
AN ABSTRACT OF THE THESIS OF

Peter S. Norton for the degree of Master of Science in

Electrical and Computer Engineering presented on April 13 . 1989.

Title: The Implementation of a Control and Development Program
for a Local Area Network (LAN).

Abstract approved:

Redacted for privacy

James k Plemg
(0- -

Rapid advances in technology have seen computing move from a
large central computer to desktop microcomputers. This advance was also
seen in the design of dedicated computers, computers designed to perform a
few specialized tasks or duties. These computers, or microcontrollers, are
often controlled by a central computer and themselves perform a large
variety of tasks ranging from the monitoring of equipment, to the control
of automated machines. Since these microcontrollers could be scattered
around in the number of sites, many of them are interconnected by Local
Area Networks (LANs).

One such experimental network of microcontrollers, the

Task*Master, was developed at Oregon State University. The Task*Master

system consists of a central personal computer (PC), and a number of
smaller single board computers interconnected on some form of network.
The PC issues commands (called tasks) to the microcontrollers to have them
perform specific jobs. A number of network configurations have been
developed for the Task*Master system, but none have included a application
program for organizing and scheduling the Task*Master units. The

Network Control Program (NCP) provides these needed capabilities.
The NCP program provides high level support for the Task*Master

system. It is designed to be a development enviroment for the creation and
execution of programs to manipulate the Task*Master microcontrollers in a

useful manner. To achieve that goal, it contains access to a text editor, file
manipulation facilities, lists of the Task*Master units connected to the PC
and the tasks that they can perform, and a program interpreter that

executes programs written in a simple programming language. The NCP

program language contains the basic programming structures, such as

IF/THEN statements or WHILE loops, as well as arithmetic and logical

operators and functions. A number of other functions provide access to the
Task*Master network for the transmission of commands, and reception of
data.

The program provides the Task*Master user the ability to create a
program that controls the Task*Master units in whatever fashion he
desires. The type of control system does not matter, as the PC can be
reprogrammed to fit the situation.

The Implementation of a Control and Development Program
for a Local Area Network (LAN)

by

Peter S. Norton

A THESIS

submitted to

Oregon State University

In partial fulfillment of
the requirements for the

degree of

Master of Science

Completed April 13, 1989

Commencement June 1989

APPROVED:

Redacted for privacy

9-

Associate ttPrafessor, E
major

Redacteclfor privacy

and Computer Engineering in charge of

Head of department of Electrical and Computer Engineering

Redacted for privacy

Dean of Gradu School

Date Thesis Is Presented April 13. 1989

Typed by Peter Norton for Peter Norton

Acknowledgement

I wish to thank Professor Herzog for all of the help he has given me in
getting this thesis completed. I also wish to thank my sister Margaret, for
her poofreading, which saved me more frustration than I can imagine.

Table of Contents

1 Introduction 1

1.0 Background 1

1.1 Task*Master 1

1.2 The COLANS 2

1.3 The NCP Program 3

1.4 Chapter Overview 3

2 The Design and Implementation of the NCP 4

2.0 Overview 4

2.1 Main Functions 4

2.1.1 The Editor 4

2.1.2 Program Setup 4

2.1.3 The Task Library and List of NIUs 5

2.2 The Interpreter 6

2.2.1 Program Statements and Format 6

2.2.2 Lex and YACC 7

2.2.3 The Lex Preprocessor 7

2.3 PC to NIU Interface 10

3 User's Manual for NCP 12

3.0 In the Manual 12

3.1 A Brief List of NCP Commands 13

3.2 Main Functions of the NCP Program 14

3.2.1 The Main Menu Screen 14

3.2.2 The Editor 15

3.2.3 Run Program Interpreter 15

3.2.4 Task Library 16

3.2.5 List of NIUs 20

3.2.6 Directory Information 22

3.2.7 View a File 26

3.2.8 DOS Gateway 27

3.2.9 Program Setup 27

3.2.10 Exit to DOS 30

3.2.11 Zoom 30

3.2.12 Help 31

3.3 Run Program: The Interpreter 32

3.3.1 About This Section 32

3.3.2 The Interpreter 32

3.3.2.1 Running a Program 32

3.3.2.2 Stopping a Program 33

3.3.2.3 Reserved Words 33

3.3.2.4 Precedence 34

3.3.2.5 Arithmetic Operators 35

3.3.2.6 Relational Operators 35

3.3.2.7 Logical Operators 36

3.3.2.8 Bit-wise Logical Operators 37

3.3.2.9 Strings and How to Use Them 38

3.3.2.10 Variables 39

3.3.2.11 Declaring Variables 40

3.3.2.12 Program Structure 42

3.3.3 NCP Program Statements 43

3.3.3.1 Notes on Format 43

3.3.3.2 BEEP 46

3.3.3.3 BEGIN/END 46

3.3.3.4 CAT 47

3.3.3.5 CLOSE 48

3.3.3.6 CLS 49

3.3.3.7 COMP 50

3.3.3.8 COPY 51

3.3.3.9 DATA-READY 51

3.3.3.10 FOR/NEXT 52

3.3.3.11 GE 1 COMM 53

3.3.3.12 GET DATE 55

3.3.3.13 GET TIME 55

3.3.3.14 GOTOXY 56

3.3.3.15 IF/THEN/ELSE 57

3.3.3.16 KEYPRESSED 60

3.3.3.17 OPEN 60

3.3.3.18 READ 61

3.3.3.19 RECV 62

3.3.3.20 RECVB 63

3.3.3.21 SEND 64

3.3.3.22 SENDB 69

3.3.3.23 SET COMM 69

3.3.3.24 SET DATE 70

3.3.3.25 SET TIME 71

3.3.3.26 STR 72

3.3.3.27 VAL 73

3.3.3.28 WAIT 74

3.3.3.29 WAIT UNTIL 75

3.3.3.30 WHILE/WEND 76

3.3.3.31 WRITE 77

3.4 Error Messages 80

3.5 Lex and YACC Theory 81

3.5.1 Lexical Analyzer 81

3.5.2 YACC Parser 84

3.5.3 Changing and Adding to the Interpreter 86

3.5.3.1 The NCP Program 86

3.5.3.2 Lex 87

3.5.3.3 YACC 87

3.5.4 Protocol from PC to NIU 88

4 Conclusions and Recommendations 91

4.0 Conclusions 91

4.1 Recommendations 91

4.1.1 The NCP Program 91

4.1.2 Task*Master and COLANS Future 92

Bibliography 93

Appendix 94

A.0 Example Programs for the NCP Program 94

LIST OF FIGURES

Figure Page

1 Preprocessor Input List 8

2 Execute Flag Array 9

3a Task*Master Command Packet 10

3b Task*Master Data Packet 10

4 Main Menu Screen 14

5 Run Program Message Box 16

6 Task Library Descriptions 17

7 NIU List 20

LIST OF TABLES

Table Page

1 Reserved Words 33

2 Precedence 34

3 View Screen Sizes 57

4 Escape Codes 78

THE IMPLEMENTATION OF A CONTROL AND DEVELOPMENT PROGRAM
FOR A LOCAL AREA NETWORK (LAN)

1. INTRODUCTION

1.0 Background
In the years since computers have been invented, they have become

progressively smaller and more powerful. This progression has benefited
people and industry by taking the computer from a big "computing room" to
the desk top of the user. Spread out between offices, or buildings, it became

necessary to find a way to share the resources that the user needed.
Resources such as printers, plotters, or even intangible objects like data
bases were originally always available, since all computing took place in a
single area. When the computer moved from the user's office, it became

difficult and time consuming to access these things. This is when computer

networks, specifically local area networks (LANs), became more and more
useful, allowing the user to communicate with other computers and access
their capabilities, whether on another floor or in another building.

People and businesses were not the only ones to benefit from the
improvements in the computers and computer networks. Machines and the

automated industry also benefited. Smaller, more powerful computers

meant that processes could be run by dedicated controllers, i.e., computers

designed for the specific purpose of running a particular machine. The

connecting of a LAN to these machines permitted a main computer to
synchronize all the machines to perform their tasks in the most efficient

way: A particular machine's own computer would monitor its processes and
instantly make adjustments based on that machine's actions and the
instructions received by the main supervising computer.

However, the use of "intelligent" controllers need not be limited to
the factory. Any place a process must be monitored and adjusted, such a
controller could be used. In scientific sensors, burglar alarms, learning

devices for schools, the list is endless.

1.1 Task*Master
The Task*Master system, was a distributed microcontroller system

developed at Oregon State University. The system was created to test the idea

2

of a simple real-time control system utilizing multiple microcontrollers
controlled by a single scheduler [HERZ 87].

The original Task*Master system was organized with a personal
computer (PC) as the central scheduler, and the individual microcontrollers

link to it and each other in a daisy-chain structure. The scheduler and the
individual Task*Master units were organized in a master-slave fashion. The

individual units acted on the scheduler's instructions and could only
respond by its permission.

Commands to the Task*Master units were in a "task" format. The tasks

were commands that utilized the resources or hardware of the
microcontroller to perform a specific action. Each task is a pre-
programmed subroutine written specifically for the microcontroller and its

purpose. While simple in operation, with the proper sequencing of
different tasks, the microcontroller is capable of complex operations
[HERZ 87].

1.2 The COLANs

The Task*Master system was modified to change its interconnection

structure from the daisy-chain to that of a LAN. These modified systems,

called COLANs, for Control Oriented Local Area Network, were designed to

bring a high performance control and mailing network to the older
Task*Master system. The first COLAN was developed by Yue-Peng Zheng in
1986 [ZHEN 86], and since then three others have been proposed: COLAN II

[KAO 87], COLAN III [EUM 87], and COLAN IV [THYE 88]. Each provided a

different method for implementing the LAN, but maintained the basic
structure of the Task*Master microcontroller system.

Each of the COLANS, as well as the original Task*Master system,

provided a simple application program to control the units on the network.
These programs generally consisted of menu driven routines that allowed
the user to select the specific microcontroller (called NIUs or Network
Interface Units [THYE 88]) and the task that it was to execute. Some of these

programs also provided other functions as well, such as allowing
monitoring of the network or transmission of files or messages.

However, none of the application programs provided what was
originally intended for the Task*Master system: A system scheduler that

3

provided control and synchronization for all of the connected
microcontrollers.

1.3 The NCP Program
The NCP, or Network Control Program, was written to provide the

control and scheduling that was needed for the systems. Designed to run on
the host PC, it is compatible with all of the Task*Master based systems,

provided the interface between the host and the NIU remains the same.
Transparency in the network structure permits this. The NCP program does
not see what kind of network it is on, whether daisy-chain or token ring; it

only sees the information passed to it from an NIU.
The heart of the NCP is a program interpreter. It takes an actual

program written by a user and runs it. The program may consist of tasks
for the microcontrollers, or it may have other sorts of computations or
calculations. The NCP provides all of the basic program structures, such as
If/Then or For/Next statements, as well as a number of useful functions. It

also supports variables, with characters, strings and integer types
available.

The NCP, however, is designed to be more than a control program, it
is also a development environment. The user, when running the program,
has access to an editor, a directory, and a files manipulation function. A list
of the microcontrollers can be accessed, as well as a library of the tasks that
they can perform. Even the operating parameters of the program itself
may be accessed and changed. All of this allows a user to sit down and write
a program that will permit not only the execution of complex operations on
a microcontroller, but the synchronization of that controller with other
controllers to perform even larger interactive tasks.

1.4 Chapter Overview

Chapter 1 has dealt with the background of and introduction to the
NCP. Chapter 2 will cover the design issues surrounding the creation of the
NCP and the actual implementation of the program. Chapter 3 contains my
conclusions and recommendations for future programs.

4

2. The Design and Implementation of the NCP

2.0 Overview
The NCP program consists of two main parts, the interpreter and the

support functions for the environment. Of these parts, the interpreter
required a number of major design decisions. This chapter deals with these
decisions as well as the implementation of the interpreter and associated
functions. Also discussed is the PC to NIU interface and the protocol used in
it.

2.1 Main Functions
The NCP program was designed to be a development system, and so

has a number of functions that supported the creation of programs for the
interpreter. Some of these functions, such as the Directory Information,
which allows access to a disk's files, and the file viewing function, are
straightforward, but others require some discussion.

2.1.1 The Editor
For a development environment, it is vital to have some sort of text

editor. Since a good text editor is difficult to program, and most people
already have an editor they are comfortable with, it was decided not to
include an editor with the NCP program. Instead, access to an editor from
the NCP environment was programmed so the editor could be used without
leaving the NCP program.

2.1.2 Program Setup
In the program setup section, a user may make adjustments to some of

the NCP program's parameters. The Program Setup section has four
subsections: File Directories and Paths, which allows a user to change the
directory of the NCP's support files; the Communications Parameters section,

which allows the adjustment of the operating parameters of the computer's
serial port; the Program View Screen function; and the Transmit Toggle.
The first two are straight forward, but the last two require further
explanation.

5

To debug a program properly, especially one that uses the serial
communications port, it is often necessary to see the data being transmitted
or received. The Program View Screen function permits such data to be
displayed on the computer screen. Data received on the serial port is

displayed on the screen, as is any data that is transmitted. The received data

is enclosed in "< >" symbols and the transmitted data is enclosed in and "* *"
symbols. Program output may also be turned on and off from this function.

The transmit enable/disable function toggles the communication

serial port on and off for transmission only. This allows a user to test and
debug a program without actually transmitting commands out to the NIUs.

The data that would have been transmitted can be still be seen on the screen
by setting the view to display the transmitted data.

2.1.3 The Task Library and the List of NIUs
The Task Library and List of NIUs, are the most important of the

environment support functions. They provide information not only to the
user of the NCP program, but also for the interpreter.

