of solutions on [0,∞) follows from Section 2.4, Theorem 3,

Corollary 1 in [22]. To prove positive invariance, suppose that x0 lies on the boundary

of D. We show that on every such boundary, the derivatives given in (13) prevent

the solution x(t) from leaving the region.

If N = 0, then dN
dt

= 0. Since the quantities p, s, ψ and iAB are all positive and

bounded above by 1, dN
dt
≤ r0N

(
1− N

K

)
. Thus, when N = K, dN

dt
≤ 0.

If iA = 0, then diA
dt

= βHNV svA > 0. If iB = 0, then diB
dt

= βHNV svB > 0. If

iAB = 0, then diAB
dt

= βHψNV (iAvB + iBvA) > 0.

Similarly, if NV = 0, then dNV
dt

= 0. If vA = 0, then dvA
dt

= βvANvS(iA + iAB) > 0.

If vB = 0, then dvB
dt

= βvBNvS(iB + iAB) > 0.

Suppose iA + iB + iAB = 1. Then by (8), s = 0, and by (9), p > 0, so

d(iA + iB + iAB)

dt
= βHNV s(vA + vB)− b0

(
1− N

θ

)
p− µ1s = −b0

(
1− N

θ

)
p < 0,
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since N ≤ K < θ.

Suppose vA + vB = 1. Then by (8), vS = 0, so

d(vA + VB)

dt
= NvS (βVA(iA + iAB) + βVB(iB + iAB))− bV = −bV < 0.

This proves positive invariance.

3.1 Linear Stability Analysis of the Disease-Free Equilibrium

The disease-free equilibrium (DFE) of the system (13) is found by assuming no in-

fected populations, i.e. iA = iB = iAB = vA = vB = 0. These populations are then

fixed at zero for all time. In addition, the total populations N and NV must also be

constant. By (8) and (9), s = vS = p = 1. Using (7) to rewrite θ in terms of K,

dN

dt
= N

[
b0

(
1− N

θ

)
− µ0

]
= r0N

(
1− N

K

)
,

dNV

dt
= rVNV .

Thus, the total host population is constant when either N = 0 (at the trivial equilib-

rium) or N = K (at the DFE). Due to the assumption of exponential growth in the

vector, dNV
dt

= 0 is only possible under the assumption

(A1) The vector birth and death rates are equal, i.e. bV = µV ⇔ rV = 0.

In this case, the vector population remains constant and fixed to its initial value. We

denote this equilibrium population KV . The DFE is thus

(N, iA, iB, iAB, NV , vA, vB)T = (K, 0, 0, 0, KV , 0, 0)T .

We next use this equilibrium to determine the basic reproduction numberR0 of the

disease. This quantity is related to the average number of new infections resulting
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from the introduction of a single infectious individual into an entirely susceptible

population. If this value is above the threshold 1, the disease will persist and solutions

tend towards the endemic equilibrium; if below, it will die out and solutions tend

towards the DFE.

Theorem 4 (Basic Reproduction Number). The basic reproduction number of the

disease is

R0 =



√
βVAβHKKV

µV (µ0 + µ1)
if βVA ≥ βVB , and√

βVBβHKKV

µV (µ0 + µ1)
if βVA < βVB .

Thus, R0 is a function of the pathogen strain with the larger host-to-vector trans-

mission rate. To prove this, we use the next generation approach [29].

Proof. Let X =
[
iA iB iAB vA vB

]T
. Then the system (13) can be written as dX

dt
=

F(X)− V(X) where

F(X) =



βHNV svA

βHNV svB

ψβHNV (vBiA + vAiB)

βVANvS(iA + iAB)

βVBNvS(iB + iAB)


represents new infections and

V(X) =



ψβHNV iAvB + iA
[
b0
(
1− N

θ

)
p+ µ1s− ψµ2iAB

]
ψβHNV iBvA + iB

[
b0
(
1− N

θ

)
p+ µ1s− ψµ2iAB

]
iAB

[
b0
(
1− N

θ

)
p+ µ1s− ψµ2(1− iAB)

]
µV vA

µV vB


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represents all other dynamics. Let F and V be the Jacobians of F and V respectively,

evaluated at the DFE. Then using the definition of θ from (7),

F =



0 0 0 βHKV 0

0 0 0 0 βHKV

0 0 0 0 0

βVAK 0 βVAK 0 0

0 βVBK βVBK 0 0


,

and

V = diag(µ0 + µ1, µ0 + µ1, µ0 + µ1 − ψµ2, µV , µV ).

From [29], R0 is the spectral radius of the next-generation matrix M given by

M = FV −1 =



0 0 0
βHKV

µV
0

0 0 0 0
βHKV

µV

0 0 0 0 0

βVAK

µ0 + µ1

0
βVAK

µ0 + µ1 − ψµ2

0 0

0
βVBK

µ0 + µ1

βVBK

µ0 + µ1 − ψµ2

0 0


. (15)

A routine computation shows the eigenvalues of M are

0, ±
√
βVAβHKKV

µV (µ0 + µ1)
, and ±

√
βVBβHKKV

µV (µ0 + µ1)
,

so the spectral radius depends on max{βVA , βVB}.

We now show that stability of the DFE is implied by R0 < 1 while R0 > 1 implies

its instability.

