


AN ABSTRACT OF THE THESIS OF

Kenneth Charles Walsh for the degree of Doctor of Philosophy in Physics presented on

Dec 16, 2009.

Title: Hartree-Fock Electronic Structure Calculations for

Free Atoms and Immersed Atoms in an Electron Gas

Abstract approved:

Henri J.F. Jansen

Electronic structure calculations for free and immersed atoms are performed in the

context of unrestricted Hartree-Fock Theory. Spherical symmetry is broken, lifting de-

generacies in electronic configurations involving the magnetic quantum number m`. Basis

sets, produced from density functional theory, are then explored for completeness. Com-

parison to spectroscopic data is done by a configurational interaction of the appropriate

L and S symmetry. Finally, a perturbation technique by Löwdin is used to couple the
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HARTREE-FOCK ELECTRONIC STRUCTURE CALCULATIONS

FOR FREE ATOMS AND IMMERSED ATOMS IN AN ELECTRON

GAS

1. INTRODUCTION

My advisor Dr. Jansen, early after agreeing to work with me, asked if I wanted to

use tools to model atoms or create tools for modelling atoms. The work presented here

is designed to lay the ground work for a new tool created to model atoms, both free

and immersed in a gas of free electrons. The end goal of such a tool is to model atomic

impurities in metals accurately.

Previous work [1][2] has explored the approach of an atom in an electron gas in the

context of Density Functional Theory (DFT). Spherical [3] and non-spherical [4] calcu-

lations of this type have shown promise as fundamental tools. Density functional and

Hartree-Fock (HF) theory are both used to approximate solutions to the many-body

Schrödinger equation. The natural question is then, how would the immersed atomic

system work if modelled with HF theory? With this goal in mind an alternative question

quickly arose, would using a spherically symmetric converged DFT calculation, for the

HF basis states, improve completeness? This work solves the many-body HF Schrödinger

equation for free atoms and atoms immersed in an electron gas, using basis sets generated

from DFT.

The first step in modelling an atom, immersed in an electron gas, is to model

the atom itself. To provide complete control over electronic configurations we’ve broken

both spatial and spin symmetries. This freedom to explore all electronic configurations
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increases the value of this tool but also increases complexity. Interactions between states

of the appropriate symmetry lift degeneracies in the energy levels of the atom. The ground

state electronic configurations can then be tested if they obey Hund’s rules [5]. Various

basis sets can be generated by adjusting parameters in DFT. These basis sets are tested

for completeness. Along with the kind of basis states, the number, or size of the basis set

is also tested for completeness. I call this ”exploring the space”. This flexibility lays a

good foundation for future work. Computations performed here can be a foundation for

more complicated calculations.

A third question, the answer to which I felt necessary to validate the work, was how

do the energies calculated by HF compare to spectroscopic experiments? The answer to this

question resulted in a side project, to couple the orbital and spin angular momentum of

many configurational state functions. Not as trivial a problem as presented in introductory

texts [6][7], this required expressing a completely anti-symmetric coupled L and S state in

terms of the uncoupled l, m and s,ms states. For many electrons this becomes tedious and

an algorithm to account for all cases had to be formed. The end result is a configuration

interaction comparison to spectroscopic data that fits nicely.

Finally, the immersion into an electron gas could be implemented. The idea is

to couple the free atom to a jellium background. Metals have many free electrons but

maintain a net neutral charge. To achieve this a static uniform background positive

charge will offset the free electron negative charge. Observing how the atoms electronic

states shift while increasing the coupling with the free electrons will explain the effects

of an impurity atom in a metal. A brief exploration into spreading out the basis states

attempted to simulate the effects of an immersion. This didn’t increase the degrees of

freedom of the system as it doesn’t actually couple any bound states to any other states.

As a consequence, it simply increased the total energy. To successfully lower the energy,

state space had to be increased. Unfortunately HF doesn’t take kindly to large state
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space, as the computation time increases like M4, where M is the number of basis states.

The method must account for interactions of a set of free electron states on a set of bound

electron states, without simply adding the spaces together.

A perturbation technique posed by Löwdin [8] presented a solution to the problem

of coupling two slightly interacting systems. The method treats the influence of the free

electrons as a small perturbation on the bound electrons and folds that interaction back

into the space of just the bound electrons. This technique is applied under the iterative

context of HF and the final converged atom is influenced by the electron gas. Through

multiple function expansions the immersed Fock matrix is derived. A Bessel function

expansion [9] [10] limits the maximum density of free electrons that can be solved. For

those densities in which the system can be solved, the feature of lowering the total energy

of an atom immersed in an electron gas is shown. The model even appears to distinguish

between larger energy advantages to immersion, for those elements that are metallic.

To forecast what the model would predict for greater electron densities, the immersion

dependency on the change in total energy is extrapolated.

The work presented here not only produces results for comparison but also sets the

stage for further research. A more complete set of heavier free atoms modelled, with their

spectroscopic comparisons, could warrant interest. Improving the immersions to include

larger densities and generating more a thorough list of converged atoms would also be of

interest. In reality this work is the launching point for many, more complicated systems,

from field dependencies to impurity clusters, to full band structure calculations of all these

systems. We have built a fundamental tool to be used to model sophisticated many-body

systems.
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2. HARTREE-FOCK THEORY

The techniques shown in this work are based on those posed by D. Hartree and V.

Fock [11][12][13]. The methods approximately solve the many-body Schrödinger equation.

All derivations use the natural Hartree atomic units where e = me = ~ = 1/4πε0 = 1.

The unit for energy, the hartree, equals two Rydbergs. Lengths are measured in units of

bohr radii.

2.1 The Many-Body Problem

Solving the problem of multiple bodies, mutually interacting, is of great interest

in physics. The problem can be explicitly solved for one and two particle systems. For

systems of three particles and greater (many), no closed form analytical solution exists.

The best hope is to make appropriate assumptions and approximations to come near

a correct solution. Different techniques work well in approximating a given problem.

Determining which problem solving scheme should be used depends on the nature of the

question.

Electronic interactions arise from different forces than gravitationally attracted ce-

lestial bodies, but the many-body problem persists on all scales. At the atomic scale, the

equation developed by Schrödinger to describe quantum phenomena must be satisfied.

This work models the atomic world and at the core is a method to approximate solutions

to the many-body Schrödinger equation.

2.1.1 Free Electron Gas

Before modelling particle systems it helps to describe a single particle. Newton

described macroscopic bodies like baseballs and planets but for accurate descriptions of
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microscopic bodies on the atomic scale, quantum descriptions are required. General static

quantum systems satisfy the time independent Schrödinger equation 2.1.

ĤΨ(~r) = EΨ(~r) (2.1)

Ĥ is the Hamiltonian operator which performs operations on a wave function Ψ(~r),

to extract information about the energy of a system. The connection to experiment is

that this wave function, when multiplied by its complex conjugate Ψ∗(~r)Ψ(~r), is equal to

the probability amplitude of finding the particle. This probability amplitude must satisfy:

∫
Ψ∗(~r)Ψ(~r)d~r = 1 (2.2)

This says you have a one hundred percent chance of finding the particle, somewhere in

space.

Since the potential energy of a free particle is zero the only term in the Hamiltonian

is the kinetic energy, T̂ .

Ĥ = T̂ = −
−→∇2

2m
(2.3)

Exact solutions to the problem of a free particle with kinetic energy exist [6]. The functions

that satisfy this problem are plane waves, and the energies associated with these plane

waves are those of a free particle.

Ψk(~r) =
1√
V

e±i
−→
k ·−→r , Ek =

~2k2

2m
(2.4)

Finite volumes have a discrete set of allowed k wave vectors due to finite space requiring

the solutions go to zero at the boundary. As the volume gets larger the k values become

more continuous.

2.1.2 Hydrogen Atom

The least complicated system involving the interaction between bodies is that of

two particles attracted to each other. This can be thought of as a single particle attracted
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to a central potential created by a second particle. This is the case for the hydrogen atom.

Since the gravitational force between an electron and a proton is 39 orders of magnitude

smaller than the Coulomb force, gravity will be neglected. For macroscopic bodies with

no net charge, gravity is the dominant force, but the shape of the gravitational potential

is the same as that of the Coulomb potential. The mass of a proton is roughly 1836 times

that of an electron. For this reason the motion of nuclei can be neglected and a static

coordinate system can be used with the origin at the nucleus. With these assumptions the

problem is that of an electron in a central Coulomb potential created by a static nucleus.

The nuclear Coulomb potential operator V̂n, is negative the inverse of the distance between

the two charges with e2=1.

V̂n = − 1
|−→r | (2.5)

With the kinetic energy operator for a single particle and the potential operator above,

the Schrödinger equation for the simple hydrogen atom can be written as follows.

ĤΨ(~r) = (T̂ + V̂n)Ψ(~r) = −
−→∇2

2m
Ψ(~r)− Z

r
Ψ(~r) = EΨ(~r) (2.6)

The discrete set of solutions to this equation are exact and can be readily solved [13]. The

normalized wave functions contain information about the probability of where to find the

electron under the influence of the central Coulomb potential.

Ψnlm(r, θ, φ) =

√(
2

na0

)3 (n− l − 1)!
2n(n + l)!

e−
ρ
2 ρlL2l+1

n−l−1(ρ) · Ylm(θ, φ) (2.7)

In the above equation ρ = 2r
na0

and a0 is the Bohr radius equal to 4πε0~2
mee2 . The functions

that describe the probability density in the radial direction are the generalized Laguerre

polynomials L2l+1
n−l−1(ρ). Angular information about an electron in a hydrogen atom comes

from the spherical harmonics Ylm(θ, φ). The discrete solutions are identified by a set of

integers called the quantum numbers. n is the principal quantum number, l is the angular

momentum quantum number and m is the magnetic quantum number. The allowed values

of the hydrogen quantum numbers are: n = 1, 2, 3...∞; l = 0, 1, ..., n− 1; m = −l, ..., l.
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2.1.3 Many Electron Atoms

One and two particle systems are important because they constitute the only systems

that are analytically solvable. This is important but most interesting problems involve

more than two bodies. For many-body systems there is no closed form analytical solution.

If the assumptions of the hydrogen atom persist and other electrons are added, new

operators arise in the equations. The Coulomb repulsion between the ith and jth electron

has the following associated electron-electron Coulomb operator.

V̂ee =
1

|−→ri −−→rj | (2.8)

Writing down the Schrödinger equation for each particle yields a problem that no

math has solved: a coupled set of second order differential equations. Coupling occurs

through the electron-electron Coulomb potential. The consequence of this coupling is that

the Coulomb energy of the ith electron depends on the position of the jth electron and

vice versa. Consider the many-body Schrödinger equation with the assumption of a total

wave function comprised of separable single particle states ϕ [13].

(
Ĥi + Ĥj +

1
|−→r i −−→r j |

)
ϕi(−→r i)ϕj(−→r j) = Eϕi(−→r i)ϕj(−→r j) (2.9)

The equation for the energy of the ith particle would be:

Ĥiϕi(−→r i) + vjϕi(−→r i) = Eϕi(−→r i)−
(∫

ϕj(−→r j)Hjϕj(−→r j)
)

ϕi(−→r i) (2.10)

with

vj =
∫ |ϕj(rj)|2
|−→r i −−→r j |d

−→r j . (2.11)

The equation for the jth particle would be the same with each index changed. These are

hopelessly coupled equations, through the Coulomb potential vj . Closed form analytical

solutions to these equations do not exist. The best hope is to make approximations and

then solve the system numerically. All many-body problems are solved approximately.
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The precision of the solutions then depends heavily on how your assumptions and approx-

imations are chosen. This point is especially important with regards to computational

time and desired precision.

2.2 Basic Theory: Hartree-Fock

The theory used to approximate the many-body electron problem was first developed

by Douglas Hartree. The technique was posed as a way to find many-body wave functions

by solving N-coupled equations for N-spin orbitals. John Slater [14] and Vladimir Fock

independently realized the method didn’t account for the antisymmetric nature of fermions

and the exchange energy associated with them. This method, coined Hartree-Fock theory

(HF), could then be used to solve quantum systems of electrons. Systems that can take

advantage of approximate solutions to the electronic Schrödinger equation include nuclear,

atomic, molecular and solid state. In all of these systems the basic principles behind

Hartree-Fock hold true but different assumptions and approximations may be made.

2.2.1 Assumptions, Approximations and the Fock operator

To set the ground work needed to derive the Hartree-Fock equations a number of

assumptions and approximations must be made [13]. These are specific to the problem of

a single, stationary, non-relativistic atom.

Born-Oppenheimer approximation - The total wave function can be separated into

two parts.

Ψtotal = ψelectronic ⊗ ψnuclear (2.12)

This can be justified because of the mass mismatch between the electrons and nuclei.

The motion of the nuclei have little dependence on that of the electrons. Since this work

only models single atoms, mutual interaction of nuclei, is not needed. A result of this

assumption is zero kinetic energy of the nucleus.
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gravity - The large disparity between Coulomb and gravitational forces justifies

ignoring all gravitational effects.

non-relativistic - The atoms modelled are light enough (Z<36) to ignore relativistic

effects in the momentum operator. (reference something)

central potential - The nuclear potential is assumed to be a central potential. This

fact justifies the use of spherical harmonics for the angular portion of the wave functions.

Interactions with other electrons will cause the overall potential to not be central.

spin orbitals - The spin orbital ψi(−→ri ; σi) represents the total state of an electron.

Each spin orbital is assumed to be orthogonal and can be separated into a spacial function

φi(−→ri ) and a spin state χ(σi).

ψi(−→r i;σi) = φi(−→ri )⊗ χ(σi) (2.13)

basis set - Each spin orbital is expanded into a set of wave functions called the

basis set. The variational method is used to minimize the energy and form a generalized

eigenvalue problem. Solutions to this problem require a linear combination of finite, not

necessarily orthogonal, basis sets. The features of the basis set will be varied to explore

its precision.

spin dependence - Since relativistic effects are ignored the electron spin is added

ad hoc. Effects that are spin-dependent such as spin-orbit or spin-spin coupling must be

added as corrections after the electronic Schrödinger equations have been solved.

Fermi-Dirac statistics - The total wave function must always be antisymmetric

under the exchange of particles. Energy eigenfunctions are then assumed to be determined

through a single Slater determinant of single particle wave functions.

electron correlation - The correlation energy is the difference in energy between the

exact solutions to the non-relativistic many-body Schrödinger equation and that of HF.

Ecorrelation = Eexact − EHF (2.14)
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The interaction of electronic ensembles is only taken into account ad-hoc. This is one of

the shortfalls of standard Hartree-Fock theory.

electron exchange - When using the Slater determinant to anti-symmetrize the total

wave function, electron exchange effects are completely accounted for. This is one of the

benefits of Hartree-Fock theory.

With these assumptions the total Hamiltonian operator (Ĥ) is comprised of a kinetic

(T̂ ), a nuclear Coulomb (V̂n) and an e-e Coulomb (V̂ee) operator for every electron in the

system.

Ĥ = T̂ + V̂n + V̂ee = −
N∑

i=1

−→∇2
i

2m
−

N∑

i=1

Z

ri
+

N∑

i=1

N∑

j>i

1
|−→r i −−→r j | (2.15)

N is the total number of electrons. The e-e interaction sums over every particle’s inter-

action with every other particle.

2.2.2 Total Fermion Wave Function: Slater Determinant

For a single particle, or a electron in a central potential created by static proton, a

single wave function is all that is required to describe the system. It would seem reasonable

then to form the total wave function of a system of particles as a product of individual

wave functions.

Ψ =
N∏

α=1

ψα(−→r α;σα) = ψ1(−→r 1;σ1)ψ2(−→r 2; σ2)...ψN (−→r N ; σN ) (2.16)

Here σα is a spin index for the αth particle. The problem with this assumption is that

electrons are among a class of particles called fermions. Two fermions cannot be in the

same state and the same location, at the same time. This means any wave function

describing a system of such particles must be antisymmetric under exchange of particles.

To satisfy this requirement Fock and Slater implemented a determinant on the location
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of the particles [14].

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(−→r 1; σ1) ψ1(−→r 2; σ2) . . . ψ1(−→r N ; σN )

ψ2(−→r 1; σ1) ψ2(−→r 2; σ2) . . . ψ2(−→r N ; σN )
...

...
. . .

...

ψN (−→r 1; σ1) ψN (−→r 2; σ2) . . . ψN (−→r N ; σN )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.17)

Here the 1√
N !

is a normalization factor due to the increased number of wave functions. Ap-

plying this procedure ensures Ψ will be antisymmetric under exchange. A more convenient

notation for the total wave function uses the antisymmetrizing operator Â.

Ψ = Â[ψ1(−→r 1; σ1)ψ2(−→r 2; σ2) . . . ψN (−→r N ; σN )] = Â
N∏

α=1

ψα(−→r α; σα) (2.18)

with,

Â =
1√
N !

