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Improved Design Techniques for Low-Voltage Low-Power
 
Switched-Capacitor Delta-Sigma Modulators
 

1. INTRODUCTION
 

The rapidly decreasing minimum feature device size in CMOS technologies 

permits the integration of a larger number of devices, and hence more signal processing 

functions. Due to their low sensitivity to noise and process variations, digital signal 

processing (DSP) techniques have become a favorite in the implementation of such 

functions. Moreover, digital processors have achieved a state of significant sophistication 

and efficiency, which strongly supports the drive towards digital solutions. However, a 

fully digital implementation is usually not possible, since most signals occur in analog 

form. This places considerable emphasis on the implementation of the interfaces between 

the two worlds. The devices which implement these interfaces are called analog-to-digital 

(A/D), and digital-to-analog (D/A) converters (ADC's and DAC's, respectively). There 

are many requirements on these interfaces: 

They must be compatible with high-density integrated solutions, if possible in 

digital technologies. 

Many digital solutions require high-performance A/D converters, and possibly 

high-speed operation. 

The interfaces must dissipate low power, a particularly important aspect in 

portable communication devices. 

The utilization of submicron technologies forces the utilization of lower power 

supply voltages, which complicates all aspects of the design. 
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Various techniques have been proposed to implement A/D and D/A interfaces [1]. 

The choice of one over another depends on the application and the performance 

requirements for that application. Dynamic range (DR), linearity and speed are perhaps 

the most common parameters in the design of such systems. Delta-sigma modulation is a 

widely adopted technique in moderate-speed, high-performance applications. It permits 

relaxed component performance requirements, and can provide very high dynamic range 

for moderate-speed applications. The purpose of this work is not to study or analyze in 

detail the various methods of signal conversion, or even the structures employing the 

delta-sigma technique (the literature on this topic is vast [2][3]). Rather, we concentrate on 

two important aspects of the integration of these A/D and D/A interfaces: low-voltage 

(LV) operation and low power (LP) dissipation, with the focus on delta-sigma modulators. 

The topic of LV/LP mixed-signal design has recently received much attention, 

driven by technological and economical factors. Two key aspects are: 1) modern sub-

micron CMOS processes cannot handle large power supply voltages, and 2) lower 

production and testing costs can be achieved when analog and digital blocks are integrated 

on the same die. Unfortunately, such integration raises problems associated with the 

performance of the analog blocks (substrate noise coupling), and also the lower power 

supply voltage makes the task of achieving a high dynamic range quite difficult. Since the 

maximum amplitude of the input signal is limited by the value of the power supply 

voltage, the only approach to increasing the DR is to reduce the noise floor. This solution 

has severe repercussions in terms of power dissipation. These topics, and others, will be 

further expanded in the following chapters. 

1.1 OBJECTIVE 

The objective of this dissertation is to investigate the constraints which arise when 

switched-capacitor (SC) delta-sigma modulators are designed for low-voltage operation, 

targeting also low power dissipation, and to propose methods of improving the 



3 

performance and optimizing for low power dissipation. This is accomplished by 

identifying critical elements whose performance can lead to increased power dissipation, 

as well as the fundamental limitations of available analog circuit techniques (Chapter 3). 

A prototype was designed and fabricated, which reflected these findings, and therefore 

exhibited good performance and nearly optimum power dissipation (Chapter 4). 

One of the key performance parameters is the dc gain of the amplifier in the first 

stage; it should be high. This is necessary for high linearity and low quantization noise 

leakage (Chapters 2 and 3). In low-voltage operation, it may become impractical to use 

conventional topologies employing cascoding techniques (folded-cascode, telescopic 

cascode) which provide high gain in one single stage. Rather, cascaded structures have to 

be used. The disadvantage of the latter is the necessity for frequency compensation which 

results in increased power dissipation. Hence, another objective of this work is to exploit 

techniques, in the context of delta-sigma modulators, which compensate for the open-loop 

gain characteristic of the amplifier (dc value and nonlinearity), thus permitting the 

utilization of single-stage low-gain topologies. Predictive correlated double sampling is 

one of such techniques. It will be analyzed in Chapter 5. 

1.2 THESIS ORGANIZATION 

This dissertation is organized in six chapters, the first of which is this introduction. 

In it, the objectives of this dissertation, its organization and contributions are presented. 

Chapter 2 extends the background and motivation touched upon in Chapter 1. The 

power dissipation in digital and analog circuits is addressed, and the implications of 

lowering the power supply voltage are discussed. Delta-sigma modulation is introduced 

and its performance metrics presented. Fundamental limits to power dissipation are 

derived, and a figure-of-merit for delta-sigma modulators proposed. This figure-of-merit is 
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used to compare the performance of recently proposed devices in the area of LV/LP delta-

sigma modulators. 

Chapter 3 analyzes in detail the power and voltage constraints in a second-order 

delta-sigma modulator. Design criteria will be derived to minimize the power dissipation. 

The contribution of the amplifiers, in the context of performance requisites, towards the 

total power dissipation will be analyzed in detail. 

Chapter 4 presents the design of a second-order switched-capacitor delta-sigma 

modulator intended for voice applications, based on the results of Chapter 3. This device 

was fabricated, and it provided low power dissipation and high performance even though 

operating from a low (1.8 V) power supply. Issues related to designing switched-capacitor 

circuits in a low-voltage environment are addressed as well. 

Chapter 5 explores predictive correlated double sampling as a means of achieving 

good linearity and low power dissipation in low-voltage moderate-performance delta-

sigma modulators. The technique reduces the effect of the open-loop nonlinearity 

characteristic of the amplifier, thereby allowing the utilization of single-stage low-gain 

structures. Single-stage amplifiers require no compensation other than their load, with 

significant reduction in the power dissipation. Their noise performance is also analyzed. 

Chapter 5 presents also design criteria for delta-sigma modulators employing predictive 

correlated double sampling, and identifies areas of potential application. Simulations 

illustrate the functionality of the technique. 

Chapter 6 presents the conclusions of this dissertation and proposes new directions 

for future work. 
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1.3 ORIGINAL CONTRIBUTIONS OF THE THESIS
 

The research described in this dissertation includes the following original results: 

A systematic analysis of voltage and power constraints in a switched-capacitor 

second-order delta-sigma modulator, and optimization criteria for the design of 

such structures. Based on this theory a prototype was designed and fabricated. It 

provided an unequaled combination of high performance and low power 

dissipation [31]. 

A novel and useful figure-of-merit for delta-sigma modulators, which permits 

the evaluation of the power efficiency for a given performance. 

An analysis of predictive correlated double sampling in SC integrators, and of 

the design criteria and noise performance of structures employing such 

techniques. 
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2. GENERAL DESIGN CONSIDERATIONS 
FOR LV/LP Al MODULATORS 

This chapter provides the motivation for designing integrated systems with low 

supply voltages and reduced power dissipation. This motivation is driven by technological 

factors, in particular the necessity of integrating a large number of devices and functional 

blocks. The delta-sigma technique is also introduced, and discussed briefly in a qualitative 

context, so as to provide a first insight into its characteristics. Performance metrics for 

delta-sigma modulators are discussed to introduce the terminology used in the remainder 

of the text. A more detailed and formal analysis of a generalized delta-sigma structure is 

presented later in order to consolidate the material introduced earlier, and provide a better 

understanding of the performance requirements in such structures. This section lays the 

foundations for a more rigorous analysis of power and voltage constraints in a delta-sigma 

modulator, to be given in Chapter 3. The (lower) fundamental limits to power dissipation 

are also derived, under the assumption of a dominant thermal noise. Based on these 

results, a figure-of-merit for delta-sigma modulators is proposed, which can be utilized to 

estimate the power efficiency of different structures. Using this figure-of-merit, a 

comparison of representative implementations is presented. 

2.1 MOTIVATION FOR LV/LP DESIGN 

Why is it necessary to design for low-voltage operation, and how does this relate 

to power dissipation? The motivation lies in factors of technological nature, as well as 

application-related and market-demand factors. 

As technology evolves towards submicron and deep-submicron feature sizes, the 

oxide thickness of the MOS devices decreases as well. To avoid punchthrough and p-n 

junction breakdown, the intensity of the electric field has to be reduced. For example, a 

standard 0.8 p.m CMOS process can withstand a maximum sustained power supply 
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voltage of about 5.5 V, but devices made using a 0.5 pm CMOS process can only tolerate 

about 3.5 V. (They can, however, withstand larger voltage transients.) It is possible to 

develop a 0.5 µm or smaller feature size process which will still withstand a 5 V supply. 

This can be done by increasing the doping of the substrate which results in thinner 

depletion regions around the drain and source diffusions, hence mitigating the risk of 

punchthrough. Although a higher doping concentration reduces the p-n junction 

breakdown voltage VBD, it increases the punchthrough voltage Vp. The rate at which VBD 

decreases is, however, lower than the rate at which Vp increases, and hence some trade-off 

can be achieved. Eventually, as the feature size is further reduced junction breakdown 

becomes dominant and the power supply voltage must be reduced. This aspect clearly 

points towards the need to design systems capable of operating from power supply 

voltages lower than the typical 5 V. 

In fact, this reduction of the power supply voltage is not only necessary but also 

desirable. In digital circuits with a high level of switching activity, the power dissipated is 

essentially dynamic, that is, associated with charging and discharging various capacitors. 

The expression for the dynamic power dissipation assumes the general form 

P = pC-V2-fs (2.1) 

where p is the activity factor (dependent on the statistics of the signal), and J., is the 

switching frequency. In most digital circuits, the voltages representing the "high" and 

"low" states coincide with the power supply rails, i.e., VDD and ground, and hence V 

equals VDD. Since the power is proportional to the square of the voltage step v, decreasing 

that step from, say, 5 V to 3 V, results in a reduction of the power dissipation by a factor of 

about 2.8. This result is important not only in terms of lower overall power dissipation but 

also in terms of power dissipation density, as submicron processes allow the integration of 

a larger number of functions. For reliability, the thermal density should be kept low. A side 
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benefit of using smaller feature sizes is that the parasitic switched capacitances 

contributing to C are also smaller, and hence so is the power dissipation. 

It would seem that the power dissipation could be reduced to tolerable values 

simply by reducing the power supply voltage. In practice, various factors prevent this 

from happening, or at least complicate the trade-off. For instance, a lower value of the 

power supply voltage impacts the delay of the cells and hence reduces the speed of 

operation. The loss in speed can be compensated if the threshold voltages are also 

reduced, or if parallel or pipelined architectures are utilized [4][5]. Equation (2.1) 

suggests, however, that the total power can be minimized in other ways, such as by 

minimizing the activity and the parasitic switched capacitance. The activity can be 

reduced by devising algorithms which require fewer computation cycles, and by using 

event-driven blocks which are de-activated when not in use [6][7]. The capacitance can be 

reduced by making the digital processing elements (architecture, logic cells, layout) as 

simple and small as possible [4], and by using branch-based logic [8][9]. Nevertheless, 

lowering the value of the power supply voltage is still the most efficient way of reducing 

the power dissipation in digital circuits. 

The subject of power optimization in digital circuits is beyond the scope of this 

work. It serves, however, to provide insight into one of the most important driving forces 

for designing for LV/LP conditions. The question at this point is "What about the power 

dissipation of analog circuits?" The answer, and this is the subject of the remainder of this 

work, is that lowering the power supply voltage usually does not yield a lower power 

dissipation. Although moving to submicron processes (small feature sizes, thin oxide) 

inherently provides the capability for lower power dissipation due to smaller parasitic 

capacitances and larger transconductances, the performance of analog circuits is often 

measured also in terms of dynamic range, that is, the ratio of the maximum signal power 

to the noise floor. Decreasing VDD limits the maximum amplitude of the input signal 

which can be accommodated by the circuit, but it does not reduce the noise floor. To attain 

a lower noise floor, larger capacitances, hence larger transconductances, have to be 
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realized, which dramatically increase the power dissipation. We will return to this topic 

later in this chapter. So, why design analog circuits for low-voltage operation? The answer 

is cost. The present trend is to integrate analog and digital functionality on the same die, to 

reduce the cost of processing and packaging with single-chip solutions. However, if 

analog and digital circuits, are to coexist on the same substrate the former has to be able to 

operate from the same low power supply voltage as the latter. 

The proliferation of portable communication devices (laptop computers, cellular 

phones, etc.) constitutes another incentive for designing for LV/LP. Low voltage translates 

into smaller, lighter and cheaper batteries. Low power means longer battery lifetime, 

hence a reduced cost of operation and increased dependability. Although these are 

essentially market-related issues, they often constitute the major driving force for pursuing 

new design directions. 

At this point, it should be clear why designing for low-voltage operation and for 

low power dissipation is a topic of great importance. The main issues are cost and 

dependability. This is what the industry and the consumer sees and wants. In this work we 

convert this simple requirement into more specific ones, involving low-power dissipation 

and low-voltage operation, dynamic range, reference voltage and noise floor, dynamic 

power and static power, power supply voltage and CMOS switches, power supply voltage 

and bandwidth, among others. 

2.2 THE DELTA-SIGMA TECHNIQUE 

Delta-sigma (AE) modulation is a data conversion technique which has gained 

significant popularity recently in the implementation of A/D and D/A interfaces [2]131. By 

trading resolution in amplitude for resolution in time, the requirements on the analog 

components are much relaxed. It is intuitively obvious that the fewer samples one takes 

from a given signal, the more accurate those samples and the processing elements have to 
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be. If instead the signal is sampled at a very high rate, significant redundancy is 

introduced. Hence, even if the samples are corrupted by noise, or processed with less 

accuracy, it is clear that if properly averaged, the effect of those errors can be made 

negligible. This requires a knowledge of the statistics of the input signal and of the noise. 

In delta-sigma modulation, this redundancy is exploited in two ways. One is by 

sampling the input signal at a rate jes much higher than the Nyquist rate (this is called 

oversampling); the power of signals with spectral content extending beyond fs/ 2 (such as 

white noise) will therefore be distributed between de and fs [2][10]. This means that in the 

band of interest (input signal band), the spectral floor due to the noise will be lower. If the 

energy falling outside the signal band is removed by filtering, the signal-to-noise ratio 

(SNR) improves. (This filtering in fact implements the averaging process mentioned 

above.) The other way is by making use of feedback. It is known that feedback 

techniques can radically change properties of open-loop systems which might otherwise 

be of little use due to nonlinearity and other imperfections. In a delta-sigma modulator, a 

filter (called the loop filter) with high gain in the band of interest and a quantizer constitute 

the forward path of a feedback system (Figure 2.1). Due to the feedback loop, the spectral 

components of any signal injected or applied at nodes in the forward branch following the 

output of the loop filter will be attenuated by the gain of the filter at those frequencies. For 

the system shown in Figure 2.1, if we assume for simplicity that the quantizer linearly 

adds a noise component EQ to the signal at the output of the loop filter, one can easily 

arrive at the following expression for the output of the system in the frequency (Laplace­

or z-transform) domain: 

H

Y = X + 

1 
EQ (2.2)1+H 1+H 

If the loop filter has a very high gain (IHI » 1) in a range of frequencies, then the 

signal transfer function is approximately unity in that band, whereas the noise components 

in the same range are greatly attenuated, resulting in increased SNR. This is commonly 
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called in the context of delta-sigma modulation, of noise shaping, and is illustrated in 

Figure 2.2, where EQ is assumed to have a flat power spectral density (PSD). Hence, the 

effect of the feedback loop can be significantly more beneficial than that of oversampling 

alone, since it effectively reduces the noise power in the band of interest. The out-of-band 

noise, however, is not attenuated and has to be removed by subsequent filtering. 

Loop 

Filter Y 
H 

Quantizer 

Figure 2.1: Simplified block diagram of a delta-sigma modulator. 

At this point, the potential of the delta-sigma technique should be clear. The most 

important feature is that the combined utilization of oversampling and feedback relaxes 

the requirements on blocks following the loop filter. Actual implementation of the loop 

filter may be by low-order sections with feedback, and possibly feedforward branches, for 

improved stability. In such cases, all noise appearing at any internal nodes following the 

first stage of the loop filter, when referred back to the input, will undergo some degree of 

filtering and becomes less important. In other words, one can tolerate noise of larger 

magnitude, and errors due to non-idealities of the active devices, without compromising 

the performance. This includes performing a coarse quantization of the signal, ultimately 

to one bit. Later in this chapter we will introduce performance metrics, and quantify the 

benefits originating from noise shaping and oversampling. 
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As shown in Figure 2.2, the spectral components of the noise falling inside the 

signal band are attenuated, compared to the original PSD of the noise. The same does not 

happen to those falling outside of the signal band. Indeed, those are amplified and need to 

be removed by a digital filter. 

Input 
Signal 
Band Power spectral 

density of EQ 
Here, the at the output 

noise power 

is much reduce 

due to the 
feedback loop 

fs/2 

Original power 
spectral density of EQ 

Figure 2.2: The concept of noise shaping. 

The rate f; of the output digital bit stream Y (Figure 2.1) is usually too high for 

complex digital post-processing, which would consequently require very complex 

circuitry and dissipate excessive power. Hence, the digital filter which follows the 

modulator implements the function of down-sampling as well. The combined filter and 

down-sampler is commonly (and somewhat loosely) known as decimator or decimation 

filter. The reduction of the sampling rate is usually accomplished in several stages, 

depending on the rejection characteristics of unwanted components of each block, and is 

accompanied by an increase in the wordlength. This is plausible since that was the original 

trade-off. Once the out-of-band noise has been removed, the oversampling ratio can be 

reduced and the wordlength has to be increased to represent the input signal accurately. 

The complexity of the decimator can be significant due to the large out-of-band noise 

energy that has to be removed. This is where one of the trade-offs takes place; the 
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requirements for the analog blocks are relaxed, but a penalty has to be paid on the digital 

post-processing. Note, however, that this penalty is only in the complexity of the digital 

filter, which can be implemented with any desired accuracy, while the same cannot be said 

about analog blocks. The combination of a delta-sigma modulator and a decimation filter 

constitutes a delta-sigma data converter or ADC. 

Since this technique exploits oversampling, it is not suited for very high-frequency 

and high-resolution applications. Some work targeting high-speed and low- to moderate-

resolution applications has been reported [12][13], but the delta-sigma technique finds its 

main niche in low- to moderate-speed, high-resolution applications, such as 

instrumentation [14], unconventional signal processing [15][16], and at voice [17] and 

audio range frequencies [18]. The latter are of particular importance in communications 

where high-performance, moderate-speed A/D and D/A interfaces are required. Due to its 

robustness, the delta-sigma technique is then typically the preferred choice. 

2.3 PERFORMANCE METRICS 

Before we proceed, it is necessary to introduce appropriate performance metrics 

for delta-sigma modulators. Contrary to other conversion methods, the performance of a 

A modulator is better understood in terms of signal and noise spectra, signal-to-noise 

ratio and dynamic range, rather than the number of output bits. The reason lies in that the 

typical wordlength of the digital output of a delta-sigma modulator is one. (Moreover, 

there is not a one-to-one relation between the input and the output samples.) However, the 

SNR in the signal bandwidth can be very large, due to the noise shaping effect of the loop. 

For example, a flash ADC will take a sample of the input signal, quantize that sample and 

assign a digital code with wordlength N to the quantized value. The ADC is called an N-

bit ADC. If the conversion is performed at the Nyquist rate, it can be shown that the SNR 

resulting from such quantization (for a sinusoidal input signal) can be approximated by 
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SNRdB = 6.02 N + 1.76 (2.3) 

Hence, a 10-bit ADC ideally displays a signal-to-noise ratio of about 62 dB, and a 

16 bit ADC displays an SNR of about 98 dB. This concept is also used in delta-sigma 

modulators, where the signal-to-noise ratio is determined and "converted" to the 

equivalent bit accuracy or resolution. For instance, if the peak SNR is 98 dB, the 

modulator is called a 16-bit modulator, even if the output signal wordlength is unity. Note 

that this simply means that if the out-of-band noise would be completely eliminated, and 

the output rate reduced to the Nyquist rate, the maximum meaningful wordlength that 

could be used to represent the input signal is 16. The removal of the out-of-band noise 

and the reduction of the output rate constitute the function of the decimator. The 

wordlength of the digital output of a delta-sigma converter is not one, but the equivalent 

of the SNR in the signal band, or more. 

We are now in a position to introduce and understand the metrics utilized in the 

evaluation of the performance of such systems. These metrics are illustrated graphically 

in Figure 2.3. Note that some of the following definitions have a scope which extends 

beyond delta-sigma modulation. 

Overload point, P MAX, is the value of the input signal power which overloads 

(saturates) the modulator. At this point, the slope of the SNR curve reduces, and 

eventually becomes negative with further increase of the input signal level. 

Total dynamic range, or simply dynamic range, DR, is the ratio between the 

maximum input signal powerPMAX' and the lowest input signal power P miN that 

can be discriminated from the noise floor (PAEN is also referred to as resolution). 
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Instantaneous dynamic range, IDR, defined as IDR = SNRX Px (all quantities 

in decibel), where Px is the input signal power (with appropriate reference), 

sufficiently small that there are no distortion or overloading effects (for instance, 

Px = 60 dB), and SNRx the signal-to-noise ratio for that input signal level. 

The following relation holds: IDR. DR . 

Peak signal-to-noise ratio, SNRpeak, is the maximum signal-to-noise ratio that 

can be obtained. Strictly speaking, this maximum may occur for values of the 

input signal level larger than P MAX. The following relation holds: 

SNR PPeak MIN 

Input 

Signal 

P MIN Px Power 

H4 DR 

Figure 2.3: Performance metrics used in connection with delta-sigma 
modulators. 

Both the peak signal-to-noise ratio and the dynamic range are used to express the 

performance of a delta-sigma modulator, and are quantified in decibels or bits, as 



16 

discussed above. Also, it is common to normalize the curve in Figure 2.3 to the value of 

the reference voltage VREF, in which case the scale is in dBr (0 dB corresponds to the 

power of a sinewave with amplitude VREF). We can now proceed with a more detailed 

analysis of the performance requirements of a delta-sigma modulator. 

2.4 GENERAL PERFORMANCE REQUIREMENTS IN A AI MODULATOR 

In section 2.2 we introduced the delta-sigma technique, and discussed how 

feedback techniques, in conjunction with oversampling, could be used to selectively 

reduce the noise power in a band of interest. In this section we quantify the benefits of 

such techniques, and infer the implications in terms of performance requirements. This 

analysis will be refined for a second-order structure in chapter 3. 

Consider Figure 2.4. It illustrates an idealization of a single-loop delta-sigma 

modulator with arbitrary order. Note that the loop filter transfer function is expressed in 

terms of z-transform, because in this work we do not contemplate continuous-time 

implementations of such structures. Even continuous-time implementations cannot be 

asynchronous, hence most of the discussion that follows still applies. Another aspect that 

is new relative to Figure 2.1, but which was mentioned at the time, is the implementation 

of the loop filter. The loop filter consists of a cascade of accumulators (integrators in the 

continuous-time domain), with multiple feedback loops. An accumulator displays a low-

pass type of transfer function, and for that reason the structure is said to be a low-pass 

delta-sigma modulator. Analogously, band-pass transfer functions can be implemented to 

process band-pass signals [19]. The feedback loops are required for stability purposes, 

and in most systems with order equal or larger than three, feedforward branches are 

required as well to realize stabilizing zeros in the transfer function. (The feedforward 

branches have also been used to realize a Chebyshev transfer function [11].) This is an 

aspect linked to the implementation of such systems, and does not greatly influence the 

following analysis which concentrates on the spectral properties of the signals. 
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Figure 2.4:	 Simplified block diagram of an idealized AI modulator of arbitrary 
order. 

Also new to Figure 2.1 is the presence of an A/D and a D/A converter. The A/D 

converter performs the function of the quantizer, and converts the result into a digital 

word. Typically, 1-bit quantization is utilized in delta-sigma, and the A/D converter 

consists of a comparator (quantizer) followed by a latch (A/D conversion). The D/A 

converter changes the output digital word into an analog representation of that signal. In 

the case of single-bit quantization, the D/A converter consists of a switch which selects 

+VREF or -VREF (or the equivalent, if only a single reference voltage is available). 

Following the approach used in connection with Figure 2.1, it is assumed that the 

A/D converter introduces a component of quantization noise eQ which adds to the output 

signal of the previous stage. Note that this is correct, as no assumption was made 

regarding the properties of the noise signal. For simplicity of analysis, eQ is commonly 

considered to be white, uncorrelated with the input signal (linear analysis). For structures 

of first and second order, this is markedly untrue [20][2111221, and caution has to be 

exercised when estimating the noise performance. Nevertheless, the model provides a 

good insight on the functionality of these structures. The sources ei denote any addition of 

noise or error to the signal path. They represent the input-referred noise and nonidealities 

of stage i, nonidealities in the feedback path from the D/A converter, and other sources of 

noise such as thermal noise, clock charge injection and substrate noise; anything that is 
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applied or injected at node i. At the output end, ei coincides with the quantization noise eQ. 

The analysis of the linearized model yields 

Y(z) = Z-N X (Z) -F(1 Z 1)N EQ(Z) (2.4) 

1(i z-1)1- 1 (N + 1 - i) 

i = 1 

The first line in (2.4) contains the term in the input signal X and the term in the 

quantization noise EQ. The second line aggregates all the remaining sources of noise ei. 

The transfer function from noise source ei to the output Y is 

H i(z) = (1 z 
1 

(2.5) 

a power of the difference between successive samples of noise. The exponent varies from 

I for the leftmost source (same as the input signal), to N l for the rightmost one. If the 

signal being sampled (noise in this case) is rapidly varying in time, the difference between 

two consecutive samples can yield a large value, because the samples can differ by a large 

amount. If the signal is slowly varying, the two consecutive samples will look alike and 

the difference will be small (particularly if oversampling is being used). This means that 

taking the difference between two consecutive samples is equivalent to performing a high-

pass filtering function. Taking a power of the difference corresponds to a more elaborate 

filtering, with more coefficients. Notice that due to the delays in the system, it has 

memory, and higher-order systems make use of that memory by developing inherently 

more rigorous estimates of the signal, through proper averaging of noise samples. This is 

the essence of delta-sigma modulation. 
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To better understand all implications, it is useful to analyze in more detail equation 

(2.5). Let us assume that the oversampling ratio OSR (defined as the ratio between the 

sampling frequency and the Nyquist sampling rate) is very high (two orders of magnitude 

is a typical value). The absolute value of the transfer function in (2.5) can then be 

approximated according to 

1 
(2.6)c°) I 11 exP wTs) I (wT i 1 

where Ts is the inverse of the sampling frequency, and (0 is the variable angular frequency. 

The noise power in the signal band [bw, bw] (bw is a normalized frequency, therefore 

comprised between 0 and 7t) can be calculated by integrating the output power spectral 

density due to the noise sources [23]: 

P. = 
/ 2 

1 rw (S (w) IHi(c0)12)do.) (2.7)
7r bw e 

where Set represents the PSD of the noise originated by source ei. We indicated above that 

the sources ei can represent any type of noise. This generality poses difficulty in 

evaluating the integral in (2.7). However, assuming that the ei refer to sources of white 

noise, with constant power, the task of evaluating the integral is greatly simplified, and the 

insight gained quite significant. The auto-correlation function of white noise is a delta 

function [23]. Hence its PSD is constant with frequency, and uniformly distributed 

between 0 hertz and the sampling frequency (positive frequency representation). Since the 

power is constant, the level of the PSD is inversely proportional to the sampling 

frequency: Se, oc 1/4. (This result does not apply if the noise signal is oversampled.) In 

other words, if the sampling frequency doubles, the PSD of the noise decreases by a factor 

of two, or 3.01 dB. Since the band of interest is only a fraction of the whole spectrum, the 

noise power in that fraction is smaller by a factor of two as well. Inserting the dependency 

above with f, in (2.7) one easily arrives at 
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1 

od (2.8)Pi (OSR 

This result is of paramount importance as it combines the effects of oversampling 

and noise shaping. The former is accounted for through OSR and the latter through the 

exponent. For instance, for noise appearing at the input of the first and second stages (i=1, 

2) one obtains 

7C 
)3

p oc and P2 oc (2.9)OSR OSR) 

This result states that noise at the input stage benefits only from oversampling, 

whereas noise at the input of the second stage benefits from both oversampling and from 

noise shaping. More generally, it can be said that the noise power (at the output) with 

origin in source ei (input of ith stage) is reduced by 3.01 (2 i 1) dB for each octave of 

increase in OSR, opposed to only 3.01 dB due to oversampling. From one stage to the 

following, the power is reduced by a factor proportional to (OSR/m) 2 
. Figure 2.5 plots 

the output power as given by (2.9), for three common values of the oversampling ratio. 