The Task Library lists all of the tasks the NIU can perform. The tasks

are listed in order by their number. Each listed task also has a brief,
helpful description with it, permitting easy reference when writing
programs. It is important to know that the list is only as accurate as the
user makes it. If changes are made in the firmware of the NIU, these
changes will not be reflected on the list unless the user puts them there.

The NIU list is very similar to the Task Library. It lists all of the NIUs

that are attached to the host, or network. The NIUs are listed in order by

address, and each, as in the task library, has a short description following it.

Again, if new microcontrollers are added or removed, the list will not
reflect this, unless the user make the appropriate changes. However, this

function contains a polling feature that orders all of the NIUs to report back
their addresses. Those that respond are indicated on the list by an asterisk.

Both the Task Library and the NIU list have another important
feature: the interpreter accesses their information when sending

commands to a microcontroller. The commands can be sent using either
numbers for the address and task, or the NIU or task names. If the names of

6

either the task or NIU are used, the interpreter checks the list to find which
numbers to use.

2.2 The Interpreter

2.2.1 Program Statements and Format
When the interpreter was written, a decision had to be made on the

type and format for the statements the programs would use. One of the
design criteria was that the commands be simple and reasonably easy to use.
As a result, the formats from a number of languages were used. Examples of

this are the use of BEGIN and END statements to define program blocks,
which comes from PASCAL. The format for declaring variables is similar to
that in C. Others, such as the semi-colons at the end of a statement and the
use of a NEXT with a FOR statement and a WEND with a WHILE statement, were

used because the parser required ends of statements to be explicitly
declared.

Once the statements themselves were decided, all of the basic flow
control and decision making statements, such as IF/THEN statements,
FOR/NEXT, and WHILE/WEND, were included. Also included were all of the

basic logic and arithmetic functions and assignment statements. Since the
CHAR type was included, as well as arrays, a number of string functions
were added. Strings were implemented simply as character arrays, and the
functions provided may concatenate, compare, copy and convert them.
Access to the computer's time, date were provided for, as well as access to the
parameters of the serial communications port.

A few statements were added that are peculiar to the NCP program
and its purpose. The WAIT and WAIT UNTIL statements are provided for

scheduling the microcontrollers. These statements provide for a time delay.
The WAIT statement delays the execution of the program for a number of
seconds. WAIT UNTIL delays execution until a specified time or date.

The SEND and RECV statements provide access to the microcontrollers

through the communication port. The statements allow the sending of
commands to a specified NIU and the reception of data from an NIU.

7

2.2.2 Lex and YACC
The interpreter depends on two important programs, the lexical

analyzer, which processes the user written program files, and the parser,

which finds the order of the programs.
The lexical analyzer and the parser were created using two

application programs called, respectively, Lex and YACC. Both take a series

of "rules" that specify their actions, and when Lex and YACC are used, they
produce source code for programs based on these rules. Lex and YACC were

used because they provided a simple and easy way to generate two rather
complicated programs. They also provided an easy and quick way to make
changes, even complicated ones, to the lexical analyzer and parser.

Once the parser has matched some of the input with its grammar
rules, support functions are executed that do the actual work of the
interpreter.

2.2.3 The Lex Preprocessor
The lexical analyzer takes a text file as input, and outputs numbers or

tokens that correspond to the input it has recognized. For example, if the

lexical analyzer recognizes the word BEGIN, it returns the value 270. It is

this token, and others, that the parser attempts to match to its own rules.

However, since the lexical analyzer runs through the input once, loops and
other similar structures in a network program cannot be implemented. The

problem was overcome by creating a preprocessing function.

The preprocessing function is called "yylex", which is the name of

the lexical analyzer function called by the parser. The actual analyzer is

renamed "yylex2". The preprocessor first calls the lexical analyzer for

input. It then checks the input to see if the token that has been returned
matches the beginning of a loop (i.e. FOR or WHILE). If it does, the token

and all other vital information associated with it is stored in a linked list.
The location of the beginning of the loop in the list is then temporarily

stored in memory. After that, all input from the lexical analyzer is stored in

the linked list, essentially making a copy of the loop. When the end of the

loop is recognized, it too is stored in the list, immediately followed by the
location of the beginning of the loop. In this way, if the loop is to be
executed again, the preprocessor reads from the linked list to implement the

8

loop instead of reading from the input file. (See fig 1) Nested loops may be

implemented in the same way, using the same linked list, by simply
recording the beginning of each loop, and putting this information on the
list.

token: FOR

4
Contents of FOR

statement

token: NEXT

To Start of loop

4
Rest of Program

Fig. 1 Preprocessor Input List

Each time a loop is executed, the conditional at the beginning of the
loop is checked. If it is false, the parser runs through the loop as it
normally would, but it sets a flag to prevent the execution of any of the
functions contained within the loop.

This flag is also used by the IF/THEN statement. The lexical analyzer

and parser cannot skip over portions of the input. The input must be read

in and parsed as it normally would be. To prevent the execution of any

functions contained in a "false" section of code, a flag must be set. For

example,

if (x=1)

then print ("one");

else print ("not one");

If "x" equals 1, the THEN statement must execute, but not the ELSE statement.
However, the parser must parse all of the input, including the ELSE

9

statement. So a flag is set to indicate which statement can be executed. If

"x=1" is true, the flag is set to true, and the THEN "print" statement executes,
after which the flag is set to its opposite value. Then the ELSE statement will

be read in and parsed, but the PRINT statement will not be executed.
Since IF/THEN statements may be nested (i.e., one within another),

the execute flag must have several levels. This was done by making it an
array of flags. The level of the array is advanced when another level of
nesting is reached. When the nesting level is dropped by one, the array
level also decreases. To find out if a statement can be executed or not, all of
the flags in the array are ANDed together. If the result is a "1," then the
statement may be executed; if it is a "0," it may not. For example:

1 if (x=1)

2 then if (y=1)
3 then print ("one and one");
4 else print ("one and zero");
5 else print ("x equals zero");

The above demonstrates nested IF/THEN statements. Figure 2 shows the
array of flags and its value at each line. If the value of "x" and "y" are 1 and

0 respectively, then figure 2 shows the result. The first position of the
array is always 1, as statements outside a loop or IF/THEN statement are
always executed.

Line

1

2

3

4

IResult: 1

Result: 0

Result: 0

Result: 1

1

4
1

I I
01

5 I1101 I
I Result: 0

Fig. 2 Execute Flag Array

10

2.3 PC to NIU Interface
One of the more important issues in designing this program was the

communications protocol between the PC and the NIUs. For the NCP

program to be compatible with the microcontroller network, their protocols
must be identical. There are two levels to this protocol. There is the low

level scheme of transmission and reception of data and acknowledgements,
and there is the higher level with the command packet format. The NCP

program uses the old Task*Master system for both levels.
The PC is connected to the NIU network via its serial communications

port. Assuming that the various parameters such as baud rate and parity
are correct, then the two pieces of equipment can exchange data. There is

not any system of acknowledgements for data received. Data that is

transmitted onto the serial communications link is either received or lost.
Garbled packets are ignored and also lost. This is not considered a problem,

due to the reliability of the RS232 link.
The NCP program uses the command format from the old Task*Master

system, as shown in figure 3a. Data received by the PC is enclosed by square
brackets, as shown in figure 3b. Beyond the delimiters, there is no internal

format to the data.

{ 07 ! 01 + 12 08 A3tionCui2Dfur / }1._ Delimiter

[
L post-Execution Control

[L
Optional Echo

Task

Pre- ution Control
Destination

Delimiter

Fig. 3a Task*Master Command Packet

f 07 00

Fig. 3b Task*Master Data Packet

11

The COLANs use a different format for the command packet,

depending on the destination of the packet. Packets going to the local NIU
(i.e. the NIU attached to the PC) have a format that is different from packets
going to remote nodes. Incoming data is sometimes enclosed by square
brackets, while at other times it is not. These differences make the NCP

program incompatible with the COLANs. This incompatibility can be fixed
by writing an interface function for the NCP program. The interpreter has
such a function include in it.

3. User's Manual for NCP

3.0 In the Manual

12

Section 3.2 deals with the main functions of the NCP program. Each sub-

section covers in detail how to use the Editor command, the libraries, the
directory function and other functions. The Run Program command is
only briefly covered in this chapter, as it is covered in depth in Section 3.3.

Section 3.3 covers the Run Program command and all of the functions and
program structures that the interpreter understands. Examples of the use
of the program statements, as well as programming examples, are shown in
this part of the text.

Section 3.5 covers the protocol between the PC and the NIU (network
interface unit) to which the PC is attached. The translator function for the
NCP program is also explained here, with examples of how to change it to fit
the protocol requirements of the PC to NIU interface. Section 3.5 also deals
with, respectively, YACC and Lex theory, covering how they work, how to
program with them, and how to adapt them to work with the PC C compiler.

13

3.1 A Brief List of NCP Commands

Keystrokes

Fl or Alt-E

F2 or Alt-P

F3 or Alt-T

F4 or Alt-N

F5 or Alt-D

F6 or Alt-V

F8 or Alt-G

F9 or Alt-S

Description

Evokes the text editor specified in Setup
menu.
Calls the interpreter and runs the specified

program.
Displays a list of tasks understood by the
NIUs.

Displays a list of the NIUs attached to the
network.
Evokes program to allow manipulation of
directory information.

Displays specified file on the screen.
Invokes the DOS command processor and
permits the user to run other programs or DOS
commands while still in the NCP program.
Displays the Setup menu, which allows the
user to change the communication port
parameters, set the view port, disable the
communications port, and set the path to
systems files.

F10 or Alt-X

or ESC This exits the NCP program.

Alt-H This provides on-line help for the user.
Alt -Z In the main menu, this toggles the menu

screen on and off.

14

3.2 Main Functions of the NCP

3.2.1 The Main Menu Screen
The NCP main screen has three sections of interest. The first is the

output window. This is the top window of the main screen, where all
program output, as well as data received and transmitted on the serial port,
is displayed. The window may be expanded to provide more room for
program output by using the Zoom function (see Zoom). Program output

appears as normal text in this screen, while received data is surrounded by

bold angle brackets and transmitted data is surrounded by bold asterisks.
Any or all of the program output may be turned off by the Program View
function (see Setup Menu: Program View Screen).

Network Control Program

NCP Main Menu

Editor Fl Alt-E Run Network Program F2 Alt-P
Task Library F3 Alt-T List of NIUs F4 Alt-N
Directory Information F5 Alt-D View a File F6 Alt -V
(Reserved) F7 DOS Gateway F8 Alt-G
Program Setup F9 Alt-S Exit to Dos F10 Alt-X

Zoom: Alt-Z Help: Alt-H Transmit: On

Figure 4: Main Menu Screen

The second window is the NCP Main Menu Screen. It contains a list of
the commands that are usable from the main menu. This screen can be

made to disappear by using the Zoom function.

15

The third point of interest is the bottom line of the screen. It lists the

keystrokes for the Zoom function and the Help function. It also displays the

status of the transmitting portion of the serial port. If Transmit is ON, data

that is sent to the serial communications port will be transmitted out to the
NIU and network. If it is OFF, data sent to the serial port will not be
transmitted, although it will still be printed out on the output screen. This

status may be toggled on or off by using the Transmit Enable/Disable
function (see Setup Menu: Transmit Enable/Disable).

3.2.2 The Editor

Keystroke: Function Key 1 (F1) or Alt-E

Description:
The key command invokes an editor for the user. The editor is an

external program specified by the user in the Setup Menu (see Setup
Menu: File Directories and Paths). The NCP program is not exited, but
remains suspended until the user quits the editor program, whereupon the
NCP program is restored.

As the NCP program remains in the computer's memory, occasionally
there may not be room for the editor program to be loaded. In that case, a
message box will appear with the message "Error: Not enough memory."
If this happens, the NCP program will have to be exited before the editor
can be used, or another, smaller editor used instead.

3.2.3 Run Program Interpreter

Keystroke: Function Key 2 (F2) or Alt-P

Description:
This key command invokes the program interpreter to execute a

network program. When the command is given, a message box appears

asking for the program to be executed.

16

Run :

Figure 5: Run Program message box

When the program begins to run, the message "Running Program

xxxxx" will appear in the view screen. Any output from the program will

also appear on the view screen, along with data received and transmitted by
the communications port, if the view port is set to do so (see Setup Menu:
Program View Screen). When the program ends, the message "End of
Program xxxxx" is displayed.

If the user desires to run a program without entering the NCP
development environment, he can easily do so by typing the name of the
program to be executed after the NCP program name when he starts NCP in
DOS. For example,

A:> NCP first.tst

will run the program first.tst without actually entering the NCP program

environment. The start and end messages and the program output appears
as they normally would, but that is all. The libraries and other menu

functions will not be accessible when NCP is used in this manner.

3.2.4 Task Library

Keystroke: Function Key 3 (F3) or Alt-T

Description:
The Task Library displays a list of the commands used by the NIUs.

The list is provided only as a reminder to the user. If a task is changed in
the firmware of the NIU, the user must change the listing in the library

17

accordingly. The listing also provides a lookup table for the interpreter
when a task is addressed by its mnemonic (see Section 3.3 : Program
Functions).

The task library is displayed in order by the task number. On each
line is the task number, the mnemonic of the task, and a description of the
task.

