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The subject of this thesis is the development of a nodal discretization of the

low-order quasi-diffusion (QDLO) equations for global reactor core calculations.

The advantage of quasi-diffusion (QD) is that it is able to capture transport effects

at the surface between unlike fuel assemblies better than the diffusion

approximation. We discretize QDLO equations with the advanced nodal
methodology described by Palmtag (Pal 1997) for diffusion. The fast and thermal

neutron fluxes are presented as 2-D, non-separable expansions of polynomial and
hyperbolic functions.

The fast flux expansion consists of polynomial functions, while the thermal

flux is expanded in a combination of polynomial and hyperbolic functions. The
advantage of using hyperbolic functions in the thermal flux expansion lies in the
accuracy with which hyperbolic functions can represent the large gradients at the

interface between unlike fuel assemblies. The hyperbolic expansion functions
proposed in (Pal 1997) are the analytic solutions of the zero-source diffusion
equation for the thermal flux. The specific form of the QDLO equations requires
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the derivation of new hyperbolic basis functions which are different from those

proposed for the diffusion equation.

We have developed a discretization of the QDLO equations with node-
averaged cross-sections and Eddington tensor components, solving the 2-D
equations using the weighted residual method (Ame 1992). These node-averaged

data are assumed known from single assembly transport calculations. We wrote a

code in "Mathematica" that solves k -eigenvalue problems and calculates neutron

fluxes in 2-D Cartesian coordinates.

Numerical test problems show that the model proposed here can reproduce

the results of both the simple diffusion problems presented in (Pal 1997) and those

with analytic solutions. While the QDLO calculations performed on one-node,
zero-current, boundary condition diffusion problems and two-node, zero-current

boundary condition problems with UO2-UO2 assemblies are in excellent agreement

with the benchmark and analytic solutions, UO2-MOX configurations show more

important discrepancies that are due to the single-assembly homogenized cross-
sections used in the calculations. The results of the multiple-node problems show

similar discrepancies in power distribution with the results reported in (Pal 1997).

Multiple-node k -eigenvalue problems exhibit larger discrepancies, but these can be

diminished by using adjusted diffusion coefficients (Pal 1997). The results of
several "transport" problems demonstrate the influence of Eddington functionals on

homogenized flux, power distribution, and multiplication factork.
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NOMENCLATURE

Symbol Description Dimension

Unit vector in the direction of the velocity

)I, Projection after i and j axes (i, x, y, z) of )

dQ Unit of the solid angle srad

Wg Angular flux of neutrons in group g cm2s'srad

Macroscopic total cross-section for neutrons cm'
in group g

Macroscopic scattering cross-section for neutrons cm'
between group g' and g

Macroscopic fission cross-section for neutrons cm'
in group g'

(i)g Scalar flux for neutrons in group g cm2s1

Fission neutrons with energies within group g

k Multiplication factor

Jg Current of neutrons in group g cm2s'

Projection on i axis (ix, y, z) of the current of
neutrons in group g

v Averaged neutrons number emitted per fission



Symbol Description

Eg Eddington tensor for neutrons in group g

Egy (i, j) component of Eddington tensor for neutrons
in group g

Fast neutron current

Thermal neutron current

Macroscopic fission cross-section for fast neutrons cm'

Zf2 Macroscopic fission cross-section for thermal
neutrons

Fast neutron flux

Dimension

cm2s1

cm2s'

r1

r2

Dg

Thermal neutron flux

Macroscopic removal cross-section for fast
neutrons

Macroscopic removal cross-section for thermal
neutrons

Diffusion coefficient for neutrons in group g

cm

cm2s'

cm2s1

cm

cm

Macroscopic total cross-section for fast neutrons cm1



Symbol Description Dimension

Macroscopic total cross-section for thermal
neutrons cm'

E1 (i, j) component of Eddington tensor for fast
neutrons (i,jx, y)

E2 (i, i) component of Eddington tensor for thermal
neutrons (i,j=x, y)

12
Macroscopic scattering cross-section for
neutrons from group 1 (fast) to group 2 (thermal) cm'

Node-average fast flux cm2s1

Node-average thermal flux cm2s'

surface-averaged flux of neutrons in group g

in node (i,j) cm2s'

surface-averaged current of neutrons in group g
in node (iJ) cm2s'

M Matrix of the linear system of equations in expansion
coefficient from leakage + removal terms of QDLO

F Matrix of the linear system of equations in expansion
coefficient from fission terms of QDLO

B2 Geometric buckling cm2



AN ADVANCED NODAL DISCRETIZATION FOR THE
QUASI-DIFFUSION LOW-ORDER EQUATIONS

1. INTRODUCTION

In nuclear reactor analysis there are many situations in which the
multiplication factor and full, three-dimensional calculations of the neutron flux are

required. In these instances, although the diffusion equation can be directly solved

numerically on digital computers, practical limitations on computer storage and
prohibitively-long execution time are making impossible a "pin-by-pin" modeling

of a light water reactor (LWR). Since the diffusion length characterizes the spatial

variation of the neutron flux, accuracy requires that the mesh spacing be
comparable or less than the diffusion length (Dud 1976). Consequently, in each of

the three spatial dimensions of a nuclear reactor core, a large number of mesh
points must be chosen and multidimensional core calculations are more expensive.

Neutrons in a reactor have energies between iø eV and 102 eV, and the
interaction cross sections for neutrons are sensitively dependent on the energy of

incident neutrons. Therefore, a realistic treatment requires taking into account the
neutron energy dependence. For this purpose, in reactor calculations, energy is
discretized into "energy groups". Most LWR calculations are performed using a
four-group diffusion model, while for fast reactors 20 groups are often used (Dud

1976). Neutrons can undergo scattering interactions resulting in significant changes

in their kinetic energy, changing neutron migration between energy groups. This

leads to a system of coupled multigroup diffusion equations, one equation for each

energy group. As a conclusion multidimensional fme-mesh, fme-energy reactor

calculations are leading to large linear systems of equations, which are difficult to

handle even by current computers.



2

A similar situation is encountered in transport calculations. Here, in
addition to spatial and energy discretizations, the angular directions are discretized

by requiring the transport equation to hold only for a number of distinct angles

(Lew 1993).

Problems become even more time-consuming if one is interested in
repeatedly performing reactor calculations in order to investigate the effect of
particular parameters on multiplication factor or flux distribution, or in the case of a

changing core-composition due to fuel burn-up and fission product accumulation.

The difficulties originating from the spatial dependence of the neutron flux,

energy spectrum and anisotropic scattering are addressed by the development of

coarse-mesh nodal methods: equivalent few-group diffusion parameters,

determined for relatively large homogeneous regions called "nodes" are used to
compute global solutions like full-core eigenvalues and power distributions. Often

the homogenized regions consist of entire fuel assemblies and the computational
effort is oriented towards the node-averaged flux over each homogenized region.

Traditionally, homogenized node parameters are calculated with the flux

determined by transport calculations in an assembly (Law 1986), (Smi 1986). With

advanced nodal schemes, the truncation errors in flux solution are smaller than
those introduced by the use of flux-weighted homogenization. This drove the
development of more accurate homogenization procedures (Law 1986). Accurate
node-homogenized fission cross-sections and node-averaged flux yield accurate
power distributions.

The work presented here is part of a project that concentrates upon two
areas: the creation of a full-core few-group coarse-mesh diffusion-like method that

will produce the same results as full-core many-group fine-mesh transport
calculations, and the construction of "group constants" (i.e. cross sections and
discontinuity factors) to be used in the diffusion-like calculations. The subject of

this thesis is the development of a nodal discretization of the quasi-diffusion (QD)

equations, derived in Chapter 2, for global core calculations. The advantage of QD
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is that it is able to capture transport effects at the surface between unlike fuel
assemblies better than the diffusion approximation.

It is significantly more convenient to store one table of group constants
derived from single-assembly calculations for each type of fuel assembly, rather

than the much larger data set that would result from multi-assembly calculations

(also known as "colorsets"). This is why single-assembly calculations are the
second main objective in the project. In order to get accurate group constants for an

assembly regardless of its neighbors these group constants should be computed
using a methodology that captures interface effects.

Spatially-differenced forms of the discrete-ordinate transport equation are

usually solved by the method of iteration on the scattering source (Lew 1993), (Ada

2002). In this case the convergence of the iteration is dictated by the properties of

the medium and the size of the problem. In large scattering media, where particles

undergo many collisions in a single energy group and the leakage probability is
small, iterative techniques converge more slowly than in small absorbant, "leaking"

systems (Lew 1993), (Ada 2002). As a result, special methods were developed to
accelerate the iterations.

Besides early acceleration schemes (Chebychev acceleration and fme- and

coarse-mesh rebalance), the research in the field of efficient iteration strategies has

followed two paths: synthetic acceleration methods and quasi-diffusion and related
methods (Ada 2002).

Synthetic acceleration methods are based on fmding a "low-order" operator,

close to the original transport operator but more easily invertible. Synthetic
acceleration methods provide additive corrections to the transport sweep solutions

that are calculated using the low-order operator instead of inverting the whole
transport operator (Ada 2002). The converged solution of the synthetic scheme
should satisfy the original transport equation regardless of the way the low-order

operator was defined as long as the discrete low-order operator is derived



4

consistently with the transport operator. A low-order operator used in synthetic
acceleration schemes is, for example, the diffusion operator (Ada 2002).

Quasi-diffusion methods are characterized by the fact that they obtain a
discrete transport solution, but this solution is influenced by both the discretizations

of the transport and the low-order diffusion-like operator. The low-order operator

contains transport corrections (Ada 2002); thus the QD-accelerated solution does

not converge to the unaccelerated transport solution. QD methods are nonlinear,

requiring multiplication and division of unknowns. The advantage of the QD
methods is that they provide fast convergence regardless of discretization and
consistency (Ada 1994).

The QD method was developed in 1964 by Gol'din as a nonlinear method

of solving the linear Boltzmann equation (Go! 1967). In the same paper, Gol'din
describes a form of the QD equations that accounts for anisotropy.

In 1970 Troshchiev (Gol 1967) reported consistent discretizations allowing

the QD method to obtain the same solution as the unaccelerated transport
equations. This made QD a true acceleration scheme (Ada 2002).

Later, in 1972, Gol'din and Chetverushkin (001 1972) formulated the
generalized QD boundary conditions, i.e. a general relationship between flux and

current that involves QD coefficients calculated using the angular flux from a
previous transport sweep. To be more specific, the paper (Go! 1972) explains a
method of solving the 1 -D cylindrical geometry gas dynamics equations. The
unknown for which the transport equation is solved is the intensity, and the
boundary conditions relate the radiative energy flux to the energy density of
radiation by the means of QD coefficients.

In 1978, Aksenov and Gol'din (Aks 1979) successfully used 2-D QD
calculations of neutron transport, demonstrating the applicability of the method in

two-dimensional problems.

In 1982, Gol'din formulated abstractly the QD method, and applied it to
multigroup neutron transport problems with anisotropic scattering (Ada 2002). The



effects of various spatial discretizations of the transport equation given a constant
low-order equation discretization were analyzed, in 1986, by Anistratov and
Gol'din (Ada 2002).

One year later Miften and Larsen (Mif 1993) developed a symmetrized QD
method (SQD) that yields an "accurate and efficiently solvable" discretization of

multidimensional transport problems. This method combines the advantages of QD

methods (i.e. no consistent discretization required) with the convenience of being

solvable with the standard conjugate gradient method; in addition to this, the SQD

can be more easily generalized to nonorthogonal grids than the discretized synthetic

acceleration technique.

In 1986 and later, in 1996, Gol'din used QD to solve coupled material-
temperature and radiative transfer equations (Ada 2002). The QD method applied

to anisotropic scattering problems described by Gol'din in (Gol 1967) was
implemented in the late I 990s for strongly anisotropic scattering (Ada 2002). In
1993 Aristova developed a fmite difference scheme for the QD elliptic operator in
oblique-angle cells with applications in studying high-temperature radiative gas
dynamics (An 1993).

Soon after the QD method was created by Gol'din in 1964, nonlinear QD-
related methods were derived by Nikolaishvilli ("Yves-Mertens" approximation in

1966), Germogenova ("Method of averaged fluxes" in 1968), and Gol'din himself
in 1969. In 1970 Gol'din extended these methods to electron transport problems.
Notable contributions in QD-related methods are due to Anistratov and Larsen
(Weighted alpha methods in 1996 and 2001) (Ada 2002).

In the present work, the QD method is discretized with the advanced nodal

methodology described by Palmtag (Pal 1997). The advanced method proposed by

Palmtag presents the fast and thermal neutron fluxes as 2-D, non-separable
expansion of polynomial and hyperbolic functions. The fast flux expansionconsists
of polynomial functions of degree zero through four, and the thermal flux
expansion of a combination of polynomial and hyperbolic functions. The same



polynomial functions are used in fast and thermal flux expansions. The hyperbolic

expansion functions in thermal flux are the analytic solutions of the zero-source
low-order quasi-diffusion (QDLO) equation of the thermal flux. The advantage of

use of hyperbolic functions in thermal flux expansion consists in the accuracy with

which hyperbolic functions can represent the large gradients at the interface
between unlike fuel assemblies (Pal 1997). On the other hand, polynomials are
sufficiently accurate in representing the smooth variations of the fast neutron flux.

In addition, the use of hyperbolic functions that mathematically solve the zero-
source QDLO equations allows expressing the polynomial expansion coefficients

of the thermal flux in terms of polynomial expansion coefficients of the fast flux.

The 2-group, 2-D nodal discretization is applied here to the more general case of

constant Eddington tensor components (QD model). Consequently, different basis

functions are used in the hyperbolic terms of the thermal flux expansion. To prove

the validity of this model, we developed a code based on the QD equations. The
code, written in "Mathematica", is used to solve k-eigenvalue problems and
calculates neutron fluxes in 2-D Cartesian coordinates. The results prove that the
model proposed here can reproduce the results of the simple diffusion problems
presented in literature (Pal 1997) or derived analytically.

Chapter 2 contains the derivation of the 2-group, Cartesian geometry QDLO

equations starting from the general-geometry, k -eigenvalue, multigroup transport

equation. Chapter 3 describes the nodal discretization and the solution strategies
used to solve the 2-group, 2-D QDLO equations and an outline of the power
iteration technique used to determine the multiplication factor. Chapter 4 presents

the results of a number of diffusion benchmarks and non-diffusion problems
obtained by the use of a computer code that incorporates the QDLO equations.