For the values of OSR indicated, the in-band noise power originating at the input stage, 

and superimposed to the input signal, is attenuated by 13 dB to 19 dB, as a result of 

oversampling. The in-band noise power originating at the input of the ith stage is 

attenuated by 26 dB to 38 dB, relative to the previous stage. 

This discussion assumes that all noise sources are identical. If the same noise 

signal appears at the output with a power which depends on the location of the source in 

the loop, this is an indication that we can tolerate larger levels of noise at certain nodes 

without seriously compromising the performance (SNR). Namely, it becomes clear that the 

input stage determines to a large extent the overall performance of the system; here, noise 

and errors arising from element nonideal behavior can benefit, at most, from the 

oversampling. They are, otherwise, regarded as part of the input signal, with unity transfer 
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function to the output, and have to be minimized. The following stages, however, see their 

performance requirements much relaxed due to the noise shaping effect, especially if that 

noise is not broadband. Offset dc signals and flicker noise are virtually cancelled (the 

noise transfer function has at least one zero at dc). For this reason, a large fraction of the 

total power (typically more than 50%) is often dissipated in the first stage, since it requires 

larger capacitances to reduce the noise floor, hence larger transconductances and larger 

biasing currents. (A different approach to implementing delta-sigma modulators was 

recently proposed. It utilizes a passive loop filter, thereby placing the performance 

requirements -- speed, gain on the quantizer rather than the first stage [32].) 

Stage i 

Figure 2.5: Attenuation of the noise power generated at the input of stage i. 

Chapter 3 addresses in detail the power and voltage constraints in a second-order 

delta-sigma modulator, including the power dissipation of the amplifiers. Before we 

investigate this subject, it is pertinent to ask "What is the minimum power that can be 

dissipated?" The answer to this question varies according to the specifications of the 
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system, and with what limits the performance. Nevertheless, the best performance that can 

be obtained is determined by the purity of the input signal itself and the quality of the 

sampling process. If the sampling process does not introduce any error, then the 

ubiquitous thermal noise will be the limiting factor. The next section analyzes this issue. 

23 FUNDAMENTAL LIMITS TO POWER DISSIPATION 

Figure 2.6 illustrates the sampling process that takes place at what could be the 

input stage of a delta-sigma modulator. The input signal Vin is sampled into a capacitor 

Cin. Due to the resistance of the switches, a noise voltage Vn is also stored in Gin. This 

noise is of thermal origin, and band-limited by the RC constant formed by the resistance 

of the switch and the sampling capacitor Cin. It can be shown [10] that the power of the 

resulting signal depends only on the size of the sampling capacitor, and on the absolute 

temperature T according to 

kTNth = (2.10) 

where k is the Boltzmann constant. Since the noise signal has a broad bandwidth 

(Lorentzian spectra display typical time constants in the order of 1014 s, the relaxation 

time in electron-electron scattering), it is undersampled, and only a fraction of the total 

power is contained in the signal band. That fraction is equal to the inverse of the 

oversampling ratio. Moreover, since the stored charge has to be transferred to the output 

through a second switch, another sample of noise is added to the stored value. Because the 

noise samples are uncorrelated, the powers of the corresponding signals add. Expression 

(2.11) gives therefore the in-band noise power: 
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2kT 
Nth, b (2.11)

Cin OSR 

It is intuitive that the minimum power that is dissipated is associated with the 

process of sampling the input signal: the charging and discharging of the input capacitor. 

This transfer of charge over a fixed period of time (1/fs) corresponds to having an average 

current flowing through a resistor [10], current which is drawn from the power supply. 

Hence the minimum dissipated power is given by 

PMIN = V DD- (0 (2.12) 

VDD (Q) 
= a Cin VREF. VDD fs 

where a VREF represents the maximum value of the input signal Vin, and (x) denotes 

the average value of x. In this representation, cc is smaller than one and is an indication of 

a saturation mechanism. Frequently, the maximum value of the input signal which can be 

accommodated by a system is slightly lower than the reference voltage VREF. In the case 

of a delta-sigma modulator, this situation is referred to as overloading, Section 2.3, and 

results from increased quantization noise in the signal band due to instability. Its value 

varies with the order and topology of the modulator. 

VDD 

Figure 2.6: Sampling the input signal. 
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Expression (2.12) gives the power which is dissipated in the process of sampling 

the input signal, but it does not provide any information about the purity of that sample. 

Except for the input capacitor Gin, all the variables in (2.12) are well known. As we saw 

earlier, Cin determines the noise signal which is superimposed to the input signal, and its 

value and the OSR define the noise floor, or the minimum input signal power which can be 

represented with an SNR larger than one (i.e., the resolution). Since the power is 

maximum when the signal reaches its maximum, we can relate the powers of both signal 

and noise through the parameter dynamic range (Section 2.3). For a sinusoidal signal, 

(a V REF)2 
Maximum Input Signal Power 2DR = (2.13)

Integrated In-Band Noise Power 2 kT
 

Cin OSR
 

This result can be used in (2.12), yielding 

8 kT DR BW [V DD )PMIN = (2.14)
a
 VREF 

where BW is the signal bandwidth, and we made use of F = 2 OSR BW . An 

optimum, or absolute minimum, is obtained when a=1 and VREF=VDD that is, when the 

system does not overload for signals weaker than the reference voltage, and the latter can 

be made as large as the power supply voltage. This absolute minimum is given by 

PMIN = 8 kT DR BW (2.15) 
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A few remarks are in order: 

PAEN does not depend on the absolute value of the power supply voltage, but 

rather on how large the input signal can be made relative to that voltage. 

PAIN is constant for a constant dynamic range. This statement holds as long as 

the input capacitor size and the magnitude of the reference voltage can be 

exchanged to obtain the same DR, according to (2.13). 

PMIN increases by a factor of four for each added bit of dynamic range. 

Figure 2.7 plots the minimum energy consumption as a function of the dynamic 

range in bits. In practice, the power dissipation is larger than the minimum given by (2.15) 

by three to five orders of magnitude. The reason for such large discrepancy is that 

expression (2.15) is representative only of the power dissipated in sampling the input 

signal, assuming that thermal noise is the only limitation. Other sources of noise, parasitic 

components and, most importantly, amplifier biasing currents, also contribute to the power 

dissipation. Static power dissipation from biasing currents will actually increase with 

decreasing power supply voltage. Assume, for instance, that a class A amplifier is used as 

the active element in the first stage of a delta-sigma modulator (Figure 2.6). The capacitive 

load of the amplifier will be in the order of magnitude of the sampling capacitor Gin the 

size of which, as we saw, is determined by the desired dynamic range. Hence, for a given 

gain-bandwidth product, 

(2.16)PSTATIC =- VDD 'BIAS « VDD gm cc VDD Gin 

Moreover, by (2.13), for a constant dynamic range, Gin 1/ VDD. Introducing this 

result in (2.16) one concludes that P Therefore, in general, if theSTATIC cc 1/ VDD . 
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performance (DR) in analog circuits is limited by thermal noise, the power dissipation 

increases with decreasing power supply voltage. This result is somewhat unsettling since 

integration of digital and analog blocks in the same fine-line IC die requires that the latter 

operate from lower power supply voltages. However, as we have just shown, the increase 

in power dissipation is inherent to the circuit techniques currently in use. There is, of 

course, space for numerous improvements, and in this work we will analyze a viable path 

in that direction. 
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Figure 2.7:	 Minimum energy consumption (power per bandwidth) as a function 
of the dynamic range. 

To provide insight on how far current implementations are from reaching the 

minimum power dissipation value expressed by (2.14) or (2.15), we propose a figure-of­

merit FOM for delta-sigma modulators [24]. This figure-of-merit allows a coarse 

estimation of the performance and overall efficiency of a particular implementation. The 
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underlying assumption is that about half of the total power dissipated can be allocated to 

the first stage. We then define FOM as 

VREF)( aFOM = PWR (2.17)8kT DR BW) VDD 2-) 

where PWR is the total power dissipation. Ideally, FOM should be close to one. Note that 

the parameters involved relate exclusively to performance, not to technology. Hence it 

provides a measure of the efficiency of utilization of the energy, to achieve such 

performance. The larger FOM is, the more inefficient the system. 

It should be pointed out that the proposed figure-of-merit is only applicable to 

structures in which the performance is determined thermal noise. If, say, quantization 

noise were the limiting factor, then the calculation of the dynamic range would have to 

take into account not only the oversampling ratio, but also the topology (order) of the 

modulator, and the distribution of the quantization noise. 

Table 2.1 collects several references on recent works related to LV/LP delta-sigma 

modulators, with indication of technology utilized, topology of the modulator, switched-

capacitor (SC) or continuous-time (CT) technique, as well as the parameters relevant to 

the calculation of FOM. The rightmost column shows the calculated FOM for each 

implementation (due to insufficiency of data a was made equal to one). Noticeably, a low 

value for the power dissipation does not necessarily result in a low FOM. Moreover, the 

lowest FOM is still about three orders of magnitude above the minimum as given by 

(2.15). Our work described in [31] displays the lowest figure-of-merit, hence the highest 

efficiency, and will be described in detail in Chapter 4. Figure 2.8 provides a graphical 

view of these results. 
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Ref Realization Topology Process 
VDD 
[V] 

VREF 
[V] 

BW 
[kHz] 

DR 
[dB] 

PWR 
[mW] 

FOM 
(oc=1) 

[25] SC 4th order, 
cascaded 

1.2 gm 
BiCMOS 

3 1.5 25 93 55 8323 

[26] CT 2nd order 0.5 gm 
CMOS 

Low-VT 

1 0.25 192 58 1.56 48600 

[27] SC 4th order, 
bandpass 

2 lam 
CMOS 

3.3 0.5 30 69 2 19200 

[28] SC 3rd order 1.5 gm 
CMOS 

2.4 0.5 8 80 1 3931 

[29] SC 1st order 0.5 gm 
CMOS 

Low-VT 

1 0.25 4 54 0.1 751260 

[30] SC 3rd order, 
cascaded 

1.2 gm 
CMOS 

1.8 0.9 25 92 6.3 1200 

[31] SC 2nd order 0.6 gm 
CMOS 

1.8 0.6 3.5 94 2 1144 

[32] SC 2nd order 1.2 gm 
CMOS 

3.3 1 20 87 0.23 1680 

[33] SC 3rd order 1.2 gm 
CMOS 

1.95 0.375 8 73 0.34 6184 

Table 2.1: Comparison of the performance of reported work on LV/LP delta-
sigma modulators. 
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Figure 2.8:	 Trend for efficiency of utilization of energy. A large FOM means less 
efficiency. 

2.6 SUMMARY 

This chapter provided the motivation for designing for LV/LP operation, 

particularly in the context of A/D and D/A interfaces. Delta-sigma conversion was 

introduced as an efficient technique frequently utilized in the implementation of such 

interfaces. The performance requirements for each of the blocks in a delta-sigma 

modulator, and implications in terms of power dissipation, were briefly discussed. The 

fundamental limits to power dissipation in the presence of thermal noise were derived, and 

a figure-of-merit for delta-sigma modulators proposed. This figure-of-merit is an 

expression of the efficiency in the utilization of energy to achieve a given performance. 
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3. CRITICAL ANALYSIS OF VOLTAGE AND POWER 
CONSTRAINTS IN A 2ND-ORDER AZ MODULATOR 

An important aspect of analog IC design preluded by Chapter 2 is that reducing the 

power supply voltage does not necessarily result in lower power dissipation. The opposite 

is usually true. Therefore, it is of interest to investigate the limitations of current design 

techniques and topologies when utilized in a low-voltage environment. 

This chapter addresses in detail the impact of utilizing a low supply voltage in the 

design of a low-power switched-capacitor, 2nd-order, single-bit delta-sigma modulator. 

We chose a 2nd-order topology for its popularity and simplicity, but the conclusions can 

be extended to other, more complex, structures. Switched-capacitor techniques were given 

preference due to their excellence in high-performance applications. It is our belief that at 

this time switched-current (SI) techniques do not offer any advantages compared to SC 

when designing for low-voltage operation. The justification lies in that they suffer from 

the same problems as SC, with the aggravation of a lower dynamic range (assuming a 

quadratic model for the devices, the signal-to-noise ratio of a stored current is 6 dB lower 

than that of the corresponding stored gate voltage). Continuous-time solutions are not 

competitive in high-resolution (especially high-speed) applications either, since the 

performance becomes dominated by clock timing uncertainties. 

3.1 THE 2ND-ORDER SINGLE-LOOP DELTA-SIGMA MODULATOR 

Figure 3.1 shows the block diagram of a linearized 2nd-order single-loop AX 

modulator. In analogy with the analysis presented in Chapter 2, various inputs 

representing error sources are shown. They are e' and e'2, the input referred noise 

originating in the operational amplifiers of the first and second integrators, respectively; 

e and eD2 , the errors originating in the feedback paths e.g., noise and distortion from 
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the DAC(s); and eQ , the quantization noise. The quantizer and A/D converter are 

represented by a branch gain k and the additive noise source eQ. Since the nonidealities of 

the DAC(s) are lumped into eDi and eD2 , this block was replaced by a unity gain 

element. Each (forward Euler) integrator is described by a transfer function in the z-

domain 

H (z) = 1 
(3.1)

z (1 13) 

where the parameters cc and 13 are the gain and pole errors, respectively. They result from 

mismatches and op-amp finite dc gain. Both are ideally equal to zero. For frequencies 

much below the Nyquist frequency, the output signal is given by 

Y (z) = (1 al) (1 0(2) [X(z) El (z) (z) + (3.2) 

1 "2 
(z 1 + 1) [E 2(z) E D2 (z) + 

1 

1 + (z- +(32) (z)
k I k2(z 

ea 

1 a2 

(1-132) 

1 

Figure 3.1: Block diagram of a 2nd-order delta-sigma modulator with indication 
of various noise sources. 
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The quantization noise transfer function Y (z) /EQ (z) (NTF) of the ideal 

modulator displays two zeros at z = 1 (since (3 is zero). The finite dc gain of the 

amplifiers, however, shifts those zeros to z = 1 pi and z = 1 P2 , as shown by (3.2). 

This results in a flattening of the transfer function near dc (z = 1 ), and hence in increased 

integrated noise power, known as noise leakage (Figure 3.2 illustrates this concept). The 

excess noise can easily be calculated and is approximately given by 

2
N Q, Finite Gain ( R21 p22) (OSR)2 2 0:1142 $ (3.3)2 3 v TC -r111 Q, Infinite GainN 

Since the pole error p is inversely proportional to the dc gain of the amplifier [10] 

this noise can be made very small if 

OSR 
PiAiDC » (3.4)

It 

Signal 
Band 
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NTF due
 NTF 
to finite profile
amplifier 
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Figure 3.2: Effect of the amplifier finite dc gain on the noise transfer function. 
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Making one of the gains very large (say, that of the input op-amp) and the other 

small is not enough to provide reduced noise leakage. This is apparent from the second 

term in (3.3). Moreover, higher oversampling ratios require larger gains, which is not 

surprising since the in-band quantization noise power decreases with OSR. This is an 

interesting aspect as it says that we cannot relax the gain requirement for an amplifier, 

even if it is part of the second stage. This is not in contradiction with the previous result of 

tolerating larger errors as we progress down the loop towards the quantizer. The analysis 

assumed perfect transfer functions. The results still apply, but the gain of the amplifier has 

to be sufficiently large so as to not become a dominant source of error. For example, if 

both amplifiers have a dc gain of 40 dB, and the oversampling ratio is 256, the in-band 

noise power increases by about 6 dB due to the pole errors. If the performance is limited 

by quantization noise, this loss (SNR) may be unacceptable, depending on the initial 

tolerance. This result was derived using a linear model, therefore the numbers are not 

exact. Figure 3.3 shows the simulated output power spectral densities of a 2nd-order 

modulator when the amplifiers have a de gain of 40 dB and 100 dB. The effect of the dc 

gain of the amplifiers on the noise floor is obvious. 

The requisites for the amplifier gain become even more stringent in cascaded 

topologies [34][35]. The performance of such structures relies on the matching between 

analog and digital transfer functions. Although matching between digital transfer 

functions can be implemented with any desired accuracy, matching between analog and 

digital transfer functions cannot, and the result is again noise leakage, and consequent 

degradation of the SNR. Implementing accurate analog transfer functions requires the 

utilization of operational amplifiers with very large de gain, in order to reduce the pole 

error [3. (The gain error is not so important as it results in a linearly filtered error 

component.). Some authors have proposed digital calibration techniques utilizing adaptive 

algorithms [36], but no successful implementation has yet been reported. Moreover, the 

substantial added complexity makes these solutions somewhat unattractive. 
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Figure 3.3:	 Quantization noise leakage due to op-amp finite dc gain. The input 
signal was a -22.4 dBV (-15 dBr), 3/7ckHz sinewave, and the 
sampling frequency 2 MHz. 

Another aspect related to the dc gain of the amplifier is distortion. The gain 

characteristic of an amplifier varies with the magnitude of the output signal, in a nonlinear 

manner. Since distortion is a result of the variation of a parameter relative to its nominal 

value, it is always desirable that the nominal value be very high compared to the absolute 

variation. Hence, for very low distortion, the dc gain required for the amplifier might 

exceed that suggested by (3.3) and (3.4). Figure 3.4 shows the simulated effect of using a 

nonlinear open-loop characteristic for the amplifier. A quadratic characteristic was used to 

introduce an absolute gain variation of about 2 dB over ±0.4V. The second harmonic 

disappears and the third harmonic is reduced by about 10 dB when the gain is increased 

from 40 dB to 100 dB. 
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Figure 3.4: Effect of the nominal dc gain on distortion. The input signal was a 
17.4 dBV (-10 dBr), 3/ic kHz sinewave, and the sampling frequency 
2 MHz. 

The problem of harmonic distortion is especially critical when designing for low-

voltage operation, as the devices require a minimum applied voltage to attain the gain and 

bandwidth specifications. Hence, to remain in the high-gain region of the amplifiers, 

signals have to be scaled down considerably, which reduces the SNR. This topic and others 

will be discussed in detail in the sections to follow. 
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3.2 THE FIRST INTEGRATOR
 

The most common sources of noise which can impair the performance of the 

modulator are the white noise sampled at the input, component noise (flicker noise and 

white noise), clock jitter (important in high-performance, high-frequency applications), 

finite amplifier gain and bandwidth, nonlinearity of components (capacitors and switches), 

clock injection, and amplifier offset and open-loop nonlinearity. If these errors occur in the 

first integrator, their transfer function to the output is nearly unity. Hence, a successful 

design necessarily reflects an awareness of these problems, and ways of coping with them. 

In general, these nonideal effects cannot be handled in isolation; improvement in 

certain areas will lead to degradation in others. In the following sections, we analyze these 

trade-offs in detail. 

3.2.1	 The choice of the reference voltage and the sizing of the sampling 
capacitor 

The internal A/D converter and D/A converter (Figure 2.4) establish an interface 

between the analog front-end of the modulator and its digital output. Since the digital 

output is a representation of the analog input signal, a basis for conversion is required. 

This basis, or measure, is the reference voltage VREF. The reference voltage is the upper 

bound for the maximum value of the amplitude of the input signal, and is related to the 

Most Significant Bit (MSB) in the A/D and D/A converters. In a multibit representation, 

with ±VREF used, the range ±VREF is divided into a number of subranges (equal to one 

Least Significant Bit -- LSB), each being assigned a digital code. In a single-bit 

representation, the signal is encoded into a sequence of ones and zeros, corresponding to a 

sequence of two levels ±VREF (sign detector). 
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A single-bit delta-sigma modulator requires only a comparator and a latch to 

realize the quantizer and the A/D converter, and a switch to realize the D/A converter in its 

simplest implementation. This switch toggles between +VREF and, -VREF as a function of 

the output signal y, and the sequence thus generated is compared to the input signal x. The 

running average of that sequence of positive and negative pulses is the analog 

representation of x. 

Since the algorithm is based on a comparison between the input signal x and the 

reference voltage (from the internal DAC), Figure 2.4, the efficiency of the technique is 

affected by the noise present at those two nodes, in other words, by the signal-to-noise 

ratio. Hence, an improvement can be obtained either by increasing the input signal power, 

that is VREF, or by decreasing the noise floor, or both. How large can the reference be? 

Ignoring the gain and phase errors a and (they are irrelevant in this analysis, as will13 

become apparent), the output voltage of the first integrator can be shown to be (Figure 3.1) 

r --1 -if -1
U1 = Lz X- z -z )EQJ (3.5) 

where EQ, the quantization noise introduced by Q, is uniformly distributed between 

-VREF and VREF Hence, at the onset of overloading, say lx1 = a VREF (Chapter 2), the 

maximum value that U1 can assume is 

(2 + a) ki VREF (3.6)I ("Lax 

The scaling factor k1 and the reference voltage must be chosen so as to prevent the 

amplifier from leaving its high-gain region (say, ±VmAx ), to avoid distortion. (From this 

perspective, the high-gain region of an amplifier depends on the nominal gain and 

permissible deviation from that value.) For a 2nd-order modulator, a E 0.7 . If 
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VREF = 0.6 V and VMAX = 0.4 V, then we must have kl S 0.25. Although such a large 

output occurs very seldom, with greater incidence in highly oversampled systems (Figure 

3.5), it should not be exceeded to prevent early overloading of the modulator. 

Furthermore, a very large number of samples with values close to the maximum given by 

(3.6) does occur, reinforcing the need for such care. 
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Figure 3.5:	 Average number (simulated) of occurrences of VmAx, per period of 
the (sinusoidal) input signal, as a function of the oversampling ratio. 

Although expression (3.6) suggests that we have two degrees of freedom, this is 

not necessarily true. Indeed, in Chapter 2 we concluded that achieving minimum power 

dissipation requires making the reference voltage as large as possible relative to the power 

supply voltage. For this reason, the choice of the reference voltage should not be based on 

(3.6), rather it should be determined by constraints imposed by the implementation. For 

example, for maximum signal swing (and dynamic range), the input and output signals 

should be centered at the output common-mode voltage, usually half of the power supply 

voltage VDD. Hence, the maximum value that the reference can assume is also VDD/ 2 , 
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which would correspond to utilizing the power supply rails (0 and VDD) as the reference 

voltages. This, however, can impact significantly the performance of the system, as noise 

(mostly from switching digital circuitry) may corrupt the power supply. Therefore, VREF 

should be chosen such that it can easily be generated on-chip. Generating a reference 

voltage on-chip implies that a buffer stage has to be implemented to supply current to the 

load. This function is most efficiently realized if the devices of the output stage of the 

buffer operate in the region of highest gain. Hence, the voltages generated cannot be too 

close to the power supply rails, as the devices must operate in their saturation region. 

System requirements (interface compatibility, etc.) may impose additional restrictions on 

the value that the reference can assume. 

Once the maximum value for VREF has been identified, equation (3.6) can then be 

used to calculate the maximum value of the scaling coefficient k1, based on the knowledge 

of the region of high gain of the amplifiers. If the latter is not known precisely at this point, 

a somewhat conservative approach should be followed. It is worth noting that the scaling 

coefficients should also be made as large as possible, since this results in larger signal-to­

noise ratio. 

Interestingly, equation (3.6) corroborates the otherwise empirically found results 

proposed by other authors as the "optimum" scaling coefficient for the first stage, 1/2 in 

[37] and 1/3 in [38]. Clearly, the maximum value that k1 should assume is 

1
k1max 2 + a (3.7) 

which will happen when I Ui I = VREF . Note that the objective is to maximize the 

reference voltage to improve the dynamic range, which should then be as close as possible 

to VDD. If VREF = VDD AV1 and lUil = VDD V2,' attaining low-power in a low­
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voltage environment invariably requires OVA A V2 . This is an entirely new design 

philosophy, when compared to a 5 V (or more) design. 

Since a is close to one, (3.7) indicates an optimum value close to 1 /3 . (In [38] the 

authors utilized a 2+1 cascaded topology, where the overload point is determined by a first 

order section; hence a = 1 .) Note that this says that the scaling coefficients should be such 

that the maximum value of signals internal to the system should equal the value of the 

reference voltage. In principle, if there are no constraints regarding the minimum value of 

1 1REF it should be always possible to attain such condition; as the power supply voltage is 

reduced, however, this implies that the choice of the value of the reference voltage will be 

rigidly determined by the linear output swing of the amplifier. 

To summarize this discussion, for maximum dynamic range and minimum power 

dissipation, the reference voltage should be made as large as possible, and equal the width 

of the high-gain region of the amplifier. This maximizes the scaling coefficients (higher 

SNR), and makes them independent of the power supply voltage. A larger value results in 

early overloading due to saturation of the amplifier, or requires a smaller scaling 

coefficient, with some degradation of the SNR (a conservative approach). A smaller value 

under-utilizes the linear swing of the amplifier resulting in increased power dissipation. 

(The amplifier noise was not considered in the foregoing discussion. Its effect will be 

analyzed later in this chapter.) 

The other approach to improving the dynamic range of the modulator is to reduce 

the noise floor. The lower the noise floor, the higher the resolution. As in Chapter 2, we 

will assume for the moment that the (kT/C) thermal noise is the fundamental limiting 

factor; hence the size of the sampling capacitor is closely related to the noise floor. 

To determine how the sampling capacitor should be sized, one requires knowledge 

on the implementation of the input stage. As it is shown in Figure 3.1, the integrator takes 
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two signals, the input signal and the feedback (reference) signal. (As discussed, both 

branches are critical in determining the performance of the modulator.) The reference 

voltage can be utilized (or fed back) in one of two forms: double- or single-valued 

reference. The former implies the generation of two voltages centered around the mid-rail 

voltage, VDD/ 2 ± VREF, which are subtracted from the input signal. The latter requires 

only one internal voltage, VDD/ 2 + VREF, which is passed through a switched-capacitor 

branch, configured either in a positive- or negative-charge transfer mode. The selection of 

VREF' or a particular configuration of the feedback SC branch, is a function ofVREF 

the output signal y (Figure 3.1). Figure 3.6 illustrates four possible, single-ended, 

implementations of these solutions, and the timing diagram. 

a) c)
 

Cf
 

b) 

1 Gin 2 

27, 

2 Cif
±Vref
 

Timing diagram:

11 1 

2 1 2 

Figure 3.6:	 Switched-capacitor, single-ended implementation of the first 
integrator with a) double reference voltage -- single input branch, b) 
double reference voltage two input branches, c) single reference 
voltage three input branches, and d) single reference voltage -- two 
input branches. 
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These solutions present both advantages and disadvantages. The one depicted in 

Figure 3.6a takes the least area, and since the input signal and reference paths share the 

input capacitor, it also contributes the least noise power (kT/C noise as well as charge 

injection). A disadvantage of this solution is that incomplete settling of the reference 

voltage buffers results in a residual term which is a function of the input signal, thus 

causing distortion. A way to circumvent this difficulty is shown in Figure 3.6b, where an 

additional SC branch is utilized for the feedback signal. Now, the residual term resulting 

from the incomplete settling of the reference buffers is not a function of the input signal, 

resulting only in a gain error. (Later in this chapter we will analyze in greater detail the 

effects of non-idealities associated with the feedback path.) An important drawback is 

that two contributions of kT/C noise are present, one from Cin and another from Cif. 

To evaluate the effects of both capacitors on the noise performance, one must refer 

the total noise power to the input, since this is where the input signal is applied. Referring 

the feedback signal to the output of the integrator, and then to the input, one concludes that 

the noise power at the input node eT2 
is 

2 2e T2 = e + e (3.8)Cin Cif 

2 kT 2 kT (Cif 2 ( C 
OSR C in+ OSR C 

2 kT ( 
1 +

OSR Cin C 

If COs much smaller than Cin, the contribution of the feedback path is negligible. 