Task #
Dec Hex Memonic

Task Library Descriptions

Description

0 0 RSET Reset the Board
1 1 CLRQ Clear the Task Queue
2 2 ABRT Abort the Current Task
3 3 SYNC Synchronize the Start of the Next Task
4 4 PAUS Pause the Current Command
5 5 RESM Resume the Activity of a Paused Command
6 6 TIME Set the Timeout Register
7 7 NULL A Null Task
8 8 INFT A Non-ending Task
9 9 DUMP Dumps the Contents of the Task queue to host computer
10 A POLL Examines a specified internal register
11 B HTOM Transfers 1 Byte of Data to Memory
12 C MTOH Transfers 1 Byte of Data from Memory
13 D HTOX Transfers 1 Byte of Data to External
14 E XTOH Transfers 1 Byte of Data from External
15 F SLAP Sensitizes the local Asynchronous Port

R Revise task

D Delete task

T Restore default task

S Save changes

H ? On screen Help

PgUp PgDn Scroll

ESC exits

Figure 6: Task Library Descriptions

Selecting a Description
When the task library is entered, the selection bar will be at the top

of the screen. The bar appears as a line of reverse type (white background,
black letters). The cursor or arrow keys can be used to move the selection
bar up or down. The PgUp and PgDn can be used to move up or down one
screen (16 lines) at a time. The Home and End keys move the selection bar
to the very top and bottom of the list. The selection bar is used for selecting
a task description to delete, revise, or restore.

18

Revise Task
Revise Task allows the changing of a task description. The selection

bar must first be moved to the description to be changed and the 'R' key
pressed. When that has been done, a window will appear with the old
contents of the description and will prompt the user to enter a new
description. If a mistake is made, pressing ESC will exit the window without
changing the description. Old entries may be kept by pressing Return.

Delete Task
Delete Task allows the removal of a task description from the list.

Again, the selection bar must be moved to the description to be deleted and
the 'D' key pressed. A message box will appear asking the user to verify the

operation. Typing an 'N' for "No" will leave the section unchanged, while
typing 'Y' will replace the mnemonic with a line of dots and the description
with the statement "Not currently in use." Once a description is deleted, it

can be recovered if the NCP program is exited and then reentered. If the

changes are saved before this is done, then the removal of the description

will be permanent.

Restore Default Task
Pressing the 'T' key will produce a window asking the user for

verification on the Restore Default Task operation. If No is selected, then

the window is closed and nothing is changed. If Yes is selected, then the
currently selected task description is returned to its default setting. This is

the original set of task descriptions provided with the NCP program. If All
is selected, then all of the task descriptions in the library will be restored.

At times the user may wish to change the task descriptions
permanently, or he may wish to have several default task descriptions. The

default list and the changes made to it, are stored in a directory specified in

the File Directories and Paths section of the Setup Menu (see Setup
Menu). By changing the Support Files path to a new directory, the user
can switch to a new default list.

To create a new default list, first make all desired changes to the list.

Then, one by one, select all of the unchanged task descriptions wanted in

the new default list and revise the descriptions without making any

19

changes to them. This is done by simply typing a carriage return twice.
This marks the description as being changed, and when the changes are
saved, the old descriptions will also be saved.

Once the changes have been saved using the Save function, exit the
Task Library and the NCP program. In DOS, copy the file "TLIB-SUP.NCP" to

the new directory and then rename the file to "TLIB-DFT.NCP". Once the

Support Files path in the Setup Menu has been changed to the new path to
the default library, the NCP program will use the new library in place of
the old. In this way, the user may have several libraries, switching
between them, by changing the Support Files path. Note: The changes will
only take place when the NCP program is exited and then reentered.

Save Changes
The changes made to the task descriptions may be saved to the disk by

pressing the 'S' key. If the changes are not saved, they will be lost when the
NCP program is ended, although they will remain in effect until then.

Help
Pressing the 'H' or '?' key will invoke the on-line help function. A

window will appear with information on how to use the Task Library
function. ESC will let the user exit the Help function.

Exit NIU List
Pressing the ESC key will leave the NIU List. Any changes made to

any descriptions will remain until the NCP program ends, at which time
they will be lost. If the Save function is used, the changes will be
permanent.

20

3.2.5 List of NIUs

Keystroke: Function Key 4 (F4) or Alt-N

Description:
List of NIUs displays a list of the NIUs (Network Interface Units) that

are connected to the network. The list is provided only as a reminder to the
user, as any changes to the list, such as adding or removing an entry, must
be done by the user. For example, if the network contains 5 NIUs with the
addresses of 1, 2, 3, 4, and 5, the list will not contain these addresses unless
they are added by the user. Once the information is added, it is available to

the user to look at when programming.
The List of NIUs function has one other use: when commands are sent

to the NIU, the name of the NIU may be used instead of the address. In that

event, the interpreter will look up the name in the list to find the
corresponding address of the NIU.

Node #
Dec Hex Name

NIU List and Descriptions

Active Description

0 0 ALL Allows broadcasting to all nodes
1 1 Not currently in use
2 2 Not currently in use
3 3 Not currently in use
4 4 Not currently in use
5 5 Not currently in use
6 6 Not currently in use
7 7 Not currently in use
8 8 Not currently in use
9 9 Not currently in use
10 A Not currently in use
11 B Not currently in use
12 C Not currently in use
13 D Not currently in use
14 E Not currently in use
15 F Not currently in use

R Revise description P Poll active nodes
D Delete description C Clear active nodes PgUp PgDn Scroll

S Save changes ESC exits

Figure 7: NIU List

21

Selecting a Description
When List of NIUs function is entered, the selection bar will be at the

top of the screen on line 0. The bar appears as a line of reverse type (white
background, black letters). The cursor or arrow keys can be used to move
the selection bar up or down. The P gUp and PgDn can be used to move up
or down one screen (16 lines) at a time. The Home and End keys move the
selection bar to the very top and bottom of the list. The selection bar is used

for selecting a description to delete or revise.

Revise Description
Revise Description permits the changing of an NIU description. The

selection bar must first be moved to the description to be changed and the
'R' key pressed. When that has been done, a window is produced with the
old contents of the description, and the user may enter a new description.
Old entries may be kept simply by pressing return. ES C will exit the

function without making any changes.

Delete Description
Delete Description allows the removal of a description from the list.

Again, the selection bar must be moved to the description to be deleted and
the 'D' key pressed. A message box will appear asking the user to verify the

removal of the description. Typing an 'N' for "No" will leave the section
unchanged, while typing 'Y' will replace the name with a line of dots and
the description with the statement "Not currently in use." Once a

description is deleted, it can be recovered if the NCP program is exited and
then reentered. If the changes are saved before this is done, then the

removal of the description will be permanent.

Poll / Clear Active Nodes
The Poll function lets the user poll the network for attached and

functioning NIUs. Pressing the 'P' key will send a command to all NIUs on

the network. If they are active, they will respond to the command and send
back an acknowledgment. If an acknowledgment is received, an asterisk '*'

will be displayed under the Active column on the line corresponding to the

22

NIU's address. While this function is running, a message box will be
present informing the user to press ESC to end the polling.

Pressing the 'C' key will clear the Active column to allow the user to
poll the network again.

Save Changes
Any changes made to the descriptions may be saved to the disk by

pressing the 'S' key. If the changes are not saved, they will be lost when the
NCP program is ended, although they will remain in effect until then.

Help
Pressing the 'H' or '?' key will invoke the on-line help function. A

window will appear with information on how to use the List of NIUs
function. ESC will let the user exit the Help function.

Exit NIU List
Pressing the ESC key will leave the NIU List. Any changes made to

any descriptions will remain until the NCP program ends, at which time
they will be lost. If the Save function is used, the changes will be
permanent.

3.2.6 Directory Information

Keystroke: Function Key 5 (F5) or Alt-D

Description:
The directory information function provides the user a way to view

the contents of the disk drives on the computer. It also allows the copying,

deleting, renaming and viewing of files on the disks. Also provided are

commands to change, create, delete, and view directories. The information

is displayed in a easy-to-read format, enabling the user to perform many
useful functions without exiting the NCP program.

23

Top Line
The top of the Directory screen are two items of information that the

user will find useful; directory information, and disk information.
The Directory Information shows both the current directory and the

default directory. The current directory is the directory whose information
is currently being displayed on the screen. The current directory will
change when the directory is changed by either the change directory
command or the view command.

The default directory line shows the path on which any file
operations will take place. Usually the current and the default directories
will be the same, but when the View function is used, they can be different.

The Volume Name displays the name of the disk whose information is
currently being displayed. If the disk has no name, then "(none)" will be
shown.

The Disk Space displays the amount of free space on the current disk
drive.

Directory Format
The Disk Information is displayed in the center window. It shows the

filenames, extensions, size, and time and date of the file's creation. If an
entry is a sub-directory, then the symbol "<DIR>" replaces the file size.

Selecting a Description
To select a file for copying, renaming, deleting, viewing, etc., the

user can use the selection bar. The bar appears as a line of reverse type
(white background, black letters). The cursor or arrow keys can be used to
move the selection bar up or down, left or right. The PgUp and PgDn can
be used to move up or down one screen (16 lines) at a time. The Home and
End keys move the selection bar to the very top and bottom the of the list.
The selection bar is used to select entries for viewing, copying, renaming,
or other operations.

Directory Mask/New Directory Mask

When the Directory program is first called, a window is created,

which asks the user for a directory mask with the characters "*.*" already

24

entered. The directory mask is used to determine which files are to be

displayed. If the name "testfile.txt" is entered, then the directory function

will only display the file "testfile.txt" if it exists. This, however, is not the

easiest or the best way to use the directory program. More than one file

may be displayed at one time if wildcards are used.
Wildcards are used to match single or multiple letters in a filename.

The asterisk '*' matches any number of characters, while the question mark
'?' matches only a single character. For example, the "*.*" matches all files

with any number of characters before the period, and any number of
characters after it. In this way it matches all files on the disk. Other

examples are as follows:

"lc." matches all files with no extension, i.e. "test".

"*.NCP" matches all files with the extension "NCP".

"TLIB*.NCP" matches all files starting with "TLIB", which have the
extension of "NCP". The same could have been done with

"TLIB????.NCP".

"TEST?.TXT" matches all files starting with "TEST" followed by a
single character and end with the extension "TXT". This

would match "TEST1.TXT", "TEST2.TXT", "TESTS.TXT" and

so on.

Copy File
To copy a file, press the 'C' key. A window will appear asking for the

source and destination file names. If the selection bar is positioned on a
filename, that name will appear as the source filename. If the source

filename is correct, then a carriage return will accept the name; otherwise

the user may change it. Pressing ESC will exit the delete function without
making any changes.

Delete File

To delete a file, press the 'D' key. This will bring up a window asking

the user for the name of the file to delete. If the selection bar is currently
positioned on a filename, that name will appear as the name of the file to

25

delete. The user may delete the named file or enter a different name.
Pressing ESC will exit the delete function without making any changes.

Rename File

The Rename File function lets the user rename a file. Pressing the

'R' key will produce a window similar to the Copy window. The user will be

prompted for an old name and a new name. If the selection bar is currently
positioned on a filename, then the old name will be that of the file
currently selected. The user may accept the name or change it as desired.

Pressing ESC will exit the rename function without performing any
changes.

View File or Directory
By pressing the 'V' key, the file or directory currently selected by

the selection bar will be displayed on the screen. If it is a directory, then

the directory selected will be displayed. This will change the current
directory line at the top of the screen, but will not change the default
directory. In other words, the user is only looking at the directory; he has
not actually changed it.

If a file was selected, then the View File function (see View File) is
called, and the contents of the file are printed on the screen.

Change Directory
The default (and thus the current) directory can be changed by

pressing the 'H' key. A window will appear asking the user for the name of
the directory which to change. If the selection bar is currently on a
directory entry, then that name will appear in the window. Otherwise the

window will be empty, and the user must enter the required information.
Once the directory has been changed, then the displayed information

will change to that of the new directory, and the default and current
directory information will be altered accordingly.

Pressing ESC while in the Change Directory window will exit the
function without making any changes.

26

Make/Remove Directory
The Make and Remove Directory functions allow the user to make and

remove sub-directories. Pressing the 'M' key will bring up a window asking
for the name of the directory to be created. When the new name has been
entered and a carriage return pressed, the new directory will be created as
a sub-directory of the current one.

By pressing the 'E' key, the user may remove or delete a sub-
directory. If the selection bar is currently positioned on a directory entry,
then that name will appear in the window. The name may be accepted by
pressing <CR> or changed as desired. If the sub-directory the user is
attempting to remove is not empty, then an error will result and the
deletion will fail.

Pressing ESC while in the window of either function will exit the
function without making any changes.

Help
Pressing the "P key will invoke the on-line help function. A window

will appear with information on how to use the Directory function. E S C

will let the user exit the Help function.

Exit Directory
Pressing the ESC key will leave the Directory program, and return to

the NCP main menu.

3.2.7 View File

Keystroke: Function Key 7 (F7) or Alt-V

Description:
The View File function lets the user examine the contents of a file.

After the user presses the appropriate key, a window will appear, asking
the user for the name of the file to view. Sometimes a name will already be

provided for the user. This name is the name of the network program the

27

user last ran. This is provided as a shortcut to the user who is developing
and testing a program.

When the user has entered a filename, the View program is called

and the contents of the file are displayed on the screen.
The View program is simple and only allows the user to examine of

the file's data. It will print out one screen of data at a time. Pressing any

key will print out another screen full of data.
Pressing ESC will exit the view program and return the user to the

NCP main menu.

3.2.8 DOS Gateway

Keystroke: Function Key 8 (F8) or Alt-G

Description:
DOS Gateway invokes the command processor, "Command.COM", and

suspends the NCP program to allow the user to perform DOS functions. Any

sort of DOS functions may be used, and other programs may be run as well if
memory permits. When the user is done, typing 'EXIT' will return him to
the NCP program's main menu.