Chapter 5 contains the conclusion and the recommendations for future work. The

appendices present the analytic form of the weighted equations, continuity and
boundary conditions, as they have been derived.
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2. THE QUASI-DIFFUSION METHOD FOR NEUTRON
TRANSPORT

2.1. TRANSPORT PRELIMINARIES

In Chapter 1, we argued that the quasi-diffusion method is a nonlinear
iteration scheme for solving transport problems. Each iteration consists in a "high-
order" transport sweep and a "low-order" diffusion calculation. Here we derive the
3-D, multigroup, isotropic scattering and isotropic fission source, transport
equation. Then, low-order quasi-diffusion (QDLO) equations are written in 2-D
Cartesian coordinates for two energy groups, assuming constant neutron cross
sections and Eddington tensor components in the interior of each node. These are
the equations that are solved for the homogeneous 2-D scalar neutron flux. We also

demonstrate that, if the angular flux is a linear function of angle, the QDLO
equations limit to the diffusion equation.

2.2. DERIVATION OF LOW ORDER QUASI-DIFFUSION
EQUATIONS

Consider the general-geometry k -eigenvalue transport equation with
isotropic scattering in the conventional multigroup form (Lew 1993), (Dud 1976),

where

1°
Wg (P. ñ) + ()Wg (P, O) = ;'g (P)g (P) +

(2-1)
+Vjg.(P)cbg(P),

- is the direction,
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- YIg(i) is the angular flux,

- is the total cross section for neutrons in group g,

- gg(P) is the scattering cross section for neutrons between groups g' and

g (g'<g),

- (I)g(P) is the scalar flux,

Xg is the fission neutron spectrum,

- k is the multiplication factor,

- v is the number of neutrons per fission, and

- 1g.(r) is the fission cross section for neutrons in group g'.

Integrating each term of (2-1) by over 4 neutron directions, yields (Mif 1993)

JOsVyfg(P,O)dO= J() -+Q ')d=
xôX ay &

4,r 4r

= 5 x'g(P, ñ)dO
+

yY1g (P, ñ)dñ + (2-2)

(P)+-- Jczwg(P,ñ)dô = VJg(P)
ox oy

JdOg(P)/Ig(P,) = g(P)g(P), (2-3)

JdOv (P)
(P)J=Vv

(t)g.(1) (2-4)
4K t42thgi fg' g'

g=1

and

In (2-2) the quantities

Jd[._gg(P)cDg (P)J = gg(P)Dg. (P). (2-5)

5 d&iWg (P, Q) = Jgj (P) (2-6)

are the components of the neutron current vector (i = x, y, z). Thus, (2-1) becomes



VJg (P) + g (P)Dg (P) =
g.g (itg (P) + 1'. (P)t1. (P). (2-7)

Equation (2-7) has the physical meaning of a balance equation: in steady state
conditions the number of neutrons with energies within group g leaving a volume

by diffusion or as a result of collisions occurring in the same volume is equal to the

number of neutrons produced by fission within group g plus the number of neutrons

that are scattered from group g' into group g. Defming the macroscopic removal

cross section rg'

(P), (2-8)gg

then (2-7) takes the following form:

Vig (P) + rg (P)Ig (P) gg (P)Ig (P) + VEjg (P)tg (P). (2-9)
g'=l k g=1g'g

If we now multiply on equation (2-1) terms by )X and integrate over 4,r
we obtain (Mif 1993)

and

J dácxO.Vwg(P,ñ) = Jdñ(
3(g(P'Ô)çQ ai(g(P,c)

+
4,r 4,r 3);

+cp ) = Jdñciig(P, O) + (2-10)

+ J dOcyi (P.O) + J d&xzWg (P, O),
4,r 3z

fd2,g(P)Vg(P,O) = ;(P)J(P), (2-11)

J [_gg(P)Dg,(P)J = 0, (2-12)
4ff

Jd& ( vig(P)1g(P)J = 0. (2-13)X 4rk g=I



Thus, (2-1) becomes
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JdÔl/Ig (P,ñ) + J d xyWg (P, ) +
r 4,r (2-14)

+
dOQx)zYIg (P, ) + (P)J (P) =0.

Equations similar to (2-14) are obtained by multiplying (2-1) by ) ,.,

and integrating over 4 ,r, as follows:

J dà) yxWg (P. ) + J dñWg (P.a) +

(2-15)
+ dO)y1zV/g (P, ) + g(P)J (P) =0,

Id)fl xWg (P, )) + J d)QzyWg (P, ñ) +
- J z

4,r (2-16)
+-- Jd fg(P,)+g(P)Jg(P)= 0.

az4k

Equations (2-14), (2-15) and (2-16) can be written concisely

V(5i)jYfg (P. c2)dc)+ ; (P)J (P) =0 for ij=x,y,z. (2-17)

Defining a symmetric, positive-definite tensor of components

J ijWg (P, )dQ

Egy(p) g(P,1)d
for i,jx,y,z (2-18)

4k

equation (2-17) can be written as

V(EJ (P)cDg (F)) +; (P)J (F) = 0. (2-19)

In deriving (2-19) we use the defmition of scalar neutron flux (Lew 1993)

1g(P) = jYIg(P,2)dc. (2-20)

The tensor defmed by (2-18) is also known as Eddington's tensor. Due to its

symmetry the off-diagonal elements of Eddington's tensor are equal (E = E,1).
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Functionals E depend weakly on the angular flux. Equations (2-9) and (2-19) are

called the Low-Order Quasi-Diffusion equations.

A frequently used form of the Low-Order Quasi-Diffusion equations is the

one written for two neutron energy groups g=l (fast neutrons) and g=2 (thermal

neutrons), no upscattering (neutrons cannot gain energy in scattering events), and
fissions produce only fast neutrons.

form

and

Under these assumptions the Low-Order Quasi-Diffusion equations take the

V. (P) + r1
(P)1 (P) = (v11 () (P) + v12 (P)ci2 (P)) (2-21)

V.J2(P) + r2()2() = Z12(P)t1(P). (2-22)

In Cartesian coordinates (2-19) is equivalent with the following three equations:

(E (P)cbg (i)) + (E, (P)ctg (P)) +

(2-23)
+ (E (P)1g (P)) + Eg (P)J (P) 0,

(E (P)Dg (P)) + (E (P)Dg (P)) +
(2-24)

+_(Egy(P)I1g(P))+EgO)Jgy(P) = 0,

and

(E (P)cbg (P)) + (E (P)I (P)) +

(2-25)
+(Egzz(P)cbg(P)) + Eg(?)Jgz (P) =0,

where g=1,2.

If the angular flux is a linear function of angle, i.e.

tg
(P' ) WgO (P) + ip (i) + i,tgJv (i,, + p (P)), (2-26)
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according to (2-18) Eddington tensor elements are given by

E(P)
w (P)Jcdc + v(P)Jc1ccdc + (P)Jcpcdc + ()J 1cpd1

dQ + v(P)JQd + w(P)Jcdc + v(P)J dc
(2-27)

It can be shown (Dud 1976) that

fcpdQ = 6, (2-28)

and Jcd 0 if 1,m, or n is odd. (2-29)

In these conditions (2-27) becomes

6..E(i)=.t (2-30)

and Eddington tensor is diagonal. In (2-30) 5 stands for the Kronecker's delta:

6=l for i=j, and 6=0 for ij. Equations (2-23), (2-24) and (2-25) thus become

1 g(P)Jgj(P)=_ i1,2,3andq1=x,y,z. (2-31)3;(P) aq,

An equivalent form for (2-31) would be

= 3() V(t)g(P) (2-32)

which is Fick's approximation, with diffusion coefficient Dg (P) 1 (Lew3g(r)
1993).

Equations (2-23) and (2-24) can be rewritten in the following 2-D form that
will be used in the next derivations:
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1
J (x, y) =

g (x, y)

(E (x, Y)g (x, y)) +

(2-33)
+ (Eu,, (x, Y)g (x, y)))

1 3J,, (x, y) =
g (x, y)

(E (x, Y)g (x, y)) +

(2-34)
+ (E, (x, Y)g (x, y)))

Assuming constant cross-sections and constant Eddington tensor's
components, and using (2-33) and (2-34) combined with (2-21) and (2-22) to
eliminate the neutron current, one obtains:

and

E1 32cD1(x,y) 0cb1(x,y)
ax2 3xy

E1 (x, + (x, Y)) + (2-35)
3yôx

r11(x, y) = (vf1cb1 (x, y) + VEf2D2 (x, y))

E2 32cD2(x,y) E322(x,y)
-(-j-

3x2
2 3xôy

(2-3 6)
E2, 32b2(x,y)

22::
ô2t2(xY))

+ r212(X,Y) =+--- y5x

2.3. SUMMARY

In Chapter 2 the QDLO equations are derived from the general geometry k -

eigenvalue, multigroup transport equation. The Eddington tensor depends weakly

on angular flux. At the end of the chapter Cartesian-coordinate, 2-group, constant
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node Eddington tensor QDLO are written. The methodology for solving these
equations is described in the next chapter.
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3. NODAL DISCRETIZATION OF THE LOW-ORDER QUASI-
DIFFUSION EQUATIONS

3.1. BACKGROUND

In this chapter the two-dimensional quasi-diffusion equations are solved
using the method of weighted residuals, with non-separable polynomial and
hyperbolic basis function expansions of the fast and thermal neutron fluxes. To
form a set of equations which, when solved, will yield the flux expansion
coefficients, several conditions are imposed: weighted moment equations, flux and

current continuity, node balance and boundary conditions. In this chapter we solve

the QDLO equations by using the weighted residuals method (WRM). This method

yields approximate solutions as a fmite combination of known functions (Âme
1992). In WRM the coefficients of the expansion are chosen so the difference
between the true and the approximate solutions are zero in an average sense. Unlike

the discrete method that lead to approximate solutions at isolate points, the WRM

solutions are defined everywhere and do not rise so many questions regarding
accuracy, convergence, and stability (Ame 1992).

3.2. NODAL DISCRETIZATION

The problem domain is the x y plane divided into non-overlapping

square regions (nodes) of dimension h. Non-dimensional coordinates (u, v) are

introduced instead of (x,y). To illustrate coordinates (u,v) consider a square node

that occupies the position (i, j) in an array as shown in Figure 3.1.
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Yj+i - -

y (i,j)

Yj
-F-

I I

xi 1i+1

x

Figure 3.1. 2-D representation of a square node located at position (x1,y3)

Based on the geometry of the problem new coordinates u,v) can be
defined.

and

(x11 -x1) = (.'i+1 v,) = (3-1)

(3-2)
2h

v=2yy''. (3-3)
2h

In the new non-dimensional coordinates (u,v) equations (2-35) and (2-36) become

1 E1 a21(u,v)E1a2cD1(u,v)--(j--- 2

ê(u, v) E1 al(uv))
rii(u4,1') = (34)

vt3u E t9v

= (v1cI, (u, v) +Vf2I2 (u, v))
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1 E2 a22(u,v) a2'2(u,v)
2 2 aVaZI

(3-5)

12cI1(u,v).
E2

2

3.3. SOLUTION STRATEGIES

3.3.1. The method of weighted residuals

The method used to solve equations (2-35) and (2-36) is the method of
weighted residuals (MWR). The steps in MWR are (Ame 1992):

1. Approximate the solution u(x, y) of the general form partial differential

equation Lu = fwith the expansion

u(x,y) - a1b1(x,y) U(x,y,a), (3-6)

where 1,. (x, y) are known basis functions, and a. are constant to be
determined.

2. Build the equation residual

R(U)=LUf (3-7)

that is a function of a,, x and y.

3. Select a set of m functions wj, called "weight functions".

4. Choose the optimal set of coefficients a so that residuals R (U) are zero
in an average sense over a domain,

<w1,R(U) >= JwR(U)dV = 0, for j=1 tom. (3-8)
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Integrals (3-8) are also called "weighted residuals". Weighted residuals give

m linear equations in coefficients a.; the rest of the (n-rn) equations will be

determined by applying boundary conditions, continuity conditions, or other
constraints.

3.3.2. Two-dimensional flux expansions

For the neutrons of each energy group a set of basis functions is chosen
such that in the interior of each node the flux can be approximated with expansions
of basis functions.

3.3.2.1. Fast flux expansion

The fast flux in the interior of each node is approximated by a 2-D, non-
separable expansion of polynomial functions (Pal 1997)

(u,v) = a,fm(u)fn(v), (3-9)
m.O n=O

where u and v are defined by (3-2) and (3-3). The functions fm are polynomial

basis functions of the form (Law 1986), (Pal 1997),

fo(4) = 1,

32 (3-10)

() = 4 +!)(

f(4) (2 1)(1)(1)
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The fast flux expansion has only 15 non-zero a coefficients (Pal 1997). In

matrix form the coefficients are shown below,

a a10 a20 a30 a
a10 a11 a12 0 0
a20 a21 a22 0 0 (3-11)
a30 0 0 a33 Oj
a 0 0 0 a]

3.3.2.2. Thermal flux expansion

In the interior of each node, the thermal flux is approximated by a 2-D, non-
separable, expansion of polynomial and hyperbolic functions (Pal 1997)

where

and

12(u,v) 2,1(u,v)+cD21,(u,v), (3-12)

cI211(u,v) bmnfm(U)fn(V) (3-13)
m=0 n=0

ci2(u,v) = c,g1(u,v). (3-14)

The polynomial expansion (3-13) has 19

1997). The non-zero expansion coefficients are give

b b10 b, b30

b10 b11 b12 b13

b20 b21 b 0

b b31 0 b33

b 0 b42 0

non-zero b coefficients (Pal

n below in matrix form,

0

"24 (3-15)
0
b



The symmetry shown by matrix representations (3-11) and (3-15) allows

the diagonal symmetry of colorset problems. Non-zero diagonal elements were kept

to capture diagonal effects in colorset calculations. To simplify calculations, the

high order polynomial functions f3 () andf () are zero at u,v = ±-. The

hyperbolic functions g (u, v) were determined so that (I)2,., (u, v) should satisfy the

zero source balance equations for thermal neutron flux

at2,,(u,v) E2,, 52c1:2kV(u,v)
h2 2

2 ôuôv
(3-16)

ô2 (u, v)
+

E2 ô2cb2(u, v))
+ T2I2/, (u, v) =0.