But this requires that the input signal amplitude be much reduced to prevent overloading. 

(The technique is useful, however, in the implementation of a low-amplitude dither 

signal.) In practice, Cif ?_ Cin and the total input referred noise power is at least doubled. 

Hence, to maintain the signal-to-noise ratio Cin also has to be, at least, doubled for the 

same reference voltage. A larger capacitance results in increased power dissipation. 
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The structure in Figure 3.6c has the advantages and drawbacks of the one in Figure 

3.6b, but requires only one internal voltage, with the benefit of lower power dissipation 

and perhaps smaller area. Note that although the structure in Figure 3.6c requires three 

input SC branches, the differential implementation requires only one additional input 

branch, as the ones implementing the feedback path would be shared (they are not used 

simultaneously). It is also possible to use a single SC branch to implement the feedback 

path when a single-valued reference is used, as shown in Figure 3.6d. This approach is 

not very popular, however, as the comparator has to be able to settle in the beginning of 

the comparison phase since it does not benefit anymore from a half ofa clock cycle delay. 

Additional logic control circuitry is also required to provide the proper charge transfer 

mode. 

We can now extend the results derived in Section 2.5 to determine the minimum 

power dissipation when we know how the input stage is implemented. Expression (2.13), 

here repeated as (3.9), still applies requiring only a few changes to accommodate the 

details of the implementation illustrated in Figure 3.6. The dynamic range at the input is 

given by 

Lc J MAXDR = 
2kT (3.9) 

Cin OSR 

r 2 
where LCYx MAX is the maximum input signal power. Note that we did not assume that 

2/
the maximum signal power was given by (a V REF) 2 , for reasons which will shortly 

become clear. 

The utilization of separate SC branches for the input and feedback paths requires, 

as shown above, that we multiply the denominator of (3.9) by 1 + Cif/Cin. In a fully 
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differential implementation, there are twice as many sources of noise, hence the 

denominator should be multiplied by two. However, since the signal is differential, it 

amounts to using a reference voltage with twice the value and the numerator should be 

multiplied by four. These facts can be combined to yield the following general expression 

for the dynamic range 

[45 ,c21mAx OSR C
DR = (3.10) 

1+ kT 
Gin) 

where Cif should be made equal to zero when the input and feedback paths share one 

single SC branch. Given the maximum value of the input signal power and oversampling 

ratio, one can use (3.10) to find the minimum value for Cin required to attain a specified 

dynamic range DR. 

In analogy with Chapter 2, we can determine the minimum power dissipation 

resulting from using one or two SC branches at the input. In the more general case of two 

SC branches (input and feedback), the power dissipated per cycle (energy delivered) in 

charging and discharging Cif, and Cif is 

P2sc = Cin V2xmax + Cif 172 REF (3.11) 

where V is the maximum amplitude of the input signal (previously a V REF). In 

general we have 

Cm Vxmax = a C,f VREF (3.12)(a 1) 
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Expression (3.12) states that the charge stored in capacitor Cin cannot exceed that 

stored in the feedback capacitor Cif. (If Cif = Ctn. , the input signal amplitude cannot be 

larger than the reference voltage.) Substituting (3.12) in (3.11) yields 

P2SC Gin[fC j-[1+ a2[--,in i1 V2REF (3.13) 
Ctn 

Using (3.10) and (3.12) (the maximum input signal power is V2xmax/2 ) we06x21 MAX = 

arrive at 

2 kT DR (1 + C/Cin) [1 + oc2 (Cif/Cin)] 
P2SC (3.14)

OSR a2 
(Cif 

The power, as given by (3.14), displays a minimum at Cif /Cin = 1/a . Attaining 

this minimum requires scaling the input and feedback signals differently, in such a way 

that the input signal can be made as large as the reference voltage (see (3.12)). For this 

reason, making Cif = Cin does not yield a minimum power solution, except (as 

mentioned in Chapter 2) in topologies in which overloading is determined by a first-order 

section (a 1). When Cif/Cin = 1/a , (3.14) can be simplified to give 

2 kT DR(1+
P2SC, MIN OSR a ) (3.15) 

When the input stage uses only one SC branch, as in Figure 3.6a, the power 

dissipated per cycle in charging and discharging Cin is given by 
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2 ,-,
P1SC C- (a V REF) + uin V2 REF (3.16) 

2 kT DR 1+ a2 
\ 2OSR 

Note that (3.16) does not result from minimizing a more general expression for the 

power, as with (3.15). Figure 3.7a shows the ratio between P2SC,MIN and Pisc as a 

function of a, and Figure 3.7b shows P2SC,MIN and Pisr normalized by 

2 kT DR/OSR. The minimum value of the power dissipation occurs for a = 1 , in 

both cases; or when the modulator does not overload for inputs weaker than the reference 

voltage. Moreover, configurations utilizing two SC branches always dissipate power than 

those using only one. 
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Figure 3.7: a) Ratio between P2scmiN and Pisc. b) P2SC,MIN and PISC 
normalized to 2 kT DR/OSR. 

Figure 3.8 plots the minimum size of the input capacitor and associated power 

dissipation as a function of the power supply voltage, when one and two SC branches are 
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utilized in the input stage. These plots were obtained for DR = 16 bit, and OSR = 256 . 

It was assumed that the reference voltage could not exceed VDD/2 0.3 , and that the 

minimum allowed size for Cin was 0.2 pF (due to matching requirements, charge injection, 

etc.). The power supply voltage varied between 1.5 V and 5 V. 
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Figure 3.8: a) Minimum size of the input capacitor when one and two SC 
branches are utilized in the input stage, as a function of VDD, and b) 
Power dissipation per cycle (energy) when one and two SC branches 
are utilized in the input stage, as a function of VDD. 

A few remarks are in order regarding this Figure. First, as the power supply 

voltage is reduced, larger values of the input capacitor are required to maintain the same 

dynamic range constant. This, however, does not result in increased power dissipation! 

Equations (2.12) and (3.10) indicate that DR, P a C in V2REF . Since DR is kept 

constant through an appropriate exchange of the value of the reference voltage and the 

value of the input capacitor, PAIN remains constant as well. The curves show a 

breakpoint around VDD = 3.4 V and VDD = 3.6 V, for one and two input branches, 

respectively. (These values depend on the choice of parameters utilized in the generation 
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of the plots.) Above the breakpoint, the capacitance required to maintain the specified 

dynamic range is smaller than the designated minimum of 0.2 pF, and the power 

dissipation increases simply because VREF is increasing which, for constant Cin, implies 

an increase of the dynamic range. When two branches are utilized, the noise floor is 

higher, thus requiring larger capacitors. Note that the optimization of the input and 

feedback capacitor ratio for minimum power dissipation results in a total input and 

feedback capacitance smaller than that obtained, had the relationship Cif = Gin been 

used. (The ratio of the two total input capacitances equals (1 + a)2/4, which is always 

less than one. This results from the necessity to increase the size of the input capacitor Cin 

when Cif = Gin , to maintain the dynamic range constant, due to the lower maximum 

value that the input signal can assume.) 

The foregoing analysis assumed that the noise floor was determined by kT/C noise. 

In practice, a number of noise sources and non-idealities have to be taken into account as 

well. To the total kT/C noise power, one should add the noise from the amplifier (intrinsic 

noise). The amplifier contributes mostly two types of noise: thermal and flicker noise 

(also known as 1/f noise). The former can be treated analogously to kT/C noise, as it 

possesses identical properties (white, wideband). Lowering this component will require 

typically larger biasing currents in the amplifier, since it is inversely proportional to a 

transconductance (the gate-referred thermal noise spectral density of a MOSFET in 

saturation is S (f) = 8kT / (3 gm) ). Flicker noise may or may not play an important role, 

depending on the bandwidth of interest and on the implementation. This type of noise is 

usually attributed to trapping and releasing of carriers between the oxide and inversion 

layer (McWhorter's number fluctuation model [39] [40D, with a distribution of time 

constants (superposition of Lorentzian, or generation-recombination, spectra). Since it 

displays a spectral density which varies approximately inversely with frequency, the 

energy is concentrated at low frequencies and is hardly affected by oversampling [41]. To 

reduce the flicker noise power, the area of the critical devices should be increased. Circuit 

techniques such as correlated double sampling (Chapter 5) and chopper stabilization 
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[41][61], can be used as well. However, if the signal band does not extend to values near 

dc, it may not be of concern. 

Capacitor matching may also be a relevant factor. In a delta-sigma modulator, 

unlike in other SC filter applications, the matching between the sampling and integration 

capacitors is not very important, as it results in a linear gain error only. However, in a 

fully-differential structure it is important that both sides of the topology match well, 

otherwise even-order distortion arises. This requires careful layout techniques and 

typically imposes a limitation on the minimum value of the capacitors. For instance, if 

capacitors C1 and C2 are to match well, and due to process variations they see a small 

deviation from their nominal values of AC1 and AC2, respectively, then their ratio can be 

approximated by 

+ AC1 AC1 AC2 _ 1 + - (3.17)C2 + CI C2 

The error term AC/C can assume values as large as 20%, being larger for smaller 

geometries of C (inaccuracy of the lithographic process). However, if capacitors C1 and 

C2 are closely spaced and of identical size, AC1 and AC2 will track and the twoerror terms 

in (3.17) tend to cancel. The minimum size for a given accuracy is dependent on the 

process and has to be determined experimentally [42][43]. 

Another aspect which may restrict the minimum size of the sampling capacitor is 

clock charge injection (Appendix B). The latter occurs during the falling edge of the clock 

signal, to which typically corresponds the sampling of the input signal. Charge injection 

is due to the overlap capacitances and the channel charge of the switches. It results in an 

error term AQ in the charge Q representative of the input signal, stored in the sampling 

capacitor. (This error term usually contains dc as well as signal dependent components.) 

To minimize AQ/Q, one can minimize AQ, maximize Q or both. To minimize AQ, small 
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geometry switches must be used; and to maximize Q we must use a larger input sampling 

capacitor. It should be noted, however, that these procedures are not decoupled: a larger 

capacitor may require wider switches for settling accuracy. A compromise has to be 

reached. 

These issues, kT/C noise, amplifier noise, matching and charge injection, must be 

taken into consideration when sizing the input capacitor, if minimum power dissipation is 

to be attained. (If a particular phenomenon is not well understood, the system has to be 

overdesigned to assure sufficient robustness, and hence more power is dissipated.) If 

these contributions are made negligible compared to kT/C noise, then the previous 

analysis prevails. 

Substrate noise is an increasingly important problem, as larger mixed-mode 

systems are integrated on the same die. Noise due to the switching activity of digital 

blocks propagates through the substrate corrupting sensitive analog nodes. This noise is 

not reduced by the choice of the input capacitor, and if the kT/C noise floor is very low, it 

may render the previous analysis useless. The best defense against substrate noise is the 

utilization of fully differential topologies, careful layout techniques which do not destroy 

symmetry, and physical isolation of analog and digital blocks. 

3.2.2 The operational amplifier 

The main function of an operational amplifier in linear active circuits is that of 

creating a virtual ground a node with constant voltage that sinks no current. Seemingly 

trivial, this feature is essential to analog processing. A requisite for zero current sinking is 

the utilization of high-input-impedance devices, hence MOS technologies are preferred. 

Constancy of the input node voltage requires a linear, low-noise, high-gain amplifier. 

Moreover, the amplifier time constant has to be low enough to permit settling within the 

specified accuracy. 
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For proper operation, the devices inside the amplifier require adequate biasing 

conditions. These conditions translate into the requirement of a minimum gate overdrive 

voltage and drain current (MOS devices). Performance and power supply, therefore, 

determine the power dissipation of an amplifier. The following sections analyze these 

issues in the light of the material of the previous Section. 

3.2.2.1 Power dissipation 

Operational amplifiers are composed of several (often many) transistors with 

various functions. Each device can be modeled by a set of parameters which include a 

number of nonideal elements. Among these we count capacitive and resistive parasitic 

elements. Each node in the signal path can be characterized by an equivalent impedance, 

with a resistive and a capacitive component, and hence a time constant. For this reason, 

an operational amplifier can display numerous poles in its transfer function. However, 

only a few have a sufficiently low frequency to be of concern. These, so-called dominant 

poles, are associated with high-resistance, high-capacitance nodes, typically output stage 

nodes. Hence, a single-stage amplifier, if properly designed, has one dominant pole; a 2­

stage amplifier has two dominant poles, and so forth. In practice, a 2-pole description 

might be more rigorous, even for a single-stage amplifier. However, if the phase margin is 

large (say, greater than 700), then a single-pole description is appropriate and preferable. 

In the remaining of this section we concentrate on amplifiers which can be described by a 

first order transfer function. Chapter 4 analyzes 2-stage amplifiers with Miller frequency 

compensation. 

A single-stage amplifier can be simplistically modeled as shown in Figure 3.9a. 

The stage is characterized by an input transconductance, and an output conductance and 

capacitance. Figure 3.9b shows the same amplifier in a feedback configuration, as in the 

transfer mode in a switched-capacitor integrator. 
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Figure 3.9:	 Small-signal model of a single-pole amplifier in a) stand-alone 
configuration. b) feedback configuration. 

The amplifier was modeled as consisting of a number M of elementary amplifiers 

in parallel, each characterized by input and output elementary parasitic capacitances Cpio 

and Cp20, an elementary output conductance g0, and a current density. The current density 

determines the current IO flowing through the elementary stage, such that the total current 

equals M 10. The performance of the circuit can thus be controlled by varying M, and by 

varying the current density (through the gate overdrive voltage VGsT = VGs VT). In 

the analysis to follow, it is assumed that the input and output devices are designed to have 

the same, small perhaps, gate overdrive voltage. A small VGST is recommendable in 

devices contributing to the gain of the stage (high gm/1 ratio), but not for elements in 

current sources. One of the issues which arises from using small VGST in the devices 

composing current sources, is a poor control of the current flowing in that branch 

(matching to the reference current), resulting in significant variations in the operating 

point (hence performance) with process variation. This means, of course, that the power 
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dissipation is poorly controlled as well. Another issue relates to current modulation from 

power supply noise. Noise in the power supply line introduces variations in the gate 

overdrive voltage; to minimize this effect, or improve the power supply rejection, the 

ratio A VGsT/ VGsT should be kept small. The only variable within strict control of the 

designer is VGsT, which should consequently be made as large as reasonably possible. In 

low-voltage operation, however, the VGST of all the devices in the output stage should be 

small for large swing, current sources included. This condition will require a compromise 

and a careful evaluation of the matching and noise requirements. 

Matching considerations were partly the motivation for modeling the amplifier as a 

parallel combination of several (M) elementary amplifiers. The total current in the stage is 

obtained by adding replicas of a reference (bias) current several times. Since the devices 

have the same dimensions and the same terminal voltages, the drain currents have superior 

matching. Another reason is that it greatly simplifies the analysis, as most parameters can 

be expressed as the product of an elementary parameter and the (common) multiplicity M 

of the device. 

In Figure 3.9b, the value of the input capacitor combines the loading effect of both 

input and feedback capacitors, Gin and Cif, such that minimum power dissipation is 

achieved (cf. Section 3.2.1). The integration gain k is defined as the ratio between the 

input capacitor Gin and the integration capacitor Cf. Also included in the model is the 

effect of the bottom-plate (BP < 1) capacitance of the integration capacitor. Since we 

expect the power dissipation of the amplifier to increase with the capacitive load, the 

condition which corresponds to minimum power dissipation in the process of sampling the 

input signal, Cif/Gin = 1 /a , also corresponds to minimum static power dissipation for 

the amplifier, as the total input capacitance is then minimized. 
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Using a quadratic model for the MOS devices [44], the input transconductance can 

be expressed as 

alp 
gm = ava (m- '2-172GST = M B VGST (3.18)2
 

aVGS GS
 

where B = k' (W/L) (1 + X . Kos) contains information about the 

transconductance of the unit devices and the channel modulation effect. Applying the 

KCL to the network in Figure 3.9b, one can determine its natural frequency, which is the 

closed-loop bandwidth BW (pole) of the amplifier. It can be shown (Appendix A) that the 

following relationship holds: 

2 a BW + gmo+ b go e BW ,2M + C.
in M+ in (3.19)C BW+d ga BW +d 

Expression (3.19) relates four important parameters in the design of an amplifier: 

the bandwidth (hence the settling time), the gate overdrive voltage (through gm0 and go), 

the size of the devices (through the multiplicity M of the elementary stage), and the 

dynamic range (through the size of the input capacitor Cin). The coefficients a through e 

depend on the parasitics of the elementary stage and on parameters which will typically 

remain constant (with possible exception of the integration gain k). However, (3.19) 

appears in a rather convoluted form, and some simplification would be desirable. For that 

purpose we will investigate the effect of discarding the terms containing the output 

conductance go. Solving (3.19) for the closed-loop bandwidth BW when go is present and 

when it is not, and taking the ratio of the two results, one arrives at 

BW
 
with go Cp101


= 1+ ° +k- 1+1+M (3.20)BW a CgM0
without go 

I . 
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For typical values of the parameters involved, g 0/ gmo 10
-2 

10-2 ,t" p10/ `-' in 

k, a 10 , this ratio is very close to one, even for very large values of the multiplicity M 

(where this simplified model is not valid anymore). We will therefore ignore the output 

conductance, bearing in mind the limitations of the model. Using a positive frequency 

notation for the bandwidth BW (equation (3.19) reflects the fact that the pole is in the left-

half complex plane), (3.19) can be simplified to yield 

.,2 +(a VGST 2in 
m b = 0 (3.21)BW) CinM÷CC 

where the coefficients a, b and c are given by 

1 1(1±1÷1)÷ (1 +BP) 
(3.22)

k a Cp20 kCp10 

b k C 10 Cp20 

1+-1 +BP(1+k +a)a
 
k C
 Cp20 

Expression (3.21) assumes a considerably simpler form than (3.19), and explores 

the trade-offs among various important parameters. It can be used, for instance, to 

determine the maximum bandwidth attainable by varying the multiplicity M (with other 

parameters constant). This value can be shown to be 

b 
BWmAx = VGST (3.23)

2 ,fc + a 
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for which M = ,rc Gin is required. Note that BWmAx is not a function of the input 

capacitor Cin (or a very weak one if the output conductance is taken into consideration). 

This result is comparable to that obtained for the cut-off frequency (f7) of an MOS device, 

in the sense that the maximum attainable bandwidth is determined by the intrinsic 

parameters of the device, here the unit device, and not by the surrounding circuitry. 

However, the value of M required to attain this maximum bandwidth is a function of the 

input capacitor, and hence of the power supply voltage and dynamic range. The reason for 

the existence of such maximum is that for moderate values of M, the feedback coefficient 

= [1+ (1/ a + 1) k+ M (I c- Cpio/Cin)] (3.24)1 

remains essentially constant, and since the transconductance increases with M, so does the 

bandwidth. As M assumes very large values, however, 13 decreases, virtually forcing the 

amplifier into open-loop operation, with a larger time constant. 

At this point it is pertinent to analyze the coefficients in (3.22) for magnitude. The 

exact quantification of these parameters requires knowledge of the topology of the 

amplifier, as well as the process parameters and dimensions of the devices used in the 

elementary amplifier. Two architectures which can be described in a fairly accurate 

manner by the model in Figure 3.9 are the cascode amplifier (also called telescopic 

cascode) and the folded cascode amplifier, shown in Figure 3.10. These structures were 

chosen for their popularity, although some other topologies would also be good 

candidates. The objective is to identify the origin of the parasitic capacitances C1,10 and 

Cp20. (The utilization of cascoding justifies even further neglecting of the output 

conductance in our model.) The input parasitic capacitance Cp10 contains three terms: 

one from the gate-to-channel capacitance, and two others due to the thin-oxide overlap of 

the gate and the drain and source diffusions of device Ml. The first term assumes values 

in the order of 40 fF for n-type devices with an elementary area of about 20 pin2 (0.6 0.8 
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tm processes). For the same area, the other two terms assume values in the order of 5 fF. 

If we opt to use p-type input devices, these values increase by a factor of two to three, due 

to the lower hole mobility (thus requiring wider devices to attain the same current 

density). Hence, ( C pio) = 5 10-14F and ( pio) 10-13F. Note that the gate-drain 

overlap capacitance was simply added to Cp10, as the cascode device greatly reduces the 

Miller multiplication effect. 

The output parasitic capacitance Cp20, which is the same for both 

implementations, contains four terms: two drain-to-bulk junction capacitances and two 

thin-oxide overlap capacitances (gate-to-drain), from the n- and p-type devices. The first 

two assume values in the order of 20 30 fF, and the last two in the order of 5 ff. Hence 

Cp20 has the same order of magnitude as Cp10 for n-type input: Cp20 = 5 10 
14 

F. 

a) b) 

M4 

M3 
M1 

V, V,
Vin 

M2 

Vin M1 

Figure 3.10: Simplified single-ended implementation of a a) telescopic cascode 
amplifier. b) folded-cascode amplifier. 

The parameter B = k' (W/ L) (1 + X 17D5,) assumes values in the order of 

300 tA/V2, hence B = 3 10-4A/V2. The capacitance associated with the bottom plate of 
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a capacitor is about 15% to 30% of its nominal value, therefore BP 2 10 . As 

discussed in the previous section, a, k = 5 101 . Introducing these orders of magnitude 

in (3.22) one obtains a ------
14 

b =, 1023 AV-2F-2 and c 1027 F-2. 

Figure 3.11a plots the static power dissipation PA of a single-stage amplifier as a 

function of the power supply voltage VDD. Figure 3.11b plots the ratio between the 

amplifier static power dissipation and the minimum power dissipated at the input sampling 

network, as derived in Section 3.2.1. These plots were obtained using the following 

parameters: DR = 16 bits, OSR = 256 , and VGsT = 0.3 V. The reference voltage was 

set at VDD/2 0.3 V and the integration gain was chosen to be k = 1/ (2 + a) (hence 

the swing of the amplifier equals the value of the reference voltage). The minimum size of 

the input capacitor was set at 0.2 pF. The bandwidth BW was derived as the minimum 

bandwidth required to achieve DR (bits) linear settling accuracy within (3 / 8) Ts (this is 

a typical value, but we will return to this issue shortly), where Ts is the sampling period 

(here assumed to be 500 ns). Using this criterion, one can derive the following condition 

for the minimum value of the closed-loop bandwidth: 

BW > 1.85 DR [bits] [rad/s] (3.25) 

The power dissipation was calculated as a result of the minimum multiplicity M 

required to satisfy (3.21). 
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Figure 3.11: a) Amplifier (fully-differential folded-cascode) static power 
dissipation. b) Ratio between the amplifier static power dissipation 
and the minimum dynamic power dissipation in the sampling 
network. 

As mentioned briefly in Chapter 2, the power dissipation of the amplifier increases 

with decreasing power supply voltage, as long as the noise floor is determined by thermal 

noise. Indeed, from Figure 3.11a, one can conclude that a minimum is reached when the 

performance starts being dominated by such type of noise (see the breakpoints at 

3.4 V and VDD = 3.6 V). When the power supply voltage is sufficiently high, the VDD 

size of the input capacitor is likely to be determined by considerations related to other 

practical limitations or even other sources of noise. This is an interesting point, as we 

made no mention, for instance, of quantization noise in this analysis. The choice ofa 2nd­

order (or any order) structure implied that for a given OSR, quantization noise would not 

be a limiting factor. This is essentially different from the traditional approach, where 

topologies were chosen or optimized for low quantization noise power, because that was 

indeed the limiting factor. When designing for low-voltage operation, we choose a 

structure which is known to exceed the requirements, and then size the sampling network 
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to meet the specification while minimizing the power dissipation. Clearly, that minimum 

is reached when the input capacitance is minimized. 

Figure 3.11b shows that the static power dissipation of the amplifier can exceed 

significantly the power dissipated in the sampling network. In Chapter 2 we mentioned 

that their ratio assumed typically three or more orders of magnitude. These results are not 

contradictory as different sources of noise, design tolerance and bias circuitry were not 

taken into account. 

An aspect which may seem to have been overlooked is the static power dissipation 

due to slewing requirements. The minimum current required to prevent slewing can be 

easily derived. According to the criterion used to obtain (3.25), the maximum time 

allowed for slewing is Ts/8. The maximum signal step that can occur at the output of the 

amplifier is lc- VREF, where k is the integrator gain factor, as the input signal is 

oversampled. It can be shown (Appendix A) that the minimum current ISB required for 

slewing (according to this criterion) is 

ISR 8 k VREF fs. CL (3.26) 

where 13 is the amplifier feedback factor and CL is the capacitive load which, in 

conjunction with the transconductance of the input stage, determines the time constant of 

the amplifier in closed-loop operation (BW). This current is to be compared with the 

current IBS, required to obtain the bandwidth BW, according to (3.21) -- from M and 

(3.25): 

1.85 VGsT DR [bits] 
IBW CL (3.27)

2 
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Taking the ratio of the two currents one obtains 

IBW 1 VGST1 () DR [bits] (3.28)8.65 kISR 13 VREF 

Figure 3.12 plots this ratio as a function of the power supply voltage when the 

dynamic range is 12 bits and 16 bits (the remaining parameters assume the values used 

previously). 

Figure 3.12: Ratio between the minimum current to obtain the required closed-
loop bandwidth, and the minimum current required for slewing, for 
DR = 12 bits and DR = 16 bits. 

In general, the current required to achieve the desired settling accuracy exceeds 

that required for slewing, although a different combination of parameters may yield 

different results. The nearly 1/x dependence with the power supply voltage is due to the 

linear variation of the reference voltage with VDD. The feedback factor is also a weak 

function of VDD. In practice, we may be forced to reduce slightly the gate overdrive 
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voltage as VDD is much reduced. The effect will, however, only moderate the steepness of 

the curve. The situation is aggravated for a larger dynamic range, as the load is increased 

to reduce the noise power. It should be pointed-out that the capacitive load seen during 

slewing is always smaller than the capacitive load seen during linear settling; in Appendix 

A it is shown that (CL) = p (C )
Stewing L Settling'uting 

Analysis reveals, however, that the previous criterion can result in increased power 

dissipation. Indeed, it is obvious that the current required for either settling or slewing is a 

strong function of the time allocated for that mode of operation. Consider a more general 

scenario where the time allocated for slewing is m Ts, and the time allocated for settling 

is (0.5 m) -Ts, with m e [0,1/2] . (In practice this interval is somewhat smaller, for 

various reasons.) Appendix A shows that in such case the current required for settling is 

ln 2
Bw = (1_ m) 4 VGST DR [bits] CLac (3.29) 

and that needed for slewing is 

2 , 
(3.30)SR = (--), v REF .1 s 'Lac 

Figure 3.13 shows pictorially the dependence of these currents on m. It is clear that 

the choice for in should be that where both curves meet, since it is the large value of IsR 

and IRw which determines the minimum current that will satisfy both requirements. So, 

mops yields minimum power dissipation. Note that this criterion may not result in a global 

power minimization. For instance, in a two-stage amplifier both stages can be slew-

limited. The slewing in the first stage is limited by the current in the input device and the 

compensation capacitor, and so is the unity-gain bandwidth. Hence, mops can be 

determined from the first stage requirements, and its power minimized. In the second 
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stage, however, the level of current required to achieve a proper phase margin usually 

exceeds that required for slewing, and the above analysis is irrelevant. Nevertheless, some 

local optimization is possible. From (3.29) and (3.30) one easily arrives at 

1 mop (3.31)t 
1n2 (DR[bits]) VGSTi 
2 k ) VREF 

Figure 3.13: Qualitative behavior of the minimum current required for settling IBw 
and of the minimum current required for slewing IsB, as functions of 
the fraction m of the sampling period. 

As an example, let us compare the previous situation where m = 1/4 with the 

one where we use the optimum value of m according to (3.31). The parameters are 

VGST = 0.3 V, V = 0.6 V, DR = 16 bits, k = 1/4 , and p = 4/5 . Equation (3.31) 

yields mops = 1/15 ! This is a very small fraction of the clock cycle. From (3.29), or 

(3.30), we conclude that the required current is therefore, 1 = 3.6 -4 CL . If we use 

m = 1/4 , then the minimum current value is given by (3.29), as can be appreciated from 

Figure (3.13), yielding I = 4.44 .4 CL , a value about 23% higher. Despite the huge 
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difference between the values of m (almost four times), the increase in the current is not 

proportionally larger. This is owed to the weak sensitivity of iBw to variations in m for 

small m (see Appendix A, also Figure 3.13). Had we used a smaller value for m (smaller 

than mops), the increase in current would have been larger, as it would be dominated by the 

slewing current. 