Theorem 5 (Stability of the DFE). If R0 < 1 then the DFE has strictly negative
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eigenvalues and is locally asymptotically stable. If R0 > 1 then the DFE has at least

one positive eigenvalue and is unstable.

Proof. Due to the assumption of a constant total vector population, we omit the

equation (13e) from the system and consider only the remaining six equations. The

Jacobian of this reduced system, evaluated at the DFE, is


−r0 −K

(
µ0+µ1−µ0b1b0

)
−K

(
µ0+µ1−µ0b1b0

)
−K

(
µ0+µ1+ψµ2−µ0b2b0

)
0 0

0 −µ0−µ1 0 0 βHKV 0
0 0 −µ0−µ1 0 0 βHKV
0 0 0 −µ0−µ1+ψµ2 0 0
0 βVAK 0 βVAK −µV 0

0 0 βVBK βVBK 0 −µV

 .

Clearly, this matrix has two eigenvalues −r0 and −µ0−µ1 +ψµ2, since they are diag-

onal elements and are the only nonzero elements in their column or row respectively.

We have already assumed that the host intrinsic growth rate r0 > 0; This guarantees

that the eigenvalue −r0 is negative. This corresponds to the host population growing

instead of remaining constant in the absence of disease.

Since 0 ≤ ψ ≤ 1 and µ0 ≥ µ1 ≥ µ2 ≥ 0 with µ0 > 0,

−µ0 − µ1 + ψµ2 ≤ −µ0 − µ1 + µ2 ≤ −µ0 < 0,

so this eigenvalue is strictly negative.

To find the remaining four eigenvalues, we examine the matrix formed by omitting

the first and fourth rows and columns from the Jacobian, as these contained the first

two eigenvalues. Factoring the characteristic polynomial of this matrix gives that the

eigenvalues are the roots of

x2 + (µ0 + µ1 + µV )x− βVAβHKKV + µV (µ0 + µ1)

and

x2 + (µ0 + µ1 + µV )x− βVBβHKKV + µV (µ0 + µ1).
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Both polynomials are similar, with βVA replaced by βVB in the second. Letting y = A

or B, then the four eigenvalues are

λy1, λ
y
2 =

1

2

[
−µ0 − µ1 − µV ±

√
(µ0 + µ1 + µV )2 + 4

[
βVyβHKKV − µV (µ0 + µ1)

]]
,

where λy1 ≥ λy2 and λy2 < 0. Thus

max{λA1 , λB1 } ≥ min{λA1 , λB1 } ≥ max{λA2 , λB2 } ≥ min{λA2 , λB2 }.

We note that the discriminant is

(µ0 + µ1 − µV )2 + 4βVyβHKKV ≥ 0.

Since all parameters are positive, all four eigenvalues have zero complex part and the

DFE is a nodal source or sink, not a spiral.

Since we know λA2 < 0 and λB2 < 0, we are interested in determining the signs of

λA1 and λB1 . It suffices to show that R0 > 1 implies the largest of the two is positive

and that R0 < 1 implies the largest is negative.

By Theorem 4,

R0 = max

{√
βVAβHKKV

µV (µ0 + µ1)
,

√
βVBβHKKV

µV (µ0 + µ1)

}
.

Suppose R0 < 1. This implies βVyβHKKV − µV (µ0 + µ1) < 0, so

max{λA1 , λB1 } <
1

2

(
−µ0 − µ1 − µV +

√
(µ0 + µ1 + µV )2

)
= 0.

Thus, all the eigenvalues are bounded below zero, so the DFE is locally asymptotically

stable.



23

Suppose R0 > 1. Then

max{λA1 , λB1 } >
1

2

(
−µ0 − µ1 − µV +

√
(µ0 + µ1 + µV )2

)
= 0.

Since at least one eigenvalue is positive, the DFE is unstable. This completes the

proof.

3.2 Biological Interpretation of R0

Although R0 is a useful quantity for determining the stability of the disease-free equi-

librium (as proven in Theorem 5), it is difficult to interpret it biologically for models

involving heterogeneous populations. When there are multiple pathogen strains and

multiple types of infection, the concept of a single infectious individual is not well

defined. We follow the computation in [6] to interpret R0 computed in Theorem 4.

We define for x = A,B, the two quantities

• Nx
hv: number of secondary infections generated by a single infected (by pathogen

strain x) vector in a completely susceptible host population.

• Nx
vh: number of secondary infections generated by a single infected (by pathogen

strain x) host in a completely susceptible vector population.

We can compute the numbers Nx
hv and Nx

vh as the product of the number of the rele-

vant adequate (for disease to be transmitted) contacts per unit time (of a vector with

susceptible hosts, or of a host with susceptible vectors, respectively) with the mean

waiting time (of vector, or host, respectively) spent in the infectious compartment.

Thus, we have for x = A,B

Nx
hv =

βHK

µV
, (16)

Nx
vh =

βVxKV

µ0 + µ1

. (17)
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We next introduce the single strain reproduction numbers RA and RB.

Definition 1 (Single Strain Basic Reproduction Numbers). The single strain (A or

B) basic reproduction numbers are defined as

RA =
√
NA
hvN

A
vh,

RB =
√
NB
hvN

B
vh.