3.2.9 Program Setup

Keystroke: Function Key 9 (F9) or Alt-S

Description:
The Program Setup function the setup menu for the NCP program. It

allows the user to change many of the default settings of the program, such
as the parameters of the Communications Port and the File Directories and
Paths, the Program View screen. It also allows the user to enable/disable
the communications port for transmitting data.

28

The sub-function the user desires to change may be selected by using
the cursor or arrow keys to move the selection bar. When the bar is on the
sub-function desired, pressing <CR> will take the user to that function.

File Directories and Paths
File Directories and Paths holds the directory paths to certain files or

programs. The first path is the one to the Support files. These are the Task

Library default and supplemental lists and the NIU list. The Support Files

path may be changed, if the user has more than one set of Task and NIU
descriptions he.

The View path is the path and filename to the program used by the
View File function. The default filename is "NCPVIEW.EXE". The entry is

provided to allow the user to substitute a different program if
desired.

The Editor path is provided to allow the
he is familiar with. No editor is provided with

Editor function, this entry must be filled with
text editor chosen by the user.

Pressing ESC will exit this function.

such is

user to use the text editor that
the NCP program; to use the
the path and filename of a

Communication Parameters
The Communication Parameters sub-section permits the changing of

the parameters of the communications port. When this function is selected,

a window will appear which shows all of the parameters currently in place.
Other windows will appear which allow the user to select new parameter
values. The user may change the serial port used and the baud rate, as well
as the number of the data bits and stopbits and parity. When all of the

parameters have been selected, the user will be returned to the Setup menu.
Pressing ESC at any time will return the user to the Setup menu

without making any changes.

Transmit Enable/Disable
Transmit Enable/Disable allows the user to turn on or turn off the

communications port for Transmitting only. This is to allow the testing of a
program that sends data out onto the network without actually sending the

29

data. The data will still appear on the screen if the View port is enabled (see
Program View Screen). The reception of data is not changed.

When the Transmit Enable/ Disable function is selected, a window
will appear briefly, informing the user of the new status of the serial port.
This status is echoed at the bottom of the NCP main menu.

Program View Screen

The Program View Screen function allows the user to select what will
appear on the screen when the network program is executed by the
interpreter. There are three kinds of output that can appear on the screen:
program output, data received by the serial port and data transmitted by the
serial port. The user may turn on or off any or all of these outputs. If a
particular output is turned on, it will have an asterisk '*' next to it.

Program output is data printed out by the network program in Write
statements. Usually this is turned on, but it may be turned off if necessary.

Received data is data the serial port has received from the NIU. When

this selection is turned on, this data is printed out as it arrives. To

distinguish it from other data, it is surrounded by angle brackets printed in
bold type. For example, if the characters "lF" were received, it would

appear on the screen as the following: <1F>.
Transmitted data is data that the serial port is transmitting out to the

NIU. When this selection is turned on, the data is printed on the screen
surrounded by asterisks "*" printed in bold type. For example, if the
characters "lF" were to be transmitted, they would appear on the screen as
the following: *1F*. This is useful when the user needs to see what is being
transmitted out onto the network. If the user wants to test a program that
transmits commands, the transmitting may be disabled by the Transmit
Enable/Disable function in the Setup menu. The data will still appear on the
screen, but it will not be transmitted out on the serial port to the NIU.

Exit Setup Menu
Pressing ESC will exit the Setup Menu. If any changes were made

while the user was in the Setup Menu, a message box will appear asking the
user if these changes should be saved. Answering "Yes" will save the

30

changes to the disk, making them permanent. This means when the NCP

program is exited, the changes will not be lost.
If "No" is answered, then the changes will not be saved, but neither

will the user lose them. The changes will remain until the NCP program is

ended, at which time they will be lost. Thus, for example, if the user

changed the baud rate on the serial port and did not save the change, then
the change will remain until changed again or until the NCP program ends.

3.2.10 Exit to DOS

Keystroke: Function Key 10 (F10) or Alt-X or ESC

Description:
Exit to DOS allows the user to exit the NCP program. When the

appropriate key is pressed, a message box will appear asking the user to
verify his intent to the exit the program. Typing 'N' or "No" will return the
user to the NCP program, while typing 'Y' or "Yes" will take the user to DOS.

Any changes made to the Task Library, NIU list, or Setup Menu that

were not saved will be lost when the NCP program is ended.

3.2.11 Zoom

Keystroke: Alt-Z

Description:
When the NCP program first starts, the NCP Main Menu Screen will

be at the bottom of the screen, while the top is reserved for program output.
If more room is needed for program output, then the Zoom function will
make the Menu screen disappear and the output window expand to fill the

entire screen.

Pressing Alt-Z again will restore the window to the way it originally

was.

31

3.2.12 Help

Keystroke: Alt-H

Description:
The Help function will bring up a window with information on how

to use the main menu of the NCP program. The help file may contain

several pages of information, and these may be seen by pressing the PgDn
key to advance through the help, or PgUp to return to the previous page.

Pressing ESC will exit the Help file and return the user to the main
menu.

32

3.3 Run Program: The Interpreter

3.3.1 About This Section

This section covers the interpreter and the commands it understands.

Included in this section are ways to control the interpreter and examples of
programs.

3.3.2 The Interpreter
The interpreter is the core of the NCP program. It is the device by

which programs written by the user to control the micro-controllers on the
network are deciphered and executed.

The interpreter analyzes the code written by the user line by line
and then acts upon the instructions it sees. Basic flow control statements
and arithmetic statements are supported, as well as a number of useful
functions.

The interpreter consists of two main sections of code. The first is the
lexical analyzer, which searches the program code for patterns that it

recognizes, substituting numbers (called tokens) for these patterns and
then passing the tokens on to the second section of the interpreter, the
parser.

The parser takes the tokens and compares them to a set of rules.
These rules dictate the order in which the tokens may appear, and thus the
structure of the user's program is determined. When a series of tokens
matches a certain rule, then a support function is executed. A good number
of support functions are provided to run all aspects of the network
programs.

More on the lex analyzer and parser are provided in section 3.5
(see Section 3.5: Lex and YACC Theory).

3.3.2.1 Running a Program
A program written for the interpreter may be executed in two

different ways. First, is inside the NCP environment, press the F2 function
key, or ALT-P. This will produce a window that asks for the name of the

33

program to be executed. Entering the program name and pressing return is

all that is needed.
The second method is to run the program from DOS by including it as

a parameter to the NCP program. An example is as follows:

C:\> NCP progl

This will execute the program "progl". When a program is executed in this
manner, the development enviroment is not entered. The program runs,

and when it is finished, the user is returned to DOS.

3.3.2.2 Stopping a Program
A program may be interrupted by pressing the Ctrl-Break key

combination. The currently executing program will stop with the message
"User Interrupt at line xxx". Once stopped, the program will have to be
restarted from the beginning to be used.

3.3.2.3 Reserved Words
The following words are reserved for the use of the NCP interpreter,

and should not be used as variable names, mnemonics for tasks, or NIU
names. The use of a reserved word might result in a syntax error or an
unexpected result.

all char file open then
and close for or time

append cls get read to

band comm gotoxy recv until
beep comp if recvb v al

begin copy int send wait

bnot data_ready keypresssed sendb wend

bor date mod set while
bxor else next step write

cat end not str xor
Table 1 Reserved Words

34

3.3.2.4 Precedence

In all arithmetic operations, there is a precedence that is used to
determine the order in which the operations are to proceed. This is

necessary, in that without the hierarchial structure, all equations would be

executed in the order they were written. While somewhat workable, lack of

precedence makes reading an interpretation of the arithmetic equations

difficult.
The following table shows the precedence of the operators used in

the NCP interpreter. While it covers a lesser number of operators, it is

identical with most standard precedence tables.

Operator Associativity
() left to right

- not bnot right to left

* / mod left to right

+ left to right

< > x left to right
!= left to right

band left to right

bxor left to right
b o r left to right

and left to right

x o r left to right

o r left to right

right to left

Table 2 Precedence

The operators at the top of the list have the highest precedence. All

operators on the same line have the same precedence. For example, in the

equations

x = 3 +1 *5 x = (3+1)*5

35

the answer to the first is 8, because multiplication (*) has higher

precedence than the addition (+). Therefore multiplication is executed first,

even though it comes after the addition. The answer to the second equation

is 20, because the parentheses have the highest precedence, and so are
executed first. That means the addition, which is inside the parentheses, is

performed before the multiplication.

Associativity indicates the order of evaluation of the operators. In

most cases, the associativity is from left to right, but in the case of the
equals sign and the negation operators, it is the opposite. For them, the

right operator is evaluated first. This makes sense for the equals sign, as
the equation on the right must be solved before assigning it to the variable

on the left.

3.3.2.5 Arithmetic Operators
The arithmetic operators simply perform standard mathematical

operations. The operators available are as follows:

Operation Name

*

mod

+ -

Negation
Multiplication, Integer division

Modulo Division

Addition, Subtraction

3.3.2.6 Relational Operators
The relational operators are those that do comparisons of numeric

expressions. The operators available are as follows:

Operation Name
< > Less Than, Greater Than

>. Less Than or Equal To, Greater Than or Equal To

!= Equal To, Not equal To

36

3.3.2.7 Logical Operators
The logical operators are those which do comparisons between true

and false expressions. In this program, "true" is any numerical expression

that has a non-zero value, while "false" is any expression that has a value of

zero. The operators available and their associated truth tables are given

below:

AND

XYIX and Y

0 0 1 0

0 1 1 0

1 0 1 0

1 1 1 1

Both values must be true for the result to be true in an "and" expression.

OR

X Y I X or Y

0 0 1 0

0 1 1 1

1 0 1 1

1 1 1 1

If either of the values is true, the result is true in an "or" expression.

XOR

X Y 1 X xorY

0 0 1 0

0 1 1 1

1 0 1 1

1 1 1 0

37

XOR performs the "or" function, but with the exception that the result is

true if either of the values is true, but not both.

NOT

X I not X

The NOT operator negates the value. If it is true, it becomes false, and vice
versa.

3.3.2.8 Bit-wise Logical Operators
The bit-wise logical functions do the same thing as their

counterparts, but on a bit-by-bit level. This means a bit-wise function takes

the two values it is performing the operation on and does the logical
operation on the first bit of each value, and then the next bit, and so on. An

example of this is as follows:

x = 1 band 0 y = 1 and 0 = 0

Which does the following:

1= 0000000000000001

0 = 0000000000000000

band
x = 0000000000000000 = 0

This is, incidentally, the same result as if the logical "and" was used.
However, in the next example, the difference is more obvious:

38

x = 1 band 6 = 0 y = 1 and 6 = 1

1= 0000000000000001

6= 0000000000000110

band

x = 0000000000000000 = 0

Since none of the bits of either number has a matching "1" value in its

counterpart, the result is a zero.

3.3.2.9 Strings and How to Use Them
The NCP interpreter allows the use of strings in variables and in

some functions. In this program, a string is simply an array of characters,
with one small difference, and is declared as such. The difference between

an array of characters and a string is that a string is ended, or terminated,
with an ASCII zero (N0'). The ASCII zero tells the program where the string
ends. This prevents functions that use strings, such as copy and comp,
from running astray.

A string is declared in the same manner as a character array (See:
Variables). The following declaration,

char teststring [10];

sets aside 10 bytes of memory for the character array under the name of
"teststring". If this variable is used as a string, it can contain only nine
characters, as the 10th and final character must be an ASCII zero.

The contents of a string variable may be accessed through its index
in the same way as any other array. This allows the manipulation of

individual elements. The string variable may also be accessed by its name
alone, without the array index. This allows the entire variable to be used as

a string. This is how strings are used in the string manipulating functions,
or write statements. An example of this is as follows:

char teststring [10];

39

teststring [0]=11';

teststring [1] ='i';

teststring [2]=N0';

(String accessed by index)

(Terminating ASCII zero)

write(teststring[0]," ",teststring); (Output: H Hi)

(Reference by name AAAAA)

Strings may also be literal strings. These are strings that are entered
as characters between two quotes. In the above example, a literal string is
used as a separator in the write statement. Another example is in the
following copy statement:

copy(teststring,"Hello you");

In the above example, the string variable "teststring" is referenced by

name, while the source string is a literal string.

Assignment of a string to a character array is important. There are
two ways of doing this. The first is to assign each individual array element
a character, and terminate the array with an ASCII zero. This was done in a
previous example, with "teststring" being assigned the string "Hi".

The other way is to use the copy command. The copy command takes

as input, a string variable as the destination string and a source string,
which may be either a variable, or a literal string. Examples and more

information may be found in the section on the copy command.
Finally, it is important to remember to provide enough space in the

string variable to hold the string that will be placed there. If not enough
space is provided, then data may be lost when copying strings.

3.3.2.10 Variables
There are three types of variable used in this program, int, char, and

file. The int and char variables can be used in arrays, but the file type
may not. There is no support for variables of any other type, including

40

floating point numbers. Such may be included in future versions of this
program.

Int: The int type is used for storing integers. The integer is two bytes

long, and has a range from -32768 to 32767.

int x;

Char: The char type is used for storing characters. The character has a
range from 0 to 255.

char x;

File: The file type is used for storing file variables. The file variable holds

information about a file that has been opened for access. The variable is

initialized when a file is opened, and is used in all file accesses to indicate

the file to be accessed.

file x;

3.3.2.11 Declaring variables
Variables are declared in the following format:

type variable name [[size]] [, variable name [[size]] ;

The type may be any of the above types, (i.e. int, char, file). The name of

the variable may be any name up to 64 characters in length. Capitals as

well as lower case letters may be used, but it is important to remember that

this program is case sensitive. If a capital letter is used in a variable name,
it must be used whenever referencing that variable, or the program will
not recognize it.