The component noise originating in the amplifier itself must be also taken into 

account. In the analysis to follow we will consider the contribution of thermal noise only 

due to its wideband characteristics. 

The input-referred noise power for the topologies in Figure 3.10 is given by 

2e in )cascode = 2 e ml + gmm4i e2M41 (3.32a)( 2 
gmM1 

2 2 gmM4 2 g mM5 
2 

2(e in)Foldedcascode = Ie + e2M4+ (3.32b)
[gmmi j [gmmiJ 

where the factor 2 arises from considering a fully differential structure. A worst-case 

scenario occurs when all the devices are sized to have identical transconductances (the 

input device is typically designed to have the highest transconductance). In this situation 

the devices M4 and M5 possess the same noise gain as the input device M 1 . Hence, we 

need only to calculate the integrated noise power for the input device and multiply the 

result by the appropriate factor. To avoid tedious repetition, we will focus on the folded­

cascode structure only. The results can be easily re-derived for a regular cascode structure. 

The input-referred power spectral density of the thermal noise for an MOS device in 

saturation is, as mentioned earlier, S (f) = 8kT/ (3g.), and the total input-referred noise 

power spectral density is S (f) = y 8kT/ (3g.), where y is a noise excess factor. (y 

accounts for the presence of all devices, and represents their noise normalized to that of 
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the input transistor. Under the worst-case assumption that all devices possess the same 

transconductance, y = 6.) 

To calculate the total input-referred noise power, one must take into account the 

transfer function of the amplifier and the feedback configuration. The equivalent noise 

bandwidth is B eq = BW) /2, where BW is the closed-loop bandwidth (in Hz), as 

defined earlier. Hence, the total baseband output noise power is given by 

e20 -=- Beg S (0) 111 (0) 12 (3.33) 

where S(f) is the amplifier input-referred noise power spectral density, and H(f) is the 

closed-loop transfer function of the amplifier: 

Ao
 

1 + 13 Ao

H(f) = (3.34) 

1 + f 
BW 

Substituting (3.34) in (3.33) one easily arrives at 

2 kT
e20 = (3.35) 

13) 3 (C L) Stewing 

This value has to be referred to the input of the switched-capacitor integrator, and 

the oversampling ratio taken into account. Moreover, by using the relationship between 

the capacitive loads seen during settling and slewing, further simplification is allowed. 

One then obtains for the total in-band input-referred integrated amplifier white noise 

power: 
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2 kT
e2m, = 7 (3.36) 

OSR k2) 
3 

(CL) settling 

Expression (3.36) indicates that, to first order, the thermal noise power of the 

amplifier is a function of the load capacitance only (actually of the compensation 

capacitor), and not of the transconductance of the devices. This is particularly valid if the 

dominant contributor is the input device. 

The total in-band noise power, as given by (3.36), will now be compared with the 

kT/C noise originating in the sampling network. Combining (3.8) and (3.36), one arrives at 

the following result for the total input-referred thermal noise for a differential structure 

(with two input SC branches sized to minimize the power dissipation): 

(
 

2 4 kT (1 + a) 6 k2 1 + a
e in = (3.37)OSR C1.11 a (CL) settlin/ Ging 

The right-most factor in parenthesis is the noise power excess factor due to the 

amplifier thermal noise: 

y a
 
6 k2 1 + a
yw = 1 + (3.38)

(CL) settling/Gin 

The expression for the capacitive load seen during settling is derived in Appendix 

A, and is a function of the parasitic elements, gain factor, and stage multiplicity. Using 

this result one obtains 
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(CL) 
Settling Cp 10 Cp20 k M2 (3.39)

Cin in 

{[l (1 k] Cp20 Cp10 
M 

Ciro Cin 

+(1++)BP+1+1
k a 

Note that for moderate values of the stage multiplicity M, the ratio in (3.39) can be 

approximated by the term independent of M. This weak dependence on the stage 

multiplicity is clearly demonstrated in Figure 3.14, which plots the noise excess factor in 

(3.38) as a function of the power supply voltage. For the purpose of comparison, the cases 

corresponding to y = 2 and y = 6 , best and worst cases, respectively, are shown. It is 

clear that the total thermal noise can be significantly degraded (about a factor of two, for 

the set of parameters utilized) due to the contribution of the amplifier. This implies that 

the size of the input capacitor has to be made larger (yw times larger) to accommodate this 

excess without degrading the performance. For instance, for yw = 3 dB, the size of the 

input capacitor doubles. 

Interestingly, due to its extremely weak dependence on the size of the amplifier 

(M), can be estimated based solely on knowledge of the architecture (a), and the 

relative dimensions of the bottom-plate capacitances in the process (BP) (assuming that 

the optimum value of k in (3.7) is utilized). Under these circumstances, the larger the 

value of a, the higher the excess noise factor yw. This is not surprising as it corresponds to 

using a smaller gain factor k; once referred to the input, the amplifier noise power is 

divided by k2, and it is desirable that this quantity be as large as possible. More 

importantly, a small a results in a larger total input capacitance, hence in a narrower 

equivalent noise bandwidth (less noise). Similarly, yw is a decreasing function of an 

increasing BP. Recall that the bottom-plate capacitance loads the amplifier directly 

(Figure 3.9b), and larger values of BP result in a higher capacitive load of the amplifier. 

One can therefore conclude that the steps which should be taken to minimize the power 
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dissipation (leading to small capacitances) are in conflict with those which should be taken 

to minimize the thermal noise power (leading to large capacitances). 

2.6 
y= 6 

2.4 

w 1.8 

o 1.6 
a)
 

-(1) 1.4
 
z
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2 3 4 5 
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Figure 3.14: Thermal noise excess factor at the input, due to amplifier noise. 

It is possible to exchange the input and output capacitance to achieve the same 

dynamic range while maintaining approximately constant the power dissipation of the 

amplifier. This exchange results neither in less total capacitor area nor lower power 

dissipation, and consequently might not be of obvious advantage. However, it results in 

smaller input capacitor sizes, which relaxes the performance requirements on the CMOS 

switches, and provides a heavier capacitive load during the sampling mode, therefore 

improving settling. (The former is particularly important in low-voltage and moderate- to 

high-frequency operation, and will be discussed in greater detail in Chapter 4.) The value 

of the input capacitor required to attain a given dynamic range in the presence of amplifier 

noise is, as discussed above, Gin where Cin is determined by the kT/C noise in the 

sampling network only. It can be shown that if a capacitor with value Co is connected to 
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the output of the amplifier, the noise excess factor yw = 1 + ywo becomes (again 

neglecting the terms affected by the stage multiplicity) 

y, = 1+ Iwo , (3.40) 

1 + TI 
Cinj 

where 1,4,0 and ri are given by 

a (2+ a) 2
 
y 1 + a
 

Ywo 6 (3.41a) 
3 +a+-1)BP+ 1 +-1 a a 

1 + 3 a + a2 

1 = (3.41b)(2+a) (1 +a+BPAl+a (3 +a)1) 

The load capacitance, to which the amplifier static power dissipation is 

proportional, is given by 

C = (1 + ywo) 0 Cin 
L, Without C 

C--= 1+ YwO 
+ 0] Cin (3.42)

L, With C C
 
1 +
 

Cin 

with v and 0 given by 

(3 +a+-1 )BP+1+- 1= a a 
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1 + av = 1+ (3.43)a (2 + a) 

Figure 3.15 plots the ratio of the load capacitance with Co included to that without 

Co, as a function of the ratio Co/Cin , curve (a), and the size of the input capacitor with Co 

normalized to that without Co, also a a function of Co/Cin , curve (b). The input 

capacitance was chosen such that the noise excess in (3.40) was unity (in order to meet the 

noise floor specification), and the ratio Co/Cin varied. Adding capacitance to the output 

does indeed increase the total capacitive load CL, but since it permits some reduction in 

the size of the input capacitor, this load increases more slowly than if the input capacitor 

had been kept constant. For the case shown, using Co/Cin = 1 results in a load increase 

of about 32% and a decrease in the size of the input capacitor of 18%, while maintaining 

the same thermal noise performance. The load increase may not necessarily require a 

corresponding increase in the current of the amplifier, if the resulting error is linear and the 

quantization noise leakage negligible, as discussed in Section 3.1. The smaller size of the 

input capacitor, however, leads to smaller switches (the ON-resistance can be larger by 

18%), and less associated parasitics (which improves power supply rejection and substrate 

noise immunity). 
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Figure 3.15: Amplifier load capacitance with Co, normalized to that without Co, 
(a), and input capacitor size with Co, normalized to that without Co, 

(b), as a function of the ratio Co/Cin . 

In the foregoing analysis the first stage gain factor k1 was always given by (3.7). 

In connection with this expression, we discussed the effects of choosing different values 

for k1 and VREF. In particular, it was mentioned that using a value for the reference 

voltage larger than the value corresponding to the high-gain region of the amplifier, and 

consequently a smaller value for k1, would result in some degradation of the SNR due to 

increased input-referred noise. 

To analyze the trade-off we will make use of expressions (3.37), (3.38) and of the 

discussion thereof. The dynamic range clearly displays the following proportionality: 
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112REFDR cc (3.44)
Yw 

where yw is a function of VREF through (3.6). As can be appreciated from (3.38) and (3.6), 

y, is an increasing function of VREF since a larger reference implies the use of a smaller 

gain factor k. However, this increase is weaker than the square of the reference voltage, 

and hence the dynamic range actually increases slightly. This means than the input 

capacitance can be made smaller, therefore reducing the power dissipation. Let us give a 

numerical example. Consider a = 0.7 , Ulmax = 0.4 V, BP = 0.2 , and y = 6 (worst 

case). In principle, one would choose VREF 0.4 V yielding a maximum= 

k = 1/ (2 + a) = 0.37 , which is independent of the power supply voltage. Figure 3.16 

plots the dynamic range, expression (3.44), as a function of the reference voltage, 

normalized to the value obtained when k = 1/ (2 + a) . The figure plots also the gain 

factor k and the noise excess factor yw. Clearly, using a reference voltage larger than 0.4 V 

results in increased dynamic range. For instance, using VREF = 0.6 V (and k = 0.25 ) 

yields an improvement of about 1.7 dB in DR, relative to VREF = 0.4 V. However, this 

does not take into account the increased input-referred noise power due to subsequent 

stages of the modulator. Noise injected at the input of the second stage, once referred to 

the input, will have a power about 3.4 dB larger if VREF = 0.6 V is used 

(3.4 = 20 log10 (0.37/0.25) ). This may not be of much consequence since it is first-

order noise shaped, but the trade-off should be exercised carefully, or overall degradation 

of the dynamic range might result. 

http:0.37/0.25
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Figure 3.16: Dynamic range as a function of the reference voltage, normalized to 
the value obtained when VREF = 0.4 V. Also shown are the excess 
noise and gain factors. 

3.2.2.2 BiasingSwoperational amplifier 

An important aspect of the design of operational amplifiers for low voltage 

operation is the bias point of the input and output stages. Large dynamic ranges can better 

be achieved if the signal swing is also large, therefore the operating point should be placed 

so as to maximize both positive and negative excursions of the signal. Moreover, they 

should be symmetrical, unless the requirement is explicitly different. 

We will now analyze four popular amplifier structures for their biasing 

requirements and minimum power supply voltage. Figure 3.17 shows a basic differential 

pair (a), a telescopic cascode amplifier (b), a folded-cascode amplifier (c), and a 2-stage 

amplifier with Miller frequency compensation (d) (with only one side of the output stage 
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shown). (Only fully differential implementations will be considered here, since they 

outperform their single-ended counterparts.) 
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Figure 3.17: Four popular amplifier topologies: a) differential pair, b) telescopic 
cascode amplifier, c) folded-cascode amplifier, and d) two-stage 
Miller amplifier. 

The traditional approach to biasing these structures is simply that of making the 

input and output common-mode voltages equal to half the power supply voltage, VDD/ 2 . 

However, as VDD is reduced, the optimum bias point for the input stage has to be made 
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larger, or smaller (depending on the type of devices used in the input stage), than VDD/2 

to accommodate the asymmetry of this stage. In general, the optimum bias point for the 

output stage will remain equal or close to VDD/2 , since this maximizes the output signal 

swing. (As mentioned above, this may change if the output stage is asymmetric or if the 

following stage requires a low or high input common-mode voltage, for instance, a 

continuous-time buffer stage). 

Hence, two scenarios can be pictured. One occurs when the input and output 

common-mode voltages are equal to VDD/2 , and the other when they can be set 

independently. The structures shown in Figure 3.17 utilize the same input stage (n-type 

input differential pair), and hence have the same requirements regarding the input 

common-mode voltage. For proper operation of the input devices (for the purpose of this 

analysis we define "proper" as operation in strong inversion and saturation), the minimum 

input dc voltage is VD, + 2 AV, where AV is the magnitude of the drain-source 

saturation voltage (here assumed to be equal for p- and n-type devices), and Vivo the 

threshold voltage of the input transistors. If this dc voltage is equal to VDD/2 , the 

minimum power supply voltage is clearly given by 

VDD) min = 2 VD/ + 4 AV (3.45) 

In order to use a value lower than that given by (3.45), one must bias the input and 

output stages independently. The absolute minimum power supply voltage that can be 

used corresponds, according to the definition of proper operation given above, to having 

all the devices operate at the onset of saturation that is, when I VDs1 = AV. Therefore, it is 

predictable that structures employing cascoding may be in disadvantage in a low-voltage 

operation environment. Moreover, one must assure that all the bias voltages can be 

generated, that is all the Vbi's must belong to the interval [0, VDD[. A quick inspection of 
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the structures shown in Figure 3.17 allows us to arrive at the results summarized in Table 

3.1.
 

Structure 
Minimum VDD Minimum VDD Minimum VDD 

(Input device bias) (Output stage bias) (Bias voltages) 

Differential pair 
VTnt + 2 AV 3 AV 

I VTp41 4- AV 

Telescopic cas­
code amplifier 

VTni + 2 AV 5 AV VTn4 + 3 AV 

Folded-cascode 
amplifier 

VTni + 2 AV 4 AV 1 VTp41 + 2 AV 

2-stage Miller 
amplifier 

VTnl + 2 AV 2 AV 
I VTp4I + A V 

Table 3.1: Minimum Power supply voltage for the amplifier structures shown in 
Figure 3.17. 

The minimum value of the power supply voltage equals the largest of the three 

minima. In general, IN > Vni , and the minimum power supply voltage for a folded­

cascode circuit is dictated by the threshold voltage of the p-type transistors. As expected, 

the telescopic cascode structure requires the largest value of the power supply for proper 

operation, followed by the folded-cascode amplifier. Moreover, due to the body effect, 

VT)24 > VTnI . When the largest term is VTnI + 2 AV, the input common-mode voltage is 

set equal to VDD and both input and load devices operate in saturation, therefore with high 

gain. 

The 2-stage Miller amplifier has the same biasing requirements as the basic 

differential pair. However, due to the frequency compensation capacitor Cm, the output 

impedance of the first stage is low and the signal swing is much reduced. The output stage 

can swing to within AV of the power supply rails, giving the largest attainable range. 
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A numerical example is appropriate to provide insight on the order of magnitude 

of the minima in Table 3.1. If I 1/7.01 = 0.9 V, VTfI = 0.7 V, VTn4 = 0.8 V and 

dV = 0.2 V, one obtains 

VTnl + 2 AV = 1.1V,	 3 AV = 0.6 V, IV Tp4I + AV = 1.1 V 

5 AV = 1.0V, V = 1.4VV Tn4 3 

4 AV = 0.8 V, I V Tp41 + 2 AV = 1.3V 

It should be noted that the input common mode range is relatively unimportant in 

fully-differential SC circuits. In such structures the input stage is biased by a de voltage 

(input common-mode voltage), and the input signals swing in opposite directions, 

therefore the common-mode voltage remains constant. 

3.3 THE SECOND INTEGRATOR 

Section 2.4 clearly indicated that as one progresses along the forward path towards 

the output node, the performance requirements become more relaxed due to the property 

of noise shaping. The focus of this chapter has been on determining how the various 

sources of noise affect the performance of the modulator and how they should be handled 

to minimize power dissipation. These sources of noise, namely kT/C noise from the 

sampling network and thermal noise from the amplifier, are also present at the input of the 

second integrator. However, due to the noise shaping property, their integrated power 

(over the signal band) is attenuated by a factor proportional to the square of the 

oversampling ratio. An oversampling ratio of 256 results in an output (integrated) noise 

power reduction of about 38 dB, compared to the first stage (cf. Section 2.4). Since the 

limiting source of noise is that with origin in the sampling network, i.e., the kT/C noise, 

this means that the sampling capacitor in the second stage can be made smaller than the 

sampling capacitor in the first stage by the same factor. 
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This reduction in size is, however, limited mostly by matching requirements. To 

achieve good power supply rejection, it is desirable to use fully differential topologies 

which require good matching. Therefore, one cannot make the sampling capacitors 

arbitrarily small, as then they become poorly matched due to the inaccuracy of the 

photolithographic process. But even the matching requirements are somewhat relaxed due 

to noise shaping, and it is common to use capacitances in the order of 100 fF or less. From 

the analysis developed in this chapter, if the first stage required an input capacitor of, say 2 

pF, to meet the noise specifications, the amplifier in the second stage would dissipate 

about 20 times less power with a 100 IF input capacitor, while maintaining the same gain-

bandwidth product. Typically, the amplifier in the second stage is a down-scaled version 

of the amplifier in the input stage. Moreover, the amplifier in the second stage can have 

lower gain-bandwidth product if thermal noise is largely dominant, since this would result 

only in some, likely tolerable, quantization noise leakage. 

In a low voltage design, the first amplifier may require a 2-stage structure in order 

to achieve high gain (for low harmonic distortion), and high signal swing. This 

requirement is somewhat relaxed in the second integrator, and a single-stage amplifier 

may suffice. This leads to additional savings in power dissipation. Since the signal swing 

is smaller in a single-stage amplifier, careful scaling is required. (Recall, however, that the 

gain reduction may result in excessive quantization noise leakage cf. Section 3.1.) 

In analogy with Section 3.2.1, one can obtain the expression for the output voltage 

of the second integrator (Figure 3.1): 

U2 kl k2 {Z 2 x- [Z-2 + 2 z (1 z 1)] EQ} (3.46) 



79 

At the onset of overloading, the maximum value that U2 can assume is, therefore, 

k2 VREF (3.47)1U2Imax "-=- + a) k 

where a is related to the overload point of the modulator (cf. Section 3.2.1). Formerly, the 

scaling coefficients were typically chosen to be unity, which resulted in large swing 

requirements for the second-stage amplifier (about four times the reference voltage). 

Later, it was proposed to use ki = k2 = 0.5 [37], which required a voltage swing equal 

to one reference voltage only. Expression (3.47) indicates that we have enough flexibility 

to set these coefficients independently if we wish, in order to accommodate differences in 

the amplifier topology. Solving (3.6) for k1 and substituting in (3.47) one obtains 

k = 2 + a I U2Imax 
(3.48) 

2 3 + a I (ill max 

Note that (3.48) requires that ki be given by (3.6); if that is not the case, then one 

must use (3.47). Using a value larger than that given by (3.47) or (3.48) will result in early 

overloading of the modulator. Using a smaller value increases the input-referred noise, but 

without much consequence since it is noise shaped. 

Note that the considerations above do not necessarily hold fora cascaded structure. 

In such case, the output signal of the second integrator is used to extract the quantization 

noise introduced in that section, to be cancelled at a later stage. For that reason, the 

amplifier still has to settle within reasonable accuracy [45]. 
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3.4 THE COMPARATOR
 

The comparator is a component with less stringent performance requirements. The 

reason is that the non-idealities occurring in this block are shaped by a 2nd-order transfer 

function, therefore treated just like quantization noise. Although relaxed, its design should 

not be neglected, as some of the non-idealities can compromise the performance of the 

modulator. Let us briefly analyze this component in light of a few of its most important 

characteristics: dc offset, hysteresis, and gain. 

Ideally, the dc offset would be completely eliminated by the loop since an ideal 

integrator possesses infinite gain at dc. However, the finite dc gain of the amplifiers 

prevents this from happening by shifting the pole frequency from z = 1 to z = 1 [3 (cf. 

Section 3.1). Therefore, a dc component in the quantization noise sequence or a dc offset 

in the comparator is only attenuated by 1 / ((31 (2), where the 13/'s are inversely 

proportional to the dc gain of the amplifier in stage i. This is the phenomenon most 

responsible for quantization noise leakage at low frequencies. 

Hysteresis in the comparator amounts to memory in the system. If the signal is not 

strong enough to overcome the width of the hysteresis characteristic, the comparator will 

not switch states. This phenomenon modifies the loop dynamics by introducing additional 

poles in the system, which then create errors in the transfer functions and may 

compromise the stability of the loop. It is desirable to use structures with a reset phase to 

eliminate hysteresis, and Chapter 4 describes in more detail a structure using such 

technique. 

The gain of the comparator determines its capability to produce a correct output in 

a given period of time. If the gain is very high, the comparator will respond almost 

immediately even to very small inputs. The inaccuracy of producing either a zero or a one 

for a very small input due to noise, for instance, will be averaged by the decimation filter, 
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and hence is of very little consequence. If the gain is relatively small, the comparator may 

enter a region of metastability in the presence of small input signals. When this occurs, the 

output of the comparator will eventually drift towards a correct decision, but it may not 

reach that decision at the end of the clock phase. This results in severe distortion (and 

constitutes another reason for not recommending the utilization of a single switched-

capacitor branch when a single-reference voltage is being used, as discussed earlier in 

Section 3.2.1). 

3.5 THE D/A CONVERTER 

The D/A converter is as critical to the overall performance of the modulator as the 

first integrator; any errors introduced during the sampling of the reference voltage 

(thermal noise, flicker noise, distortion) are transferred to the output with unity transfer 

function. In Section 3.2 we analyzed the contribution of kT/C noise by the feedback 

branch. Such analysis did not include errors with source in the reference generator buffers, 

or errors resulting from different loading conditions of those buffers. We will now look 

into these issues. 

Many applications utilizing delta-sigma modulation target an overall linearity and 

dynamic range of 14 bits to 16 bits. This requires from the D/A converter the same level, 

or better, of performance. It is very difficult, however, to realize multi-bit DACs with such 

a high linearity. Some work on delta-sigma structures employing multi-bit internal A/D 

and D/A conversion, and digital correction techniques to linearize the D/A, has been 

reported [46][471148]. Although reasonable results were attained, the added circuit 

complexity is rather unappealing. Moreover, the techniques are likely to be impaired by 

parasitic elements when very high performance is approached. Recently, several authors 

have also employed noise shaping techniques to modulate the nonlinearity characteristic 

of the D/A converter, in a manner similar to the high-pass filtering of the quantization 

noise in delta-sigma modulation [49][50][51]. Indeed, the errors in the D/A converter are 
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modulated by a delta-sigma loop which provides a noise-shaping characteristic. First- and 

second-order noise shaping have been reported. 

The most obvious advantages of using multi-bit conversion are lower quantization 

noise power, improved stability, and reduced in-band tone power. All of these can lead to a 

low-power design, since lower-order topologies can be used. It should be noted, however, 

that at very low power supply voltage (the assumption in this thesis), the performance is 

still limited by thermal noise, and hence all the considerations at which we arrived in this 

chapter regarding the performance of the first integrator still apply. 

To better understand the requirements on the linearity of the D/A converter, let us 

briefly contemplate the following situation. Consider a 2nd-order delta-sigma modulator 

in which a 4-bit quantizer is utilized. Such structure requires a 4-bit DAC in the feedback 

path, from which a 16-bit linearity is required. Using a switched-capacitor DAC with 

0.5% capacitor mismatch to implement the main DAC, and using an auxiliary capacitor 

array to fine tune the main array [48] to within half LSB at 16 bits, one obtains the 

(simulated) results shown in Figure 3.18. The potential improvement through calibration 

is dramatic, but it also shows how critical this block is. For this reason, 1-bit DACs are 

preferred, since they only have two levels, and hence are inherently linear (there is a 

straight line that can join two points). 

There are, however, other nonideal mechanisms which can compromise the overall 

performance of the modulator. These are related to insufficient filtering of the reference 

generators and to nonlinear or signal dependent operation of the reference buffers. 

Wideband noise superimposed on the reference (dc) signal can be significant. The 

sampling of the superimposed noise by the input stage results in aliasing into the 

baseband, which increases the noise floor, and hence reduces the resolution of the 

modulator. Moreover, since the reference signal is multiplied by the output signal of the 
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system, the quantization noise appearing at frequencies near half the sampling rate is also 

aliased back onto the baseband (through the convolution of both noise signals). The high-

frequency quantization noise is not attenuated by the loop; indeed, it is amplified, which 

can amount to a significant degradation of the performance. For this reason, it is very 

important to filter adequately the reference generators. 
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Figure 3.18: Simulated spectrum of the output of a 2nd-order delta-sigma 
modulator employing 4-bit quantization, with and without calibration 
of the D/A converter. The sampling frequency was 2.048 MHz, the 
capacitor mismatch in the uncalibrated DAC was 0.5%, and the 
number of samples 16,384. The uncalibrated DAC had a differential 
nonlinearity of 85 16-bit LSBs, and the calibrated DAC 0.52 16-bit 
LSBs. 

As discussed in connection with Figure 3.6, repeated here for convenience as 

Figure 3.19 on the following page, an input SC branch samples the reference voltage 

provided by the reference buffers. Since this action results in a change of the load 

impedance seen by those buffers, a transient will occur. In Figure 3.19a, the reference 
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voltage is sampled onto capacitor Cin and the information transferred to the integrating 

capacitor, simultaneously. In the previous phase Cin was used to sample the input signal, 

and hence the charge delivered to it from the reference voltage buffer is a function of x. 

Moreover, since the sampling of the reference voltage and the charge transfer to the 

integration capacitor take place in the same clock phase, the process will be affected by 

the settling of both the reference buffer and of the amplifier. This may result in a signal 

dependent charge delivery, and consequently harmonic distortion. This problem is 

overcome by using either structure in Figure 3.19b or Figure 3.19c. Here, the sampling of 

the reference voltage and charge transfer occur in different clock phases, thus allowing for 

independent settling of the buffers and of the amplifier. Furthermore, different capacitors 

are used to sample the input and the reference, therefore eliminating signal dependent 

charge delivery. 
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Figure 3.19: Switched-capacitor, single-ended implementation of the first 
integrator with a) double reference voltage -- single input branch, b) 
double reference voltage two input branches, c) single reference 
voltage three input branches, and d) single reference voltage two 
input branches. 
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Another potential problem associated with the structure in Figure 3.19a is related 

to the density of "ones" and "zeros" in the bitstream. Since "ones" and "zeros" result in 

different amounts of charge being drawn from the buffers, the average value of the 

reference voltage will be slightly different from the nominal, and a signal-dependent gain 

error is introduced. This problem is also eliminated through the use of the structure in 

Figure 3.19c, and also Figure 3.19b if it is differential. Note that in Figure 3.19c, the 

reference sees always the same capacitive load in every clock cycle, independent of the 

transition density. For this to happen in Figure 3.19b, a differential structure must be used, 

otherwise the positive and negative references will display different levels of activity. 

Inherent to the double-reference voltage solutions is the mismatch between 

+VREF and -VREF ' which will always occur to some degree. In the presence of such 

mismatch, one of the signal excursions (positive or negative), if sufficiently high, will 

drive the modulator into early overloading, effectively reducing its usable dynamic range. 

This mechanism, however, does not introduce nonlinearity; only offset. However, the 

reduction in dynamic range may impact severely the performance, and some margin 

should be left when sizing the input capacitor. Naturally, this will result in a larger value of 

the power dissipation. 

It is clear that the design of the feedback DAC can be very critical. The reference 

buffers should be designed to have sufficient speed and driving capability to settle fully. 