We note that the interpretation of R2
x for x = A,B is the number of hosts that

a single host infected with strain x will infect through a generation of infections in

vectors, assuming all other vectors and hosts are susceptible. Theorem 4 computes

the basic reproduction of model (13) as

R0 = max{RA, RB}.

Thus we can interpret (or define) R2
0 as the maximum of the number of secondary

infections of type A or B that are generated by a single host infected with strain A

or B.

3.3 Type Reproduction Numbers

The type reproduction number, introduced by Roberts and Heesterbeek [23], isolates

infections generated by a single type of individual in a heterogeneous population. For

n epidemiologically distinct types of hosts, the type reproduction number of type i is

defined as

Definition 2 (Type Reproduction Number). The type reproduction number Ti is the

expected number of cases in individuals of type i caused by one infected individual

of type i in a completely susceptible population, either directly or through chains of

infection passing through any sequence of the other types.
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This number can be derived from the next generation matrix M (15) and is given

by the formula

Ti = e′iM(I − (I − P )M)−1ei, (18)

where ei is the unit vector with ith component equal to 1 and all other components

equal to zero, I is the identity matrix, and P is the projection matrix on type i, where

Pii = 1 and all other entries are zero [23].

In our case, we are interested in the individual dynamics of each strain of the virus.

Since the virus is found in both hosts and vectors, this gives four epidemiologically

distinct host types and thus four type reproduction numbers.

The following theorem shows that these type reproduction numbers are the same

for hosts and vectors but different for the two strains. For simplicity, we thus index

the numbers by the corresponding strains rather than the host or vector types.

Theorem 6 (Type-Reproduction Numbers). The type-reproduction number of the

disease is

TA =
βVAβHKKV

µV (µ0 + µ1)
for strain A, and

TB =
βVBβHKKV

µV (µ0 + µ1)
for strain B.

Proof. The type-reproduction numbers can be computed easily using the formula

given by Roberts and Heesterbeek [23]. For i = 1 and i = 4 corresponding to hosts

and vectors infected with strain A respectively, we obtain

T1 = T4 =
βVAβHKKV

µV (µ0 + µ1)
= TA = R2

A,

and for i = 2 and i = 5 corresponding to hosts and vectors infected with strain B
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respectively,

T2 = T5 =
βVBβHKKV

µV (µ0 + µ1)
= TB = R2

B.

The type reproduction numbers corresponding to strains A and B are the corre-

sponding single strain reproduction numbers squared. We also note that from formula

(18) we can compute T3 = 0. This type-reproduction number corresponds to coin-

fected host individuals IAB.

An interesting consequence of Theorem 6 is that

R2
0 = max{TA, TB}. (19)

Using this result, it follows from Theorem 5 that the DFE is stable if and only if

both TA < 1 and TB < 1. This effect is illustrated in Figure 3. Even though

R0 > 1 in both the second and third plots, coinfection is only possible when both

type reproduction numbers are greater than one, as in the third plot. In this case, both

strains remain endemic and coinfection can occur if the pathogen taxa are distinct

and cross-protection is incomplete (ψ 6= 0).

Figure 3: Plots illustrating the threshold effect of the type reproduction numbers. At left,
both reproduction numbers are less than one and all three infected classes tend towards
extinction. At center, strain A persists, but strain B does not, so coinfection is not possible
in the long term. At right, both strains persist and coinfection is possible.
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3.4 Numerical Simulations

We run simulations using the base parameter values given in Table 2. By varying spe-

cific parameters, particularly transmission rates (βH , βVA , βVB), the cross-protection

factor (ψ), and initial conditions, we can explore the resulting changes in system

dynamics.

Appendix B describes how the model examined by Seabloom et al. [26] is a special

case of the system (1) and (3). To illustrate this, we reproduce Figure 4 from Seabloom

et al. [26], as shown in our Figure 4. This figure shows the prevalences of infection

and coinfection under varying values of ψ and β := βH = βVA = βVB . In order to

reproduce these results, we simulate the system (13) until it reaches equilibrium and

plot the resulting prevalences.

As discussed in [26], prevalences are higher for a single generalist vector species

that can transmit both pathogen strains than for two specialist vector species that can

only transmit a single strain. Although the prevalence of coinfection varies strongly

with respect to the taxa similarity/cross-protection factor ψ, total prevalence (in-

cluding both singly infected and coinfected individuals) varies only slightly. Thus, as

the taxa similarity factor ψ increases (and cross-protection decreases), singly infected

individuals move into the coinfected compartment, but few susceptible individuals

leave their compartment or are added. This is reasonable since the parameter ψ

only governs the rate that individuals acquire secondary infections and the additional

mortality of coinfected individuals.

However, the pathogen transmission parameters (βH , βVA , and βVB) are highly

influential on long-term pathogen prevalences, both of coinfection and total infection

prevalence. Biologically, this makes sense because these parameters control infections

of all compartments, including both the rate of movement from susceptible to singly

infected and from singly infected to coinfected.