Any number of variables may be declared on the same line as long as
they are of the same type. To do so, each name must be separated by a
comma. The entire declaration must be ended by a semi-colon.

41

There is no order to the declaration of variables as long as all

declarations take place at the front of the program. This means that integer

variables may be declared, followed by some variables of character type,
followed again by integer variables.

Examples of the declarations of variables are as follows:

int newvar;

int x,y,z;

(single declaration)

(multiple declaration)

char a; (character declarations)
char cvar, newvar2;

file filevar;

file filel, file2;

(file variable declaration)

The optional size following the variable name is used in declaring
arrays and represents the size of the array. If a variable is declared without
the optional [size], then it is understood to be a single variable. The size of
the array indicates the number of elements in that array.

The elements of the array may be accessed by specifying the index of
the element desired. This is shown as follows:

int x [10];

int y [5], z[20];

x[0] = y[3] + z[19];

write(x[1]);

The elements of an array are numbered from 0 to the size of the array
minus 1. This means that an array of size 10 will have elements numbered
from 0 to 9.

If an array variable is used without the index, then an index of 0 is
assumed. However, this does not apply with character arrays, as

42

referencing a character array without the index variable will result in

treating the array as a string (See: Strings).

3.3.2.12 Program Structure
The NCP interpreter expects the program given to it to be in a

specific format. The format is simple, but if the program does not follow it,
an error will occur. The format for all programs to be executed by the
interpreter is as follows:

begin

variable declarations

program statements

end

The program must start with a begin statement, and end with an end
statement. The begin statement must be followed by the variable
declarations. All variables to be used in the program must be declared here.
If an attempt is made to declare them elsewhere, an error will occur. The

program statements follow the variable declarations. There may be any
number of program statements. The program statements must be followed

by an end statement.
All variable declarations and all program statements (with a few

exceptions) must be ended by a semi-colon. All of the program statements

must also be in lower case, or the interpreter will not be able to recognise
them. The specifics for each statement are found in the Program
Statements section, and in the Variables section.

3.3.3 NCP Program Statements

3.3.3.1 Notes on Format

BOLD

43

Words shown in BOLD letters are keywords, and are to
be printed out just as they appear. If the word SEND
appears in bold, then it will be written in a program just
as it appears. All keywords must be typed out in
lowercase letters. If any are typed using uppercase, the
interpreter will not recognize them.

Italics Words shown in lowercase italic letters are to be
replaced by whatever the words indicate. For example,

if the command has the word integer in italics, then the
user would substitute an integer or integer variable for
the word integer. The actual word integer is not to be
printed out.

Brackets indicate optional items. Items inside the
brackets may be included if the user needs them. The

brackets are not actually used in the statement. When
including optional items do not type the brackets
themselves but only the required items inside the
brackets. The command read would appear as
follows, both as its format, and how it is actually written:

Format:

Written:

read(var [,var] ...) ;

read(a,b);

The comma and second variable are both optional, as
indicated by the brackets, but the brackets are not typed
out when writing the statement.

Punctuation

44

A vertical bar indicates either or. You may include one

or the other of the choices, but not both. Do not type the

vertical bar. An example is the vat statement:

Format: val(string I variable);

Written: val("123");

The vat statement will take either a string or a variable,
but not both. When the statement is written out, it does

not include the vertical bar.

An ellipsis indicates that the item may be repeated as
many times as necessary. Do not type the ellipsis. An

example is again the read statement:

Format: read(var [,var] ...) ;

Written: read(a,b,c,d);

The ellipsis in the read statement indicates that the
optional ",var" may be repeated as many times as
necessary; in the example, it was repeated three times.

An punctuation that appears in the statement format
must appear in the written statement. The exceptions

are those items of punctuation that were optional and
were not used. The read statement provides an example:

Format: read(var [,var ...]);

Written: read(a);

read(a,b);

45

The comma does not appear in the first statement, as it

was part of an optional item that was not used. It does

appear in the second statement, in which the optional
item was used. In both cases, the parentheses and semi-
colon were required and were used.

46

3.3.3.2 BEEP

Purpose: Produces a short tone from the computer's speaker.

Format: beep;

Description:
This function produces a short tone from the computer's speaker.

The tone has a frequency of 900 Hz. and a duration of 250 milliseconds.

3.3.3.3 BEGIN/END

Purpose: Indicates the beginning of a block of code. It also indicates the

beginning of the program.

Format: begin

Description:
The begin statement indicates the beginning of a block of code. It

also indicates the beginning of a program. The begin is terminated by a
matching end.

The begin statement is useful when using if/then/else statements.
The then or else of an if statement only executes one line of code. Using a

begin/end pair allows the if statement to execute a block of code. An

example of this is as follows:

if (x=1)

then begin

write(x);

x=x+1;

end
else x=x-1;

47

y=x;

The begin/end pair defines the block of code containing the two
statements "write(x);" and "x=x+1," which is executed when the if statement

is true. In comparison, the else section can only execute the one line "x=x-
1;". The "y=x;" statement is separate from the if structure, and is always

executed.

See also: end, and, if/then/else

3.3.3.4 CAT

Purpose: To concatenate two strings.

Format: cat (var, string I var);

Description:
The cat function concatenates two strings. The first string is the

destination string and must be a variable consisting of a character array.
The second string may be a string or a variable consisting of a character
array. When the function performs the concatenation, the second string is

appended to the first, and the result is stored in the first string.
An example of this is as follows:

char result[12]; (result contains the string "HI")

write(result); (Output> "HI")

cat(result," there");

write(result); (Output> "HI there")

48

Care must be taken to ensure that the resultant string does not exceed the
size of the destination array. If it does, then any excess might be lost. In

the above example, the resultant string ("HI there") was 8 characters long,

9 characters with the null character terminator. Since this is less than the

12 characters that the array was defined to have, the cat function worked

without any problems. Had the example concatenated the following string,

instead of " there," data would have been lost:

cat(result," there again");

The resultant string should have been "HI there again," but since the
character array "result" was only 12 characters long, the output of the
write statement would actually be the following:

write(result); (Output> "HI there ag")

See also: copy, comp, str, char

3.3.3.5 CLOSE

Purpose: To close a file that has been opened by the open
command.

Format: close (filevar);

Description:
The close command's purpose is to close a file that has been opened

by the open command. When the file is closed, the file that is being

written to is updated and final disk "housekeeping" is taken care of. Failure

to close a file that has been opened, before the end of the program, may
result in the loss of data in the file.

49

The parameter to this function is a variable of the type file. No other

type of variable can be used or will be accepted. An example of the use of

the close statement is as follows:

file textvar; (declaration of the file variable "textvar")

open ("test.txt",textvar,w); (opens "test.txt" for writing)

(various writing to the file takes place...)

close (textvar); (file "test.txt" is closed)

Once a file has been closed, it can neither be written to nor read from. To

perform any of those functions requires the reopening of the file.

See also: open, read, write, file

3.3.3.6 CLS

Purpose: To clear the screen.

Format: cls;

Description:
When executed, the cls function clears the computer screen and puts

the cursor in the upper left-hand window. If the NCP environment is being
used, the screen consists of the area within the double-lined border.

If the program was executed at the command line level, then the
screen refers to the entire computer screen.

See also: gotoxy

50

3.3.3.7 COMP

Purpose: Compares two strings or string variables.

Format: comp (string I var, string I var);

Description:
The comp function compares two strings or string variables and

returns a value indicating whether they are equal or greater than or less
than each other.

The returned value is determined as follows:

Comparison Return Value

string 1 < string 2 <0

string 1 > string 2
string 1 = string 2 0

An example of the function's use is as follows:

comp ("chair","chairs"); (Result= <0)
A

comp ("hello","hello"); (Result= 0)

comp ("jello","hello"); (Result= >0)
A A

The comparison is done one letter at a time until a difference is detected or
the end of the string is found. In a case such as the first example, where

one string is shorter than the other, the long string is considered greater

than the shorter.

See also: char, cat, copy

51

3.3.3.8 COPY

Purpose: Copies a string into a string variable.

Format: copy (variable, string I variable);

Description:
The copy function allows the copying of a string into a character

array variable. The source must be a literal string or a variable containing
a string. The destination must be a string variable. Any other

configuration will result in an error.

An example of this function is as follows:

char a [10]; ('a' contains the empty string "")
char b [1O]; ('b' "

copy (a,"Hello"); (Copy from a literal string)

copy (b,a); (Copy from 'a' to 'b')

write(a); (Output: "Hello")

write(b); (Output: "Hello")

If the destination string contains any data, that data will be lost in the
copying process. Care must be taken in observing the length of the strings,
as if the size of the destination string is too small to hold the source string.

See also: char, comp, cat

3.3.3.9 DATA READY

Purpose: Returns a non-zero value if there is data in the
communications input buffer.

Format: data_ready

52

Description:
The data _ready function returns a non-zero value if the

communications input or receive buffer is holding data. It provides the
programmer the means to detect the reception of data by the serial
communication port, other than polling. This function may be used in an
assignment statement or in the decision process in a flow control statement

such as if/then/else, or while/wend.

See also: if/then/else, while/wend

3.3.3.10 FOR/NEXT

Purpose: Provides the ability to perform a program loop.

Format: for (variable = expr to expr [step expr])
program statements ...

next

Description:
The for/next statement provides the ability to perform iterations in

a program. The loop exists between the for and the next keywords and is
executed a number of times determined by the (xxxx = xxx to xxx) statement.

The variable in the loop control statement holds the current number
of the iteration. It is an integer and can be used like any other variable
inside the for/next loop. When the loop exits, it will have a value equal to
the second expression plus one iteration.

The expressions may be of any integer value and can cause the loop
to go in either direction, i.e. count up or count down.

The optional step function allows the count variable to be
incremented in steps greater than or less than one. The default step is 1.

Examples of the for/next statement are as follows:

int x;

53

for (x = 1 to 10) (Output: 1 2 3 4 5 6 7 8 9 10)

write(x);
next

for (x = 1 to 10 step 2) (Output: 1 3 5 7 9)

write(x);
next

for (x = 10 to 1 step -1) (Output: 10 9 8 7 6 5 4 3 2 1)

write(x);
next

For/next loops may be nested inside each other or in other program
statements, such as while/wend or if/then/else. Note: the maximum
depth of nested statements of any type is 64.

See also: if/then/else, while/wend

3.3.3.11 GET COMM

Purpose: Allows access to the serial communication port parameters.

Format: get comm (var, var, var, var, var);

Description:
The serial communication port's operation is specified by five main

parameters: Port number, baud rate, parity, number of data bits and number
of stop bits. The get comm function retrieves of the values of these
parameters. The values are stored in the variables that are specified in the
calling of the function.

54

Port Number: The port number is the number of the serial
communications port that is to be used for the transmission of data to the
NIUs. This number may be either 0 or 1 for the number 1 serial port or the

number 2 port. Many computers allow 4 or more serial ports to be installed
within them. The NCP program only provides support for the first two

ports.

Baud Rate: The baud rate is the speed of data transmission and reception
through the serial port. The values that can be used here are as follows:
110, 150, 300, 600, 1200, 2400, 4800 or 9600.

Parity: The parity can be one of the following three choices: None, Odd or
Even. This choices represented, respectively, by the values 0, 1 or 2.

Data Bits: The number of data bits can be either 7 or 8.

Stop Bits: The number of stop bits can be either 1 or 2.

Parameter
Port Number

Port #1
Port #2

Values

0

1

Baud Rate

Parity

110, 150, 300, 600

1200, 2400, 4800, 9600

None 0

Odd 1

Even 2

Data Bits 7, 8

Stop Bits 1, 2

See also: set comm

55

3.3.3.12 GET DATE

Purpose: Reads and returns the date from the computer's system clock.

Format: get date (var, var, var);

Description:
The function get date retrieves the date stored in the computer's

system clock. The format of the date that is returned is month, day and year,
and the values are integers.

(This example assumes that the date is Jan 1, 1980)

int month, day, year;

get date (month,day,year);

write (month,day,year); (Output: 1 1 1980)

This function only retrieves the value; it does not allow the setting of
the date. That requires the set date function.

See also: set date

3.3.3.13 GET TIME

Purpose: Reads and returns the time from the computer's system clock.

Format: get time (var, var, var);

Description:
Similar to the get date function, get time returns the time from the

system clock and stores it in the variables specified in the calling of the

56

function. The values returned are, respectively, hours, minutes and

seconds. They are in a 24 hour clock format.

(This example assumes that the time is 1:15am and 10 seconds)

int hours, minutes, seconds;

get time (hours,minutes,seconds);

write(hours,minutes,seconds); (Output: 1 15 10)

This function only retrieves the time. To set the system clock's time, the set
time function must be used.

See also: set time

3.3.3.14 GOTOXY

Purpose: Moves the cursor to a new location on the screen.

Format: gotoxy (expr, expr);

Description:
The gotoxy function moves the cursor to a new location on the

screen specified by the given coordinates. The coordinates specified in the
function are, respectively, the X-coordinate and the Y-coordinate. They are

integers and should not exceed the width and height of the screen.
The screen size varies, depending on the circumstances of the

execution of the program containing the gotoxy function. In the NCP

development environment, the screen on which the program output
appears has two sizes. Outside the NPC environment, there is the full screen
dimensions available. The following table shows the sizes of the various
screens.

57

Width Height

Small screen (with help menu) 78 12

Large screen (w/out help menu) 78 21

Full screen (outside NCP env.) 80 25

Table 3 View Screen Sizes

Examples of the gotoxy function show its use:

gotoxy (10,15); (moves cursor to column 10, row 15)

gotoxy (4+5,ydist); (moves cursor to column 9, row
specified by the variable "ydist")

If a value for either coordinate exceeds the current size of the screen, then
the function is not executed.