ôvEIu -ii;- 2

The following set of basis functions (Ani 2001), (Pal 2001) was found to satisfy
equations (3-16):

g1(u,v) = cosh(y1u),
g2 (u, v) = sinh(y1u),

g3(u,v) cosh(y2v),
g4 (u, v) = sinh(y2v),

g5(u,v) =cosh(y3(v-91u)/J, (3-17)

g6(u,v) = sinh(y3(v-91u)/jj,
g7(u,v) = cosh(y3(v,92u)/.jJj,
g8(u,v) = sinh(y3(v-92u)/jj
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where

Ih2r2t2
1?

V

Ih2r2t2
7? '

2yy

h2E E E
= J

r2 :2 2
, (3-18)

(IL' z' ' 2

4 2'2j

3.3.2.3. Weight functions

Typical weighted residuals methods for reactor core analysis use one of the
following two choices of weight functions (Law 1986):

i. The first choice called "moments weighting" (Pal 1997) uses low-order
expansion functions as weight functions.

ii. The second choice, known as "Galerkin weighting", uses higher-order
expansion functions as weight functions.

The most accurate results have historically been obtained with moments
weighting (Pal 1997). For each energy group seven conditions have been generated

using weighting with the following functions:



3.3.2.4. Equation residuals

Let

22

w0(u,v) = 1,

w1(u,v) f1(u),
w2(u,v) =
w3(u,v) = 144j(u)f1(v), (3-19)
w4(u,v) = 4f2(u),
w5(u,v) = 4f2(v),

W6(U,V) = 16f2(u)f2(v).

Rg (u, v) = I (u, v) CDg (u, v) (3-20)

be the residuals, where cD (u,v) are the exact solutions of (2-3 5) and (2-36), and

(Dg (u,v) are the expansions (3-9) and (3-12). Accordingly,

and

R1(u,v) CD(u,v)afm(u)fn(v) (3-21)
m=O n=O

R2(u,v) = CD(u,v) b,,,jm(U)fn(V) c1g1(u,v). (3-22)
m=O nO 1=1

Substituting residuals (3-2 1) and (3-22) in equations (3-4) and (3-5), one obtains

the equation residuals for the two neutron fluxes,

1 E1 a2R1(u,v) E1 32R1(u,v) E1 a2R1(u,v)
+

2
auov

(3-23)
iRi(u,v)__f(vRi(u,v)+vj2R2(u,v))
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1 E2, a2R (u )Ea2R (u v) E ô2R (u v)
2

t3uöv 2 avu
(3-24)

+2R2(UV))+.;r2R2(U,V)=i2Ri(U,V).
2

2

Since 1(u,v) and cI(u,v) are exact solutions of(3-4) and (3-5) one can

write the equation residuals in the following form:

and

__(L ô2cD1,1(u,v)
+ + +

t3w3v vu

= (3-25)

(vZ1cI1,, (u, v) + v12 (cD2 (u, v) + (u, v)))

i(E2 ô2('2,,(u,v) + ci2,(u,v))
h2 Z2

+
ôuôv (3-26)

E

2

2

± ct21,,(u,v))

3.3.2.5. Weighted residuals of two group equations

Applying the weighted residuals method to equations (3-25) and (3-26) and

assuming that all cross sections and Eddington tensor components are spatially

constant leads to:
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h2
<w1(u,v), >+

> +
auav

<w(u,v), >+ (3-27)

+!<w1(u,v) >)+

+r1 <w1(u,v),c11(u,v) >= <w1(u,v), 1,1(u,v) > +

+Vf2 <w,(u, v), (I2,(u, v) + v))>

E2___________________
h22w1(hi >+

ôui3v >

+ <W1 (ii, v),a
(12w, (u, v) + v))

>+ (3-28)

<w1(u,v),
(2,1(u,v)+D21.,,(u,v))

>)+

+Z2 <w, (u, v), (21 (u, v) + 2kjp (u, v)) >=
= E12 <w,(u,v),1,1(u,v)>,

where w1 (u, v), 10 to 6, are the weight functions (3-19). The "< >" notation is the

one introduced by (3-8). After applying the WRM for each weight function to
equations (3-27) and (3-28) fourteen equations will result (seven per energy group).

These equations together with continuity conditions, boundary conditions, corner

balance equations, and balance equations in the thermal group will form the system

of linear equations to be solved for the unknown expansion coefficients a,,m, b,
and c, from expansions (3-9), (3-13), and (3-14).



25

The zeroth-moment residual of the expansion of the fast flux, i.e.

<w0 (u,v), (u,v)> represents the node averaged fast flux

11
+- +-

<w0(u,v),1,1(u,v) >= J J101(u,v)dudv =cb1 = a. (3-29)

The zeroth-moment residual of the expansion of thermal flux, i.e.

<w0 (u, v), (I2,t,1 (u, v) + D21, (u, v)> has the same physical meaning but a more

complicated form due to hyperbolic basis functions that appear in I2/, (u, v):

>=

11 11

5 5 2pol (u, v)dudv + 55 (u, v)dudv =

22 2 2 (3-30)

=b2=b
2 72 2

8
c5 sinh(-2--) sinh(2-) 8 c., sinh( ) sinh( 7392)

73291 2J 2J 73282 2J 2J

In the diffusion limit,E = E and E, = =0, (3-30) l,ecomes:

8= + (c1 + c3) sinh(21) + i- (c5 + c7) sinh2 2'

2 y
(3-31)

where y = J3h2Er2Et2 An expression similar to (3-3 1) is derived in (Pal 1997) in

the diffusion limit.
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3.3.2.6. Surface-averaged flux and current

Node surfaces have been denoted by x ± or y ±, and they correspond to

1 1u = ± or v = ± as shown m Figure 3.2.

y+ y+

Node Node
I- . . 1+

(i-1,j)
x- . . 1+

(i,j)

y- y-

y+

Node Node
(i-1,j-1) + (i,j-1)

y- y-

xi.1 xi xi+1

Figure 3.2. Notation of node surfaces

Yj+i

yj

yj-1

The surface-averaged fluxes on x+ and y+ surfaces of a node (i,j) are defined by:

2

I i (x1,y)dy = JIgd2,V)dV (3-32)
h '

yj _!
2

+-

Ig(X,Yj+i)dr = Jc1g(U,!)dU (3...33)gy+
h ' 2_!

2
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In a similar manner we defme the surface-averaged flux on x - and y - surfaces of

the node (i,j),

and

+-
2

fct (x1,y)dy= JDg(_,V)dV (3-34)
h g

-i

(x,y)dx Jg(U,_-)dU. (3-35)
h J g

Surface-averaged currents across the x+ and y+ surfaces have been defmed using
similar notations,

i=! JJ(x1+1,y)dy=
h

yl

1
''

1 (E
3ttg (x,1,

+E, OCIg (x11, y)

Ox
)dy=

+-
2

1
&bg(,V) &.J?(,V) (3-36)

J-- +E1' 2
hOu ht9vJ g

2

1
2

1 (E'
&ig(V) Obg(i,V)

iv.
2

Similarly one finds

1 1
31g (u,

+ E,
Otg (u,jy=

gy+ --(E' )du, (3-37)' Ovh i
2

1
2 &Ig(,V) 01 (---,v)g 2Jy

h
)dv, (3-38)
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and

1 1
3tg(U,_!)

J'J
2 2 )du. (3-39)g'

In deriving equations (3-36) to (3-39) expressions (2-33) and (2-34) are used for x

and y neutron current components calculated with constant cross-sections and
Eddington tensor components.

3.3.2.7. Continuity equations for flux and current

Using these definitions, the continuity equations for the flux and current on

the four surfaces of node (i,j) Figure 3.2 are (Pal 1997):

=
+ g1,2 (3-40)

jfrlJl i,j1

gx- '
g1,2 (3-41)

'"
gy+ gy- '

g1 ,2 (3-42)

t,j1

gy-' g=1,2 (3-43)

=
+ gx-' g1,2 (3-44)

Jfr1Jl Jl,Jl
gx- '

g1,2 (3-45)

J'1'' =
gy+ gy- '

g1,2 (3-46)

and

Jj+:1 = J, g1,2. (3-47)

Equations (3-40) to (3-47) provide another 16 equations fora, b, and c1

(the unknown expansion coefficients) after replacing in (3-32) to (3-39) the neutron

fluxes with their series expansions (3-9) and (3-12) and performing the integrals.
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3.3.2.8. Corner flux continuity conditions

Three independent equations can be obtained for each neutron energy group

by applying corner flux continuity conditions. If we consider corner (x1,y3) in

Figure 3.2, these are:

and

1' (x1,y) i-1,j (xy) g=1,2 (3-48)

= llJ_l(x.,y.), g=1,2 (3-49)

jllJ_l(xy) =cIJ'(x1,y1) , g=1,2. (3-50)

The fourth flux corner continuity condition added to (3-48) through (3-50)

leads to a system of linear equations non-independent. A fourth independent
condition at the corner point will consist of a "corner balance condition" (Pal 1997)

that will be described in the next section. Conditions (3-48) to (3-50) bring for each

node of the problem, six new equations (three per energy group) to the linear
system of equations.

3.3.2.9. Corner balance condition

The corner balance condition is derived by drawing a square box of width

28 centered on a corner point (x1,y) (Pal 1997), as shown in Figure 3.3.



yj+'

Node Node
(i-1,j) (i,j)

Node Node
(i-1,j-1) (i,j-1)

Yj:

Xj1 X Xj+j

125

y

x
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Figure 3.3. 28- square box centered around (xi, yj) corner, to illustrate the corner
balance condition

By reducing the size S of the imaginary box to zero (box volume approaching

zero), no absorptions will occur inside the box (Pal 1997), i.e. there will be no net

neutron leakage from the box. The leakage of neutrons of group g from corner
(x1,y) is given by (Pal 1997).

1
y+8

L' = ( J J (x1
,
y, + 8)dx +

J
J (x1 +8, y. )dy) (3-51)

Using the Taylor series expansion for .J and J, about (x1
, y) equation (3-51)

takes the form:

aj1 ajID' --J'g - ,(x1,y1)+8--1 +J(x1,y1)+8--I (3-52)
E3y

(xy) (x1,y1)

At the limit 8 0, L' becomes

JY =J'g ,,(x,,y1)+J(x1,y1) (3-53)
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Analogous to (2-88) leakages from corner (i, j) into nodes (i-i, j-1), (i-i, j) are
given by:

L" = (x1,y) + J'-1J (x1,y) (3-54)

L"' = J'',' (x1
, y1) J'1"' (x1

, y) (3-55)

L'' = Jf'(x1,y)J'(x1,y) (3-56)

So, as S -p 0, the corner balance equation becomes (Pal 1997):

L' + L"' + L"' + L'' = 0 (3-57)

or, in terms of neutron current components,

y) + J(x1,y) J"'(x1,y) J"'(x1, y)±
(3-58)

+J'(x1,y1) = 0, g=1,2.

For each node of the problem, one can write two equations analogous to (3-58)
(one per neutron energy group).

3.3 .2.10. Zero-flux boundary surface conditions

For each node and each neutron group, four surface conditions for flux and
current and four corner conditions are needed. For interior nodes, these
requirements are satisfied by applying equations (3-40) to (3-47). For interior
corners, equations (3-48) to (3-58) served this purpose. For exterior nodes,
conditions applied to the node depend on the boundary conditions applied to the
problem. Zero surface-averaged fluxes are simply imposed. For the simple four-

node problem shown in Figure 3.2, zero-flux boundary conditions are described by

the following equations:
;If_1 =0, g1,2, (3-59)
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= 0, g1,2, (3-60)

= 0 g1,2, (3-61)

0 g=1,2, (3-62)

=0gy+ '
g1,2, (3-63)

i1 =0gx+ '
g=1,2, (3-64)

=0gy g1,2 (3-65)

';1L1=o, g=1,2. (3-66)

3.3.2.11. Zero-flux boundary corner conditions

Zero-flux corner boundary conditions simply require that the neutron flux in

the nodes located on the boundaries of the problem is zero. Referring once again to
Figure 3.2,

and

g(Xi_iYj_i)=O g1,2, (3-67)

g(Xi_iYj) =0, g=1,2, (3-68)

ttlg(Xi_i,Yj+i) =0, g1,2, (3-69)

g(XjYj+i)=O g=1,2, (3-70)

t'g(Xi+i,Yj+i) = 0 , g=1,2, (3-71)

g(Xi+iYj) = 0, g=1,2, (3-72)

't'g(Xi+i,Yj_i)=O , g=1,2 (3-73)

cIg(Xi,Yj_i)=O, g1,2. (3-74)



3.3.2.12. Zero-current boundary surface conditions

Zero-current boundary surface conditions are mathematically described by

zero surface-averaged currents at the exterior surfaces as shown in Figure 3.2,

J' =0, g1,2, (3-75)

J'1,-' =0 g=1,2, (3-76)

= 0gy+ ' g=1 ,2, (3-77)

JJ =0gy+ ' g1,2, (3-78)

J1 =0 g1,2, (3-79)

J"' =0 g=l,2, (3-80)

J'-' =0 g=l,2 (3-81)

and

J;j =0, g=1,2. (3-82)

3.3.2.13. Zero-current boundary corner conditions

Zero-current boundary conditions derive from the corner balance equation
in each group, equation (3-58). For boundary corners shared by two exterior nodes,

such as the (x11,y1) corner from Figure 3.2, we have:

and

J (x1, y) + J (x1.., y) J' (x11
(3-83)J'(x11,y) = 0, g=1,2

'' (x1 , y1) = c1' (x,, , y.) , g=1 ,2. (3-84)
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Each of the two nodes sharing the (x11,y) corner accounts for one of equations (3-

82) and (3-84). For external boundary corners that belong to only one node (i.e.

corner (x1+1,y+1)from Figure 3.2, equation (3-58) gives:

J(x,+1,y11)J(x11,y+1) 0, g1,2. (3-85)

3.3.2.14. Thermal flux balance equation

As shown in previous sections, for each node and each energy group one
can write seven weighted residual moment equations, four surface-averaged
continuity equations, and four corner balance equations. This yields 15 equations

per neutron energy group and per node (thirty equations per node). In fact,
according to (3-9), (3-13) and (3-14), 42 unknown expansion coefficients must be

determined for each node. Expressing for each node the thermal flux polynomial

expansion coefficients b in terms of fast flux polynomial expansion coefficients

a,,,,, (Pal 1997) yields a system of equations for 23 unknowns (15 fast polynomial

coefficients and eight thermal hyperbolic coefficients).