Figure 5 illustrates convergence of the system with two sets of initial conditions
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Figure 4: Prevalence of infection and coinfection against ψ. Labels indicate varying values
of β (reproduced from Seabloom et al. [26]). Dashed black lines represent a single generalist
vector species; solid gray lines represent two specialist vector species.

but the same parameter values. We set βVA = βVB = 0.04 so these strains are not

distinguished. On the top in Figure 5, a susceptible population of vectors encounters

an infected host community with no coinfection. The vectors rapidly acquire the

infection and spread it within the hosts, and the prevalence of coinfection rises and

stabilizes. On the bottom in Figure 5, the host community is entirely susceptible,

and a population of mixed susceptible/infected vectors is introduced. In this case,

hosts rapidly acquire one or two infections. The prevalence of coinfection lags behind

that of each isolated strain until t = 5, at which point coinfections surpass infections

in prevalence. However, the total prevalence of isolated infections, including both

strains, remains higher.

3.5 Sensitivity Analysis of the Coinfected Equilibrium

We continue to make the assumption (A1) in Section 3.1 of a fixed vector population.

Although numerical exploration shows this to be unnecessary for existence of the

coinfected/endemic equilibrium, it maintains consistency with our previous analysis.
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Figure 5: Simulations using the parameters in Table 2. Pathogen strains have equal
transmission rates and graphs differ only by initial conditions. Top: all 100 vectors begin
susceptible; 40 hosts have each strain and the remaining 20 are susceptible. Bottom: hosts
begin with 100 susceptibles; 40 vectors have each strain and the remaining 20 are susceptible.
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Although we do not have an analytical formula for the components of the endemic

equilibrium, a sensitivity analysis can be conducted using methodology similar to that

of Chitnis et al. [7], which we describe below.

Sensitivity analysis is a useful tool to measure the strength of influence of a model’s

parameters on its dynamics. This indicates which parameters are most influential and

thus which are of greatest concern for measurement error [5]. For our models, we are

interested in determining the factors that most affect the prevalences of infection and

coinfection at the disease’s endemic equilibrium [26]. We first define sensitivity indices

that give us comparative measures of the effect of each parameter of the model on

each component of the infected coexistence or endemic equilibrium.

Definition 3. The normalized sensitivity index [7] or elasticity [5] of a quantity x

with respect to a parameter p represents the percentage increase in x resulting from

a one percent increase in the parameter p. It is defined as

I(x; p) :=
p

x

∂x

∂p
.

In this definition, the quantity ∂x
∂p

represents the additive change in x resulting

from a change in p. The normalizing factor p
x

is used to convert these indices into

unitless measures of multiplicative change that can be easily compared.

The specific quantities of interest are the components of the endemic equilibrium

of system (13). Since the constant vector population NV is independent of the pa-

rameters, we omit it from the sensitivity analysis, leaving six remaining equilibrium

components. For simplicity, we denote these values xi for i = 1, . . . , 6 and define

X :=

[
x1 · · · x6

]T
=

[
N iA iB iAB vA vB

]T
.

The right-hand sides of the ODEs in the system (13), again excluding that for

NV , involve a total of twelve parameters. All other parameters (e.g. θ) can be derived
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from these independent base parameters, which we denote as pj for j = 1, . . . , 12.

The vector of parameters is

P :=

[
p1 · · · p12

]T
=

[
b0 b1 b2 µ0 µ1 µ2 K µV βH βVA βVB ψ

]T
.

The right hand sides of the ODEs in the system (13) are denoted as gk(X;P ) for

k = 1, . . . , 6 and we set

G :=

[
g1(X;P ) · · · g6(X;P )

]T
.

In order to compute the sensitivity indices of the components xi of the endemic

equilibrium, it is necessary to calculate ∂xi
∂pj

. At the endemic equilibrium, gk(X;P ) =

0, and differentiating each of these six functions with respect to each of the twelve

parameters pj gives 72 equations of the form

dgk
dpj

=
6∑
i=1

∂gk
∂xi

∂xi
∂pj

+
12∑
`=1

∂gk
∂p`

∂p`
∂pj

= 0,

for 1 ≤ k ≤ 6 and 1 ≤ j ≤ 12. Since the base parameters are independent of one

another, ∂p`
∂pj

is 0 for ` 6= j and is 1 otherwise. This allows us to rewrite the above

system of equations as
6∑
i=1

∂gk
∂xi

∂xi
∂pj

= −∂gk
∂pj

,

for 1 ≤ k ≤ 6 and 1 ≤ j ≤ 12. For fixed j, we can combine the six equations

corresponding to each variable xi to form twelve linear systems, one for each j, 1 ≤

j ≤ 12, in the form

Az(j) = b(j),

where A = ∂G
∂X

is the Jacobian of G with respect to X evaluated at the infected coexis-

tence equilibrium, b(j) is the vector − ∂G
∂pj

again evaluated at the infected equilibrium,



32

and z(j) is the desired vector of unknowns ∂X
∂pj

.

Once these linear systems have been solved for the indices ∂xi
∂pj

, the normalized

sensitivity indices I(x; p) are then obtained by scaling the sensitivities ∂xi
∂pj

by the

factor
pj
xi

, at the baseline parameter values given in Table 2, and at the component

values of the endemic equilibrium.

We conduct sensitivity analyses for two cases of baseline parameter values, differ-

ing by the host-to-vector transmission rates βVA and βVB . In both cases, we assume

the fixed vector population to be NV = 100.