∑
p

(−1)pP̂ =
1√
N !

[
1−

∑

ij

P̂ij +
∑

P̂ijk − · · ·
]

(2.19)

where P̂ is the permutation operator. P̂ij permutes the coordinates of electron i and

electron j. If an even number of permutations occurs the term is positive and if odd, the

term is negative. The total energy of a system of fermions can then be determined using

the Schrödinger equation.

ε =
∑

p

(−1)p

〈 N∏

α=1

ψα(−→r α; σα)
∣∣∣∣Ĥ

∣∣∣∣P̂
N∏

β=1

ψβ(−→r β; σβ)
〉

(2.20)

2.2.3 Single Particle Contributions

When using a properly anti-symmetrized wave function a large number of combina-

tions of terms arise. The contribution to the total energy from the kinetic T , and nuclear

Coulomb VNE , energies would appear to have many combinations.

(T + VNE) =
∑

p

(−1)p

〈 N∏

α=1

ψα(−→r α;σα)
∣∣∣∣−

N∑

i=1

−→∇2
i

2m
−

N∑

i=1

Z

ri

∣∣∣∣P̂
N∏

β=1

ψβ(−→r β; σβ)
〉

(2.21)
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Since each spin orbital is orthogonal, most combinations are zero. What survives is the

term in which each combination of spin orbitals on each side of the operator are the same.

This can then be written as a simple sum over single particle states.

(T + VNE) =
N∑

i=1

〈
ψi(−→r ;σi)

∣∣∣∣−
−→∇2

2m
− Z

r

∣∣∣∣ψi(−→r ; σi)
〉

(2.22)

The kinetic and nuclear Coulomb energy of a particular electron should not have direct

dependence on the other electrons. Since the only remaining terms are those with the

same spin orbitals the condition of like spin is satisfied.

2.2.4 Two Particle Contributions

The anti-symmetrizing of the total wave function has a more complex consequence

in regards to the e-e Coulomb interactions. The e-e operator is defined as the inverse

distance between two charged particles. This inherently involves more than one particle.

Vee =
∑

p

(−1)p

〈 N∏

α=1

ψα(−→r α; σα)
∣∣∣∣

N∑

i=1

N∑

j>1

1
rij

∣∣∣∣P̂
N∏

β=1

ψβ(−→r β; σβ)
〉

(2.23)

The number of combinations that remain is N times as many as the number of single

particle terms, where N is the total number of particles. Two of the spin orbitals in the

product are operated on with 1
|−→r i−−→r j | , which has the same value when the coordinates

are switched. What survives are those integrals involving both the spin orbitals that have

been operated on and a set of integrals where those orbitals have switched coordinates.

The first is called the direct e-e Coulomb energy.

V d
ee =

N∑

i=1

N∑

j>i

〈
ψi(−→r 1; σi)ψj(−→r 2; σj)

∣∣∣∣
1

r12

∣∣∣∣ψj(−→r 2; σj)ψi(−→r 1; σi)
〉

(2.24)

The second differs by a minus sign and a swapping of coordinates between two spin orbital

states. This is called the exchange e-e Coulomb energy.

V ex
ee = −

N∑

i=1

N∑

j>i

〈
ψi(−→r 1;σi)ψj(−→r 2; σj)

∣∣∣∣
1

r12

∣∣∣∣ψj(−→r 1; σj)ψi(−→r 2; σi)
〉

(2.25)
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The direct term can be thought of as the regular Coulomb interaction between two

electrons. It is positive and counters an electron’s affinity to being bound to a nucleus

while other electrons are also bound. The exchange energy is negative and aids in lowering

the total energy of the system. This exchange effect can be justified by the fact that if

two electrons have the same spin, there is a non-zero probability that they can switch

states. A system will not switch states unless the outcome lowers the total energy, so

the effect of exchange must lower the energy. This exchange energy is at most half the

direct Coulomb energy but usually much less. Hartree-Fock takes into account the effect

of exchange completely by fully anti-symmetrizing the total wave function.

As for the spin of an electron, the direct term already satisfies the condition of like

spins. The number of non-zero exchange terms is more limited due to the condition that

σi = σj . The delta function δσiσj from the spin of each orbital means |V d
ee| > |V ex

ee |. In

integral form the expectation value of the Hamiltonian, in a completely anti-symmetrized

state is [15]

〈Ψ|Ĥ|Ψ〉 =
N∑

i=1

∫
d−→r

[
− φ∗i (

−→r )
−→∇2

2m
φi(−→r )− Z

r
|φi(−→r )|2

]
+

N∑

i=1

N∑

j>i

∫ ∫
d−→r 1d

−→r 2
1

r12

[
|φi(−→r 1)|2|φj(−→r 1)|2 − φ∗i (

−→r 1)φ∗j (
−→r 2)φj(−→r 1)φi(−→r 2)δσiσj

]

(2.26)

2.2.5 Variational Principle and the Schrödinger Equation

To make the expectation value equal to an extremum of the energy and the Fock

equations, variations will be made to the wave functions [13][11]. Suppose a functional

is defined in terms of the expectation value of the Hamiltonian and is subject to the

constraint 〈Ψ|Ψ〉 = 1. Each of these equalities will hold true.

FH{Ψ} = 〈Ψ|Ĥ|Ψ〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (2.27)



14

Extremum of FH{Ψ} will be from the extremum of Ψ. The easiest proof is to assume 〈Ψ|
and |Ψ〉 are independent functions. Setting the variation in FH{Ψ} with respect to 〈Ψ|
to zero is the condition for finding extremum. When this is done it is seen that this also

satisfies the Schrödinger equation.

∂

∂〈Ψ|FH{Ψ} =
∂

∂〈Ψ|
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

Ĥ|Ψ〉
〈Ψ|Ψ〉 − |Ψ〉

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉2 = 0 (2.28)

Ĥ|Ψ〉 = ε|Ψ〉, with ε =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (2.29)

This shows that the variational procedure applied to the expectation of of the Fock op-

erator, with a properly anti-symmetrized wave function, is equivalent in form to the

Schrödinger equation. The energy that is obtained is then an extremum of the system.

2.2.6 Hartree-Fock Equations

The Hamiltonian is considered to be Hermitian so that ε is real and therefore a state

in which Ĥ is diagonal must exist. Finally this brings us to the Hartree-Fock equation for

the ith particle.

F̂iφi(−→r ) = −∇
2

2m
φi(−→r )− Z

r
φi(−→r ) +

N∑

j=1

∫
d−→r ′φ

∗
j (
−→r ′)φj(−→r ′)
|−→r −−→r ′| φi(−→r ) (2.30)

−
N∑

j=1

∫
d−→r ′φ

∗
j (
−→r ′)φj(−→r )
|−→r −−→r ′| φi(−→r ′)δσiσj = εiφi(−→r )

The Hartree-Fock equations thus form a set of pseudo-eigenvalue equations. They are a

non-linear set of coupled integro-differential equations. A specific spin orbital cannot be

determined until all other orbitals are known. In general the method to finding the lowest

energy is iterative. Make a guess of the spin orbitals, calculate the energy, improve the

guess and repeat. Once a guess yields the same energy back as the previous the orbitals

are said to constitute a Self-Consistent Field (SCF). The energy can then be calculated

from this SCF and the solution can be checked for validity.
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2.3 Basis State Expansion

Until this point each spin orbital has not been defined and has been considered a

single function. If the best function were known this approach would be sufficient. Since

each spin orbital is not known they will be expanded into a set of known basis functions.

φi(−→r ; σi) =
M∑

β=1

ciβϕβ(−→r ; σi) (2.31)

Here M is the maximum number of basis states β. In theory increasing the number of basis

states should increase the degrees of freedom of the problem and could lower the energy.

The effect of this will be explored due to large basis sets costing more computational time.

The Hartree-Fock equation for a spin orbital now expands to the following.

εi

M∑

β

ciβϕβ(−→r ) =
[
− ∇2

2m
− Z

r

] M∑

β

ciβϕβ(−→r ) (2.32)

+
N∑

j=1

M∑
γ%

c∗jγcj%

∫
d−→r ′ϕ

∗
γ(−→r ′)ϕ%(−→r ′)
|−→r −−→r ′|

M∑

β

ciβϕβ(−→r )

−
N∑

j=1

M∑
γ%

c∗jγcj%

∫
d−→r ′ϕ

∗
γ(−→r ′)ϕ%(−→r )
|−→r −−→r ′|

M∑

β

ciβϕβ(−→r ′) = F̂i

M∑

β

ciβϕβ(−→r )

This is the set of equations used to solve the system. Often orthogonal basis states are

used, but that is not the case in this work. The angular portion of each basis state will

be a spherical harmonic that requires like l and m quantum numbers. Small overlaps

can be found between unlike n quantum numbers with the non-orthogonal radial basis

states. When non-orthogonal sets are used, solutions are found using the techniques for a

generalized eigenvalue problem.

F̂i

M∑

β

ciβϕβ(−→r ) = εi

M∑

β

ciβϕβ(−→r ) (2.33)

The matrix notation written below includes all of the spin orbitals.

FC = SCε (2.34)
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F is the Fock matrix which contains all of the interaction energy terms, S is the overlap

matrix of the α and β basis states and C is the coefficient matrix that contains the

information about how much each particle is projected onto a particular basis state.

Fαβ = 〈ϕα|F̂ |ϕβ〉, and Sαβ = 〈ϕα|ϕβ〉 (2.35)

The system is converged when the change in the spin orbital projections are very

small. In practice what constitutes small enough depends on the desired precision. The

choice of basis set is tremendously important with regards to convergence time and the

value of the converged total energy. Along with this the basis can have an effect on how

smooth the procedure converges and to what converged precision. It is for these reasons

many basis sets should be explored.

The choice of basis sets is, in principle, arbitrary. This does not mean a wise choice

is not beneficial. Atoms are, in general, a cloud of electron probability decreasing as you

move away from their center. For this reason using a set functions that consist of an ever

increasing power of r to model the probability density would not be the wisest choice.

The worse the choice of basis set, the more terms are required to get precise convergence.

The computation time runs like M4 so increasing the basis set is not desirable.

One reasonable choice of basis set could be the states of the hydrogen atom, Eq.

(2.7). Generally, the heavier the atom the less its electron’s wave function resembles that

of the hydrogen atom. Another common basis set that is used in Hartree-Fock theory was

posed by Slater[14]. Here are the radial functions that are called Slater type orbitals.

Rn(r) = Nrn−1e−Çr where N = (2Ç)n

√
2Ç

(2n)!
(2.36)

In this equation n is a number comparable to the principal quantum number and N is

the normalization constant from enforcing Eq. 2.2. Ç is a damping constant that Slater

envisioned representing the amount of Coulomb shielding the core electrons produced

between outer shell electrons and the nucleus. Slater-type orbitals commonly use spherical

harmonics for the angular wave function basis set.
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2.3.1 Radial Wave Functions

One shortcoming of Hartree Fock theory is the large computational times required

for a large number of basis states. The computer must perform many integrals and

generate the matrix terms of a Hamiltonian. A goal of this work is to show that by using

a basis set consisting of previously converged Density Functional Theory (DFT) states,

the number of basis states required in HF is minimized. The DFT program, that is used

to solve the ground state density of a free atom, was created by Dr. Henri Jansen. The

program allows any electron occupation to be defined and the ground state wave function

for each orbital to be generated. The DFT program is spherically symmetric and thus

only radial wave functions can be determined. Each spin basis set will be identical and so

all spin dependence will be accounted for in the context of Hartree-Fock Theory.

2.3.1.1 Density Functional Theory

Hohenberg and Kohn posed the idea that the potential of a system, up to an overall

constant, should be dependent only on the electron density of the ground state [16][17].

This potential includes all of the interaction potentials into one. It is assumed that all of

the information of the many-body wave function is encased in this electron density.

n(−→r ) =
N∑

i=1

|Ψi(−→r )|2 (2.37)

Here the electron density n(−→r ), is a sum over spin orbital wave functions.

The potential of the ground state is unique to a particular electron density. To prove

this, assume there are two Hamiltonians that come from two potentials, H1 and H2, that

yield the same ground state density. The ground state energy from H1 is produced from

Ψ1, so Ψ2 is not the ground state of H1.

ε1 = 〈Ψ1|H1|Ψ1〉 < 〈Ψ2|H1|Ψ2〉 (2.38)
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By adding and subtracting H2 to H1 the inequality in the above equation becomes

ε1 < 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|(H1 −H2)|Ψ2〉 (2.39)

The Hamiltonian of a system with the same number of electrons can only differ by their

potentials and these potentials were said to be uniquely defined by the electron density.

ε1 < ε2 +
∫

d−→r n(−→r )[U1(−→r )− U2(−→r )] (2.40)

The indices of each system could be swapped because they were both assumed to be from

the same ground state density.

ε2 < ε1 +
∫

d−→r n(−→r )[U2(−→r )− U1(−→r )] (2.41)

Adding Equation (2.40) and (2.41) yields an inequality that cannot be true.

ε1 + ε2 < ε1 + ε2 (2.42)

Thus the ground state density and potential are unique to each other.

The non-degenerate ground state density n(−→r ) and potential υ(−→r ) exist and are as-

sumed. These are in principle impossible to know but in practice possible to approximate.

The portions of the potential that cannot be accounted for exactly are the exchange υx

and correlation υc potentials. A Local Density Approximation (LDA) uses an exchange-

correlation potential based on the local change in energy as a function of density.

υ([n];−→r ) ≡ δExc[n]
δn(−→r )

∣∣∣∣
no

= εxc[n(−→r )] + n(−→r )
δεxc[n(−→r )]

δn(−→r )
(2.43)

Setting υ([n];−→r ) to zero requires the system move towards a minimum change in the

functional δεxc[n(−→r )] with respect to the local density. The addition to the total electronic

energy from the exchange-correlation potential can be calculated by the following integral.

Exc =
∫

d−→r n(−→r )εxc[n(−→r )] (2.44)
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Basis states to be used in HF spin orbital expansions are generated by defining a

desired electronic configuration in the DFT program. This DFT ground state densities

can be found through iterative convergence. These converged DFT eigenstates densities

are used for the radial basis states Rn,`(r) in the HF approach. An example for a set

of basis states generated for carbon is shown in Figure 2.1. Notice the similarity to the

radial solutions of the hydrogen atom. The heavier the atom the further the electronic

states match those of a hydrogen atom.

0 10 20 30 40
r

-0.5

0

0.5

R
(r

)*
r

1s
2s
2p
3s
3p
3d
4s
4p
4d
4e

FIGURE 2.1: Example of converged DFT states used for the HF basis of carbon. Radial
distances r, are measure in units of Bohr radii.

The number of particles present in the DFT program is arbitrary and has no integer

requirement. To generate wave functions for virtual orbits, a fraction of an electron is

excited into that state. This will not only generate a wave function for the virtual state, it
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provides a way of generating different basis sets. The basis set above is for the minimum

allowed fractionally excited occupation. This would be assumed to be the best basis set

for a HF model of the ground state of an atom.

2.3.1.2 Electron Occupation

The larger fraction an electron is excited into a higher energy state, the more that

state is expressed in all states. This feature will be explored in modelling ground and

excited states. More accurate HF energies of excited states may be found from a basis set

generated from a high fractional occupation into DFT excited states.

An example of the difference in the wave functions generated for various fractional

occupations is plotted in Figure 2.2. These wave functions are for the n=3 virtual states

of Carbon.
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Carbon n=3 Basis States for Various Fractional Occupations

FIGURE 2.2: Carbon 3s, 3p and 3d basis states with different fractional occupations. The
fraction is expressed by ”exp 0.25”.

As more of the charge is forced into a higher energy state the density of that state

is pulled into the nucleus. The screening effect is reduced. As a result the smaller amount

of charge in the lower energy state makes room for a smaller average excited state radius.

The HF ground state for a given electron configuration will have an ideal location for

the charge of the n=3 virtual states. This is why comparisons are done for ground state

energies as a function of basis state fractional occupation.

2.3.2 Angular Wave Functions: Spherical Harmonics

In general electrons surrounding an atom are attracted to the central nucleus more

than they are repelled by each other. The repulsion from the e-e Coulomb interaction
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is not negligible but is still much less than the Coulomb attraction to the nucleus. Its

then reasonable to use the angular solutions to a central potential problem for the angular

basis of an electron bound to an atom. The basis sets angular wave functions will be the

Spherical Harmonics (SH) which are solutions to the Laplace equation and the hydrogen

atom (section 2.1.2).

Y`m(θ, φ) ≡
√

2` + 1
4π

(`−m)!
(` + m)!

Pm
` (cos θ)eimφ (2.45)

The functions are dependent on the magnitude and direction of an electrons angular

momentum vector through the quantum numbers ` and m respectively. The Pm
` (z) is an

associated Legendre polynomial.