By substituting expansions (3-9) and (3-12) into the thermal group balance
equation (2-36) and taking into account that basis expansion functions (3-18) are
exact (analytic) solutions of (3-16), equation (2-3 6) is reduced to:

E"1 a2i', E' a2cI(x,y) i,j

-(---- 2pol +2 + ô2J_ (x, y)
i.j ax axoy ) +

(3-86)2 2

=
12 Ipol

This is an equation that involves only polynomial terms. Since (3-86) is composed

entirely of polynomials, the 19 thermal polynomial expansion coefficients can be

found in terms of 15 fast flux expansion coefficients such that (3-86) is true in
every point of the node (i, i). By fmding the thermal polynomial expansion
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coefficients in terms of the fast polynomial expansion coefficients 23 equations per

node for the 15 coefficients a,and 8 coefficients c1 are solved. The rest of the 19

coefficients are determined by simply calculating them using the relations

provided by (3-86).

To summarize, in order to solve the Quasi-Diffusion Low Order Equations

by the WRM, for each node of the problem 23 equations for 23 coefficients are

needed:

7 weighted residual moments in the fast group

4 surface-averaged continuity conditions in the fast group

4 surface-averaged continuity conditions in the thermal group

4 corner conditions in the fast group

4 corner conditions in the thermal group

However, the expressions of coefficients b,, in terms of coefficients

are more complicated in the case of quasi-diffusion than the expressions derived in

(Pal 1997) because of the more complicated form of the quasi-diffusion low order

equations in which all of the Eddington tensor's components can be non-zero.

3.4. POWER ITERATION TECHNIQUE

The equivalent matrix formulation of a 2-D, (m x n) node problem is

Mv = Fv, (3-87)

where

- M is the (23 x m x n)2 element square matrix of the source free system

of linear equations in expansion coefficients;

- F is the (23 x m x n)2 element square matrix of fission sources;

- v is the (23 x m x n) colunm vector of the expansion coefficients.
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Multiplying (3-87) with the inverse of matrix M and rearranging yields

Av=kv, (3-88)

where A = M'F.
Equation (3-88) is the standard form of an eigenvector-eigenvalue problem.

It is demonstrated that if one is interested in fmding the eigenvalue of the square

matrix A with the greatest absolute value, the numeric procedure recommended is

"power iteration".

Starting with a column vector almost arbitrarily chosen (Rad 1992),

after a number of iterations n the vector

Av
= n 1 (3-89)Av"'

can be used in (3-8 9) to approximate the eigenvalue k with the greatest absolute

value:

= uAu, (3-90)

where z40 is a row vector, the transpose of vector u

3.5 SUMMARY

Chapter 3 presents the discretization of the QDLO, the non-separable function

expansion of fast and thermal neutron fluxes, the steps of solving the QDLO by the

use of WRM, and briefly the power iteration scheme used to calculate k -

eigenvalue.
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4. RESULTS AND DISCUSSIONS

4.1. INTRODUCTION

In this chapter the nodal quasi-diffusion low-order (QDLO) equations are

solved for several diffusion test problems (diagonal Eddington tensor with diagonal

entries equal to 1/3), and "transport" problems (Eddington tensor with diagonal

entries different from one-third and zero or positive off-diagonal components). In

the transport problems, the Eddington functionals are chosen to be within the range

of values representative of two-node UO2-MOX fuel assembly transport
calculations.

The QD method was originally developed as a rapidly-convergent iterative

technique for solving transport equations. In this method, the scattering source used

in a given transport sweep is obtained from the solution of the QDLO equations,
using Eddington functionals (2-18) calculated with the angular fluxes from the
previous transport sweep. In applying the QD transport methodology to reactor
physics problems, we are assuming that the detailed space, energy, and angle
dependence of the angular flux is calculated from single assembly transport
calculations (i.e. CASMO). This data, including Eddington tensors, is then
homogenized and functionalized for use with the nodal QDLO equations solved for

the homogenized scalar flux in the core. For our purposes, the data used in the
QLDO equations is assumed known; however, its preparation is also an area of
ongoing research.

Our goal in solving the diffusion problems is to illustrate that, for fuel

assemblies characterized by "diffusive" data (E = E = 1/3, E = = 0), the

QDLO nodal discretization limits to the nodal diffusion discretization derived by

Palmtag (Pal 1997). Palmtag's discretization has been shown to be extremely
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accurate for mixed UO2-MOX cores. We consider a sequence of one-node
problems (from the EPRT-9 benchmark specification) with a variety of boundary

conditions, a sequence of two-node UO2-MOX problems from (Pal 1997) and
several multi-node problems that demonstrate our ability to model general reactor

systems. The transport problems are included to show the effect of representative

"non-diffusive" Eddington tensors on homogeneous flux distribution and

multiplication factor.

4.2. ONE-NODE, 2-D DIFFUSION PROBLEMS

4.2.1. EPRI-9 assembly calculations results

In this section. three single-assembly benchmark problems are solved with

the nodal discretization of the QDLO equations. The data for these assemblies
come from the EPRI-9 benchmark problem. The configuration for EPRT-9 problem

consists of eight fueled standard 15 x 15 fuel pin PWR assemblies of different
enrichments (Fl and F2), and F2-R (a rodded version of F2) (Pal 1997). We use
one node per assembly with zero-current boundary conditions to calculate the
multiplication factor k and the ratio between the node-averaged thermal and fast

fluxes, 2 /
1

The multiplication factor k obtained from diffusion Eddington functionals

is compared with k provided by (Pal 1997). Homogenized cross sections are

obtained from single assembly calculations as given in Table 4.1 (Pal 1997). The
convergence tolerance for flux and k was set 1 O.
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Table 4.1. EPRI-9 assembly cross sections

Property
Assembly type

Fl F2 F2-R
k 1.006603 0.959145 0.656523

0.220260 0.220261 0.227900

t2
0.843809 0.843549 0.874090

a1
0.012099 0.009325 0.015144

Ea2 0.168560 0.141419 0.183746

21
0.021126 0.021125 0.018810
0.006012 0.004625 0.004633

VEf2 0.218881 0.164554 0.172501

The results and the relative errors are shown in Table 4.2. The ratio
2 / CI) is

compared with (2 / , i.e. the expected ratio according to analytic

solution of the diffusion equation in an infmite medium. The other quantities are
defmed as follows:

- (4-1)
r1 r2 rI

- (4-2)
k'ml

/ç.k
- (43)ka

V

(2''1)°
I



and
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- N= the number of iterations required to reach a convergence

tolerance 1 0.

Table 4.2. EPRI-9 assembly calculation results

Property Fl F2 F2-R

k 1.00662 0.959142 0.656531
N 12 11 13

k'mf(Pal 1997) 1.00660 0.959145 0.656523

k 1.00662 0.959142 0.656531

2.5x102 5.2x104 1.2x103

62(143) 0.0 0.0 0.0

21 0.125332 0.149379 0.102370

(, /32 __ 1)
0.125332 0.149379 0.102370

63 (%) 0.0 0.0 0.0

From Table 4.2 one can see very good agreement between QD code calculations,
the results presented in (Pal 1997) and the analytic solutions.

4.2.2. Geometric buckling comparisons

In this sequence of problems, QDLO calculations of geometric buckling for

a node with zero-flux or zero-current boundary conditions are compared to analytic

predictions. The buckling, B2, is given by

B2 _(_a+Ja2 4fi) (4-5)
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and
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a =3(riri r2t2 -fltlJ (4-6)

P = t1t2 [_r1r2 +(Vflr2 +v1212)]. (4-7)

The eigenvalue associated with the fundamental eigenfunction of the Helmholtz

equation (Dud 1976) is, for this geometry,

B2 = 2[J (4-8)

where a is the dimension of the square node.

Table 4.3 shows in columns 1 through 6 the number of nodes in which an
initial (42 x 42) cm2 assembly is divided, the width h of each of these nodes, the

number of iterations (N) required to reach a convergence tolerance 1 0,
multiplication factor k for zero-flux boundary conditions, and /ç, respectively.

Errors shown in columns 7 and 8 take as reference values the 64-node k and 16-

node k.

Table 4.3. Zero-flux k, zero-current k multiplication factors for various
node width h

Number
of nodes

h(cm) N k N (%) 6 (%)

1 2 3 4 5 6 7 8
1 42.0 15 0.771 166 35 1.164924 0.38 0.052
4 21.0 19 0.765551 52 1.164925 0.35 0.0
16 10.5 16 0.768218 50 1.164925 0.007 *
64 5.25 17 0.768273 45 1.164925 * *
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The analytic kthf for zero-current boundary conditions is obtained according to

(Dud 1976)

where

k=k1+kp (4-9)

k
VE1g g1,2 (4-10)inf

rg

(4-11)
r1

According to equations (4-13) - (4-15) the multiplication factor of zero-
current boundary conditions problem is kf=l.l6493.

The cross sections used in these calculations correspond to a 5% enriched
UO2 fuel assembly, and are presented in Table 4.4 (Pal 1997). Substituting these

cross sections into (4-9) yields B2 - 1.11902x102 cm2. Equation (4-12) gives for
a =42.0 cm B2 = 1.11 900x1 2 cm2, very close to the result obtained with (4-9).

Table 4.4. Two-group single assembly cross sections

Property
Assembly type

UO2
3%

UO2
4%

UO2
5%

MOX
4%

MOX
8%

MOX
12%

0.286867 0.286714 0.204091 0.286466 0.285875 0.285233
0.97970 0.980551 0.987944 1.07985 1.16774 1.23263

12
0.016756 0.016229 0.015738 0.013630 0.011853 0.010644

a1
0.009530 0.010234 0.010895 0.012956 0.015327 0.017049
0.082606 0.098603 0.113317 0.197823 0.290164 0.350338
0.006758 0.008092 0.009357 0.008436 0.012259 0.015427

Vj2 0.129545 0.163555 0.194709 0.321278 0.483443 0.587795

kmf___________1.256776 1.323053 1.366686 1.149925 1.177585 1.201939
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4.2.3. Power iteration convergence rates

The rate of convergence of the power iteration method is illustrated by a

one-node, zero-current test problem in which the width a of the node is increased

repeatedly by a factor of two from h to 32 h (h =42.0 cm). The number of
iterations (N) required to reach a convergence tolerance 1 O for k and flux
strongly increases with a, while k and 12 / (J remain the same, as shown in

Table 4.5.

Table 4.5. Convergence rate results for one node, zero-current problem

Node width (a) k 12 / N

h 1.00635 0.125332 12
2h 1.00635 0.125332 33
4h 1.00635 0.125332 112

8h 1.00635 0.125332 394

16h 1.00635 0.125332 1402

32h 1.00635 0.125332 4943

Plotted on log-log scale, N versus node width a is approximately a straight
line, as shown in Figure 4.1.
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Figure 4.1. Number of iterations plotted versus node width on a log-log scale

4.3. TWO-NODE UO2-MOX PROBLEMS

This problem assumes two adjacent nodes: a UO2-fueled assembly, next to
a MOX-fueled assembly (Pal 1997). The reasons for considering this configuration
is that UO2 and MOX have different properties, so UO2 and MOX systems are
excellent for investigating the behavior of neutron fluxes at the surface between
assemblies of unlike properties. Zero current boundary conditions are applied to the
boundaries of the configurations, as shown in Figure 4.2.



J=o

Figure 4.2. UO2-MOX configuration

J=o
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Various configurations are obtained by using UO2 and MOX fuels of
various enrichments in 235U and Pu, respectively.

Table 4.6 shows the multiplication factor, the number of iterations required

to reach a convergence tolerance 1O, UO2 assembly power and their relative

errors from QDLO calculations using the two-group, single assembly cross sections

from Table 4.4 (Pal 1997). Columns 5 and 6 show the relative errors from the
advanced nodal diffusion methodology calculations presented in (Pal 1997). Both

of these sets of computations are compared to CASMO-4 1 4-group results (Pal
1997) which are reproduced here in columns 8 and 9. In Table 4.6 U, and M stand

for x %-enriched UO2 and y %-enriched MOX.
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Table 4.6. Two-node UO2-MOX assembly, multiplication factor and power
calculations

Config. k N
Relative

error k (%)
UO2

assembly
power

Relative
error (%)
UO2

0 1 2 3 4 5

U31U4 1.29121 18 6.2x103 0.93 167 0.74
UilEJ5 1.34542 18 2.2x103 0.93569 2.3
U31U5 1.31531 18 8.4x103 0.88585 1.2
U31M8 1.20273 20 1.2 0.94333 1.2
U31M12 1.20885 21 1.6 0.90974 1.2
U4/M.8 1.23828 20 0.8 1.01375 2.0
UilM12 1.24387 21 1.2 0.98002 2.0
U5fM8 1.26385 20 0.52 1.06130 2.3
U51M12 1.37004 20 7.0 1.06350 5.9

Table 4.6. Two-node UO2-MOX assembly, multiplication factor and power
calculations (continued)

Config. Relative error
of k (%) , ref.

(Pal 1997)

Relative error of
UO2 power (%)

ref. (Pal 1997)

Reference
k

Reference
UO2

power
0 6 7 8 9

U3/U4 2.4x102 0.69 1.29113 0.9386
U4ILJ5 1.0x102 0.43 1.34545 0.9580
U3105 6.3x102 1.11 1.3 1520 0.8969
U31M8 0.239 0.87 1.21721 0.9312
U31M12 0.306 0.69 1.22896 0.8986
U4/M8 0.346 1.64 1.24830 0.994
UilM12 0.405 1.47 1.25888 0.9611
U5/M8 0.435 2.12 1.27035 1.0372
U51M12 0.487 1.96 1.28014 1.0042

Typical fast and thermal neutron flux shapes for the UO2 (3%)-MOX (12%)

configurations of assemblies are presented in Figure 4.3 and Figure 4.4,
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respectively. In both figures, the UO2 fuel assembly is the closest to the viewer.

Fast flux is higher in the MOX assembly, due to its higher fission cross-sections.

The steepest variation is observed near the surface between the two assemblies, and

a smooth flux shape by the reflecting boundaries.

Thermal flux varies strongly at the surface between nodes mainly due to

a2 higher in UO2 assembly than in MOX assembly.

2
8 10 5 10 15 20

o 695

o .69

o 685

o .58

Figure 4.3. Fast neutron flux in UO2 (3%)-MOX (12%) configuration

0.1

0.05

0
6 6

s 10 15 20

Figure 4.4. Thermal neutron flux in UO2 (3%)-MOX (12%) configuration
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The results show that the smallest errors occur for the case of two UO2

assemblies. Better results are obtained if, instead of two-group single-assembly

cross-sections, 14-group cross-sections are collapsed to two-group with the actual
spectrum (Pal 1997).