Case 1 (βVA = βVB) The first case uses the baseline parameter values given in Table

2, with resulting sensitivities given in Table 3. With these parameters, the endemic

equilibrium is approximately

X =

[
98.77 0.1902 0.1902 0.4416 0.1466 0.1466

]T
. (20)

In the model, the only parameters that can distinguish between iA and iB and between

vA and vB are βVA and βVB . However, for this case, the baseline transmission rates

are equal, so the two strains share similar dynamics. Coinfection is common in the

population and only about 17.8% of the population is uninfected.

Case 2 (βVA < βVB) In the second case, the strains are distinguished by strain A

having a much lower transmission rate (βVA = 0.02) than strain B (βVB = 0.08). All

other parameters use the baseline parameter values given in Table 2. The correspond-

ing sensitivity indices are tabulated in Table 4. In this case, the endemic equilibrium

becomes approximately

X =

[
98.98 0.0079 0.7289 0.1151 0.0129 0.3531

]T
. (21)
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N iA iB iAB vA vB

b0 0.0018 −0.0005 −0.0005 0.0009 0.0016 0.0016
b1 0.0049 −0.0013 −0.0013 0.0026 0.0045 0.0045
b2 0.0029 −0.0008 −0.0008 0.0015 0.0026 0.0026
µ0 0.0001 0.1969 0.1969 −0.3740 −0.1425 −0.1425
µ1 −0.0017 0.1974 0.1974 −0.3750 −0.1441 −0.1441
µ2 −0.0015 −0.0135 −0.0135 0.0182 0.0051 0.0051
K 0.9955 −0.2707 −0.2707 0.5194 0.9022 0.9022
bV 0.0045 0.2687 0.2687 −0.5156 −0.9007 −0.9007
βH −0.0064 −0.3802 −0.3802 0.7295 0.2744 0.2744
βVA −0.0023 1.2848 −1.5535 0.2578 1.3787 −0.4780
βVB −0.0023 −1.5535 1.2848 0.2578 −0.4780 1.3787
ψ −0.0037 −0.5445 −0.5445 0.5020 0.1290 0.1290

Table 3: Normalized sensitivity indices for the endemic equilibrium, with βVA = βVB =
0.04. The index with the largest magnitude in each column is highlighted .

N iA iB iAB vA vB

b0 −0.0001 −0.0002 0.0000 −0.0003 −0.0003 −0.0001
b1 0.0069 0.0137 −0.0020 0.0181 0.0218 0.0046
b2 0.0005 0.0011 −0.0002 0.0014 0.0017 0.0004
µ0 0.0010 −2.0283 0.3126 −2.5659 −2.4701 −0.0185
µ1 −0.0011 −2.0325 0.3132 −2.5714 −2.4767 −0.0199
µ2 −0.0013 0.9928 −0.1662 1.0611 1.0419 −0.0137
K 0.9963 1.9693 −0.2951 2.6143 3.1357 0.6643
bV 0.0037 −1.9489 0.2920 −2.5885 −3.1110 −0.6641
βH −0.0058 3.0739 −0.4605 4.0827 3.9067 0.0474
βVA −0.0044 5.6675 −0.7816 4.7851 5.7717 −0.0926
βVB 0.0008 −3.7186 0.4896 −2.1966 −2.6608 0.7567
ψ −0.0047 3.6777 −0.7395 4.6645 4.5402 −0.0640

Table 4: Normalized sensitivity indices for the endemic equilibrium, with βVA = 0.02 and
βVB = 0.08. The largest value in each column is highlighted.
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We observe that the fractions of hosts and vectors with strain A, including coinfected

hosts, is drastically reduced. Conversely, strain B is much more prevalent in the

population, resulting in a greater total prevalence of infection than in Case 1.

3.5.1 Results on Prevalence of Infection

The host growth rates (b0, b1, b2) do not substantially affect the equilibrium popula-

tions in either case considered above. The death rates (µ0, µ1, µ2) are generally more

influential, although the additional mortality of coinfected hosts (µ2) has little impact

when the strains are equivalent (transmission rates are the same). When they are

different, increasing coinfection mortality unexpectedly increases the density of singly

infected hosts and vectors with strain A, as well as the prevalence of coinfections.

As expected, in both cases, a 1% increase in carrying capacity K corresponds

almost exactly to a 1% increase in total host population N . When strain A has

smaller transmission rate, increases in K cause larger increases in iA, iAB, and vA

than when strains have equal transmission rates.

For equal strains, increasing the rate of vector turnover (bV = µV ) by 1% strongly

decreases the vector’s disease prevalence (vA and vB both decrease by 0.9%). This

makes biological sense as increasing vector mortality also increases vector birth rate,

and all vectors are born uninfected. In addition, the single infected prevalences in-

crease by 0.27% and coinfected prevalence decreases by 0.5%. When strain A has a

slower rate of transmission, a 1% increase in bV results in strong decreases in preva-

lence of strain A (1.9%) and of coinfection (2.6%) in the host; however the prevalence

of strain B in the host stays about the same as in the case of equal transmission rates.

In addition, the vector’s disease prevalence of type A decreases by 3% while type B

increases by 0.66%.

The parameter with the greatest impact on the prevalence of coinfected individuals

was the vector-to-host transmission rate (a 1% decrease in βH causes a 0.7% decrease
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in iAB) when the strains were equivalent, and the transmission rate of strain A (a 1%

decrease in βVA causes a 4.8% decrease in iAB) when this strain had a much smaller

transmission rate.