2.4 Numerical Implementation

Solving the Hartree Fock equations can only be done numerically. Each integral in

the Fock matrix must be calculated for each combination of basis states. In practice each

integral is stored in arrays that are then reused during the self consistent iterations. Once

the complete Fock matrix has been generated from these arrays and the original coefficients

guess, a singular value decomposition is done to fine the eigenvalues and eigenvectors. The

new eigenvectors can be mixed with the original, which assigns new basis set coefficients

for each spin orbital. Using the integrals stored in arrays and the new coefficients the

process repeats until convergence. This process is at the core of all the work presented

here.

2.4.1 Kinetic Energy

The kinetic energy terms in the Fock matrix, before they are expanded into a basis

set, are only along the diagonal. The basis set chosen in this work is not completely

orthogonal. For this reason terms involving states of unlike n but like l and m values are
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not zero. The kinetic contribution to the Fock matrix is:

Tαβ = −
∫

ϕ∗α(−→r )
∇2

2
ϕβ(−→r )d−→r (2.46)

The Laplacian operating in spherical coordinates on ϕ can be expressed as follows.

∇2ϕ(−→r ) = ∇2(Rnl(r)Ylm(θ, φ)) =
(

d2Rnl(r)
dr2

+
2
r

dRnl(r)
dr

− l(l + 1)
r2

Rnl(r)
)

Ylm(θ, φ)

(2.47)

The assumption that ϕ can be divided into two separate functions has been made. The

radial portion is Rnl and the angular is the spherical harmonics Ylm. The final kinetic

energy term is now

Tαβ =
1
2

∫
R∗

nαlα(r)
(

r2
d2Rnβ lβ (r)

dr2
+2r

dRnβ lβ (r)
dr

−l(l+1)Rnβ lβ (r)
)

dr δlαlβδmαmβ
(2.48)

2.4.2 Nuclear Coulomb Energy

The Coulomb attraction between the protons in the nucleus and the electrons is the

source of the binding in an atom. The contribution to the Fock matrix from this negative

energy is:

V NE
αβ = −

∫
ϕ∗α(−→r )

Z

r
ϕβ(−→r )d−→r = −Z

∫
R∗

nαlα(r)Rnβ lβ (r)rdr δlαlβδmαmβ
(2.49)

This simple term may lack luster but the central attraction of electrons is due to this

interaction. Becoming an atom or forming a star or planet all rely on a central attraction

similar to that above.

2.4.3 e-e Coulomb Energy

The most interesting terms in the Fock matrix are those that arise from the Coulomb

interaction of electrons. The coupling amongst particle spin orbitals is from the 1
|r−r′|

Coulomb potential that lies in these terms. The direct term looks like

V d
αβ =

M∑
γ%

c∗jγcj%

∫ ∫
d−→r d

−→
r′ϕ∗α(−→r )

ϕ∗γ(
−→
r′ )ϕ%(

−→
r′ )

|−→r −−→r ′| ϕβ(−→r ) (2.50)
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The Coulomb potential is the inverse of the absolute distance between two position vectors.

This is inherently a three-dimensional problem. A natural solution to this problem is an

expansion that separates the radial from the angular, spherical harmonic part [18].

1
|−→r −−→r ′| =

∞∑

l=0

l∑

m=−l

4π

2l + 1
rl
<

rl+1
>

Y ∗
lm(θ; φ)Ylm(θ′; φ′) (2.51)

The radial integrals become:

Λd
αγ%β =

∫ ∫
R∗

nαlα(r)R∗
nγ lγ (r′)

rl
<

rl+1
>

Rn%l%(r
′)Rnβ lβ (r)r2r′2drdr′ (2.52)

The angular portion is now not as simple as an integral over two orthogonal spherical

harmonics. Each angular term involves three spherical harmonics. These integrals show

up often in many-body theory and are closely related to the Wigner 3j expressions [7].

{ l∗α l lβ
m∗

αm mβ

}
=

∫ ∫
Y ∗

lαmα
(θ, φ)Ylm(θ, φ)Ylβmβ

(θ, φ)sin(θ)dθdφ (2.53)

Together this yields the contribution to the Fock matrix from the direct e-e Coulomb

interaction.

V d
αβ =

N∑

j=1

M∑
γ%

∞∑

l=0

l∑

m=−l

c∗jγcj%
4π

2l + 1
Λd

αγ%β

{ l∗α l lβ
m∗

αm mβ

}{ l∗γ l∗ l%
m∗

γm∗ m%

}
(2.54)

In practice the sums of γ and % are over all of the basis states. The basis follows the rules

of the quantum numbers of the hydrogen atom.

M∑
γ%

=
℘∑

nγ=1

nγ−1∑

lγ=0

lγ∑

mγ=−lγ

℘∑

n%=1

n%−1∑

l%=0

l%∑

m%=−l%

This shows the reason Hartree-Fock is computationally taxing as the number of basis

states goes up. Generating the direct and exchange Fock terms have fifteen nested loops,

counting the six new loops from α and β.

One piece of good news, at least for the free atom, is the single basis set. Only a

single radial integral array has to be generated and the effect of swapping coordinates for

the exchange integral can be a swap of indices.

Λex
αγ%β =

∫ ∫
R∗

nαlα(r)R∗
nγ lγ (r′)

rl
<

rl+1
>

Rn%l%(r)Rnβ lβ (r′)r2r′2drdr′ = Λd
αγβ% (2.55)
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This will not be possible when the basis states of the bound electrons are coupled with

that of the free electrons in a gas. The basis set used for free electrons will be different

from that used for bound electrons.

All together the contribution to the Fock matrix from the e-e Coulomb interaction

is

V d
αβ + V ex

αβ =
N∑

j=1

M∑
γ%

∞∑

l=0

l∑

m=−l

c∗jγcj%
4π

2l + 1
[
Λd

αγ%β

{ l∗α l lβ
m∗

αm mβ

}{ l∗γ l∗ l%
m∗

γm∗ m%

}− Λex
αγ%β

{ l∗α l l%
m∗

αm m%

}{ l∗γ l∗ lβ
m∗

γm∗ mβ

}
δσiσj

]
(2.56)

The Fock matrix F ≡ Fαβ = Tαβ + V NE
αβ + V d

αβ + V ex
αβ can now be generated.

2.4.4 Unrestricted Hartree-Fock

Now that the Fock matrix is known, the interaction of the spin can be accounted

for. Two separate Fock matricies are made, one for each spin [12]. Each will be solved

separately and when each spin orbital is assigned a new set of coefficients, the appropriate

spin eigenvector will be chosen.

The sum over particles is first performed on the coefficients ciα. The resulting matrix

C is a density matrix that holds the information about how much each particle is projected

into each basis state.

C↑
αβ =

Nup∑

i=1

ciαciβ and C↓
αβ =

N∑

i=Nup+1

ciαciβ (2.57)

The delineation between the two spin equations is from the exchange interaction. The

spin-up Fock matrix is below and the spin requirement is applied through the C’s.

F ↑
αβ = Tαβ + V NE

αβ +
M∑
γ%

∞∑

l=0

l∑

m=−l

c∗jγcj%
4π

2l + 1
[
(C↑

γ% + C↓
γ%)Λ

d
αγ%β

{ l∗α l lβ
m∗

αm mβ

}{ l∗γ l∗ l%
m∗

γm∗ m%

}− C↑
γ%Λ

ex
αγ%β

{ l∗α l l%
m∗

αm m%

}{ l∗γ l∗ lβ
m∗

γm∗ mβ

}]
(2.58)
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The spin-down Fock matrix F ↓
αβ is the same except for a C↓

αβ with the exchange integrals.

The requirement of like spins decreases the effect of exchange. The separate Fock equations

to solve are:

F↑C↑ = ε↑SC↑ and F↓C↓ = ε↓SC↓ (2.59)

with,

Sαβ =
∫

R∗
nαlα(r)Rnβ lβ (r)r2dr δlαlβδmαmβ

(2.60)

Unrestricted Hartree-Fock (UHF) breaks spin symmetry and the degeneracies associated

with those symmetries.

2.4.5 Generalized Eigenvalue Problem

The fact that the basis states are not completely orthogonal means that the Fock

equation is a generalized eigenvalue problem. Solving the generalized eigenvalue problem

is done by reformulating it into a standard eigenvalue problem [9]. The following procedure

will accomplish this by defining,

FC = εGGTC

with S = GGT . Now the matrix equation can be rearranged into a regular eigenvalue

equation.

F′C′ = εC′

where the transformed Fock matrix is F′ = G−1FG−T and the transformed vector space

is C′ = GTC. Once the eigenvector solutions are found they must be transformed back

into the original basis.

The eigenvalue problem is solved with a single value decomposition (SVD) proce-

dure. A linear algebra package JAMA for Sun’s universal programming language Java

is used. Diagonalizing matrices works well with JAMA with the understanding that the

ordering of the eigenvalue and eigenvector can switch position from iteration to iteration.

Simple logic allows following of this switching.



27

The eigenvalues are a way to interpret the difference in energies of single particle

electron states. Using the eigenvalues to populate the new eigenvectors could be possible

but for only light atoms. Atoms with greater numbers electrons will have more energy

bands that have evermore closer energies. Deciphering which eigenvalue is associated with

which state becomes difficult. Observing the eigenvalues during convergence can still be

very useful in determining the cause of instabilities.

Via the eigenvectors the major state of an electron is followed from iteration to

iteration. Each eigenvector is comprised of a list of coefficients that represent how much

each electron is projected onto a particular basis state. If the ith electron is defined to be

in the n=2, l=1, m=1 state, then it is initially set to be one hundred percent in the ϕ211

basis state. This is accomplished by initially setting, ci211 = 1 and all other ci∗∗∗ to zero.

The expectation is that after the Fock matrix is solved one eigenvector will have the largest

projection still in the 211 basis and that will be defined as the 211 eigenvector solution. In

general this works very well but some electron configurations will have eigenvectors move

towards degenerate states. Problems with convergence are due to this quasi-degeneracy

in the eigenvectors and eigenvalues.

2.4.6 Self-Consistent Field

After the eigenvectors have been solved for and been assigned to the appropriate

electron, the iteration process begins. The new eigenvectors are mixed with the old and

a new guess of the spin orbital states is ready for the process to repeat. This process

continues until the eigenvector solutions are close to the same from one iteration to the

next. At this point the system is said to be converged and the self-consistent field (SCF)

refers to this converged state. A flow-chart of the HF process is in Figure 2.3.
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FIGURE 2.3: Flow chart of iterative HF scheme. Immersed atoms have an extra loop to
form the immersed Fock matrix from each states previous eigenvalue.
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2.4.7 Computational Details

All computational codes created for this work are written in Java. Numerous ver-

sions of the free atom code exist. Of those, two are complete. One applies direct calculation

of the kinetic energy integrals. The other indirectly generates the kinetic energy terms by

use of the converged DFT total potential and eigenvalues. Integrals are performed by a

Simpson’s rule method, applied to a logarithmic mesh [19]. The only code not generated

from scratch is the linear algebra package JAMA for Java. The code used to generate the

DFT basis states was created by Dr. Jansen and is written in Fortran.

The second program created was an angular momentum coupling algorithm. This

really was three different codes for coupling two, three, and four electrons. This code

requires an input file of uncoupled energies. Combining the free atom code and the

coupling code could be a project for the future.

The last program created is an extension of the free atom code to include the effects

of the immersion. This code is backwards compatible as the immersion can be turned

off. The adjustable parameters are: particle number, max number of basis states (nmax),

iterations or convergence condition, coefficient mixing ratio, separate angular and radial

meshes, maximum number of power expansions for the plane waves (smax), maximum

number of angular momentum coupling between bound and free states (lkmax), and the

Fermi wave vector. The core of the code generates all the integral arrays. This can be

stored in a file and different electron configurations can be calculated without having to

re-calculate these arrays. If the basis sets do not change than these arrays do not change.

2.5 Post Hartree-Fock

UHF accounts for the exchange of particles exactly but fails to include the effects of

correlation [11]. The difference in energy between the HF limit and the exact solution to
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the non-relativistic Schrödinger equation is the correlation energy. The switch from non-

relativistic Schrödinger to relativistic Dirac will lower the energy even more. Post Hartree-

Fock methods attempt to account for correlation in a variety of ways. The common

feature among each post HF method is using combinations of electronic configurations.

Appropriately expanding your space to many configurations provides for an approximation

to the correlation between each configuration. This should lower the energy of the system,

getting closer to the exact energy as shown in Figure 2.4.

FIGURE 2.4: The energy decreases as correlation effects are accounted for. Exact solu-
tions to the relativistic Dirac equation yields the lowest Hartree-Fock energies.

How a particular post HF method treats the interaction of different electron con-

figurations depends on the system being modelled. HF is commonly used for modelling

molecules and many atom clusters. For these systems the cause of the greatest correla-

tion may differ, warranting a number of different modelling techniques. A few of these

techniques are featured in this section.
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2.5.1 Configuration Interaction

A single Slater determinant for a given electronic configuration results a Configura-

tional State Function (CSF). The breaking of spherical and spin symmetry in UHF results

in many CSF for a given total angular (L2) and spin (S2) momentum. To exactly solve

the non-relativistic Schrödinger equation the total wave function must be an eigenstate

of the Hamiltonian. Since the Hamiltonian commutes with L2 and S2 using a total wave

function that is comprised of all CSF, for a given total angular and spin symmetry, is a

full Configurational Interaction (CI) approach [20].

To get a CI total wave function a linear combination of CSFs is used.

Ψ =
∑

i=0

ciΦi = c0Φ0 + c1Φ1 + c2Φ2 + ... (2.61)

Here Φi is a CSF and ci is a variational parameter determined by the by the L2 and S2

symmetry. These terms are to be in order of excitations from the ground state. The zeroth

term is the single Slater determinant of the ground state. The first is a single excitation

from a spin orbital to a virtual orbital. The second term is if two spin orbitals are excited.

In practice the series must be truncated due to large computational times.

2.5.2 Multi-Configurational Hartree-Fock

A common post HF technique for including correlation effects involves expanding

the total wave function as a linear combination of orthogonal CSFs. This expands the

active space and allows correlations that CI ignores.

Ψ(LS) =
M∑

i=1

ciΦi(LS) (2.62)

The expression for the energy is now

E(LS) =
M∑

i=1

M∑

j=1

cicjHij =
M∑

i=1

|ci|2Hii + 2
M∑

i<j

cicjHij (2.63)

where

Hij = 〈Φi(LS)|Ĥ|Φj(LS)〉. (2.64)
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The |ci|2 term in equation ?? is the energy of each CSF that satisfies a given symmetry

and CI contribution. The additional cicj cross term allows mixing coefficients of different

CSFs. This energy of this mixing is the approximations to the correlation energy. This

would then need to be applied during the self-consistent iteration procedure. The final

converged spin orbitals would be generated with correlations between different CSFs and

is considered an Multi-Configurational Hartree-Fock (MCHF)approach [21],[22].

Configuration Interaction accounts for symmetries of a system and in the process

uses addition of angular momentum to average the energy if different CSFs. What CI fails

to do is allow the wave functions of a given spin orbital to change during this coupling

process. Correlation is then accounted for from a static set of CSFs. What MCHF does

is allow the spin orbitals to change through the mixing of coefficients of different CSFs

[12]. If the radial functions are optimized during the iterative process due to mixing of

different CSFs the method is MCHF.
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3. SINGLE ATOM ELECTRONIC CONFIGURATIONS

The Schrödinger equation in the context of Hartree-Fock relies on a variational

principle that minimizes the energy. Once this is applied the resultant eigenvalue problem

provides a method to find solutions for the given set of spin orbitals. The application of

the variational principle also has the feature of driving the system to a minimum during

the iteration process. At convergence, variations in the wave function do not lower the

energy. Thus, Hartree-Fock is a method for finding the lowest energy of a many-body

system.

Once the system reaches self-consistency the total contribution to the electron en-

ergy can be calculated. These energies are important in understanding ground state

electronic configurations and interactions between states. There is no restriction to what

electronic configuration is modelled. This means excited states can also be explored. The

error in the energy is increases as the configuration moves away from the ground state.

Many tools can be used to analyze the features of a given system. Configurations

with closely lying states will have difficulty converging. Analyzing the eigenvalues, eigen-

vectors, and total energy during convergence can shed light on the mechanism for system

instability. Ground state energies and interesting electronic configurations of a free atom

are presented in this chapter.

3.1 Electronic Configurations

The electronic configuration refers to the states each electron is in for a single

converged Slater determinant. As the atoms increase in number of electrons so does the

number of possible interesting electronic configurations and number of degeneracies. The
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total energy for a single electron configuration will be denoted by:

E[n1l1m1σ1; n2l2m2σ2; ....; nN lNmNσN ; ] (3.1)

Filling of orbital shells in general obeys Hund’s rules. Those rules will be tested and

excited states will be explored. For larger atoms a shorthand notation for all of the closed

shells will be used. For example: carbon has six electrons, two close the 1s subshell, two

more close the 2s subshell and the last two reside in the 2p subshell. The last two electrons

in the 2p shell are of most interest as they can be put into many different m states and

the energies be compared. If both 2p electrons are spin up and one is the m=0 state and

the other in the m=1, the shorthand notation would be:

E[(2s); 210 ↑; 211 ↑] (3.2)

Nine distinct configurations maintain two electrons in 2p state and the energy difference

between these are very small or zero.