3.3.3.15 IF/THEN/ELSE

Purpose: The if/then/else statement provides flow control and decision
making.

Format: if (expr)
then statement;
[else statement;]

Description:
The if/then/else statement allows decision making and flow

control in the program. The true/false (TF) expression determines which of
the two statements will be executed. If the TF expression is true, the then
statement will be executed. If the expression is false, the else statement

will be executed. In no case will both statements execute.
The TF expression is any numeric expression or value returned from

a function. If the numeric expression is a non-zero value, then the

58

expression is true. It is false if the expression equates to a zero. The

conditional expression is usually obtained by using logical operators, such

as <, >, ==, and, or, and similar operators.

The then/else keywords are followed by a single statement.

Multiple statements will produce an error. The exceptions to this rule are
loops, such as for/next and while/wend, and blocks, such as
begin/end. In these cases, the entire loop or block and all statements

contained within are considered to be one statement. One other exception is

another if/then/else statement. The following examples show the if
statement and the use of loops and blocks in it:

(A simple if statement with the optional else)

if (x=1)

then y=y+1;

else y=y-1;

(A for loop is executed off the then statement)

(The optional else statement is not used here)

if (x =1)

then for (y=1 to 10)
write(x,y);
z=z+1;

next

(Nested if/then statements)

if (x=1)

then if (y=2)
then write(y);

else write(x);

else z=z+1;

59

An if/then/else or loop statement used inside another if/then/else
statement is called nesting. In the case of the else statements, the else is
associated with the last if that has no an else. The following section of code

illustrates this:

if (x=1)

then if (y=3)
then z=1;

else z=2;

The else statement is associated with the "if (y=3)" statement, not the "if

(x=1)" statement, as the indentation shows. This is not as clear if the
arrangement of the code is changed:

if (x=1)

then if (y=3)
then z=1;

else z=2;

This example is exactly the same as the previous one. The else statement is
still associated with the "if (y=3)" statement. To associate the else with the

"if (x=1)" statement, the code would have to be written as follows:

if (x=1)

then if (y=3)
then z=1;

else;

else z=2;

The maximum depth to which if/then/else statements, and the loops may
be nested is 64 deep.

See also: while/wend, for/next, begin/end

60

3.3.3.16 KEYPRESSED

Purpose: Returns a non-zero value if a keystroke has been detected and
a character is held in the keyboard input buffer.

Format: keypressed

Description:
The keypressed function returns a non-zero value if a key on the

keyboard has been pressed and the keystroke is being held in the keyboard
input buffer. The keystroke may then be retrieved by a read statement.

The value returned by the keypressed function is an integer and
may be used in assignment statements or the control expression of an if or
while statement.

See also: if/then/else, while/wend, data_ready

3.3.3.17 OPEN

Purpose: Opens a file for writing, reading or appending.

Format: open (filename, filevar, read I write I append);

Description:
The open function opens a file for reading, writing or appending.

The filename can be any legal name, but the filevar must be a variable of
the type file. The filevar is used when addressing the file for writing,
reading or closing files. An example of its use shows the point:

file filel;

open("testfile.txt", file 1, write);

61

write(file 1 ,"test string");

close(filel);

When a file is opened for reading, the file pointer points to the
beginning of the file. Any reading will take place at the start of the file
and proceed to the end. Opening a file for writing resets the file pointer to
the beginning and also erases the file. Appending sets the file pointer to
the end of the file, where writing takes place. In appending, the file is not

erased.
To close a file, the close function is used.

See also: close, read, write, file

3.3.3.18 READ

Purpose: Provides input from the keyboard or from a file.

Format: read ([filevard var, ...);

Description:
The read function provides input from the keyboard or from a file.

Data read in using this function is stored in the variables specified in the
calling of the read function.

The read function will read either an integer or a character and can
read any number of variables in one statement. The read statement by
default reads from the keyboard. When entering data from the keyboard,

the backspace key will delete a previous character. No other editing key

will work, including the delete and the insert key. Input from the keyboard

is terminated by a carriage return.

Reading from a file is done when the optional file variable is used at
the beginning of the read statement. All data read, then, is read from the
specified file. The following examples show how the read statement works:

int a,b,c;

62

char r,s,t;

file filel;

read(a,b,r,$); (Typed: 123 55 A <CR>)

write(a); (Output: 123)

write(b); (Output: 55)

write(r); (Output: " " (a space))

write(s); (Output: "A")

open("testfile.txt",filel,read);

read(filel,t,c); (File Data: 123)

write(t); (Output: "1")

write(c) (Output: 23)

In the first code section, the first two read statements read the integers 123

and 55. The next read statement reads a character. Since a space is a
character, that is what is read, followed by the "A".

In the second code section, the first read statement reads a character

from the file "testfile.txt". It reads a "1," since that is the first character in
the file. The second read statement reads the integer 23.

See also: close, open, write, file

3.3.3.19 RECV

Purpose: Reads a string from the serial communications input buffer.

Format: recv (var);

Description:
The recv function is very similar to the recvb function, except that

it reads a string from the serial communications input buffer.

63

The reading of the string itself is also special. In most cases the NIUs

that are sending information to the PC send the data surrounded by square
brackets "[]." For example, the NIU with the address of 07 responds to the
POLL command by returning its address:

[07 00]

Since the data from the NIU is delimited by the square brackets, any data
outside the brackets may be ignored. The recv function reads data from
the input buffer and ignores everything until it reads an opening bracket.
It then copies the data into the string variable given in the parameters
until it reads a closing bracket. This allows junk characters from noise or
other sources to be ignored.

Care must be taken to ensure plenty of space for the string that is to
be read, or data may be lost.

char a[20];

recv(a); (assume that the characters "aad[1234]")

(are in the receive buffer)

write(a); (Output: "1234");

See also: recvb, send, sendb

3.3.3.20 RECVB

Purpose: Reads one character from the serial communications port

receive buffer.

Format: recvb (var);

Description:
The serial communications port has an input buffer to store

incoming data. This data may be retrieved from the buffer, one character at

64

a time, by the recvb function. The character that it reads is stored in the
variable specified in the parameters of the recvb function.

In the following example, the operation of the recb function is
shown:

(This assumes that the serial input buffer contains)
(the characters: " [12 34]")

char bufchar;

recvb(bufchar);
write(bufchar);

recvb(bufchar);
write(bufchar);

(Output: "[")

(Output: "1")

The variable used to store the character the recvb function returns may be
either a character, or an integer.

See also: recv, send, sendb

3.3.3.21 SEND

Purpose: Transmits a command packet out on the serial communications

port to an NIU and the network.

Format: send (string I expr, string I expr, xcntl [,data]);

Description:
The send function transmits a command packet out through the

serial communications port to the NIU connected to the PC. The function

takes as input the command to be sent, the address of the NIU for which the
command is destined, execution control and up to 5 bytes of optional data.

65

Command: The command may be specified in several ways. The first is by

the number of the command. The number may be written in decimal or
hexadecimal form. The commands

send (10,10,I.); send(10,$A,I.);

are identical, and both send an order to the NIU to execute command
number 10. The '$' indicates that the following number is in hexidecimal

form instead of decimal.
This command may also be written using a variable instead of an

explicit number. Thus the command

x.10;

send(10,x,I.);

is identical to the two previous commands.

A third way to specify the command is to reference it by its
mnemonic. In the above examples, command number 10 is the poll
command, which has the mnemonic POLL. The mnemonic may be

referenced by a string, a variable containing a string or as a variable itself.

The following commands are all identical:

send(10,"POLL",I.);

send(10,cmndstr,I.);

send(10,POLL,I.);

(where cmndstr="POLL")

The mnemonics may be upper or lower case when using strings; they must
be uppercase when using the mnemonic as variable.

Destination: The destination is the address of the NIU for which the
command packet is destined. The destination address can be referenced
(like the command above) by number (decimal or hexidecimal) or by
variable. The following examples are all identical:

send(10,10,I.);

send($A,10,1.);

send(x,10,I.); (Assuming that x=10)

66

The destination address may also be referenced by the name of the NIU
specified in the NIU List. The name of an NIU may be entered in the NIU
List. This assigns that name an address, and using that name in the send
command will allow access to that address. The following example
demonstrates this:

(This example assumes that the NIU with the address of 10)
(has been assigned the name "LAB ".)

send("LAB",10,I.);

send(deststr,10,I.);
send(LAB,10,I.);

(Assumes that deststr = "LAB")

The previous examples are all functionally identical. In all respects, the use
of the destination field of the send command is the same as the command
field.

There is one special destination address, and that is the address of 00
(ALL). This indicates that all of the NIUs on the network are to receive the
task specified in the send command.

Execution Control: The execution control refers to how the command
will be executed by the NIU. There are three pre-execution commands, two

post-execution commands and an optional echo command. The following

execution controls must be used in order in the send command. They may

be referenced as strings or as variables, although unlike command and
destination fields above, they have no intrinsic values.

67

Pre-execution commands

Queued Task -Q
This command tells the NIU to place the task on the end of the task

queue. All tasks before it on the queue will be executed in order before the
execution of this task.

Immediate Task - I

The immediate task is to be executed immediately. This has priority
over all tasks currently on the queue, as well as those currently being
executed. Tasks that are currently running are suspended until after the
Immediate task is through being executed. An immediate command is
aborted if the NIU receives another immediate task.

Synchronized Task - S
The synchronized task is treated like a Queued task, in that it is placed

at the end of the task queue, where it will wait until its turn arrives. When

it is its turn to be executed, the task prevents its execution until the NIU
receives a synchronizing signal. The synchronizing signal is an immediate
task with the task number of 3 (SYNC). If task number 3 is used with the
universal destination 00 (ALL), then multiple NIUs may be started at the
same time.

Post-execution commands

Single Execution .

The "." character indicates to the NIU that the command is to be
executed only once. When the task is through running, it is discarded and
lost.

Re-Queued Task +

The "+" character tells the NIU to put the task back at the end of the
task queue when the command is done running. In this way, a number of
commands may be executed over and over again. Immediate tasks may not
be requeued.

68

Optional Echo Command /
The "1" character tells the NIU to echo the command it has just

received. This allows verification that the command was received and
received correctly. The command echoes without the '1 character, and it

surrounded by square brackets "[] ."

is

The above commands must appear in order without spaces or the like
separating them. Only one pre-execution command and one post-execution
command may be used. Uppercase or lowercase may be used. Some

examples of the send function are as follows:

send(10,10,Q+);

send(10,10,I.);

send(10,10,S+);

send(10,10,Q./)

(Queued task that is requeued when done)

(Immediate task, with one execution)
(Synchronized task, requeued when done)

(Queued task, one execution with echo)

The execution control may be referenced by a string, instead of by explicit
characters.

send(10,10,"Q+");

send(10,10,xstr); (Assumes xstr= "Q+")

Optional Data Field: Data may be sent to an NIU along with a task. Some

tasks require data to properly perform operation. The data may be up to 5
bytes long, and may be written in decimal or hexidecimal form, or variables
may be used. For example,

send(10,10,Q.,12,255,32,54,10);

sends the five pieces of data along with the command to the NIU. The data

must be separated by a comma and nothing else. Not all five bytes need be
used.

See also: recv, recvb, Section 3.2 : Task Library and Node List

69

3.3.3.22 SENDB

Purpose: Transmits one character out on the serial communications port

to an NIU and the network.

Format: sendb (var I character);

Description:
The sendb function transmits a single character out from the serial

communications port to the local NIU and the network. This simply allows

the user some freedom in what he transmitts instead of being confined to
using the send command.

In the following example, the operation of the sendb function is
shown:

char sendchar;

sendchar ='A';

sendb(sendchar); (Output: 'A');

The variable used to store the character that is to be sent using the sendb
command may be a character or an integer.

See also: recv, recvb, send

3.3.3.23 SET COMM

Purpose: Sets the serial communications port parameters.

Format: set comm (expr, expr, expr, expr, expr);

Description:
The serial communications port operation is specified by five main

parameters: Port number, baud rate, parity, number of data bits and number
of stop bits. The set comm function allows the setting of these parameters.

70

Serial Port Parameters
The five serial port parameters that can be set from the set comm

function are Port Number, Baud Rate, Parity, number of Data Bits and
number of Stop Bits. For a description of these parameters, see the get
comm function. The following table shows each of the parameters, and the
values they may have:

Parameter Values
Port Number

Port #1 0

Port #2 1

Baud Rate 110, 150, 300, 600

1200, 2400, 4800, 9600

Parity
None 0

Odd 1

Even 2

Data Bits 7, 8

Stop Bits 1, 2

The function may take either variables or explicit numbers as parameters.

See also: get comm

3.3.3.24 SET DATE

Purpose: Sets the calendar date on the computer's system clock.

Format: set date (expr, expr, expr);

Description:
The function set date takes three parameters, month, day and year,

and sets the date on the computer's system clock. The format for the date is

71

month, day, and year, and the values are integers. The following example
demonstrates the use of set date:

(This example assumes that the date is currently Jan 1, 1980)

(and that the date will be set for June 1, 1988)

int month, day, year;

get date (month,day,year);

write (month,day,year); (Output: 1 1 1980)

set date(6,1,1988);

get date (month,day,year);

write (month,day,year); (Output: 6 1 1988)

In the above example, the get date function is used to retrieve the
current date from the system clock, while the set date is used to set the new
date.

See also: get date

3.3.3.25 SET TIME

Purpose: Sets the time on the computer's system clock.