With equivalent strains, density of iA is most affected by βVB , and density of iB by

βVA (1% increases cause 1.6% decreases in the prevalences). The transmission rates

of the strains associated with each compartment are also influential (1% increases

cause 1.3% increases in the prevalences). However, for βVA < βVB , density of both

iA and iB are both affected strongly by βVA , while the vector disease prevalences are

affected by their correponding transmission rates (i.e. vA affected more by βVA , while

vB affected more by βVB .

An increase in the parameter ψ represents reduced cross protection and lowered

pathogen taxa similarity. A 1% increase raises the prevalence of coinfection by 0.5%

if the transmission rates are the same, and by 4.7% if they are different. When strain

A has a much lower transmission rate, a 1% increase in ψ also strongly increases the

density of hosts and vectors with strain A, by 3.7% and 4.5% respectively.
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4 Vector–Host Model with Logistic Vector Growth

The birth function (6) used in the previous analysis assumes an exponential vector

growth rate. In addition, the analysis in Section 3.1 relies on the assumption (A1): the

rate of exponential growth is zero, so the total vector population is a fixed constant.

Biologically, this assumption may not be reasonable. We consider an alternative

logistic birth function similar to that used by Jeger et al. [15],

r(Vi,S, Vi,A, Vi,B) = bVNV,i

(
1− NV,i

mN

)
. (22)

Using this function, the vector equations in the proportions model (13) for one vector

species have the following form.

Vectors:

dNV

dt
= rVNV

(
1− NV

m̃N

)
,

dvA
dt

= βVANvS(iA + iAB)− bV vA
(

1− NV

mN

)
,

dvB
dt

= βVBNvS(iB + iAB)− bV vB
(

1− NV

mN

)
,

where

m̃ := m
rV
bV

represents the maximum number of vectors that each host can sustain (such that at

a given host population N , the vector carrying capacity is m̃N). The equations for

the host populations remain unchanged.

Figure 6 shows infection and coinfection prevalences for two values of m. As µV

decreases (and thus rV increases), prevalence increases (cf. Figure 6). Notably, using

logistic vector growth, prevalence is almost always higher with two specialist vectors
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than with a single generalist (except for β = 0.02 in the first case shown in Figure

6). This is the reverse of what is observed in the case of a constant vector population

(cf. Figure 4).

We also examine the sensitivities of the endemic equilibrium components as in

Section 3.5, setting m = 100, bV = 12, and µV = 11 with all other parameters as in

Table 2. When both strains have the same transmission rate βVA = βVB = 0.4, the

equilibrium is

X =

[
N iA iB iAB NV vA vB

]T
=

[
97.58 0.04275 0.04275 0.8914 813.2 0.1993 0.1993

]T
.

Compared to the equilibrium using the exponential growth function given in (20), the

host population is very similar (98 versus 99), but the prevalence of isolated infections

is much lower (8.6% versus 38%) and coinfection is far more prevalent (89% versus

44%). The prevalence of infection in vectors is not greatly increased (40% versus

30%), although the vector population has stabilized to 813 individuals compared to

the fixed population of 100 from before.

When the strains have different rates (βVA = 0.2, βVB = 0.8) the equilibrium is

X =

[
97.73 0.007948 0.1524 0.8202 814.40 0.08003 0.3759

]T
.

Comparing to the exponential growth analog (21), the host populations and the

prevalence of isolated cases of strain A are very similar, but isolated cases of strain

B are scarce (15% versus 73%) and coinfection is common (82% versus 12%).

The normalized sensitivities are given in Tables 5 and 6. Overall, the most in-

fluential parameters are by far the vector’s birth and death rates (bV and µv). For

example, a 1% increase in vector mortality results in 1.7% decrease in prevalence of
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Figure 6: Plots of prevalence assuming logistic vector growth with birth rate bV = 12.
Top: µV = 11, m = 100. Center: µV = 11, m = 300. Bottom: µV = 10, m = 100. All
other parameters are as in Table 2.
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coinfection when the strains have equal transmission rates, and a 27.8% increase in

coinfection prevalence when the strains have different rates. This also increases the

prevalence of singly infected hosts by 10.2% in the first case and in the second case,

iA decreases by 20% while iB decreases by 41%.

The vector’s per-host carrying capacity m is also influential, although a 1% change

in this parameter never changes the prevalences by more than 2%. The pathogen

transmission rates remain fairly influential, as they were under the assumption of

constant vector population.