Degeneracies will occur often due to the polar, up or down, nature of spin. A atom

such as boron has five electrons. Four close the first two shells. The fifth electron then

can be viewed as being added to a spherically symmetric system. The spin of the fifth

electron does not affect the total energy. Another example would be nitrogen with the

last two electrons in the same two m states. The energy is degenerate if the spin of each

are both up or both both down. Degeneracies occur when all the valence electrons switch

spin.

E[(2s); 210 ↑; 211 ↑; 210 ↓] = E[(2s); 210 ↓; 211 ↓; 210 ↑] (3.3)

Spin coupling occurs in the the exchange Coulomb interaction but coupling of differ-

ent m states is applied in both Coulomb terms. Integrals over three spherical harmonics,

Equation 2.53, have the requirement that mα = m + mβ. The sum over m is done for a

given α and β. The consequence of this is that multiple β states will couple to the same
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α state. Each term will be degenerate with mα = m + mβ satisfied because the value of

the integral is the same for any permutation of the same three m’s.

More degeneracies are expected with the spin and m state symmetries. One example

is carbon in the states below.

E[(2s); 210 ↑; 211 ↑] = E[(2s); 210 ↑; 21− 1 ↑] (3.4)

Here the last electron is coupling to two closed shell orbitals and a 2p electron in the m=0

state. Coupling to m=1 and m=-1 is symmetric. Another example is nitrogen in the

following states.

E[(2s); 21− 1 ↓; 211 ↑; 210 ↓] = E[(2s); 21− 1 ↓; 211 ↑; 210 ↑] (3.5)

With three electrons of interest many degeneracies are found. This particular example

has two of the electrons remaining in the same m = −1, ↓ and m = 1, ↑ states. Now the

spin of the third electron doesn’t matter, providing its in the m=0 state.

3.2 Eigenvalues, Eigenvectors and Total Energy

During the iterative process the Fock matrix is created and then diagonalized via

a single value decomposition. The system eigenvalues and eigenvectors result from this

procedure. Observing the behavior of each of these quantities provides a way of tracking

the system.

The eigenvalues are approximate energies of each spin orbital state. Since each elec-

tron is bound there should the same number of negative eigenvalues as there are electrons.

This can be seen in the eigenvalues of oxygen, shown in Figure 3.1.
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FIGURE 3.1: Eigenvalues for oxygen in the ground state electron configuration
E[(2s); 21 − 1 ↑, 210 ↑, 211 ↑, 21 − 1 ↓] with nmax=3. The lowest 2p state is occupied
by the 210 spin up electron, the middle 2p state is degenerate among the 21-1 and 211
spin up electrons.

There may appear to be only seven eigenvalues but a degeneracy exists. The sym-

metry of having a closed spin up 2p shell causes the degeneracy among the m=-1 and

m=1 states.

The eigenvalues of the system not only provide information about convergence be-

havior, they also describe how much each spin orbit is projected into each basis state.

This can be used to understand the resulting charge density and state mixing. Unstable

systems result from nearly degenerate states but truly understanding how these states

interfere must be done by following the eigenvectors.

During the iteration process the total energy can be calculated and observed for

smooth convergence. The first iteration requires each electron to be completely in one
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basis state. If the DFT converged density produced states that complete Fock space than

the system wouldn’t mix coefficients and the total energy would not change. Since the

states created through DFT are not eigenstates of the Fock matrix mixing occurs to lower

the energy.

3.2.1 Ground State Total Energy

The ground state total energy of an atom can depend on many factors. Generating

the DFT basis states relied on parameters to adjust charge density, integral mesh and,

although not explored in this work, spin dependence and relativistic effects. Each of these

can have small effects on the final HF energy. The number of basis states used can also

affect the final energy. Each of these change the degree of completeness of the basis set

used for a given electronic configuration. Along with this the electronic configuration itself

must also be explored. This becomes increasingly important as more angular and spin

symmetries are broken.

First observed through spectroscopic data, Hund’s Rules predict the ground state

electron configuration of an atom [5]. A closed atomic shell has no contribution to L and

S. For this reason these rules apply to the filling of any incomplete shell.

Hund’s First Rule: The first priority in filling an incomplete shell is to maximize

the total spin S. Electrons of like spin are repelled by the Pauli-Exclusion Principle and

thus stay further away from each other, lowering their Coulomb energy.

Hund’s Second Rule: The second priority in filling an incomplete shell is to maximize

the total angular momentum L. Still a Coulomb effect, this can be thought of classically

as the advantage of two electrons spinning in the same direction around the same axis. If

they spun opposite each other they would encounter each other twice per revolution.

Hund’s Third Rule: The final priority is to split the states by the spin-orbit inter-

action. For shells that are less than half full the preferred state is J = |L − S| and for

shells that are over half full J = |L + S| is preferred.
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In principle the true constant of motion is J = L+S, but in practice the interaction

between L and S is small for the light atoms modelled here. Hund’s rules are based

on an assumed separation of L and S. The heavier an atom becomes the more it can

interact with its own magnetic field because the larger number of electrons with spin. For

this reason L and S coupling increases for heavier atoms and Hund’s rules are violated.

The HF approximation also breaks the total wave function into separate spatial and spin

states. Therefore HF would be expected to obey Hund’s rules for light atoms. For many

atoms Hund’s rule predicted the ground state electron configuration. For other atoms

with large numbers of electronic configurations that are nearly degenerate, these rules are

sometimes violated as shown in the energies presented in section 3.3. This feature was also

observed when solving the spin dependent DFT problem with broken spherical symmetry.

The violation found in HF can be understood by the missing correlation energy. If a set of

nearly degenerate configurations exist and the difference in their energies is on the order

of the correlation energy, the ground state configuration cannot be predicted.

The ground state total electronic energy for many light atoms is listed in Table 3.1.
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TABLE 3.1: Total energy for many light atoms calculated, by direct and indirect treat-
ments of the kinetic energy. These are compared to the exact, complete basis set,
Roothaan-Hartree-Fock (RHF)energies. Basis set generated up to nmax=3. The energy
difference is tabulated under indirect-Rooth.

Atom HF(KEdirect) HF(KEindirect) Roothaan HF indirect-Rooth

Helium -2.85809 -2.85917 -2.86168 0.00251

Lithium -7.43244 -7.42996 -7.43273 0.00269

Beryllium -14.57391 -14.57016 -14.57302 0.00293

Boron -24.53079 -24.52637 -24.52906 0.00269

Carbon -37.68770 -37.68625 -37.68862 0.00237

Nitrogen -54.715 -54.41200 -54.40093 -0.01107

Oxygen -75.31368 -74.81924 -74.80940 -0.00984

Fluorine -100.19073 -99.46000 -99.40935 -0.05065

Neon .... -128.60000 -128.54710 -0.05290

Sodium .... -162.40000 -161.85891 -0.54109

Atoms helium through carbon have been carefully and completely converged. More

work could find more complete basis sets for heavier atoms. Instability during and at con-

vergence could also be more controlled by more active techniques like variable coefficient

mixing between iterations.

The difficulties in numerically performing second derivatives in the kinetic energy

(KEdirect), resulted in slightly less precise data. Indirectly calculating the kinetic energy

from the DFT total potential and eigenvalues appeared reliable for helium through carbon.

The total energy, calculated by this work, is within millihartees of those found by using

Roothaan-Hartree-Fock wave functions [23],[24].

As the number of electrons surrounding the nucleus increases the binding energy of

the innermost electrons increases. The electron is deeper in the potential well. This effect
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can be seen in the eigenvalue of a 1s electron as atoms become heavier, shown in Figure 3.2.
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FIGURE 3.2: Eigenvalue of the 1s spin-up electron for helium through oxygen.

The eigenvector can tell more of the story of a given electron’s charge density as

you move up the periodic table. Spin symmetry breaks the 1s eigenvalue degeneracy for

a number of configurations. An example showing this for a number of atoms is in Figure

3.3 were the plot shows the eigenvector coefficients of the deepest eigenvalue electron.
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FIGURE 3.3: The mostly occupied 1s and mostly unoccupied 2s and 3s eigenvector coef-
ficients for helium to fluorine

The mixing between the inner and outer shell basis states decrease as more electrons

surround the core. The 1s eigenvector spreads less into the 2s and 3s basis states as the

atom increases in mass. The innermost electron is pulled in towards the nucleus more for

heavier atoms.

3.2.2 Helium

Helium is the first atom in the periodic table that requires a many-body approach

to quantifying interactions. With only two electrons each is able to reside in the lowest

energy level, provided they are opposite in spin. The electron configuration for the ground

state is thus 1s2. With a full principal quantum number shell, helium is a noble gas. The

energies calculated for helium are compared to Roothaan HF in Table 3.2.
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TABLE 3.2: Total energy of helium, for different basis sets, compared to Roothaan HF.
Basis refers to the fractional charge excitation in the DFT basis set generation.

Basis nmax = 4 nmax = 3 nmax = 2 RoothaanHF 4E(nmax = 3)

1.0 -2.8489 -2.8495 -2.8512 -2.8617 0.0122

0.8 -2.8522 -2.8526 -2.8538 - 0.0079

0.6 -2.8552 -2.8554 -2.8561 - 0.0056

0.4 -2.8577 -2.8577 -2.8579 - 0.0037

0.2 -2.8592 -2.8592 -2.8592 - 0.0025

The lower the fractional charge excitation, used in generating the basis sets from

DFT, the lower the total HF energy. This is understood by the fact that moving more

charge to higher energy levels, when generating the basis, results in wave functions that

are more spread out from the nucleus. These basis sets then increase the energy when

used in HF.

Another important feature of this data is the relatively small difference in total

energy from nmax=2 to nmax=4. For the most complete set, that with smallest fractional

occupation (0.2), the energy difference is negligible. That has important consequences on

computational times. The number of basis functions for nmax=2 is five , nmax=3 is

fourteen, and nmax=4 is thirty. Respectively, computational times run on the order of a

minute, to many minutes, to many hours.

The eigenvalues of helium during and at convergence can also be shown. These

values are plotted in Figure 3.4 for a specific nmax=3 case.
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FIGURE 3.4: Helium eigenvalues for nmax=3 with a basis set generated with the lowest
fractional occupation. Switching of eigenvalues is shown with the vertical lines of one of
the sets.

As expected the bound eigenvalue is degenerate among unlike spins. Helium is a

very smooth converging system, as shown by the 1s eigenvalue convergence. The unbound

states also converge nicely. The JAMA, linear algebra package used to perform the SVD

would mix which output index corresponds to which eigenvalue. Data lines are used on

one of the series to show this behavior.

As the fractional charge occupation to excited states increased in the basis set gen-

eration, the amount of the 1s spin orbitals projection in the 1s state decreased. This can

be observed in Figure 3.5 were the eigenvector of the 1s spin orbital changes more for basis

sets generated with a greater excitation fraction.
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FIGURE 3.5: Helium 1s eigenvector for various fractional charge excitations in DFT basis
set generation. nmax=3.

The more charge is moved out of the 1s state the more accurate the excited states

become in DFT. The HF system then spreads more of the spin orbital into those states.

When this is done the energy is increased, as shown in table ??.

3.2.3 Lithium

In the ground state lithium is the first atom to occupy states with a principal

quantum number greater then one. The first two electrons occupy a closed 1s angular

momentum shell while the third resides in the 2s. Having only one electron out of closed

shells means no spin is preferred. The electron configuration for the ground state is thus

1s22s. Lithium is an alkali metal due to the open 2s subshell. The energy for various basis

sets is listed below in Table 3.3.
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TABLE 3.3: Total energy of lithium, for different basis sets, compared to Roothaan HF.
Basis refers to the fractional charge excitation in the DFT basis set generation.

Basis nmax = 4 nmax = 3 nmax = 2 RoothaanHF 4E(nmax = 3)

1.0 -7.42953 -7.42955 -7.42996 -7.43273 0.00269

0.8 -7.42955 -7.42957 - - 0.00317

0.6 -7.42968 -7.42970 - - 0.00315

0.4 -7.42984 -7.42984 - - 0.00289

0.2 -7.42998 -7.42997 - - 0.00276

Lithium has electrons in both n=1 and n=2 shells. When generating the basis states

from the DFT program, fractional excitations are used to generate virtual, unoccupied

orbitals. The 2p states are different for each basis set but the 2s spin orbital does not

couple to them. Since the 1s and 2s basis states are the same all of the energies are the

same for nmax=2.

The most complete basis set for lithium is 0.2 fractional excitation occupation set

for an nmax=4. What is interesting is for basis sets generated with higher fractional

occupation, increasing the basis up to greater nmax actually raises the energy. This

means size of the basis is less important than how close the DFT was to the ground state.

Again the differences are small enough that shorter computational time would outweigh

a 5th decimal place difference in energy.

The data shows the total converged energy increases as the basis set is generated

from an increased difference from the ground state. A plot of the total energy during

convergence in Figure 3.6 shows how good the initial guess of coefficients are. Initially

each spin orbital is completely in a given basis state. During convergence the coefficients

spread out to those states that couple. The final energy can either be less than the original

guess, or, in the case of a highly excited basis set, greater.
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FIGURE 3.6: Lithium total energy, during convergence, for different basis sets (exp 0.2
to 1.0).

Figure 3.7 shows the 1s eigenvalues of lithium splitting due to the loss of spin

symmetry. With two of the electrons spin up and one spin down the 1s states of the spin

up electron are lower in energy.
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FIGURE 3.7: Lithium eigenvalues for nmax=3 with a basis set generated with the lowest
fractional occupation.

The extra exchange interaction between like spins results in a negative shift in

energy. Including exchange not only lowers the total energy of the system it also lowers

the eigenvalues of electrons that experience the most exchange interaction. Since 1s and

2s states can mix this is seen above.

3.2.4 Beryllium

In the ground state beryllium has a closed 1s and 2s shell giving it an electron

configuration of 1s22s2. Beryllium is an alkali earth metal due to the small difference in

energy between the 2s and 2p states. Free electrons in a metal have a large enough Fermi

energy to excite a 2s electron into the 2p state and make conduction possible. Table 3.4

has a list of the energies calculated for beryllium with various basis sets.
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TABLE 3.4: Total energy of beryllium, for different basis sets, compared to Roothaan
HF. Basis refers to the fractional charge excitation in the DFT basis set generation.

Basis nmax = 4 nmax = 3 nmax = 2 RoothaanHF 4E(nmax = 3)

1.0 -14.57145 -14.57116 -14.56985 -14.57302 0.00187

0.8 -14.57107 -14.57083 - - 0.00219

0.6 -14.57070 -14.57053 - - 0.00250

0.4 -14.57036 -14.57026 - - 0.00276

0.25 -14.57016 -14.57010 - - 0.00293

The most complete sets are for nmax=4 but are not for the lowest fractional exci-

tation during the basis set generation. Still the energy differences are small and weighing

the advantages to shorter computational times must be made.

A look at the total energy in Figure 3.8 during convergence shows that the initial

guess of the coefficients is consistently not the best choice. If it was the energy would not

change from iteration to iteration.
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FIGURE 3.8: Beryllium total energy, during convergence, for different basis sets (exp 0.2
to 1.0).

Every basis set has an energy advantage to mixing. The mixing is best seen by a

plot of the eigenvectors during convergence. Figure 3.9 is a plot of the outer shell 2s spin

orbital’s projection onto the 1s, 2s and 3s state.
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FIGURE 3.9: Beryllium with nmax=3. 2s spin orbit eigenvector for a number of fraction-
ally excited basis sets.

As the generated basis set is expanded into higher fractional occupations the amount

of the spin orbit in the 2s basis state is decreased. The mixing of the 2s state is not as

strong with the 1s as it is with the 3s. The HF ground state prefers to project more of

the 2s spin orbital in the 3s state as basis set is extended away from the nucleus.
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FIGURE 3.10: Beryllium eigenvalues for nmax=3 with a basis set generated with the
lowest fractional occupation.

Both angular momentum shells are closed resulting in degeneracy between unlike

spin states. This is shown in Figure 3.10 were both 1s and 2s states are separately

degenerate. Convergence for beryllium is smooth and complete.

3.2.5 Boron

Boron has a ground state with one electron out of closed angular momentum shells.

This electron resides in a 2p state, thus boron is the first atom to explore the consequences

of having a non-zero angular momentum. Boron is never found as a free element in nature

because this lone, out of closed shells electron, will bond well with other atoms. Boron,

a semi-metal, is often used as a dopant for the semi-conductor industry. The electron

configuration for the ground state is 1s22s22p1 and the energies are listed in Table 3.5.