Format: set time (expr, expr, expr);

Description:
Similar to the set date function, set time allows the setting of the

time on the system clock. The parameters to the set time function are

integers in the format hour, minute, sec in a 24 hour clock. This means that

if the clock is to be set to 1:00 pm, the hour parameter would have to be 13
instead of 1.

72

(This example assumes that the current time is 1:15 AM, and is)

(going to be set to 2:15 PM)

int hours, minutes, seconds;

get time (hours,minutes,seconds);

write(hours,minutes,seconds); (Output: 1 15 10)

set time (14,15,0); (14 hours = 2pm)

get time(hours,minutes,seconds);

write(hours,minutes,seconds); (Output: 14 15 0)

In the above example, the get time function is used to retrieve the
time so that it may be printed, and the set time is used to actually set the
time.

See also: get time

3.3.3.26 STR

Purpose: Converts an integer to a string.

Format: str (var, expr);

Description:
The str function takes an integer and a string variable as input,

converts the integer into a string and copies it into the string variable. The

integer will be written as a decimal number.

The following example show the function of the str command.

int x;

char a[10];

x=3;

str (a,x);

write(a);

str(a,123);
write(a);

(Output: "3")

(Output: "123")

73

Care must be taken to ensure that the variable is large enough to hold the
string, or data may be lost.

See also: v al

3.3.3.27 VAL

Purpose: Converts a string to an integer.

Format: val (string I variable);

Description:
The val function takes a string, or a variable containing a string,

and converts the string to an integer. This function assumes that the input

string contains an integer in a string form. The string must be in the
following format to successfully be converted to an integer:

white space sign digits

The beginning of the string may have any amount of white space (i.e. tabs

or spaces). It then may have a sign (+/-), followed directly by a series of
digits representing the number to be converted. The function is terminated

74

when an unrecognized character is read. The following examples illustrate
this:

int x;

x = val(" -102");

x = val("124a");

x= val("x12");

char a[10];
int x;
copy (a,"+124");

(x = -102)

(x = 124, the function ends at 'a')

(x = 0, the function ends at 'x')

x = val(a); (x = 124)

See also: s t r

3.3.3.28 WAIT

Purpose: Suspends the execution of the program for a specified number
of seconds.

Format: wait (expr);

Description:
The wait function delays the execution of the currently running

program for a number of seconds specified in the function parameters.
Once the delay is over, the program resumes execution.

See also: wait until

75

3.3.3.29 WAIT UNTIL

Purpose: Suspends the execution of the program until a certain time or
date is reached.

Format: wait until (expr, expr, expr);

Description:
The wait until function is very similar to the wait function, except

that instead of waiting a set number of seconds, it waits until a time or date
specified in the parameters has been reached. It then allows the execution
of the program to continue.

The parameter will take either a time or a date. The wait until
function determines whether it is supposed to wait for a specified time or a
specifed date by examining the parameters it receives. If the function is
until wait to a specific time, then the parameters will contain a time in the
format hours, minutes, seconds. The time must be in a 24 hour clock format.
An example of the wait until function in the time mode demonstrates this:

wait until (18,0,10); (Wait until 6:00pm and 10 seconds)

wait until (18,70,10);

A (WRONG! Only 60 minutes in an hour)

If the function is in the date mode, then the format is month, day,
year. The month and day parameters must be integers, but otherwise are
written normally. The year parameter must be written completely out, i.e. it

should not be abbreviated. It also must be greater than or equal to 1980 to
work properly. The following examples show this:

wait until (1,1,1988); (Wait until Jan 1, 1988)

wait until (1,32,1988); (WRONG! Maximum of 31 days)

wait until (1,1,88); (WRONG! The year is less than 1980)

76

Little error checking is done by the computer on the wait until
parameters. If an invalid date is entered, it may cause an infinite delay in
the function. If this happens, the program may be aborted by pressing the
Ctrl-Break key combination.

See also: wait

3.3.3.30 WHILE/WEND

Purpose: Provides a program loop based on a conditional statement.

Format: while (expr)
program statements ...

wend

Description:
The while/wend statement provides the ability to do repetitive

loops based on a condition. The while statement repeats the loop, executing
all of the statements between the while and wend keywords, as long as the
conditional expression remains true. After each execution of the loop, the
expression is reevaluated, and if the expression is false, the loop is exited.
Any number of program statements may be in the loop.

The conditional expression may be any numeric expression that
evaluates to an integer. If the number is non-zero, then the statement is
true; otherwise, if it is a zero, it is false. The expression usually consists of
logical expressions, such as <,>,==, and, or, etc.

The following examples illustrate the use of the while statement:

int x,y;

x=1;

y=0;

77

while (x<10)

write(x);
x=x+1;

wend

while (x<10 and y==0)

write(x);
y=x/5;

x=x+1;

wend

(Output: 1 2 3 4 5 6 7 8 9)

(Output: 1 2 3 4 5)

while (1)

write("Loop "); (Output: "Loop Loop Loop Loop ...")

wend (This is an infinite loop)

See Also: for/next

3.3.3.31 WRITE

Purpose: Outputs data to the screen or to a file.

Format: write ([filevar,] expr [, expr] ...);

Description:
The write function allows the output of data either to the computer's

screen or to a file. If the data is to be written to the screen, then the
optional filevar is excluded from the statement. If the filevar is included,
then the file that the filevar is associated with will received the data.

The data to be written, is specified in the parameters of the function.
Variables may be used or values or strings may be explicitly written. Any

number of expressions may be included in the write statement. Each

78

expression or variable must be separated by a comma. Explicit strings must
have beginning and ending quotes.

Writing to a file is done when the optional file variable is used at the
beginning of the write statement. If that is done, then all data in the
write statement is written to the file in the order in which it appears in the
function. The filevar is obtained from the open statement and is of the type
file.

There are several special characters that can be used in the write
function. These characters are formatting characters and include the
carriage return, line feed and backspace. These characters are written in a

string using the '\' (backslash) as an escape character. The following table
shows the escape sequences used in this program:

Sequence Value Char Function
\a 07 BEL Sounds bell
\ID 08 BS Writes backspace

\f 12 FF Writes form feed
\n 10 LF Writes line feed
\r 13 CR Writes a carriage return

Ot 09 TAB Writes a tab
\\ 92 \ Writes a backslash

,\,,

\any char
34

?? ??

Writes a double quote
Writes character

Table 4 Escape Codes

The backslash escape sequence allows the writing of itself and of the double
quote, which normally would not be allowed. The 'V and the \n' both
translate automatically a a carriage return-linefeed operation. In all

respects, they are identical.

The following examples show how the write statement works:

int a,b,c;

char r,s,t;

79

file file 1 ;

a=5;

b=10;

write(a); (Output: 5)

write(a+b); (Output: 15)

r =' A'

write(r); (Output: A);

write("There are ",a," ",r,"'s in Aaaaa");

(Output: "There are 5 A's in Aaaaa")

open("testfile.txt",file 1 ,read);

write(filel ,a);
write(file 1 ,"Text")

(Output: 5)

(Output: Text)

write("This is a test of the carriage return. \nSee?");

(Output: "This is a test of the carriage return.
See?")

See also: close, open, read, file

80

3.4 Error Messages

The following is a short list of error messages produced by the NCP
interpreter.

Program File "xxxxxxxx.xxx" not found

The Interpreter could not find the specified program file on the disk
drive. Checking the name and location of the file is suggested.

Duplicate Definition on line: xxx

A variable of the same name was defined more than once in the
variable declaration section.

Undefined Variable on line: xxx

An attempt was made to use a variable that was not declared.

Syntax Error on line: xxx

An error in the the format of the program statements was made.
Check the location of the error and the manual to determine the specific
error.

Illegal Value xxx in function Comm on line: xxx

A incorrect value was used in a Comm function (Send or Get).

Control Break - User Interrupt on line: xxx

The program was interrupted at the specified line.

"xxxxxx" not found in function SEND on line: xxx

The name of the task or destination NIU was not found in the lists.
Check the name used with the Task Library list or the NIU list.

81

3.5 Lex and YACC Theory

The NCP interpreter is a combination of two major programs, the
lexical analyzer and the parser. The lexical analyzer inputs an NCP
program text file, matching keywords and other letter combinations with a
set of rules, and then outputs representative tokens. The tokens are then
matched up by the parser with rules that were written for it. When the
incoming tokens have matched certain rules, the parser executes the
functions that run the interpreter.

While the support functions do most of the work in running the
interpreter, it is the lexical analyzer and the parser that give it structure.

These programs are generated from a set of fairly simple rules provided by
the user. These rules and how they work that will be covered briefly in the
next section.

3.5.1 Lexical Analyzer

The lexical analyzer processes a character input stream by
attempting to match the input with a set of string expressions. When a

match is made, sections of program code are executed. Usually, as in the
case of the NCP interpreter, a number (called a token) is returned. The

token represents the matched string expression and is used later in the
parser.

The lexical analyzer used in the NCP interpreter was written using
the Lex program. The Lex program takes a set of rules, usually string
expressions, and generates the lexical analyzer. The rules used by Lex are
generally followed by a line of program code. The program code usually
returns a token. Other times, when a value is needed, the token is returned
as well as the string or value that was matched. Tokens are given values

that are greater than 256 to avoid conflict with any members of the
character set.

The structure of Lex is simple. The format for a Lex grammar consists
of three sections:

82

definitions
%%

rules
%%

user's functions

The definitions section holds any include statements, function

predeclarations or variable definitions. The rules sections contains the
regular expressions used by Lex to analyze the input. Functions that

support the Lex rules are placed in the last section.
The rules used in matching the input to the expressions are simple.

The rules are checked in order, from beginning to end, until a match is
made or the last rule is checked. Input that matches an expression allows
the execution of program code included with the expression. The most basic
expression is the simple string, as the following example shows:

"int" return(INT);

When the analyzer recognizes the string "int" in the input, it returns the
value associated with the token INT. As the analyzer works through the
input sequentially, it will not match the expression if it is contained inside a
larger string. For example, there is the case of "to" and "gotoxy":

"to" return(TO);
"gotoxy" return(GOTOXY);

If the input was "gotoxy (1,1)," the analyzer would not match the "to"
expression, even though "gotoxy" contains a "to." This is because it is

trying to match the "g" of the "gotoxy" first, and thus would skip over the
"to" in favor of the "gotoxy." If the rules were as follows,

"go" return(GO);
"to" return(TO);
"gotoxy" return(GOTOXY);

83

then the analyzer would match the "go" with the first rule, the "to" with the
second, and would then try to match the "xy." This shows that care must be
taken in writing the Lex rules.

There are a number of other ways to write the string expressions.
Using square brackets, matches may be made to a class of characters. The

brackets may contain a number of characters, but the analyzer will only
match one character in the brackets. For example,

[\t]

matches spaces (the first character) or tabs (the backslash is the C escape
character), but not both. When the expression is matched, no action is
taken. This rule simply strips out of the text file all of the spaces and tabs
(i.e. white space).

Another example of this technique is the rule to recognize numbers:

[0-9]+ {yylval.num = atoi (yytext); return(CONST);)

The "0-9" is shorthand for "[0123456789]". It specifies a range of characters
which in this case is all of the numbers. The "+" symbol is a command to the

analyzer to match one or more of the characters in the brackets. This

allows the matching of multiple characters in a single set of brackets. In

the above example, the expression matches up with a number of any size.
When the match is made, the number (stored in the variable yytext) is

converted to an integer and assigned to a variable for passing to the parser.
A token is also returned, indicating the nature of the output.

There are a number of other types of expressions, using a variety of
operators, that can be used in a Lex grammer. More information on Lex and

the Lex grammer may be found in [LESK 75].

84

3.5.2 The YACC parser

The parser gives the structure to the NCP interpreter. The heart of
the parser is a set of rules that tells what order program statements may
come in. It takes as input the tokens generated by the lexical analyzer. The

parser then attempts to organize the tokens with its rules or grammar.
When a rule is matched, added program code is executed, which performs
the operations of the interpreter.

The parser was written using the YACC program. YACC (Yet Another
Compiler-Compiler) takes a set of structure rules (or grammar rules) as

input, and creates the source code for a parser. The parser takes the tokens,
representing the information to be parsed as input. Parsers generated by
YACC automatically call the lexical analyzer created by Lex. As the

grammar rules are fairly simple, creation of a parser can be quite easy.
The format for the grammar rules for YACC consist of the following

parts:

declarations
%%

rules
%%

user's programs

The declarations section holds any variable declarations, function

predefinitions, declaration of the tokens used and preceidence that the
rules have. The rules section holds the parser rules, which in turn can call
the functions in the third section.

A rule consists of an identifier, followed by tokens and identifiers for
other rules. If an identifier has more than one rule, they are separated by
vertical bars T. Rules are terminated by semicolons. An example of a rule
is as follows:

starts : BEGIN vars stmts END ;

85

In the above example, tokens are in uppercase, and identifiers (or

terminals) are in lowercase. The "starts" terminal is the first used in the
NCP interpreter, and as such, has the first rule to be executed. The rule

attached to the "starts" terminal states that it is looking for the token BEGIN.
Since this is the first rule, the first token returned from the lexical
analyzer must be the token BEGIN. If it is not the first token returned, then
an error is generated, and the program stops.

Once the parser has matched the BEGIN token, it jumps to the "vars"
terminal to execute other rules there. Once those rules are matched, the
parser jumps the "stmts" terminal to match those rules, after which it looks
for an END token. This ability to jump from rule to rule allows complex
parsers to be written easily.