Since the parameters governing vector growth are critical, these parameters should

be estimated with a high degree of accuracy to ensure the model output is reasonable.
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N iA iB iAB NV vA vB

b0 −0.0009 0.0013 0.0013 −0.0002 −0.0009 −0.0006 −0.0006
b1 0.0037 −0.0052 −0.0052 0.0006 0.0037 0.0024 0.0024
b2 0.0191 −0.0271 −0.0271 0.0034 0.0191 0.0126 0.0126
µ0 −0.0057 0.3792 0.3792 −0.0472 −0.0057 −0.0201 −0.0201
µ1 −0.0084 0.3830 0.3830 −0.0477 −0.0084 −0.0218 −0.0218
µ2 −0.0039 0.1511 0.1511 −0.0184 −0.0039 −0.0088 −0.0088
K 0.9939 −1.4128 −1.4128 0.1753 0.9939 0.6595 0.6595
bV −0.0416 −9.7039 −9.7039 1.2038 10.9577 0.3988 0.3988
µV 0.0438 10.2345 10.2345 −1.2696 −10.9554 −1.0219 −1.0219
βH −0.0038 −0.8822 −0.8822 0.1094 −0.0038 0.0363 0.0363
βVA −0.0011 0.7907 −1.3212 0.0329 −0.0011 0.8600 −0.2368
βVB −0.0011 −1.3212 0.7907 0.0329 −0.0011 −0.2368 0.8600
ψ −0.0060 −0.7520 −0.7520 0.0676 −0.0060 0.0145 0.0145
m −0.0038 −0.8822 −0.8822 0.1094 0.9962 0.0363 0.0363

Table 5: Normalized sensitivity indices for the endemic equilibrium using a logistic vector
growth function, with βVA = βVB = 0.04. The largest value in each column is highlighted.

N iA iB iAB NV vA vB

b0 −0.0007 −0.0003 −0.0007 0.0005 0.0013 0.0001 −0.0004
b1 0.0085 0.0040 0.0087 −0.0059 −0.0156 −0.0007 0.0044
b2 0.0071 0.0033 0.0073 −0.0049 −0.0130 −0.0006 0.0037
µ0 −0.0020 0.1761 0.3657 −0.2489 0.0036 −0.2175 −0.0023
µ1 −0.0045 0.1749 0.3631 −0.2471 0.0083 −0.2173 −0.0037
µ2 −0.0021 0.0019 0.0371 −0.0232 0.0038 −0.0220 −0.0005
K 1.0083 0.4693 1.0287 −0.6967 −1.8472 −0.0824 0.5223
bV 0.3535 19.9490 43.7342 −29.6193 −54.7840 −27.2577 −1.5494
µV −0.3316 −18.7105 −41.0191 27.7805 51.9117 25.0367 0.9243
βH −0.0063 −0.3577 −0.7843 0.5312 0.0116 0.4596 −0.0014
βVA −0.0050 1.5621 −0.9886 0.5334 0.0092 1.4715 −0.1093
βVB 0.0014 −1.7680 0.5372 −0.2277 −0.0025 −0.6314 0.6841
ψ −0.0065 −0.3930 −0.7821 0.4528 0.0119 0.4046 −0.0280
m 0.0120 0.6751 1.4800 −1.0023 −1.8539 −0.9224 −0.0524

Table 6: Normalized sensitivity indices for the endemic equilibrium using a logistic vector
growth function, with βVA = 0.02 and βVB = 0.08. The largest value in each column is
highlighted.
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5 Conclusions and Future Work

In this thesis, we have considered a modified version of a vector–host model for

coinfection by two strains of the pathogen barley/cereal yellow dwarf virus that was

initially constructed by Seabloom et al. [26]. Whereas in [26], the authors use a

quasiequilibrium argument to reduce the number of differential equations by assuming

that vector numbers are at an equilibrium, in our model we explicitly track the vector

dynamics. With this modification our model can be easily extended to incorporate

multiple vector species. We consider two different vector growth functions, a constant

vector population and logistic vector growth, and analyze the case of a single-vector,

single-host, two-pathogen-strain model. The parameters of the model are fit to data

given in [26]. We use this data as our baseline data for the sensitivity analysis of the

infected coexistence equilibrium for our models.

We first analyze the case of a constant vector population. We compute the ba-

sic and type reproduction numbers for this model and prove the linear stability of

the disease-free equilibrium. The infected coexistence equilibrium proves to be an-

alytically intractable and we have used sensitivity analysis on this equilibrium to

understand which of the 12 parameters (using baseline values) involved in the model

are the most influential for the prevalence of infection and coinfection.

The linear stability analysis of the disease free equilibrium (DFE) for the single-

host, single-vector (at constant total population) and two-pathogen strain model in

Section 3.1 and accompanying Figure 3 show that the basic reproduction number

R0 does not completely describe the model’s long-term dynamics. This is because

initial disease transmission is directly related to R0, but disease prevalence is directly

related to the endemic or infected coexistence equilibrium. Thus, the dynamics of

coinfection cannot be deduced from a knowledge of R0, and we must analyze the

infected coexistence equilibrium to understand coinfection dynamics.

The basic reproduction number R0 can be calculated from the type reproduction
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numbers TA and TB, which describe individual strain persistence. Coinfection may

not be possible if R0 > 1, which only indicates that at least one viral strain persists,

but if both TA > 1 and TB > 1, then both type of strains persist and coinfection

occurs if cross-protection is incomplete.

Furthermore, neither the basic nor type reproduction numbers depend on strain

similarity or mortality of coinfected hosts. The computed explicit formula forR0 gives

an indication of control efforts that can be adopted to lower the initial transmission

of disease. In particular the reproductive numbers can be reduced by reducing the

pathogen transmission rates (βH , βVA , and βVB) and carrying capacities of both host

and vector (K and KV ). In addition, increased mortality of susceptible (µ0) and

singly infected (µ1) hosts reduces the reproductive numbers, as does faster vector

replacement, i.e. elevated birth (bV ) and death rates (µV ). This is reasonable since

we assume a constant vector population, so each vector death corresponds to a vector

birth, and all vectors are born uninfected.