4.4. MULTIPLE-NODE UO2-MOX PROBLEMS. DISCONTINUITY
FACTORS

In this set of problems, the k -eigenvalues and power distributions are
calculated for configurations ofUO2 (UX), MOX (PX), and water (R) (Figure 4.5).

.J-0

Px ux

J.o J.o

ux px

J.o

(Cl)

Px ux

.1.0

ux px

.1.0

(C2)

J.o

R R R

PX UX R

UX PX R

J=u

(C3)

1O

Figure 4.5. UO2-MOX (Cl, C2) and UO2-MOX-water (C3) configurations

Cross-section data for these problems came from single assembly NEACRP

benchmark calculations (zero-current boundary conditions) (Pal 1997), and are
presented in Table 4.7. Results from QDLO calculations of these problems are
shown in Table 4.8, columns 2 through 4. The relative errors, columns 5 through 7,
are calculated with respect to reference eigenvalues and normalized assembly
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powers presented in Table 4.9 (Pal 1997). Column 1 of Table 4.8 shows the number

of iterations after which a 10 convergence tolerance for flux and k is reached.
The reference solution for each configuration is a 2-D, 2-group, heterogeneous
static diffusion calculation performed using one node per fuel pin (Pal 1997).

Compared to STENCIL results presented in (Pal 1997) the QDLO results
from Table 4.8 are less accurate in reproducing the reference values, Table 4.9.
Reference (Pal 1997) shows also the results produced by other methods
(CONQUEST, SIMULATE-3, and PANTHER). QDLO yields results comparable

to these for assembly powers, still producing less accurate results for the k-
eigenvalues.

Table 4.7. Assembly homogenization results for NEACRP benchmark

Homogenized
parameter

Assembly type
ux ix

kmf 0.998181 1.026669
0.277778 0.277778

t2
0.833333 0.833333

a1
0.009226 0.013791
0.092663 0.23 1691
0.004570 0.006852

f2 0.113537 0.344583

21
0.020430 0.015864

DF1 1.004803 0.994570
DC1 1.006895 0.991336
DF2 0.951007 1.041629
DC2 0.930603 1.046322

UXUO2; PXMOX
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Table 4.8. NEACRP benchmark, homogenized node calculations

Config. N k
Assembly Power Error (%)

UX PX k UX PX
0 1 2 3 4 5 6 7

C1 60 1.01974 0.87346 1.1265 5.6x102 0.14 0.11
C2 40 0.91245 1.02145 0.97855 0.62 0.69 0.66
C3 48 0.940336 0.90558 1.09442 0.24 1.2 1.0

Table 4.9. NEACRP benchmark, homogenized node calculations, reference values

Con fig.
Reference values (Pal 1997)
k UX PX

0 7 8 9

C1 1.01914 0.8747 1.1253
C2 0.90685 1.0282 0.9718
C3 0.93806 0.9165 1.0835

A more accurate procedure is based on the Adjusted Current Model (ACM)
(Pal 1997). This method defmes separate diffusion coefficients foreach surface of a
node. Surface diffusion coefficients are used everywhere within the nodal diffusion
equations: corner balance equations, current, definition of hyperbolic expansion
functions for thermal neutron flux. Since diffusion coefficients are used to define
hyperbolic expansion functions that are analytic solutions of the source-free
thermal balance equation, a single diffusion coefficient is required for each node.
This means that ACM can be used only for symmetric nodes (Pal 1997). Table 4.7
(Pal 1997) lists face-discontinuity (DFg, g= 1, 2) and corner-discontinuity (DCg,
g=l, 2) factors calculated using one node per pin and zero-current conditions. In the
present work we have used the discontinuity factors to adjust Eddington functionals

to be used in the QD code. The weighted moment equations and the surface-
averaged flux and current continuity equations are derived with face-discontinuity
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factors. Corner balance equations and corner continuity equations are derived with
functionals adjusted with corner-discontinuity factors. The use of discontinuity
factors from (Pal 1997) is possible because this problem is a diffusion one (the
Eddington tensor diagonal components are equal to 1/3 and the off-diagonal
components are equal to zero) and the discontinuity factors (Pal 1997) are
calculated under this assumption, being compatible with our methodology.

Table 4.10 is similar to Table 4.9 except that columns 2, 3 and 4 are
calculated with adjusted Eddington functionals.

Table 4.10. NEACRP benchmark, adjusted Eddington functional calculations

Config. N k
Assembly Power Error (%)
UX PX k UX PX

0 1 2 3 4 5 6 7

C1 52 1.01916 0.87717 1.12283 2.0x103 0.28 0.22
C2 40 0.907862 1.029931 0.970072 0.11 0.17 0.18
C3 48 0.939781 0.911162 1.088838 0.18 0.58 0.49

The use of the adjusted Eddington functionals improves the accuracy of
calculated values of k for all three configurations and the accuracy of UX and PX
power distributions for configurations C2 and C3. Compared to reference data
shown in Table 4.9 (Pal 1997), the QD code with adjusted functionals led to more
accurate results then those given in (Pal 1997) for k in configuration C1, UX
assembly power in C2 and C4, and for PX assembly power in configuration C2.
Table 4.11 summarizes this comparison by listing the QDLO method relative errors
with and without adjusted Eddington functionals (6JC' and 6) and ACM nodal
diffusion method relative errors (6AcM), as given in (Pal 1997).
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Table 4.11. Comparison between the solutions of NEACRP benchmark problem

Parameter Config. e (%) 6DcF(%) SACM(%)

k
C1 5.6x102 2.0x103 1.3x102
C2 0.62 0.11 0.11
C3 0.24 0.18 4.7x102

UX
C1 0.14 0.28 0.10
C2 0.69 0.17 0.26
C3 1.2 0.58 0.40

PX
C1 0.11 0.22 0.10
C2 0.66 0.18 0.19
C3 1.0 0.49 0.19

4.5. NINE-NODE PROBLEM, CENTRAL REFLECTOR NODE

This subsection presents the results of QDLO calculations for two nine-
node configurations, shown in Figure 4.6 (a) and (b).

J- U

J= El

Fuel

type

,= 0

J=IJ

(a) (b)
Figure 4.6. Nine-node, two fuel type central reflector node, (a) zero-current

boundary conditions, (b) zero-flux boundary conditions
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The node-averaged fast and thermal neutron flux and node-averaged power
distribution are summarized in Figure 4.7 (a) and (b).

0.175173 0.163905 0.202591

0.006852 0.006475 0.007917

0.054516 0.048678 0.063304

0.089903 0.000000 0.134044

0.004839 0.009945 0.005304

0.030567 0.011976 0.039504

0.075407 0.068166 0.090811

0.004024 0.003678 0.004840

0.026888 0.022868 0.03257 1

(a)

0.113499 0.216281 0.143085

0.001276 0.002474 0.001605

0.010302 0.018042 0.013085

0.112636 0.000000 0.194869

0.001756 0.007185 0.002232
0.010685 0.008584 0.016151

0.05 1896 0.097038 0.070696

0.000796 0.0015116 0.001082
0.005405 0.009095 0.007449

(b)

Power

Thermal flux

Fast flux

Figure 4.7. Node-averaged neutron fluxes and node-averaged power for nine-node
problem with (a) zero-current boundary conditions and (b) zero-flux boundary

conditions
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The calculated multiplication factors are k =0.926803 for the zero-current

boundary condition configuration, and k =0.623 707 for the zero-flux boundary

condition configuration.

The number of iterations required for the iteration scheme to reach a relative

error of 10 in k and flux is greater for reflecting boundary conditions than for

zero-flux, i.e. 133 iterations compared to 66. Thermal neutron flux shows a peak in

the central node that is filled with water, as expected.

For zero-flux boundary conditions the nine-node averaged fluxes and
power, their standard deviation and relative errors are summarized in Table 4.12.

Table 4.12. Nine-node averaged fast and thermal neutron flux and power for
zero-current and zero-flux boundary conditions

Config. Quantity Nine-node
average

Standard
deviation

Relative
error (%)

Fast flux 3.68x102 1.63x102 44.4
J0 Thermal flux 5.99x103 2.02x103 33.8

Power l.11x10' 0.63x10' 57.0

(I)0
Fast flux l.10x102 0.41x102 37.3

Thermal flux 2.21xl02 1.94x102 87.5
Power 1.11x10' 0.68x10' 61.0

For zero-flux boundary conditions the peak thermal flux is higher than in
zero-current boundary conditions configuration. The zero-current boundary
condition problem the thermal flux peak in the central node is 351% higher than the

average thermal flux in the other eight nodes. In the zero-flux boundary condition

problem, this peak is only with 81% higher.

In both problems, the corresponding ratio of the node-averaged thermal

flux in node ij and the node-averaged fast flux in the same node is close to the
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infinite-medium analytical value, respectively--. This is possible because the

node width of the problem is large compared to neutron mean-free-path, ensuring
conditions similar to infmite media. In the fueled nodes that have a surface in

common with the reflector-filled central node IT.. is greater than -4- because of
y vu

r2

the reflecting and moderating properties of water: fast neutrons that have crossed
the surface are moderated and scattered back into the node in which they
originated. In these nodes for the zero-flux boundary condition problems is

greater than for the zero-current boundary condition problems. Here, the thermal
neutron flux is being amplified by the presence of the reflector and fast neutrons are
in disadvantage because of their stronger tendency to leave the node due to
diffusion.

Figure 4.8 shows for the zero-current boundary condition, zero-flux

boundary condition, and analytic, infinite-medium problems.



0.1253 0.1253 0.1253

0.1239 0.1371 0.1226

0.1257 0.1330 0.1251

0.1494 1.250 0.1253

0.1643 0.8370 0.1239

0.1588 0.8301 0.1343

0.1494 0.1494 0.1494

0.1472 0.1667 0.1453

0.1496 0.1609 0.1486

Analytic
=0 b.c.

J=0 b.c.

56

Figure 4.8. Thermal to fast node-averaged neutron fluxes resulted from
computations compared to the infmite medium values

3-D plots of the QDLO fast and thermal neutron fluxes are shown in Figure
4.9 and Figure 4.10 for the configuration presented in Figure 4.6(a). The plots show

the thermal flux peak in the central node and in the same region a valley for the fast
flux.
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006

Figure 4.9. 3-D plots of the fast neutron flux, QD code calculations

0.0126

0.01

0.00

0.00

Figure 4.10. 3-D plots of the thermal neutron flux, QD code calculations
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4.6. FOUR-NODE QD PROBLEM: REALISTIC EDDINGTON
FUNCTIONALS

In this problem, we consider a 4-node domain with semi-reflecting
boundaries as shown in Figure 4.11. Each node corresponds to a fuel assembly, all
assemblies being identical.

J=0

'I =0

(3) (4)

(1) (2)

J=0

Figure 4.11. Semi-reflecting boundaries, four-node problem

The multiplication factor k of this configuration by using the nodal QDLO

methodology for = E from 0.30 to 0.36 and = from 0.0 to

0.04. The results show that k decreases when Eddington functionals increase. This

behavior is due to increased leakage, directly related to bigger functional values.
The calculated values for k and the dependence of k on E are shown in Table
4.13 and Figure 4.12.
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Table 4.13. Calculated multiplication factors for various Eddington functionals

0925

0.92

k

0. 915

0.91

E' =Eg,n g,)y

E 0.30 0.32 0.34 0.36
0.00 0.928595 0.922699 0.916875 0.911121
0.01 0.927200 0.921318 0.915508 0.909769
0.02 0.925912 0.920036 0.914233 0.908502
0.03 0.924729 0.918852 0.913050 0.907321
0.04 0.923653 0.917766 0.91 1958 0.906225

,

'I,

.II.I

031 032 0.33 0.34 03.5 03

E'
g,xx

Figure 4.12. Multiplication factor versus diagonal components at various values of
off-diagonal components of Eddington tensor

Increased off-diagonal Eddington tensor components also affect the power

distribution between nodes by enhancing the flow of neutrons towards certain
nodes. For example in our problem the power in node 4 increases with increasing



while power in nodes 1, 2 and 3 decreases. Table 4.14 summarizes these

results, showing the variation of node-averaged power (P) and its relative rate of

. (i dPvariation I
P dE

Table 4.14. The effect of off-diagonal Eddington tensor components on thepower
distribution

E
Node 1 Node 2,3 Node 4

p idP
PdE

P idP
PdEg,y

p idP
PdE

0.00 4.99998 -0.323 2.07107 -0.140 8.57873 2.55
0.01 4.98446 -0.299 2.06789 -0.167 8.79730 2.48
0.02 4.97020 -0.274 2.06415 -0.194 9.01471 2.40
0.03 4.95719 -0.250 2.05984 -0.224 9.23107 2.34
0.04 4.94544 -0.225 2.05494 -0.253 9.44652 2.28

In Figure 4.13 node averaged power is plotted against off-diagonal
Eddington functionals.
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0 0.005 0.01 0.015 0.02 0.025 0.0

E'

Figure 4.13. Node-averaged power versus off-diagonal Eddington tensor elements

4.7. SUMMARY

The results of the one-node, zero-current boundary condition diffusion
problems are in excellent agreement with the benchmark and analytic solutions.
Solutions of two-node, zero-current boundary condition problems with UO2-UO2

configurations show the same good agreement benchmark solutions (both k -

eigenvalue and power distribution) , while UO2-MOX configurations show more
important discrepancies due to the single-assembly homogenized cross-sections

used in the calculations. Four and nine-node problem results show power

distribution discrepancies comparable with the results presented by other authors

(Pal 1997). Larger discrepancies in k -eigenvalue are present in four and nine-node

problems, but these discrepancies can be diminished by adjusting diffusion
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coefficients (Pal 1997). Finally, the results of the "transport" problems show the
influence of Eddington functionals on the multiplication factor k and the power
distribution between nodes.



63

5. CONCLUSIONS AND FUTURE WORK

Two-group nodal diffusion approximations, along with single-assembly
transport-generated cross section sets are currently used to calculate full-core
eigenvalues (core multiplication factors) and power distribution. The inaccuracy of

the diffusion approximation at interfaces between significantly different fuel
assemblies can be overcome by using the quasi-diffusion transport formalism.
Here, transport equations are solved to compute "functionals" of the angular flux

(Eddington tensors, boundary conditions, etc.) and this data is then used in the
solution of low-order diffusion-like equations. One important advantage of this
technique is that, if the data used in the low-order equations comes from the correct

transport solution, the solution of the low-order equations will be the transport
scalar flux and current. In this case full-core calculations are capturing transport
effects to an arbitrary degree of precision (Nes 2002). We have adapted the
advanced nodal methodology developed by Palmtag (Pal 1997) for the two-group,

2-D diffusion equations with MOX and UO2 fuel assemblies to the QDLO
equations in Cartesian coordinates.