The reference should never be sampled when the comparator is still making a decision, as 

this would result in charge delivery dependent on the comparator's input signal (and hence 

distortion). Preferably, the settling of the reference buffers and of the amplifier should be 

decoupled. Moreover, low-noise DAC performance is imperative and, as mentioned 

earlier, the loading of VREF must be signal independent. 
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3.6 SUMMARY
 

In this chapter we analyzed the performance requirements for each block in a SC 

2nd-order delta-sigma modulator. The trade-offs were presented and a detailed analysis of 

the power dissipation of the amplifier was provided. The issues related to biasing the 

amplifiers were discussed as well. The first integrator is the block responsible for most of 

the power dissipation due to the stringent requirements on its performance. The second 

most important block is the feedback D/A converter. The remaining blocks possess 

relatively relaxed performance requirements as they benefit from noise shaping. 

The condition to achieve low power dissipation when limited by thermal noise is 

the utilization of minimum-size capacitances. Hence, the signal swing should be 

maximized. 
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4. A 1.8 V 94 dB DYNAMIC RANGE AZ MODULATOR 
FOR VOICE APPLICATIONS 

This chapter describes the design and the implementation, based on the principles 

discussed earlier, of a single-bit second order switched-capacitor delta-sigma modulator 

intended for voice applications [31]. It should provide a dynamic range of 92 dB (15 bit) 

or more over the signal bandwidth 300 Hz - 3.5 kHz. The modulator is to operate from a 

1.8 V power supply. 

4.1 CIRCUIT DESIGN 

A second-order delta-sigma modulator based on the architecture depicted in Figure 

3.1 was designed for fabrication in a 0.6 jim 5 V CMOS process, with the goal of 

verifying experimentally the results derived in Chapter 3. The objective was to achieve 92 

dB of dynamic range and a peak signal-to-noise ratio of 85 dB over the voice band. This 

performance was to be attained while operating from a 1.8 V power supply (the low-end 

voltage of two series connected batteries), and utilizing conventional SC techniques. 

Additionally, the sampling frequency was set to 2 MHz for system compatibility. 

Figure 4.1a shows a fully-differential implementation of the modulator, consisting 

of two parasitic insensitive SC forward-Euler integrators, a latched comparator that serves 

as the 1-bit A/D converter, and a distributed 1-bit D/A converter. The utilization of a fully-

differential configuration provides superior noise immunity and adds 3 dB to the dynamic 

range (cf. Section 3.2.1). The modulator operates on a four-phase, nonoverlapping clock 

(Figure 4.1b), to reduce signal dependent clock injection [52]. The upper and lower paths 

of the clock generator were designed to have equal delays. To obtain coincident clock 

rising edges, the delay of inverter INV1 was made equal to the delay of the cascade of 

NAND 1 and BUFF1. 
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Figure 4.1:	 a) Fully differential switched-capacitor implementation of the 2nd­
order delta-sigma modulator. b) Four-phase clock generator and 
timing diagram. 

For test purposes, variable delay elements were included which permit the.fine 

adjustment of the nonoverlapping and delay time frames. This feature permits the 
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observation of the effect of incomplete settling of the amplifiers on the signal-to-noise 

ratio. The performance of the comparator, described later in this section, is also dependent 

on the duration of the nonoverlapping time periods. 

Given the signal bandwidth and the sampling frequency, the oversampling ratio is 

well defined, 286 in this case. For such a high value of the OSR, a second-order modulator 

possesses a quantization noise floor sufficiently low to provide a dynamic range and peak 

SNR better than 100 dB, and hence the performance will not be limited by this type of 

noise, but rather by thermal noise. To reduce the kT /C noise power, a single input 

switched-capacitor branch was used in the input stage, which is shared between the input 

and feedback paths (Figure 4.1a). This has several implications. The most important is 

that the kT/C noise power is reduced by a factor of two, therefore requiring capacitors with 

half the size to achieve the same performance. Another implication is that the input and 

feedback signals may not be scaled independently. This may or may not be an important 

limitation, depending on the system requirements. A third consequence is that we are 

forced to use a double reference voltage, as discussed in Section 3.2.1. 

A potential limitation of this structure is that incomplete settling of the reference 

buffers results in a signal dependent component, hence harmonic distortion (cf. Section 

3.3.3). For this reason we chose for the reference voltages a conservative value of 

VDD/2 ± 0.6 V that is, 0.3 V and 1.5 V, a comfortable 300 mV from the power supply 

rails. This makes the on-chip reference voltage generation straightforward, as the output 

devices of the buffers can operate in the saturation (high gain) region. It also provides 

better power supply noise rejection and results in lower power dissipation. An alternative 

is to use the power supply rails as the references, which would amount to having a 0.9 V 

reference voltage. However, to reduce the risk of noise coupling into the circuit from the 

power supply lines, separate pads would be required. The feasibility of this solution in a 

large system is likely to be impaired by the unavailability ofextra pins, hence it was not 

contemplated. The consequence is a reduction of the maximum input signal power of 
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about 3.5 dB, which will require capacitors with more than twice the size (and hence 

higher power dissipation). 

The stage gain factors Ci/CFi were chosen so as to guarantee that the amplifier 

output signals do not assume values beyond the high-gain region. For the present design, 

the amplifier open-loop dc gain starts dropping for output signal levels exceeding 0.4 V. 

Since VREF = 0.6 V, according to (3.6) this requires ( /CFI) = 0.247. A more 
max 

conservative solution was adopted by making CI /CFI = 0.24. The second-stage gain 

factor was chosen according to (3.47). The output swing of the second-stage amplifier is 

smaller than that of the first-stage amplifier, as it drives directly the input stage of the 

comparator, which cannot be biased at half of the power supply voltage (to be discussed 

later in this chapter). The output common-mode voltage is then set at a higher value, 

therefore reducing the signal swing. The dc gain of this amplifier starts dropping for signal 

levels exceeding 0.25 V. According to (3.47) this requires ( C2/CF2) = 0.47 . A more 
max 

conservative approach was taken and C2/ CF2 = 0.42 was chosen. The inner feedback 

loop gain factor CFB/ CF2 was set at 1.7 times the gain factor of the first stage, therefore 

assuring stability [53]. Note that the reference voltage is larger than the amplifier's region 

of high gain. As discussed in Chapter 3, this yields a slightly larger dynamic range which 

can be used to reduce the size of the input capacitor C1. This was sized to reflect a 

compromise between noise performance, including kT / C noise as well as noise from the 

amplifier, and power dissipation resulting from proper compensation. Simple calculations 

suggested a value of 2 pF, which also provides headroom for process and temperature 

variations. Capacitors C2 and CFB had a value equal to 1.25 pF and 0.5 pF, respectively. 

Behavioral simulations, including finite dc op-amp gain, thermal and flicker noise, kT/C 

noise and clock injection (Appendix B), showed that with these scaling factors it is still 

possible to achieve a peak SNR of 94 dB and a DR of about 98 dB i.e., a better than 15 bit 

performance. The simulated SNR as a function of the input signal power level is shown in 

Figure 4.2. 
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Figure 4.2:	 Simulated SNR as a function of the input signal level power, for a 1 
kHz frequency input sinewave. 

A critical aspect of low-voltage design with SC techniques is to insure that all 

switches can turn ON under all conditions (the time constant of the sampling network has 

to be much lower than that of the amplifier). A 1.8 V supply is insufficient for this, hence 

it was decided to use bootstrapping. Figure 4.3 shows the circuit used for that purpose 

[54]. The bootstrapping stage consists of two coupled, back-to-back voltage doublers. 

Since this configuration results in the gate voltage of devices M1 and M2 exceeding VDD, 

the output voltage VouT can reach 2 VDD rather than 2 VDD VT, where VT is the 

threshold voltage of transistor M2. In practice, the efficiency of this circuit is reduced by 

the presence of the load capacitance Cp (which can include some parasitic capacitance, for 

instance due to routing) and of the parasitic capacitance Cpl according to (Appendix C) 
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2 pump + Cpl
V = Vout DD (4.1)pump -I- p Cpl 

Vow needs to be reset periodically, which is done by the inverter stage M3-M4. 

Figure 4.3: Clock bootstrapping stage. 

It was decided to use local bootstrapping rather than global, to reduce the risk of 

cross-talk between sensitive nodes. Moreover, the design ofa global clock charge pump is 

more difficult to optimize since it is hard to predict the total load capacitance. If the load 

capacitance is very large, that solution may also require an external capacitor, and hence 

two additional pins. Each bootstrapping stage was designed to drive two transistor gates 

simultaneously, symmetrically positioned (in both schematic and layout), to reduce the 

effect of unwanted common-mode mechanisms. The resulting clock output voltage went 

from 1.8 V to 3.4 V. This voltage assures a maximum channel on-resistance of 

approximately 1.4 M., which exceeds the linear settling requirements for the present 

application. Linear settling to within half LSB of N bits of accuracy requires the value of 

the ON resistance of the switches RON to satisfy 
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Ts/2 

RoNC<2 -(N +1) 
(4.2) 

where C is capacitance in the RC sampling network (say, the input capacitor). 

The most complex component in the modulator is the operational amplifier, as 

discussed in Chapter 3. The topology of this component and the general design criteria 

have to be judiciously defined. 

Typically, for higher values of the power supply voltage, a common folded­

cascode topology is preferred (Figure 3.10b), since it provides high gain and bandwidth. 

However, at 1.8 V power supply, the output swing is much reduced, resulting in 

deteriorating distortion and SNR performance. An alternative is to eliminate one of the 

cascode devices and follow this stage by a class-A stage with Miller frequency 

compensation (Figure 4.4a). The second stage provides the largest signal swing and 

compensates for the gain loss in the first stage, therefore reducing distortion. This 

topology was previously analyzed in the context of improved power supply rejection ratio 

(PSRR) [55], with cascode Miller compensation. The disadvantage of this structure is that 

the second pole is determined by the output stage, not by the cascode node of the first 

stage. This makes compensation somewhat more complicated. (The cascode device M3 

has to be designed such that the frequency of the pole associated with its source is larger 

than the frequency of the pole associated with the output node; accordingly, the bulk of 

M3 can be connected to the power supply rather than to its source.) Nevertheless, this 

structure has better high-frequency properties than the typical differential pair with active 

load, since the Miller multiplication effect of the gate-to-drain capacitance of the input 

transistors is greatly reduced. 

Another issue is the choice between a class-A and class-AB output stage. 

Normally, a class-AB stage would be used with a resistive load or where slewing could 

otherwise be a problem. The stage would then be biased at a relatively low quiescent 
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current (for class-A operation), and this current would be boosted during transitions 

(class-B operation). However, for the present design, meeting the targeted settling 

accuracy required a quiescent current exceeding that required for slewing, hence class-B 

operation was unnecessary (this was expected as discussed in Section 3.2.2.1). It is 

sometimes assumed that incomplete settling is equivalent only to a gain error, and 

therefore it is permissible to use a lower quiescent current; but usually the settling error 

will in fact be a function of the input signal, since the transition from class-B operation to 

class-A operation may be degraded by the reduction in the phase margin due to a lower 

quiescent current. 

a) 

b) 

9m1. in 

c) 

Figure 4.4:	 Two-stage amplifier with Miller frequency compensation. a) 
Simplified single-ended circuit. b) Simplified linear model. c) Detail 
of output stage. 
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For these reasons, it was decided to adopt the structure shown in Figure 4.4a for 

the first stage amplifier. Cascode Miller compensation was not used, because the ringing 

introduced by it slowed the settling of the amplifier. A possible solution would be to make 

the transconductance of the cascode devices large compared with those of the output 

devices, or increase the input capacitance of the output stage. The first option is hardly 

feasible since the output devices must have a very high transconductance (for adequate 

phase margin), and the second would further reduce the efficiency of the Miller feedback 

loop at higher frequencies, bringing the second pole closer to the unity gain bandwidth. 

For the second amplifier, the structure chosen is that of Figure 4.4a without the second 

stage. Although the gain is now relatively low, about 46 dB, behavioral simulations 

showed that the performance of the modulator is not affected. This is because it only 

increases the quantization noise leakage, a non-dominant contribution to the baseband 

noise power. 

Figure 4.4b shows a simplified model of the amplifier in Figure 4.4a, and Figure 

4.4c the model including the details of the output stage. The transfer function can be easily 

obtained: 

1 S /SzVout g ml g m2 
(4.3)

Vin gor go2 1+as+a2s2 + a3s3 

where 

gm2 gMsz 
(gm g.2) Cm 

(gol+ go2 + gm2) CM+ CL gol+ Cl go21 gM+ gol go2 CM 
= 

gol go2* gM
 

a2 [(go2+ gM) CM+ CL gM] Cl+ (gol÷ gM) CL CM
 
gol go2 gM
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Ci CM. CL 
a 3 = (4.4)

gol go2. gM 

As in Chapter 3, the amplifier was modelled as consisting of a parallel 

combination of elementary stages, characterized by a set of elementary parameters. (An 

elementary device carries a current of 10 pA, and has the dimensions of 

(9.61.tm) / (2.4[tm) for an n-channel transistor and (23.1[tm) / (2.4p.m) for a p-

channel transistor.) Equation (4.3) can now be used to obtain the unity-gain bandwidth fu, 

and the phase margin Opm. 

It is not possible to develop here a general analysis like the one presented for 

single-pole amplifiers, as there are more degrees of freedom in an amplifier with two or 

more poles. Nevertheless, the same principles leading to low power dissipation still apply: 

maximize signal swing, minimize capacitances and noise excess factor. These principles 

are independent of the amplifier topology. The remainder of this section concentrates on 

determining the point corresponding to minimum power dissipation, based on the trade-

off between two important design variables: the stage multiplicity M and the gate 

overdrive voltage VGST. 

Figures 4.5a and 4.5b show A as a function of the multiplicity M and gate 

overdrive voltage VGST, respectively. In Figure 4.5a, the parameter is VGST and in Figure 

4.5b the multiplicity. For a constant VGST (Figure 4.5a), L is an increasing function of M, 

saturating at approximately 9.5 MHz. (The input transconductance and Miller capacitance 

were designed to provide a unity-gain bandwidth of about 10 MHz.) For values of M 

greater than 20, fu flattens which means that the Miller loop has shifted the second pole to 

a frequency sufficiently high such that the amplifier behaves as a single-pole system. For 

low multiplicities, higher gate overdrive voltages yield higher unity-gain bandwidths. For 

very high values of the multiplicity, A starts dropping as the parasitics become dominant. 
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Similar plots can be obtained for the phase margin PM, which is approximately 

given by 

( C; rat fu a3
Opm = atan	 atan (4.5)

gm2 ) \ 1 a2 f2u 

where C = gm/gm2 . The Opm plots are shown in Figure 4.6 for C = 0.875 , when the 

zero frequency is about seven times higher than the frequency of the non-dominant pole: 

z ---732 C/ ( 1 C) = 7 . Again, for values of M greater than 20, the phase margin is 

essentially constant and higher than 70°. For each 100 mV increase in VGsT, the phase 

margin increases approximately by 5°. 

a) 
10	 9.6
 

M=50
 
9.4
 

8 M=25
 
9.2N
 

2	 2 
6 M=10 

8.8 

4 8.6 
1 10 100 0 0.2 0.4 

M VGST 

Figure 4.5:	 Unity-gain bandwidth as a function of a) multiplicity M, parameter is 
gate overdrive voltage, and b) gate overdrive voltage VGST, parameter 
is multiplicity. 
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Figure 4.6:	 Phase margin as a function of a) multiplicity M, parameter is gate 
overdrive voltage, and b) gate overdrive voltage VGST, parameter is 
multiplicity. 

The dc gain of the amplifier was made high, approximately 90 dB, to reduce the 

effects of loop and amplifier nonlinearities. 

The other parameter of interest is the power dissipation of the output stage (most 

of the power will be dissipated in the output stage to achieve proper frequency 

compensation. Figures 4.7a and 4.7b show the static power dissipation of the output stage, 

normalized to the values corresponding to this design, as a function of the phase margin 

for constant	 VGST (Figure 4.7a), and as a function of the multiplicity for constant VGST 

(Figure 4.7b). They show that the phase margin is more efficiently improved by 

increasing the current density (VGST), rather than the aspect ratio of the devices (M). 

However, larger current densities imply loss in output swing, and a value sufficiently low 

for high swing, but not too low to avoid the gray area of moderate inversion, was chosen: 

VGST = 200 mV. With VGST fixed, the only degree of freedom left is that of varying the 

multiplicity. The action of increasing M yields good results only up to a certain value, at 

which point the parasitic capacitances of the output stage become relevant. Further 
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increase in the transconductance of the output device (from increasing M), results in an 

even larger increase in the output equivalent capacitive load (the feedback coefficient of 

the Miller loop decreases), and the second pole starts approaching the unity-gain 

frequency with loss of phase margin. In this design a value M = 25 (i.e., ID = 250 IAA) 

was used. The point corresponding to the design described here is also shown in these 

Figures, indicating that it is nearly optimum since an incremental improvement in 

performance would require excessive power dissipation. 

a)	 b) 

4 

3 

2 

1 

0.95 1 1.1	 1 

Phase margin Phase margin 

Figure 4.7:	 Normalized power dissipation (VDD = 1.8 V) as a function of the 
normalized phase margin: a) for VGsT = 0.15 ... 0.4 V. b) for M = 1 to 
200. 

Figure 4.8a shows the complete circuit schematic of the amplifier and its bias 

circuit, and Table 4.1 the aspect ratios used in this design. To reduce the channel 

modulation effect, non-minimum length devices were used throughout the design (except 

for the switches). The differential pair tail current is 40 For better dynamic response, 

the cascode transistor Mb3 in the biasing circuit was biased with a gate voltage which 

closely follows the input common-mode voltage of the main amplifier. This way, Vbl 

adjusts itself more rapidly to changes in the input common mode voltage of the amplifier. 



100 

The input common-mode voltage was set at 1.2 V, and the output common-mode voltage 

at 0.9 V ( VDD/ 2 ). 

a) VDD 

M10 M11 

250 RAI ,250 RA 

Von Von 

M12 M13 

M8	 M9Cm = 2 pF I	 I 

VCMFB 

b) VDD 

Mb1 Mb5 I Vb3 

Mb2 Mb9 

Mb8	 Vb210µA Mb3 
Mb10 

Mb6 

All branches 
carry 10 RA Mb7 Mb11 

Mby	 Vb1 

Figure 4.8:	 a) Complete circuit diagram of the first stage amplifier. b) Bias 
circuit. 

The common-mode feedback (CMFB) circuit for the first op-amp (0A1, Figure 

4.1a) is shown in Figure 4.9. It uses a switched-capacitor sensing circuit, with an inverting 

amplifier stage to provide negative feedback. Note that the input (M2) of the amplifier is 
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connected to the input common-mode voltage (analog ground) rather than the desired 

output common-mode voltage. This is required to bias properly the differential pair which, 

otherwise, would not turn ON. To accomplish this, the switched capacitors in Figure 4.9 

implement a level translator which raises the average gate voltage of M1 from the output 

common-mode voltage to the input common-mode voltage. 

The common-mode circuit for 0A2 does not have the amplifier since 0A2 lacks a 

second stage, so no phase inversion is needed in the CMFB stage. 

Devices 

Ml, M2 

M3 

M4, M5 

M6, M7 

M8, M9 

M10, M11 

M12, M13 

Mbl, Mb2, Mb5 

Mb3, Mb4 

Mb6 

Mb7, Mbll 

Mb8 

Mb9, Mb10 

W/L 

9.6/2.4 

9.6/2.4 

23.1/2.4 

15/1.5 

9.6/2.4 

23.1/2.4 

9.6/2.4 

15/1.5 

6/1.5 

15/1.5 

6/1.5 

16/6.9 

15/1.5 

Multiplicity
 

2
 

4
 

4
 

2
 

2
 

25
 

25
 

1 

1 

1 

1 

1 

1 

Table 4.1: First stage amplifier and bias circuit device aspect ratios. 
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The critical issues in the design of the CMFB circuit of OA1 are its bandwidth 

(which will affect the transient response of the overall amplifier) and its noise. The latter 

significantly affects the former, since the common-mode circuit drives the gates of two 

devices (M8 and M9) which have noise gains as high as the input transistors (the amplifier 

noise excess factor is y = 6 ). Hence, for low noise, the areas of both the input differential 

pair devices and current sources M4, M5, M8 and M9 (Figure 4.8a) must be made large. 

The increased area contributes additional capacitive load, and hence care should be 

exercised to make the 3 dB bandwidth of the common-mode circuit larger than the unity-

gain frequency of the amplifier. As a rule of thumb, the bandwidth of the common-mode 

circuit should be at least twice as large as the unity-gain bandwidth of the main amplifier. 

Vop 
Von 

VDD 

0.5 pF 0.5 pF 
M6 

If 

1 0.2 pF 1 1 0.2 pF 1 120 wok 

II Vcmi 

M7± I 2 

VCMFB20 IAVcmo Vomi cmi Vcmo 

Figure 4.9: Common-mode circuit. 

Figure 4.10 shows the comparator used in this design [56]. It is clocked by two 

nonoverlapping, complementary clock phases, CLK1 and CLK2. During clock phase 

CLK1 (reset phase), the comparator senses the input signal across the ON resistance of 

switch S1 and pre-charges the nodes of the second latch to VDD by closing switches S4 

and S5 (this destroys system memory, which would otherwise result in hysteresis). 

Switches S2 and S3 are open, isolating the input and output stages. In clock phase CLK2 

(compare phase), switches S2 and S3 close and switches Si, S4 and S5 open, allowing the 
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amplification of the voltage difference developed across S 1 . Note that since S1 is 

controlled by CLK1 rather than CLK2, it actually opens before S2 and S3 close or S4 and 

S5 open. This is very important since allows for signal amplification by the input stage 

during the nonoverlap period. Appropriate nonoverlapping periods have to be provided to 

allow sufficient amplification in order to overcome the offset of the second stage, which 

can be large (in the order of 50 mV to 100 mV). To achieve this, the clock generator was 

designed with variable delay elements, as described earlier. 

For fast operation, switches S2 and S3 were also driven by clock bootstrapping 

circuits. 

VDD 

S4 S5 

CLK2 H H CLK220 IA /-1 
Q

LATCH _Q 

VipH in S2 CLK2 S3 

CLK1 
S1 

Figure 4.10: Comparator circuit. 
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4.2 LAYOUT CONSIDERATIONS
 

Figure 4.11 shows a microphotograph of the chip. Each amplifier was laid out 

using a stacked, inter-digitated layout technique to improve matching. This technique can 

be regarded as a one-dimensional common-centroid layout. To reduce cross-talk, each 

amplifier uses a separate bias circuit. A MOS capacitor was connected to each bias line to 

reduce noise levels. The input and integrating capacitors were placed between the core of 

the respective amplifier and the switches of that stage, hence providing better isolation. 

The clock bootstrapping circuits were placed next to the respective switches, to improve 

efficiency, as given by (4.1). Notice that despite the large number of clock bootstrapping 

circuits, a total of 24, the area penalty is negligible. This is due to the close proximity 

between these circuits and the switches which they drive (thus requiring small "pump" 

capacitances), and to the use of MOS capacitors operating in the accumulation region to 

implement the charge pump capacitors (Figure 4.3). (MOS capacitors have a larger per 

unit area capacitance.) The nonlinearity of these capacitors is irrelevant as a constant 

voltage (VDD) is always applied. More importantly, they are not in the signal path. 

The clock generator was placed about 100 1,tm away from the modulator core to 

reduce coupling. This circuit also possesses it own bias circuit, used to generate the bias 

voltages for the variable delay elements. 

The area of the smallest rectangle which embraces all the blocks shown in Figure 

4.11 is 0.44 mm2, and hence the area actually occupied by the circuit is substantially 

smaller. 

The circuit was fabricated in the facilities of Rockwell Semiconductor Systems, in 

Newport Beach, California. 



105 

Sec 
integrator 

Figure 4.11: Chip microphotograph. 

4.3 EXPERIMENTAL RESULTS 

A test board was designed and linked to an acquisition board which captured the 

output bit stream. To evaluate the performance of the modulator, the captured bit stream 

was multiplied by a Dolph-Chebyshev window [57] [58] with a side-lobe attenuation of 

140 dB, and passed through a 262,144-point FFT with four cycles of averaging. Figure 

4.12 shows the measured signal-to-noise and signal-to-noise-plus-distortion ratios, as 

functions of the relative input signal level. (Since VREF = 0.6 V, 0 dB corresponds to a 

peak-to-peak value of 1.2 V.) The input signal was a 1 kHz sinewave, the clock frequency 

was 2 MHz, and the power supply was 1.8 V. The modulator achieves a peak 

S/ (N + THD) of 80 dB, a peak SNR of 90 dB, and an instantaneous dynamic range of 94 
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dB. The curve exhibits a nearly constant unit-value slope of 1 dB/dB, indicating that the 

total noise floor was independent of the signal value. This is somewhat unusual in a 2nd­

order modulator, plagued with spurious tones in the signal band. This absence of tones is 

attributed to the dithering effect of thermal noise at the input [59][60]. The thermal noise 

inflicts some random behavior on the input signal, therefore destroying the tendency for a 

fixed pattern. 

Figure 4.13 show the measured output spectrum for a relative level of -12.6 dB 

(-20 dBV), corresponding to the onset of overloading in Figure 4.12. 

100 

80 

60 

40 

20 

0 
-100 -80 -60 -40 -20 0 

Input Level [dBr] 

Figure 4.12: Measured SNR and S/ (N + THD) as functions of the input signal 
level. 
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Figure 4.13: Measured output spectrum for a -12.6 dBr, 1 kHz sinewave input. 
Noise power = -99.21 dBV, Signal power = -20 dBV. 

As can be seen from Figure 4.13, the resolution of the modulator is limited by 

thermal noise (flat spectrum) and by flicker noise. No attempt was made to minimize the 

latter (by using larger devices or CDS techniques), and some improvement might be 
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attainable. Some 60 Hz noise was also present, despite the effort put into the development 

of the test environment, which included a 6-layer board with several ground planes. As 

Figure 4A2 shows, the S/ (N + THD) starts degrading when the relative input level 

exceeds -12.6 dB, decreasing rapidly beyond -7 dB. This is due to the input of the 

common-mode circuit having been connected to the output common-mode voltage, rather 

than the input common-mode voltage. This reduced significantly the available swing of 

the amplifier, resulting in early overloading of the modulator. 

There was a loss of about 4 dB relative to the theoretical SNR curve in Figure 4.2. 

This was found to be due mostly to insufficient filtering of the (external) reference voltage 

generators and to flicker noise. 

Several tests were performed to investigate the effects of variable delay and non-

overlapping time frames. Within reasonable time frame variations (up to 5%), no 

measurable difference in performance was detected, which was expected since the 

quantization noise floor was designed to be non-dominant. Further increase resulted in a 

gradual collapsing of the performance of the modulator, as the amplifiers do not settle 

properly. 

The total power dissipation was 2 mW, which reflects a somewhat conservative 

design. This figure can be reduced to about 1.5 mW, by a better design of the amplifier in 

the first stage (lower noise excess coefficient), better scaling of the second stage, and 

elimination of the bias circuit and current sources in the clock generator (included only for 

test). 

Table 4.2 summarizes the measured characteristics of the modulator, and Table 4.3 

the structure of the current consumption in the modulator. 
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Power supply 0 1.8 V 

Power dissipation 2.0 mW 

Sampling rate 2 MHz 

Signal band 0.3 3.5 kHz 

Dynamic range 94 dB 

Peak S/(N+THD) 80 dB 

Peak SNR 90 dB 

Active area 0.44 mm2 

Technology	 0.6 pm 
CMOS 
N-well 

Table 4.2: Measured performance characteristics of the modulator. 

First stage: 670 to 

Amplifier 580 pA 

Bias circuit 50 pA 

Common-mode circuit 40 tiA. 

Second stage: 250 pA 

Amplifier 200 pA 

Bias circuit 501.1A 

Comparator: 70 pA 

Clock generator: 130 pA 

Table 4.3: Structure of the current consumption in the modulator. 
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4.4 SUMMARY
 

This Chapter described the design and implementation of a second-order SC delta-

sigma modulator operating from a 1.8 V power supply. The modulator was fabricated in a 

5 V, 0.6 gm N-well double-metal single-poly CMOS process. It achieved a 94 dB 

instantaneous dynamic range, a peak SNR of 90 dB and a peak S/ (N + THD) of 80 dB 

over the band. 