52

TABLE 3.5: Total energy of boron, for different basis sets, compared to Roothaan HF.
Basis refers to the fractional charge excitation in the DFT basis set generation.

Basis nmax = 4 nmax = 3 nmax = 2 RoothaanHF 4E(nmax = 3)

1.0 -24.52325 -24.52352 -24.52631 -24.52906 0.00554

0.8 -24.52406 -24.52432 - - 0.00474

0.6 -24.52494 -24.52511 - - 0.00395

0.4 -24.52575 -24.52581 - - 0.00326

0.25 -24.52620 -24.52619 - - 0.00287

For boron, expanding the basis set out to higher 〈r〉 results in an increase in total

energy. The HF lowest energy is for the basis set from the ground state of DFT. More

interesting is expansion to greater nmax actually increases the energy. The mixing of the

2p electron with higher 2p states raises the total energy. A plot of each basis set during

convergence shows this feature in Figure 3.11. The only initial coefficient guess that

remains unchanged is that for nmax=2. This is also the lowest of all the final converged

energies.
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FIGURE 3.11: Boron total energy, during convergence, for different fractional excitation
basis sets (exp 0.2 to 1.0).

Boron is especially interesting because of the closely lying 2s and 2p states. Breaking

spin degeneracy allows all five bound states to been seen separately. Figure 3.12 is a plot

of Boron’s eigenvalues.
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FIGURE 3.12: Boron eigenvalues for nmax=3 with a basis set generated with the lowest
fractional occupation.

The closely lying n=2 states show the most bound is that of the 2s spin up state.

This is also due to the exchange interaction between like spins. The separation between

eigenvalues is not as large for the nmax=2 case because of the lack of mixable higher 2p

states. This strong mixing increased the overall energy of boron.

3.3 A Detailed Example: Carbon

Carbon’s ground state electron configuration is 1s22s22p2. With two electrons in

the p state, studying the effects of the interaction between two non-spherically symmetric

spin orbitals is possible. Differences in energy for different configurations allow studying

the obeyance of Hund’s rules. These differences can be as small as in the seventh decimal

place, as is the case when putting one 2p electron in the m` = −1 state and the other in
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either the m` = 0 or m` = 1 state. This tetravalent p shell makes carbon ideal for covalent

bonding. Carbon is a non-metal and essential to the semi-conductor industry and many

sciences. The energies are listed in Table 3.6.

TABLE 3.6: Total energy of carbon, for different basis sets, compared to Roothaan HF.
Basis refers to the fractional charge excitation in the DFT basis set generation.

Basis nmax = 4 nmax = 3 nmax = 2 RoothaanHF 4E(nmax = 3)

1.0 -37.67762 -37.67915 -37.68643 -37.68862 0.00946

0.8 -37.68052 -37.68159 - - 0.00703

0.6 -37.68319 -37.68375 - - 0.00487

0.4 -37.68531 -37.68543 - - 0.00319

0.25 -37.68630 -37.68625 - - 0.00237

To better understand the workings of UHF, carbon will be used for a more detailed

discussion. Many features that arise from our model system can be found by a thorough

study of carbon. What makes it an important example is it is the lightest atom with two

electrons in an open valence shell. With complete symmetry breaking the interaction of

these two electrons can be studied. Four electrons close the 1s and 2s shells and the last

two want to maximize the total spin and total angular momentum. There are five unique

energies with the valence electrons occupying the 2p subshell. Here are the energies for

these configurations with a basis set with the maximum principal quantum number of

three. Various basis sets have been generated by the method of fractional occupation and

the energies are listed in Table 3.7.
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TABLE 3.7: Total energy of carbon, for electron configurations with the same L, for
different basis sets.

e− configuration basis 0.25 basis 0.4 basis 0.6 basis 0.8 basis 1.0

E[(2s); 21− 1 ↑; 210 ↑] -37.686253 -37.685429 -37.683748 -37.681593 -37.679154

E[(2s); 21− 1 ↑; 211 ↑] -37.686253 -37.685431 -37.683757 -37.681623 -37.679221

E[(2s); 21− 1 ↑; 210 ↓] -37.658568 -37.657904 -37.656656 -37.655173 -37.653619

E[(2s); 21− 1 ↑; 211 ↓] -37.631087 -37.630644 -37.629863 -37.628982 -37.628100

E[(2s); 210 ↑; 210 ↓] -37.603665 -37.603497 -37.603272 -37.603105 -37.603037

It is expected that electrons with like spin will have a stronger interaction due to

the Pauli Exclusion principle. This results in lower energies as is the case above and

throughout all the atoms modelled. What’s surprising is that Hund’s rule predicts the

ground state should maximize the absolute value of the total spin and orbital angular

momentum. The ground state thus should be E[(2s); 21 − 1 ↑; 210 ↑] which is not the

case here. This trend is not uncommon within the context of UHF due to not properly

accounting for correlation.

The ground state of carbon is well behaved during convergence, as is most all the

light atoms. Figure 3.13 is a plot of the total energy during convergence for the ground

state Hund’s rule would predict.
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FIGURE 3.13: Total Hund’s rule predicted ground state energy of carbon during conver-
gence for nmax=3 and 0.25 fractional excitation.

Ease of convergence and state mixing can be shown by examining the eigenvectors

in Figure 3.14. The plot is of the (n = 2, ` = 1,m` = −1,ms =↑) valence spin orbital

projection into each non-zero basis state. Systems that experience convergence difficulties

will not display this smooth change in eigenvector coefficients.
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FIGURE 3.14: Eigenvector of the 2p(m=-1) spin orbital of carbon during convergence.
The basis states were generated with 0.25 fractional excitation and has nmax=3.

To cause convergence problems in carbon an excited state with large coupling be-

tween angular states is required. To achieve this strong coupling the spins of many p

orbital electrons needs to be the same. Figure 3.15 shows an example of such a state.

The 1s shell is closed and all of the remaining four electrons are spin up. The electronic

configuration is thus E[(1s); 200 ↑; 21− 1 ↑; 210 ↑; 211 ↑].
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FIGURE 3.15: Total energy of an excited E[(1s); 200 ↑, 21 − 1 ↑, 210 ↑, 211 ↑] state
of carbon during convergence instabilities. The basis states were generated with 0.25
fractional excitation and has nmax=3.

The eigenvalues for each iteration shed some light onto the cause. Figure 3.16

shows the eigenvalues of the four spin up valence electrons. What is important is the

switching between eigenvalues. The 2p degeneracies have been lifted and coupling is strong

between them. What is the fourth eigenvalue one iteration can become third the next.

This dynamic switching, when not tracked properly, can cause additional instabilities not

related to fundamental problem of the system.
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FIGURE 3.16: 2p spin-up degenerate eigenvalues lifted for an excited E[(1s); 200 ↑, 21−
1 ↑, 210 ↑, 211 ↑] state of carbon. The basis states were generated with 0.25 fractional
excitation and has nmax=3.

Another tool for examining poor convergence is to look at the eigenvector of each

electron from iteration to iteration. Figure 3.17 is a plot of all three 2p spin orbit projec-

tions into each 2p basis state. Each is mostly in its respectively set state with a non-zero

portion in each of the other 2p states. The mixing is heavy and the coarse switching of

each projection is seen. This was done with a coarse convergence mixing term. Smaller

mixing ratios from iteration to iteration can damp this behavior but never eliminate it.



61

80 85 90 95 100 105
iteration

-0.2

0

0.2

0.4

0.6

0.8

1

%
 b

as
is

 p
ro

je
ct

io
n

e4(2,1,-1,up)
e4(2,1,0,up)
e4(2,1,1,up)
e5(2,1,-1,up)
e5(2,1,0,up)
e5(2,1,1,up)
e6(2,1,-1,up)
e6(2,1,0,up)
e6(2,1,1,up)

FIGURE 3.17: 2p spin orbit eigenvector for an excited E[(1s); 200 ↑, 21−1 ↑, 210 ↑, 211 ↑],
non-convergent, state of carbon. The basis states were generated with 0.25 fractional
excitation and has nmax=3.

Symmetry

Breaking spherical symmetry and using spin unrestricted Hartree-Fock still results in

electronic configurational degeneracies. Kinetic and nuclear potentials are single particle

operators that result in equal contributions to the total Fock matrix of each spin. The

electron-electron interaction is where the true coupling of the orbital and spin angular

momentum occur. The direct electrostatic interaction involves this coupling, but like the

kinetic and nuclear potentials the contribution is the same, for each spin, to the total

Fock matrix. The breaking of spin symmetry occurs in the exchange electrostatic term.

This term arose when the total wave function was required to be antisymmetric under

exchange of particle. It would seem natural that the ease of exchanging a particle would

be dependent on if the spins are the same or different. The data in Table 3.8 shows this

symmetry. In this case the first of the two valence electrons is in the (n = 2, ` = 1,m` =
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−1,ms =↑) state. For a second electron of the same spin the energy is degenerate for

m` = ±1. For a second electron of different spin this degeneracy is broken. Notice these

differences are at the fifth or sixth decimal place.

TABLE 3.8: Total energy of carbon with an electron excited into n=3 states. Broken
symmetries allow for the large number of unique configurations.

n, `, m`,ms Energy n, `, m`, ms Energy

3,1,-1,↑ -37.326118 3,1,-1,↓ -37.324271

3,1,0,↑ -37.325540 3,1,0,↓ -37.325253

3,1,1,↑ -37.324867 3,1,1,↓ -37.324271

3,2,-2,↑ -37.286028 3,2,-2,↓ -37.286018

3,2,-1,↑ -37.286080 3,2,-1,↓ -37.286074

3,2,0,↑ -37.286096 3,2,0,↓ -37.286093

3,2,1,↑ -37.286076 3,2,1,↓ -37.286074

3,2,2,↑ -37.286021 3,2,2,↓ -37.286018

Configurations with electrons of like spin consistently have a lower energy than those

with opposite spin. Those configurations with an l=1 angular momentum form a band of

closely lying energies that is separate from the band of energies for the l=2 states. These

energies represent all the unique configurations for exciting the one valence electron into

either a 3p or 3d state.

3.4 Basis Set Completeness

To explore the effects of generating different basis sets boron will be studied. Boron

is good to explore this effect because of the lone, out of closed subshells, electron. Gener-

ating these basis sets was done by filling the 1s and 2s subshells. The remaining electron



63

must then fractionally occupy higher states if a density for that higher state is to be

determined. For each of these basis states 90% of remaining electron is in the labelled

state below. The remaining 10% is then populated into higher states to yield densities

and thus wave functions for those states. This effectively changes the state each basis set

emphasizes.

TABLE 3.9: Boron energies with different basis sets and electronic configurations. The
lowest energy configuration is E[(2s); 210 ↑] and the most complete basis is generated with
excitations into the 3s state.

e configuration 2p 3s 3p 3d

E[(2s); 21± 1 ↑] -24.7083294 -24.97204287 -24.96048109 -24.97137308

E[(2s); 210 ↑] -24.7083295 -24.97217379 -24.96062186 -24.97151478

E[(2s); 300 ↑] -24.3720293 -24.45812448 -24.45650109 -24.46245391

E[(2s); 31± 1 ↑] -24.3334285 -24.34764089 -24.35110004 -24.36335369

The first observation of the data in Table 3.9 is that lowest energy electron config-

uration, regardless of basis set, is when the fifth electron is in the n=2, m=0 state. The

next interesting feature is the basis set that emphasized the 2p states are not the lowest

energy basis set. The 3s basis set is consistently the lowest energy set. This is due to

the large coupling between the 1s, 2s and 3s states. As the degrees of freedom for the

fifth electron increase the energy should decrease. When the 3s basis set is used more of

that electron spreads into the higher, virtual orbitals. Specifically the eigenvector is not

entirely in the (210) state but is distributed partially into the 3s state. This increases the

degrees of freedom and decreases the energy.
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4. EXPERIMENTAL VERIFICATION

Finding the total energy of an atom is valuable for theoretical analysis but compar-

ison to experimental data is limited. Experimentally finding the total energy of an atom

requires stripping one electron off at a time and adding up the total energy required to

completely ionize all electrons from the atom. This is possible for only very light atoms

as the technical difficulties of stripping electrons, one at a time, from a heavy atom are

much more difficult. The more electrons an atom has the closer the higher energy states

lie. The uncertainty in which electron you’ve experimentally probed becomes relevant and

the total energy cannot be precisely determined.

What can be determined is the difference between stable electronic states. Exciting

an electron into a higher energy configuration will result in a relaxation back to the

ground state. The energy of the photon released during this relaxation can be measured

and compared to differences in HF electronic configurations. This is the theory behind

spectroscopy and extensive data, for almost all atoms, can be found at the National

Institute for Standards and Technology (NIST) website [25].

Spectroscopic experiments can only determine the difference in energy between

states of total angular momentum L and total spin S. The freedom to break all spatial

symmetries in HF means the energies calculated are for a specific uncoupled electronic

configuration. Degeneracy is broken for different m states. Many electronic configurations

have the same total L and S. The uncoupled energies must be averaged appropriately to

get a total L and S energy to compare to experiment. The coupling of angular momentum

is used to find an appropriate coupled state in terms of uncoupled states. A coupled state

comprised of all CSF that posses the appropriate symmetry is called a full Configuration

Interaction state [20].
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4.1 Addition of Angular Momentum

For a full Configuration Interaction, coupling of all electron configurations that

satisfy a given total orbital angular momentum and total spin vector must be made.

−→
L =

N∑

i

−→
l i and

−→
S =

N∑

i

−→s i

Closed shells have total |−→L | = 0 and |−→S | = 0. Only electrons out of closed shells will

be coupled together. The state for a given electronic configuration is a tensor product of

both the total spin and orbital angular momentum wave function.

Ψ ≡ |L, Ml〉 ⊗ |S, Ms〉 (4.1)

Many different ml and ms combinations maintain the symmetry of the same total L and

S state.

First consider the coupling of two electrons [26]. The angular momentum coupled

state |l,ml〉 can be expanded into all the combinations of uncoupled states|`1, m`1 ; `2,m`2〉.

|`,m`; `1, `2〉 =
`1∑

m`1

`2∑
m`2

C`,m`
`1,m`1

,`2,m`2
|`1,m`1 ; `2,m`2〉 (4.2)

Each uncoupled state has a coefficient C that represents the strength of the coupling

between the uncoupled and coupled states. These are the well known Clebsch-Gordan

coefficients and are defined as the overlap of three spherical harmonics.

Cl,ml
`1,m`1

,`2,m`2
= 〈l1,m`1 ; l2,m`2 |l, m〉 (4.3)

A feature of the Clebsch-Gordan coefficients is that if m` 6= m`1 + m`2 than C = 0. This

can be applied as a delta function δ(m` = m`1 + m`2) to avoid computations of zero.

Coupling two electrons is nice but many important configurations involve coupling three

or more electrons.
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The coupling of three electrons will illustrate the richness of the physics of properly

coupled states while avoiding the drudgery of coupling four or more electrons. To couple

three electron’s angular momentum you first couple two as shown above. Then the third

is coupled to the first two’s coupled state.

|L,ML; `1, `2, `3〉 =
∑̀
m`

`3∑
m`3

CL,ML

`,m`,`3,m`3
|`,m`; `3,m`3〉 (4.4)

As expected to couple a fourth electron the procedure is simply repeated. Spin adds

like orbital angular momentum vectors so the procedure is also the same for spin. The

resulting total coupled spin state for three electrons, in terms of uncoupled spin states, is

below.

|S,MS ; s1, s2, s3〉 =
s∑

ms

s3∑
ms3

CS,MS
s,ms,s3,ms3

|s,ms; s3,ms3〉 (4.5)

The same requirement of the angular momentum quantum numbers must be satisfied for

the spin, ms = ms1 + ms2 and mS = ms + ms3 .

Expanded out the total tensor product of the spatial and spin coupled states is

below. The order of electron one coupled to electron two, then that coupled to the third

has been assumed. The properly coupled total wave function for a set of three bosons is

below.

|L,ML; `1, `2, `3〉 ⊗ |S, MS ; s1, s2, s3〉 = (4.6)

all∑
m`,m`3

all∑
m`1

,m`2

all∑
ms,ms3

all∑
ms1 ,ms2

κ
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
|Ψm`1

,m`2
,m`3

ms1 ,ms2 ,ms3
〉

Here the combination of Clebsch-Gordan coefficients is denoted as,

κ
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
= CL,ML

`,m`,`3,m`3
C`,m`

`1,m`1
,`2,m`2

CS,MS
s,ms,s3,ms3

Cs,ms
s1,ms1 ,s2,ms2

(4.7)

with the product of uncoupled spatial and spin states

|Ψm`1
,m`2

,m`3
ms1 ,ms2 ,ms3

〉 = |`1,m`1 ; `2,m`2 ; `3,m`3〉 ⊗ |s1,ms1 ; s2,ms2 ; s3,ms3〉 (4.8)
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The order implies the relations: m` = m`1 + m`2 , ML = m` + m`3 , ms = ms1 + ms2 and

MS = ms + ms3 .