A discretization of the QDLO equations with constant nodal cross-sections

and Eddington tensors was developed. The two-dimensional QDLO equations are
solved by using the weighted residuals method, with non-separable polynomial and

hyperbolic basis functions expansions of the fast and thermal neutron fluxes.
However, we had to derive new hyperbolic basis functions of the thermal flux
expansion different from those used with the diffusion equation (Pal 1997). To
form a set of equations which, when solved, will yield the flux expansion
coefficients, several conditions are imposed: weighted moment equations, flux and

current continuity, node balance and boundary conditions. This yields to 23
equations for 23 flux expansion coefficients for each node of the problem. To
perform these calculations we developed a code, written in "Mathematica", which
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allows us to generate matrices for multiple-node problems, solve for flux expansion
coefficients, and k -eigenvalues. A number of diffusion test problems (Eddington
tensor with diagonal entries equal to 1/3, and zero-off-diagonal entries), and
"transport" problems (Eddington tensor with diagonal entries different from one-
third and zero or positive off-diagonal components) are solved. In the transport
problems, the Eddington functionals are chosen to be within the range of values
representative for two-node UO2-MOX fuel assembly transport calculations. The
results show that, for fuel assemblies characterized by "diffusive" data
(E = E 1/3, E, = E, = 0), the QDLO nodal discretization limits to the nodal

diffusion discretization derived by Palmtag (Pal 1997).

While the QDLO calculations performed on one-node, zero-current,
boundary condition diffusion problems and two-node, zero-current boundary
condition problems with UO2-UO2 assemblies are in excellent agreement with the
benchmark and analytic solutions, UO2-MOX configurations show more important
discrepancies that are due to the single-assembly homogenized cross-sections used
in the calculations.

Compared to other authors' results, four- and nine-node problems show
similar power distribution discrepancies. Multiple-node k -eigenvalue problems
exhibit larger discrepancies, but these can be diminished by using adjusted
diffi.ision coefficients (Pal 1997). The results of the "transport" problems
demonstrate the influence of Eddington functionals on homogenized flux and on
the multiplication factork.

The assumption of constant nodal data is a significant limitation of this
work. Transport codes, however, can provide with great accuracy the flux profile
and, subsequently, space-dependent values for the homogenized cross-sections and
the components of the Eddington tensor. An accurate reproduction of fine mesh
transport results requires the incorporation of both higher spatial moments of the
cross-sections and assembly-surface Eddington tensor data.
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Future work wifi address these limitations by incorporating space-

dependent assembly Eddington tensor and cross-sections in a FORTRAN code that

will perform flux and k -eigenvalue calculations. We will also extend the
methodology based on QDLO equations, developing a 3-D reactor core model.
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A. WEIGHTED MOMENTS OF THE LOQD EQUATION OF
THE FAST FLUX

A. 1. ZERO-TH WEIGHTED MOMENT

QD operator term:
6a2,o,j, e1,,,j,j 2 a4,o,i,j e1,,j,jSriaoo1-

h2 5 h2 St1,j,j
2 al,1,j,j ei,7,j,j 6 ao,2,i,j e1,,j,j 2 aO,4,i,j e1,,i,j

h2Sti,1, h2Sti,, 5h2Sti,,

Fission source term:
2 Sinh[i )'i,i,jJ Sf2,1, 2 Sinh{I )'2,i,j] C3,j,j Sf211,

2
.1. +

Y1,i,j

4Cosh1
2J2c5,i,j

4Cosh1
Y3,j,j
2J2

70

Y2,i,j

_____
J

Sf 4Cosh[ )'3,i,j '(,3,1,i,1,j
] Sf2J2 2f 2[

3,i,j02,i,j ] s 4Cosh[ ,j,j )'3,j,j,j,j
] Sf2J2 2J2 2,12

e2,

a0,0,1, + Sf2,±, bo,o,l,j

A.2. FIRST WEIGHTED MOMENT

QD operator term:
1 1 ai,2,,e11,1,1-- ai,o,i,j - Sri,11 -

2 h2
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Fission source term:
2Sinh[--'i,j,j] Cosh[yi,j,1]

C2,j,jSf2,i,j + )'l,i,j )

Y3 j j&1,j,j(_,
2'[ sinii[ 2sj2

Y3, i, j

13,i,jOl,i,j
I

4Sirih[ Y3,i,j92,i,j h[
I

2 sinh[ c8,j,jSf2,i,j 3ijij
13, i, j

Sf1,j al,o,j,j a3,o,i,j + Sf2,1, Sf211, b3,O,i,j

A.3. SECOND WEIGHTED MOMENT

QD operator term:
1 1 a2,1,,3 ai,2,1,j 2

Sr1, a0,,j,j - Sr1,1, ao,3,j,j
2 h2 h2 h2

Fission source term:
C4,,j 8f211,j (-2Sinh{ )'2,i,j] +Cosh[- Y2,i,j] Y2,j,j)

i, j

4 siril-i[ )3,i,j91,i,j J C6,j,j Sf2,j, (2 Sirih[ Cosh{ '13,j,j
J

Y3ij

e111,

4 Sirih[ 3,i,j02,i,j] (2 sinl-i[ 3,i,j 1 cosh[ 3,i,j 1 '3,i,jI2J2 2I2J
)

+

02,i,j
1ao,1,i,j ao,3,i,j + Sf2,11 Sf2,j,j b0,31,1

12
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A.4. THIRD WEIGHTED MOMENT

QD operator term:

72 a2,2,,J e1,,j,j a3,3,i,j (4 h2 Sri,1, + 240 (e1,,j,j + e1,,j,j))Sri,1, al,1,i,j +Sti,1,j 25 St1,,-

. Fission source term:
1 (144h c,Sf2,L (2ñ Sth[?2} o[

Y3,i1j

I, 21 , 2/ 2V2 )

\ \'

] )'34,j (4Sith[__2] +/ +2-/ 2'[2 2/
(1 (144.'f Ci,j.,Sf2,1,j 4[3,i,j&2,i,j] (2'J SJXti[ 4] _o[? -

2"/ 2-[ 2-[
cti[3,i,je2,i.j

] '3,i,j (_4th[?] +f ['ii]
'3,i.jI +2[ 2-[ 2/ ) ))

Sf]j4j a]1,j1j + Sfi,i a3,3,i,j + Sf2,ii - Sf2,,1 bl,3,i,j

Sf2,i,jk3,1,i,j +

4
Sf2,ij13,3,i,j

A.5. FOURTH WEIGHTED MOMENT

QD operator term:
1 a4,O,i,j (-5h2 Sti,i.,j 700eI,)cçj,j) ej,,jj 2 a4,4,i,j L,w,i1j

+ 875hSti,1, 5ISt1,,1 875h2Stl,jj



. Fission source term:

2 C1,j,j Sf211, (-12 Cosh[- yi,i,j] Y1,I,J + 2Sirth[-- -rl,j,j] (12
4-

1
(4 '[ sinii[ )'3,i,j

] C5,j,j Sf211,

2J2
(_24 Cosh[

'3,i,jO1,j,j
]

ei,j + 2 I2 sirth[ (24 + Yjj e,j,-) } +

1 (4f si['3'i
]2V2

(_24 osh[
(3,i,je2,i,j

] )'3,i,j &2,i,j + 2 sinh[
Y3,i,je2,i,j1

(24 + eL,j I +

Sfi,1, a2,o,i,j Sfi,1, a4,o,j,j + b2,o,1,
-i;

A.6. FIFTH WEIGHTED MOMENT

QD operator term:

1 e1,xi,j ao,4,1,j (-5ISr1,L St1,,j 7OOei,,,j)Sr1,,JaO,2,,J 5ISti,j, 875StLLj + 875ISt1,j,

Fission source term:

4Q3,i,j Sf2,i,j (12S1rti[ (2,ij] 6Qsh[- Y2,j] Y2,i.j +S1th[ Y2,jI
-1,ij

l6Sinh[ ']c,jj sf2,±, (24Siri-i[-
]
6'[ Oh[] ''3,j.,j+S[fl

'ti.j el.j.,j

l6Siiti[
),1I1&2,iI1 1

2/ C7,j Sf2,Lj(24S 6-'[ ch1-1 -'

2'[2 2'[2 "'
&2,i,j

1 1 1 1
Sf3 aO,2,i Sfi1, ,4,i,j + Sf2j ,24.j -j;; Sf21j ,4,i.j
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A.7. SIXTH WEIGHTED MOMENT

QD operator term:

1 32 a3,3,j,j a4,4,1, (h2 Sri,1, St1,j + 140 + eià,j,j))
srl,3,Ja2,2,1,)

25h2Sti,, 3O625h2Sti,,

Fission source term:



'75

(3,jj1
S +Sir1*

2-J2fZ
Si2, \6SiI\L

griS

\32i4i

2J
144

+ 2
6[ 4ej

2J
?3,i13,1.j 1 5$Tf 3c-

21
1

+2J

12,i (3,

\ s*-S-16Sri\'\
1\

+32C1,3 S.ij

@z.4)
'\ei,j\

2122J

13,Li
+

13
' S4 \

62 1e

4i!2
\ sjrtk241

2J 2J

sir
i\ 4

2'J

13,ii 1

22

S23 30E2525
1

3f2,ii

I

5f2,Li

3O5
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B. SURFACE-AVERAGED FLUXES AND CURRENTS

B.1. SURFACE-AVERAGED FLUXES

Fast group
=

Ix+

1 1
ao,o,j,j + a,o,j,j + a2,Oj,j

J=lx-

1 1
ao,o,i,j ai.,o,j,i + a2,o,i,j

=
1y+

1 1
ao,o,j,j + aO,1,i,j + ao,2,i,j

c=1y-

1 1
ao,o,i,j ao,i,i,j

2
aO,2,j,j

Thermal group

(I)y =2x+

Cos1-1[-- T1,i,j] C1,j,j +Sinl-i[- )'i,i,jJ C2,j,j +

2 1 2 Cosh[ sinli[
''

]
c,j, js [- Y2,i,j} 2J 2[

(2,i,j 13,j,j

2/ sinIi[ sinl-x[ 2J Cosh[ sinl-1[ ] C7,j,j

Y3,j,j Y3,i,j

2 -.f sinit[

\f
+ 1J,O,i,j + bl,O,i,j + b2,o,1,j

Y3, i, j
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Zx-

Cosh[- )'l,i,j] C1,j,j -Sinh1
2

)'huu,j] c2,i,j +

2Sinh[- )'2,i,j] C3,j,j 2/ Cosh[
r3,j,j6;,j,j

] sinh12[ I

(3,i,j
2[ j

+
T3,i,j

+
Y2,i,j

2f Sinh[ )3,i,j 1 Sinh[ '°" C6,j,j 2f Cosh[ 1 sinlJ 3,i,j
]2 2

Y3,i,j
+ +

)'3,i,j

2h Sinh[
)'3,i,j

1 sinl-i[ Y3,i,j92,i,j
I2.f 2\f

+ + b2,O,i,j
Y1 -i

=

Cosh[- (2,i,j] C3,j,j +sith[- Y2,i,j] C4,j,j +

Sinh[
13,j,j C5,j,j2 Sith[ 1,j,j]

Y1,i,j )'3,i,j e1,,3

/2 Sinh[ 'J C5,j,j -'/ Cosh[ ''
e''

C6,i,j2J2 2J2 2J2 2Ni2
Y3,i,j Y3,i,j ei,±,

J2 Cosh[
Y3,i,j Y3,i,j91,i,j

]
C6,i,j Siflh[

Y3,i,j Y3,i,j02,i,j
]2J2 2J2 2J2 2J2

)'3,i,j Y3,i,j e2,1,J

sinh[
3],j C7,j,j Cosh[

]
C8,j,jJ±9

13,i,j &2,i,j )'3,i,j 02,i1j

I2 Cosh[
]

C8,j,j2J2 2J2 3. 1
+ + + bO,211,j

2 2
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Cosh[-- )'2,i,j] C3,j,j _Sith[- T2,i,j] C4,j,j +

r I )'3.ii Y3.j.1 01.iA 1
1flfl[2Sinh{- j

C5,j,j

Y1,i,j 13,i,j

'[ Sinh[ Y3 Je1.1J] C5,j,j Cosh[ )',j
6,i,j

Y3,i,j Y3,i,j

-/2 Cosh[
3, .Je111J] C6,j,j '[ Siflh[

Y3,i,j Y3,i,j

ifli-[ 'J'LJ + Cosh[ C8,j,j
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v'2 Cosh[
Y3,3.,j )'3,i,j82,i,j
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+
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B.2. SURFACE-AVERAGED CURRENTS

. Fast group

Ty =
lx+

Stl,i,j aj,o,j el,x,c,j,j
h

2 St1,1,j a3,o,i,j e1,,j,j
h

Stl,i,j e1,,,j,j
h

3 Stl,i,j a2,o,i,j e1,,j,j
h

St1,1,j a4,O,i,j e1,,,j,j
5h

Stl,i,j e1,,j,j Stl,i,j a2,1,i,j
2h 2h
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TI] =

Sti,1, al,o,j,j e1,,,j,j 3 Sti,i, a2,o,i,j
h h

2 Sti,±, a3,o,i,j e1,cc,j,j Sti,i, a4,o,i,j e1,,i,j
h 5h

Sti,1, ao,1,j,j e1,,,j,j Sti,i,j ai,j.,j., el,,W,i,j Sti,j, a2,1,i,j e1,,,j,j
h 2h 2h
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Iy+
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Sti,i,j al,2,i,j e1,,i,j
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3 Sti,j ao,24, e1,,y,i,j
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h
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h
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2h h

3 St1,1,J 2 St1,1,J a0,3,1, St1,1,j
h h 5h



. Thermal group
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Cosh[ Y1,i,j] C2,i,j St2,j,j )'l,i,j
h h
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Iii =
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I +2J2

( 2,i,j (20 Si[
'3,i,j Sith{ 3,1,j

] e2,i,jlOh 2V2 2

20 Sinh[
13,i,j

] Sinl[
'Y3,i,j e2,1, e2xyijl I2J2 2J2
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TY
'I