The sensitivity analysis of the infected coexistence equilibrium of the model with

constant vector population in Section 3.5 suggests that the disease transmission rates

have the most influence on equilibrium populations sizes of infected compartments.

The host’s birth and death rates have relatively little influence, unlike the vector’s.

The strain similarity and cross-protection factor (ψ) has fairly strong influence on

the infected and coinfected host compartments; in particular, if one strain has higher

transmission rate, then ψ becomes highly influential to all compartments whose mem-

bers are infected by the other strain (including hosts, vectors, and coinfections).

For the model with logistic vector growth, we have only conducted a sensitivity

analysis of the infected coexistence equilibrium in Section 4. This analysis indicates

that changing the vector population dynamics changes the infection and coinfection

dynamics of the vector–host model. In particular, the most influential parameters

for infection and coinfection dynamics now are the vector’s birth and death rates (bV
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and µv), with the vector’s per-host carrying capacity (m) also playing a critical role.

The pathogen transmission rates also remain influential in the infection dynamics,

but the parameters governing vector growth seem to be the most critical.

Our results show that the vector growth function used makes a difference in the rel-

ative importance of parameters in the spread and coinfection of the host by B/CYDV.

Numerical simulations of the two models with different vector growth functions in-

dicate that the relative magnitude of infected and coinfected prevalences between

specialist and generalist vectors seem to depend on the particular vector population

dynamics being modeled.
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Appendices

A Glossary

Basic reproduction number The average number of secondary infections over the

lifetime of a single infectious individual introduced into an entirely susceptible

population of given size [19].

Carrying capacity The maximum sustainable population of a species. A popula-

tion at carrying capacity has zero net growth as its birth and death rates are

equal and opposite.

Contact rate The rate at which susceptible and infectious individuals meet such a

way that disease transmission may occur.

Coinfection When an individual host is infected by multiple viruses or viral strain

simultaneously.

Cross-protection An effect triggered by a virus that protects its host against further

infections, e.g. by inoculating it or by elevating its immune response.

Disease-free equilibrium An equilibrium at which the disease has become and

remains extinct, so all infected population classes have zero population. In

most models, the population then comprises only susceptible individuals.

Density-dependent transmission A model for disease transmission in which con-

tact rate is proportional to the population of infectious individuals [19,28]. Also

known as mass action transmission.

Equilibrium A set of population densities (e.g. the susceptible and infectious popu-

lations) at which the flow of individuals into each compartment exactly balances

the flow out, so the compartmental populations are stable and constant.
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Endemic equilibrium An equilibrium at which the disease persists indefinitely, i.e.

where the population of infectious individuals stabilizes at some nonzero density

rather than the disease dying out.

Standard incidence disease transmission A model for disease transmission in

which contact rate is proportional to the infected fraction of the population [19]

but independent of the total population itself [28]. Also known as frequency-

dependent transmission.

Incidence The rate at which new cases of a disease occur within a given population

[9].

Trivial equilibrium The equilibrium at which all population compartments have

zero density. This equilibrium exists in most models for closed populations that

do not include immigration or emigration.

Type-reproduction number The expected number of cases in individuals of type

i caused by one infected individual of type i in a completely susceptible popula-

tion, either directly or through chains of infection passing through any sequence

of the other types [23].

Population pressure The population size at which the net birth rate is reduced to

zero, due to factors such as overcrowding and intraspecific competition. This

would be the population carrying capacity in the absence of death.

Prevalence The number of cases of infection within a given population or the pro-

portion of which is infected [19].

Vector An intermediate agent, such as a mosquito, aphid, or tick, that transmits a

pathogen between hosts.

Virulence The disease-induced mortality of a host [2].
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B Vector Quasiequilibrium Analysis

The system (1) and (3) is a generalization of that analyzed by Seabloom et al. [26],

obtained by relaxing the assumption of n = 2 vector species and constant vector popu-

lations. Seabloom et al. use a quasiequilibrium (pseudoequilibrium) argument, based

on constant vector populations, to model vector populations implicitly as a function

of given host populations. This simplifies the model by reducing the dimension of the

system.

Extending this argument to the n-species case, we suppose that the vector pop-

ulation NV,i for each species i is fixed at a constant N∗V,i > 0. Then from (4), this

implies r(t) = µVN
∗
V,i. Since

dVi,S
dt

= 0, the equation (3a) gives

Vi,S =
µV

βVi,A(I∗A + I∗AB) + βVi,B(I∗B + I∗AB) + µV
N∗V,i.

Using this, it follows from (3b) and (3c) that

Vi,A =
βVi,A(I∗A + I∗AB)

βVi,A(I∗A + I∗AB) + βVi,B(I∗B + I∗AB) + µV
N∗V,i,

Vi,B =
βVi,B(I∗B + I∗AB)

βVi,A(I∗A + I∗AB) + βVi,B(I∗B + I∗AB) + µV
N∗V,i.

In the case n = 2, by setting VA = V1,A + V2,A, VB = V1,B + V2,B, X = N∗V,1 and

Y = N∗V,2, this is directly equivalent to the vector populations obtained and used by

Seabloom et al. [26].