4.2 Many-Fermion Angular Coupling

The total wave function for a set of electronic configurations must remain antisym-

metric under particle exchange. This is due to the fermion nature of electrons. To enforce

this condition a new array A is defined to be an anti-symmetrized version of the κ array.

The first condition is when two electrons are in the same state.




n1 = n2, `1 = `2, m`1 = m`2 , ms1 = ms2 ⇒ Am`1
,m`2

,m`3
ms1 ,ms2 ,ms3

= 0

n1 = n3, `1 = `3, m`1 = m`3 , ms1 = ms3 ⇒ Am`1
,m`2

,m`3
ms1 ,ms2 ,ms3

= 0

n3 = n2, `3 = `2, m`3 = m`2 , ms3 = ms2 ⇒ Am`1
,m`2

,m`3
ms1 ,ms2 ,ms3

= 0





(4.9)

The next configuration that must be considered is where multiple electrons occupy

the same n and ` state. If each electron have the same m` state then this violates the

pauli exclusion principle and that configuration is not allowed. The condition of like spin

will follow the same as for like m` and will be omitted for now, to more clearly show

the antisymmetrizing method. A permutation operator will be used to enforce the pauli

exclusion principle.

pi,j,k = −1(ηi,j,k) (4.10)

Here is the case for each pair of electrons that share the same principal and orbital

angular quantum number.





n1 = n2, `1 = `2 ⇒ A
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
= 1

2(κ
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
p1,2,3 + κ

m`2
,m`1

,m`3
ms2 ,ms1 ,ms3

p2,1,3)

n1 = n3, `1 = `3 ⇒ A
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
= 1

2(κ
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
p1,2,3 + κ

m`3
,m`2

,m`1
ms3 ,ms2 ,ms1

p3,2,1)

n2 = n3, `2 = `3 ⇒ A
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
= 1

2(κ
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
p1,2,3 + κ

m`1
,m`3

,m`2
ms1 ,ms3 ,ms2

p1,3,2)





(4.11)
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For each combination of like m`’s the term in A array will be zero.

The most degenerate case is when all three electrons occupy the same n and ` state.

The permutation operator again insures terms that are symmetric under exchange are set

to zero.





n1 = n2, n1 = n3

`1 = `2, `1 = `3

⇒ A
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
=

1
6




κ
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
p1,2,3 +κ

m`1
,m`3

,m`2
ms1 ,ms3 ,ms2

p1,3,2

+κ
m`2

,m`1
,m`3

ms2 ,ms1 ,ms3
p2,1,3 +κ

m`2
,m`3

,m`1
ms2 ,ms3 ,ms1

p2,3,1

+κ
m`3

,m`2
,m`1

ms3 ,ms2 ,ms1
p3,2,1 +κ

m`3
,m`1

,m`2
ms3 ,ms1 ,ms2

p3,1,2








(4.12)

Finally if none of the states are the same then symmetry under exchange is not an

issue and the term remains the same.

A
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
= κ

m`1
,m`2

,m`3
ms1 ,ms2 ,ms3

(4.13)

Applying the same method to electrons of like spin the fully anti-symmetrized cou-

pled state is defined. This state can now be used to find the total coupled energy. This

is a Configuration Interaction function because it is a linear combination of single Slater

determinants. It is an eigenstate of the square of angular momentum L̂2 and spin operator

Ŝ2.

|L,ML, S, MS〉 =
all∑

m`,m`3

all∑
m`1

,m`2

all∑
ms,ms3

all∑
ms1 ,ms2

A
m`1

,m`2
,m`3

ms1 ,ms2 ,ms3
|Ψm`1

,m`2
,m`3

ms1 ,ms2 ,ms3
〉 (4.14)

Since the system is now in an eigenstate of the non-relativistic Schrödinger equation the

energies obtained are comparable to experiment. The energy is calculated as follows:

EL,ML,S,MS
= 〈L, ML, S, MS |ε




n1 `1 m`1 ms1

n2 `2 m`2 ms2

n3 `3 m`3 ms3



|L,ML, S, MS〉 (4.15)
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Where ε[ ] is the energy of the uncoupled CSF produced by the UHF program. The

final coupled energy is now a sum over uncoupled energies multiplied by the square of an

anti-symmetrized coupling array.

EL,ML,S,MS
=

all∑
m`,m`3

all∑
m`1

,m`2

all∑
ms,ms3

all∑
ms1 ,ms2

ε




n1 `1 m`1 ms1

n2 `2 m`2 ms2

n3 `3 m`3 ms3



|Am`1

,m`2
,m`3

ms1 ,ms2 ,ms3
|2

(4.16)

4.3 Results: Boron

To see the results of configuration interaction calculations compared with spectro-

scopic data boron will be used [25]. Boron’s ground state has the 1s and 2s subshells

closed. A closed subshell has zero total orbital angular momentum and spin. That means

only one electron contributes to the total L and S. The electronic configuration of the

ground state is thus 1s22s12p1 and with the p electron in m` = 0 state the energy is

-24.972 hartrees.

Once you excite a 2s electron into the p state, three electrons contribute to the total

L and S. Boron makes a good example because its ground state requires no coupling

but the excited states of 1s22s12p2 require coupling of at least three electrons and it’s

just complicated enough for an example. The total angular momentum of the excited 2p

states can be L = 0, 1, 2 and the total spin can be S = 1
2 , 3

2 . Even in the coupled state

a configuration can still have different ML and MS . These coupled energies are averaged

to give a theoretical energy of a L and S state. Table 4.1 shows those energies and the

difference from the ground state.
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TABLE 4.1: Configuration interaction energies for boron L, S,Ml,Ms states. Comparison
to experiment for the first excited state of boron differs by millihartrees.

L S ML MS E Average E ∆E Exp. E

1 3
2 0 ±3

2 -24.885387 -24.839842 0.132158 0.1315415

1 3
2 ±1 ±3

2 -24.885302

1 3
2 ±1 ±1

2 -24.797284

1 3
2 0 ±1

2 -24.788495

2 1
2 ±2 ±1

2 -24.799605 -24.803175 0.168825 0.2180522

2 1
2 ±1 ±1

2 -24.812803

2 1
2 0 ±1

2 -24.791061

0 1
2 0 ±1

2 -24.795333 -24.795333 0.176667 0.2896036

1 1
2 ±1 ±1

2 -24.781765 -24.780305 0.191695 0.3304385

1 1
2 0 ±1

2 -24.777386

For the first excitation the difference in energy between experiment and HF theory

with DFT basis states is in millihartrees. Further comparison shows the accuracy of the

model decreases as the excitation increases. This is expected because the basis sets are

those best suited to the ground state. The accuracy of the first excited state provides

evidence for the validity of the HF model.



71

5. IMMERSED ATOM

The system of an impurity atom in a metal can be posed as an approximately solv-

able many-body problem [27][28][3][4][1][29]. What makes many-body problems difficult

are the larger number of simultaneous equations. Solutions are possible through iterative

approximations but the computation time required increases rapidly with an increased

number of equations. HF is especially guilty of these large computation times because of

its M4 basis size scaling. The saving features of a metal are that the atoms only interact

slightly with the free electrons and free electrons can be modelled well as a electron gas.

Large conductivities found in metals are due to small free electron scattering off the

atomic lattice [6]. The background electron gas is only a small perturbation on the bound

atomic electrons. Such a system is nice because the free and bound electrons are almost

isolated systems. Solutions to a free electron gas are well known and result in simple

plane wave basis states. The assumption is that if an electron gas separates two atoms,

and the gas has little effect on each atom, then each atom should have an even less effect

on each other. This is a bold claim that must be tested. If true, a rather complicated

many-many-body problem can be reduced to a much more simple many-body problem.

Such a system includes a single atom immersed into a free electron gas. The density of

free electrons in a metal is an experimentally obtainable and is what connects this model

to the real world.

5.1 Theory Overview

Immersing an atom into an electron gas could be done a number of different ways.

One possible way would be to expand your space to include all electronic states in the gas.

For a free atom with nmax=3, the state space is on the order of fourteen. Computational
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convergence time for my HF code is many minutes. Increasing to an nmax=4 increases

state space to order thirty, but increased the computational time to many hours. A brute

force increase in state space to include a continuous energy electron gas is not currently

possible. The goal of the immersion theory presented here is to couple a free atom to an

electron gas without extending state space to unrealistic sizes.

Keeping the order of the Hamiltonian small will be done by folding the plane wave

state space into the bound electron space. This will achieve coupling the large number

of free electron states into a Hamiltonian space no larger than that of the atom. A

perturbation technique by Löwdin accomplishes this feat. Derivation for a new perturbed

Fock matrix is then implemented into the HF iterative scheme. The system then converges

with the influence of the gas on the free atom, without increasing state space. Shifts in

the total energy and charge density can then be used to understand the effects of the

immersion.

5.1.1 Basis State Extensions

A step towards immersing an atom into a free electron gas was to explore the effects

of extending the basis states to greater radii. The question to be answered was whether

or not compressing or extending the charge density would lower the energy of the system.

Immersed DFT calculations have shown the energy decreases as atoms are immersed into

jellium [3],[4]. This is due to the increased degrees of freedom the system obtains when

coupling the free to the bound electrons. The coupling between each system will only

occur if the interaction lowers the energy. Since the system still has the state of the free

atom, the coupling will at worst not change the energy. The expectation is it will actually

lower the energy.

To simulate this effect each wave function was modified by a multiplicative function

that spreads out the charge. This basis set could then be explored for completeness. The

function that spreads out the charge must be one that once multiplied to the wave function
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will keep the result continuous and smooth. With the goal of only spreading out the tail

of each function the cosh function was chosen.

if r < R; R′
nl(r) = Rnl(r) (5.1)

if r ≥ R; R′
nl(r) = Rnl(r) cosh({√εnl(r −R))

The parameter R is the radius where the extension will occur. The resulting function will

remain continuous because cosh(r − R) = 1
∣∣
r=R

and smooth because d
dr cosh(r − R) =

0
∣∣
r=R

. Various extension radii R, were explored to learn about the effect on the total

energy. The coefficient { is typically a number between zero and one providing the ability

to strengthen and weaken the extension. The pre-factor
√

εnl is a number to scale the

effect by how bound a state is. The eigenvalues of the converged DFT provided these

numbers.

Once this is done the new more dispersed wave function is re-normalized according

to Eq. 2.2. Figure 5.1.1 is a plot of the 1s electronic state of carbon with progressively

more extension into the free electron gas. The original 1s was generated with a fractionally

low excitation occupation.
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FIGURE 5.1: 1s basis state of carbon as it is dispersed away from the nucleus by Rnew(r) =
Rold(r)r cosh(c

√
E(r −R)).

The dispersion occurs past the inflection point but the re-normalization lowers the

charge density near the nucleus while increasing it further away.

To see the effects of extending the wave functions away from the nucleus the total

converged energy is in Table 5.1.
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TABLE 5.1: Total energy for carbon, with various dispersions out from the nucleus with
the equation Rnew(r) = Rold(r)r cosh(c

√
E(r − R)). This is compared to many different

basis states.

{ R = 1 R = 2 R = 3 R = 10 R = 1stpeak R = lastpeak

0.2 -37.458 -37.472 -37.477 -37.480 -37.439 -37.443

0.4 -37.377 -37.444 -37.468 -37.479 -37.164 -37.197

0.6 -37.189 -37.384 -37.449 -37.477 -36.148 -36.232

0.8 -36.798 -37.257 -37.415 -37.474 -33.384 -33.301

1.0 -36.011 -36.968 -37.342 -37.469 -27.228 -26.152

This shows the energy increases as the basis set extension increases. A plot of these

energies in Figure 5.2 shows how extending the basis set more increases the total energy.

FIGURE 5.2: Energy of carbon with basis states extended out from the nucleus with
Rnew(r) = Rold(r)r cosh(c

√
E(r −R)). The electronic state is E[(2s); 210 ↑; 211 ↑].
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This can be understood by the fact that simply spreading out the charge, of the

same number of basis states, doesn’t increase any degrees of freedom. The energy could

then be greater because the original basis set, from converged DFT, represented a fairly

complete set when compared to exact Roothaan HF. If the charge is spread far enough

away the electrons are no longer bound and the total energy of the system has increased

to positive values.

Conversion for this set of states is can take up to 300 iterations. The 2p electrons

are coupled to each other and mixing between each other occurs. The (210) electron’s

projection into the 210 state is almost identical to the (211) electron’s projection into the

211 state. This effect is shown on the top half of Figure 5.3.
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FIGURE 5.3: 2p eigenvector coefficients for carbon with dispersed states. Electron con-
figuration is E[(2s); 210 ↑; 211 ↑].

The bottom half of the plot shows the coupling between the different electrons basis
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states. Here the different electrons minority projections are not the same. The (210)

electron’s projection into the 211 state is different then the (211) electron’s projection

into the 210 state.

The other feature of the convergence is the difference between the extended states.

The wave functions that are spread out away from the nucleus converge quicker. The

smaller, earlier oscillations are larger for the more dispersed states while the larger, later

oscillations are smaller for more dispersed states.

5.1.2 Löwdin

The Schrödinger equation is well suited for perturbation expansions. The Hamil-

tonian can be perturbed by a potential energy V and H = Ho + V . The perturbation

potential is expanded as a power series of some parameter λ. A different approach to the

perturbation of the Schrödinger equation was posed by Löwdin [8]. This method separates

the unperturbed states into two classes, A and B. Löwdin derived a set of linear equations,

akin to those in Hartree-Fock, that describe A with the influence of B. The application

to immersions is that a set of atomic states A, can be coupled to a set of electronic gas

states B, through this perturbation.

The many-body HF Schrödinger equation is the starting point for deriving the

perturbation. Here it is expressed as a linear set of equations for N states. The notation

that follows is that of Löwdin [8].

N∑

n=1

(Hmn −Eδmn)cn = 0, m = 1, 2...N (5.2)

Now separate the states into two classes A and B. The sum over the Hmn must also be

separated into two sums, over each set of states. A slight rearrangement and this looks

like:

(E −Hmm)cm =
A∑
n

H
′
mncn +

B∑
n

H
′
mncn (5.3)
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where the prime denotes only off-diagonal terms. Before performing the perturbation

expansion a new notation is useful where h
′
mn = H

′
mn

(E−Hmm) .

cm =
A∑
n

h
′
mncn +

B∑
n

h
′
mncn (5.4)

Next the B states are eliminated by recursively substituting equation ??, for cm, into the

coefficient associated with the B states. B states are thus folded into the A states through

a perturbation expansion.

cm =
A∑
n

(h
′
mn +

B∑
α

h
′
mαh

′
αn +

B∑

αβ

h
′
mαh

′
αβh

′
βn + ....)cn (5.5)

A necessary condition is the expansion parameter h
′
mn must be much less than unity

|H ′
mn/(E −Hmn)| ¿ 1 to ensure convergence. Substituting back in h

′
mn and adopting a

new notation, the expansion to the unperturbed Hamiltonian matrix is found.

UA
mn = Hmn +

B∑
α

H
′
mαH

′
αn

E −Hαα
+

B∑

αβ

H
′
mαH

′
αβH

′
βn

(E −Hαα)(E −Hββ)
+ ... (5.6)

The set of linear equations can now be expressed in terms of UA
mn.

A∑
n

(UA
mn − Eδmn)cn = 0, m in (A) (5.7)

This approach sets up an eigenvalue problem where two classes of states (A and B), are

reduced to one class of states (A), with the influence of B on A accounted for through

an expansion. The free atom Fock matrix will simply be replaced by the new perturbed

matrix UA
mn. Once the coefficients (cn) to A are found, the coefficients (cm) for B can also

be found.

cm =
A∑
n

UA
mn

E −Hmm
cn, m in (B) (5.8)

Löwdin envisioned the method would be useful in MO-LCAO theory. The pertur-

bation procedure shown above will be used in a similar way to model free atoms immersed

in jellium.
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5.1.3 Hydrogen Function Perturbation

To test the validity of Löwdin’s perturbation theory a hydrogen atom is immersed

into two plane wave states. The hydrogen and free electron wave functions are well known.

The Hamiltonian can be solved exactly and compared to perturbation theory. The use of

analytic equations lends well to using mathematical software. Maple is used for modelling

these hydrogen systems.

The first system tested was a single 1s hydrogen wave function (α), immersed into

two plane waves with wave vectors k and κ. The Hamiltonian matrix for this system can

be determined and exact solutions exist at energies where the determinant to this matrix

equals zero.