Potential areas of improvement include reduction of low-frequency noise, and 

power dissipation. Chapter 5 attempts to cope with these two problems by employing 

predictive correlated double sampling techniques. Such techniques compensate for the 

nonlinear characteristic of the amplifier dc gain, which potentially permits the utilization 

of single-stage topologies (compensated by their load), with low distortion and low-to­

moderate power dissipation. 
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5. IMPROVED DESIGN TECHNIQUES FOR RELAXED 
COMPONENT REQUIREMENTS 

Chapter 3 focused on analyzing the performance of the first integrator in a AI 

modulator and how it affected the power dissipation. The fundamental requirements for a 

high-performance low-power design are large signal swing, small capacitances, and 

simple amplifier topologies with high gain for low distortion. The most competitive 

topology for high signal swing is the two-stage Miller amplifier which, in addition, 

provides high dc gain. The disadvantage of such structure, however, is that compensation 

is achieved through the utilization of an additional capacitor -- the Miller capacitor (and 

possibly a resistor). For this compensation to be efficient, the current level at the output 

stage has to be increased to obtain good phase margin, in an attempt to replicate the 

behavior of a single-pole amplifier. Therefore, the overall power dissipation increases, but 

the energy efficiency is lower, as the extra capacitor is irrelevant to the processing of the 

signal; it's there merely for stability of the amplifier. 

Hence, it is desirable to utilize single-stage amplifiers, as they are compensated by 

their load (also present in a two-stage amplifier). However, single-stage amplifiers suffer 

from a much reduced signal swing, and a folded-cascode structure, for instance, cannot be 

utilized in a very low-voltage environment. To increase the signal swing, one must 

abandon structures employing stacked devices, and the penalty is a reduced dc gain. The 

low dc gain impacts performance in two ways: one is the impossibility to realize transfer 

functions close to the ideal ones which, as discussed earlier, increases the quantization 

noise floor in the signal band. The other is distortion caused by a much larger relative gain 

variation with the signal level. 

This chapter analyzes a technique which tries to cope with both limitations: it uses 

single-stage, relatively low-swing low-gain amplifiers, without sacrificing performance, in 

the context of delta-sigma modulation. The technique utilized is an extension of the basic 

correlated double sampling technique, and is called predictive correlated double sampling. 
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Another benefit of this technique is the reduction of low-frequency noise, namely flicker 

noise and dc offset. This is important as these sources of noise reduce the dynamic range 

of the system. 

An example of an amplifier which would be a good candidate for this type of 

application is the one used in the second stage of the design presented in Chapter 4, or the 

first stage of the Miller amplifier utilized in the first integrator. The structure is identical to 

a folded-cascode amplifier, but without one of the cascode devices. This results in lower 

gain and larger swing, as discussed previously. It also allows independent control of the 

input and output common-mode voltages, and hence the output swing can be as large as 

VDD/ 2 ( 3/ 2) AV (cf. Section 3.2.2.2). 

5.1 THE CORRELATED DOUBLE SAMPLING TECHNIQUE 

As in delta-sigma modulation, the correlated double sampling (CDS) technique 

exploits the correlation between successive samples of a signal to suppress its dc 

component. This can be attained by taking the difference between those samples, as 

explained in Section 2.4. To be efficient, this technique requires the signal to have low-

frequency content, or to be highly oversampled. The latter is intuitive since successive 

samples of an oversampled signal do not differ much. Indeed, the correlation between 

successive samples increases with the square of the sampling frequency (or the 
oversampling ratio). 

The principle of CDS can be illustrated in a simple manner with the switched-

capacitor voltage comparator shown in Figure 5.1. In phase #1, the amplifier is connected 

in a unity-gain feedback configuration. Assuming, for now, that the dc gain of the 

amplifier is infinite, the voltage at its inverting input equals the offset voltage V. 

Therefore, Vos is also sampled and stored onto capacitor C. In phase #2, when the left plate 

of this capacitor is connected to the input signal, the voltage at the inverting input of the 
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amplifier becomes Vin + V0s . At this point, the comparator makes a decision based upon 

the difference between the voltages at its non-inverting and inverting inputs, which is 

Vos ( Vin + V()) = . The term in the offset voltage is, therefore, absent, and the 

comparator makes a correct decision based on the sign of the input signal. If the offset 

voltage is instead a noise signal, say, lin, the operation above corresponds to taking the 

difference between two successive samples of that noise signal: 

Vo(n) = sign {Vin(n) [vn(n) vn(n 1)11 (5.1) 

This expression resembles, aside the sign operation, that for the output of a first-

order delta-sigma modulator, with vn playing the role of the quantization noise. The result 

is therefore, noise-shaping of the input-referred noise of the amplifier, which is normally 

composed of a dc offset voltage, flicker and thermal noise. Clearly, CDS is a powerful 

technique to remove or reduce low-frequency (in-band) unwanted components, and can be 

extended to amplifiers and integrators as well [61]. (As might be expected, the efficiency 

of the technique is largely dependent upon the dc gain of the amplifier; more on this later.) 

Figure 5.1: SC voltage comparator employing correlated double sampling for 
offset compensation. 
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As mentioned above, vn is representative of the total input referred noise of the 

amplifier, thermal noise included. Since the latter is a broadband type of signal, the 

correlation between two successive samples decreases very rapidly with their separation 

in time. In analogy with the quantization noise, the high-frequency components are then 

amplified due to the high-pass filtering action of the subtraction operation. (It is from this 

sampling of two consecutive correlated samples that CDS receives its designation.) 

Moreover, since the system is a sampled-data one, the noise signal is undersampled, and 

hence aliasing occurs with a corresponding increase in the power spectral density. 

There has been a considerable amount of work reported on structures employing 

CDS techniques (a good survey is presented in [61], along with numerous references), 

including some successful implementations of delta-sigma converters using offset- and 

gain-compensated analog front ends [46][62][63]. None of these designs was, however, 

intended for low-voltage operation. Although the objective was also to improve 
performance (dynamic range) using analog blocks with relaxed performance 

requirements, the design constraints were not as demanding. Moreover, all the reported 

work failed to include an analysis of the kT/C noise in such structures, with exception of 

Huang [64], who extended these techniques to track-and-hold circuits. (A noise analysis 

for SC integrators will be given later in this chapter.) 

Another potential benefit of CDS is that of reducing the effect of the finite dc gain 

of the amplifier. As explained in Section 3.1, a finite de gain translates into gain and pole 

errors, which degrade the performance of the modulator. The following section reviews a 

benchmark representation introduced by Ki [65], which will be used to compare the gain 

and pole errors in three SC integrator structures: a regular (uncompensated) forward-Euler 

integrator, a Nagaraj integrator [66], and a third structure which will henceforth be 

designated of predictive Nagaraj integrator [67]. 
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5.2 ANALYSIS OF GAIN AND POLE ERRORS IN SC INTEGRATORS
 

The output signal of a discrete-time integrator can be generically described by 

V0(n) = ±a k Vin (n) +13 V (n 1) +y Vos (5.2) 

where a, 13, and y are coefficients which indicate how the actual transfer function deviates 

from the ideal one, k is the integrator gain, and Vac the offset voltage [65]. (Note that a and 

(3 differ in definition from those introduced in Section 3.1.) Ideally, a and f3 equal one and 

y equals zero, and the set of these three parameters is known as the arty representation 

[65]. Due to the finite dc gain of the amplifier, these coefficients assume the more general 

form 

a = 1 + Aa, Aa « 1 
13 = 1 +A3, Ar3 « 1 
y« 1 (5.3) 

where Aa and Ap will be called the gain and pole errors, respectively, and y is the offset 

voltage suppression factor. 

Consider the three non-inverting SC integrators shown in Figure 5.2, where the 

amplifiers have the same finite dc gain A. The integrator in Figure 5.2a is a classic 

forward-Euler integrator, and has been the subject of extensive analysis in this work. The 

remaining integrators were proposed by Nagaraj [66][67] as offset- and gain-compensated 

structures, hence with reduced sensitivity to the dc gain of the amplifier. Although 

numerous structures have been proposed, we will focus on these two for their popularity. 
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Figure 5.2:	 Three SC integrator topologies: a) Regular forward-Euler integrator. 
b) Offset- and gain-compensated Nagaraj integrator. c) Predictive 
Nagaraj integrator. d) Timing diagram and sampled-and-held input 
signal of the predictive Nagaraj integrator. 

Before we analyze these structures for gain and pole errors using the a(37 

representation, it is useful to go briefly through their principle of operation. The Nagaraj 

integrator in Figure 5.2b (hereon referred to as the Nagaraj integrator) samples the input 

signal Vin during phase #1 onto capacitor Cin. During that time frame, the holding 

capacitor CH samples the offset voltage Vos and the input-referred output voltage 170/A 

(which would be zero if A were infinite). In phase #2, the holding capacitor CH is placed in 

series with the inverting input of the amplifier, and hence node x becomes the new virtual 
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ground, with the offset voltage ideally cancelled. Notice that in the structure in Figure 

5.2a, the virtual ground voltage equals the offset voltage plus the input-referred output 

voltage term, and hence the error introduced during integration is significantly larger. 

Analysis shows that the output signal of the Nagaraj integrator in phase #2 is described by 

(Appendix D) 

rl + t (1 + k)1 1/0(n) = k Vin(n (5.4) 

+ [1 +IA (2 +k)] Vo(n-12-)Vos 

and in phase #1 by 

[1 +1.t. (1 +k')] Ic(n+D (1 +11) -Vo(n 1) (5.5) 

1
(1 le) p. Vo(n Jr) + 

where k' = CH /C /C and p. = 1/A . Substituting (5.4) in (5.5) one arrives at 

( 1)Vov-t+yk [1 p,. (1 +k+k)] Vin(n-2) (5.6) 

+ (1 Vo(n 1 k V 

In the original publication [66], the output of the integrator was sampled in phase 

#2 which, as Ki indicated in [65], required k' = 1 for low phase error. When the output is 

sampled in #1, as in (5.6), this coefficient can assume any desired value, although it should 

be kept small for low-gain error (we will evaluate these errors shortly). 

The operation of the predictive Nagaraj integrator is somewhat similar to that of 

the Nagaraj integrator. The difference resides in the utilization of an additional path, 
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composed of the switched-capacitor CA and integration capacitor CB, which is used to 

predict the output voltage prior to the integration phase (and hence will be called 

prediction path). It is assumed that the input voltage changes in the beginning of phase #2, 

and remains constant until the end of phase #1 (Figure 5.2d). In phase #2, CA samples the 

new value of the input signal, and CB the output, while the integration path (switched­

capacitor Cm and capacitor Cf) generates a valid output corresponding to the previous 

value of Vin. In phase #1, the integration capacitor Cf is disconnected from the amplifier, 

therefore entering a hold mode, while the switched-capacitor Cin samples the new value of 

the input signal (equal to that stored in CA in the previous clock phase). At this time, the 

prediction path and the op-amp are configured as in a forward-Euler integrator, and an 

output voltage is produced. This voltage is close to the value which will be obtained in the 

following phase #2 (therefore the name "predictive"). Also during phase #1, the holding 

capacitor samples the offset voltage and the predicted input-referred output voltage of the 

amplifier. Analysis of this structure yields the following expression for the output voltage 

in phase #2 (Appendix D): 

[ 1 + [ 1. ( 1 + k )] V (n) = k Vin(n + (1 + [1,) V (n 1) 

+ (1 + 1(1) Vo(n-2)-1.1- Vo(n (5.7) 

In phase #1 the output voltage is described by 

[1+1.t (1 +k2 +k')] V o(n 1 = k (n 1) + V, (n 1)2 2 tn 

+ lc' Vo( 3 (1 + k2) V (5.8) 



119 

where ki = Cin/Cf, k2 = CA/CB and k' = CH/CB. For proper operation the relation 

k1 = k2 = k should hold. Substituting (5.8) in (5.7) and using 

(n 1) = V (n 3/ 2) one arrives at 

V o(n) k [1 112 (1 + k) (1+ k + k')] Vin(n 

+ [1 R2 ( 1 + k) 2] V o(n 1) + II (1 + k) 2 Vos (5.9) 

An identical analysis can be easily done for the integrator in Figure 5.2a. Table 5.1 

compiles these results, indicating the gain and phase errors as given by (5.3). 

Forward Euler Nagaraj PredictiveParameter 
integrator integrator Nagaraj integrator 

Aa --11 (1 + k) II (1-1-k+k') 
-1.1 

2 (l+k+k)(1+k) 
2-t kAR t2 k i.t.2 

( 1 ÷ k) 

ky ii. - k 
Ix . ( 1 + k) 2 

Table 5.1: Gain and pole errors for the SC integrators shown in Figure 5.2. 

Both the Nagaraj integrator and the predictive Nagaraj integrator yield significant 

suppression of the offset voltage and low-frequency noise, with the latter having a slight 

disadvantage. Since the holding capacitor CH also samples the output voltage (input­

referred output voltage) of the previous cycle, the pole error A13 is reduced by a factor 

equal to the dc gain of the amplifier. The effective dc gain is then A2, and these circuits are 

commonly referred to as gain-enhanced or gain-squaring stages. The holding capacitor in 

the predictive Nagaraj integrator, however, does not sample the previous value of the 
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output voltage, but rather a prediction of the future value. The result is both a gain-

squaring effect and a much lower gain error Aot. In conclusion, compensation of 

nonidealities which affect the transfer of the charge corresponding to the input signal 

(through the virtual ground of the amplifier), such as the offset voltage or the op-amp dc 

gain, can be cancelled if those nonidealities are previously determined or estimated, such 

that their effect can be properly subtracted. 

Clearly, both Nagaraj structures can yield considerably better performance than the 

regular forward-Euler integrator (and as may have been noticed, in opposite phases!). 

Since in switched-capacitor circuits the accuracy of the gain factor is ultimately 

determined by the matching accuracy of the capacitors, the improvement obtained through 

the use of the predictive Nagaraj integrator may not seem to be of much significance. In 

that case, we are tempted to favor the simple Nagaraj integrator, as it provides a smaller 

pole error and better low-frequency noise suppression. The foregoing analysis neglected, 

however, two important aspects: one is the frequency dependence of the compensation 

(the values given in Table 5.1 affect most the low-frequency values), and the other is the 

nonlinear gain characteristic of the amplifier. Although the former is not of much 

importance for us (we are dealing with narrow-band low-pass signals), it should be 

mentioned that the gain and phase errors in the predictive Nagaraj integrator remain nearly 

flat with frequency, whereas they increase in the Nagaraj integrator, soon exceeding those 

in the predictive structure [61]. Hence, for wideband signals (for example in ISDN 

applications, where the signal band is 80 kHz), this feature is very important. More 

important to us is the distortion resulting from the nonlinear characteristic of the amplifier. 

The following Section is devoted to the discussion of this issue, and constitutes an 

extension of the work initiated by Huang [68][64]. 
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5.3 ANALYSIS OF DISTORTION IN SC INTEGRATORS DUE TO THE
 
NONLINEAR GAIN CHARACTERISTIC OF THE AMPLIFIER 

In this Section we develop an analysis identical to the one presented in the 

previous Section, but considering a generic, possibly nonlinear, gain characteristic f(vin) 

for the amplifier. 

If the output voltage 170 of the amplifier relates to its input voltage Vin according to 

V, = f (Vin) (5.10) 

the output voltage of the Nagaraj integrator in phase #1 is given by (Appendix D) 

Vo(n + = k Vin(n + V (n 11) + V, (5.11) 

where the residual term K. is given by 

V = -k f 1 [V, (n)] + (1+ k + f 1[174n-A (5.12) 

(1 + k') f 1 [170(n + 12-)1 

and f-1 
(x) denotes the inverse function of f(x). The first two terms in equation (5.11) 

constitute the desired output voltage that is a sample of the input signal added to the 

previous output voltage, while V, an unwanted error. Interestingly, the offset voltage does 

not appear in an explicit form in (5.12), but it is present in the nonlinear terms in the 

output voltage. For that reason, the magnitude of those components is expected to be 

small, since the inverse function of the amplifier gain is a small quantity. This clearly 

indicates that offset compensation is indeed being accomplished. 
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Analogously, one can obtain the relation describing the output signal of the 

predictive Nagaraj integrator in phase #2: 

V0(n) = k Vin( n 
1 

+ (n-1) +Ve (5.13) 

where k1 = k2 = k was used. The residual term V, is now given by 

= (1 + k) If 1[1c(nD] f 1 [V, (0] } (5.14) 

+ {f 1 [Vo (n-1)] f 1[174n al 

It can also be shown that the output voltage of the forward-Euler integrator is 

described by 

V (n) = k Vio(n- V (n 1) + (5.15) 

with 

Ve = k V os+ f 1 [V o(n 1)] (1+ k) f 1 [V o(n)] (5.16) 

where the offset voltage shows up explicitly, indicating that no cancellation is taking 

place. 

Note that in equations (5.11), (5.13) and (5.15) the error term V accounts for the 

nonideal behavior of the structure, in this case attributable to the amplifier. Since V, can 

result in harmonic distortion it should be minimized. To better understand the significance 

of the results above, let us consider the waveform shown in Figure 5.3. It qualitatively 
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represents the output voltage of a SC integrator when used in a delta-sigma modulator. 

The peculiarity of this waveform is that since the feedback signal can switch frequently 

between +VREF and VREF, and the input signal varies slowly since it is oversampled, 

successive samples of the output signal of the integrator can differ by as much as 

k VREF (The same can happen when the integrator is used in a Nyquist-rate SC filter, in 

which case successive samples of the input signal can differ quite a bit.) The waveform in 

Figure 5.3 is representative of the behavior of the three integrators described above. 

Vo( n-1)
Vo(n-3/2) 

Vo(n-1/2) 

Vo(n+1/2) 

1 2 1 2 1 2 

n-3/2 n-1 n-1/2 n n+1/2 n+1 

Figure 5.3:	 Typical waveform for the output voltage of a SC integrator in a delta-
sigma modulator. 

Referring to this Figure and making use of the previous results, compiled for 

convenience in Table 5.2, one can see that the residual term ve, in the predictive Nagaraj 

integrator can be significantly smaller than that in the other structures. This is due to the 

subtraction of nearly identical error terms belonging to the same clock period. Thus, it 

appears that this structure can also compensate for the nonlinear characteristic of the op­

amp gain, and hence be successfully used in a low-voltage environment with low gain 

single-stage amplifiers. In the remainder of this chapter we will concentrate on the 

analysis of the predictive Nagaraj integrator, in the context of delta-sigma modulation. 
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Integrator type Error Voltage ve 

Forward-Euler -1kVOS+f [V,(n-1)] -1(1 +k)-f [Vo(n)] 

Nagaraj k f-1 
[170(n)] + (1 + k + le) li [170(n -D] 

(1 + k') - f-1[1 i 0(n + 11 

Predictive 
Nagaraj ( 1 + k) {f 1[Vo(n D]f 1 [V (n)]1 

+ If' [Vo(n in fl[vo(nn} 

Table 5.2:	 Residual voltage error due to the amplifier finite dc gain for a 
forward-Euler integrator, a Nagaraj integrator and a predictive 

5.4 PREDICTIVE CDS AND DELTA-SIGMA MODULATION 

A question which one should ask refers to the nature of the input signal of the 

predictive Nagaraj integrator. As explained earlier, the operation of this structure is based 

on the assumption of a sampled-and-held input signal. One can conceive, however, that if 

the oversampling ratio is relatively high (inherent to delta-sigma modulation), the error 

introduced by using a continuous-time signal will be negligible. As the complete analysis 

reveals (Appendix D), using a continuous-time signal results in a frequency (weak) 

dependence of the gain factor and pole location. Indeed, the input signal and previous 

z-1/2,voltage terms in (5.9) appear multiplied by (different) factors of the type a + b 

where b « a . Simulations show that oversampling ratios in excess of 16 result in 

negligible degradation of the performance. 

The timing of the loop, however, has to be such that the reference voltage does not 

change during the period corresponding to one prediction and one integration. For the 
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example shown in Figure 5.3, the reference voltage must change at the beginning of phase 

#1, and at no other time. As discussed in Section 3.5, this results in more stringent 

requirements for the comparator, which has to be faster. Moreover, the amplifier has to 

settle in the same clock phase, which may not be of much concern since phase #1 

corresponds to the prediction phase rather than the integration one. Besides, with this 

technique the amplifier operates in both phases, regardless of the switching activity of the 

reference voltage. This is the first obvious penalty for using this structure in a delta-sigma 

modulator. 

At this point it is useful to evaluate the efficiency of the technique by providing a 

simulated example. To accomplish that, we will introduce a nonlinear gain characteristic 

for the amplifier. An input-output relation for the amplifier suitable for simulation is given 

in equation (5.17). 

V,
Vin= f 1 (170) = (5.17) 

Ao ( 1 yi V, y2 V2.0) 

Ao is the nominal dc gain of the amplifier, and 'y1 and y2 introduce odd- and even-order 

harmonic distortion, y2 being responsible for most of the roll-off of the amplifier gain with 

the signal level. Ideally, yi = 12 = 0. Figure 5.4 plots the gain dildVin (5.17) for 

Ao = 38 dB (this value is representative of the gain which can be obtained with a single-

stage amplifier), y1 = 0.01 V-1 and 12 = 1.2 V-2. Also shown is a more typical gain 

characteristic (from SPICE simulations) of an amplifier (dashed line). 

As can be seen from Figure 5.4, the equation above is somewhat pessimistic since 

the gain drops more rapidly (it becomes a very good approximation as the power supply 

voltage is much reduced). Both curves result in about 2 dB gain drop at ±0.4 V. Note also 

that the asymmetry relative to V, = 0 V, due to y1, is responsible for odd harmonic 
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distortion. In the simulation, (5.17) is solved numerically (iteratively), based on the 

estimated output signal level as a function of the input signal. 

38 

37.5 

Er3 37
-0 

0
c
 
Ea 36.5
 

36 

0 0.5 
Output voltage [V] 

Figure 5.4:	 Op-amp nonlinear dc gain characteristic as given by (5.17), for 
Ao = 38 dB, 71 = 0.01 V1 and 72 = 1.2 V2 (solid line). Also 
shown is a typical gain characteristic of an amplifier (dashed line). 

Figure 5.5 compares the simulated spectra of the output signal of a 2nd-order 

delta-sigma modulator when the input stage is a regular forward-Euler integrator, and 

when it is a predictive Nagaraj integrator. Figure 5.5a shows the results when a single tone 

is applied, and Figure 5.5b when two tones are applied. The latter is an important test to 

evaluate intermodulation distortion, a critical parameter in communication systems. It can 

be seen that the predictive Nagaraj integrator yields a significant improvement in 

performance. Indeed, the in-band tones harmonic distortion and intermodulation 

products are attenuated by about 20 dB. It can be seen that if quantization noise were a 

limiting factor (unlikely in low-voltage operation), there would be also an improvement in 

the signal-to-noise ratio, as the quantization noise floor is lower. As expected, the dc offset 

voltage is also much attenuated. 
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Figure 5.5:	 Output spectra of a 2nd-order delta-sigma modulator when the input 
stage is a forward-Euler SC integrator and when the input stage is a 
predictive Nagaraj integrator. a) The input signal is a 400 Hz sinusoid 
with power -10.5 dBV. b) The input signal is a 2-tone, 400 Hz and 
600 Hz, signal, each tone with power -16 dBV. The sampling 
frequency was 2 MHz in both cases, and the assumed op-amp dc 
offset voltage was 3 mV. 
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Note that the approximation for the pole error given in Table 5.1 is, to a first order, 

independent of k = CH/CB. In actuality, the pole error is a decreasing function of this 

parameter, although the gain error increases with increasing k'. 

Since the predictive CDS technique results in the compensation of the finite dc 

gain of the amplifier, it is important to calculate the resulting equivalent dc gain. To do 

this, we will use the fact that this technique leads to the definition of a new, improved, 

virtual ground node in the circuit i.e., node x in Figure 5.2, and define the equivalent gain 

as the ratio between the output voltage and the difference between the non-inverting node 

and the virtual ground voltages. From the values stored in the holding capacitor CH in 

phases #1 and #2, one arrives at the following expression for the equivalent amplifier gain: 

Aeq(n) = A 
<=> (n) 

Vo(n 
(5.18) 

eq V (n)Vo(n
 
1 

V (n)
 

Note that this definition displays a dependence with time, and hence with the input 

signal. This is due to the unwanted signal-dependent residual terms resulting from 

incomplete compensation. Figure 5.6a plots equation (5.18) when the input signal is a 1 

kHz, -10.5 dBV power sinusoid; the original op-amp dc gain characteristic is that shown 

in Figure 5.4. Clearly, for most V, values the equivalent gain is considerably higher than 

the nominal 38 dB. However, two interesting behaviors can be noticed. One is that Aeq 

drops for low values of the output signal level. This is not paradoxical; it is a consequence 

of the definition given in (5.18), in which the output voltage may eventually become 

smaller than the residual terms stored in the holding capacitor CH. (The residual voltage 

across CH contains terms in the offset voltage and previous values of the output voltage 

V0, whose magnitude may exceed the new value of the input-referred output voltage) 

Therefore, it does not reflect the true performance of the technique. 
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Figure 5.6: Equivalent dc gain of the amplifier. a) As a function of the output 
signal level. b) Histogram of 5000 samples. 
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Another interesting feature shown in Figure 5.6a is the existence of four distinct 

loci for the equivalent gain (or two, if only positive or negative signals are considered). 

Figure 5.6b plots the histogram of 5000 samples, clearly showing the two different regions 

(the mean value is about 70 dB). These different regions are a consequence of the type of 

the input signal utilized (trajectory of the signal), and are a function of the input signal 

amplitude. (If the input signal were a random signal with a uniform distribution then those 

loci would give place to a single cloud.) 

Each region corresponds to about one fourth of the sinusoid. The lower branches 

correspond to the regions of the input signal near the zero crossings; the upper branches 

correspond to the signal regions approaching the reference voltage value. As the power of 

the input signal is reduced, the height of the second (right-most) peak in Figure 5.6b 

reduces, eventually vanishing, whereas the first peak increases. This can be attributed to 

the higher density of "ones" or "zeros," depending on whether the signal is positive or 

negative, respectively, in the feedback path for large values of the input signal. Due to the 

finite de gain of the amplifier, such large density results in a drift of the virtual ground 

voltage, and hence in a less efficient compensation. Therefore, one can conclude that the 

upper branches correspond to erroneous evaluations of the equivalent gain, similarly to 

what occurs for very small values of the output signal level. 

Figure 5.7 plots the histograms of the virtual ground signals, normalized to the 

maximum occurrence, in a forward-Euler integrator and in a predictive Nagaraj integrator, 

in the presence of a 3 mV amplifier dc offset voltage. The mean value and the standard 

deviation reduce from 3.1 mV and 2.1 mV to 48 tV and 58 [IV, respectively. 
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Figure 5.7:	 Histograms of the virtual ground signal for a forward-Euler integrator 
and a predictive Nagaraj integrator. 

5.5 AC ANALYSIS OF A SC PREDICTIVE NAGARAJ INTEGRATOR 

The methodology presented in Chapter 3, used to derive the power dissipation of 

the first-stage amplifier as a function of its capacitive load, applies also to more general 

SC integrator stages. Indeed, the power dissipation of the amplifier is determined by its 

equivalent ac capacitive load which, in turn, is determined by global parameters like 

dynamic range, reference voltage and oversampling ratio. Therefore, the conclusions at 

which we arrived in Chapter 3 still apply to integrator structures employing CDS 

techniques, and will not be repeated here. 

However, since a predictive Nagaraj integrator possesses more circuit elements 

than a simple forward-Euler integrator, it is expectable that the criteria leading to 

minimum capacitance (hence power dissipation) will be different. In fact, the new degrees 

of freedom may even require a compromise. The objective is the global minimization of 
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load capacitance (partly determined from dynamic range requirements), and of the errors 

arising from the various capacitance ratios. 