2 Sinh[-_'i,j,J] c2,1, St2, e2,XY,1,

h

St2,i, St2,1,bj,i,1, ,xy,j,j St2,1,bi,2,1, e2,xy,i,j

2s[ Y31] s[ 3,1,J,1,j] St2, (e1,

siit4- )'2,i,j]
c3,,St2,j,(2,1,3e21,1,

h

Cosh[- Y2,j,j] c4,i,j Y2,i,j e2,71i, St2 e2,,,1,J

h h
3 2 ,yy,j,j b0,4,1, ,yy,i,j

e2,11
(_2Osh[ 1ii] s[

] +

2OCosh[
Y3,j,j]

sith[ &i i e2

1Ohei,j,
7,i,j

(_2os[ 3,1j
] } e1j ,j,j +

2OSinhfl'31J] ]eij e2
2[ 2f '' '"'

1Ohe1,,
st2,j,j (_2OCosh[ ''] s[ +

2OCosh{
(3,j,j]

sinl[
13,i,jOl,i,j

] e2
2f2 2-f2 "")



Jy=
2y-

2Sinh[ y,jJ o241jSt2,1,j

h
St2,1,

2 s[ Y3j] s[ St2, e2,,j,j-
he1,1,

83

sinh{- (2,i,j] c3,i,j Y2,i,j e2,yy,1,j

cosh[ 2,i,j] c4,i,jSt2,i,j

St2,j,jb,4,j,Je2,W,j,J

1Ohe1,1, e:,j,j
(_2OCosh[ 3,i,j

} s[ e1,1, e2111e2,,, +

2OCosh[ '3,i,j sini4
}
e1 e2

1Ohei,j, e2ii: st2,i,j (2OS[ 3i1i] s:[3.iie2lii]

2OSinh[ r3ij] sinI[ Y3,i,j2,i,j
]
e1 e22f 2f '' '"'

1Ohe1,, 02,i,j
(c6,i,i st2, (_2OCosh[ 1i] s[ 3,i,j1,i,j

] e1,j,j +

2OCosh[ '(3ii1] sinl-i[ )'3,i,j01,i,j
]
e2

2'[2 2[2 )
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C. CONTINUITY EQUATIONS OF SURFACE-AVERAGED
FLUXES AND CURRENTS

C.1. FLUX CONTiNUITY EQUATIONS

. Fast flux

-o
1 1 1 1

80,O,-1+i,j ao,o,j,j + al,o,-1i,j + al,o,i,j + a2,o,-1+i,j a2,o,i,j == 0

i-IJ-1 i,j-1
lx+ lx-

1 1 1 1
ao,o,.4+i,_1+j aO,O,i,].+j + al,o,_1+j,_1+j + al,o,i,1j + a2,o,_1+j,_1+j a2,o,j.,_1+j == 0

i-1,j-1 =0
1 1 1 1

+ + + aO,2,_1+i,_l == 0

=0
1 1 1 1

ao,o,i,-1+j ao,o,i,j + ao,1,j,_1+j + aO,1,j,j + ao,2,i,-1+j ao,2,i,j == 0
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. Thermal flux
1i-1,j i,j
2x+ 2x-

csh[- )'l,_l+i,j] CI,_1+j,j _Cosh[- 'i,i,j] C1,j,j+

1 1 2Sinh[- Y2,-1+i,j] C3,_1+i,j
sinI-i[_ n,_1+i,j] 2,-1+i,j +sini4_ ii,i,j] 02,j,j 2

2 2

2 Sinh[ Y2,i,j] C3,j,j 2 cosi-4
),_1+j,j&1i,j

]
sini-i[ ,-1+i,j

Y2,i,j Y3,-1+i,j

2/ sinli[ 3,-1+i,j ] sirth[
Y3,-1+i,j1,-1i,j

] C6,_1+i,j
2 2/

Y3,-1+i,j

2h OsIi[ 3,_1+i,j&2,1+i,j
] sini4 3:y-'3 I C7,_1+i,j

)'3,-1+i,j

2 '/ sinl-i[ ),-1+i,j
]

sini-i[ Y3,-1i,j92,-1+i,j
] ,-i+i,j

2 2

Y3,-1+i.,j

2'/ Cosh[ ''34,,1,j] si[i!] 2'h siril-i{ '9 J Sinh[
,j,jG11j,j

)'3,i,j 13,i,j

2'[ Cosh[ ''3,j,j,j,j] sinh[-' I C7,j,J 2J sir*l[ 3j siril-i[ 3,i,j02,i,j
]

)'3,i,j

bO,O,-l+i,j O,O,i,j + + + b2,0,1+, == 0
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i-1,j-1 i,j-1
2x+ 2x-

1 1osi-4- 'Yl,_l+i,_l+j] C1,_1+i,_1+j _cci-i[- )'l..i,_l+j] C1,i,_1+j +

1 1 2 Sinh[- )2,-1+j,_1+j] C3,_].+i,_1+j
sirii-4_- 'i,_i+i,_i+j] C2,-1+i-1+j +sinl-i[_ -1,i,_1+j] C2,j,-1+j + -

2 2

1 2-J ch[ ,-1i,-1j91,-1+i,-1+j
] sini-i{

Y3,_i+j,_1+j
] c,_1+i,_1+j2S [--r,11+J]c3,z1+j 2J2 212

)2,i,-1+j 13,-1+i,-1+j

2 sinl-i[ ',-1+i,-1+j ] siriii[ J C,._1+j,4+j2J2 2J2

Y3,-1+i,-1+j

2 Oh[ 1+i,1+j2,4+i,4+j ] sir*i[ ),-1+i,-1j
] C7,_1+j,1+j2[ 2

Y3,-1+i,-1+j

2 '/ sini-4 ),-1+i,-1+j I sir-i[
,1+i,1+j&2,1+i,1+j 1 c,_ij, _

Y3,-1+i,-1+j

2'/ c$J.[ ',i,1+j01,i,4+j ] sinii[ ),i,-1+j ] c,j,1+j2f 2

)'3,i,-1i-j

2 '/ sinl-i[ )3,i,-1+j
] sini-[ i,-1+j01,i,-1+j

] C64,.1+
2 2

Y3,i,-1+j

2-/ Oh[ )3,i-1+j52,i,-1+j ] &ii[ )3,i,-1+j
] i1+j

2 2

Y3,i,-14-j

2'f Sinh[ 11] sinl-x[ 4+i&2,1,1+i
] ,i,-1+j

+ ,O,4i,4+j
(3,i,-1+j

,O,i,-1+j + ,O,-1+-1+j + O,i,-1+j + ,O,-1+i,-1+j ,O,-1+j == 0
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i-I,j-1 02y+ 2y-

cteh[- Y2,_1+i,_1+j] C3,_i+j,_i+j 0h[ 12,_1+i,j} C3,_1+j,j+

Si[ 12,_1+i,-1+j] +Si[ 12,-1+i,j]
2 si[ 1,-1+-1+j] 1,1+1,1+

2Sinh{- yi,-i+j,j} 2'J Cceh[ sini-i[ 13,4+i,-1j01,4+i,1+j} ,1+i,1+j

11,-1+i,j 3,-1+i,-1+j ,-1+i,-1+j

2 Sinh[ '3,-1+i,-1+j 1 sh[ -1+i,-1+jL,-1+i,-1+j 1

2'f I 2'[
Y3,-1+L-1+j e].,].+l,l+

2V os4 sinli[ ),-1+i,j91,-1i..j]

Y3,-1+,j 0].,-1+i,j

2 sinIi[ '_'-i ] sini-i[ ''''_'i ] c]+j
Y3,-1+i,j e1,4+,

2 'f oi-[ 3,-1+i,-1+j ] sini-i[ ',1+i,4+j 02,1+i,4j
] 07,-1i,-1+j

2 2

)'3,-1+i-1+j 62,-1+i,-1j

2 sinI-i[ ,-1+i,-1+j ] sini-i[
)3,]-+i,4+j&44+i,4+j

] c8,_1+i,_1+j

)'3,-1+i.-1+j &2,_].+i,_1+j

2 JT ccei-1[ ] sir4 J

Y3,-1i,j &2,_1+i,j

2 -[ sixt4 3'1',i] sir*i[ ),_1+ ,-1+i..j] c81_1+j,

+

.w.pae
Y3,-1.s-i,j e2,_]+,

,O,-1+i,j + + ,1,-1+i,j + ,2,-1+i,-1+j ,2,-1+i,j 0



=0

_Qdt{ Y2,Lj] +

1 1 2Si.rh[ir yi,,i,,i+jJ ci.,i.,_i+j
Sith[- Y2,11_1+j] c44,_1 +Si.rii[- )'2,i,j] c4,j,+ 2

2Sirti[l 2V2 o[ )1+i] ii.i[

Y1,ij Y3,i-1+j &]j

2f siri4 ;1+] Sirti[ cj+j 2'f sth[4ie14i I cj4
)'3,1_1+j &J4_1+j 13,i,j e1,1

2-f sirt4i] 2T Oth[
I

sirh[ :3,L- ,i.-1+j
] 07,i4-1+j

Y3,i,j e14 )'3,L-1+j 2,i,-1+j

2V2 Sirh[ i4j] sii[ -,i1-1+j] ce,j,_i+j

-

2V2 [4i I S]th[ 'H th[4i] Sirh[ )3'Lj&2,i,i ] c8jj
'3,1,j&2,1j Y3,i,j2,i,j

1 1 1 1
+ J,1,i1-1+j ,1,i,j + ,2,i-1+j ),24,j == 0

C.2. CURRENT CONTINUITY EQUATIONS

Fast current
71-4,j

lx+ L-

4.

+

+

(s-i+j (-O,-1+j -i 3O,-1+Lj ,c-1+Lj 2,O,-1j '-1+j

a4,O,-1+i eJ-1ij ,11-1Lj e1,,j,_1j4j a1,1,-1+ij ,,-1ij e_iij))
(sti.j (-a1,o,jj eioj + 3,O,i1j e1,,ij 2a3,Q,j e1,çj1j + 84,O,Jj eL*ij

a,i1j + a11,ij ej,,j1j ]4ij == 0



i-1,j-1 jii-1 0lx+ Ix-

(st i+-ij (-ai -1+--1j e

3,o,-i+-i+j -i+-i+ 2 O,-1+-1+j c-1+-1+j 8O,-1+-1+j a-1+-1+j

ao,i,-i+i-i+j el,xy,-1+i,-1+j a1i-1+i,-1+j ,-i+i,-iij ,i-1+i,-1+j ei,,_i+i,_i+j))

(St_i+j (-ao,i,-1 j,-1+j + 3,o,j,-1+j e- -2 a,o,-i+j +

,i-1 1,oçi-1+j ,i,i.-i+j ei,,,i-i+j + ai,i-i+j ei,i-i a,i-i+ ei,-i+j)) == o

71-1,j-I 71-1,j
'JIy+ Iy-

(st +i,1+j (-,O,-1+-1j

a].,],4+_+ eiy,_1+i,_1+j 1,2,-i+i--i+jei,,_i+i,_i+i 8O,1,1i.1+j e1,_1+j,_1+

3,,-i+-i+ ,-i+-i+ 2,,-i+-i+ e ,_+_+j ,,-i+-i+i

(Sti,_+ (_ai,o,_i+j,j ei,,,_1+j,- + a1,j_1+j,je1.,,y,_1+jj ai,2,_1+ij ei,,_i+i,

,i,-i+j ei,,-i+ + 3ao,2,i+j 2,3,-1+j + ,-i+j == 0

- JIy_ =0

(st1,_1+ (_ai,o,,_i+j ,,i,-1+j a1,i,j,_ij a1,2,,1+

,W,i,-1+j 3,2,i,-1+j 2,3,1+j ei,,_i+ a0,4,,_1+ ,W,i,_1+j))
1 1 1(st1,1, (_ai,o,i,j 1,xy,i,j + a1, 1,i,j ei,,,j,j - a1,2,jj e1,,j,j ao,i,j,j +

,j,j -2 + == 0



. Thermal current
71-1,j ji,)

2x+ 2x-
sirt4. Yi,_i+i,j} St,_i+i,i Y1,-1+i,j 2,xx.-1+i.j

h
)'l,_l+i,j] C2,_1+i,j St2,-i+i, e2,C,4+l, St2,i+j,j,0,.i+ij eZ_1+i,j

h h
3 St2,1j bzo,_i+i.j eZc_1+i,j 2 St2,4.i 3,O,-1+i,j 2,oc-1+i.j 2,-1+i,j b4,o,_1+, e2,icç_l+j,j

h h 5h
sith[ Y1,i,j] 1,i,jSt2,i,jYl,i,j&2,)aci,j Gh[ yi,j,j] o2,ijst2,i,j Y1,i,j2,i.j

2,i,j b1,O,,J e2,OC,,i 2,xx.i,j
h h h

b4,O,i,) 2 ith[ Y2,-1+i,j] C4,_i+jj t2,-l+i,j &2,,,,_1+i,j

5h h
St2,4.1j, b,i,-ii, e2,X,_1+i, St2,_l+i,j 11,1,-1+i,j 2,xy,-1+ij t2,_l+i,j 1,i,-i+i,j ,xy,-1+i,j

h 2h 2h
2ODsh{ '3,-1+i,j81,-1+i,j

]
Sixth[ ''t' ] St2,_j4iO1,_1+j,

h

2Cosh[ l4+i,j&],4+j,j
] sir ] 2,-1+i,j e2,Y,_l+j,

2cbsh[ ] Sirti[ ] St2,._l+j,j02,_l+j,j 2,oç_i+i,j

h

2cbsh[ )'3,_1+i,j&2,_1+i,j ] 3,li,j
] &2,xy,_1+i,j

2 2[
Hh

2 siri-4 J Siri-i[
'_1+i ,-1+i.j

]
ø],_1+i,j

ci+j.j
h

2 Sith[ 'r3,i,j
} Siri-[

'E3,-1+i,j1,-1+i,j
}

2,-1+i,j e2,,_i+j,



J1

2 sinI-i[ 3,-1+i,1
]

sini-4 3,-1+i,j2,-1+i,j ] St,i+i,j &2,_1+j,j e2,xx1+i,j2J2 2/2
C7,-1+i,j

h

2 SinIi[ 3,-1+i,1
I sini-i[ St,_i+i, e2,,,.4+i,j2J2 2J2

h

2 sinh[- )'2,i,j] C4,j,j St2,i,j e2,xy,i,j 5t2,i,j e2,xy,i,j St2,,jbl,l,i, e2,xy,i,j
h h 2h