H3 =

∥∥∥∥∥∥∥∥∥∥

Hαα − e Hαk Hακ

Hαk Hkk − e Hκk

Hακ Hkκ Hκκ − e

∥∥∥∥∥∥∥∥∥∥

(5.9)

The superscript on H refers to three total states. With just one bound state α,

equation 5.6 up to first order can be rearranged to following:

U1 = (e−Hkk)(e−Hκκ)
(

Hαα +
H2

αk

e−Hkk
+

H2
ακ

e−Hκκ
− e

)
(5.10)

Setting equation 5.10 equal to zero will satisfy equation 5.7. Extending this to second order

and requiring U2 equal zero yields an equation to compare the order of perturbation.

U2 = (e−Hkk)(e−Hκκ)
(

Hαα +
H2

αk

e−Hkk
+

H2
ακ

e−Hκκ
+2

HαkHkκHκα

(e−Hkk)(e−Hκκ)
− e

)
(5.11)

Solutions to the system exist for each model when the detH3 = 0, U1 = 0 and

U2 = 0. These quantities can be plotted as a function of energy for a given value of each

electron gas’s wave vector. For k = 1 and κ = 2 this plot is shown in Figure 5.4.
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exact first order immersion second order immersion
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FIGURE 5.4: 1s hydrogen state coupled to two plane wave states with wave numbers
k=1 and kappa=2. First and second order Löwdin perturbation is compared to the exact
solution. The vertical axis is U1, U2 and the det[Hamiltonian].

Here the solutions are the zeros of each function. The free atom ground state

energy is 0.5 hartrees. Each technique was successful in lowering the energy with the

exact solution of the Hamiltonian matrix being the lowest. Extending the perturbation to

second order has the effect of lowering the energy 0.02 hartrees more than first order. The

window of the plot doesn’t show the third solution, which is greater than 0.4 hartrees.

The next state to couple to a 1s hydrogen electron would be the 2s state. This simple

model will now be extended to include the 2s state as an additional degree of freedom for
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the bound hydrogen electron. The new exact Hamiltonian matrix will now be:

H4 =

∥∥∥∥∥∥∥∥∥∥∥∥∥

Hαα − e Hαβ Hαk Hακ

Hβα Hββ − e Hβk Hβκ

Hkα Hkβ Hkk − e Hkκ

Hκα Hκβ Hκk Hκκ − e

∥∥∥∥∥∥∥∥∥∥∥∥∥

(5.12)

For the perturbation with two bound states, equation ?? expands to a set of two equations.

The matrix whose determinant must be set to zero, up to first order is:

L1 =

∥∥∥∥∥∥∥
Hαα + H2

αk
e−Hkk

+ H2
ακ

e−Hκκ
− e, Hαβ + HαkHkβ

e−Hkk
+ HακHκβ

e−Hκκ

Hβα + HβkHkα

e−Hkk
+ HβκHκα

e−Hκκ
, Hββ +

H2
βk

e−Hkk
+

H2
βκ

e−Hκκ
− e

∥∥∥∥∥∥∥
(5.13)

The second order matrix L2 looks similar with the addition of HαkHkκHκβ cross terms.

Solutions to the perturbation system occur when the following equations are set to zero.

U1 = (e−Hkk)(e−Hκκ)det(L1) (5.14)

U2 = (e−Hkk)(e−Hκκ)det(L2)

The plot of the detH4, U1 and U2 is in Figure 5.5. Here all three techniques lower the

energy less than the free atom.
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exact first order immersion second order immersion
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FIGURE 5.5: Two hydrogen states coupled to two plane wave states. First and second
order Löwdin perturbation is compared to the exact solution. The vertical axis is U1, U2

and the det[Hamiltonian]

The lowering is much less than when just one bound state exists. The difference

between the exact, first and second order is also greatly reduced.

Overall the method posed by Löwdin had the effect of lowering the energy of a

hydrogen atom immersed into a two state gas. The general shape of Löwdin’s equations

follows that of the exact solution. These results justify an effort to extend this technique

to heavier atoms with many different free electron wave vectors. The bound wave function

will be found through the HF self consistent field method.
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5.2 Numerical Implementation: First Order

To immerse an atom into the free-electron gas the perturbation theory suggested by

Löwdin is used [8]. The free atom will be treated as the main system with the electron gas

as a small perturbation. With a set of plane wave perturbation states the sum over states

is a sum over wave vectors. Assuming the volume is large enough to warrant a continuous

k -space the sum can be turned into an integral.

Uαβ = Fαβ +
kf∑

k

H
′
αkH

′
kβ

(E −Hkk)
= Fαβ +

1
Vk

∫ kf

0

H
′
αkH

′
kβ

(E −Hkk)
k2d

−→
k (5.15)

Fαβ is the regular Fock matrix, k the electron gas state, kf is the Fermi wave vector,

and E is an eigenvalue from the Fock matrix. The factor 1
Vk

is required to maintain

dimensionality when converting from a sum to an integral.

The goal of this derivation is to separate the spatial integrals in the Hamiltonian

H from the wave vector integrals above. Then the spatial integrals can be calculated

numerically, while the k -space integrals analytically.

5.2.1 Immersed Kinetic Energy Terms

In general, the terms of the immersed Fock matrix will look similar to those of the

free atom. Complications arise when the electron gas plane wave states are expanded

multiple times. The features of these expansions can easily be seen in single particle

energy terms. The kinetic energy term that couples an atomic state α to a free electron

is:

Tαk(
−→
k ) = −

∫
Φ∗α(−→r )

∇2

2
Φ(−→r ,

−→
k )d−→r (5.16)

The wave function for free electron states Φ(−→r ,
−→
k ) are assumed to be infinite plane waves

with normalization constant 1√
V

. Tαk is assumed to be hermitian, thus the kinetic energy

operator can operate on either the atomic or free electron state. Operating on the plane

wave simply returns a k2 and the plane wave back again.
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Tαk(
−→
k ) = − 1

2
√

V

∫
Φ∗α(−→r )∇2ei

−→
k ·−→r d−→r = − k2

2
√

V

∫
Φ∗α(−→r )ei

−→
k ·−→r d−→r (5.17)

To avoid the complexity of
−→
k · −→r the plane wave will be expanded into spherical Bessel

functions [18]. The angular part of a spherical Bessel function is a spherical harmonic.

This allows the angular and radial integrals to be separated.

ei
−→
k ·−→r = 4π

∞∑

`k,mk

(i)`kj`k
(kr)Y`kmk

(θr, φr)Y ∗
`kmk

(θk, φk) (5.18)

The angular integral equals a delta function that requires the angular quantum

numbers of each state to be equal. In Tαk and Φ∗α, α refers to a basis state with quantum

numbers nα, `α and m`. The sum is not collapsed so that both the kinetic and nuclear

Coulomb terms are consistent with the electron-electron Coulomb energy terms. When

the k -space integrals are performed analytically each energy term will have the same

summation structure.

Tnαlαmα(
−→
k ) = −2πk2

√
V

∞∑

lk,mk

(i)lk

∫
ϕ∗nαlα(r)jlk(kr)r2drY ∗

lkmk
(θk, φk)δlαlkδmαmk

(5.19)

The radial Bessel functions are dependent on both k and r. At this point it is important to

note that an alternate way of implementing Löwdin’s theory would be to perform double

numeric integrations over k and r. This was originally seen as introducing unnecessary

error associated with double numeric integration. In hindsight the chosen expansion may

restrict the range of the model more than the numerical error would have. This point

should be tested in the future.

Since the bound states are not dependent on k, decoupling the spatial r and k -space

k integrals will allow separate integrations. The expansion below will decouple a Bessel

function into two separable equations [9].

jlk(kr) =
∞∑

s=0

cslkk2s+lkr2s+lk , cslk =
2lk(−1)s(s + lk)!
s!(2s + 2lk + 1)!

(5.20)
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Now the radial integrals are reduced to powers of r multiplied by a bound state

radial function. The summation index s, for a free electron state, now plays a role similar

to the principal quantum number n of a bound state. This is in principle a fine expansion

but in practice the maximum possible s value will have to be explored.

Tnαlαmα(
−→
k ) = −2πk2

√
V

∞∑

lk,mk

(i)lk

∞∑

s=0

cslkk2s+lk

∫
ϕ∗nαlα(r)r2s+lkr2drY ∗

lkmk
(θk, φk)δlαlkδmαmk

(5.21)

With the radial integrals reduced to a scalar array τ s
nαlα

, concentration can be

focused on the free electron wave vector contribution.

Tnαlαmα(
−→
k ) =

1√
V

∞∑

lk,mk

∞∑

s=0

(i)lkcslkτ s
nαlαk2k2s+lkY ∗

lkmk
(θk, φk)δlαlkδmαmk

(5.22)

τ s
nαlα = −2π

∫
ϕ∗nαlk

(r)r2s+lkr2dr

5.2.2 Immersed Nuclear Energy Terms

The nuclear Coulomb potential follows quite similarly. In terms of the bessel func-

tions the nuclear Coulomb energy term is:

Vnαlαmα(
−→
k ) = −4πZ√

V

∞∑

lk,mk

(i)lk

∫
ϕ∗nαlα(r)jlk(kr)rdrY ∗

lkmk
(θk, φk)δlαlkδmαmk

(5.23)

The big difference between the nuclear and kinetic energy terms is the power of k. For

the kinetic energy term the second order derivative left an additional k2.

Vnαlαmα(
−→
k ) = −4πZ√

V

∞∑

lk,mk

(i)lk

∞∑

s=0

cslkk2s+lk

∫
ϕ∗nαlα(r)r2s+lkrdrY ∗

lkmk
(θk, φk)δlαlkδmαmk

(5.24)
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Leaving the summations in the same order as the kinetic energy term the single particle

energy terms are form similar with the only difference in the power of k.

Vnαlkmk
(
−→
k ) =

1√
V

∞∑

lk,mk

∞∑

s=0

(i)lkcslkυs
nαlαk2s+lkY ∗

lkmk
(θk, φk)δlαlkδmαmk

(5.25)

υs
nαlα = −4πZ

∫
ϕ∗nαlα(r)r2s+lkrdr

5.2.3 Direct and Exchange Terms

The Coulomb interaction between the electrons bound to an atom and those free to

move in an electron gas, can be modelled under the scheme of Hartree-Fock theory nicely.

The HF direct e-e Coulomb contribution to the Hamiltonian, before many functions are

expanded, was derived in section ??.

Jα(
−→
k ) =

M∑

βγ

cjβc∗jγ

∫ ∫
d−→r d

−→
r′ϕ∗α(−→r )

ϕ∗β(
−→
r′ )ϕγ(

−→
r′ )

|−→r −−→r ′| Φ(−→r ,
−→
k ) (5.26)

Following the expansion of the Coulomb potential Eq(??) and the plane wave expansions,

the direct e-e immersion term has a large number of detailed notations. The goal will be

to simplify Jα(
−→
k ) to an expression that separates dependence on k, like those derived for

the kinetic and nuclear potential energy terms.

Using the expansion (ref equation))for 1
|−→ri−−→rj | , the Bessel plane wave expansion

(ref equation) and the separable equation expansions (ref eq), the expression for direct

Coulomb interaction of a bound state with the gas becomes:

Jnαlαmα(
−→
k ) =

1√
V

all∑

nβ lβmβ

all∑

nγ lγmγ

∞∑

l=0

l∑

m=−l

∞∑

lkmk

∞∑

s=0

(i)lkcslkk2s+lkY ∗
lkmk

(θk, φk) (5.27)

c∗i,nβ lβmβ
ci,nγ lγmγ

4(2π)4

2l + 1

∫ ∫
ϕ∗nαlα(r1)ϕ∗nβ lβ

(r2)
rl
<

rl+1
>

ϕnγ lγ (r2)r
2s+lk
1 r2

1r
2
2dr1dr2

∫
Y ∗

lαmα
(θr1, φr1)Ylm(θr1, φr1)Ylkmk

(θr1, φr1)dΩ1

∫
Y ∗

lβmβ
(θr2, φr2)Y ∗

lm(θr2, φr2)Ylγmγ (θr2, φr2)dΩ2
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The first piece that can be defined as a scalar array is the set of radial integrals. Generating

this array is very similar to that of the bound states with one of the four wave functions

replaced with r to an integer power. One of the dangers in these expressions are those

progressively higher powers of r. The combination of the other three wave functions

ϕnγ lγ (r2) then must go to zero quickly enough to cancel out this rapid increase.

ι
nαnβnγs
lαlβ lγ lkl =

∫ ∫
ϕ∗nαlα(r1)ϕ∗nβ lβ

(r2)
rl
<

rl+1
>

ϕnγ lγ (r2)r
2s+lk
1 r2

1r
2
2dr1dr2 (5.28)

The three spherical harmonic integrals can be condensed to another scalar array.

{ lα l lk
mα m mk

} =
∫

Y ∗
lαmα

(θr, φr)Ylm(θr, φr)Ylkmk
(θr, φr)dΩ (5.29)

A few additional steps will be made to simplify all the expression that doesn’t involve the

k -space integrals. Putting the radial together with the angular results in a single array

for all the spatial integrals,

ς

[
nα nβ nγ s
lα lβ lγ lk
mα mβ mγ mk

]
=

4(2π)4

2l + 1
c∗i,nβ lβmβ

ci,nγ lγmγ ι
nαnβnγs
lαlβ lγ lkl { lα l lk

mα m mk
}{ lβ l lγ

mβ m mγ
} (5.30)

Now the sums not involving α or k states are done.

ςslkmk
nαlαmα

=
all∑

nβ lβmβ

all∑

nγ lγmγ

∞∑

l=0

l∑

m=−l

ς

[
nα nβ nγ s
lα lβ lγ lk
mα mβ mγ mk

]
(5.31)

Deceivingly the resulting expression allows calculations of wave vector integrals. The form

is the same as those for the kinetic and nuclear energies. In term of the spatial integrals

ςslkmk
nαlαmα

, the direct e-e Coulomb contribution to the immersed Hamiltonian is:

Jnαlαmα(
−→
k ) =

1√
V

∞∑

lkmk

∞∑

s=0

(i)lkcslkk2s+lkY ∗
lkmk

(θk, φk)ς
slkmk
nαlαmα

(5.32)

All of this procedure will repeat for the electron-electron Coulomb exchange term.

The only difference will be a switch between γ states and k states.
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ζslkmk
nαlαmα

=
all∑

nβ lβmβ

all∑

nγ lγmγ

∞∑

l=0

l∑

m=−l

ς

[
nα nβ s nγ

lα lβ lk lγ
mα mβ mk mγ

]
(5.33)

Knαlαmα(
−→
k ) =

1√
V

∞∑

lkmk

∞∑

s=0

(i)lkcslkk2s+lkY ∗
lkmk

(θk, φk)ζ
slkmk
nαlαmα

(5.34)

This is the expression for the exchange e-e Coulomb contribution to the immersed Hamil-

tonian.

5.2.4 k-space Integrations

All dependence in k must now be organized so that the integration in k -space can

be performed. The denominator of equation 5.6 has a dependence on k due to the energy

of a free electron. Derived in section 2.1.1, the energy of a free electron is simply the

kinetic energy.

Hkk = Tkk = −
∫

e−i
−→
k ·−→r ∇2

2
ei
−→
k ·−→r d−→r =

k2

2
(5.35)

The Hamiltonian H
′
nαlαmα

(
−→
k ) will be simplified by grouping like powers of k. The kinetic

energy term has an additional k2 from the Laplacian, while each of the potential energies

has the same power of k. From the separable equation expansion they each have a common

k2s+`k .

H
′
nαlαmα

(
−→
k ) =

1√
V

∞∑

lk,mk

∞∑

s=0

(i)lkcslkk2s+lk [k2τ̃ s
nαlα + %slkmk

nαlαmα
]Y ∗

lkmk
(θk, φk) (5.36)

The spatial integrals with the delta functions not yet applied are defined below.

%slkmk
nαlαmα

= υs
nαlkmk

δlαlkδmαmk
+ ςslkmk

nαlαmα
+ ζslkmk

nαlα,mα
, τ̃ s

nαlα = τ s
nαlαδlαlkδmαmk

(5.37)

Collapsing of the sums for the single particle terms angular delta functions will happen

after the k integral. The H
′
nβ lβmβ

term looks the same with primes to denote different s,

`k and mk’s.

H
′
nβ lβmβ

(
−→
k ) =

1√
V

∞∑

l′k,m′
k

∞∑

s′=0

(−i)l′kcs′l′kk2s′+l′k [k2τ̃ s′
nβ lβ

+ %
s′l′km′

k
nβ lβmβ

]Y ∗
l′km′

k
(θk, φk) (5.38)
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The numerator in the first order perturbation term can now be written with all the

spatial information compressed into a simplified notation.