Another important issue relates to the time constant of the circuit during the 

integration and prediction phases. Incomplete settling of the amplifier, if linear, results in a 

gain error. Since gain compensation in the predictive Nagaraj integrator is achieved 

through the prediction of the output voltage value, and therefore by storing information on 

the gain error for that output signal voltage, the capacitive load of the amplifier should 

ideally be the same in both phases. This additional constraint may impose different 

requirements on the values of the capacitances that can be used. Figure 5.8 shows the 

effect of different time constants in the integration and prediction phases. To model this 

mismatch, the nominal de gain was artificially made different in order to emulate the gain 

error resulting from having different time constants. In this example (where the 

parameters were the same ones used to obtain Figure 5.5a), the total harmonic distortion 

increased by about 5 to 7 dB when the gain during either the prediction or integration 

phase was reduced by about 20%. It can be seen that when the accuracy is lower during 

the prediction phase (lower nominal gain), the error is slightly larger (curve b). However, 

although not shown, the low-frequency noise floor was higher when a lower dc gain value 

was used during the integration phase. Hence, to minimize these nonidealities the settling 

behavior of the amplifier should be identical in both phases, that is the loads should be 

equalized. 
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Figure 5.8:	 Magnified output spectrum of a 2nd-order delta-sigma modulator 
(showing signal harmonics) when the input stage is a predictive 
Nagaraj integrator. Curve a corresponds to utilizing a nominal gain of 
38 dB in both prediction and integration phases. Curve b corresponds 
to utilizing a 20% lower gain in the prediction phase, and curve c 
corresponds to utilizing a 20% lower gain in the integration phase. 

Figure 5.9 shows the circuit configuration of a predictive Nagaraj integrator in the 

prediction and integration phases. For simplicity, the only parasitic capacitance taken into 

consideration is the op-amp input capacitance Cp (it is also the most important one). The 

parameters which are unique, and in terms of which all remaining parameters can be 

expressed, are the input capacitor in the integration phase Cin, the input capacitor in the 

prediction phase CA, the gain factor k = Cin/CF = CA/CB, the holding capacitor CH, 

the op-amp input capacitance Cp, and the op-amp load capacitance CL. 
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a)	 CB 

Figure 5.9:	 Circuit configuration of a predictive Nagaraj integrator in the a) 
prediction phase and the b) integration phase. 

The capacitive load determining the closed-loop time constant is obtained from 

dividing the open-loop capacitive load by the feedback factor. Hence, the equivalent load 

during prediction (phase #1 in Figure 5.2) is given by 

C- C
C1- IPT cip+ cBB 

CTp = 
CB 

(5.19) 

CB÷ C 

where 

Cip CA+ CH-F Cp	 (5.20) 
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is the total input capacitance in the prediction phase. Substituting (5.20) into (5.19), and 

using k = Cin/CF = CA/CB, one arrives at 

CH C 
CTp = [1 +k 1 ++ CL+ CA-1-- CH+ Cp (5.21)

CA CA\ 

Analogously, the capacitive load seen during integration is given by 

CFCiICL+ 
Cil+ CF 

CTI = (5.22)
CF CH
 

CF+ C il CH+ Cp
 

where C11 is the total input capacitance during the integration phase: 

CH Cp 
Cil = (5.23)Cin+ CH+ Cp 

Substituting (5.23) into (5.22) we obtain 

1 

CTI = [[(c7 k÷ 11- C + k + li C + 1+ C. + C (5.24)
CH P CH I n PH 

Note that the presence of the op-amp input parasitic capacitance results in a 

reduction of the feedback factor, and hence in an increase of the equivalent capacitive 

load. For this reason, one can predict that a critical parameter in the minimization of the 

power dissipation is ratio between CH and Cp, which should then be maximized. 
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To determine conditions for equality of the capacitive loads given by (5.21) and 

(5.24), and hence derive the optimum value for the holding capacitor CH, we will compare 

three scenarios. In one case we assume that C = 0, that is no parasitics exist. In another 

case we will assume that C # 0 but CA = Cin. The third scenario is more general:
P 

Cp 0 and CA # Cin. The minimum value of these capacitances in either case is 

determined from noise considerations, a subject to be addressed later. 

In the absence of parasitics, equality of both capacitive loads requires that 

Cln CA
CH = C = CHO (5.25) 

1 k 
CA 

Using this value for the holding capacitor results in the following equivalent load 

(equal in both phases) 

CTO (1 + k) L+ C (5.26) 

Interestingly, Cm is equal to the load seen by the amplifier during the integration phase in 

a forward-Euler integrator. Therefore, the same amplifier can be used without any 

degradation of the settling behavior. This can be achieved as long as Cin > CA, as can be 

appreciated from (5.25). If CA> Cin, equality of the capacitive loads cannot be attained. 

Although in principle one can choose any value for CA (such that Cin > CA ), the choice 

should result in a practical value for CH. The latter increases with CA at first, and then 

decreases. From equation (5.25) one can easily obtain the maximum value for CH (a 

somewhat convoluted result). The maximum occurs when 
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CA = jk CL (Cin+ k CL) k- CL (5.27) 

For example, if k = 0.25 , CL = 1 pF, and Cin = 2 pF, the maximum CH occurs 

for CA = 0.5 pF yielding CH = 1 pF. Note, however, that regardless of the choice for the 

value of CA, the total load remains unchanged, in this example equal to 3.25 pF. If 

CL = 0 , then CH = Cin CA, which should not come as a surprise since in such case the 

load of an operational transconductance amplifier is determined by its total input 

capacitance only. 

In practice, the op-amp input parasitic capacitance is not zero, especially in high-

speed operation where large transconductances are required from the input devices of the 

amplifier. At low speed, however, the situation just presented is approachable. In the more 

general case when the parasitics cannot be neglected, the following quadratic expression 

results from the equality condition of the capacitive loads: 

( 1 1 Cp CL kCin CA +Cin CA)
Cl.H 

CL CL
1+ k 1+k 

CA 

(l+k) CL+ Cin 
Cp = 0 (5.28)

CL 
k. 

A 

Using the results above, (5.28) can be written as 

(1 1-)C C k 
2 CA P LCin CTOCH CH = 0 (5.29)CHO+ CL C P

1+ k-,7 1+ k-
CA 
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This expression can be greatly simplified if we choose CA = In such case theCin . 

second term becomes zero, yielding for CH 

C Cp
CH = TO 

(5.30)
CL
 

k
 
A 

The total load is now 

CL C TO- Cp 
CT = CTO + 1+ k + 

CL 
(5.31) 

CA/
 
1 + k C/A 

Note that Cm is not constant, since CA = Cin. As can be appreciated from (5.30) 

and (5.31), the value of the holding capacitor is an increasing function of CA, but the total 

capacitance still displays a minimum. This minimum can be determined from equating the 

derivative of (5.31) to zero and solving for CA. When CA # Cin, (5.28) has to be used to 

determined the value of CH which yields equal loads. The result is, as expected, rather 

complex and an expression will not be given here. 

Figure 5.10 plots the curves obtained for the three scenarios analyzed with the 

parameters of the example above. The main conclusions which can be inferred from this 

Figure and the previous analysis are: a) minimum capacitive load, and hence minimum 

power dissipation, is obtained when the parasitics can be made negligible compared to the 

capacitive components, especially CH. In such case, the equalization of the capacitive 

loads during prediction and integration is possible only if CA < Cin. b) Using CA # Cin 

will always result in a larger capacitive load, and hence increased power dissipation, 
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except when CA is larger than Gin (and there is no apparent reason to use CA > Cin). It also 

results in increased area, since a larger value for the holding capacitor is required. 

Note that in curves e and f, Gin = 2 pF, a fixed value, whereas CA is changing. 

Although a minimum can still be reached, it will be higher than the minimum that can be 

obtained when CA = Cin. 

6 
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Figure 5.10: Value of the holding capacitor CH required to achieve equality of the 
capacitive loads during prediction and integration in a predictive 
Nagaraj integrator, and the resulting equivalent load CT. a: CH for 
Cp = 0 . b: CT for Cp = 0 . c: CH for Cp# 0 and CA = Cin. d: CT 

for Cp# 0 and CA = Cm. e: CH for Cp# 0 and CA#Cin. f: CT for 

Cp# 0 and CA#Cin. 
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The foregoing analysis focused only on determining conditions resulting 

simultaneously in equal and minimum capacitive loads during the prediction and 

integration phases. These conditions lead to optimum performance and minimum power 

dissipation. The following section analyzes the predictive Nagaraj integrator for kT / C 

noise performance, and how it may affect the conclusions reached in this Section. In 

particular, there is no guarantee that minima determined above can be used and still 

achieve the required noise performance (dynamic range). 

5.6 ANALYSIS OF THE kT/C NOISE IN A PREDICTIVE NAGARAJ 
INTEGRATOR 

The analysis presented in this section addresses the case when the gain of the 

amplifier is linear, and considers only the contributions to the total thermal noise by the 

ON-resistance of the MOS switches. The objective is to determine the trade-off between 

the kT/C noise performance and the minimization of the amplifier power dissipation, as 

developed in the previous Section. For simplicity we will consider only the case where the 

input capacitance of the amplifier can be neglected compared to the holding capacitor. As 

discussed above, some situations may require the inclusion of this parasitic element for a 

more accurate calculation. However, the general conclusions reached in the following 

analysis still apply to the more complex models. 

Observation of Figure 5.2c indicates that kT/C noise is generated in both phases of 

operation, prediction and integration. If the dc gain of the amplifier were infinite, (in 

which case there would be no point in utilizing the CDS structure for the reduction of 

distortion) the noise contribution of the prediction branch would not affect the integration 

phase of operation, since this could only happen through the holding capacitor CH and the 

virtual ground of the amplifier. This is not strictly true in practice, but as we will see, this 

contribution is negligible compared to the that due to CH itself. Figure 5.11a shows the 

circuit configuration during the prediction phase. Also shown are the noise sources 
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2associated with CA and CH, whose noise power is vA = 2 kT/CA and vH = kT/CH, 

respectively. (Note that the holding capacitor samples the thermal noise only once.) 

Applying the KCL and using V = V, yields the output noise 

CA VA+ CH- VH 
Vo (5.32)CB+pt (CA+ CH+CB) 

where 1,- denotes the root-mean-square (rms) value of v. Then, the value stored in the 

holding capacitor at the end of the prediction phase is 

CA- VA- + CH VH 
VHp = VH-Vx = VH- -1.1 (5.33) 

B÷ Pt. (CA+ CH÷ CB) 

Figure 5.11: AC model of a predictive Nagaraj integrator showing the kT/C noise 
sources during a) prediction phase and b) integration phase. 
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Since the noise sources vA and vH are uncorrelated, the powers of the noise signal 

components stored in CH add: 

IA CH2 2 kT 
V Hp = (5.34)

CB+1.i (CA- F CH- CB)] CH 

CA 2 2 kT
 
[CB+p. (CA+ CH+ CB)] CA
 

Due to the small value of 11 = 1/A , this expression can be approximated by 

CH kT 
I) 1 2 (5.35)-= CA CH 

where k1 = Cin/Cf = CA/CB . It can be seen that the kTIC noise leakage from the 

prediction branch is greatly attenuated by the gain of the amplifier, and hence should not 

be a limiting factor. Using, for instance, the values for CH, CA, k1 and la given in the 

example above, the error resulting from making II = 0 is only about 0.1 dB, a quantity 

hardly measurable. We will therefore neglect the noise leakage due to the prediction 

branch in the remainder of the analysis. (Note that the inclusion of the input capacitance of 

the amplifier would result in a term of comparable magnitude, and therefore negligible.) It 

can also be seen that the finite dc gain of the amplifier actually reduces the amount of 

noise that is sampled onto capacitor CH. (A finite op-amp bandwidth would result also in a 

slight improvement of the noise performance.) This is due to the incomplete charge 

transfer which occurs when the op-amp gain and bandwidth are finite. 

Figure 5.11b shows the circuit configuration during the integration phase, with 

indication of the noise sources associated with the input capacitor Can, the feedback 

capacitor Cp and the holding capacitor CH. Unlike the regular forward-Euler integrator, 

the feedback capacitor also contributes with kT/C noise, as it is switched. Since the noise 



sampled by Cf shows directly at the output, its transfer function is unity. To refer this noise 

to the input one must divide the transfer function to the output by the transfer function of 

1the integrator, that is multiply by z1)/k1 . The noise contributed by the holding 

capacitor CH sees also a unity transfer function to the output. This can be explained by 

realizing that during the prediction phase (Figure 5.2c), the input and holding capacitors 

sample the same noise voltage at node x (noise due to the ON resistance of the switch 

connecting node x to ground during phase #1). Hence, during the integration phase, there 

is no charge redistribution due to vH (Figure 5.11b), and the latter shows at the output 

node directly. Again, to refer this noise component to the input, one must multiply its 

(unity) transfer function to the output by (1 z-1)/k : 

Clearly, the contribution of the feedback and holding capacitors to the total noise 

power becomes very small due to the effect of the transfer function of the integrator. This 

noise shaping effect is identical to what occurs to noise signals injected at the node 

following the output of the first integrator. The total input-referred in-band noise power 

due to the three capacitors can then be easily calculated yielding 

2 2 kT k_T kT)eT = 
OSR Cin fH Cf CH) 

2kT 
(5.36)OSR C,n 

where the coefficient aft/ is given by 

1 lr )3"fli (5.37)
2 OSR3 ir k2 
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A critical comparative remark is now in place. It is clear that the noise 

performance of the predictive Nagaraj integrator is comparable to that of the forward-

Euler integrator. The increased equivalent capacitive load during the prediction phase, and 

the necessity to equalize the time constants in both prediction and integration phases, 

imply that the predictive Nagaraj integrator will in general dissipate more power than the 

forward-Euler integrator. For this reason, the former is more likely to find a niche in 

applications where only moderate speed of operation is required. It is difficult, however, to 

ascertain the boundaries of its usefulness, as the trade-offs are many (for instance, clock 

charge injection, which was not considered in the foregoing analysis, may become an 

important issue). Namely, there is the potential benefit of the utilization of single-stage 

amplifiers which require much less power compared to their 2-stage counterparts. 

Moreover, if offset cancellation and low distortion are mandatory, then these structures 

may be required. 

Examples of applications where predictive correlated double sampling may be 

effective include instrumentation applications, high-performance voice codecs, and other 

systems where medium-to-high resolution and medium speed are required. 

5.7 SUMMARY 

In this chapter we analyzed the properties of the correlated double sampling 

technique as a potential candidate technique in the design of low-voltage low-power delta-

sigma modulators. The greatest advantage of the predictive Nagaraj integrator is the 

simultaneous compensation of the nonlinear gain characteristic of the amplifier, and low-

frequency noise cancellation. Its greatest disadvantage is the increased equivalent 

capacitive load and circuit complexity, which results in increased power dissipation. The 

suitability of this technique is largely dependent upon the application, and hence cannot be 

easily generalized. Further work is required to identify the exact trade-offs for the 

applications of this technique. 
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Several other issues related to the design and performance of this structure were 

discussed. A performance comparison in terms of gain- and pole-errors, as well as of 

distortion between a forward-Euler integrator, a Nagaraj integrator and a predictive 

Nagaraj integrator was also presented. 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 CONCLUSIONS 

In this dissertation we investigated the constraints which arise when designing SC 

delta-sigma modulators for low-voltage operation, targeting also low power dissipation. 

The minimum power dissipated is associated with the operation of sampling of the 

input signal. This operation results in kT/C noise (superimposed to the input signal), 

whose power has to be lower than the noise power with origin in the processing circuitry 

that follows. When the dynamic range is limited by kT/C (thermal) noise, both power 

dissipation and dynamic range display proportionality to the (constant) product of the 

value of the switched capacitance and the square of the reference voltage. Hence, to 

reduce the minimum power dissipation, both the switched capacitance and the power 

supply voltage should be reduced. 

Most current circuit techniques employ class-A amplifiers for their superior 

linearity. The power dissipation of these structures is proportional to the capacitive load, 

which should then be minimized. For constant dynamic range, reduction of the power 

supply voltage requires larger capacitances to reduce the noise floor level, and hence the 

power dissipation increases. 

The overall system power dissipation is largely due to the operational amplifiers, 

whose power dissipation is typically 2 to 3 orders of magnitude larger than the minimum 

required to sample the input signal, especially those amplifiers in the front end which have 

to assure that the signal is acquired without degradation. Such is the case in delta-sigma 

modulators where the first stage integrator can be accountable for about 50% or more of 

the total power dissipation. Successive stages benefit from the noise shaping property 

which relaxes the performance requirements. 
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Minimization of the amplifier power dissipation requires, therefore, minimum 

capacitances and large signal swing. A large swing cannot be obtained utilizing cascode 

structures for the amplifiers. However, the removal of the cascode devices results in a 

significant drop in the value of the dc gain, reducing the linearity of the overall system. 

Hence cascaded topologies have to be favored. These, however, require frequency 

compensation for stability, which significantly increases the power dissipation. It is hence 

desirable to develop structures capable of achieving a compromise between signal swing 

and the de gain of the amplifier. One such technique is predictive correlated double 

sampling, which compensates for the nonlinear characteristic of the amplifier, and also 

reduces its low-frequency noise. These techniques, however, result in a larger equivalent 

capacitive load of the amplifier, and hence increased power dissipation. Moreover, the 

added circuit complexity results also in increased clock charge injection, the effects of 

which may be difficult to compensate. These and other nonidealities may limit its 

usefulness to moderate-speed and moderate-performance applications. 

6.2 FUTURE WORK 

Further research on the predictive correlated double sampling technique is 

required to identify clearly the areas where its application would be successful, namely 

where low-voltage low-power operation is imperative. This work would culminate in a 

working prototype. 

True low-voltage circuit techniques need to be developed which do not require, for 

instance, voltage doublers to drive the MOS switches. This technique will find limited 

application in sub-micron processes where the breakdown voltages are in the order of 3 V. 

Micropower techniques are also needed in high-frequency applications. 

Frequently, some MOS devices are found to operate in weak or moderate inversion in RF 
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applications, due to the low value of the power supply voltage. A very important aspect is 

the correct modeling of these devices, which is not sufficiently well developed. 

This work concentrated on the analog front end. Several researchers have proposed 

different solutions to implement the digital post-processor (decimation filter), but they all 

utilize linear filtering techniques based on sine and FIR, brick-wall type of filters. 

Although significant improvements have been reported, which resulted in lower power 

dissipation, it is probably worthwhile to investigate the utilization of unconventional 

filtering techniques, such as nonlinear filtering. It is reasonable to expect that such 

techniques might be able to take advantage of the inherently nonlinear behavior of delta-

sigma modulators, and possibly result in architecture- and power-efficient filtering 

structures. 
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APPENDIX A: AC ANALYSIS OF A SINGLE-STAGE
 
OPERATIONAL AMPLIFIER
 

In this Appendix we develop the AC analysis of a single-stage amplifier and of a 2­

stage amplifier with Miller frequency compensation, to derive the equations presented in 

Chapters 3 and 4. 

Figure A.1 a depicts a simplified model of a single-stage amplifier and Figure A.lb 

the same amplifier in a feedback configuration. 

a) 
Vo 

+0 

yin gm.Vin 

b) 

"go 

mgrnovi 

Figure A.1: Small-signal model of a single-pole amplifier a) in a stand-alone 
configuration and b) in a feedback configuration. 

Applying the KCL to the two circuit nodes (V1 and 170) in Figure A.lb, one obtains 

the following system of equations: 
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s i1C ( V, VI) s [M Cp 10 + Cin ( 1 + V1 = 0 (A.1 a) 

Cin
M gmo Vi = s F. ( 70v1) + (A.1b) 

[s(m Cp20 + Cin) M go] 170 

where s is the complex frequency (Laplace transform). Solving (A.1 b) for V1 yields 

VI = 1 
V, (A.2)

C[1-Fk(1+a)]+m.10 L. 
C

I 

Substituting (A.2) into (A.1 a), and solving for s one obtains the natural frequencies 

of the system. Since this is a single-pole system, it has only one natural frequency. 

Moreover, the amplifier is in a feedback configuration, and hence the natural frequency 

corresponds to the closed-loop bandwidth BW: 

AlgmoM Ciogo 
l+k [ 1+1 +M 

BW = 
a Cin (A.3) 

1M Cp20 1BP+ C. 

Cp101 +k 1 +1 +M 
oc Gin i_ 

Collecting the terms in the multiplicity M one easily obtains: 

2 a BW + gmo +b g, e BWM + Cin M + c B u in = (A.4)
C BW + d g -W + d go 

where the coefficients a through e are given by 

http:1-Fk(1+a)]+m.10
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a = (1 + BP) C Cp20 ( 1 + k tt)
 

b = 1 +k+k
 a
 
c =
 Cp10 Cp20
 

d = k Cp10
 

e = 1+-1+BP-(1+1+-11) (A.5)a k a 

Neglecting the output conductance go, using wheregm0 = B VGST' 

B = k' (W/L) 0 (1 + X. Vas) and VGST denotes the gate overdrive voltage, and 

introducing a positive frequency notation (equation (A.4) reflects the fact that the pole is 

in the left-half complex plane), yields 

VGST 2in
M2 + (an b

n C -111+Cn C = 0 (A.6)in 

where the new coefficients an, bn and cn are given by 

a 1 ( , 1 1) 1 1 + BPan = 
Cp10 i4T3+ cp20 k
 

B B
bn = = 
k Cp10 Cp20 

1 (1 +)

e a a)
cn = (A.7)
c k Cp10 Cp20 

Solving equation (A.6) for KW, taking the derivative relative to the multiplicity M, 

and equating to zero one obtains 

M = ,Fn C (A.8) 
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This zero of the derivative corresponds to a maximum of BW. Using (A.8) and 

(A6), one obtains for the maximum closed-loop bandwidth: 

bn 
(A.9)BWMAX = VGST

2 + a 

An important parameter in the design of systems employing feedback is the 

feedback coefficient defined as (Figure A.lb) 

V1 
(A.10)

170 

For the circuit shown in Figure A.lb, this parameter can be easily calculated 

yielding 

CIn 

R= 
k 1 

(A.11)
in + a 

C -F M C 1+1c -(1+ 1 ) -1-M k p10 

k a i n 10 a Cin 

The foregoing analysis was based on the amplifier's working in a linear manner, as 

in linear settling operation. The input transconductance and the circuit parasitic 

capacitances determine the natural frequency of the circuit which assumes the general 

form p = gm/CLac, where CLac is the equivalent (ac) closed-loop capacitive load. We 

can then use the previous expressions to determine CLac.: 

inT CoT= C CCLac inT oT C 
(A.12) 
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where CinT = M Cp o Cin (1 + 1/a) is the total input capacitance, 

CoT M Cp20 + (BP / k) Cin the total output capacitance, and CF = C in/ k the total 

feedback capacitance (Figure A.1). 

If the amplifier is in slewing mode, the feedback loop is ineffective, and therefore 

the load CLs, seen by the amplifier in this mode of operation is 

CLsr = CoT+ rCinT CF 
(A.13) 

According to the definition of feedback coefficient (A.10) given above, 

= CF/ (CinT÷ CF) . Taking the ratio between Cc. and CL one arrives at 

CLac_ 1 
(A.14) 

CLsr 13 

Since the feedback coefficient does not exceed 1, we conclude that the capacitive 

load seen during linear settling is always greater or equal to the capacitive load seen 

during slewing. 

Following the assumptions used to derive equation (3.25) in Chapter 3 for the 

minimum closed-loop bandwidth, BW 1.85 J., DR [bits] , and the fact that 

2 IBw 
CBW = (A.15)

CLac VGST CLac 

one arrives at 
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1.85 .4. V 
T DR [bits] 

= C (A.16)Lac2 

The expression for the minimum bandwidth was derived from the following condition: 

2--DR < e-n
 

n 3
 
= Ts (A.17)BW 8­

where n is the number of time constants in (3/8) Ts. From this criterion, the time 

allowed for slewing is (1/8) Ts, and hence the current required is 

8 k VREF 8 k '13 VREF= SR CL,, = C = (A.18)Lsr LacTs Ts 

It follows that the ratio of the two currents is 

i.ow 1 ( 1 ) 
DR [bits] (A.19)/ 8 65 k RSR VREF 

In general, if we allocate m Ts/2 for slewing and (1 m) Ts/2 for settling, 

where ideally m e [0,1/2] , the minimum closed-loop bandwidth BW required for settling 

within an accuracy of DR bits is 

1n4 fs DR [bits]
BW (A.20)1 -m 

and using (A.15) one arrives at 
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IBw = (1 
ln 2

m) fs . VGST DR [bits] (A.21)CLac 

The current needed for slewing is then 

2 b a i, f r 
1SR 7-- (m--). '1. P v REF J s 1-Lc (A.22) 

Equating equations (A.21) and (A.22), and solving for m yields 

m = 1 
(A.23) 

1n2 i DR1 [VGsT) 
2 ksk.13/ VREF 

The sensitivities of IBw and 'SR relative to m can be determined to be 

IBw M dIBw MS = .-- (A.24)ni I mIBw 1 m 

and 

Is'? rn dlSR3 = = 1 (A.25) 
nl ISR dm 

For small m, SmiBw
---.. m , therefore IBw is very insensitive to variations in this 

parameter. However, 'SR follows any variations in m (with opposite sign). 
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APPENDIX B: MODELING OF A FULLY-DIFFERENTIAL 
SC INTEGRATOR
 

In this Appendix we present a model for a fully-differential switched-capacitor 

integrator. The model includes the finite dc gain of the amplifier, a 1-pole frequency 

behavior, limited slew-rate, offset voltage and common-mode rejection ratio (CMRR), 

noise sources such as kT/C noise, op-amp thermal and 1 /f noise, and clock charge 

injection. Chopper stabilization is modelled as well. 

B.1 BASIC OP-AMP MODEL 

Figure B.1 shows a basic model of fully-differential amplifier, where the features 

modelled are the dc gain and the output common-mode voltage. It is assumed that the two 

sides of the amplifier may be mismatched, hence we need two different gains. The 

equations which describe the behavior of the amplifier are 

AV = e+e
 
Vop = V +A1 AV
mo 

Von = Vno A2 AV 

Vop Vo = (A1 + A2) AV (B.1) 

B.2 OFFSET VOLTAGE AND CMRR 

To model the offset voltage Vos in a differential structure, we can split the former 

into two contributions with equal values and opposite signs, as shown in Figure B.2. The 

common-mode rejection ratio refers to the capability of rejecting signals which are not 

differential. Since it is defined as the ratio of the differential gain to the common-mode 
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gain [10], the common-mode component has to be divided by CMRR. The equations 

which describe these mechanisms are the following: 

, A V
V = V

.11, CM 2
 

A V
V = v, + 
Y cm 

1/2 V V ) ( 1/2. Vx V) ) V 
V = ( Vy + AV+ cm + V

CMRR + 2°s) Vx CMRR 2 CMRR 
V Von = ( A A2) V (B.2) 

Note that the input signal is V Vy , and it contains both common-mode and 

differential components. 

A 

AV 

Figure B.1: Basic model of a fully-differential op-amp with finite dc gain. 

B.3 OP-AMP NOISE 

The thermal noise of the amplifier is modelled based on the expression of the noise 

PSD of an MOS device in saturation: S (f) = 8kT/ (3g.) . Given the bandwidth, the 

noise power PN can be easily calculated. The corresponding noise signal can be 
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approximated by generating a random function with a Gaussian distribution N(0,1), which 

is multiplied by /if3N. The new sequence converges stochastically to N(O,PN). 

-AV/2 CMRR Vos/2 

AV/2 Vy/2 Vos/2 

CMRR 

Figure B.2: Modeling of the op-amp dc offset voltage and common-mode 
rejection ratio (CMRR). 