2 Cosl[ '3,j-,i sinli[ -'-] 3t2,j,j e2,i,j3t2,i,j 2J2 2J2
+ C6,i,j2h

2Cosh[ )'3,,1e1,,1

]

sinh[_Li] St2,i, e2,xy,i,j2/2 2'J2
h

20sh[ ] si i[-4]
2'J2 22

C8,L,)
h

2 Cosh[ ] sirth[i] St2,j, e2,,i,j

2Sinh[1} sinh[ 3,i,-iL,i,1

]
St2,i,jG1,i,je2,c,i,j

C5,j,j
h

2 sinI-i[- } sinl-i[ ] St2,i,j

2Sinh[-l} sirth[
'3,j,j,j,j

]2J2 2J2
h

2sinh[i1] sinl-i[ 13,i,j&2,i,j ] St2,1, e2,xy,i,j
==
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7i-1,j-1 ji,j-I
2x+ 2x-

sirh[ -n,-1i,-1+j] C1,-1.-i,-1+j St2, -1+i,-1+j 11,-1+j,-1+j e2,,-1+i,-1+j
h

-1[- -n,-i.i-i+j] ,-1+i.-1+j St2,-1+i.-1+j fl.-1i,-1+j ,c-1+i-1+j St2,.l+j,-l+jbl,o,_l+,_l+j e,oc,-1+i,-1+j
h h

3 St,-i.i,-i+j b2,o,-1-I-i,-1+j e2,,-1+i,-1+j 2 St2,-1i,-1+j b3,O,-1i,-ij 2,)C.-1+i,-1*j
h h

St2,-1+i-1+j b4,O,-].+i,-1+j Sirti[-- Y1,i,-1+] C1,i,-]+j St2i,-1+jY1,i,-1+j 2,,i,-1+j
5h h

s1i[- -rl,i,-1+j] ,i,-1j St2,i,l+j Y1,i,-1*j St2,i,-1+jbl,O,i,-1+j ,i,-1+j
h h

3 St,i,-i+ b,c,i,_i+ e2,,L_1+j 2 St2,i,-1.j3,O,i,-1.j e2,,c,i,-1+j St2,i,-1+jb4,O,i,-l+ e2,i,-1+j
h h 5h

2 Sii*i[ Y2,-1-i-i,-1--j] C4,-1+i,-1-i-j St2,-1-.-i,-].--j e2,xy,-1+i,-1*j St2,-l+i-1+j ,1,-1+i.-1+j e2,,-]+i,-1+
h h

St2, -1-i-i, -1+j bL, 1, -1+1, -1+j e2,xy,-1-..i, -]+j St2,-1+i,-j+j ,1,-1--i-]frj e2,y, -1+i,-1+j
2h 2h

2 cbsh[ Y3,_+j,_+j 1_1+i_1+i] Sirh[ -1+i,-1+j
] 3t2,-1+i,-1+j ei,_i+j,_i+j e2,-1+i,-1+j

2,J2 2[
C6, -1+i, -1+j h

2cbsh[ Y3,1+i,.1.191,.1.j,..1+j
]

jj[ 3,]+i,1+1
] 3t2,-1.L-1+j 2,xy,-1*i,-].+j

212 212
h

2ash[ Y3,_1,i,_l+j&2,l+i,l+j
] sit[ St2,-1+i,-1+j&2,-l+j-l.j e2,-1+i,-1+j

212 212
, -1+i, -1--j h

2 cb1[ 3,-1+i,-1+j2,-1*i,-J.+j ] sirti[
Y3,.1+j,.1+j

] e2,xy,-1+i,-1j
212 212

h

2 Sirti[ Y3,_l.j_l..j
] Siith[ Y3,l+j,_l.j_1+j.1*j

] 1+i ]+j O1,-1i,-i+j 2,,-1+i,-1+j
212 212

c5,-1+i. -1+j h

2 SirI-i{ '3,-1+i,-1+j
} e2,,,-1+i,-1+j

h

2 sirti[ 3,-1+i,-1+j
] sixi-4

Y3,-1+j,-]+j2,l.j,.l+j
] 3t2,-1+i,-1--j &2,-1+i,-1+j e2,,-1+i,-1+j

212 2,12
C7, -1+1, -1+1 h



2 Sinh[
13,-1+i,-1j

I Sirlh[
Y3,-1+i,-1+j02,-1+i,-1+j

St2,_l+i,_l+j e2,,1+j,1+
2,12 2J2

h

2 Sinh[ Y2,i,-1+j] C4,j,-1+j St2,i,_l+j e2,xy,i,_1+j

h
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St2,1,_1+J bo,i,j,i+ e2,XY,1,1+
h

st2,1, b1, 1+j , -+ St2,1, -i+ b2, 1,i,-1+j e2,xy, i, -1+j
+ +2h 2h

C6,i,-1+j

2 Cosh[ 13,i,-1+j&1,i,-1+j
] Sirih[

Y3,i,-1+j

J
St2,j,_i+j ei,,i+

2,12 2J

2 Cosh[
311,_1+e1,1,_1+

]

sini[ Y3,i,-1+j
]2,12 2,12

Hh

C8,j,_1+j

2 Cosh[ )'3,i,-].+j02,i,-1+j

]

Sinh{ Y3,i,-1+j St2l_i+ e2,1,_1+
2/2 2J2

h

2 Cosh[
3,i,-1+j2,i,-1--j

I Sirih[
3,i,-1+j

]
2,11_1

1-

1-

h

2 Sinh[ )'3,i,-1+j
]

sinh[ Y3,i,1+jGl,i,1+j
]

St,j,_1 e1,,_1+ e2,,i,_1+j
2J2 2,12

C5,j,-1+j h

2 Sinh[ 'Y3,i,_l+j ] sinii[ Y3,i,1+jGl,j,4+j
I st2i_i+i e2,xy,i,1+j

h

2 Sinh[ 3,i,-1+j

]

Sirih[ Y3,i,_1+j&2,i,_1+j
I st21i1_i+i e2,,_l+ e2,,,i,_l+j

2,12 2,12
C7,j,-1+j h

2 Sinh[ 3,i,-1+j
]

Sinh[ I st21i1i+i e2,xy,i,1+j2-fi 2,12 Io
h
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yi-1,j-I fi-I,j o2y-
2 Sinh[ Y1,_1+i,-1+j] C2,-1+j,-1+j St2,-1+i,-1+j e2,xy,-1+i,-1+j

h
St2,-1i,-1j bi,o,-i+i,-i+j e2,xy,-1+i,-1+j St2,-1+i,-1+j bi,i,-i+i,-i+j e2,,,1+i,-1+j

St2,-1+i,-1+j bl,2,-ij,-1+j e2,,_1+i,-1+j 2 sinh[ Y1,_1+i,j] C2,-1+i,j St2,-1.i,j e2,,-1+i,

St2,_1+i,j bi,o,-i+, e2,,-1+i,j St2,_1i,j bi,i,-i+, e2,,,-1+i,j St2,_1i,j bl,2,-1+i,j e2,,y,-1+i,j
h 2h 2h

Sinh [ Y2,-1+i,-1+j] C3,-1*i,-1+j St2,-1.i, -1+j Y2, -1+i, -1*j e2, yy, .-1+i,-1+j

h
Cosh [ Y2,-1+j, .-1+j] c, -1*i,-1j St2, 1+i, -i+j Y2, -j+i, -i+j e2,yy, -1+i,-1+j

h
St2,-1+i,-1*j bO,i,-i*i,-i+j e2,,-i+±,-i, 3 St2,_i.i,-i+j bo,2,-1+i,-+j e2,yy,-1+i,-1j

h h
2 St2,-1..i,-1..j bo,3,-1+i,-1+j e2,yy,-]..i,-1+j St2,-1+i,-1+j bo,4,-1+i,-1+j e2,,-1+i,-1j

2 Cosh ] Sinh [
' -1+i, -i+j

] St2,-1+i, -i e2,,,_1+i,-1+j
C6,-1+j,-1+j

h

2 Cosh[ ] sini[ Y3,_1+i,_1+j9l,_1+j,_1+j
} St2,-i+i,-i+i e2,,-1.i,-1+j2,/2 2,/2

hGi,-i+,_i

2 Sinh[ Y3,11*j } siiui[ Y3,-1+i,-1+j ei,_i+,_i+
} St2,-1+i,-1+j e2,xy,-].i,-1*j2,/2 2,/2

C5,-1+j,-].*j
h

2 sin1-[ Y3,-1+i,-1+j I Sirih[ 'r3,-1+i,-1+e,-1+i,-1.
] St,-i+i,-i.j e2,,-1i,-1+j2,/2 2,/2

h e1, -1+j

2 Cosh [
)'3 -1.i,-1*j

} Sinh [
-1+i,-1+j -1*i, d St2, -1+i, -1+j e2,xy, -1+i,-1+j2,/2 2,/2

Ce, -1+1,-1+j
h

2 Cosh[ ]
sinh[ Y3,_1+i,_1+j02,-1+i,-1+j

] St2,-1,i,-1+j e2,yy,-1+i,-1.j
+h62,1+i,1,j

2 Sinh [ Sirth [
Y3, 1+j l+j 2, -1+1, -1+j

} St2, -1+j, -1+j e2,xy,-1i, -1.j2,/2 2,/2
C7, -1+i, -1+j

h



2 sirt4 3,-1+i,-1+j ] siri[ Y3,_1+j.,_1+j&2,_1j,_1+j
] St2,1+,1 e2,W,.-1+i,_1+2J2 2[

he2, -1+j

Sirti[- Y2,-1+i,jI 03,-1+i,j t2,_l+i,j Y2,-1+i,j e2,Y,_1+j,

h
St2,-i+j, Y2,4+i,j e2,,_1+j

h
St2,]j, l,1,-1+i,j

h
3 St2,1j, ,2,-1+i,j 2 ,3,-1+i,j t2,_l+i,j ,4,-1+i,j 2,,-1+i,j

h h 5h

2 ct6l-1[ )'3,_1i,j
] Siri-l[

i3,1+jjei,1+j,j
]

e2,XY,4+l,

,-1+i,j

2Cci[
]

sini-i[
] 2,-1+i,j 2,y,-1+i,j

he1,_1+,

" 2 Sinh[ ] Sirih[ Y3,4+i, ,-:L+i,j
] 2,-1+i,j e2,XY,_1+j,

h

2 si 1[-'-k-'i I sirti[
,_l+].,el,_l+,1

] 2,-1+i.,j e2,41+,
2-J2 2J2

he1+,

,-1+i.j

2 ''3,-1+i,j ] sir*i[ 3,-1+i,j2,-1+i,j ] St2,_l+i,i e2,,,,_1+1,J
2 2

h

2Ox[
]

sin-if ,1,j°Z1+j,j ] St2,11i e2,W,_1+,

he2,_1+,

( 251rt1[ 13,-1+i,j ] Sir[ ] 2,-1+i,j,xy,-1+i,j2/2 2J2
07,-1+i,j h

2Sirti[ sin-i[ -1+i,j92,4+i,j
] 2,-1+j

2.J2 2-/2 =0
he,1+1,



71,1-I " o"2y+ 2y-
2 sinli[ Y1,j,-1.j} C2,i,-1+j St2,i,-1+j e2,Xy,i,-1*j St2,i,_l+j bl,O,i,4+j e2,xy,i,_1.j

h h
St2,i,_1+j bl,1,i,-].+j e2,xy,i,-1+j St2,i,-].+j bl,2,i,-].j e2,xy,i,-1*j

2h 2h
2 sinh[- Yi,i,j] C2,j,j St2,i,j e,j St2,i, b1,O,i, e2,xy,i,j 2,xy,i,j

h h 2h
St2,i,j bl,2,i,j sii-[-- C3,i,_1.j 3t2,i,-1+j)'2,i,_1+j e2,yy,i,1*j

2h h
Cosh[- Y2,i,-1+j] C4,i,-1+j St2,i,_l+j 12,i,-1+j e2,,,i,_1*D St2,i,_1.j,1,i,_1+j e2,yy,i,_1+

h h
3 St2,j,_ij ,2,i,-]+j e2,,i,_1.j 2 St2,i,_l+j bO,3,i,_l1 e2,yy,i,_1j St2,i,_]j bJ,4,i,-1j e2,yy,i,-1*j

h h 5h
,i,-1*j ] sinii[ )3,i,-1+j01,i,-1+j

] St2,j,i+j e2,,,i,-1+j2J2 2/2
C6,i,-1+j h

2 Cosh[ Y3,i,.1j ] sini-i[ )'3,i,-1+161,i,-i+j
] e2,w,i,1+j

hei, i, -i+j

2 sinl[ Y3,i,-1+j
]

sinii[ r3,i,1+j 91,i,-1+j
] St2,j,_1 e2,xy,i,1*j2/2 2f

C5,i,-1+j h

2 sinl-i[ Y3,i,_1,j
] sinti[ ,i,-i.j61,i,-i+j ] st2,1,i+ e2,yy,L1+j

2 Cosh[ ] sinii[ 3,i,-1i-j e2,1,_1+ St2ilj e2,xy,i,4+j2/2 2-/2
C8,i,-1*j h

20zsh[ 13,i,j
]

sinh[ 13,i,_1+j&2,i,_1*j
] St2,i,_1+j e2,,i,_1+j

i +
h02,j,1+j

2 Sinh[ Y3,i,1*j
] sinl-i[

)i,]+j e2,j,1+
St2,i,-1+j e2,xy,i,-1+j2/2 2/2

C7,i,-1*j h

2 Sirih[ ] sinh[ Y3,i,.1]02,i,.1+j
] St2,1,_l+ e2,,i,_1+j

h2, i, -1+j
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Sith[- Y2,1j]

h
[-2,ij]cjStZi.jYZi.je2,w,i.j

h h
3St2,Lj 2St2,j.,bo,3,i St2,i,jk44ij

h h 5h
2O[2] ±[3i.i0i.i} 2O[ S [' I3t2jezw,j'1

h hei

(2SI[--] siri-4
12 2J

c5,i,j

h

2S[-
}

irii[ Stzxi eZ,i.j
2[

he

2[i] Sith[
]

'2ith[i] Sirii[
2 2

h

2S±[--[] si±[ Y3,,jj]

hOzi,j

2[]s[
,j,j&2,j.j

St2,ije2,W,i.j22 2J
+

NOTE: Appendices A, B, and C are included to illustrate the complexity of the

linear equations in expansion coefficients a and Ci. Some equations are omitted
for brevity.