The following example shows the use of multiple rules and program
statements. The example creates the part of the parser that handles simple
arithmetic expressions.

stmts: NAME "=" expr

expr "(" expr ")"

fassign_value($1,$3); 1

{ SS = $2;}

expr "-" expr (SS = $1 $3;}

expr "+" expr {$$ = $1 + $3;)

expr "*" expr {$$ = $1 * $3;}

expr "I" expr {SS = $1 / $3;}

CONST { $$ = $1;}

NAME $$ = get_value($1); 1

The rule "stmts" looks for the token NAME, followed by an equals sign.
When it finds that, it jumps to the terminal "expr." The "expr" terminal has
several rules, and the one that it picks is dependent on the input. Many

times the parser must input several tokens before making a decision. If the
input was "1 + 2" (the tokens would be "CONST + CONST"), it would pick the

third rule. The third rule looks for an expression followed by a '+' sign,

followed by another expression. Once the parser knows which rule it needs,
it will execute that rule.

86

The third rule makes the parser jump to the "expr" terminal and
execute a rule there. The 6th rule matches up with the first part of the
input, and since that rule has been recognized, the "$$=$1;" statement is
executed. The $$ is a variable that passes values back to previous rules, and
the $1 gets values from parts of the rule. In this case $1 gets the value sent
along from the lexical analyzer and passes it back to the previous rule.

After the first part has been matched, the third rule matches the '+'

and then jumps again to the "expr" terminal to match the last half. After

the third rule has been recognized, the "$$= $1 + $3" statement adds the
values from the first and third parts of the rule and passes the result back to
the previous "NAME = expr" rule. That rule executes the "assign_value"

function to put the value in the variable specified by NAME.
This is only part of what YACC can do. More information on how to

use this program can be found in [JOHN 75].

3.5.3 Changing and Adding to the Interpreter
If any changes are to be made to the interpreter or the NCP program,

the following suggestions will be helpful.

3.5.3.1 The NCP Program
The NCP program is written in Turbo C Version 2.0. If any changes

are made to the program, it will have to be recompiled using Version 2.0 or
greater, although V1.5 or greater should work. The size of the program
precludes the use of the integrated development environment for linking
purposes, and the compiling of some of the functions. This means that stand
alone compiler and linker will have to be used. A make file with all of the
correct dependencies should be with the source code provided with this
program.

The files "globals.c" and "globals.h" hold the major variables and
arrays that are used in most of the functions. "maxs.h" holds the constants

that dictate the size of the task and node libraries. Increasing them both to

256 elements will exceed the 64k allowed for the data section. If larger

libraries are needed, then a switch to the COMPACT memory model will have
to be made (see the Turbo C Manual).

87

3.5.3.2 Lex

The lexical analyzer is generated from the rules called "lex.rul". It

was done on a UNIX based machine, using the Lex program. The resultant C

source code is compatible with Turbo C, although a few changes must be
made before it can be used in the NCP program:

1. The name of the source code file generated by Lex is "yylex.c".
The name used in the make file for the NCP program is "lex.c".

2. The name of the analyzer function is "yylex". The function

must be renamed "yylex2" to accommodate a preprocesssing

function.

3. The 10th line in the source code must be changed. This is to

prevent the occasional writing of line feeds. The line

define output(c) putc(c,yyout)

must be changed to

define output(c) /* putc(c,yyout) */

3.5.3.3 YACC

The parser was generated from a file of rules called "yacc.rul", using
the YACC program on a UNIX based machine. The parser rules must be

compiled with YACC with the "-d" option to get the "y.tab.h" header file. The

command is as follows:

yacc -d yacc.rul

The resultant source code is compatible with Turbo C if a few changes
are made. The changes are as follows:

88

1. The parser source code is called "y.tab.c", and the header file is

called "y.tab.h". These must be renamed, respectively, to

"ytab.c" and "ytab.h".

2. An extra '#' character must be deleted. The '#' appears in the

code in the following place:

Delete> #

define YYFLAG -1000

define YYERROR goto yyerrlab

define YYACCEPT return(0)

define YYABORT return(1)

3. The line

line xxx "yacc.rul"

appears throughout the source code. The "xxx" characters are
line numbers. All of these lines must be deleted for the source
code to compile correctly.

3.5.4 Protocol from PC to NIU
The communication between the PC and the Network Interface Unit

(NIU) is simple. Data is transmitted without the requirement of an
acknowledgment. If data arrives garbled, it will not be retransmitted.

There is, however, a format for the data transmitted and received.
All data transmitted to the NIU is in the following format:

{NNPITQDDDDDDDDDD/}

{ } The braces indicate the beginning and ending of the data
packet.

89

NN This is the number of the destination NIU. The destiation of 00

is a universal address and sends the packet to all of the NIUs on
the network.

P This is the pre-execution character. It can have the following
values:

The task is to be put on the end of the queue for
execution when all tasks before it have been executed.

The task is to be executed immediately upon reception
by the NIU. It goes before all tasks on the queue and
suspends the task that is currently running.

The task is placed on the queue to wait its turn. When

the task is to be executed, the NIU will stop and wait for a
synchronizing signal from the host. This signal is

usually the immediate task SYNC.

TT This is the number of the task that the NIU is to execute.

Q This is the post-execution character. It tells the NIU what to do
with the task once it has been completed. There are two

options, which are as follows:

The task is to be requeued. The task is placed at the end
of the queue for execution again.

The task is to be discarded.

ED This is the optional data field. In some instances, data needs to

be passed to the NIU. Up to 5 bytes of data may be passed in this
manner. The data field is entirely optional and may be
removed.

90

This is also an optional character and may be eliminated. It is

used to verify the reception of a command packet by the NIU
for which it is destined. If the "I" is added, the receiving NIU

will echo the command packet with square brackets "[1"
instead of braces, and without the "I" character.

All data received by the PC from an NIU are contained in square
brackets. The contents of the return packet are dependent on what
commands were sent to the NIU. There is no a specific format. For example,

the POLL task asks an NIU for its address and the contents of its activity
register. The response is as follows:

[07 00]

The first number is the address; the second, the contents of the activity
register. If the command sent was MTOH (Memory TO Host data transfer),

the response might be

[56]

which is data stored in the NIU.
In both cases, the data returned were different and in a different

format.

91

4. Conclusions and Recommendations

4.0 Conclusions
The NCP program is a good tool for creating and running programs to

control the Task*Master microcontrollers. It provides a number of useful
development tools and has a reliable interpreter for running developed
programs.

The use of the Lex and YACC programs for creating the lexical
analyzer and the parser is one of the strong points of the system. It

provides a standard, easy-to-understand format for changes to either

function and takes away the difficulty of deciphering unknown code for
future programmers.

The interpreter provides a quick reliable execution of network
programs for controlling the microcontrollers. A number of easy-to-
understand and useful functions complement the interpreter.

4.1 Recommendations
4.1.1 The NCP Program

The NCP program is far from complete. It does suffer from a
sparseness in certain functions. The READ and WRITE statements lack
formatting capability, and the WRITE statement would perform better if it

were changed completely. A format more like that found in the C
programming language would be far better.

The FILE functions could provide random access to files instead of
simple sequential access.

More arithmetic functions would be useful, as well as improved logic
functions.

More types of variables and a better way of storing and accessing
them could be added. The program currently has only character and
integer variables, with arrays for both. Floating point variables could be
added with all of the necessary arithmetic functions. Unsigned and higher
precision variables would also be useful. Support for multi-dimensional

arrays is almost mandatory. This would provide the ability to have arrays of
strings, for storage of names. The single dimension array that this current

92

version of the NCP program uses is far too limiting. Only an oversight

allowed this to occur.
The access to the Task Library and the NIU list should be improved.

Currently, both of the lists can be accessed to obtain the integer values for
the tasks or NIU addresses. Access to the names of the tasks or NIUs should
be added. This would permit the users to find out the name of the task or
NIU when he has only its number. In this way, far more useful information
could be provided to the user.

Subroutines and functions are two structures that should be added.
The current version of the NCP program allows only the sequential
execution of the user's program. Repetitive statements must be executed in
a loop, or rewritten for each execution. Subroutines would provide a much

easier way of doing repetitive commands, as well as making the code more
readable. Implementing these structures would require completely
reworking the way the interpreter reads its input, but the reward would be
worth the work.

4.1.2 Task*Master and COLANs Future
The NCP program was designed to work with the Task*Master

microcontroller. This includes the original Task*Master daisy-chain
system, as well as the COLANs. However, the NCP program will not work

with the COLANs without the creation of a interface function to handle the
various command packet formats. This is due to the inconsistency in the PC
to NIU protocol that was developed for COLAN I [ZHEN 861 The inconsistancy

is that the packets sent to the local node have a different format from those
sent to remote nodes, even though to the PC there is not a difference in the
two type of NIUs.

This problem needs to be corrected by coming up with a consistant
and well thought out format for command packets that is the same no matter
for which node it is bound. A consistent format for receiving data should
also be decided on. Preferably, it should be one that includes the
identification of the source of the data. This would greatly improve the
ability of the controlling program to schedule events, based on the current
statuses of the operating microcontrollers.

93

Bibliography

[BORL 88] Borland International, Turbo C Reference and User's Guide,
Scotts Valley, CA, Borland Int., 1988.

[EUM 87] Eum, D. COLAN III, A Control-Oriented LAN Using CSMA/CD
Protocol, unpublished master's thesis, Oregon State University,
Corvallis, OR, 1987.

[GOFT 86] Gofton, P., Mastering Serial Communications, Alameda, CA,
Sybex Inc., 1986.

[HERZ 87] Herzog, J.H., A Design Methodology for Distributed
Microprocessors in Real-Time Control Applications, a paper

submitted to The Second International Conference on
Computers and Applications, Beijing, China, June 1987.

[HERZ 85] Herzog, J.H., TASK*MASTER Operating Manual, Oregon State
University, Corvallis, OR, 1985.

[JOHN 75] Johnson, S.C., YACC: Yet Another Compiler Compiler,
Computing Science Technical Report No. 32, Bell Laboratories,
Murray Hill, NJ, 1975.

[KAO 87] Kao, S. Design of COLAN II, A Control Oriented Local Area
Network, unpublished master's thesis, Oregon State University,
Coravallis, OR, 1987.

[KERN 78] Kernighan, B.W., The C Programming Language, Englewood
Cliffs, NJ, Prentice-Hall, 1978.

[LESK 75] Lesk, M.E., Lex - A Lexical Analyzer Generator, Computing
Science Technical Report No. 39, Bell Laboratories, Murray
Hill, NJ, October 1975.

[NORT 85] Norton, P., The Peter Norton Programmer's Guide to the IBM PC,
Washington, Microsoft Press, 1985.

[TANE 81] Tanenbaum, A. S., Computer Networks, Englewood Cliffs, NJ,
Prentice-Hall Inc., 1981.

[THYE 88] Thye, Y., COLAN IV, A Network for Communications and
Control, unpublished master's thesis, Oregon State University,
Corvallis, OR, 1988.

[ZHEN 86] Zheng, Y., A Simple Local Area Network, COLAN (Control
Oriented Local Area Network), unpublished master's thesis,
Oregon State University, Corvallis, OR, 1986.

APPENDICES

94

A.0 Example Programs for the NCP Program

A Program to poll the NIUs on the network hooked to the PC.

(This program polls all of the NIUs on the network attached to the PC. It

sends out the command of POLL to ALL of the nodes on the network. It then
waits for replies, and prints out which nodes responded. Since the nodes
won't respond in any particular order, the output will not be in any order.

begin

char data[10] ;

char temp 1 0];

int address;

send(ALL, POLL,I.); (Sends to all NIUs, the immediate task POLL)
write("A list of active units on the network\n");
while(not keypressed)

recv(data); (get data from serial port)
temp [0]=data[0]; (put address into temp variable)
temp[1]=data[1];

temp [2] =0;

address=val(temp); (convert string to integer)

write("Unit #" , address ," responded\n");
wend
write("Polling Ended");

end

95

A Program to Control Heating in a building

{This program is designed to monitor and control the heating in a building.
Each Task*Master unit is assigned a room, and is assumed to be attached to a
thermostat that provides it with the temperature. It is again assumed that
this data is contained at Data Port #1. The use of the Task DPT1 or 8 bit

Transfer to/from Data Port #1 is used here to transfer the data. This task is

currently not implemented, but it will suffice for an example. The control

of the heating is done by using the relay ports. These are controled by the
task RELP or 4 bit transfer to the relay port.)

begin

int temp, number,delay;

int x,y;

int hour,minute,sec;
int stations[30];

char data [10];

file filevar;

cls;

write("Temperature Monitoring Program\n");

write("Please enter number of Stations: ");

read (number);

write("\nPlease enter Station addresses");

for (x=0 to number-1)
write("\nStation #",x," : ");

read (stations[x]);

next
write("\nPlease enter time between checks (minutes): ");

read(delay);

send(ALL,RSET,I.); [reset the boards);

open ("Tempdata.txt",filevar,write); [open a file for writing data)

96

while (not keypressed);

for (x=0 to number-1)
send(stations[x],DPT1,Q.,00); (get temperature data)
recv(data);
temp=val(data); (convert temperature to integer)

get time(hour,minute,sec);

next
wend

(write the data to the screen)
write("Station #",x," has a temperature of ",temp);
write(" at ",hour,":",minute,"\n");

(write the data to a file)
write(filvar,"Station #",x," has a temperature of ",temp);
write(filevar," at ",hour,":",minute,"\n");

(turn on heat if temperature is too low)
if (temp <70)

then send(stations[x],RELP,Q.,11,04);

(turn off heat if temperature is too high)
if (temp>80)

then send(stations[x],RELP,Q.,11,00);

wait(delay*60); (wait until time for next check)

close(filevar);
write("End of Temperature monitoring\n");

end