To simulate the effect of flicker noise, a common empirical expression for the 

power spectral density for this type of noise in MOS devices is used: 

KF 1 
(B.3)

S"(f) Cox' W L f4F 

where KF and AF are process- and device-type-dependent parameters, f is the 

frequency, Cox the oxide unit capacitance, and W and L the effective width and length of 

the MOS transistor, respectively. Assuming that the noise signal with PSD given by (B.3) 

results from filtering a white noise sequence N(0,1), the filter impulse response is given by 

IH = [S,x(f )1 1/2 (B.4) 
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As an example, consider a signal band and a sampling frequency such that 

OSR = 64 . This results in 128 frequency points in the given bandwidth. We then build an 

FIR filter with 128 taps and impulse response given by (B.4), and use it to filter a pseudo­

random sequence with distribution N(0,1). The power spectral density of the filtered 

sequence can be estimated using a simple periodogram: 

IFFT (f) 12PSD (B.5) 

where M is the number of samples in the time sequence. Note that using a periodogram is 

a somewhat less accurate approach, since it is a biased estimator of the PSD. Figure B.3 

shows the generated pseudo-random white noise sequence and its filtered version. Also 

shown are the impulse response of the FIR filter, (B.4), and the resulting periodogram 

which is compared with Syy (f) . The number of samples used was M = 1024. 

In the simulation, the samples of thermal and flicker noise thus generated are 

added to the differential dc offset of the amplifier. 

B.4 kTIC NOISE 

The kT/C noise with origin in the MOS switches ON resistance is generated in the 

same manner as white noise in the op-amp. The white noise sequence with distribution 

N(0,1) is now multiplied by ,12 kT/C, where C is the value of the switched capacitor. 

Each sample of noise is added to a sample of the input signal. 
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Noise sequence N(0,1)	 Filtered noise sequence
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0 
a) 
-o 

E -5 
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FIR filter impulse response 
10-b° Periodoqrams 

0 

73 0.5 10-15 

E	 Periodogram of 

filtered sequence 

10-20 
100 200 1 105Frequency [Hz]

Taps 

Figure B.3: Generation of a noise time signal for simulation of flicker noise, from 
a filtered pseudo-random white noise sequence. 

B.5 CLOCK CHARGE INJECTION 

Two scenarios are possible: slow and fast switching. In the case of slow switching 

(Figure B.4a), the charge injection component is dominated by the overlap parasitic gate-

drain capacitances Cgd, since the charge stored under the channel is absorbed by the input 

signal source (if the impedance of the signal source is much lower than that of C). The 

turning point occurs when the gate voltage VG equals 

VG = Vin+VT	 (B.6) 
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point at which the device turns off. Applying the charge conservation law (see Figure 

B.4c), one concludes that the residual voltage across the sampling capacitor C due to 

charge injection is 

C d 
AVc. = V Vin = (B.7)( Vin+ VT)Cgd+ C 

Note that this injection of charge occurs after the transistor is OFF 

(VG < Vin + VT), and is due only to the overlap capacitance. 

a) 

b) 

4_ _ 
Acich/2 Acich/2 

c) 

ECI1 Eq2VG=Vin+VT 

-II. ICgd in 

CIcgl IC
 
= Eq2 

Figure B.4: Modeling of the clock charge injection. a) Slow-switching mode. b)
 
Fast-switching mode. c) Charge conservation principle.
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In the case of fast switching, Figure B.4b, the charge under the channel is not 

absorbed by the input signal source, and hence part of it is injected onto the sampling 

capacitor C. The amount which is actually stored in the capacitor C is a function of the 

impedances looking from the drain and source of the MOS switch. If these impedances are 

equal, then half of the charge under the channel is absorbed by the input signal source, and 

the other half is injected onto capacitor C. Assuming that this is indeed the case, one can 

easily arrive at the following result for the channel charge injection onto capacitor C: 

W L COX (VDD VinVT) 
(B.8)Agch 2 

Adding the contributions from the overlap capacitance and channel charge one 

arrives the following result for the total residual voltage across capacitor C: 

W L COX (VDD yin VT) C d 
A Vc. = ( Vin + VT) (B.9)

2 (Cgd + C) Cgd C 

Note that VT is a nonlinear function of the input signal [10]: 

VT = VT0,÷ y jVin + As) (B.10) 

Fast switching is more practical, and hence will be the one used in the 

development of this model. 

(An estimate of the lower bound for the residual voltage AV, due to the channel 

charge is given in [69]. This bound was determined for a SC integrator, and is only a 

function of the switch channel length, the carrier mobility and the time constant of the 

integrator.) 
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B.6 SWITCHED-CAPACITOR INTEGRATORS
 

Figure B.5 shows the diagram of a generalized fully-differential SC integrator. It 

contains an arbitrary number of inverting and non-inverting input branches (the 

superscripts u and I refer to upper and lower SC branches, respectively). Switches 

implementing chopper stabilization and the appropriate timing are shown as well. We now 

present the equations describing the behavior of this circuit in all phases of operation. 

iT Ti 
v,. 111I
 

2 CNu
 
CF1 

T T,
1
 

Viu°/ I III \
 
2

1 Ciu
 
Cil 2
 

V1' 0 \ 111 11 

2J
 
1 1 

1
 

: CF22 CNI 2
 
VNI0--\ l i /
 

19 1i i 
Timing diagram 

1 2 1 2 1 

1c 2c 1c 

Figure B.5: Circuit diagram of a generalized fully-differential switched-capacitor 
integrator with chopper stabilization. 
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For the purpose of simulation, it is convenient to develop a structure characterizing 

each input SC branch. The entries in such structure for SC branch are the nominal 

capacitance value C, the associated bottom plate capacitance Cb, the voltage applied to C 

in phase #1 V1, the voltage applied to C in phase #2 -- V2, the voltage across Cat the end 

of phase #1 Vc (n 1), and a random number rand which will be used to generate a 

sample of kT/C noise. 

Figure B.6a shows a non-inverting and an inverting SC branch during phase #1. In 

this phase the inverting branches sample an input voltage Vin, and the non-inverting 

branches are shorted to analog ground VAGND. Figure B.6b shows the configuration seen 

when switch Si opens. As can be seen from this Figure, the right-hand side of both 

branches is always connected to the same voltage analog ground. Only the node voltage 

Vx (phase #1) differs. This allows us to use a single structure to manipulate both types of 

branches, without explicit reference to their type. In this Figure, Vx equals VAGND for a 

non-inverting branch and Vin for an inverting one. The charge packets Aq1,2 represent the 

charge injection from the channel, as given by (B.8). One can then write the following 

relations: 

Aqi = (Cgd + Cb) + C ( V2) + Cgd ( VDD Vx) 

Cb-VxC. (VxVAGND) 
Aq2 = C V2 + C ( V2 V1) + C ( Vx VAGND) 

Cgd (VAGND VDD) 

Collecting the terms in V1 and V2 one obtains the following system: 
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VI 

C Cgd Cb V2 

C gd+ Cb C C 

[Aqi + ( Cgd ÷ Cb + C) V Cgd VDD C VAGND 

Aq2 + (C+ Cgd) VAGND C Vx Cgd VDD 

(B.12) 

where the channel charge injection components are given by 

Aqi =-­
1 W L COX (VDDVxVn) 

VT1 = VTO + Y ,,/17x + 4)s As) 
1 

1-4 .0 11Aq2 V ( VDD V AGND--- VT2) 

VT2 = VTO Y (A/VAGND s AFFs) (B.13) 

a) Inverting branch Non-inverting branch 

VDD VDDCgd Cgd VDD cgd VDDCgd 

S1 Si r,
\ 14 igcb, N )4

yin VAGND VAGND VAGND 

b) 

Cgd C Cgd
Vx Switch Si ACI1 Vi V2 ACI2 

VDD +I 1- +I I - +I H VDD 
OFF 

VAGND 

cb -r Tb T 

Figure B.6: a) Inverting and non-inverting SC branches during phase #1. b) 
Branch configuration for charge injection when switch Si opens. 
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The voltage across the capacitor, and stored in the structure described above, is 

then 

Vc(n 1) = V2 + rand (B.14)4 c 

It is interesting to analyze the effect of the bottom plate capacitance Cb on the 

charge injection. Assume that Aq1 2 = 0 . If Cb = 0 , the overlap capacitances do not 

contribute any residual charge due to the symmetry of the structure. As Cb is made very 

large, the node to which it is connected (the bottom plate of the capacitor) behaves as an ac 

ground for fast-switching signals. Therefore, only the overlap capacitance of the right-

most switch contributes with charge injection. The following relation for the voltage 

across the capacitor C holds: 

Ced 
V (B.15)VCC VDDC Cgd in+ C gd+ C 

This expression permits us to relate the size of the MOS switch to power supply 

rejection; clearly, the switch dimensions should always be minimized. 

Note, however, that the overlap capacitance connected to the virtual ground does 

contribute a residual charge, which is injected into the integrating capacitor. This charge 

injection is frequently found accountable for significant source of error. 
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v CF1 

P 

on 

Figure B.7: Possible configurations when chopper stabilization is used. a) 
Configuration #1. b) Configuration #2. c) Model to update node 
voltages in configuration #1. d) Model to update node voltages in 
configuration #2. 
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In phase #2 we have to determine whether chopper stabilization is being used or 

not. This creates two possible configurations, which alternate when chopper stabilization 

is being used. Figures B.7a and B.7b show such configurations. Before charge transfer 

from the input SC branches can take place, it is necessary to update the node voltages 

resulting from switching between configurations, as charge redistribution takes place. In 

configuration #1, Figure B.7c, the following equations hold: 

1/2 1/2 VAGNDe e+ ) v= V + + cmRR) V (B.16a)os CMRR CMRR 

1/ 2Cpl CFl Fl +A'\ ,11 ( 1 +CFlA 
1CMRRiJ CMRR) 

1/2 ) 1/2 V,y 

CF2A2( 1 Cpl CF2 [1+A2(1+ 
ACMRR CMRRyl

VAGNDCpl C Fl[ Al A Vos VAGND v CFI CF CMRR (B.16b) 
A 

vAGND
p2 Vx C F2[ A2 /los VAGND v CF2J CF2r12CMRR 

where V'y and V'x denote the updated Vy and Vx node voltages, and vci 
1 

denotes the 

voltage previously stored in capacitor C,. The new voltages across the feedback capacitors 

are 

(B.17a)VCF1 = VxA1.(e+ e)VAGND
 

V CF2 = y + A2 (e+ e) VAGND (B.17b)
 

Similarly, the equations for configuration #2 (Figure B.7d) are as follows: 

1/2 (1 1/2 VAGNDe+ e = V0,41+ (B.1 8a)
CMRR) x CMRR) V Y CMRR 
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1 /2 )1Cp2 CFI [1 + A,( 1 CFlA2(1
CMRR CMRR 

1/2 .[V-CF2A ( 1 Cp 
1 

+ C F2[1 + A1( 1 
1 CMRR CMRRJ] 

n - V AGND
Cp2 Vy CFI Vos VAGND VCF1 + C FlA2cAIRR
 
(B.18b) 

V-11 A AGND
Cpl Vx + -C F2[- A Vos VA GND v CF2J-C F2I-1 1 CMRR
 

Once the node voltages have been updated, the input SC branches can be 

connected to the inputs of the op-amp to determine the new output voltage. This defines 

phase #2. Figure B.8 shows the corresponding diagram for both configurations. For 

configuration #1, the charge transfer process is described by the following equations: 

N 

Aqu = Cu k [Vu2k Vx 1114Ck (n 0]
 
k = 1
 

= Cpl (17x VAGND (B.19a)p 
,,n - 1+ Cu F [V x- Ai e (n 1)]VAGND VCF1 

N r
Aq1 = 

1

k. LV 2k- Vy Vick (n 1)] 
k =1 

= C ( V (B.19b)y VAGND VnC;2
 
/ n -1
+ C F LV + A2 (e+ ey V AGND- v CF2 n J 

) v V AGND e+ -e (B.19c) 
176.S + CAIR R V ( 1 CMRR) x CMRR 

where N is the number of upper/lower input SC branches, and vci denotes the voltage 

across capacitor Ci in the upper u -- or lower 1 -- branch. 
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v CF1CF1 

u p 
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VAGND I 
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,n-1V2N----F 1 1 
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V21 II­ Vy-VAGND 

Cui 
2 CMRR Vos/2 

Cp1 A 

VAGND I x 

Cpl VY 

Vx-VAGND Vos/2 

2 CMRR 

CF2 

Figure B.8: Model for charge transfer from the input branches to the integrating 
capacitors in phase #2. a) Configuration #1. b) Configuration #2. 
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Similarly, one obtains the following relations for configuration #2: 

Oqu = k [Vu2k V 1/4Ck (n 1)]
 
k = 1
 

vn 1
 

= p2 V V (B.20a)AGND v Cp2 

+ Cu F- e+ e V AGND VuCF (n 1)] 
N 

I-Aq = CkI L 2k vy Vic k (n 1)] 
k = 1 

= Cp Vy 
T,n 

(B.20b)VAGND v Cp1
1 

Al -(e++C/F- y e VAGN D VicF (n 1)] 

1/2 (1 1/2 v VAGNDe+ e- = (B.20c)
V" ÷ CMRR) x CMRR) Y CMRR 

Equations (B.19) and (B.20) can now be solved for Vx and Vy to obtain the output 

voltages V0p and Van. The difference between the new output voltages and the old ones 

defines a step voltage Vstep = Vo (n) V0 (n 1) from which we can determine whether 

or not the amplifier is slewing. Note that in deriving equations (B.16) through (B.20) it 

was assumed that chopper stabilization was being used, and hence configurations #1 and 

#2 alternated. If this is not the case, then configuration #1 is used all the time and there is 

no need to update the node voltages in the beginning of phase #2 equations (B.16) and 

(B.18). 

At the end of phase #2, clock charge injection occurs as well and must be 

accounted for. Figure B.9 shows the circuit diagram corresponding to configurations #1 

and #2. It is assumed that all the devices have the same gate-drain overlap capacitance 

value C d. In such case the total charge with origin in these parasitic capacitances is 

N Cgd The same consideration applies to the charge with origin under the channel of the 

MOS switches. 



179 

q
a) 

n-1 
v CF1VDD-Vx CF1 

1_11­
p
 

Cgd VxWAGND 
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Figure B.9: Model for clock charge injection in the end of phase #2. a) 
Configuration #1. b) Configuration #2. 

The equations describing the charge injection in both configurations assume the 

previous form of a two-equation system: 
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all a12 
a 21 a 22 Y 

b 

2, 

[ ] 
(B.21) 

For configuration #1 the matrix entries are as follows 

a11 = N Cgd Cpl CFl [1+ A (1 

a 12 = C F1A 1(1 + 
1/2 

CMRR ) 

a21 = C F2 A2 1 
1/2 

CMRR ) 

a 22 = N Cgd 1-Cp2 F2 HA 2( 1 + 

b1 = N [Aqi + Cgd (Vx VDD) ] + 

1/2 )1 
CMRR 

1/2 )1 
CMRR 

VAGNDGVx---- CFe.iciuRR 

+ CF1.(Al* Vos+VAGND+VCF11) 

b2:= N [Aq2 + ( Vy VDD)] + 

+ CF2(A2' Vos+VAGND+ VncF-21) 

VAGND 
1 + C A y F2 2cAIRR (B.22) 

Analogously, the matrix entries for configuration #2 are given by 

all = N Cgd-i- Cp2+ + AA2(1+ c1m/120?)] 

a12 = CF1A2( 1 
1/2 

CMRR ) 

a21 = CF2A 1( 1 + cmUR2R ) 

a22 = N Co+ C + CF2[1 + Ai(1 cm11 R2 

b1 = N [Aqi+ C (Vx--- VDD) ] + Cp2 Vx + CF. r A a 
VAGND 

+ CF1*(A2* + VAGND+VnCF11) 
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A VA GNDb2 = N [6,q2 + Cgd (Vy-VDD)] Cpt Vy-1- (B.23) 
L 1 CMRR 

C F2 (A Vos+ VAGND VnCF-21) 

B.7 OP-AMP AC AND SLEWING MODEL 

The op-amp is modelled with a 1-pole transfer function: 

Ao p1A ( (0) = (B 24)s+pi 

where Ao is the dc gain of the amplifier and pi the angular frequency of the dominant pole. 

We can identify three modes of operation for such amplifier: one in which only slewing 

occurs (very large steps), an other in which only linear settling occurs (small steps), and a 

third one in which both slewing and settling occur. In the presence of only linear settling 

behavior, the output tends exponentially to its final value according to 

Vo (n) Vo(n 1) [1 exp( y7rTs 1 (B.25)+ Vstep 

where ti is the time constant of the amplifier, therefore given by T = 13/ (A0 p1) , and 

Ts/2 the time period available for settling (half of the clock period). ((3 is the feedback 

coefficient, as the time constant is determined by the closed-loop bandwidth.) When only 

slewing occurs, the output of the amplifier evolves linearly according to 

Ts 
Vo (n) = Vo(n 1) ±SR (B.26) 

http:Vy-1-(B.23
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where SR is the slew-rate of the amplifier in V/s. Note that the actual final value is 

independent of Vstep, therefore slewing results in distortion. Amplifier saturation will 

occur if the value in (B.26) exceeds VDD or reaches 0 V. When both slewing and linear 

settling occur, the step response is characterized by the two regions of operation described 

by (B.25) and (B.26). For t < is , Figure B.10, the op-amp is in the slewing mode, and 

thereafter in linear settling mode. To derive a closed-form expression describing both 

regions of operation one must impose continuity of the two functions and of their 

derivatives at t = ts. The two functions are the following: 

Vo(t) = SR t, t< is (B.27a) 

Vo(t) = [Vstep Vs1 exq---2) +17S. t ts (B.27b)[1 
t 

ti 

t

Vstep 

Figure B.10: Transient response of an amplifier to a step voltage, showing slewing 
behavior (t<ts) and linear settling behavior t> ts. 

Considering that V, = SR is one can immediately conclude that (B.27a) and 

(B27.b) are indeed continuous at t = t . Equating the derivatives of both functions one 

arrives at the following result: 
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V
ts = step t (B.28)

SR 

If slewing is to occur, is must be positive, in other words, 

Vstep > t . SR (B.29) 

However, since is cannot exceed half of the clock cycle, the condition required to 

have slewing and linear settling modes simultaneously is 

( Ts 
Vste < t + 2

) SR (B.30)
P 

Using this result in (B.27b) one finally arrives at the following relation describing 

the coexistence of both modes: 

Ts )(VsteplVo(n) = Vo(n 1) + Vstep± t SR exp( (B.31)1 ir) 

Note that equations (B.25), (B.26) and (B.31) give the op-amp output voltage at 

the end of the clock phase. Since this value may not be equal to Vstep, the op-amp input 

node voltages need to be updated accordingly, to reflect incomplete or nonlinear settling. 
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APPENDIX C: OPERATION AND VOLTAGE EFFICIENCY 
OF A VOLTAGE DOUBLER 

In this appendix we analyze the operation and voltage efficiency of the clock 

bootstrapping circuit described in Chapter 4. 

C.1 OPERATION 

Figure C.1 a shows the voltage doubler in Figure 4.3, with all the parasitic node 

capacitances Cpi. It consists of two voltage doublers, one composed of capacitor Ci and 

device Ml, and the other of capacitor C2 and device M2. If CLK is "high," the gate of Ml 

is raised to a voltage close to 2 VDD (after a short transient). Since this gate voltage 

exceeds VDD VT, the source of M1 can rise to VDD, while still maintaining the device in 

strong inversion. When CLK switches to "low," the top plate of C1 rises to a voltage close 

to twice VDD, as now Ml is turned OFF. This high voltage at the gate of M2 allows the top 

plate of C2 to be charged to VDD, as with C1. Hence, the two voltage doublers operate in 

conjunction to overcome the limitation of the threshold voltage of switches Ml and M2. 

C.2 VOLTAGE EFFICIENCY 

Clearly, since the CMOS inverters act as voltage sources, the capacitances Cpl and 

Cpl play no role in the voltage efficiency of this circuit. Assuming that Cp3 is negligible 

compared to C1, the voltage at the gate of M2 will approach 2 VDD sufficiently to allow 

the formation of a channel in M2. Therefore the voltage efficiency of this circuit should be 

determined only by capacitors C2, Cp4 and Cp. 
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b) 

C2 

VDD 1+-1,I+ + 

VDD Do Of \ TCP 
VDD 

Figure C.1: Voltage doubler. a) Circuit diagram, with indication of the parasitic 
capacitances. b) Right-hand side circuit configuration when CLK is 
"high." 

Figure C.lb shows the equivalent circuit when CLK is "high." In this figure, 

initially Cp is discharged (due to M4 being ON when CLK is "low"), and C2 and Cs are 

charged to VDD. Ideally, when CLK goes "high," the top plate of capacitor C2 would be 

floating, and hence its voltage would rise to 2 VDD . Due to the presence of the load 

capacitance Cp and of the parasitic capacitance Cp4, charge redistribution occurs which 

results in some reduction in the value of the final voltage. This can be easily obtained by 

applying the charge conservation principle to the Gaussian surface shown. One then 

obtains 
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C2 (V° 2 VDD) + C Vo+ C (Vo V DD) = 0 (C.1) 

Solving for Vo one obtains
 

2 C2 + C

V = V DD (C.2)

° C2 + Cp Cp4 

Typically, Cp4 is negligible compared to Cp, and clearly the latter should be made 

negligible compared to C2 for high efficiency. 
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APPENDIX D: ANALYSIS OF SC INTEGRATORS
 
EMPLOYING CDS TECHNIQUES
 

In this Appendix we derive the formalism which describes the performance of a 

Nagaraj integrator and a predictive Nagaraj integrator in terms of gain- and pole-errors. 

Ill THE NAGARAJ INTEGRATOR 

Figure D.1 shows a non-inverting Nagaraj integrator, and the circuit configuration 

during both phases of operation. The amplifier is assumed to have a constant dc gain A. 

For convenience we introduce the parameter la = 1 /A . We can apply the charge 

conservation principle to determine the node voltages. Hence, in phase #2 we have 

-C [V (n) + Vin(n-)2)] 

C [V (n) V ,(n) -V(n 

= 

1 ((n 1 

(D.1) 

where 

V (n) = V !_t V, (n) V 
( 1) ) 

(D.2) 

Substituting (D.2) in (D.1) yields 

[ 1 + ( 1 + k) ] VV0(n) = k Vin(n 1 
)-F 

1 + (2 + k) I Vo(n- 1 

(D.3) 
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Cf 

Timing diagram: 

1 2 1 2 

n-1/2 n n+1/2 n+1 

a) 
Cf 

yin 

VC* 

Figure D.1: Nagaraj integrator and timing diagram. a) Configuration during phase 
#1, for t = n 1/2 E (e o 1). b) Configuration during phase #2, 
for t = n E. 

In phase #1, 

CH {V (n + -D [V [t Vo (n) V (n) 1 } = (D.4) 

Cf [Vy(rz + D Vo(n + V (n) + V (n)] 

with 

V (n) V II- V (n--1) (D.5) 
Y 2 os 0 2) 
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One then obtains 

[1-1-4t (1+1e)] -Vo(n+2) = (l+ t) -17,(n) (D.6) 

(1 k') V0(n + 

Finally, substituting (D.3) in (D.6) yields for the output voltage in phase #1 

1 + ti
V (n+2 -1-) = k VI 1)+ (D.7)

° [11-41 (l+k)] ,t ] n( n 2[1+ (1+10
(1+1.1) [1+1.t (2+k)] 11.- (1 k') [1+R (l+k)] (

V n-1 )+[1+1- (1+10] - [1+g- (l+k')] ° 2 
il k 

[1+- (l+k)] [1+1.1 (1+1e)] 
V"11. 

Since !,1« 1 , this expression can be simplified to yield 

Vo(n +).-2-_-k [1 µ (l+k+k)] Vin(n) (D.8) 

+ (1 -112 k) V o(n 11) +11-k- V 

To illustrate the procedure used in the simplification above, let us go through the 

simplification of the term in Vo(n 1/2) : 

(1+1.1) [1-Fia (2+k)] 11. (1 k') [1+1.1. (l+k)]

[1+g- (l+k)] [1+4 (l+k)]
 

1+1.1. (2 +k +k') +112 (l+k'+kle) 
(D.9) 

1+1.1 (2+k+k)+1.12 (1-1-k+k'+kle) 

Subtracting the unit from the quantity X one arrives at 

http:2+k+k)+1.12
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-12 lc 2X-1 = L- 11 k (D.10)
1 i-g-(2+k+k)+112 (l+k+kt+kk) 

Therefore, 

X a- 1 -112 k (D.11) 

Assume now that the gain of the amplifier is not constant, but the input and output 

voltages relate in a nonlinear manner according to 

V0 = f (Vin) (D.12) 

Equation (13.1) and still applies in phase #2 but now 

Vx(n) = -{f [Vo(n)] -f 1[174n -)]}1 

Vy(n-j= vs -f i[Vo(n-D] (D.13) 

which results in 

1 1Vo(n) = k Vin(n- )+170(n -1)- (D.14) 

( 1 + k) If-1 
[Vo(n)] -2 +l+k f [v4n-21} 

In phase #1 we have 

http:1)-(D.14
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V0(n+) = Vo(n)+Vos+fl[Vo(n)]- (D.15) 
2 

(1 - k') f 1[Vo(n-A-((l+k') -fl[Vo(n+D1) 

Substituting (D.14) in (D.15) one obtains for the output voltage in phase #1 

Vo(n + 12-) = k Vio(n + V (n (D.16) 

k f-1 [Vo(n)] + (1 + k + k') f 1[V (n 1 

+ k') I [V o(n +fl] 

D.2 THE PREDICTIVE NAGARAJ INTEGRATOR 

The procedure to analyze of the predictive Nagaraj integrator is identical to that of 

the simple Nagaraj integrator, and hence we provide only the main results. Figure D.2 

shows such integrator and the circuit configurations corresponding to phases #1 and #2. 

Again, we start by assuming that the amplifier gain is constant and equal to A. Therefore 

we have: 

c(n 
2
) V [t. V0(n 2) (D.17) 

Vy (n) = [o(n) -Vo(n-)] (D.18) 

The output voltage in phase #2 is then given by 

[1 + (1 + k )] V (n) = k1 Vjo(n .-1 )+ (1+ 1.1) V (n 1) + (D.19) 

(1 + k ) V0(n Vo(n- ;) 

http:Vo(n)+Vos+fl[Vo(n)]-(D.15
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and that in phase #1 by 

[1 + ILI (1 + k2 + k1)] Vo(n = k2- V in(n 1) + V (n 1) + (D.20) 

le V0(n ;1+ (1 + k2) V1.1 

yin 

Timing diagram: 

1 2 1 2 

n-1 n-1/2 n n+1/2 n+1 
CB 

a) CB 

yin 

Cin 

T 
VO S 

Figure D.2: Predictive Nagaraj integrator and timing diagram. a) Configuration 
during phase #1, for t = n 1 /2 E (E « 1). b) Configuration 
during phase #2, for t = n E . 
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Substituting (D.20) in (D.19) yields 

V (n) =	 l+ V. (n + (D.21)
1.t (1 +ki)	 in 2 

k2 r II (1 + lc1) 
V -1) +l+g (l+ki) Li+,to+k2+k) i.n(n 

[1.	 (11	 
[1 +Ix+ 1+1.t (1 +k2+k)] V°(n -1) +1+1,t (l+ki) 

[t.	 (1 + ki) (1 + k2) 

[1+g- (l+ki)] [1 +g (l+k2+k')] V
°s+ 

ki (1 +k1)
11	 1} Vo(n1+1a (1+ki) (1 +k2+k')	 2 

Using ki = k2 = k, Vin(n- 1/2) a, Vin (n 1) and Vo (n 1) a: Vo (n - 3/2), 

we can approximate (D.21) as 

V °(n)	 k [1 -12 (1 + k) (1 + k + kt)] Vin(n + (D.22) 

[1-g2 (1 +k)2] V(n-1) +1.1 (1 +k)2 Vos 

Considering now that the gain is not constant, but rather the input-output relation 

is as described in (D.12), one obtains: 

Vy(n-D = Vos-f-IV0(n--)]
 

Vy(n) = If 1 [V (n)] (D.23)
 (n)] -f 1[Vo(n 

Hence, in phase #1, 

http:n)](D.23
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Vo(n = k2 Vin (n 1) + 170(n 1) + (1 + k2) Vos+ 

(1 + k2 + k) f 1 [17o(n + k' f [1 7 o(n 

(D.24) 

and in phase #2, 

Vo(n) = ki Vin(nD+ Vo(n 1) + 

(1 + k 1) If 1[170(n f [170(n)]} + 

{f [170(n 1)] f 1[170(n n} 

(D.25) 