H
′
nαlαmα

(
−→
k )H

′
nβ lβmβ

(
−→
k ) =

1
V

∞∑

lk,mk

∞∑

s=0

∞∑

s′=0

cslkcs′lkk2s+2s′+2lk [ε3k
4 + ε2k

2 + ε1] (5.39)

Here δlkl′k
δmkm′

k
from the wave vector angular integral has now been applied. The spatial

integral arrays are denoted with ε’s to simplify the expression and to group like powers of

k.

ε3 ≡ τ̃ s
nαlα τ̃ s′

nβ lβ
, ε2 ≡ τ̃ s

nαlα%s′lkmk
nβ lβmβ

+ τ̃ s′
nβ lβ

%slkmk
nαlαmα

, ε1 ≡ %slkmk
nαlαmα

%s′lkmk
nβ lβmβ

(5.40)

Now the full first order element in the immersed contribution to the Fock matrix

is three integrals over similar functions of k. These integrals over k -space can be done

analytically. The total immersed Fock matrix Uαβ is the addition of these immersed

terms to those of the free atom Fock matrix.

Uαβ = Fαβ+
1

(2π)3

∞∑

lk,mk

∞∑

s=0

∞∑

s′=0

cslkcs′lk
∫ kf

0

ε3k
2s+2s′+2lk+6 + ε2k

2s+2s′+2lk+4 + ε1k
2s+2s′+2lk+2

(E − k2

2 )
dk

(5.41)

The extra k2 comes from the all space integral over d
−→
k . The pre-factor is from both real

and wave vector space normalization, 1
V Vk

= 1
(2π)3

[6][13].

The first step in performing the integral is to rewrite the expression with a substi-

tution y = k√
2E

. Now the problem can be formulated as an arbitrary integer power of y,

divided by one plus the square of y.

∫ kf

0

2k2n

(−2E − k2)
dk =

∫ kf

0

2k2n

−2E(1 + k2

2E )
dk =

−√2E
2n

E

∫ kf

0

y2n

1 + y2

√
2Edy (5.42)

= −2n+ 1
2 En− 1

2

∫ kf

0

y2n

1 + y2
dy, n = s + s′ + lk

This integral can be done by recursively stepping down the power of the numerator. Each

time this is done a simple power integral is produced with the addition of the same original
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integral, only the power of the numerator is less by two. This can be done until the powers

in the numerator are zero.

∫ kf

0

y2n

1 + y2
dy =

∫ kf

0

y2n−2(y2 + 1− 1)
1 + y2

dy =
∫ kf

0
y2n−2dy −

∫ kf

0

y2n−2

1 + y2
dy (5.43)

=
∫ kf

0
y2n−2dy−

∫ kf

0
y2n−4dy+

∫ kf

0
y2n−6dy+ ...+(−1)n−1

∫ kf

0
dy+(−1)n

∫ kf

0

1
1 + y2

dy

=
[

y2n−1

2n− 1
− y2n−3

2n− 3
+

y2n−5

2n− 5
+ ... + (−1)n−1y + (−1)n arctan(y)

] kf√
E

0

The integral has been performed and the result can be denoted as a sum over integers.

∫ kf

0

y2n

1 + y2
dy =

[ n−1∑

j=0

(−1)j y2n−2j−1

2n− 2j − 1
+ (−1)n arctan(y)

] kf√
E

0

(5.44)

=
n−1∑

j=0

(−1)j 1√
E

2n−2j−1

k2n−2j−1
f

2n− 2j − 1
+ (−1)n arctan(

kf√
E

)

After applying the limits of the integration the result can be multiplied by the constants

that arose from the original y substitution in equation 5.42.

∫ kf

0

2k2n

(−2E − k2)
dk = −

n−1∑

j=0

(−1)j2n+ 1
2 Ej

k2n−2j−1
f

2n− 2j − 1
− (−1)n2n+ 1

2 En− 1
2 arctan(

kf√
E

)

(5.45)

The final step before putting all of this together is to write Uαβ in a form that takes

advantage of the integral solved above.

Uαβ = Fαβ +
1

(2π)3

∞∑

lk,mk

∞∑

s=0

∞∑

s′=0

cslkcs′lk
∫ kf

0

ε32k2(n+3) + ε22k2(n+2) + ε12k2(n+1)

(−2E − k2)
dk

(5.46)

Here n = s + s′ + lk to make each integral differ by only one integer.

Now the immersed Fock matrix is a series of nested sums over analytic expressions.

Uαβ = Fαβ +
1

(2π)3

∞∑

lk,mk

∞∑

s=0

∞∑

s′=0

cslkcs′lk
3∑

i=1

εi

[
−

(n+i)−1∑

j=0

(−1)j2n+i+ 1
2 Ej

k
2(n+i)−2j−1
f

2(n + i)− 2j − 1

(5.47)
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−(−1)n+i2n+i+ 1
2 En+i− 1

2 arctan(
kf√
E

)
]

The value of the immersed matrix elements depends on the Fermi wave vector kf and the

energy E of the system. In principle the energy is not known but in practice it is assumed

to be close to that of the free atom.

5.3 Immersed Self Consistent Field

The perturbation on the free atom Fock matrix must be done carefully. The system

is highly unstable and solutions are only possible for a discrete set of parameters. One

important parameter that must be within a limited range is E, the energy of the system.

Along with this, each sum over plane wave principal indices s, must be truncated to a

reasonable value. Finally all of this must be for a particular range of the Fermi wavevector

kf . Exploring parameter space will have to been done with caution and breakdowns of

the system justified.

5.3.1 Immersed Energy Eigenvalues

The problem of having to know an unknown energy E is solved by slowly moving

the system from a free atom to an immersed atom. To do this the first iteration is for that

of a free atom. The energy solutions to the system are then the eigenvalues of the Fock

matrix. Each eigenvalue should be a reasonable value for the energy if the perturbation is

small. Each (negative) eigenvalue corresponds to a particular bound electron and will be

used to generate new coefficients for that particular electron. The eigenvalue is used as the

energy in the perturbation and the immersed Fock matrix is then solved. The eigenvector

corresponding to that bound state is then used as the new coefficients. Mixing the old

coefficients slowly with the new will ensure the energy is always approximately true.
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5.3.2 Maximum Number of States

The system’s ability to converge depended heavily on the maximum value of, not

only s, but also by the maximum number of bound electron basis states. This can be

seen by examining all of the locations n = s + s′ + lk appears in equation ??. Increasing

the number of bound basis states increases the number of maximum possible angular

momentum quantum numbers lα. The plane wave quantum number lk will have all states

up to the allowed coupling to lα. Increasing both the maximum number of bound states

and the maximum number of free states will affect convergence heavily.

An example of a value in which the system will not converge is when the maximum

principal bound quantum number is three and the maximum value for s is also three.

These mean the maximum value for the index n = s + s′ + lk is eight. The summation

over j in equation 5.47 is applied to (−1)j and the stage is set for large subtractive

cancellation. This is a purely numerical effect not the most likely candidate for the cause

of the instability.

The most likely cause for problems in convergence lie in the expansion of the Bessel

functions into increasing powers of r and that effect on the spatial integrals like equation

5.22 . The Bessel equation 5.20 is an asymptotic expansion whose validity is dependent

on kfr ¿ 1. The average radius of 3s basis states can be as large as five or ten. This

explains why large principal quantum numbers can break convergence.

One last condition, very much related to the previous, is when smax is large. The

higher the power of r that a Bessel function is expanded the less any tails to a basis state

can exist. Even 2p basis states can have long tails in the wave function that extend to a

radius of two or three. It is for each of these reasons that equation 5.47 is valid only for

a limited range of parameters.
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5.3.3 Fermi Wave Vector: kf

The last parameter that can be varied is the Fermi wave vector kf . This value is

the connection to real world metals. If you were to place one electron in an empty box

it would lie in the ground state. Another would as well but with opposite spin. The

following electrons would, in two, fill progressively higher states. Real metals have Fermi

wave vectors that connect this theory to experiment. The energy of the maximum energy

level is the Fermi energy and is related to kf by:

Ef =
~2k2

f

2m
(5.48)

To relate kf to the density of free electrons a summation over all available states,

up the Fermi level, must be made. In general some function G−→
k
, describes the allowable

wave vector states. As the electron density increases, the allowed k states become more

continuous. Assuming the electron density is high enough the sum can be turned into an

integral [13]. The symmetry used here is a spherical shell in k -space out to kf .

N =
kf∑
−→
k

G−→
k

= V

∫ kf

0
D−→

k
d
−→
k (5.49)

Here D−→
k

= 2
(2π)3

is the density of electron states in three dimensions and V is the real

space volume. Now the Fermi wave vector can be found in terms of the density n = N
V .

kf = (3π2n)
1
3 (5.50)

5.4 Results

In many-body theory increasing the degrees of freedom for the problem should result

in lowering the total energy. Immersing an atom in an electron gas increases the degrees of

freedom because of the additional coupling between bound and free states.The immersion

energies for various kf are shown in Table 5.2.
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TABLE 5.2: Immersed atom energies for helium through carbon with nmax=2 and
smax=2. Immersions for kf beyond those reported were not possible.

kf Helium Lithium Beryllium Boron Carbon

0.0 -2.85809 -7.43243 -14.57391 -24.530787 -37.6877019370

0.05 -2.85814 -7.43244 -14.57391 -24.530787 -37.6877019377

0.1 -2.85846 -7.43247 -14.57392 -24.530788 -37.6877019497

0.15 -2.85920 -7.43266 -14.57398 -24.530793 -37.6877020348

0.2 -2.86026 -7.43321 -14.57420 -24.530814 -37.6877023614

0.25 -2.86130 -7.43431 -14.57467 -24.530866 -37.6877031909

0.3 -2.86129 -7.43619 -14.57552 -24.530968 -37.6877047993

0.35 . -7.43914 -14.57686 -24.531141 -37.6877074061

0.4 . . -14.57885 -24.531406 -37.6877111419

0.45 . . -14.58164 -24.531785 -37.6877160439

0.5 . . -14.58549 -24.532304 -37.6877220675

0.55 . . . . -37.6877291078

0.6 . . . . -37.6877370280

0.65 . . . . -37.6877456942

0.7 . . . . -37.6877550134

0.75 . . . . -37.6877649775

0.8 . . . . -37.6877756242

Null values are due to a breakdown in the convergence. The asymptotic expansion

in Equation 5.20 is no longer valid and the energy increase to positive infinity very rapidly.

Carbon has the least change in total energy, on the micro-hartree scale. This is encouraging

as pure carbon is non-metal and should not have an energy advantage to a metallic state.
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The immersion energy data can be more useful if it is expressed as the difference

from a free atom. This can show the extent of the energy advantage of an immersed atom.
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FIGURE 5.6: Change total energy vs kf for helium through carbon immersed in an
electron gas. Convergence was possible with nmax=2 and smax=2.

One general feature of the data in Figure 5.6 is the relative change in energy for

atoms of different metallic properties. Lithium and beryllium have the greatest drop in

immersion energy. Both of these are metals. Boron has a change that is in between the

non-metal carbon and the previously stated metals. This fits as boron is a semi-metal. Of

course all these conclusions are done without consideration to helium, which doesn’t fit

the previous logic. Helium needs to be studied closer to understand the features exhibited

here.

Each change in immersion energy appears to follow a similar dependence on kf . In

an attempt to create a slightly quantitative analysis the data will manipulated to extract
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information on this kf dependence. Carbon, although on a much smaller energy scale,

exhibits the same general behavior as the other atoms. The top plot in Figure ?? is this

immersion energy difference for carbon.
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FIGURE 5.7: Data analysis of the kf dependence of the total energy of carbon immersed
in an electron gas. Convergence was possible with nmax=2 and smax=2.

The middle plot was to search for an exponential dependence. Much manipulation

occurred next to find if any exponential, power, or combination of these dependencies

simplified the connection. Finally it was discovered that a near-linear relationship existed

for the natural log, of the absolute value, of the change in energy, divided by kf to a

power. For carbon the kf power is six, which means k6
f = n2. This would result in an

immersion energy difference equal to the following:

∆E = −k6
fe−mkf = −n2e−m(3π2n)

1
3 (5.51)

Here m is the absolute value of the slope of the linear portion of the bottom plot in figure
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??, equal to roughly five.

With this assumed kf dependence on the change of energy extrapolation to higher

kf could predict the expected behavior. Consider when the derivative to ∆E goes to zero.

d∆E

dkf
=

6
kf

∆E −m∆E = 0 (5.52)

When kf = 6/m this condition is satisfied. This would hint that the maximum change

in energy for an immersion could be predicted. For the case of lithium this results in a

maximum change in energy at kf = 6/5. The Fermi wave vector for metallic lithium is

actually closer to 0.5 [13]. This preliminary result is on the correct order of magnitude

and gives hope that the theory may have value.

The next logical question is if all the other atoms exhibited this type kf dependent

behavior. All but helium reach a near-linear relationships when the power kf is six. Figure

5.8 shows the slope of each is also approximately the same.
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FIGURE 5.8: Immersion energy dependence on kf for helium through carbon. Each follow
similar kf power dependence. Convergence was possible with nmax=2 and smax=2.

One question still unanswered is what happens to the charge density as the atom is

immersed into the gas. The distribution of projections onto basis states helps to under-

stand the shift in the charge density. Beryllium provides a simple example to explore the

effect on the eigenvector coefficients because of its spin symmetry.
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FIGURE 5.9: Immersed beryllium eigenvectors for nmax=2 and smax=2. The plot inset
is to see the relative differences between the closely lying values in the top left plot.

In Figure 5.9 as kf increases, the outer shell electrons 2s projection increase, which

decreases the amount in the 1s state. The charge of the outer shell electron moves towards

a greater 〈r〉. The inner shell electron is more complicated. As the electron density in the

gas increases the 2s coefficient initially decreases to zero. Between kf = 0.2 and kf = 0.3

this 2s coefficient switches from a positive to negative number. Immersion greater than

this and more charge moves into the 2s state. So initially the inner shell electron’s charge

density moves towards the nucleus but as kf increases this effect switches and the charge

moves out. The coefficients for the outer shell electron vary an order of magnitude less than

the inner. This would conclude that the inner shell change in density would dominate the

overall shift in charge. Since the energy decreased as the immersion increased no definitive

conclusion can be made about the shift in the immersed charge densities effect on total
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energy. What can be said is the charge initially moved towards the nucleus. When kf

went from 0.2 to 0.3 this effect reversed and beyond kf = 0.3 the charge density continued

to move away from the nucleus.

All of the data from the immersion calculations show that the perturbation method

used is promising. Shortfalls of the chosen expansions used during the derivation of the

immersion energy have been identified. Further work could overcome some of these diffi-

culties and make the model more robust. Understanding the behavior of immersed helium

could have light shed onto it by extending the program to the next noble gas, neon.
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6. CONCLUSION

The many-body Schrödinger equation has been solved for free atoms and atoms

immersed in an electron gas. The method uses converged DFT states as the basis for spin

orbital states in unrestricted Hartree-Fock theory.

Parameters used when generating the basis sets, combined with an adjustable basis

size, serve as tools to find the most complete basis for a given electronic configuration.

The ideal basis set can yield values for the total energy of a free helium through carbon

atom, within millihartrees of those calculated with a complete Roothaan basis.

Breaking of spherical symmetry lifts degeneracies in the eigenvalues of the Fock

matrix and the total energy. The post-Hartree-Fock method of configuration interaction

can be used to account for correlation and create total wave functions that are eigenstates

of L and S. When compared to spectroscopic data, the energy of the transition of boron

from the ground state to the first excited state only differed by 6.165× 10−3 hartrees.

The immersion of the atoms into an electron gas was accomplished, without increas-

ing state space, by a method of perturbation [8]. For the range of system convergence, the

energy of the atom is lowered as the charge density of the background increases. Lithium

and beryllium exhibited the greatest energy shifts, on the order of milliHartrees, followed

by boron, which was less than a milliHartree. Still following the same immersion depen-

dence but on a scale nearly six orders of magnitude less, carbon showed the least energy

advantage.

This work has shown that modelling free atoms in the context of Hartree-Fock the-

ory, with sets of basis states generated from converged DFT, can produce viable energies

for free atoms. Immersing these atoms into an electron gas with the use of perturbation

theory is possible.

Future work should include free atom total energy calculations for heavier atoms.
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Each of these atoms should have configuration interaction calculations for L and S sym-

metry. These values can then be compared with spectroscopic experiment. A MCHF

approach could go even further in accounting for electron correlation. The derivation for

the immersed Fock matrix needs to be made more robust. The obvious solution to this

is not performing the asymptotic expansion that separates the Bessel functions r and k

dependence. Calculations for greater kf could then produce results for maximum energy

advantages of atoms immersed in an electron gas. Post-Hartree-Fock methods such as CI

and MCHF could then be done on the immersed electronic configurations.

In short, we’ve created and tested a set of fundamental tools for modelling many-

body interactions. The number of systems that could be explored, with this work as a

jump-off point, are endless.
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